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Cumulants, spreadability and the
Campbell–Baker–Hausdorff series

Takahiro Hasebe and Franz Lehner

Abstract. We define spreadability systems as a generalization of exchangeability systems in order
to unify various notions of independence and cumulants known in noncommutative probability.
In particular, our theory covers monotone independence and monotone cumulants which do not
satisfy exchangeability. To this end we study generalized zeta and Möbius functions in the con-
text of the incidence algebra of the semilattice of ordered set partitions and prove an appropriate
variant of Faà di Bruno’s theorem. With the aid of this machinery we show that our cumulants
cover most of the previously known cumulants. Due to noncommutativity of independence the
behaviour of these cumulants with respect to independent random variables is more complicated
than in the exchangeable case and the appearance of Goldberg coefficients exhibits the role of the
Campbell–Baker–Hausdorff series in this context. Moreover, we exhibit an interpretation of the
Campbell–Baker–Hausdorff series as a sum of cumulants in a particular spreadability system, thus
providing a new derivation of the Goldberg coefficients.
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1. Introduction

1.1. Background: Independence and cumulants

Cumulants were introduced by Thiele in the late 19th century as a combinatorial means
to describe independence of classical random variables. In free probability existence of
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cumulants was indicated by Voiculescu [72] and described explicitly by Speicher [62].
Free cumulants are one of the cornerstones in free probability, complementing the analytic
machinery of Cauchy transforms, see [49] for many applications. Later on other kinds of
cumulants were introduced in noncommutative probability, e.g., Boolean cumulants were
defined in [65] in the context of Boolean independence (see also [74, 75]); various kinds
of q-deformed cumulants were considered in [2, 48] in order to interpolate between clas-
sical and free cumulants (however no q-convolution has been found so far); conditionally
free cumulants were defined in [10] which generalize both free and Boolean cumulants.
The second-named author gave a unified theory of the cumulants mentioned above in the
framework of so-called exchangeability systems as a general notion of independence [37].
In the present paper we develop a yet more general framework which comprises also
Muraki’s monotone independence [44], which is not covered by the approach of [37]
because it does not satisfy exchangeability, the obstruction being that monotone indepen-
dence is sensitive to the order on random variables:

Independence of X and Y is not equivalent to independence of Y and X . (O)

Hence in order to avoid misinterpretations we say “the (ordered) pair .X; Y / is monotone
independent” rather than “X and Y are monotone independent”. This property sharply
distinguishes monotone independence from classical, free, and Boolean independences.
Despite lack of exchangeability, the first-named author together with H. Saigo managed to
define monotone cumulants [29,30] relying only on the property called extensivity defined
below. If we denote the monotone cumulants by KM

n .X1; X2; : : : ; Xn/ with respect to a
noncommutative probability space .A; '/, then we have the moment-cumulant formula

'.X1X2 � � �Xn/ D
X
�2Mn

1

j�jŠ
KM
.�/.X1; X2; : : : ; Xn/ (MC)

where the set Mn of monotone partitions is a subclass of ordered set partitions rather than
set partitions. The factor 1

j�jŠ
accounts for the number of possible orderings of the blocks

of the underlying set partition of � and cancels out in the case of exchangeability, like
classical, free or Boolean independence.

Cumulants carry essential information on independence, in particular the vanishing
of mixed cumulants, that is, of cumulants with independent entries, characterize inde-
pendence [37, Proposition 3.5], which is the major reason for their usefulness in free
probability [49]. More precisely, if a finite family of random variablesX1;X2; : : : ;Xn can
be partitioned into two mutually independent subfamilies (in the general sense of Defini-
tion 2.12 below) then

Kn.X1; X2; : : : ; Xn/ D 0: (V)

As a consequence, cumulants are additive, that is, the cumulant of the sum of two inde-
pendent tuples .X1; X2; : : : ; Xn/ and .Y1; Y2; : : : ; Yn/ decomposes as

Kn.X1 C Y1; X2 C Y2; : : : ; Xn C Yn/

D Kn.X1; X2; : : : ; Xn/CKn.Y1; Y2; : : : ; Yn/: (1.1)
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By contrast, because of property (O), monotone cumulants do not satisfy additivity and
thus mixed cumulants do not necessarily vanish. Instead, they satisfy the weaker notion of
extensivity: if ¹.X .j /1 ; X

.j /
2 ; : : : ; X

.j /
n /º1jD1 is a sequence of monotone independent ran-

dom vectors such that .X1; X2; : : : ; Xn/
d
D .X

.j /
1 ; X

.j /
2 ; : : : ; X

.j /
n / for any j � 1, then

KM
n .N:X1; N:X2; : : : ; N:Xn/ D NK

M
n .X1; X2; : : : ; Xn/; (E)

where N:Xi D X
.1/
i CX

.2/
i C � � � CX

.N/
i is the sum of i.i.d. copies.

Extensivity is strictly weaker than the property of vanishing of mixed cumulants, but
extensivity (together with some other properties) still suffices to prove uniqueness of
cumulants even in the case of exchangeability. Therefore extensivity is a natural gener-
alization of the property of vanishing of mixed cumulants.

1.2. Main objectives of the present paper

The first goal of this paper is the unification of second-named author’s approach to cumu-
lants based on exchangeability systems and first-named author’s monotone cumulants
based on universal products of states. The second-named author’s definition of cumulants
includes q-deformed cumulants as well as tensor (or classical), free and Boolean cumu-
lants. On the other hand, the approach of the first-named author and Saigo comprises
monotone cumulants as well as tensor, free and Boolean cumulants, but not q-deformed
cumulants. In the present paper we establish a unified theory based on the concept of
spreadability which has been considered recently by Köstler [34] in the noncommutative
context. Similar to the transition from symmetric to quasisymmetric functions, the concept
of spreadability systems naturally arises as a generalization of exchangeability systems
and allows to unify various kinds of independence and cumulants, including conditionally
monotone independence [28] and two other generalized notions of independence [27],
with a generalization of the moment-cumulant formula (MC) and the property of exten-
sivity (E).

Our approach is combinatorial on the basis of ordered set partitions. An ordered set
partition is defined as an ordered sequence of disjoint subsets whose union is the entire set
(say ¹1; 2; : : : ; nº). We first investigate the structure of the semilattices OP n of ordered
set partitions (with respect to dominance order) and show that they locally look like the
lattices 	n of interval partitions, in the sense that any interval in OP n is isomorphic to an
interval in 	k for an appropriate k. This property is crucial for the study of multiplicative
functions in the incidence algebra of ordered set partitions and we establish an isomor-
phism with the composition algebra of generating functions analogous to the well known
formula of Faà di Bruno. In particular, we obtain the fundamental convolution identity for
the generalized zeta and Möbius functions.

Our interest in ordered set partitions was stipulated by the appearance of monotone
partitions in the classification of independence [46] and their role for monotone cumu-
lants [30], but presently it turns out that the structure of ordered set partitions is actually
easier to describe than that of monotone partitions. For example we do not have a good
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understanding of the structure of intervals Œ�; �� �Mn for �; � 2Mn and in particular
the values of the Möbius function remain mysterious.

The second goal is the application of our results to free Lie algebras. Connections
of free probability to formal groups have been pointed out early by Voiculescu [72] and
more recently by Friedrich and McKay [23] and in the context of monotone probability
by Manzel and Schürmann [41]; see also an approach via shuffle algebras [21].

Here we obtain new formulations of some well known identities in terms of ordered
set partitions and cumulants. In particular, when an appropriate spreadability system is
chosen, our cumulants turn out to coincide with the homogenous components of the
Campbell–Baker–Hausdorff formula and as a byproduct we obtain a new derivation of
its coefficients, a.k.a. Goldberg coefficients.

We hope that our results will stimulate more connections to combinatorics, in partic-
ular Hopf algebras and noncommutative quasi-symmetric functions [6]. Our proofs only
use elementary and at times tedious calculations, yet we suspect that many of our results
have been obtained in different contexts before and that those with the right knowledge
will find easier and more conceptual proofs. After a first draft of the present paper was
published, this direction was taken up in [39].

1.3. Main results and structure of the paper

Most definitions and results of the present paper are expressed in the language of ordered
set partitions. In order to avoid a large overhead and streamline the presentation all rele-
vant material concerning these and related objects has been collected in Appendix A. This
includes in particular the description of intervals in the poset of ordered set partitions, inci-
dence algebras, multiplicative functions, generalized zeta functions and the corresponding
Möbius functions.

In Section 2, we define spreadability systems (Definition 2.2) and give examples
coming from the four (or five) universal products of linear maps (Section 2.3). Roughly
speaking, a spreadability system for a noncommutative probability space .A; '/ consists
of a larger space .U; z'/ containing copies X .i/, i 2 N, of each element X 2 A whose
joint distribution in invariant under spreading, i.e., such that

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / D z'.X

.j1/
1 X

.j2/
2 � � �X .jn/n / (1.2)

whenever the entries of the multiindices .i1; i2; : : : ; in/ and .j1; j2; : : : ; jn/ are in one-
to-one correspondence via an order preserving map; in other words, whenever the kernel
ordered set partitions �.i1; i2; : : : ; in/ and �.j1; j2; : : : ; jn/ (Definition A.10) coincide.
In this case the common value of (1.2) only depends on said ordered set partition � D
�.i1; i2; : : : ; in/ and is denoted by

'�.X1; X2; : : : ; Xn/ D z'.X
.i1/
1 X

.i2/
2 � � �X .in/n /: (1.3)

In typical examples (like the ones presented in Section 2.3), U is the free product or
tensor product of copies of A, z' is a universal product (e.g., the free product) of the
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copies of ', and X .i/ is the natural embedding of X into U as the i th component; then
(1.2) holds trivially. The main idea is to regard ¹X .i/; i 2 Nº as i.i.d. copies of the ran-
dom variable X and condition (1.2) gives rise to a generalized notion of i.i.d. sequences
A.i/ WD ¹X .i/ W X 2Aº, i 2N of subalgebras of U. Using this, we can induce a notion of
independence on the original algebra A by generalizing the following elementary obser-
vation from classical probability: two random variables X and Y are independent if and
only if the joint distribution of the random vector .X;Y / is the same as that of .X .1/;Y .2//,
where .X .1/; Y .1// and .X .2/; Y .2// are i.i.d. copies of .X; Y /. More precisely, our alge-
braic notion of independence can be formulated in lattice theoretic terms as follows: a
sequence of subalgebras .Ai /i2I of A, where I � N, is said to be �-independent if for
any tuple of indices .i1; i2; : : : ; in/ 2 I n, any tuple of random variables .X1; X2; : : : ; Xn/
with Xj 2 Aij and any ordered set partition � 2 OP n, we have

'�.X1; X2; : : : ; Xn/ D '�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/;

where f is roughly the usual operation ^ for the underlying set partitions, equipped with
the lexicographic order on blocks, see Definition A.19. For several specific spreadability
systems this definition reproduces previous notions of independence (Proposition 2.18).

In Section 3, we define cumulants associated to a spreadability system and express
cumulants in terms of moments and vice versa (Theorem 3.11). More precisely, we adapt
Rota’s dot operation from umbral calculus [57] for our purpose and write

N:X WD X .1/ CX .2/ C � � � CX .N/;

for “the sum of i.i.d. random variables”. Using the notation '�.X
.i1/
1 ;X

.i2/
2 ; : : : ;X

.in/
n / WD

'�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/, we show that for each � 2 OP n the partitioned expec-
tation '�.N:X1; N:X2; : : : ; N:Xn/ is a polynomial in N and the coefficient of the lowest
order term N j�j is the �-cumulant with respect to the spreadability system � , denoted by
K�.X1; X2; : : : ; Xn/. These coefficients satisfy the fundamental properties of cumulants
listed in Definition 3.5 and are related to the partitionend moments (1.3) by generalized
Möbius inversion,

K�.X1; X2; : : : ; Xn/ D
X

�2OP n
���

'� .X1; X2; : : : ; Xn/ z�.�; �/; (1.4)

'�.X1; X2; : : : ; Xn/ D
X

�2OP n
���

K� .X1; X2; : : : ; Xn/ z�.�; �/; (1.5)

where z� and z� are generalized Möbius and zeta functions, respectively (see Definition
A.28). In the special case of the maximal element � D O1n these coefficients evaluate to
z�.�; O1n/ D

.�1/n�j� j

j� j
and �.�; O1n/ D 1

j� jŠ
, cf. formula (MC).

These concepts have a certain affinity to formal group laws and exhibit a Lie algebraic
flavour, which is confirmed by the considerations in Section 6.
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We also prove extensivity (Proposition 3.16) and uniqueness of cumulants (Theo-
rem 3.6). The previous moment-cumulant formulas for the free, tensor, Boolean, mono-
tone and c-monotone cases in the literature are listed as special cases (Propositions 3.24
and 3.26); for instance, the partitioned cumulants KM

� associated with the monotone
spreadability system are shown to satisfy multiplicativity

KM
� D

´
0; � 2 OP n nMn;

KM
.�/
; � 2Mn;

(1.6)

which, together with (1.5), implies the known formula (MC). While associativity of mono-
tone independence is crucial for the proof of (1.6), this property is not required for the
construction of cumulants for general spreadability systems.

In Section 4, we establish recursive differential equations for the time evolution of
moments. This generalizes for example the complex Burger’s equation in free probabil-
ity [73]. Motivations for this section come especially from the effective use of differential
equations in monotone probability theory.

In Sections 5 and 6, we encounter the “Goldberg coefficients” in two different ways
whose connections are still unclear. In Section 5, we compute mixed cumulants, i.e., we
express cumulants of random variables which split into “independent subsets” in terms
of lower order cumulants (Theorem 5.6): a sequence of subalgebras .Ai /i2I of A, where
I � N, is �-independent if and only if for any tuple .i1; i2; : : : ; in/ 2 I n, any random
variables .X1; X2; : : : ; Xn/ 2 Ai1 � Ai2 � � � � � Ain and any ordered set partition � 2
OP n, we have

K�.X1; X2; : : : ; Xn/ �
X

�2OP n

K� .X1; X2; : : : ; Xn/g
�
�; �.i1; : : : ; in/; �

�
D 0; (1.7)

where g.�; �; �/ is what we call the Goldberg coefficient. In the special case � D O1n it is
given by

g.�; �; O1n/ D

´
1

q1Šq2Š���qr Š

R 0
�1
xdes�.�/.1C x/asc�.�/

Qr
jD1 Pqj .x/ dx; x� � x�;

0; x� 6� x�;
(1.8)

where r and qj are certain integers determined by � and �, des�.�/; asc�.�/ are the num-
bers of descents and ascents of the multiset permutations naturally associated with .�; �/.
Pq.x/ D

Pq

kD1
kŠ S.q; k/xk�1 are the homogeneous Euler polynomials and S.q; k/ are

the Stirling numbers of the second kind. For general � , g.�; �; �/ is either zero or the
product of g.�cP ; �cP ; O1jP j/ over P 2 � . Formula (1.7) sheds light on the gap between
extensivity (E) and the vanishing property (V) and reveals the role of the Campbell–
Baker–Hausdorff formula.

In Section 6 we present an operator-valued “unshuffle” spreadability system �� which
is interesting from a combinatorial point of view: The corresponding cumulants reproduce
the homogeneous components of the Campbell–Baker–Hausdorff formula; in particular,
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the specialization of our cumulants to free algebras corresponds to Lie projectors. The
definition of the spreadability system �� is rather simple: A is any unital algebra, 'WA!
A is the identity map, U is the infinite tensor product of the copies of A, and X .i/ D
1˝.i�1/ ˝ X ˝ 1˝1 2 U is the natural embedding of X 2 A into U as the i th tensor
factor. The linear map z'WU! A is given by concatenation of words:

z'.X1 ˝X2 ˝ � � � ˝Xn ˝ 1
1/ WD X1X2 � � �Xn:

Consequently, the mixed expectation yields a rearrangement (“unshuffle”)

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / WD XP1XP2 � � �XPk ;

where �.i1; i2; : : : ; in/ D .P1; P2; : : : ; Pk/ and XP is the ordered product of Xp’s over
the elements p 2 P , see (2.1).

For this specific spreadability system, ��-independence of subalgebras .Ai /i2I turns
out to be equivalent to the commutativity ŒAi ;Aj �D 0 for i ¤ j (Remark 6.9). The second
cumulant K O12.X; Y / is the commutator 1

2
ŒX; Y �.

Finally we give a new derivation of the coefficients of the Campbell–Baker–Hausdorff
formula (also known as “Goldberg coefficients”) using the moment-cumulant formulas
(1.4) and (1.5) for the particular spreadability system ��. To this end specialize A to
the free associative algebra generated by a set of noncommuting variables a1; a2; : : :, fix
r 2 N and qj ; ij 2 N for j 2 Œr� such that ij ¤ ijC1 for j 2 Œr � 1�, then the coefficient
of the monomial aq1i1 a

q2
i2
� � � a

qr
ir

appearing in log.ea1 � � � ean/ is given by

1

q1Šq2Š � � � qr Š

Z 0

�1

xdes.i/.1C x/asc.i/
rY

jD1

Pqj .x/ dx; (1.9)

where i stands for the sequence .i1; i2; : : : ; in/ and Pq.x/ are the homogeneous Euler
polynomials already encountered in (1.8).

In Section 7 we briefly discuss the central limit theorem associated to spreadability
systems satisfying a certain singleton condition.

We conclude the paper with a few open problems. One of them is to find an explanation
or unified proof of the surprisingly coinciding formulas (1.8) and (1.9).

2. Spreadability systems and independence

2.1. Notation and terminology for noncommutative probability

From now on we denote by A and B associative algebras over the field C. Elements of A

are called random variables, and elements of An; n 2 N are called random vectors. An
(algebraic) B-valued expectation is a linear map

' W A! B
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and we call the pair .A; '/ an (algebraic) B-valued noncommutative probability space
(B-ncps). In the case where B is a subalgebra of A and ' is a B-module map in the sense
that '.bab0/ D b '.a/ b0 for all a 2 A and b; b0 2 B, the map ' is called conditional
expectation. This property will however not be crucial in the context of the present paper.

Remark 2.1. (i) In order to be able to include Boolean and monotone products and some
other examples (Section 2.3) we do not a priori assume the unitality. In some examples A

and B are naturally unital; then we also assume that ' is also unital, i.e., '.1A/D 1B and
also that involved subalgebras of A contain the unit of A.

(ii) Usually the involved algebras are �-algebras and the linear maps satisfy positivity.
However positivity is not essential here and we stick to the algebraic B-valued setting,
which allows to include the interesting example of Lie polynomials in Section 6.

We say that two sequences .Xi /1iD1; .Yi /
1
iD1 � A have the same distribution if

'.Xi1Xi2 � � �Xin/ D '.Yi1Yi2 � � �Yin/

for any tuple .i1; i2; : : : ; in/ 2 Nn; n 2 N, and in this case we write

.Xi /
1
iD1

d
D .Yi /

1
iD1:

Alternatively, in the categorical approach (see, e.g., [41]), a random variable is a unital
homomorphism � W D ! A from some unital algebra D into A. This definition extends
also to random vectors. Indeed, given a random vector .X1; X2; : : : ; Xn/, we get a homo-
morphism � W D ! A defined by �.xi / D Xi , where D is the nonunital algebra freely
generated by noncommuting indeterminates x1; x2; : : : ; xn. Let .A1; '1/, .A2; '2/ be two
B-ncps such that '1, '2 take values in a common algebra B. Sequences of random vari-
ables .�.i/1 /

1
iD1 � Hom.D ;A1/; .�

.j /
2 /1jD1 � Hom.D ;A2/ have the same distribution if

'1
�
�
.i1/
1 .x1/�

.i1/
1 .x2/ � � � �

.in/
1 .xn/

�
D '2

�
�
.i1/
2 .x1/�

.i2/
2 .x2/ � � � �

.in/
2 .xn/

�
for any .i1; i2; : : : ; in/ 2 Nn and any x1; x2; : : : ; xn 2 D . In this case we write

.�
.i/
1 /
1
iD1

d
D .�

.j /
2 /1jD1:

GivenX1;X2; : : : ;Xn 2A and P D ¹p1; p2; : : : ; pkº � Œn� with p1 < p2 < � � �< pk ,
it will be convenient to introduce the notation

XP WD Xp1Xp2 � � �Xpk (2.1)

for the ordered product. For a k-linear functional M WAk ! B, we denote

M.XP / WDM.Xp1 ; Xp2 ; : : : ; Xpk /: (2.2)

Recall that the tensor product has the universal property that any multilinear map

T W An
! B
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has a unique lifting to a linear map

zT W A˝n ! B

such that on rank 1 tensors we have zT .a1 ˝ a2 ˝ � � � ˝ an/ D T .a1; a2; : : : ; an/. We will
tacitly identify T with zT in order to simplify notation.

2.2. Spreadability systems

In this subsection we introduce the notation necessary to generalize the notions of par-
titioned moment and cumulant functionals of [37] from the exchangeable setting to the
spreadable setting.

Definition 2.2. Let .A; '/ be a B-ncps.

(1) A spreadability system for .A; '/ is a triplet � D .U; z'; .�.i//1iD1/ satisfying the
following properties:

(i) .U; z'/ is a B-valued ncps.

(ii) �.i/ W A!U is a homomorphism such that ' D z' ı �.i/ for each i � 1. For
simplicity, �.i/.X/ is denoted by X .i/, X 2 A, and we denote by A.i/ the
image of A under �.i/.

(iii) The identity

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / D z'.X

.h.i1//
1 X

.h.i2//
2 � � �X .h.in//n / (2.3)

holds for any X1; X2; : : : ; Xn 2 A, any i1; i2; : : : ; in 2 N and any order
preserving map h W ¹i1; i2; : : : ; inº ! N, that is, ip < iq implies h.ip/ <
h.iq/.

(2) A triplet E D .U; z'; .�.i//1iD1/ is called an exchangeability system if, in addition to
(i), (ii) above, equation (2.3) holds for anyX1;X2; : : : ;Xn 2A, any i1; i2; : : : ; in 2
N and any permutation h 2 S1 WD

S
n�1 Sn.

Remark 2.3. (1) In some examples where A, B, ' are unital, the extended algebra U is
also unital and �.i/ are unit-preserving. To be specific, this applies to the tensor and free
spreadability systems in Section 2.3 and the unshuffle spreadability system in Section 6.

(2) It is easy to see that condition (2.3) can be rephrased as follows:

.�.1/; �.2/; : : :/
d
D .�.n1/; �.n2/; : : :/

for any strictly increasing sequence .ni /1iD1 � N. This is the definition given in [34].
(3) It is straightforward to extend the definition of exchangeability systems (resp.,

spreadability systems) from N to an arbitrary set (resp., arbitrary totally ordered set).

Definition 2.4. (i) Using the concept of kernel partition from Definition A.10 the condi-
tion of spreadability (2.3) is equivalent to the requirement that

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / D z'.X

.j1/
1 X

.j2/
2 � � �X .jn/n / (2.4)
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holds whenever the kernels coincide, i.e., �.i1; i2; : : : ; in/ D �.j1; j2; : : : ; jn/, see Defi-
nition A.10. That is, the expectation (2.3) only depends on the ordered kernel set partition
�.i1; i2; : : : ; in/. Thus for every ordered set partition � 2 OP n we can define a multilin-
ear functional '� WAn ! C by choosing any representative sequence .i1; i2; : : : ; in/ with
�.i1; i2; : : : ; in/ D � and setting

'�.X1; X2; : : : ; Xn/ D z'.X
.i1/
1 X

.i2/
2 � � �X .in/n /: (2.5)

The invariance (2.4) ensures that this definition is consistent and does not depend on the
choice of the representative.

(ii) This generalizes the corresponding notions from exchangeability systems [37]:
given an exchangeability system E D .U; z'; .�.i//1iD1/, we can define a multilinear func-
tional '� , this time for any set partition � 2 Pn,

'�.X1; X2; : : : ; Xn/ D z'.X
.i1/
1 X

.i2/
2 � � �X .in/n /;

where .i1; i2; : : : ; in/ is any representative such that x�.i1; i2; : : : ; in/ D � , see Defini-
tion A.10.

Remark 2.5. The algebra U and the homomorphisms .�.i//i2N of a spreadability system
can always be chosen to be the tensor algebra of the copies of A (see (2.7) below) with
the natural embeddings, respectively, in the following sense. Given a spreadability system
� D .U; z'; .�.i//1iD1/ for a B-ncps .A; '/, we set yU WD

F1
iD1Ai where Ai are copies of

A and set O�.i/WADAi !
yU to be the natural embeddings. Then we can define y'W yU!B

by setting

y'
�
O�.i1/.X1/O�

.i2/.X2/ � � � O�
.in/.Xn/

�
WD z'

�
X
.i1/
1 X

.i2/
2 � � �X .in/n

�
for every i1; i2; : : : ; in with ik ¤ ikC1 (k 2 Œn � 1�) and X1; X2; : : : ; Xn 2 A, giving rise
to the spreadability system y� D . yU; y'; .O�.i//i�1/ for .A; '/. Now .O�.i//i�1

d
D .�.i//i�1 and

thus replacing � with y� does not change basic results; in particular, the cumulants for �

and for y� are identical, see Theorem 3.11.
In the majority of the examples below we choose U to be the tensor algebra, in a few

cases however, it is more natural to choose another U. A notable exception is the case
of unital algebras, where the unital free product �i2NA and the infinite tensor productN
i2N A are more convenient.

2.3. Examples from universal products of linear functionals

Spreadability systems typically arise as universal products of linear functionals defined on
free products of �-algebras. Universal products can be formulated for various categories of
noncommutative probability spaces, e.g., the category of �-algebras with restricted states
(i.e., such that the unital extension to the unitization is positive) or the category of unital
�-algebras with states. In the present paper we concentrate on combinatorial aspects and
skip questions about positivity. On the other hand, recently multiple linear functionals
on single algebras turned into focus which give rise to nontrivial spreadability systems.
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We therefore consider the category AlgPd consisting of objects .A; '/, where A is an
algebra and ' D .'1; : : : ; 'd / is a d -tuple of C-valued linear functionals on A. An arrow
f W .D ;  1; : : : ;  d / ! .A; '1; : : : ; 'd / in this category is an algebra homomorphism
f WD ! A such that 'i ı f D  i for all i 2 Œd �.

A universal product is a bifunctorˇ on AlgPd of the form�
.A1; '1/; .A2; '2/

�
7! .A1; '1/ˇ.A2; '2/ D .A1 tA2; '1ˇ'2/;

where A1 tA2 is the coproduct (also called the nonunital free product) in the category
of associative algebras. This means thatˇ is a binary operation on AlgPd such that

.'1ˇ'2/ ı .f1 t f2/ D .'1 ı f1/ˇ.'2 ı f2/ (U0)

for any arrows fk WDk ! Ak , k D 1; 2, where f1 t f2 is the canonical arrow

D1 tD2 ! A1 tA2:

For a universal productˇ some of the following conditions are often imposed [41].

(U1) Restriction property: .'1ˇ '2/ ı �k D 'k for each k 2 ¹1; 2º, where �k is the
canonical embedding Ak ! A1 tA2.

(U2) Associativity: .'1ˇ '2/ˇ '3 D '1ˇ.'2ˇ '3/ under the natural isomorphism
of .A1 tA2/ tA3 and A1 t .A2 tA3/.

(U3) Factorization on length two (“stochastic independence”):

.'1ˇ'2/.ab/ D '1.a/'2.b/ D .'1ˇ'2/.ba/ for all a 2 A1 and b 2 A2:

(U4) Symmetry: '1ˇ '2 D '2ˇ '1 under the natural isomorphism of A1 tA2 and
A2 tA1.

Under condition (U2), the productˇi2Œp� 'i can be naturally defined on
F
i2Œp�Ai for

any p 2 N. The following property is satisfied by many examples.

(U5) Universal coefficients: there exists a family of complex numbers®
uj .�; f I�/ W j 2 Œd �; n 2 N; � 2 OP n; � 2 Pn; � � x�; f W � ! Œd �º

such that for every p 2N, .Ai ; 'i / 2AlgPd .i 2 Œp�/, n 2N, i1; i2; : : : ; in 2 Œp�
and Xk 2 Aik .k 2 Œn�/, we have for j 2 Œd ��

ˇ
i2Œp�

'i
�j
.X1X2 � � �Xn/ D

X
�2Pn
��x�

X
f W�!Œd�

uj .�; f I�/
Y
S2�

'
f .S/

i.S/
.XS /;

where � WD �.i1; i2; : : : ; in/ and i.S/ is the common value ik for k 2 S (this
number is independent of a choice of k 2 S because � � x� and k 7! ik is
constant on each block of �).
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In fact, condition (U5) for p D 2 only is sufficient: then associativity implies condi-
tion (U5) for general p.

Remark 2.6. For d D 1 a binary operation ˇ satisfying conditions (U0)–(U3) and (U5)
is called a quasi-universal product in [45]. (Note that (U0) easily follows from (U5)). On
the other hand, a binary operation ˇ satisfying conditions (U0)–(U3) is called a natural
product [46]. The main result of [46] is that (U5) follows from (U0)–(U3), i.e., a natural
product is a quasi-universal product.

Remark 2.7. A more general setup was discussed in [41], where the algebras are allowed
to have an additional structure of faces. The theory of cumulants is also developed in [41]
for universal products with multistates and multifaces. It seems that some modifications
are needed in order to adapt the notion of spreadability system to the structure of faces but
this issue is not discussed in the present paper.

The universal products with (U1)–(U4) for d D 1 were classified by Ben Ghorbal and
Schürmann into three types: tensor, free, Boolean [5]. The universal products with (U1)–
(U3) for d D 1 were then classified by Muraki [46] into five types: monotone and anti-
monotone products in addition to the above three. The anti-monotone product is essen-
tially the reversion of the monotone product and therefore omitted from the discussion
below. With (U1)–(U2) for d D 1, more examples arise and according to [36, p. 7] and
[24, p. 3] the classification is not yet complete. On the other hand, no classification results
are known for d � 2.

Given a universal product with (U1) and (U2) for AlgPd one can construct a d -tuple
of (C-valued) spreadability systems in the following way: for a single object .A; '/ of
AlgPd , take countably many copies .Ai ; 'i / D .A; '/, i 2 N and set

.U; z'j / WD

 
1G
iD1

Ai ;
�
ˇ
i2N

'i
�j! (2.6)

for each j 2 Œd � with the natural embeddings �.i/WA D Ai ! U, i 2 N. Note here that
the coproduct over N can be represented as the tensor algebra

1G
iD1

Ai D

M
n2N

M
i1;i2;:::;in2N

ij¤ijC1 for all j2Œn�1�

Ai1 ˝Ai2 ˝ � � � ˝Ain (2.7)

and ˇi2N 'i is naturally defined due to associativity. Condition (U1) readily implies that
'
j
i D z'

j ı �.i/ for all i 2 N and functoriality ofˇ yields�
ˇ
i2N

'i
�
ı

� G
i2N

fi

�
D ˇ
i2N

.'i ı fi / (2.8)

for all arrows fi WDi!Ai , i 2N, where
F
i2N fi W

F
i2N Di!

F
i2N Ai is the canonical

arrow. Equation (2.8) guarantees the invariance (2.3), and therefore �
j
ˇWD.U; z'

j; .�.i//1iD1/
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is a spreadability system for the ncps .A; 'j / for every j 2 Œd �. Moreover, it becomes an
exchangeability system if ˇ is symmetric. The preceding construction works for both
unital and non-unital algebras.

Each universal productˇ gives rise to a notion of independence.

Definition 2.8. Let d 2 N and ˇ be a universal product for AlgPd satisfying condi-
tions (U1) and (U2). Let A be an algebra and ' D .'1; : : : ; 'd / be a tuple of C-linear
functionals on A.

(i) A sequence .Ai /i2Œp� of subalgebras of A is said to beˇ-independent if the identity

'j ı
zG

i2Œp�

i D
�
ˇ
i2Œp�

.' ı i /
�j on

G
i2Œp�

Ai ;

holds for all j 2 Œd �, where i WAi ,! A is the embedding for i 2 Œp� and z
F
i2Œp�i is the

canonical arrow
F
i2Œp� Ai ! A.

If we further assume (U5) the above definition is equivalent to the requirement that for
any n 2 N, i1; i2; : : : ; in 2 Œp�, Xk 2 Aik .k 2 Œn�/ we have

'j .X1X2 � � �Xn/ D
X
�2Pn
��x�

X
f W�!Œd�

uj .�; f I�/
Y
S2�

'f .S/.XS /; j 2 Œd �: (2.9)

(ii) For an arbitrary totally ordered set I , a family of subalgebras .Ai /i2I is calledˇ-
independent if any finite subfamily is ˇ-independent in the sense above. If the universal
product ˇ in addition satisfies (U4) then one can define ˇ-independence for a family of
subalgebras .Ai /i2I with any index set I because one can define ˇi2I .' ı �.i// for any
index set I .

(iii) A family .Si /i2I of subsets of A with totally ordered index set I is said to be
ˇ-independent if the family of subalgebras Ai generated by Si isˇ-independent.

After these general considerations we briefly discuss some explicit examples.

2.3.1. Tensor exchangeability system. Our first example of a universal product is the
tensor product ˝ of unital algebras and unital linear functionals. Let .A; '/ be a unital
ncps, U the algebraic infinite tensor product U WD ˝1iD1A and z' WD ˝1iD1' be the infi-
nite tensor product of copies of '. Let �.j / be the embedding of A into the j th tensor
component:

�.j /.X/ WD 1˝.j�1/ ˝X ˝ 1˝ 1˝ � � � :

Then ET D .U; z'; .�
.i//1iD1/ is an exchangeability system for .A; '/, which we call the

tensor exchangeability system. In order to emphasize that ET is a spreadability system, we
may write �T instead of ET and call �T the tensor spreadability system.

A family of subalgebras .Ai /i2I of A is˝-independent if for every i1; i2; : : : ; in 2 I
and Xk 2 Aik , k 2 Œn� we have

'.X1X2 � � �Xn/ D
Y

P2x�.i1;i2;:::;in/

'.XP /: (2.10)
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In other words, the universal coefficients for the tensor spreadability system are given by
u1.x� I�/ D 1 for all � 2 OP n and u1.� I�/ D 0 for all � 2 Pn n ¹x�º. Note that we here
omit f because it is unique.

2.3.2. Free exchangeability system. The reduced free product of unital linear function-
als is another example of a universal product. Let U WD �1iD1A be the unital free product
of infinitely many copies of a unital algebra A and let z' WD �1iD1' be the free product of
copies of a unital linear functional ' [3, 72]. Let �.i/ be the embedding of A into the i th
component A of U. Then EF D .U; z'; .�

.i//1iD1/ (or we may write �F when emphasizing
the spreadability) is an exchangeability system for .A; '/, called the free exchangeability
(or spreadability) system.

2.3.3. Boolean exchangeability system. The Boolean product z' D ˘1iD1' is defined on
the nonunital free product (i.e., the tensor algebra) U WD

F1
iD1A by the following rule [9]:

if X1; X2; : : : ; Xn 2 A and ik ¤ ikC1 for any 1 � k � n � 1, then

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / D '.X1/ '.X2/ � � �'.Xn/:

As before, �.j / is the embedding of A into the j th component A of U. The triplet

EB D .U; z'; .�
.i//1iD1/

(or we may write �B) is called the Boolean exchangeability (or spreadability) system.

2.3.4. Monotone spreadability system. Let .U; .�.i//1iD1/ be as in Section 2.3.3. The
monotone product z' D F1iD1' is defined on U by the following recursive rules [43]: for
every n 2 N, X1; X2; : : : ; Xn 2 A and i1; i2; : : : ; in 2 N,

(i) z'.X
.i1/
1 / D '.X1/;

(ii) z'.X
.i1/
1 X

.i2/
2 � � �X

.in/
n / D '.X1/ z'.X

.i2/
2 � � �X

.in/
n / if n � 2 and i1 > i2;

(iii) z'.X
.i1/
1 X

.i2/
2 � � �X

.in/
n /D z'.X

.i1/
1 X

.i2/
2 � � �X

.in�1/
n�1 /'.Xn/ if n� 2 and in > in�1;

(iv) z'.X
.i1/
1 X

.i2/
2 � � �X

.in/
n /Dz'.X

.i1/
1 X

.i2/
2 � � �X

.ij�1/

j�1 X
.ijC1/

jC1 � � �X
.in/
n /'.Xj / if n�3,

2 � j � n � 1 and ij�1 < ij > ijC1.

Then �M D .U; z'; .�
.i//1iD1/ is called the monotone spreadability system for .A; '/. It is

a proper spreadability system, i.e., it does not satisfy exchangeability.

2.3.5. Conditionally monotone spreadability system. Let .U; .�.i//1iD1/ be as in Sec-
tion 2.3.3. The conditionally monotone product is an associative universal product for
d D 2. The infinite conditionally monotone product

.U; z'; z / D F1iD1.A; ';  /

is defined as follows [28].

• z D F1iD1 is the monotone product of  according to Section 2.3.4;
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• z' is determined by rules (i)–(iii) as in the monotone case from Section 2.3.4 but with
the last rule modified into

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n /

D z'.X
.i1/
1 X

.i2/
2 � � �X

.ij�1/

j�1 /
�
'.Xj / �  .Xj /

�
z'.X

.ijC1/

jC1 � � �X
.in/
n /

C  .Xj / z'.X
.i1/
1 X

.i1/
2 � � �X

.ij�1/

j�1 X
.ijC1/

jC1 � � �X
.in/
n /

if n � 3, 2 � j � n � 1 and ij�1 < ij > ijC1: (iv0)

Then �CM D .U; z'; .�.i//1iD1/ is a spreadability system for .A; '/ which does not
satisfy exchangeability. It is called the c-monotone spreadability system.

Remark 2.9. More examples may be extracted from associative universal products in [10,
27] for d D 2 or d D 3, but we omit them here.

2.3.6. V -monotone spreadability system. Recently Dacko introduced the concept of V -
monotone independence and constructed a corresponding V -monotone product of prob-
ability spaces [16]. These notions are based on the notion of V -shaped sequences and
partitions. A sequence of numbers i1; i2; : : : ; in is called V -shaped if there exists an index
1 � r � n such that

i1 > i2 > � � � > ir < irC1 < � � � < in:

Given a unital C-ncps .A; '/, the V -monotone product z' D >i2N' is defined on the
nonunital free product

U WD

1G
iD1

A

and characterized by the following factorization properties. Let Ai �U denote the embed-
ded image �.i/.A/ of A with unit denoted by Ii and 'i be the induced linear functional
' ı .�.i//�1 on Ai . Let n 2 N and Yj 2 Aij , j D 1; 2; : : : ; n be arbitrary elements.

(i) z'.Y1Y2 � � �Yn/ D 0 whenever ij ¤ ijC1 for all j and 'ij .Yj / D 0.

(ii) In addition, for every j 2 Œn�,

z'.Y1Y2 � � �Yj�1Iij YjC1 � � �Yn/

D

´
z'.Y1Y2 � � �Yj�1YjC1 � � �Yn/ if .i1; i2; : : : ; ij / is V -shaped,

0 otherwise,

whenever 'i1.Y1/ D 'i2.Y2/ D � � � D 'ij�1.Yj�1/ D 0.

It is shown in [16] that associativity does not hold; yet identity (2.8) holds and the V -
monotone product gives rise to a spreadability system.

2.4. Spreadability systems with calculation rules

Motivated by Axiom (U5) in the previous subsection, we are lead to the following class
of spreadability systems which provides various examples.
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Definition 2.10. Let � D .U; z'; .�.i//i�1/ be a spreadability system for a C-ncps .A; '/.
For a set partition � 2 Pn we define a multiplicative extension '.�/ of ' by setting

'.�/.X1; X2; : : : ; Xn/ WD
Y
P2�

'.XP / for X1; X2; : : : ; Xn 2 A; (2.12)

where we used notation (2.1) for the ordered product XP .
Then � is said to have a calculation rule if there exists a family of complex numbers

C D
®
s.� I�/ 2 C W n 2 N; � 2 OP n; � 2 Pn; � � x�

¯
such that the equality

'� D
X
�2Pn;
��x�

s.� I�/'.�/

holds as functionals on An for all � 2 OP n and n 2 N. Note that we can always take
s.¹1ºI .1// D 1 because of z' ı �.i/ D '.

Remark 2.11. (1) It is straightforward to see that a spreadability system �1ˇ constructed
from a universal product ˇ on AlgP1 subject to axioms (U1), (U2) and (U5) has a cal-
culation rule with s.� I �/ WD u1.� I �/ (where f is omitted because there is a unique
f W � ! Œ1�).

(2) Actually we can construct such a spreadability system for any given family of
constants CD ¹s.� I�/ 2C W n 2N; � 2OP n; � 2Pn; � � x�º with s.¹1ºI .1//D 1 and
any given C-ncps .A; '/. Let U be the coproduct (i.e., the tensor algebra) of the countable
copies of A in the category of associative algebras and �.i/WA!U the natural embedding
as the i th component. Then we can define a linear functional z' on U as follows: for each
tuple Xj 2A (1�j �n) and indices i1; i2; : : : ; in2N with ik¤ ikC1 (k2 Œn � 1�) we set

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / WD

X
�2Pn;

��x�.i1;:::;in/

s
�
� I �.i1; : : : ; in/

�
'.�/.X1; X2; : : : ; Xn/: (2.13)

The fact that the value of (2.13) depends only on the partition �.i1; i2; : : : ; in/ induced by
the sequence .i1; i2; : : : ; in/ yields that �C WD .U; z'; .�

.i//i�1/ is indeed a spreadability
system.

(3) Muraki’s example [47] yields a spreadability system with calculation rule coming
from a nonassociative universal product. The V -monotone spreadability system is also
such an example. We will investigate other instructive examples later in Examples 2.19
and 3.27.

(4) It is worth mentioning that there are spreadability systems without calculation
rules. For instance, the algebra generated by left and right creation operators acting on
q-Fock space gives rise to an exchangeability system [38], but it was shown in [71] that in
this case the individual distributions of independent elements with respect to the vacuum
expectation is not sufficient to determine the joint distribution with respect to .'�/� , and
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in particular there is no “q-convolution”. The c-monotone spreadability system �CM also
does not have a calculation rule since the evaluation of '� depends on both ' and  in
general.

2.5. �-independence

Let us first recall the notion of independence associated to exchangeability systems [37,
Definition 1.8]. Roughly speaking independence of a pair .X; Y / means that the joint dis-
tribution of .X; Y / coincides with the joint distribution of .X .1/; Y .2//, where the couples
.X .1/; Y .1// and .X .2/; Y .2// are exchangeable copies of the couple .X;Y /. This property
can be reformulated in a lattice theoretical way as follows.

Definition 2.12 (E-independence). Let E D .U; z'; .�.i//i�1/ be an exchangeability sys-
tem for a B-ncps .A; '/. Let I � N.

(i) Subalgebras .Ai /i2I of A are said to be E-independent if for any tuple of
indices .i1; i2; : : : ; in/ 2 I n, any tuple of random variables .X1; X2; : : : ; Xn/
with Xj 2 Aij and any set partition � 2 Pn, we have

'�.X1; X2; : : : ; Xn/ D '�^x�.i1;i2;:::;in/.X1; X2; : : : ; Xn/:

(ii) Subsets .Si /i2I of A are said to be E-independent if the algebras Ai generated
by Si are E-independent. In particular, a family ..X1.i/;X2.i/; : : : ; Xn.i///i2I
of random vectors is said to be E-independent if the subalgebras Ai generated
by its respective entries ¹X1.i/; X2.i/; : : : ; Xn.i/º are E-independent.

Remark 2.13. In the case where A, B, U and ', �.i/ are unital, it is more natural to
assume that the subalgebras Ai contain the unit of A. The same applies to Definition 2.14.

In order to generalize independence from exchangeability systems to spreadability
systems we replace set partitions by ordered set partitions. This time independence of an
ordered pair .X;Y /means that the joint distribution of .X;Y / coincides with the joint dis-
tribution of .X .1/; Y .2// (but not necessarily .X .2/; Y .1//), where the couples .X .1/; Y .1//
and .X .2/; Y .2// are spreaded copies of the couple .X; Y /.

Definition 2.14 (�-independence). Let � D .U; z'; .�.i//i�1/ be a spreadability system for
a given B-ncps .A; '/. Let I � N.

(i) A sequence of subalgebras .Ai /i2I of A is said to be �-independent if for any
tuple of indices

.i1; i2; : : : ; in/ 2 I
n;

any tuple of random variables .X1;X2; : : : ;Xn/ with Xj 2Aij and any ordered
set partition � 2 OP n, we have

'�.X1; X2; : : : ; Xn/ D '�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/: (2.14)
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(ii) A sequence of subsets .Si /i2I is said to be �-independent if the sequence of
subalgebras Ai generated by Si is �-independent. In particular, a sequence of
random vectors ..X1.i/; X2.i/; : : : ; Xn.i///i2I is said to be �-independent if
the sequence of subalgebras Ai generated by ¹X1.i/; X2.i/; : : : ; Xn.i/º is �-
independent.

Example 2.15. For two subalgebras �-independence reads as follows. A pair of subal-
gebras .A1;A2/ of A is �-independent if the following condition holds. Given elements
X1; X2; : : : ; Xn 2 A1 [ A2, let � D .B1; B2/ be an ordered set partition of the index
set Œn� such that Xi 2 A1 for i 2 B1 and Xi 2 A2 for i 2 B2. Then for any ordered set
partition � 2 OP n we have

'�.X1; X2; : : : ; Xn/ D '�cB1�cB2 .X1; X2; : : : ; Xn/:

Remark 2.16. Let E D .U; z'; .�.i//i�1/ be an exchangeability system for a given B-ncps
.A;'/. It can be regarded as a spreadability system and we denote it by � . Then, obviously,
a sequence of subalgebras .Ai /i2I of A is E-independent in the sense of Definition 2.12
if and only if it is �-independent in the sense of Definition 2.14.

Remark 2.17. (1) With the notation introduced in Definition 3.3 below, equation (2.14)
may be rewritten as

'�.X1; X2; : : : ; Xn/ D '�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n /:

This condition means that the random vectors .Xk/k2Œn� and .X .ik/
k
/k2Œn� have the same

“distribution” with respect to .'�/� . This is compatible with the concept of spreadability,
which is to regard the sequence .�.j /.A//j2I as independent copies A constructed in
.U; z'/.

(2) An alternative natural definition of �-independence would be to require the sim-
plified condition that for any .i1; i2; : : : ; in/ 2 I n and any Xj 2 Aij ; j 2 Œn�,

'.X1X2 � � �Xn/ D z'.X
.i1/
1 X

.i2/
2 � � �X .in/n /; (2.15)

i.e., requiring (2.14) only for � D O1n. In fact, for the spreadability systems associated
with a large class of universal products, (2.15) implies the �-independence, see Propo-
sition 2.18. In general however, condition (2.15) does not imply �-independence, see
Example 2.19.

(3) In the case of exchangeability, E-independence is equivalent to the vanishing of
mixed cumulants (see Proposition 5.1).

The following result shows that the definitions of E- and �-independence coincide
with the usual definitions for typical examples, e.g., tensor, free, Boolean, monotone,
c-free and c-monotone independences. Associativity is crucial.

Proposition 2.18. Let d 2 N and ˇ be a universal product in the category AlgPd satis-
fying (U1), (U2) and (U5). Let .A; '1; '2; : : : ; 'd / be an object in AlgPd and .Ai /i2I be
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a family of subalgebras of A with I � N. Then .Ai /i2I is ˇ-independent if and only if
it is �

j
ˇ-independent for all j 2 Œd �, where �

j
ˇ is the spreadability system for the C-ncps

.A; 'j / constructed in Section 2.3.

Proof. Suppose that .Ai /i2I isˇ-independent. This means that the identity

'j�.X1; X2; : : : ; Xn/ D '
j

�f�.i1;i2;:::;in/
.X1; X2; : : : ; Xn/ (2.16)

holds for � D O1n, any j 2 Œd �, any tuple .i1; i2; : : : ; in/ 2 I n and any tuple of random
variables .X1; X2; : : : ; Xn/ with Xk 2 Aik , cf. (2.9). The goal is to verify (2.16) for any
ordered set partition � D .P1; P2; : : : ; Pp/ 2 OP n.

Let us denote �.i1; i2; : : : ; in/ D .Q1;Q2; : : : ;Qq/. Then

� f �.i1; i2; : : : ; in/ D .P1 \Q1; P1 \Q2; : : : ; P1 \Qq; P2 \Q1; : : : ; Pp \Qq/:

The RHS of (2.16) is exactly the value 'j .X1X2 � � �Xn/ when�
¹Xiºi2P1\Q1 ; ¹Xiºi2P1\Q2 ; : : : ; ¹Xiºi2P1\Qq ; ¹Xiºi2P2\Q1 ; ¹Xiºi2P2\Q2 ; : : :

�
is assumed to be ˇ-independent. The associativity of ˇ allows us to compute the RHS
of (2.16) in the following two steps:

(a) First compute 'j .X1X2 � � �Xn/ assuming that .¹Xiºi2P1 ; ¹Xiºi2P2 ; : : : ; ¹Xiºi2Pp /
isˇ-independent. The result is exactly the RHS of (2.9).

(b) Then compute each factor 'f .S/.XS / by additionally assuming that�
¹Xiºi2S\Q1 ; ¹Xiºi2S\Q2 ; : : : ; ¹Xiºi2S\Qq

�
isˇ-independent.

This is exactly how the LHS of (2.16) is computed, so that (2.16) holds as desired.
Conversely, suppose that .Ai /i2I is �

j
ˇ-independent for all j 2 Œd �. Formula (2.16)

for � D O1n is exactly the desired independence relation (2.9).

Example 2.19. Let .A; '/ be a C-ncps and let

U WD

1G
iD1

A

be the coproduct in the category of algebras (see (2.7)) and �.i/WA ! U be the nat-
ural embedding as i th component. We define a linear functional z' on U by, for each
X1; X2; : : : ; Xn 2 A and i1; i2; : : : ; in 2 N with ij ¤ ijC1 for all j D 1; 2; : : : ; n � 1,
setting

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / D

8̂̂<̂
:̂
'.X1/ if n D 1;

'.X1/'.X2/ if n D 2;

0 if n � 3:

Then we get an exchangeability system .U; z'; .�.i//i2N/ for .A; '/ with calculation rule.
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For � 2 OP n and X1; X2; : : : ; Xn 2 A it is easy to see that

'�.X1; X2; : : : ; Xn/ D

´
'.�/.X1; X2; : : : ; Xn/ if � 2 	n with j�j � 2,

0 otherwise:
(2.17)

Suppose that subalgebras B1;B2 � A are E-independent. Then for X 2 B1 and Y 2 B2

we have
'�.X; Y / D '�^x�.1;2/.X; Y /

and the case � D O12 yields '.XY / D '.X/'.Y /. Moreover, independence implies

'�.X; Y;X/ D '�^x�.1;2;1/.X; Y;X/:

On the other hand, we infer from (2.17) that for � D ¹¹1; 2º; ¹3ºº the left-hand side equals
'.XY /'.X/ D '.X/2'.Y /, while the RHS equals zero. This is only possible if either
'cB1

D 0 or 'cB2
D 0 holds, so that only the trivial examples satisfy E-independence.

However, nontrivial subalgebras ¹C1;C2º satisfying condition (2.15) exist because (2.15)
simply reads: if Xj 2 Cij then for � WD x�.i1; i2; : : : ; in/

'.X1X2 � � �Xn/ D

´
'.�/.X1; X2; : : : ; Xn/ if � 2 	n with j�j � 2,

0 otherwise:
(2.18)

For example we can start from any C-ncps .Ci ; 'i /, i D 1; 2 and then construct ' on
A WD C1 t C2 so that (2.18) holds.

3. Cumulants for spreadability systems

3.1. Definition and uniqueness of cumulants

Cumulants provide a powerful tool to describe independence of random variables. Let us
first recall the case of exchangeability systems.

Definition 3.1. Let E D .U; z'; .�.i//i�1/ be an exchangeability system for a B-ncps
.A; '/. Cumulants are functionals satisfying the following requirements.

(E1) Multilinearity: Cumulants are multilinear functionals K� WAn ! B, indexed by
set partitions � 2 Pn, n 2 N.

(E2) Universality: There are universal coefficients c.�; �/ 2 C such that

'� D K� C
X
�2Pn
�<�

c.�; �/K� : (3.1)

(E3) Vanishing of mixed cumulants: given a family .X1; X2; : : : ; Xn/ 2 An and a
partition � 2Pn, such that some block of P 2 � can be partitioned P D P 0 P[P 00

nontrivially in such a way that ¹Xi j i 2P 0º and ¹Xi j i 2P 00º are E-independent,
then

K�.X1; X2; : : : ; Xn/ D 0:
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Equivalently, if � 2 Pn partitions the family .X1; X2; : : : ; Xn/ into mutually
E-independent subfamilies, then K�.X1; X2; : : : ; Xn/ D 0 unless � � �.

Remark 3.2. (i) Additivity. As a consequence of (E1) and (E3) cumulants of sums of
independent random variables are additive: Denote by Kn the cumulant functional K O1n ,
then

Kn.X1CY1; X2CY2; : : : ; XnCYn/DKn.X1; X2; : : : ; Xn/CKn.Y1; Y2; : : : ; Yn/: (3.2)

(ii) The system of equations (3.1) is in triangular form and can be solved recursively
and transformed into the equivalent system

K� D '� C
X
�2Pn
�<�

Qc.�; �/'� ;

where the matrix Qc.�; �/ is inverse to c.�; �/.

In [37] the second named author established a unified theory of cumulants for ex-
changeability systems based on a kind of finite Fourier transform, known as Good’s
formula in the mathematics literature [26] and Cartier’s formula for the so-called Ursell
functions in the physics literature [52, 59]. This approach apparently fails in the present,
non-exchangeable setting; however in their study of monotone cumulants [29,30] the first
named author and Saigo found a good replacement in Rota’s dot operation from umbral
calculus [57], i.e., a weak version of (3.2), which we take as a starting point for the defi-
nition of cumulants in full generality in Definition 3.5 below.

Definition 3.3. Let .U; z'; .�.i//i�1/ be a spreadability system for a B-ncps .A; '/.

(i) Given a noncommutative random variable X 2A and a finite subset A � N we
define

ıA.X/ D
X
i2A

X .i/

i.e., the sum of i.i.d. copies of X . In the case AD ŒN � we will also write ıN .X/
and frequently abbreviate it using Rota’s dot operation

N:X WD X .1/ CX .2/ C � � � CX .N/

whenever it is convenient.

(ii) We extend the partitioned functionals '� to
S
�.i/.A/ by setting

'�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / WD '�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/; (3.3)

and

'�.N1:X1; N2:X2; : : : ; Nn:Xn/

WD

N1X
i1D1

N2X
i2D1

� � �

NnX
inD1

'�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n /: (3.4)
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Remark 3.4. Note that (3.3) is actually an abuse of notation, because '� is defined
for elements of A only (see (2.5)); here we pretend that � D .U; .�.i//1iD1; z'/ can be
interpreted as a spreadability system for the algebra A.1;2;:::;N/ generated by the images
A.1/;A.2/; : : : ;A.N/. This is true in the case of universal product construction in (2.6)
but needs justification otherwise; yet (3.3) is well defined and convenient to keep notation
manageable.

Definition 3.5. Let .A; '/ be a B-ncps and � D .U; z'; .�.i//i�1/ a spreadability system
for .A; '/. Cumulants are multilinear functionals K� indexed by ordered set partitions
� 2 OP n, n 2 N, which satisfy the following axioms.

(S1) Multilinearity: Cumulants are multilinear functionals K� WAn ! B, indexed by
ordered set partitions � 2 OP n, n 2 N.

(S2) Universality: There are universal coefficients c.�; �/ 2 C such that for every
� 2 OP n

'� D K� C
X

�2OP n
�<�

c.�; �/K�

or, equivalently, there are universal coefficients Qc.�; �/ 2 C such that

K� D '� C
X

�2OP n
�<�

Qc.�; �/'� : (3.5)

(S3) Extensivity: given a family .X1; X2; : : : ; Xn/2An and an ordered partition � 2
OP n,

K�.N:X1; N:X2; : : : ; N:Xn/ D N
j�jK�.X1; X2; : : : ; Xn/; (3.6)

where the extension of K� to arguments from
S
�.i/.A/ is defined via formula

(3.4) and (3.5) as

K�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / WD

X
�2OP n
���

Qc.�; �/ '� .X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n /

D

X
�2OP n
���

Qc.�; �/ '�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/

and thus

K�.N1:X1; N2:X2; : : : ; Nn:Xn/

WD

X
�2OP n
���

Qc.�; �/ '� .N1:X1; N2:X2; : : : ; Nn:Xn/;

where the diagonal coefficients are Qc.�; �/ D 1.
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Theorem 3.6. Cumulants are uniquely determined by axioms (S1)–(S3) from Defini-
tion 3.5.

Proof. Assume that there are two sets of cumulants K� and K 0� satisfying axioms (S1)–
(S3) with universal coefficients c.�; �/ and c0.�; �/, respectively. Then the axioms imply
that

'�.N:X1; N:X2; : : : ; N:Xn/

D N j�jK�.X1; X2; : : : ; Xn/C
X
�<�

N j� jK� .X1; X2; : : : ; Xn/ c.�; �/

D N j�jK 0�.X1; X2; : : : ; Xn/C
X
�<�

N j� jK 0� .X1; X2; : : : ; Xn/ c
0.�; �/

for any N 2 N and the coefficients of the leading term N j�j must coincide.

3.2. Construction of Cumulants via factorial Möbius and zeta functions

In this subsection, we assume that .A; '/ is a B-ncps and

� D
�
U; z'; .�.i//i�1

�
is a spreadability system for .A; '/.

Spreadability implies that the value (3.3) is invariant under order preserving changes
of the indices; however, for partitioned expectations invariance holds under the weaker
assumption that the relative order of indices is preserved on every individual block. We
will only be concerned with the following particular case and therefore refrain from for-
mulating this fact in full generality.

Lemma 3.7. Let � 2 OP n be an ordered set partition. Fix a block P of � and a number
m 2 N and let .i1; i2; : : : ; in/, .i 01; i

0
2; : : : ; i

0
n/ be n-tuples such that

i 0k D

´
ik Cm if k 2 P ;

ik if k 62 P :

Then
� f �.i1; i2; : : : ; in/ D � f �.i 01; i

0
2; : : : ; i

0
n/:

Remark 3.8. Note that without performing the quasi-meet operation in the lemma above
the kernel partitions �.i1; i2; : : : ; in/ and �.i 01; i

0
2; : : : ; i

0
n/ may well be nontrivial permuta-

tions of each other or even x�.i 01; i
0
2; : : : ; i

0
n/ ¤ x�.i1; i2; : : : ; in/.

Theorem 3.9. For any ordered set partitions � � � 2OP n and numbersN1;N2; : : : 2N
we have

'�.N�.1/:X1; N�.2/:X2; : : : ; N�.n/:Xn/

D

X
���

'� .X1; X2; : : : ; Xn/ N .�; �; �/; (3.7)



T. Hasebe and F. Lehner 538

with N .�; �; �/ as in Definition A.28 and �.i/ as in Definition A.8 (ii). Specializing to
the case � D � yields

'�.N�.1/:X1; N�.2/:X2; : : : ; N�.n/:Xn/

D

X
���

'� .X1; X2; : : : ; Xn/ ˇN .�; �/ (3.8)

and this is a polynomial in N1; : : : ;Nj�j without constant term. Furthermore, specializing
to the case N WD N1 D N2 D � � � entails

'�.N:X1; N:X2; : : : ; N:Xn/ D
X
���

'� .X1; X2; : : : ; Xn/ ˇN .�; �/;

which is a polynomial in N consisting of monomials of degree at least j�j.

Proof. We begin with (3.8) and then verify the general case (3.7). The proof boils down
to the enumeration of the set

SN .�;�/WD
®
.i1; i2; : : : ; in/2 ŒN�.1/�� ŒN�.2/�� � � � � ŒN�.n/� W� f �.i1; i2; : : : ; in/D �

¯
:

Pick an arbitrary block Pi D ¹p1; p2; : : : ; pkº of � D .P1; P2; : : :/. There are
�

Ni
#.�cPi /

�
possible ways to choose a tuple .ip1 ; ip2 ; : : : ; ipk / such that �.ip1 ; ip2 ; : : : ; ipk / defines
the partition �cPi : for each block of �cPi we have to choose a distinct label from ŒNi �

respecting the order prescribed by the labels of the blocks of �cPi . That is, we have to
choose a subset of ŒNi � of cardinality #.�cPi /. This can be done for every block of �
independently and thus

#SN .�; �/ D
j�jY
iD1

�
Ni

#.�cPi /

�
D ˇN .�; �/: (3.9)

If Ni < #.�cPi / for some i , then � f �.i1; i2; : : : ; in/ can never be equal to � , and so the
cardinality of SN .�; �/ is 0, in accordance with the generally adopted convention that the
generalized binomial coefficient

�
N
k

�
is zero when N < k.

The general formula (3.7) requires the enumeration of the set

SN .�;�;�/D
®
.i1; i2; : : : ; in/ 2 ŒN�.1/��ŒN�.2/��� � ��ŒN�.n/� W � f �.i1; i2; : : : ; in/D�

¯
:

This is similar to SN .�; �/; the difference is that the blocks of � contained in a block
Pi 2 � are endowed with the common number Ni . This results in the product formula

#SN .�; �; �/ D
pY
iD1

SNi .�cPi ; �cPi /;

which equals N .�; �; �/ from Remark A.29 (iii).
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Definition 3.10. Given an ordered set partition

� D .P1; P2; : : : ; Pk/ 2 OP n

with k blocks, we define the partitioned cumulant K�.X1; X2; : : : ; Xn/ to be the coeffi-
cient of N1N2 � � �Nk in the polynomial (3.8).

The next theorem shows that this definition is a natural generalization of [37, Defini-
tion 2.6], cf. Corollary 3.18 below.

Theorem 3.11 (Moment-cumulant formulas). For any � 2 OP n, we have

K�.X1; X2; : : : ; Xn/ D
X
���

'� .X1; X2; : : : ; Xn/z�.�; �/; (3.10)

'�.X1; X2; : : : ; Xn/ D
X
���

K� .X1; X2; : : : ; Xn/z�.�; �/ (3.11)

with z�, z� as in Definition A.28.

Proof. For 0 < k < N , there is no constant term in
�
N
k

�
D

N.N�1/���.N�kC1/
kŠ

(regarded as
a polynomial in N ), and the coefficient of its linear term is

.�1/.�2/ � � � .�k C 1/

kŠ
D
.�1/k�1

k
:

Therefore the coefficient ofN1 � � �Nj�j in ˇN .�;�/D
Qj�j
iD1

�
Ni

#.�cPi /

�
is equal to .�1/j�j�j� j

Œ� W��
.

Note that X
P2�

#.�cP / D j� j:

Comparing with (A.3) the claimed formula (3.10) follows. The same argument holds true
if we look at the monomial N j�j when N1 D N2 D � � � D N .

The inverse formula (3.11) expressing moments in terms of cumulants is an immediate
consequence of the fact that the modified Möbius function z� is the inverse of the modified
zeta function z� (Corollary A.32).

3.3. Verification of cumulant axioms

In this subsection, we keep the assumption that .A;'/ is a B-ncps and �D.U; z';.�.i//i�1/

is a spreadability system for .A; '/.

Theorem 3.12. The cumulants defined in Definition 3.10 verify the axioms (S1)–(S3) from
Definition 3.5.

Axiom (S1) – multilinearity and (S2) – universality are immediate consequences of the
relations (3.10) and (3.11). It remains to show axiom (S3) – extensivity, which is proven in
Proposition 3.16 in a slightly generalized form. For this, we iterate the construction (3.4).
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Definition 3.13. For � 2 OP n and Mi ; Ni 2 N; i D 1; 2; : : : ; n, we define

'�
�
M1:.N1:X1/;M2:.N2:X2/; : : : ;Mn:.Nn:Xn/

�
WD

X
.i1;i2;:::;in/2ŒM1��ŒM2������ŒMn�

'�f�.i1;i2;:::;in/.N1:X1; N2:X2; : : : ; Nn:Xn/:

Remark 3.14. We would like to alert the reader that the formal definition of the expecta-
tion

'�
�
M1:.N1:X1/;M2:.N2:X2/; : : : ;Mn:.Nn:Xn/

�
is not necessarily related to “M:.N:X/” (which formally would represent the element
.N:X/.1/C .N:X/.2/C � � � C .N:X/.M/, i.e., “the sum of i.i.d. copies ofN:X”) as an ele-
ment of an enlarged space, obtained, e.g., by iterating a product construction. Yet we will
show below that the vector .M�.1/N�.1/:X1; : : : ; M�.n/N�.n/:Xn/ and the virtual vec-
tor “.M�.1/:.N�.1/:X1/; : : : ;M�.n/:.N�.n/:Xn//” have the same distribution with respect
to '� . This property implies extensivity of cumulants, see Proposition 3.16 below. It is
a consequence of the associativity of the corresponding universal product in the case of
classical, free, monotone and Boolean independence [29]. For general spreadability sys-
tems it holds on a formal level (Lemma 3.15), even when it comes from a nonassociative
universal product, like the example of V -monotone independence from Section 2.3.6.

Lemma 3.15. Let � 2 OP n, Xi 2 A and Mi ; Ni 2 N, i D 1; 2; : : : ; j�j.

(i) The value '�.M�.1/:.N�.1/:X1/; : : : ;M�.n/:.N�.n/:Xn// is a polynomial in the
variables Mi ; Ni ; i D 1; 2; : : : ; j�j, and K�.N�.1/:X1; : : : ; N�.n/:Xn/ is the
coefficient of M1 � � �Mj�j.

(ii) The dot operation gives rise to an action of the multiplicative semigroup N1

'�.M�.1/N�.1/:X1; : : : ;M�.n/N�.n/:Xn/

D '�
�
M�.1/:.N�.1/:X1/; : : : ;M�.n/:.N�.n/:Xn/

�
:

Proof. (i) Let M WD .M1; : : : ; Mj�j; 0; 0; : : :/ 2 N1 and similarly N 2 N1. Then the
following expansion holds:

'�
�
M�.1/:.N�.1/:X1/; : : : ;M�.n/:.N�.n/:Xn/

�
D

X
.i1;:::;in/2ŒM�.1/������ŒM�.n/�

'�f�.i1;i2;:::;in/.N�.1/:X1; : : : ; N�.n/:Xn/

D

X
���

X
.i1;:::;in/2ŒM�.1/������ŒM�.n/�;

�f�.i1;i2;:::;in/D�

'� .N�.1/:X1; : : : ; N�.n/:Xn/

D

X
���

'� .N�.1/:X1; : : : ; N�.n/:Xn/ˇM .�; �/; (3.12)

where we used the identity (3.9). Hence '�.M�.1/:.N�.1/:X1/; : : : ;M�.n/:.N�.n/:Xn// is
a polynomial in Mi , Ni , i D 1; 2; : : : ; j�j, and from the proof of Theorem 3.11 we infer
that the coefficient of M1 � � �Mj�j is equal to K�.N�.1/:X1; : : : ; N�.n/:Xn/.
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(ii) We proceed with the computation of (3.12):

'�
�
M�.1/:.N�.1/:X1/;M�.2/:.N�.2/:X2/; : : : ;M�.n/:.N�.n/:Xn/

�
D

X
���

'�.N�.1/:X1; N�.2/:X2; : : : ; N�.n/:Xn/ˇM .�; �/

D

X
���

X
���

'� .X1; X2; : : : ; Xn/N .�; �; �/ˇM .�; �/

D

X
���

'� .X1; X2; : : : ; Xn/
� X
�2OP n
�����

N .�; �; �/ˇM .�; �/
�

D

X
���

'� .X1; X2; : : : ; Xn/.N o ˇM /.�; �/

D

X
���

'� .X1; X2; : : : ; Xn/ ˇMıN .�; �/

D '�.M�.1/N�.1/:X1;M�.2/N�.2/:X2; : : : ;M�.n/N�.n/:Xn/;

where (3.7) was used in the second equality and Corollary A.32 was used in the next to
last line.

Proposition 3.16. The cumulants from Definition 3.10 satisfy extensivity (3.6) and more
generally,

K�.N�.1/:X1; N�.2/:X2; : : : ; N�.n/:Xn/ D N1N2 � � �Nj�jK�.X1; X2; : : : ; Xn/:

Proof. By definition, '� applied to the same arguments has the expansion

'�.M�.1/N�.1/:X1;M�.2/N�.2/:X2; : : : ;M�.n/N�.n/:Xn/

D

 
j�jY
iD1

MiNi

!
K�.X1; X2; : : : ; Xn/C.sum of monomials in MiNi of higher degrees/:

On the other hand, from Lemma 3.15 (i) we infer

'�
�
M�.1/:.N�.1/:X1/;M�.2/:.N�.2/:X2/; : : : ;M�.n/:.N�.n/:Xn/

�
DM1M2 � � �Mj�jK�.N:X1; N:X2; : : : ; N:Xn/

C .sum of monomials in Mi of higher degree/:

We have thus computed the expectation in two ways and it follows from Lemma 3.15 (ii)
that the coefficients of M1 � � �Mj�j coincide.

3.4. Examples

Let us now briefly review instances of moment-cumulant formulas coming from noncom-
mutative notions of independence in the light of Theorem 3.11. Let .A; '/ be a B-ncps
and � D .U; z'; .�.i//i�1/ be a spreadability system for .A; '/.
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3.4.1. Cumulants for exchangeability systems. Let start with the verification that the
definition of cumulants for spreadability systems is consistent with the previous definition
for exchangeability systems from [37].

Proposition 3.17. If a spreadability system � satisfies exchangeability, then both the
partitioned expectations and cumulants are invariant under permutations of the blocks.
More precisely, for any partition � D .P1; P2; : : : ; Pk/ 2 OP n and permutation h 2 Sk ,
'� D 'h.�/ and K� D Kh.�/, where h.�/ D .Ph.1/; Ph.2/; : : : ; Ph.k//, Thus '� and K�
are completely determined by the underlying (unordered) set partition x� .

Proof. Invariance of '� under permutations of the blocks of � is an immediate conse-
quence of exchangeability and this invariance extends to the extension (3.3). Indeed let
� D .P1; P2; : : : ; Pk/ 2 OP n and i1; i2; : : : ; in 2 N, then for any h 2 Sk there exists a
permutation g 2 S1 such that h.�/ f �.i1; i2; : : : ; in/ D g.� f �.i1; i2; : : : ; in//. There-
fore,

'h.�/.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / D 'h.�/f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/

D 'g.�f�.i1;i2;:::;in//.X1; X2; : : : ; Xn/

D '�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/

D '�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n /:

Consequently also '�.N:X1;N:X2; : : : ;N:Xn/D 'h.�/.N:X1;N:X2; : : : ;N:Xn/ and, by
definition, K�.X1; X2; : : : ; Xn/ D Kh.�/.X1; X2; : : : ; Xn/.

From the above observation and with the help of Proposition A.30 we can recover
the moment-cumulant formulas in the exchangeable case [37, Definition 2.6 and Proposi-
tion 2.7].

Corollary 3.18. If a spreadability system � satisfies exchangeability then for � 2 Pn we
simply write K� for the partitioned cumulant functional uniquely determined in Proposi-
tion 3.17. Then for any � 2 Pn, we have

K�.X1; X2; : : : ; Xn/ D
X
�2Pn
���

'� .X1; X2; : : : ; Xn/ �P .�; �/;

'�.X1; X2; : : : ; Xn/ D
X
�2Pn
���

K� .X1; X2; : : : ; Xn/;

where �P is the Möbius function on the posets Pn; n 2 N, see (A.1).

3.4.2. Some moment-cumulant formulas of low order.

Example 3.19 (Cumulants in terms of moments). We will write the ordered kernel set
partition �.i1; : : : ; in/ simply as the multiset permutation i1i2 � � � in. For example,

211 D
�
¹2; 3º; ¹1º

�
:
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Examples of Theorem 3.11 are given by

K1.X/ D '1.X/;

K11.X; Y / D '11.X; Y / �
1

2
.'12.X; Y /C '21.X; Y //;

K12.X; Y / D '12.X; Y /;

K21.X; Y / D '21.X; Y /;

K111 D '111 �
1

2
.'112 C '121 C '122 C '211 C '212 C '221/

C
1

3
.'123 C '132 C '213 C '231 C '312 C '321/;

K112 D '112 �
1

2
.'123 C '213/;

where for the sake of compactness the arguments .X; Y; Z/ are omitted in the last two
formulas.

Example 3.20 (Moments in terms of cumulants). Examples of Theorem 3.11 are given
by

'1.X/ D K1.X/;

'11.X; Y / D K11.X; Y /C
1

2Š

�
K12.X; Y /CK21.X; Y /

�
;

'12.X; Y / D K12.X; Y /;

'21.X; Y / D K21.X; Y /;

'111 D K111 C
1

2Š
.K112 CK121 CK122 CK211 CK212 CK221/

C
1

3Š
.K123 CK132 CK213 CK231 CK312 CK321/;

'112 D K112 C
1

2Š
.K123 CK213/;

where .X; Y;Z/ are omitted in the last two formulas for simplicity.

3.4.3. Cumulants for universal products. We verify that the cumulants for associative
universal products satisfy factorization properties. Here we further assume that B D C,
but it will not be difficult for readers familiar with operator-valued independence [31, 42,
53, 60, 63] to generalize the results to general B-valued conditional expectations in the
cases of free, Boolean and monotone products and spreadability systems.

Definition 3.21. For n 2 N the n-linear maps on A

Kn WD K O1n ; 'n WD ' O1n

are called the nth cumulant and expectation functional, respectively. The latter is simply

'n.X1; X2; : : : ; Xn/ D '.X1X2 � � �Xn/
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for Xi 2 A. Following notation (3.3), we also write

'n.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / D z'.X

.i1/
1 X

.i2/
2 � � �X .in/n /:

We extend these functionals multiplicatively to set partitions and ordered set partitions as
follows.

For set partitions � 2 Pn we define multiplicative extensions '.�/ of .'n/n2N and
K.�/ of .Kn/n2N by setting

'.�/.Y1; Y2; : : : ; Yn/ WD
Y
P2�

'jP j.YP / and K.�/.Y1; Y2; : : : ; Yn/ WD
Y
P2�

KjP j.YP /

for Y1; Y2; : : : ; Yn 2

1[
iD1

�.i/.A/ or Y1; Y2; : : : ; Yn 2 A;

where we use notation (2.2) for multilinear functionals. We also define '.�/ WD '.x�/ and
K.�/ WD K.x�/ for ordered set partitions � 2 OP n.

These multiplicative extensions are important for the understanding of cumulants aris-
ing from universal products. Note that the above definition of '.�/ reduces to (2.12) when
Yi 2 A and the use of the same notation does not cause any conflict.

It turns out that for specific spreadability systems certain cumulant functionals vanish
identically. This is a consequence of a certain factorization property which is satisfied by
these spreadability systems and which is subsumed in the following lemma.

Lemma 3.22. Let � 2 OP n be an ordered set partition.

(i) Let � D .U; z'; .�.i//i�1/ be a spreadability system for some B-ncps .A; '/.
Assume that there exists a family of complex numbers ¹s.� I�/ W � 2Pn; � � x�º

such that

'�.Y1; Y2; : : : ; Yn/ D
X
�2Pn
��x�

s.� I�/'.�/.Y1; Y2; : : : ; Yn/ (3.13)

holds for any tuple of random variables Y1; Y2; : : : ; Yn 2
S1
iD1 �

.i/.A/. Then

K�.X1; X2; : : : ; Xn/ D s.x� I�/K.�/.X1; X2; : : : ; Xn/

for any tuple X1; X2; : : : ; Xn 2 A.

(ii) Let .U; z'; .�.i//i�1/ be a spreadability system for some B-ncps .A; '/. Assume
that there exist coefficients ¹t .�I�/ W � 2 OP n; x� < x�º such that

'�.Y1; Y2; : : : ; Yn/ D
X

�2OP n
x�<x�

t .�I�/'�.Y1; Y2; : : : ; Yn/

holds for any tuple of random variables Y1; Y2; : : : ; Yn 2
S1
iD1 �

.i/.A/. Then
the cumulant K�.X1; X2; : : : ; Xn/ D 0 for any tuple X1; X2; : : : ; Xn 2 A.
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Remark 3.23. Suppose the expansion (3.13) holds for all ordered set partitions � 2OP n,
then � is a spreadability system with calculation rule (2.13) (e.g., take Y1; Y2; : : : ; Yn 2
�.1/.A/). Now the expansion (3.13) extends the calculation rule to the variables Y1; Y2; : : :
in
S1
iD1 �

.i/.A/. Such an extension is not automatic; we give a counterexample in Exam-
ple 3.27.

Proof of Lemma 3.22. (i) Choosing Yk D �.ik/.Xk/ and taking the sum of (3.13) over all
indices i1; i2; : : : ; in 2 ŒN � we get formula (3.13) for Yk D N:Xk as well. The desired
conclusion is an immediate consequence by comparing the coefficients of N j�j together
with the definition of cumulants (Definition 3.10). The point is that, since the number of
blocks of any � < x� is strictly larger than the number of blocks of � , the coefficient of
N j�j vanishes in '.�/.N:X1; N:X2; : : : ; N:Xn/. (ii) is proven in a similar way.

Proposition 3.24. (i) Let KT
� be the cumulants associated to the tensor spreadability sys-

tem �T. Then
KT
� D K

T
.�/; � 2 OP n:

(ii) Let KF
� be the cumulants associated to the free spreadability system �F. Then

KF
� D

´
0; � … ON Cn;

KF
.�/
; � 2 ON Cn;

where by ON Cn, we denote the set of ordered noncrossing partitions, see Definition
A.14 (i).

(iii) LetKT
� be the cumulants associated to the Boolean spreadability system �B. Then

KB
� D

´
0; � … O	n;

KB
.�/
; � 2 O	n;

where by O	n, we denote the set of ordered interval partitions, see Definition A.14 (ii).
(iv) Let KM

� be the cumulants associated to the monotone spreadability system �M.
Then

KM
� D

´
0; � …Mn;

KM
.�/
; � 2Mn;

where by Mn, we denote the set of monotone partitions, see Definition A.14 (iii).
These results combined with the general moment-cumulant formula (Theorem 3.11)

reproduce the known formulas.

Proof. Items (i), (ii) and (iii) satisfy exchangeability and are covered in [37] (note that our
cumulants are invariant under the permutation of the blocks of � , see Proposition 3.17);
alternatively these cases follow from Lemma 3.22 and the arguments below.

We are left with case (iv). Let uM.� I�/ be the universal coefficients from Axiom (U5)
for monotone independence (where f W � ! Œ1� is unique and hence omitted). We can
prove (3.13) for

s.� I�/ WD uM.� I�/
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using the technique from the proof of Proposition 2.18. Indeed, associativity allows us to
deduce the identity

'�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / D '�f�.i1;:::;in/.X1; X2; : : : ; Xn/

following the two steps (a) and (b) there and the resulting value is exactly the RHS
of (3.13) with Yk D X

.ik/

k
. It is known that uM.x� I�/ D 1 for � 2Mn and uM.x� I�/ D 0

for � 2 OP n nMn, see [45, Proposition 3.2] and the claimed formula follows.

Remark 3.25. Other examples of noncrossing cumulants come from the c-free exchange-
ability systems of [10], see [37, Section 4.7]. Lemma 3.22 (ii) provides a new proof that
crossing cumulants vanish.

Let us consider next c-monotone spreadability system �CM. Recall from Section 2.3.5
that the construction of �CM is based on an algebra A with two linear functionals ',  .

Proposition 3.26. Let KCM
� be the �-cumulant associated to the c-monotone spreadabil-

ity system �CM defined in Section 2.3.5 and KM; 
n the nth monotone cumulant functional

with respect to the linear map  W A! C. Then

KCM
� .X1; X2; : : : ; Xn/ D

8<:
Q
P2Outer.�/K

CM
jP j
.XP /

Q
P2Inner.�/K

M; 
jP j

.XP /; � 2Mn;

0; � …Mn;

with Outer.�/ and Inner.�/ the sets of outer blocks of � and inner blocks of � , respec-
tively; see Definition A.3 (ii).

Proof. We use two spreadability systems: the c-monotone spreadability system �CM D

.U; z'; .�.i//1iD1/ for .A; '/ and the monotone spreadability system �M D .U; z ; .�
.i//1iD1/

for .A;  /. The multiplicative extension '.�/ of ' is now modified to

'.�/; .Y1; Y2; : : : ; Yn/ WD
Y

P2Outer.�/

'jP j.YP /
Y

P2Inner.�/

 jP j.YP /

for � 2 ON Cn; Y1; Y2; : : : ; Yn 2

1[
iD1

�.i/.A/ or Y1; Y2; : : : ; Yn 2 A;

which apparently coincides with '.�/ if ' D  . By the definition of c-monotone spread-
ability system, there exist universal constants uCM.�; f I�/ 2 C depending only on � 2
OP n; � 2 Pn with x� > � and a “2-coloring” f of the blocks of � , i.e., a function
f W � ! ¹1; 2º, such that for any Yj 2 A

'�.Y1; Y2; : : : ; Yn/ D '.�/; .Y1; Y2; : : : ; Yn/

C

X
�2Pn;�<x�
f W�!¹1;2º

uCM.�; f I�/
� Y
f .S/D1

'jS j.YS /
�� Y
f .S/D2

 jS j.YS /
�
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if � 2Mn and

'�.Y1; Y2; : : : ; Yn/ D
X

�2Pn;�<x�
f W�!¹1;2º

uCM.�; f I�/
� Y
f .S/D1

'jS j.YS /
�� Y
f .S/D2

 jS j.YS /
�

if � …Mn. Similar to the monotone case, thanks to associativity and the arguments from
the proof of Proposition 2.18, this formula holds also for Yj 2

S1
iD1 �

.i/.A/, j 2 Œn�. Then
the arguments from Lemma 3.22 and Proposition 3.24 applies.

Associativity played a key role in the proof of Propositions 3.24 and 3.26 above. The
following example shows that indeed the assumptions of Lemma 3.22 can fail for nonas-
sociative universal products.

Example 3.27. Let .A; '/ be a C-ncps and let U WD
F1
iD1A be the coproduct in the cat-

egory of algebras (see (2.7)) and �.i/WA!U be the natural embedding as i th component.
We define a linear functional z' on U by, for eachX1;X2; : : : ;Xn 2A and i1; i2; : : : ; in 2N
with ij ¤ ijC1 for all j D 1; 2; : : : ; n � 1, setting

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / D

´
0 if there are k ¤ ` such that ik D i`;Qn
iD1 '.Xi / otherwise:

Then we get an exchangeability system .U; z'; .�.i//i2N/ for .A; '/.
For � 2 Pn and X1; X2; : : : ; Xn 2 A it is easy to see that

'�.X1; X2; : : : ; Xn/ D

´
'.�/.X1; X2; : : : ; Xn/ if � 2 	n;

0 otherwise

holds for any tuple Xi 2 A; however this formula does not extend to mixed tuples Yi 2S1
iD1 �

.i/.A/. For example, if � D ¹¹1; 3º; ¹2ºº then

'�.X
.1/
1 ; X

.2/
2 ; X

.3/
3 / D '.X1/'.X2/'.X3/ D '.X

.1/
1 /'.X

.2/
2 /'.X

.3/
3 /

but
'�.X

.1/
1 ; X

.1/
2 ; X

.1/
3 / D 0 ¤ '.X

.1/
1 /'.X

.1/
2 /'.X

.1/
3 /

in general.
Next we shall compute some cumulants. Straightforward calculations yield

' O11.N:X1/ D N'.X1/;

' O12.N:X1; N:X2/ D N'.X1X2/CN.N � 1/'.X1/'.X2/;

' O13.N:X1; N:X2; N:X3/ D N'.X1X2X3/CN.N � 1/'.X1X2/'.X3/

CN.N � 1/'.X1/'.X2X3/

CN.N � 1/.N � 2/'.X1/'.X2/'.X3/;
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so that the coefficients of N yield the cumulants

K1.X1/ D '.X1/;

K2.X1; X2/ D '.X1X2/ � '.X1/'.X2/;

K3.X1; X2; X3/ D '.X1X2X3/ � '.X1X2/'.X3/ � '.X1/'.X2X3/

C 2'.X1/'.X2/'.X3/:

On the other hand, for � D ¹¹1; 3º; ¹2ºº we have

'�.N:X1; N:X2; N:X3/ D
X
i1;i2;i3
i1Di3

X
i1Di3

'�.X
.i1/
1 ; X

.i2/
2 ; X

.i3/
3 /

C

X
i1;i2;i3
i1¤i3

'�.X
.i1/
1 ; X

.i2/
2 ; X

.i3/
3 /

D

X
i1;i2;i3
i1Di3

'�.X1; X2; X3/„ ƒ‚ …
D 0

C

X
i1;i2;i3
i1¤i3

' O03.X1; X2; X3/

D N 2.N � 1/'.X1/'.X2/'.X3/;

so that
K�.X1; X2; X3/ D �'.X1/'.X2/'.X3/;

which does not vanish in general although the underlying set partition � is not interval.
This does not contradict Lemma 3.22 because condition (3.13) is not satisfied. Indeed, the
only possible identity would be '¹13=2º.Y1; Y2; Y3/D c'¹1=2=3º.Y1; Y2; Y3/ for every Yj 2S1
iD1 �

.i/.A/. However the combinations '¹13=2º.X
.1/
1 ;X

.1/
2 ;X

.1/
3 /D'¹13=2º.X1;X2;X3/

D 0 and '¹13=2º.X
.1/
1 ;X

.2/
2 ;X

.3/
3 /D'¹1=2=3º.X1;X2;X3/D'.X1/'.X2/'.X3/ show that

there is no universal constant c satisfying the requirement.

Remark 3.28. We already verified in Section 2.3.6 that Dacko’s V -monotone indepen-
dence [16] satisfies the axioms of a spreadability system, but is non-associative. On the
other hand, it also falls into the framework of the tree operad of Jekel and Liu [32] with the
corresponding cumulants and it is an interesting question how these cumulants are related.

4. Partial cumulants and differential equations

Neither the defining formula (Definition 3.10) nor the Möbius formula (Theorem 3.11) are
suitable for the efficient calculation of cumulants of higher orders. In the case of exchange-
ability systems recursive formulas are available which are more adequate for this purpose;
see [37, Proposition 3.9]. In the classical case, the recursion reads as follows:

KT
n.X1; X2; : : : ; Xn/ D EX1X2 � � �Xn �

X
A¤Œn�
12A

KT
jAj.Xi W i 2 A/E

Y
j2Ac

Xj :



Cumulants, spreadability and the Campbell–Baker–Hausdorff series 549

In the univariate case this is the familiar formula

�n D mn �

n�1X
kD1

�
n � 1

k � 1

�
�kmn�k

which for normal random variables specifies to Stein’s method.
In the free case the recursive formula reads

KF
n.X1; X2; : : : ; Xn/

D '.X1X2 � � �Xn/ �
X
A¤Œn�
12A

KF
jAj.Xi W i 2 A/'z�max.Ac/.Xj j j 2 A

c/ (4.1)

(see Definition A.5) which has been recently considered under the name of “splitting
process” in the realm of combinatorial Hopf algebras [20].

Turning to our general setting we note that already in the case of monotone probabil-
ity we lack a simple recursive formula; however the first author and Saigo [29, 30] found
a good replacement in terms of differential equations. Differential equations also play a
major role in free probability, for example the complex Burgers’ equation and its gener-
alizations appear in the context of free Lévy processes [73]. In this section we will unify
these differential equations from the point of view of spreadability systems.

4.1. Recursive differential equations for evolution of moments

In this subsection let .U; z'; .�.i//i2N/ be a spreadability system for a B-ncps .A; '/. For

� D .P1; : : : ; Pp/ 2 OP n

we have observed in Theorem 3.9 that '�.N�.1/:X1; : : : ; N�.n/:Xn/ is a polynomial in
N1; : : : ; Np and we may formally replace N1; : : : ; Np with real numbers t1; : : : ; tp . Thus
we obtain formal multivariate moment polynomials

'
t
�.X1; : : : ; Xn/ WD '�.t�.1/:X1; : : : ; t�.n/:Xn/; t 2 Rp:

We will now establish recursive differential equations for these moment polynomials. By
Definition 3.10, our cumulants are given by

K�.X1; : : : ; Xn/ D
@p

@t1@t2 � � � @tp

ˇ̌̌̌
tD.0;:::;0/

'
t
�.X1; X2; : : : ; Xn/: (4.2)

In order to get recursive differential equations we need a refinement of cumulants which
we call partial cumulants. They are obtained by taking the derivatives in (4.2) one at a
time.

Definition 4.1. Let � D .P1; P2; : : : ; Pp/ 2 OP n, t D .t1; : : : ; tp/ 2 Rp , j 2 Œp�. We
define the partial cumulant to be the polynomial

K
.t1;:::;tj�1;1;tjC1;:::;tp/

�;Pj
.X1; : : : ; Xn/ D

@

@tj

ˇ̌̌̌
tjD0

'
t
�.X1; : : : ; Xn/:
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Applying the binomial formula to specific blocks similar to the proofs of Theorems 3.9
and 3.11 it is easy to derive the following explicit expression for the partial cumulants.

Proposition 4.2. Let � D .P1; P2; : : : ; Pp/ 2 OP n, t D .t1; : : : ; tp/ 2 Rp , j 2 Œp�. Then

K
.t1;:::;tj�1;1;tjC1;:::;tp/

�;Pj
.X1; : : : ; Xn/

D

X
�2OPPj

'
.t1;:::;tj�1;1;tjC1;:::;tp/

.P1;P2;:::;Pj�1;�;PjC1;:::;Pp/
.X1; : : : ; Xn/z�.�; O1Pj /:

We are now ready to establish partial differential equations for the evolution of parti-
tioned moments.

Theorem 4.3. For � D .P1;P2; : : : ;Pp/ 2OP n, t D .t1; t2; : : : ; tp/ and j 2 Œp� we have

@

@tj
'
t
�.X1; : : : ; Xn/ D

X
;¤A�Pj

K
.t1;:::;tj�1;1;tj ;tjC1;:::;tp/

.P1;:::;Pj�1;A;Pj nA;PjC1;:::;Pp/;A
.X1; : : : ; Xn/ (4.3)

D

X
;¤A�Pj

K
.t1;:::;tj�1;tj ;1;tjC1;:::;tp/

.P1;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/;A
.X1; : : : ; Xn/: (4.4)

Proof. The main ingredient here is the invariance principle of Lemma 3.7. Recall the
delta/dot operation from Definition 3.3 (i), tensor notations from Section 2.1 and recall
that for any partition � D .P1; P2; : : : ; Pp/ 2 OP n the multilinear map

'
t
� WA

n
! C

is identified with the linear lifting z't� WA˝n!C. Similar to (2.2), for a linear mapLWA!
A we adopt the notation L˝P WA˝n ! B˝n for the linear map

L˝P D I ˝ I ˝ � � � ˝ L˝ I ˝ � � � ˝ L˝ I ˝ � � � ˝ L˝ � � � ˝ I

with L appearing exactly at position j for every j 2 P . Let X D X1 ˝ X2 ˝ � � � ˝ Xn,
let k C Œm� WD ¹k C 1; k C 2; : : : ; k Cmº and let ej 2 Rp be the j th unit vector. Then,
for each j 2 Œp�,

'
NCmej
� .X1; : : : ; Xn/ D '

NCmej
� .X/ D '�

��
ı
˝Pj
ŒNjCm�

Y
i¤j

ı
˝Pi
ŒNi �

�
.X/

�
I (4.5)

after expansion we obtain

ı
˝Pj
ŒNjCm�

D .ıŒNj � C ıNjCŒm�/
˝Pj D

X
A�Pj

ı
˝Pj nA

ŒNj �
ı˝A
NjCŒm�

(4.6)

and thus (4.5) is equal to

D

X
A�Pj

'�

��
ı
˝Pj nA

ŒNj �
ı˝A
NjCŒm�

Y
i¤j

ı
˝Pi
ŒNi �

�
.X/

�
: (4.7)
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This is a sum of '� ’s with entries X .ik/
k
; k 2 Œn�, where the indices ik with k 2 A are

strictly larger than the indices ik with k 2 Pj n A, and therefore we may split the block
Pj 2 � into two parts:

D

X
A�Pj

'.P1;P2;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/

��
ı
˝Pj nA

ŒNj �
ı˝A
NjCŒm�

Y
i¤j

ı
˝Pi
ŒNi �

�
.X/

�
:

Now by Lemma 3.7 the local shift in A can be omitted without changing the value and we
obtain

D

X
A�Pj

'.P1;P2;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/

��
ı
˝Pj nA

ŒNj �
ı˝A
Œm�

Y
i¤j

ı
˝Pi
ŒNi �

�
.X/

�
(4.8)

D

X
A�Pj

'
.N1;N2;:::;Nj�1;Nj ;m;NjC1;:::;Np/

.P1;P2;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/
.X/:

The analytic extension of this identity is

'
tCsej
� .X/ D

X
A�Pj

'
.t1;t2;:::;tj�1;tj ;s;tjC1;:::;tp/

.P1;P2;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/
.X/

D '
t
�.X/C

X
;¤A�Pj

'
.t1;t2;:::;tj�1;tj ;s;tjC1;:::;tp/

.P1;P2;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/
.X/;

and the derivative satisfies the derived identity (4.4):

@

@tj
'
t
�.X/ D

@

@s

ˇ̌̌̌
sD0

'
tCsej
� .X/ D

X
;¤A�Pj

K
.t1;t2;:::;tj�1;tj ;1;tjC1;:::;tp/

.P1;P2;:::;Pj�1;Pj nA;A;PjC1;:::;Pp/
.X/:

In order to prove the first differential equation (4.3) we replace (4.6) by the complementary
expansion

ı
˝Pj
ŒNjCm�

D .ıŒm� C ımCŒNj �/
˝Pj D

X
A�Pj

ı˝A
Œm�
ı
˝Pj nA

mCŒNj �
;

and following the lines of (4.7)–(4.8) we obtain

'
NCmej
� .X1; : : : ; Xn/

D

X
A�Pj

'�

��
ı˝A
Œm�
ı
˝Pj nA

mCŒNj �

Y
i¤j

ı
˝Pi
ŒNi �

�
.X/

�
D

X
A�Pj

'.P1;P2;:::;Pj�1;A;Pj nA;PjC1;:::;Pp/

��
ı˝A
Œm�
ı
˝Pj nA

ŒNj �

Y
i¤j

ı
˝Pi
ŒNi �

�
.X/

�
D

X
A�Pj

'
.N1;N2;:::;Nj�1;m;Nj ;NjC1;:::;Np/

.P1;P2;:::;Pj�1;A;Pj nA;PjC1;:::;Pp/
.X/:

By analytic continuation, we may replace m and Ni with s and ti respectively. Taking the
derivative with respect to s at 0 we obtain (4.3).

Remark 4.4. In the case of exchangeability both differential equations coincide.
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4.2. Examples from universal products

We consider specializations of the differential equations of Theorem 4.3 to various spread-
ability systems arising from universal products. In all these examples an expansion of the
form (3.13) holds for partitioned expectations 't� and therefore it suffices to consider
� D O1n, i.e., the expectation 't .X1; : : : ; Xn/ WD '..t:X1/.t:X2/ � � � .t:Xn//.

Example 4.5 (Tensor independence). Consider the tensor spreadability system �T. It sat-
isfies the factorization property (2.10) and therefore

'
.t1;t2/

.A;Ac/
.X1; : : : ; Xn/ D '

t1.XA/ '
t2.XAc /;

so we get

K
.1;t2/

.A;Ac/;A
.X1; X2; : : : ; Xn/ D

@

@t1

ˇ̌̌̌
t1D0

't1.XA/ '
t2.XAc / D K

T
jAj.XA/ '

t2.XAc /:

The identities in Theorem 4.3 (for � D O1n) read

d

dt
't .X1; : : : ; Xn/ D

X
;¤A�Œn�

KT
jAj.XA/ '

t .XAc /: (4.9)

This differential equation can be translated to (exponential) generating functions as
follows. Given a vector u D .u1; u2; : : : ; un/ of commuting indeterminates and a vector
X D .X1;X2; : : : ;Xn/ of random variables we define the exponential moment generating
function

F t
X .u/ WD 1C

X
.p1;:::;pn/2.N[¹0º/n

.p1;:::;pn/¤0

u
p1
1 � � �u

pn
n

p1Š � � �pnŠ
't .X1; : : : ; X1„ ƒ‚ …

p1 times

; : : : ; Xn; : : : ; Xn„ ƒ‚ …
pn times

/

D Œ'.eu1X1 � � � eunXn/�t

and the exponential cumulant generating function as the logarithm of the previous

LX .u/ WD
X

.p1;:::;pn/2.N[¹0º/n

.p1;:::;pn/¤0

u
p1
1 � � �u

pn
n

p1Š � � �pnŠ
KT
p1C���Cpn

.X1; : : : ; X1„ ƒ‚ …
p1 times

; : : : ; Xn; : : : ; Xn„ ƒ‚ …
pn times

/

D logŒF 1
X .u/�:

Then one can prove that
d

dt
F t
X .u/ D LX .u/F t

X .u/;

which is equivalent to (4.9). Note that the functions LX .u/ and F t
X .u/ commute.

Example 4.6 (Boolean independence). In the Boolean spreadability system �B we have

'
.t1;t2/

.A;Ac/
.X1; X2; : : : ; Xn/ D

Y
P2�max.A/

't1.XP /
Y

Q2�max.Ac/

't2.XQ/:
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where �max.A/ is the interval partition constructed in Definition A.5 and consists of the
contiguous subintervals of A. It follows that

K
.1;t2/

.A;Ac/;A
.X1; X2 � � � ; Xn/ D

´
KB
jAj
.XA/

Q
Q2�max.Ac/

't2.XQ/; if j�max.A/j D 1;

0; if j�max.A/j > 1:

The identities in Theorem 4.3 (for � D O1n) coincide and read

d

dt
't .X1; X2; : : : ; Xn/ D

X
AW interval of Œn�

KB
jAj.XA/

Y
Q2�max.Ac/

't .XQ/: (4.10)

This differential equation can be interpreted in terms of generating functions in noncom-
muting indeterminates z1; : : : ; zn. To this end we define noncommutative formal power
series

M t
X .z/ D 1C

1X
mD1

nX
i1;:::;imD1

't .Xi1 ; Xi2 ; : : : ; Xim/ zi1 � � � zim

and

KB
X .z/ D

@

@t

ˇ̌̌̌
0

M t
.X1;X2;:::;Xn/

.z/

D

1X
mD1

nX
i1;:::;imD1

KB
m.Xi1 ; : : : ; Xim/ zi1 � � � zim :

Then differential equation (4.10) is equivalent to the identity

d

dt
M t
X .z/ DM

t
X .z/K

B
X .z/M

t
X .z/:

Note that M t
X .z/ and KB

X .z/ do not commute.

Example 4.7 (Monotone independence). Consider the monotone spreadability system
�M. With the notation �max.A/ introduced in Definition A.5 we have

'
.t1;t2/

.A;Ac/
.X1; X2; : : : ; Xn/ D '

t1.XA/
Y

B2�max.Ac/

't2.XB/;

using monotone independence. Thus

K
.1;t2/

.A;Ac/;A
.X1; X2; : : : ; Xn/ D

@

@t1

ˇ̌̌̌
t1D0

't1.XA/
Y

B2�max.Ac/

't2.XB/

D KM
jAj.XA/

Y
B2�max.Ac/

't2.XB/:
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The first identity in Theorem 4.3 (for � D O1n) reads

d

dt
't .X1; X2; : : : ; Xn/ D

X
;¤A�Œn�

KM
jAj.XA/

Y
B2�max.Ac/

't2.XB/; (4.11)

which is exactly the first identity in [29, Corollary 5.2].
On the other hand

K
.t1;1/

.Ac ;A/;A
.X1; X2; : : : ; Xn/ D

@

@t2

ˇ̌̌̌
t2D0

't1.XA/
Y

B2�max.Ac/

't2.XB/

D

´
't1.XA/K

M
jAc j
.XAc /; if

ˇ̌
�max.A

c/
ˇ̌
D 1;

0; if
ˇ̌
�max.A

c/
ˇ̌
> 1:

Condition j�max.A
c/j D 1 holds if and only if Ac is an interval. Therefore, the second

equality in Theorem 4.3 (for � D O1n) reads

d

dt
't .X1; X2; : : : ; Xn/ D

X
BW interval of Œn�

KM
jBj.XB/ '

t .XBc /; (4.12)

which is exactly the second equality in [29, Corollary 5.2].
Results on generating functions in [29] correspond to these differential equations. For

noncommutative indeterminates z1; : : : ; zn, we define the cumulant generating function

KM
X .z/ WD

@

@t

ˇ̌̌̌
0

M t
X .z/

D

1X
mD1

nX
i1;i2;:::;imD1

KM
m.Xi1Xi2 � � �Xim/zi1zi2 � � � zim :

Then it is shown in [29, Theorem 6.3] that

M sCt
X .z/ DM t

X .z/M
s
X

�
z1M

t
X .z/; : : : ; znM

t
X .z/

�
: (4.13)

The partial derivatives of (4.13) regarding s at 0 and t at 0 become (4.11) and (4.12),
respectively.

Example 4.8 (Free independence). Consider the free spreadability system �F. One can
use the formula for products of free random variables [49, Theorem 14.4] to show that for
a nonempty subset A � Œn� we can expand

'.A;Ac/.X1; X2; : : : ; Xn/ D '.XA/
Y

P2z�max.Ac/

'.XP /CR;

where z�max.A
c/ is the partition defined in Definition A.5 (ii) and every term in R has at

least two factors from A, i.e., factors of the form '.Xk1Xk2 � � �Xkm/, k1; k2; : : : ; km2A.
For example,

'¹¹2;4º;¹1;3;5ºº.X1; X2; : : : ; X5/ D '.X2X4/'.X1X5/'.X3/CR;
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where every term in R contains the factor '.X2/'.X4/. This implies that

'
.t1;t2/

.A;Ac/
.X1; X2; : : : ; Xn/ D '

t1.XA/
Y

P2z�max.Ac/

't2.XP /CO.t
2
1 / as t1 ! 0;

so by taking the partial derivative @
@t1

ˇ̌
t1D0

we get

K
.1;t2/

.A;Ac/;A
.X1; X2; : : : ; Xn/ D K

F
jAj.XA/

Y
P2z�max.Ac/

't2.XP /:

This yields the differential equation

d

dt
't .X1; X2; : : : ; Xn/ D

X
;¤A�Œn�

KF
jAj.XA/

Y
P2z�max.Ac/

't .XP /; (4.14)

which is similar to the monotone case (4.11).
Denote by z D .z1; z2; : : : ; zn/ be a vector of noncommuting indeterminates and let

X D .X1; X2; : : : ; Xn/ be a random vector. In order to obtain a differential equation we
need in addition the two-sided generating function

zM t
X .z; w/

WD

1X
p;qD0

X
i1;i2;:::;ip2Œn�

j1;j2;:::;jq2Œn�

't .Xi1 ; Xi2 ; : : : ; Xip ; Xj1 ; Xj2 ; : : : ; Xjq /zi1zi2 � � � zipwzj1zj2 � � � zjq

as well as the R-transform

RX .z/ D

1X
jD1

nX
i1;:::;ijD1

KF
j .Xi1 ; Xi2 ; : : : ; Xij / zi1zi2 � � � zij :

After some computations we infer from (4.14) that

@

@t
M t
X .z/ D

zM t
X

�
z;R

�
z1M

t
X .z/; z2M

t
X .z/; : : : ; znM

t
X .z/

��
M t
X .z/

��1�
: (4.15)

Note that by [49, Corollary 16.16] the second argument can be written as

R
�
z1M

t
X .z/; z2M

t
X .z/; : : : ; znM

t
X .z/

��
M t
X .z/

��1
D
1 �M t

X .z/
�1

t
:

When nD 1 the differential equation (4.15) is equivalent to the generalized complex Burg-
ers equation (see [73, p. 343])

@

@t
GtX .z/C

RX
�
GtX .z/

�
GtX .z/

@

@z
GtX .z/ D 0;

where GtX is the Cauchy transform

GtX .z/ D

1X
nD0

't .X; : : : ; X„ ƒ‚ …
n fold

/ z�n�1:
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5. Mixed cumulants and sums of independent random variables

5.1. Vanishing of mixed cumulants in exchangeability systems

In the case of exchangeability systems independence the vanishing of mixed cumulants
(Axiom (E3) in Definition 3.1) is the crucial property which makes cumulants interesting,
since it characterizes independence [37, Proposition 2.10]. That is, if the arguments of
Kn.X1; X2; : : : ; Xn/ can be split into two mutually independent families then the cumu-
lant vanishes; more generally, K�.X1; X2; : : : ; Xn/ D 0 whenever the entries of one of
the blocks of � splits into two mutually independent subsets. This is the content of the
following proposition.

Proposition 5.1. Let .A; '/ be a B-ncps and E D .U; z'; .�.i//i�1/ an exchangeability
system for A. Given a partition � 2Pn and a familyX1;X2; : : : ;Xn 2A such that there is
a block P 2 � which can be partitioned into P DP1 P[P2 such that ¹Xi W i 2P1º and ¹Xi W
i 2 P2º are independent in the sense of Definition 2.12, we haveK�.X1;X2 � � � ;Xn/D 0.

For further reference we reproduce here a short lattice theoretic proof due to P. Zwier-
nik [76], which will serve as a model for the spreadable case. It is based on Weisner’s
Lemma (see [66, Corollary 3.9.3] for a simple version and [4] for the full version).

Its generalization will be essential for the understanding of mixed cumulants in the
spreadable setting.

Lemma 5.2 (Weisner’s lemma). In any lattice .P;�/ the Möbius function satisfies the
identity X

x
x^aDc

�.x; b/ D

´
�.c; b/ if a � b

0 if a 6� b:

Proof of Proposition 5.1. Let � be the partition obtained from � by splitting the block P
as indicated in the proposition, then � < � and by assumption

'� .X1; X2; : : : ; Xn/ D '�^�.X1; X2; : : : ; Xn/

for any � 2 Pn; hence

K�.X1; X2; : : : ; Xn/ D
X
�2Pn
���

'� .X1; X2; : : : ; Xn/�P .�; �/

D

X
�2Pn
���

'�^�.X1; X2; : : : ; Xn/�P .�; �/

D

X
�2Pn

'� .X1; X2; : : : ; Xn/
X
�2Pn
�^�D�

�P .�; �/:

Now � 6� � and the second case of Weisner’s lemma applies.
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5.2. Partial vanishing of mixed cumulants in spreadability systems

Since vanishing of mixed cumulants implies additivity of cumulants (1.1) for sums of in-
dependent random variables, it cannot hold for general spreadability systems, e.g., mono-
tone convolution is noncommutative and therefore monotone cumulants are not addi-
tive [29].

In this section we investigate what remains true in the general setting and provide a
formula expressing mixed cumulants in terms of lower order cumulants. This question
is intimately related to the question of convolution - determining the distribution of the
sum of independent random variables, which is not commutative in general. OP n with
the quasi-meet operation f is not a lattice and Weisner’s lemma 5.2 does not hold. This
means that mixed cumulants do not vanish, yet they can be expanded in terms of lower
order cumulants weighted by certain coefficients, which we will study next.

Definition 5.3. For �; � 2 OP n let

w.�; �/ WD
X

�2OP n
�f�D�

z�.�; O1n/; (Weisner coefficients) (5.1)

g.�; �/ WD
X

�2OP n
���

z�.�; �/w.�; �/; (Goldberg coefficients) (5.2)

and more generally for �; �; � 2 OP n define the partitioned Weisner and Goldberg coef-
ficients

w.�; �; �/ WD
X

�2OP n
�f�D�
���

z�.�; �/; (5.3)

g.�; �; �/ WD
X

�2OP n
���

z�.�; �/w.�; �; �/: (5.4)

Remark 5.4. It follows from the properties of the quasi-meet operation (cf. Proposi-
tion A.21 (i) and (ii)) that both w.�; �; �/ and g.�; �; �/ vanish unless x� � x� and � � � .

We postpone further combinatorial study of these coefficients to Section 5.3 and first
exhibit their role as a substitute for Weisner’s lemma 5.2 in the description of cumulants
of independent arguments.

Proposition 5.5. Let � D .U; z'; .�.i//i�1/ be a spreadability system for a given B-ncps
.A; '/. Let

� 2 OP n and .i1; i2; : : : ; in/ 2 Nn

be a tuple with kernel
� D �.i1; i2; : : : ; in/ 2 OP n:
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Then

K�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / D

X
�2OP n
���
x��x�

'� .X1; X2; : : : ; Xn/ w.�; �; �/ (5.5)

D

X
�2OP n
���
x��x�

K� .X1; X2; : : : ; Xn/ g.�; �; �/: (5.6)

Proof. We proceed as in the proof of Proposition 5.1. Expressing cumulants in terms of
moments (see Theorem 3.11), we have

K�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / D

X
�2OP n
���

'� .X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n / z�.�; �/

D

X
�2OP n
���

'�f�.X1; X2; : : : ; Xn/ z�.�; �/

D

X
�2OP n

'� .X1; X2; : : : ; Xn/
� X

�2OP n
�f�D�;���

z�.�; �/
�

D

X
�2OP n

'� .X1; X2; : : : ; Xn/w.�; �; �/

which is (5.5). Now substitute the moment-cumulant formula (3.11) to obtain

D

X
�2OP n

X
�2OP n
���

K� .X1; X2; : : : ; Xn/z�.�; �/w.�; �; �/

D

X
�2OP n

K� .X1; X2; : : : ; Xn/
� X
�2OP n
���

z�.�; �/w.�; �; �/
�

D

X
�2OP n

K� .X1; X2; : : : ; Xn/g.�; �; �/:

Finally Remark 5.4 applies and the sums (5.5) and (5.6) can be restricted to � � � and
x� � x�.

We can now characterize �-independence in terms of the above proposition, that is,
“semi-vanishing” of mixed cumulants.

Theorem 5.6. Let � D .U; z'; .�.i//i�1/ be a spreadability system for a given B-ncps
.A; '/. A sequence of subalgebras .Ai /i2I of A, where I � N, is �-independent if and
only if for any tuple .i1; i2; : : : ; in/ 2 I n, any random variables .X1;X2; : : : ;Xn/ 2Ai1 �

Ai2 � � � � �Ain and any ordered set partition � 2 OP n, we have

K�.X1; X2; : : : ; Xn/ �
X

�2OP n
���

K� .X1; X2; : : : ; Xn/g
�
�; �.i1; : : : ; in/; �

�
D 0: (5.7)
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Remark 5.7. We can also formulate the theorem in terms of moments; we only need to
replace (5.7) by the equation

K�.X1; X2; : : : ; Xn/ �
X

�2OP n
���

'� .X1; X2; : : : ; Xn/w
�
�; �.i1; : : : ; in/; �

�
D 0:

Proof. Fix a tuple .i1; : : : ; in/ with kernel � D �.i1; : : : ; in/. Independence means that

'�.X1; X2; : : : ; Xn/ D '�f�.X1; X2; : : : ; Xn/ D '�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n /

for all � 2 OP n, and by Möbius inversion this is equivalent to the identity

K�.X1; X2; : : : ; Xn/ D K�.X
.i1/
1 ; X

.i2/
2 ; : : : ; X .in/n /

D

X
�2OP n
���

K� .X1; X2; : : : ; Xn/g
�
�; �.i1; : : : ; in/; �

�
for all � 2 OP n.

Remark 5.8. It is not obvious that Theorem 5.6 generalizes Proposition 5.1 (vanishing of
mixed cumulants for E-independent subalgebras). In fact it implies a nontrivial identity:
for any �; �; � 2 OP n such that �cP ¤ O1P for some P 2 � ,X

h2Sj� j

g
�
h.�/; �; �

�
D 0; (5.8)

where h.�/ is the action of the permutation h on the blocks of � . Similarly, Remark 5.7
(or Proposition 5.5) generalizes the vanishing of mixed cumulants for E-independent sub-
algebras. Consequently we must haveX

h2Sj� j

w
�
h.�/; �; �

�
D 0 (5.9)

under the same assumptions on �; �; � .

5.3. Combinatorial evaluation of Weisner and Goldberg coefficients

The combinatorial description of the coefficients introduced in Definition 5.3 involves
certain statistics of multiset permutations. The first systematic study of these permutation
statistics is contained in the seminal work of MacMahon [40], for a modern treatment
see [8]. Said statistics play a major role in the theory of free Lie algebras [54], which also
seem to play a role in our context, see Section 6 below.

Definition 5.9. A multiset is a pair .A; f / where A is the underlying set and f W A! N
is a function. The value f .a/ is called the multiplicity of the element a 2 A. Informally,
a multiset is a set which contains multiple indistinguishable copies of each of its elements.
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In the present paper multisets will always be based on integer segments A D Œn� and in
this case the tuple .f .1/; f .2/; : : : ; f .n// is called the type of the multiset. A permutation
of a multiset is a rearrangement of all its elements where all multiplicities are preserved,
i.e., a word with a prescribed total number of occurrences of each letter. The number of
distinct permutations of a multiset of type .f1; f2; : : : ; fn/ is given by the multinomial
coefficient �

f1 C f2 C � � � C fn

f1; f2; : : : ; fn

�
:

A proper set is a multiset of type .1; 1; : : : ; 1/ and we recover the number of its permuta-
tions as nŠ.

We will be interested in the following statistics of multiset permutations.

Definition 5.10. Let
� D w1w2 � � �ws

be a permutation of a multiset of type .f1; f2; : : : ; fn/ where s D f1 C f2 C � � � C fn. An
index 1 � i � s � 1 is called a

(i) descent (or drop or fall) if wi > wiC1.

(ii) plateau (or level) if wi D wiC1.

(iii) ascent (or rise) if wi < wiC1.

We denote these sets by

Des.�/ D Des
�
.wi /

s
iD1

�
D
®
j 2 Œs � 1� j wj > wjC1

¯
;

Pla.�/ D Pla
�
.wi /

s
iD1

�
D
®
j 2 Œs � 1� j wj D wjC1

¯
;

Asc.�/ D Asc
�
.wi /

s
iD1

�
D
®
j 2 Œs � 1� j wj < wjC1

¯
and the respective cardinalities, i.e., the number of descents (ascents, plateaux respec-
tively) of the multiset permutation � , by

des.�/ D des
�
.wi /

s
iD1

�
D
ˇ̌
Des

�
.wi /

s
iD1

�ˇ̌
;

pla.�/ D pla..wi /siD1/ D
ˇ̌
Pla

�
.wi /

s
iD1

�ˇ̌
;

asc.�/ D asc..wi /siD1/ D
ˇ̌
Asc

�
.wi /

s
iD1

�ˇ̌
:

Remark 5.11. (1) Note that some authors also count i D s as a descent and i D 0 as
an ascent.

(2) Counting permutations by descents and ascents is a classic subject in combina-
torics. In the case of descents of multiset permutations this is also known as Simon
Newcomb’s problem [17, 55].

Clearly every element except the last is either a descent, an ascent, or a plateau, and there-
fore

j� j D des.�/C pla.�/C asc.�/C 1: (5.10)
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Definition 5.12. To any pair of ordered set partitions �; � 2 OP n such that x� � x�, we
associate a multiset on Œj�j� by setting the multiplicity of k 2 ¹1; 2; : : : ; j�jº to be equal
to the number of blocks of � contained in the kth block of �. Replacing every block of �
by the label of the block of � containing it we obtain a permutation of this multiset. We
denote by des�.�/, asc�.�/ and pla�.�/ its statistics as defined in Definition 5.10. More
precisely, let �; � 2 OP n such that x� � x�. If � D .E1; E2; : : : ; Ee/, then the blocks of x�
can be arranged

x� D ¹E1;1; E1;2; : : : ; E1;l1 ; : : : ; Ee;1; : : : ; Ee;le º;

where each Ei D
Sli
jD1 Ei;j is a disjoint union taken in canonical order of the subsets

(i.e., sorted according to their minimal elements). So � can be written as

� D .Em1;n1 ; Em2;n2 ; : : : ; Ems ;ns /;

which is a permutation of the blocks of x� . Then we denote by Des�.�/; Pla�.�/ and
Asc�.�/ respectively, the sets

Des�.�/ D Des
�
.mi /

s
iD1

�
;

Pla�.�/ D Pla
�
.mi /

s
iD1

�
;

Asc�.�/ D Asc
�
.mi /

s
iD1

�
and by des�.�/, pla�.�/ and asc�.�/ the respective cardinalities.

Example 5.13. Consider the partitions � D .E1; E2; E3; E4; E5/ 2 OP 10 with blocks
E1 D ¹5; 8º, E2 D ¹9; 10º, E3 D ¹3; 6º, E4 D ¹1; 2; 4º, E5 D ¹7º, and

� D .T1; T2; T3; T4; T5; T6; T7; T8/ 2 OP 10

with blocks T1 D ¹3º, T2 D ¹6º, T3 D ¹1; 4º, T4 D ¹7º, T5 D ¹10º, T6 D ¹5; 8º, T7 D ¹9º,
T8 D ¹2º. Then x� � x�. Now T1 � E3 and thus w1 D 3, T2 � E3 and thus w2 D 3, etc.;
the multiset permutation thus induced on � by � is

.wi /
8
iD1 D .3; 3; 4; 5; 2; 1; 2; 4/;

and the statistics are des..wi /8iD1/ D 2, pla..wi /8iD1/ D 1 and asc..wi /8iD1/ D 4.

Definition 5.14. Let �D.wi /siD1 be a multiset permutation. An ascending (resp. descend-
ing) run is a maximal contiguous subsequence .wi /kiDl which is strictly increasing (resp.
decreasing). Similarly, a level run is a maximal subsequence .wi /kiDj such that

wj D wjC1 D � � � D wk :

Proposition 5.15. Let � D .wi /siD1 be a multiset permutation.

(i) � can be decomposed uniquely into ascending runs separated by descents and
plateaux. The number of ascending runs is equal to s � asc.�/.
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(ii) � can be decomposed uniquely into descending runs separated by ascents and
plateaux. The number of descending runs is equal to s � des.�/.

(iii) � can be decomposed uniquely into level runs separated by ascents and des-
cents. The number of level runs is equal to s � pla.�/.

Proof. We only prove (i). The claim is clearly true when asc � D s � 1, i.e., when the
sequence is monotone increasing. Otherwise replacing any ascent by a descent or plateau
splits an ascending run into two, i.e., increases the number of ascending runs by one.

Remark 5.16. Suppose x� D x�, then the blocks of � are a permutation of the blocks of �.
More precisely, if � D .E1; E2; : : : ; Ee/ then there is a permutation h 2 Se such that

� D h.�/ D .Eh.1/; Eh.2/; : : : ; Eh.e//:

Then des�.�/ and asc�.�/ coincide with des.h/ and asc.h/, where the latter quantities are
the numbers of descents and ascents of the permutation h, respectively. See [8,11,54] and
[66, p. 25] for the uses of des.h/ and asc.h/ in the context of symmetric groups.

Example 5.17. The statistics of the sequence .mi /9iD1 D .1; 1; 3; 5; 5; 5; 4; 1; 4/ are as
follows: des..mi /9iD1/ D 2, pla..mi /9iD1/ D 3 and asc..mi /9iD1/ D 3. The decomposition
into ascending runs is given by

.1/; .1; 3; 5/; .5/; .5/; .4/; .1; 4/;

the decomposition into level runs is

.1; 1/; .3/; .5; 5; 5/; .4/; .1/; .4/

and the decomposition into descending runs is

.1/; .1/; .3/; .5/; .5/; .5; 4; 1/; .4/:

Lemma 5.18. Let �; � 2 OP n such that x� � x�, then there is an ordered set partition
� asc

max.�; �/ such that

¹� 2 OP n j � f � D �º D
�
�; � asc

max.�; �/
�
:

and the restriction of the mapping‰ in Proposition A.24 establishes a poset isomorphism

¹� 2 OP n j � f � D �º ! 	p1 � 	p2 � � � � � 	pt ;

where 1 � pi � n are the lengths of the ascending runs of the sequence .mi /siD1 from
Definition 5.12 and t D j� j � asc�.�/.

Proof. Let �D .E1;E2; : : : ;Ee/ and write � D .Em1;n1 ;Em2;n2 ; : : : ;Ems ;ns / as in Defini-
tion 5.12. From Proposition A.21 we infer that any partition � 2OP n such that � f �D �
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satisfies � � � . From Proposition A.24 we infer that there is an interval partition � D
.L1; L2; : : : ; Ll / 2 	s such that

� D
� [
i2L1

Emi ;ni ;
[
i2L2

Emi ;ni ; : : : ;
[
i2Ll

Emi ;ni

�
:

In order that � f � D � it is necessary and sufficient that every block L 2 �, say

L D ¹aC 1; aC 2; : : : ; aC bº;

induces a strictly increasing sequence maC1 < maC2 < � � � < maCb .
Let .mi /

i1
iD1; .mi /

i2
iDi1C1

; : : : ; .mi /
s
iDit�1C1

be the decomposition of .mi /siD1 into
ascending runs. This decomposition defines the interval blocks

Aj WD ¹ij�1 C 1; ij�1 C 2; : : : ; ij º

(i0 D 0; it D s) and hence defines an interval partition ˛ D .A1;A2; : : : ;At /. The interval
partition � consists of increasing intervals and therefore is finer than ˛. Thus we have an
isomorphism

¹� 2 OP n j � f � D �º ! 	A1 � 	A2 � � � � � 	At

via the restriction of the map‰cŒ�; O1n� from Proposition A.24. The number t D j˛j is equal
to j� j � asc�.�/, the integers pj are the cardinalities of Aj and � asc

max.�; �/ is the ordered
set partition corresponding to � D ˛.

With these preparations we can now combinatorially evaluates the Weisner and Gold-
berg coefficients from Definition 5.3.

Proposition 5.19 (Weisner coefficients). (i) For �; � 2 OP n the Weisner coefficient (5.1)
is

w.�; �/ D

8<:
R 0
�1
xj� j�asc�.�/�1.1C x/asc�.�/ dx D .�1/j� j�asc�.�/�1

j� j. j� j�1asc�.�//
; x� � x�;

0; x� 6� x�:
(5.11)

(ii) For �; �; � 2 OP n the partitioned Weisner coefficient (5.3) is

w.�; �; �/ D

´Q
P2� w.�cP ; �cP /; x� � x�; � � �;

0; otherwise:

Proof. (i) If x� 6� x�, then there is no � such that � f � D � and the sum is empty. Let us
therefore assume henceforth that x� � x�. We take up the end of the proof of Lemma 5.18
where we established the poset isomorphism

¹� 2 OP n j � f � D �º Š 	p1 � 	p2 � � � � � 	pt

Š Bp1�1 �Bp2�1 � � � � �Bpt�1

Š Bp1C���Cpt�t ;
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where the second isomorphism follows from Proposition A.4 and pi denotes the length of
the i th ascending run. The latter contains pi � 1 rises and therefore the total number of
ascents is asc�.�/ D p1 C p2 C � � � C pt � t . In the identification above, a partition � is
mapped to a subset A � Œp1 C p2 C � � � C pt � t � with jAj D j� j � t elements and we
have

z�.�; O1n/ D
.�1/j� j�1

j� j
D
.�1/jAjCt�1

jAj C t
:

Performing the sum we obtainX
�2OP n
�f�D�

z�.�; O1n/ D
X

A�Œasc�.�/�

.�1/jAjCt�1

jAj C t

D

asc�.�/X
kD0

�
asc�.�/
k

�
.�1/kCt�1

k C t

D

Z 0

�1

asc�.�/X
kD0

�
asc�.�/
k

�
xkCt�1 dx

D

Z 0

�1

xt�1.1C x/asc�.�/ dx

D .�1/t�1B
�
t; asc�.�/C 1

�
;

whereB is the beta functionB.a;b/D �.a/�.b/
�.aCb/

which can be written in terms of binomial
coefficients as desired.

(ii) In order for the set ¹� 2 OP n j � � �; � f � D �º to be nonempty, it is neces-
sary that � � � and x� � x�. We adopt the notations from Definition 5.12 and infer from
Proposition A.24 that there exists an interval partition � D .R1; R2; : : : ; Rp/ 2 	s such
that

� D .P1; P2; : : : ; Pp/ D
� [
i2R1

Emi ;ni ;
[
i2R2

Emi ;ni ; : : : ;
[
i2Rp

Emi ;ni

�
:

If follows from Lemma 5.18 that � belongs to Œ�; � asc
max .�; �/�. In addition, � must satisfy

� � � . Hence, the ascending runs considered in Lemma 5.18 are split by the blocks of � .
More precisely, for each k 2 Œp� we decompose .mi /i2Rk into ascending runs, which give
rise to the interval partition k D .Gk;1; : : : ; Gk;uk / 2 	Rk where Gk;j consists of the
indices i of the j th ascending run of .mi /i2Rk . Then

� asc
max

�
�cPk ; �cPk

�
D

� [
i2Gk;1

Emi ;ni ;
[
i2Gk;2

Emi ;ni ; : : : ;
[

i2Gk;uk

Emi ;ni

�
and for eachP2� , we pick an arbitrary �P2OPP from the interval Œ�cP;� asc

max .�cP ;�cP /�,
concatenate them and obtain � D �P1�P2 � � � �Pp 2 OP n. Since z�.�; �/ is the product of
.�1/#.�cP /�1

#.�cP /
over P 2 � , the conclusion follows.
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Examples of Weisner coefficients will be given in Example 5.27.
Observe that w.�; �;�/¤ 0 for x� � x�, � � � and since in general the expectation val-

ues '� .X1;X2; : : : ; Xn/ among different � do not cancel each other, we cannot expect the
vanishing of cumulants without further assumptions. However we can express cumulants
with independent entries also in terms of cumulants of lower orders. In this case it turns
out that the coefficients are determined by the number of plateaux.

Lemma 5.20. Let �; � 2 OP n such that x� � x�, then the restriction of the map ‰cŒ�; O1n�
from Proposition A.24 establishes a poset isomorphism

¹� 2 OP n j � � �; x� � x�º ! 	q1 � 	q2 � � � � � 	qr ; (5.12)

where 1 � qi � n are the lengths of the level runs and the number r is equal to j� j �
pla�.�/. In particular, there is an ordered set partition �pla

max .�; �/ such that

¹� 2 OP n j � � �; x� � x�º D
�
�; �pla

max .�; �/
�
:

Proof. The proof is similar to that of Lemma 5.18. Write �D.Em1;n1 ;Em2;n2 ; : : : ;Ems ;ns /
and � D .E1; E2; : : : ; Ee/ as in Definition 5.12. Let � � � , then from Proposition A.24
we infer that there is an interval partition � D .L1; L2; : : : ; Ll / 2 	s such that

� D
� [
i2L1

Emi ;ni ;
[
i2L2

Emi ;ni ; : : : ;
[
i2Ll

Emi ;ni

�
:

Let .mi /
i1
iD1; .mi /

i2
iDi1C1

; : : : ; .mi /
s
iDir�1C1

be the decomposition of .mi /siD1 into level
runs. This decomposition determines interval blocks Bj WD .ij�1 C 1; ij�1 C 2; : : : ; ij /
(i0 D 0; ir D s) and hence gives rise to an interval partition ˇ D .B1; B2; : : : ; Br /. In
order that x� � x�, each Li connects only plateaux, which is equivalent to the condition that
� � ˇ. Denoting by qj D jBj j D ij � ij�1, we get the isomorphism (5.12). The ordered
set partition �pla

max.�; �/ corresponds to the choice � D ˇ.

Proposition 5.21 (Goldberg coefficients). (i) For �; � 2 OP n the Goldberg coefficient
(5.2) evaluates to

g.�; �/ D

´
1

q1Šq2Š���qr Š

R 0
�1
xdes�.�/.1C x/asc�.�/

Qr
jD1 Pqj .x/ dx; x� � x�;

0; x� 6� x�;

where r; q1; q2; : : : ; qr are the integers from Lemma 5.20,

Pq.x/ D

qX
kD1

kŠ S.q; k/ xk�1 D Eq.x; x C 1/;

S.q; k/ are the Stirling numbers of the second kind and

En.x; y/ D
X
�2Sn

xdes�yasc�

are the homogeneous Eulerian polynomials [54, p. 62]. The first few polynomials are

P1.x/ D 1; P2.x/ D 2x C 1; P3.x/ D 6x
2
C 6x C 1; � � �
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(ii) For �; �; � 2 OP n the partitioned Goldberg coefficient coefficient (5.4) is

g.�; �; �/ D

´Q
P2� g.�cP ; �cP /; x� � x�; � � �;

0; otherwise:

Remark 5.22. The name “Goldberg coefficients” originates from the Campbell–Baker–
Hausdorff formula, see Section 6 below, in particular Theorem 6.17. Some examples of
g.�; �/ will be computed in Example 5.26.

Remark 5.23. The expansion of Pq.x/ in terms of Stirling coefficients was first proved
by Frobenius [15, Theorem E, p. 244].

Proof. (i) If x� 6� x�, then w.�; �/ D 0 for all � � � and so g.�; �/ D 0. Assume hereafter
that x� � x�. From Lemma 5.20 we have the isomorphism

¹� 2 OP n j � � �; x� � x�º Š 	q1 � 	q2 � � � � � 	qr ;

� 7! .�1; �2; : : : ; �r /:

Since r D j� j � pla�.�/ D des�.�/C asc�.�/C 1, we have

j� j � asc�.�/ � 1 D
rX
iD1

�
j�i j � 1

�
C des�.�/:

Note also that Œ� W ��Š D
Qr
iD1

Q
S2�i
jS jŠ. Since � just connects the blocks of a level run

of .mi /
j� j
iD1, it does not change the number of ascents: asc�.�/ D asc�.�/ and we haveX
�2OP n
���

z�.�; �/w.�; �/

D

X
�2OP n
���;x��x�

1

Œ� W ��Š

Z 0

�1

xj� j�asc�.�/�1.1C x/asc�.�/ dx

D

X
.�1;�2;:::;�r /2	q1�	q2�����	qr

Z 0

�1

xdes�.�/.1C x/asc�.�/
rY
iD1

xj�i j�1Q
S2�i
jS jŠ

dx

D

Z 0

�1

xdes�.�/.1C x/asc�.�/
rY
iD1

� X
�2	qi

xj�j�1Q
R2�jRjŠ

�
dx:

For q 2 N we have X
�2	q

xj�j�1Q
R2�jRjŠ

D

X
n1C���CnkDq
ni�1;k�1

xk�1

n1Š � � �nkŠ
:

For each fixed k, the sum X
n1C���CnkDq

ni�1

qŠ

n1Š � � �nkŠ
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is the number of ways of distributing q distinct objects among k nonempty urns, so it
equals kŠS.q; k/ and the proof is complete.

(ii) The idea of the proof is similar to Proposition 5.19 (ii) and we omit the proof.

Some Goldberg coefficients g.�; �/ are known to vanish even when x� � x� (see [70]),
while the Weisner coefficients w.�; �/ do not vanish whenever x� � x�. The following
Proposition describes two sufficient criteria for vanishing Goldberg coefficients.

Proposition 5.24. Suppose �; � 2 OP n are such that x� � x�.

(i) If des�.�/ D asc�.�/ and j� j is even then g.�; �/ D 0.

(ii) If j� j is prime then g.�; �/ ¤ 0.

Proof. (i) By [54, Corollary 3.15], the coefficient g.�; �/ of K� .X1; : : : ; Xn/ vanishes if
q1 C � � � C qr C des�.�/C asc�.�/ � r is odd and des�.�/ D asc�.�/. Since

rX
iD1

qi D r C pla�.�/

and j� j D des�.�/C asc�.�/C pla�.�/C 1, the conclusion follows.
(ii) The idea of the proof is taken from [70]. Let p WD j� j. By definition and Proposi-

tion 5.19 we have

g.�; �/ D
X

�2OP n
���

z�.�; �/w.�; �/ D
X

�2OP n
���

1

Œ� W ��Š

.�1/j� j�asc�.�/�1

j� j
�
j� j�1

asc�.�/

�
D
.�1/p�asc�.�/�1

p
�
p�1

asc�.�/

� C

X
�2OP n
�>�

1

Œ� W ��Š

.�1/j� j�asc�.�/�1

j� j
�
j� j�1

asc�.�/

� :

Since the number Œ� W ��Šj� j
�
j� j�1

asc�.�/

�
never contains p as a factor for any � > � , g.�; �/ is

nonzero.

Remark 5.25. It is a difficult problem to characterize vanishing Goldberg coefficients.
The criterion (i) from Proposition 5.24 above does not cover all cases, for example one
can show that g.�;�/D 0 for � D .¹3º; ¹4º; ¹2º; ¹1º/, �D .¹1;2; 3º; ¹4º/, although the pair
.�; �/ does not satisfy the assumption of the criterion. More information about Goldberg
coefficients can be found in [54, 68] and in particular [70, Section IV] concerning the
question of vanishing coefficients.

Example 5.26 (Goldberg coefficients and partial vanishing of cumulants). We will write
the ordered kernel set partition �.i1; : : : ; in/ simply as i1i2 � � � in.

(1) Take � D 12. We compute g.12; 12/. Now � D � so m1 D 1, m2 D 2, r D 2,
q1 D q2 D 1. Hence des�.�/ D 0, asc�.�/ D 1 and so

g.12; 12/ D
1

1Š1Š

Z 0

�1

.1C x/ dx D
1

2
:
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Similarly we get g.21; 12/ D �1
2
; g.12; 21/ D �1

2
; g.21; 21/ D 1

2
and hence

K11.X
.1/; Y .2// D

1

2
K12.X; Y / �

1

2
K21.X; Y /;

K11.X
.2/; Y .1// D �

1

2
K12.X; Y /C

1

2
K21.X; Y /:

In the most popular spreadability systems, like the tensor, free, Boolean or mono-
tone spreadability systems, partitioned cumulants factorize, e.g., the second cumulant
K12.X; Y / D K1.X/K1.Y /. Hence we get

K11.X
.1/; Y .2// D K11.X

.2/; Y .1// D 0:

(2) We then consider the case � D 112 D .¹1; 2º; ¹3º/. The Goldberg coefficients can
be nonzero only when x� � x�, so � is one of

112; 221; 123; 132; 213; 231; 312; 321:

If � D 112 then g.112; 112/ D 1
2

by the same calculation as g.12; 12/. If � D 221 then
again g.221;112/D�1

2
. If � D 123 thenm1 D 1,m2 D 1,m3 D 2, r D 2, q1 D 2, q2 D 1.

So

g.123; 112/ D
1

1Š2Š

Z 0

�1

.1C x/P2.x/ dx D
1

12
:

If we take � D 132 thenm1 D 1,m2 D 2,m3 D 1, so r D 3, q1 D q2 D q3 D 1, ascD 1,
des D 1. Thus we get

g.132; 112/ D
1

1Š1Š1Š

Z 0

�1

x.1C x/ dx D �
1

6
:

If we take � D 231 then m1 D 2, m2 D 1, m3 D 1. So r D 2, q1 D 1, q2 D 2, asc D 0,
des D 1. Hence

g.231; 112/ D
1

1Š2Š

Z 0

�1

xP2.x/ dx D
1

2

Z 0

�1

x.2x C 1/ dx D
1

12
:

Similarly we can compute the remaining Goldberg coefficients and get

K111.X
.1/; Y .1/; Z.2// D

1

2
K112 �

1

2
K221 C

1

12
K123 �

1

6
K132

C
1

12
K213 C

1

12
K231 �

1

6
K312 C

1

12
K321;

where X , Y , Z are omitted for simplicity. We can see that (5.8) holds (now � D 111):

1

2
�
1

2
D 0;

1

12
�
1

6
C

1

12
C

1

12
�
1

6
C

1

12
D 0:

Again if the cumulants factorize then K112 D K221 D K11.X; Y /K1.Z/ and

K123 D � � � D K321 D K1.X/K1.Y /K1.Z/;

so the mixed cumulant K111.X .1/; Y .1/; Z.2// vanishes.
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Similarly one can compute g.�; 121/ for all � such that x� � 121 and get

K111.X
.1/; Y .2/; Z.1// D

1

2
K121 �

1

2
K212 �

1

6
K123 C

1

12
K132

C
1

12
K213 C

1

12
K231 C

1

12
K312 �

1

6
K321:

Now in the tensor, free or Boolean spreadability system the mixed cumulant vanishes.
However in the monotone spreadability system it does not:K212 vanishes identically since
212 is not a monotone partition (see Proposition 3.24) and therefore, in the monotone case
we have

K111.X
.1/; Y .2/; Z.1// D

1

2
K121.X; Y;Z/ D

1

2
K11.X;Z/K1.Y /

which does not vanish in general.

The calculation of these cumulants in terms of moments is easier.

Example 5.27 (Weisner coefficients and partial vanishing of cumulants). We can reuse
some results from Example 5.26.

(1) If we take � D � D 12 then asc�.�/ D 1 and so

w.12; 12/ D
.�1/2�1�1

2
�
1
1

� D
1

2
:

(2) Similarly if � D 21 and � D 12 then m1 D 2, m1 D 1 so asc�.�/ D 0. Therefore
we get w.21; 12/ D �1

2
. Similarly, w.12; 21/ D �1

2
, w.21; 21/ D 1

2
. So

K11.X
.1/; Y .2// D

1

2
'12.X; Y / �

1

2
'21.X; Y /;

K11.X
.2/; Y .1// D �

1

2
'12.X; Y /C

1

2
'21.X; Y /:

In factorizing spreadability systems we have

'12.X; Y / D '21.X; Y / D '1.X/'1.Y /

and hence K11.X .1/; Y .2// D K11.X .2/; Y .1// D 0.
(3) One can show that w.112; 112/ D 1

2
D �w.221; 112/ by the same calculation as

w.12; 12/ and w.21; 12/. If � D 123, � D 112 thenm1 D 1,m2 D 1,m3 D 2, so asc D 1
and

w.123; 112/ D
.�1/3�1�1

3
�
2
1

� D �
1

6
:

If we take � D 231 then m1 D 2;m2 D 1;m3 D 1 and so asc D 0. Hence

w.231; 112/ D
.�1/3�0�1

3
�
2
0

� D
1

3
:
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Similarly we can compute the remaining Weisner coefficients and get

K111.X
.1/; Y .1/; Z.2// D

1

2
'112 �

1

2
'221 �

1

6
'123 �

1

6
'132

�
1

6
'213 C

1

3
'231 �

1

6
'312 C

1

3
'321;

where X , Y , Z are omitted for simplicity. We can see that (5.9) holds (now � D 111):

1

2
�
1

2
D 0; �

1

6
�
1

6
�
1

6
C
1

3
�
1

6
C
1

3
D 0:

In factorizing spreadability systems the mixed cumulant K111.X .1/; Y .1/; Z.2// vanishes
by using the factorization of partitioned moments.

(4) Similarly one can compute w.�; 121/ for all � such that x� � 121 and get

K111.X
.1/; Y .2/; Z.1// D

1

2
'121 �

1

2
'212 �

1

6
'123 �

1

6
'132

C
1

3
'213 �

1

6
'231 C

1

3
'312 �

1

6
'321:

In the tensor, free or Boolean spreadability system mixed cumulants vanishes, but in
the monotone case in general they do not: indeed '212 D '.X/'.Y /'.Z/ while '121 D
'.XZ/'.Y /. Therefore, in the monotone case we have

K111.X
.1/; Y .2/; Z.1// D

1

2
.'121 � '212/ D

1

2

�
'.XZ/ � '.X/'.Z/

�
'.Y /

which does not vanish in general.

6. Campbell–Baker–Hausdorff formula and Lie polynomials

The material of the preceding section resembles some results from the theory of free
Lie algebras, cf. the book by C. Reutenauer [54] already cited above. In particular, the
Goldberg coefficients g.�; �/ from Proposition 5.21 coincide with the coefficients of the
Campbell–Baker–Hausdorff series, i.e.,

log.ea1ea2 � � � ean/ D
X
wWword

gww (6.1)

when it is expanded in the ring of noncommutative formal power series, see [25]. In this
section we will provide a new probabilistic interpretation of the coefficients of the CBH
formula in terms of a certain variant of the tensor spreadability system.

6.1. The unshuffle spreadability system ��

Given a unital algebra A we introduce an operator-valued spreadability system with the
following ingredients.
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(1) Put ' D Id W A! A.

(2) U WD ˝1iD1A is the algebraic tensor product, cf. Section 2.3.1.

(3) �.j / W A! U is the natural embedding of A into the j th component of U:

�.j /.X/ WD 1˝.j�1/ ˝X ˝ 1˝1:

(4) z' WD conc1 W U! A is the concatenation product. The resulting functional on
U gives rise to a rearrangement of the letters

z'.X
.i1/
1 X

.i2/
2 � � �X .in/n / WD '�.X1; X2; : : : ; Xn/ D XP1XP2 � � �XPk ;

where � D �.i1; i2; : : : ; in/ D .P1; P2; : : : ; Pk/ and the order of the letters inside
each block is preserved according to (2.1).

ThusX1;X2; : : : ;Xn are “unshuffled” by z' accordingly to the upper indices .i1; i2; : : : ; in/.
For example

z'.X
.5/
1 X

.2/
2 X

.3/
3 X

.2/
4 X

.3/
5 / WD X2X4X3X5X1:

Proposition 6.1. The triple �� D ��.A/D .U; conc1; .�.j //1jD1/ defined above consti-
tutes a spreadability system for .A; Id/.

Proof. Clearly z' ı �.i/ D Id on A. The symmetry condition (2.3) holds too since the value
of z' only depends on the ordered kernel set partition of the upper indices.

We call the triple �� the unshuffle spreadability system. The corresponding cumulants
K�� satisfy (ordered) multiplicativity like the tensor cumulants, cf. Proposition 3.24 (i).

Proposition 6.2 (Multiplicativity of partitioned cumulants). For � D .P1; P2; : : : ; Pp/ 2
OP n, we have

K�� .X1; X2; : : : ; Xn/ D K
�

jP1j
.XP1/K

�

jP2j
.XP2/ � � �K

�

jPp j
.XPp /:

Proof. For � D .P1; P2; : : : ; Pp/ 2 OP n,

'�.N:X1; N:X2; : : : ; N:Xn/

D

X
i1;i2;:::;in2ŒN �

'�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/

D

X
i1;i2;:::;in2ŒN �

X�.i1;i2;:::;in/cP1X�.i1;i2;:::;in/cP2 � � �X�.i1;i2;:::;in/cPp

D

� X
ik2ŒN �
k2P1

X�.i1;i2;:::;in/cP1

�� X
ik2ŒN �
k2P2

X�.i1;i2;:::;in/cP2

�
� � �

� X
ik2ŒN �
k2Pp

X�.i1;i2;:::;in/cPp

�

D z'
� Y
i2P1

N:Xi

�
z'
� Y
i2P2

N:Xi

�
� � � z'

�Y
i2Pp

N:Xi

�
:

We conclude by observing that the coefficient of N p is the product of the linear coeffi-
cients of the factors.
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After having established multiplicativity it suffices to compute K�n . Theorem 3.11
reads as follows.

Proposition 6.3. For n 2 N we have

K�n .X1; X2; : : : ; Xn/ D
X

�D.P1;P2;:::;Pk/2OP n

.�1/j�j�1

j�j
XP1XP2 � � �XPk :

Example 6.4. The reader can easily verify that

K�1 .X/ D X;

K�2 .X1; X2/ D
1

2
ŒX1; X2�;

K�3 .X1; X2; X3/ D
1

3
.X1X2X3 CX3X2X1/

�
1

6
.X1X3X2 CX2X1X3 CX2X3X1 CX3X1X2/:

Remark 6.5. We will see in Section 6.2 that K�n .n � 2/ can be expressed as a sum of
commutators, i.e., a Lie polynomial.

We can now express the CBH formula (6.1) on A in terms of cumulants.

Theorem 6.6 (CBH formula). As formal power series on A we have the identity

log.ea1ea2 � � � ean/

D

X 1

p1Šp2Š � � �pnŠ
K�p1Cp2C���Cpn.a1; a1; : : : ; a1„ ƒ‚ …

p1 times

; a2; a2; : : : ; a2„ ƒ‚ …
p2 times

; : : : ; an; an; : : : ; an„ ƒ‚ …
pn times

/:

where the sum runs over all n-tuples .p1; p2; : : : ; pn/ 2 .N [ ¹0º/n with the exception of
the tuple .0; 0; : : : ; 0/.

Proof. First observe that the right-hand side of the claimed identity is the coefficient ofN
in the series

1C
X

.p1;p2;:::;pn/2.N[¹0º/n;

.p1;p2;:::;pn/¤.0;0;:::;0/

1

p1Šp2Š � � �pnŠ
z'
�
.N:a1/

p1.N:a2/
p2 � � � .N:an/

pn
�

D z'.eN:a1eN:a2 � � � eN:an/

D z'.ea
.1/
1 Ca

.2/
1 C���Ca

.N/
1 ea

.1/
2 Ca

.2/
2 C���Ca

.N/
2 � � � ea

.1/
n Ca

.2/
n C���Ca

.N/
n /: (6.2)

Our construction implies that a.j /i , j D 1; 2; 3; : : : mutually commute for different j and
so

ea
.1/
i Ca

.2/
i C���Ca

.N/
i D ea

.1/
i ea

.2/
i � � � ea

.N/
i :
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Thus (6.2) can be factorized as follows:

z'.ea
.1/
1 Ca

.2/
1 C���Ca

.N/
1 ea

.1/
2 Ca

.2/
2 C���Ca

.N/
2 � � � ea

.1/
n Ca

.2/
n C���Ca

.N/
n /

D z'
�
.ea

.1/
1 ea

.2/
1 � � � ea

.N/
1 /.ea

.1/
2 ea

.2/
2 � � � ea

.N/
2 / � � � .ea

.1/
n ea

.2/
n � � � ea

.N/
n /

�
:

Now z' simply rearranges the factors according to the upper index and the last expression
equals

.ea1ea2 � � � ean/N :

On the other hand,

.ea1ea2 � � � ean/N D eN log.ea1ea2 ���ean /

D 1CN log.ea1ea2 � � � ean/C
N 2

2Š

�
log.ea1ea2 � � � ean/

�2
C � � �

and we conclude by comparing the coefficient of N in this series with the one in (6.2).

Remark 6.7. Theorem 6.6 is similar to the well-known formula for the generating func-
tion of multivariate cumulants from classical probability theory,

log EŒez1X1Cz2X2C���CznXn �

D

X z
p1
1 z

p2
2 � � � z

pn
n

p1Šp2Š � � �pnŠ

�KT
p1Cp2C���Cpn

.X1; X1; : : : ; X1„ ƒ‚ …
p1 times

; X2; X2; : : : ; X2„ ƒ‚ …
p2 times

; : : : ; Xn; Xn; : : : ; Xn„ ƒ‚ …
pn times

/;

where X1; X2; : : : ; Xn are C-valued classical random variables and z1; z2; : : : ; zn are
commuting indeterminates.

Proposition 6.8. (i) A sequence .Ai /
1
iD1 of subalgebras of A is ��-independent if and

only if the subalgebras A1;A2; : : : commute mutually. This is obviously equivalent to

K�2 .X; Y / D 0

whenever X 2 Ai ; Y 2 Aj with i ¤ j .
(ii) For fixed n � 2, if ¹X1; X2; : : : ; Xnº � A splits into two mutually commuting

families then
K�n .X1; X2; : : : ; Xn/ D 0:

Remark 6.9. (1) Additivity of Lie polynomials in commuting variables is well known,
see [54, p. 20].

(2) We have thus shown that

��-independence ” commutativity ” vanishing of mixed cumulants:

This example illustrates that in general vanishing of mixed cumulants does not imply
exchangeability.
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Proof of Proposition 6.8. (i) Suppose that .Ai /
1
iD1 is ��-independent. Let � D O12, � D

.¹2º; ¹1º/ 2 OP 2 and let X 2 Ai , Y 2 Aj for fixed i > j . Then �.i; j / D � and

'�.X; Y / D XY; '�f�.X; Y / D YX;

and by ��-independence these two must coincide, so XY D YX . This shows that

ŒAi ;Aj � D 0:

Conversely, if the subalgebras A1;A2; : : : mutually commute then for any i1; i2; : : : ; in 2
N, any Xk 2 Aik , k D 1; 2; : : : ; n and any � D .P1; P2; : : : ; Pp/ 2 OP n we have

'�f�.X1; X2; : : : ; Xn/ D .XP1\R1XP1\R2 � � �XP1\Rr / � � � .XPp\R1XPp\R2 � � �XPp\Rr /

where � D �.i1; i2; : : : ; in/ D .R1; R2; : : : ; Rr /. Here X; is understood as the unit O1A.
Now if ¹Xk j k 2 Riº and ¹Xk j k 2 Rj ºmutually commute for distinct i , j then for each
i D 1; 2; : : : ; p we have

XPi\R1XPi\R2 � � �XPi\Rr D XPi ;

which shows that '�f�.X1; X2; : : : ; Xn/ D '�.X1; X2 � � � ; Xn/.
(ii) Suppose that ¹Xi j i 2 I º and ¹Xi j i 2 I cº commute with each other and ;¨ I ¨

¹1; 2; : : : ; nº. Then, for commuting indeterminates z1; : : : ; zn, we have

log.ez1X1ez2X2 � � � eznXn/ D log
�Y
i2I

eziXi
�
C log

�Y
i2I c

eziXi
�
; (6.3)

where the products
Q
i2I ,

Q
i2I c preserve the natural orders on I , I c , respectively. On

the other hand, by Theorem 6.6 we have

log.ez1X1ez2X2 � � � eznXn/

D

X z
p1
1 z

p2
2 � � � z

pn
n

p1Šp2Š � � �pnŠ

�K�p1Cp2C���Cpn.X1; X1; : : : ; X1„ ƒ‚ …
p1 times

; X2; X2; : : : ; X2„ ƒ‚ …
p2 times

; : : : ; Xn; Xn; : : : ; Xn„ ƒ‚ …
pn times

/: (6.4)

Comparing the coefficients of z1z2 � � � zn in (6.3) with those of (6.4) we conclude that
K�n .X1; X2; : : : ; Xn/ D 0.

6.2. Specialization to free algebras

We restrict the unshuffle spreadability system �� to the case when the underlying algebra
A is a free algebra. Our aim here is to show that in this case the cumulants are Lie polyno-
mials [54] and to indicate further connections to the theory of Hopf algebras. This section
was rewritten after [39] was published, to which we refer for further developments in this
direction.
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Let A be an alphabet (a set), whose elements be denote by a1; a2; : : : : Let ChAi
be the unital free associative algebra generated by A, i.e., the unital polynomial ring in
noncommuting indeterminates A. As a vector space it is spanned by the elements of the
free monoid A� generated by A endowed with the concatenation product. An element
w D a1a2 � � � an 2 A� with ai 2 A is called a word and n is its length. The length of the
unit 1 is understood to be 0.

Definition 6.10. The specialization ��.ChAi/ of the unshuffle spreadability system from
Section 6.1 for the ncps .ChAi; Id/ is called the free Lie spreadability system and denoted
by �FL.A/.

The free algebra ChAi also carries a Hopf algebra structure [14]. Indeed, the unshuffle
coproduct is the homomorphism ı W ChAi ! ChAi ˝ChAi for which every generator is
a primitive element

ı.a/ D a˝ 1C 1˝ a:

For an arbitrary word of length n it yields the sum over all unshuffles

ı.w/ D
X

ItJDŒn�

wcI ˝ wcJ ;

i.e., splittings into two subwords which keep the order. This coproduct is obviously cocom-
mutative.

Denote further by ım W ChAi ! ChAi˝m its .m� 1/-fold iteration which is uniquely
determined by the values

ım.a/ D

mX
kD1

1˝.k�1/ ˝ a˝ 1˝.m�k/; a 2 A

on the generators (compare Definition 3.3) and in general yields the sum over all m-
unshuffles, or equivalently, ordered pseudopartitions (see Definition A.17)

ık.a1a2 � � � an/ D
X

�D.P1;P2;:::/2OP P n

j�jDk

aP1 ˝ aP2 ˝ � � � ˝ aPk : (6.5)

This reproduces the dot operation

N:a D ıN .a/˝ 1
˝1; a 2 A:

Let conck W ChAi˝k ! ChAi be the multiplication map defined by

conck.w1 ˝ w2 ˝ � � � ˝ wk/ D w1w2 � � �wk ; wi 2 A�

and more generally for endomorphisms f1; f2; : : : ; fk of ChAi, we define the convolution

f1 � f2 � � � � � fk WD conck ı .f1 ˝ f2 ˝ � � � ˝ fk/ ı ık :
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In particular, the convolution power‰k D Id�k is called the k-dilation or Adams operation
[14, Definition 4.1.1], so

z'.N:a1; N:a2; : : : ; N:an/ D ‰N .a1a2 � � � an/:

The counit is the unique linear map " W ChAi ! C such that

".1/ D 1; ".w/ D 0; w 2 A� n ¹1º:

Definition 6.11. Let … W ChAi ! ChAi be the map defined by

… D

1X
kD1

.�1/k�1

k
.Id�"/�k ;

where " is regarded as an endomorphism of ChAi.

The following proposition provides an explicit expression for ….w/ which shows
that for any ai 2 A the value ….a1a2 � � � an/ is a finite sum of words and thus indeed
….ChAi/ � ChAi.

Proposition 6.12. Let a1; a2; : : : ; an 2 A. Then

….a1a2 � � � an/ D
X

�D.P1;P2;:::/2OP n

.�1/j�j�1

j�j
aP1aP2 � � � aPj�j :

Proof. From (6.5) we have

….a1a2 � � � an/

D

1X
kD1

.�1/k�1

k
.Id�"/�k.a1a2 � � � an/

D

1X
kD1

.�1/k�1

k

�
conck ı.Id�"/˝k ı ık

�
.a1a2 � � � an/

D

1X
kD1

.�1/k�1

k

X
.P1;P2;:::;Pk/2OP P n

.Id�"/.aP1/.Id�"/.aP2/ � � � .Id�"/.aPk /:

Note that .Id�"/.1/D 0 and .Id�"/.w/Dw forw 2A� n ¹1º. If Pi D ; for some i , then
the product .Id �"/.aP1/.Id �"/.aP2/ � � � .Id �"/.aPk / vanishes. Therefore only proper
ordered set partitions contribute to the sum, and in particular the sum extends over k � n
only. This proves the claim.

Combining Proposition 6.12 with Proposition 6.3 we conclude the following identity.

Theorem 6.13. Let a1; a2; : : : ; an 2 A and let KFL
� be the cumulants associated to the

spreadability system �FL. Then

….a1a2 � � � an/ D K
FL
n .a1; a2; : : : ; an/:
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Remark 6.14. (1) The space of Lie polynomials L.A/ is the smallest subspace of ChAi
that contains A and is closed with respect to the Lie bracket ŒX; Y � D XY � YX . It is
well known that… is a Lie projector, i.e., L.A/ D….ChAi/ [54, Theorem 3.7]. So in the
above setting cumulants with entries from A are exactly Lie polynomials.

(2) The values at words of higher order are given by convolution powers of …, i.e.,

…k D
1

kŠ
…�k ; k 2 N

(see [54]), and we can show that

…k.a1a2 � � � an/ D
1

kŠ

X
�2OP n
j�jDk

KFL
� .a1; a2; : : : ; an/; ai 2 A; i 2 Œn�:

is the coefficient of N k appearing in z'..N:a1/.N:a2/ � � � .N:an// by Theorem 3.11 and
Proposition 3.16. In other words,

z'
�
.N:a1/.N:a2/ � � � .N:an/

�
D

nX
kD1

N k…k.a1a2 � � � an/; ai 2 A; i 2 Œn�:

Now the combination of Theorems 6.6 and 6.13 reproduces the CBH formula

log.ea1ea2 � � � ean/ D
X

.p1;p2;:::;pn/2.N[¹0º/n;
.p1;p2;:::;pn/¤.0;0;:::;0/

…

�
a
p1
1 a

p2
2 � � � a

pn
n

p1Šp2Š � � �pnŠ

�
I (6.6)

see [54, Lemma 3.10].

6.3. Coefficients of the Campbell–Baker–Hausdorff formula

We adopt the notations and definitions in the previous subsection. The coefficients of the
Campbell–Baker–Hausdorff formula, when written out in the monomial basis, were first
computed using generating functions in [25] and are called Goldberg coefficients; a com-
binatorial proof can be found in [54, Theorem 3.11]. In the following we give another
derivation of the Goldberg coefficients; see also a recent proof using the theory of non-
commutative symmetric functions [22].

Lemma 6.15. Let � D .E1; E2; : : : ; Ee/ be an interval partition of Œn� where the blocks
are in canonical order, i.e., if s < t then i < j for all i 2 Es , j 2 Et . Then for any
Xi 2 ChAi and any � 2 OP n, we have

'�f�.X1; X2; : : : ; Xn/ D '�.X1; X2; : : : ; Xn/:

Proof. The statement holds by definition because every block P 2 � is the concatenation
of P \E1; P \E2; : : : ; P \Ee .
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Remark 6.16. Thus a sequence of distinct letters satisfies some partial independence,
but it is not �FL-independent. Indeed, .a1; a2/ 2 A � A is �FL-independent if and only if
a1 D a2 by Proposition 6.8.

Theorem 6.17 ([25, 54]). Let a1; a2; : : : ; an be distinct letters from the alphabet A, let
r 2 N and qj ; ij 2 N for j 2 Œr� such that ij ¤ ijC1 for j 2 Œr � 1�. Then the coefficient
of the monomial aq1i1 a

q2
i2
� � � a

qr
ir

appearing in log.ea1 � � � ean/ is given by

1

q1Šq2Š � � � qr Š

Z 0

�1

xdes.i/.1C x/asc.i/
rY

jD1

Pqj .x/ dx;

where Pq.x/ are the homogeneous Euler polynomials already encountered in Proposi-
tion 5.21.

Proof. In order for a monomial v D aq1i1 a
q2
i2
� � �a

qr
ir

to occur as a term in….ap11 a
p2
2 � � �a

pn
n /

it necessarily has to be a rearrangement of the word (= permutation of the multiset) w D
a
p1
1 a

p2
2 � � �a

pn
n , since the projector in the CBH formula (6.6) does not change multiplicities

and therefore every letter must occur the same number of times in v and w.
Thus pk D

P
j2Bk

qj where Bk D ¹j W ij D kº. Let p D p1 C p2 C � � � C pn be
the total length of w and � D .A1; A2; : : : ; An/ 2 O	p be the ordered interval partition
corresponding to the composition .p1; p2; : : : ; pn/, i.e.,

Aj D ¹p1 C p2 C � � � C pj�1 C 1; p1 C p2 C � � � C pj�1 C 2; : : : ; p1 C p2 C � � � C pj º

and jAj j D pj .
From Theorem 6.13 we infer

….a
p1
1 a

p2
2 � � � a

pn
n / D K

FL
p .a1; a1; : : : ; a1„ ƒ‚ …

p1 times

; a2; a2; : : : ; a2„ ƒ‚ …
p2 times

; : : : ; an; an; : : : ; an„ ƒ‚ …
pn times

/

DW KFL
p .a

���p1
1 ; a

���p2
2 ; : : : ; a���pnn /:

Note that by Lemma 6.15 we have

'�.a
���p1
1 ; a

���p2
2 ; : : : ; a���pnn / D '�f�.a

���p1
1 ; a

���p2
2 ; : : : ; a���pnn /

for any � 2 OPp and thus

KFL
p .a

���p1
1 ; a

���p2
2 ; : : : ; a���pnn / D

X
�2OPp

'� .a
���p1
1 ; a

���p2
2 ; : : : ; a���pnn /z�.�; O1p/

D

X
�2OPp

'�f�.a
���p1
1 ; a

���p2
2 ; : : : ; a���pnn /z�.�; O1p/

D

X
�2OPp

x��x�

'� .a
���p1
1 ; a

���p2
2 ; : : : ; a���pnn /w.�; �/
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by Proposition 5.19. Thus in order to determine the coefficient of v we must collect all
ordered set partitions � such that

Tv D
®
� 2 OPp W x� � x�; '� .a

���p1
1 ; a

���p2
2 ; : : : ; a���pnn / D v

¯
and then sum up the corresponding values of w.�; �/. Let us now investigate the structure
of this set. First note that Tv is an order ideal: if � 2 Tv and � 0 � � , then � 0 2 Tv , because
every block of � contains only repetitions of one letter and further refinement of � leaves
the end result v invariant. Moreover Tv is the disjoint union of the principal ideals #�0 D
¹� W � � �0º where �0 2 Tv is maximal.

The maximal partition �0 arises as follows: After application of '� for � 2 Tv each
factor apjj is divided into pieces aqlj , l 2 Bj and the number of such subdivisions is the
multinomial coefficient �

pj

ql W l 2 Bj

�
:

These subdivisions are in one-to-one correspondence with ordered set partitions of Aj
which, pieced together in the order of j , give rise to a maximal ordered set partition �02Tv .
Thus in total there are as many maximal ordered set partitions as there are subdivisions,
namely �

p1

ql W l 2 B1

��
p2

ql W l 2 B2

�
� � �

�
pn

ql W l 2 Bn

�
D
p1Šp2Š � � �pnŠ

q1Šq2Š � � � qr Š
:

By Proposition A.23 the principal ideal #�0 generated by a maximal ordered set partition
�0 is isomorphic to

OP q1 �OP q2 � � � �OP qr

and in particular, all principal ideals are isomorphic. Moreover the number of ascents is
asc�.�/D asc.i/ and does not depend on the choice of � 2 Tv . Thus all ideals #�0 deliver
the same contribution and as a consequence of the discussion above we are left withX

�2Tv

w.�; �/ D
p1Šp2Š � � �pnŠ

q1Šq2Š � � � qr Š

X
���0

w.�; �/

for one fixed maximal element �0 2 Tv .
A canonical representative �0 is obtained by concatenating consecutive subintervals of

length qj fromAij , j D 1;2; : : : ; r . Let us now turn to the value ofw.�;�/. As seen above,
the numbers of both ascents and descents of � only depend on those of the sequence i and
since i has no plateaux we infer from (5.10) that r D des.i/C asc.i/C 1. On the other
hand, if we denote by .�1; �2; : : : ; �r / the image of � 2#�0 under the isomorphism of
Proposition A.23 then the first exponent in formula (5.11) of Proposition 5.19 becomes

j� j � asc�.�/ � 1 D
rX

jD1

j�j j � asc.i/ � 1 D
rX

jD1

�
j�j j � 1

�
C des.i/



T. Hasebe and F. Lehner 580

and thus

w.�; �/ D

Z 0

�1

xdes.i/.1C x/asc.i/
rY

jD1

xj�j j�1 dx

and summing over the cartesian product yields the total valueX
�2Tv

w.�; �/ D
p1Šp2Š � � �pnŠ

q1Šq2Š � � � qr Š

Z 0

�1

xdes.i/.1C x/asc.i/
rY

jD1

� X
�2OP qj

xj�j�1
�
dx:

Finally note that

X
�2OP q

xj�j�1 D
X
�2Pq

j� jŠ xj� j�1 D

qX
kD1

kŠ S.q; k/xk�1:

is indeed the homogeneous Euler polynomial as claimed, see Remark 5.23.

Remark 6.18. The authors were not able to prove Theorem 6.17 as a corollary of Propo-
sitions 5.5 and (5.21) although Goldberg coefficients appear in both formulas.

7. Central limit theorem

Cumulants provide a natural framework to understand central limit theorems. Speicher and
Waldenfels studied central limit theorems in a general setting of noncommutative proba-
bility assuming a certain singleton condition [64] (see also [1]). In this section we will see
that a similar approach also applies in the setting of a spreadability system, provided that
an appropriate singleton condition holds.

Definition 7.1. (i) An element k 2 Œn� is called a singleton of � 2 OP n if ¹kº 2 � .
(ii) Let � D .U; z'; .�.i//i�1/ be a spreadability system for a B-ncps .A; '/. We will

say that the singleton condition holds for � if '�.X1; X2; : : : ; Xn/ D 0 for every tuple
.X1; X2; : : : ; Xn/ and every partition � containing a singleton ¹kº such that '.Xk/ D 0.

Under this assumption we can show the following type of central limit theorem.

Theorem 7.2. Assume that a spreadability system .U; z'; .�.i//i�1/ for a B-ncps .A; '/
satisfies the singleton condition. Assume '.X/ D 0 and let YN WD N:Xp

N
. Then, for each

n 2 N and � 2 Pn,

lim
N!1

'�.YN ; YN ; : : : ; YN / D

8<:
P
�2OP

.2/
n

���

1
j�jŠ
'�.X;X; : : : ; X/; n is even;

0; n is odd:

where OP .2/
n is the set of pair ordered set partitions, i.e., every block of � 2 OP .2/

n

contains exactly 2 entries.
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Proof. Note that the following holds: if � has a singleton at k and '.Xk/ D 0, then

K�.X1; X2; : : : ; Xn/ D 0:

This holds becauseK�.X1;X2; : : : ;Xn/ is the coefficient ofN in '�.N:X1;N:X2; : : : ;N:Xn/,
and

'�.N:X1; N:X2; : : : ; N:Xn/ D
X

i1;i2;:::;in2Œn�

'�f�.i1;i2;:::;in/.X1; X2; : : : ; Xn/ D 0

because each � f �.i1; i2; : : : ; in/ has a singleton at k.
Now multilinearity and extensivity of cumulants imply

K�.YN ; YN ; : : : ; YN / D N
� n2Cj�jK�.X;X; : : : ; X/:

If � has a singleton, this is zero. If � does not have a singleton nor � is not a pair ordered
set partition, then j�j < n

2
. Therefore,

lim
N!1

K�.YN ; YN ; : : : ; YN / D

´
K�.X;X; : : : ; X/; if n is even and � 2 OP .2/

n ;

0; otherwise:

If � 2OP .2/
n , thenK�.X;X; : : : ;X/D '�.X;X; : : : ;X/ from Theorem 3.11 because the

expectations '� .X;X; : : : ; X/ all vanish for � < � from the singleton condition. Finally,
from Theorem 3.11, we obtain the conclusion.

Thus the use of cumulants simplifies the proof of the central limit theorem. It may
happen that the moments of the limit distribution are not uniquely determined only by
the variance of X alone, because in general '�.X; X; : : : ; X/ cannot be written in terms
of '.X2/. For example, the limit distribution for the c-monotone spreadability system is
characterized by the moments

lim
N!1

'.Y nN / D

´P
�2M

.2/
n

1
j�jŠ
˛2jOuter.�/jˇ2jInner.�/j; n is even;

0; n is odd;

where ˛2 D '.X2/, ˇ2 D  .X2/ and M
.2/
n is the set of monotone pair partitions; the

reader is referred to [28, Theorems 4.7, 5.1]. The limit moments are not uniquely deter-
mined by ˛2 but also depend on the second linear map  . A natural condition to ensure
uniqueness is a calculation rule (Definition 2.10); then the limit distribution of the central
limit theorem is determined only by the variance and by the constants s.x� I�/. More pre-
cisely, we deduce from the calculation rule (2.13) that '�.X; X; : : : ; X/ D s.x� I�/˛2j�j

for � 2 OP .2/
n provided '.X/D 0, where ˛2 D '.X2/. The limit moments can therefore

be written as

lim
N!1

'�.YN ; YN ; : : : ; YN / D

8<:
P
�2OP

.2/
n

���

s.x�I�/
j�jŠ

˛2j�j; n is even;

0; n is odd:
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8. Open problems

(1) Find a unified proof of the occurrence of Goldberg coefficients in Theorem 6.17
and Proposition 5.5.

(2) Find the values of the Möbius function on the poset of monotone partitions.

(3) Compute the cumulants for the V -monotone spreadability system and compare
them with the operadic cumulants of Jekel and Liu [32].

(4) Define a notion of multifaced spreadability systems and the associated cumulants,
cf. Remark 2.7.

A. Ordered set partitions

A.1. Set partitions

Let N denote the set of natural numbers ¹1; 2; 3; : : :º, and let Œn� denote the finite set

¹1; 2; : : : ; nº � N:

Definition A.1 (Set partitions). A set partition, or simply partition, of a finite set A is a
set of mutually disjoint subsets � D ¹P1; P2; : : : ; Pkº such that

k[
iD1

Pi D A:

The number k is the size of the partition and denoted by j�j. The elements P 2 � are
called blocks of � . The set of partitions of A is denoted by PA. We are mostly concerned
with the case A D Œn� and in this case PŒn� is abbreviated to Pn and called (set) partitions
of order n. As is well known there is a one-to-one correspondence between set partitions
� of Œn� and equivalence relations on Œn� by defining for � 2 Pn and i; j 2 Œn� the relation
i �� j to hold if and only if there is a block P 2 � such that both i; j 2 P .

The set partitions of fixed order n form a lattice under refinement order:

Definition A.2 (Refinement order). For partitions � and � we write � � � if for any
block P 2 � , there exists a block S 2 � such that P � S . In other words, every block of
� is a union of blocks of � . The minimal element of this lattice is O0n D ¹¹1º; ¹2º; : : : ; ¹nºº
and the maximal element O1n D ¹Œn�º.

We proceed with the description of several classes of set partitions.

Definition A.3 (Classes of set partitions). Let � 2 Pn be a set partition.

(i) Two (distinct) blocks B and B 0 2 � are said to be crossing if there are elements
i < i 0 < j < j 0 such that i; j 2B and i 0; j 0 2B 0. � is called noncrossing if there
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a noncrossing partition an interval partition

Figure 1. Examples of partitions.

are no crossing blocks, i.e., if there is no quadruple of elements i < j < k < l
s.t. i �� k, j �� l and i 6�� j . The noncrossing partitions of order n form a
sublattice which we denote by N Cn.

(ii) Two blocks B;B 0 of a noncrossing partition � are said to form a nesting if there
are i; j 2 B such that i < k < j for any k 2 B 0. In this case B is called the
outer block of the nesting and B 0 is called the inner block of the nesting.

(iii) A block B of a noncrossing partition � is inner if B is the inner block of a
nesting of � . If this is not the case B is called an outer block of � . The set of
inner blocks of � is denoted by Inner.�/ and the set of outer blocks of � by
Outer.�/.

(iv) An interval partition is a partition � for which every block is an interval. Equiv-
alently, this means that � is noncrossing and has no nestings. The set of interval
partitions of Œn� is denoted by 	n.

Analogous definitions apply to any finite totally ordered set A and the corresponding sets
of partitions are denoted PA, N CA, 	A etc.

Examples of partitions are shown in Figure 1. The lattice of interval partitions plays a
central role in this paper and has a particularly simple structure.

Proposition A.4. The lattice of interval partitions 	n is anti-isomorphic to the Boolean
lattice Bn�1 via the lattice anti-isomorphism

.I1; I2; : : : ; Ip/ 7! ¹r1; r2; : : : ; rp�1º � Œn � 1�;

where the blocks Ii are uniquely determined by their maximal elements ri ; note that
always rp D n.

The following construction inverts the previous bijection in a certain sense.

Definition A.5. Fix a number n 2 N and a subset A � Œn�.

(i) Among all noncrossing partitions containing Ac as an outer block there is a
maximal one, which we denote by �max.A/. Removing Ac we obtain an interval
partition ofAwhich we denote by �max.A/; in other words, the blocks of �max.A/

consist of the maximal contiguous subintervals of A. Yet in another interpreta-
tion, the blocks of �max.A/ are the connected components of the graph induced
on A from the integer line.

(ii) Among all noncrossing partitions containing Ac as a block there is a maxi-
mal one, which we denote by z�max.A/. Removing Ac we obtain a noncrossing
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�max.A/ z�max.A/

Figure 2. The partitions �max.A/ and z�max.A/ for A D ¹1; 3; 4; 6; 8; 9º (fat).

partition ofAwhich we denote byz�max.A/; in other words, the blocks ofz�max.A/

consist of the maximal contiguous subintervals of A when we consider it on the
circle, i.e., the blocks of z�max.A/ are the connected components of the graph
induced on A from the Cayley graph of Zn.

See Figure 2 for examples.

Remark A.6. (1) Construction (i) occurs in some examples, see, e.g., Examples 4.6
and 4.7. It gives rise to the unshuffle coproduct of Ebrahimi-Fard and Patras [19].

(2) Construction (ii) occurs in the recursion (4.1) for free cumulants and Example 4.8.

The lattices considered so far have the following structural property. It is easy to see
for both Pn and 	n while for N Cn it is proved in [62].

Proposition A.7. Let Pn be one of Pn, N Cn and 	n. Then for any pair of elements
�;� 2Pn such that � � � there are uniquely determined numbers kj such that the interval
Œ�; �� is isomorphic (as a lattice) to the direct product

P
k1
1 � P

k2
2 � � � � � P

kn
n :

A.2. Ordered set partitions

Definition A.8 (Ordered set partitions). (i) An ordered set partition of a set A is a se-
quence .P1; P2; : : : ; Pp/ of distinct blocks such that ¹P1; P2; : : : ; Ppº is a set partition of
A. In other words, it is a set partition with a total ordering of its blocks. The set of ordered
set partitions of A is denote by OPA and OP Œn� is abbreviated to OP n.

(ii) Ordered set partitions with a fixed number p of blocks are in bijection with surjec-
tive functions from Œn� to Œp�. This bijection is implemented by identifying an ordered set
partition � D .P1;P2; : : : ;Pp/ 2OP n with the function mapping an element i 2 Œn� to the
label k of the block Pk such that i 2 Pk , which we denote by �.i/ WD k. This function can
be represented by a packed word [50], i.e., the sequence of the images �.1/�.2/ � � ��.n/.
When � consists of singletons only, i.e., #Pi D 1 for all i 2 Œp� then � can be identi-
fied with a permutation of Œn�, and the notations introduced above are consistent with the
familiar notations for permutations.

Remark A.9. Ordered set partitions are also known under the name of set compositions,
see, e.g., [6], pseudopermutations [35]. In particular, packed words can be represented as
multiset permutations and this point of view is crucial in Section 5.
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Definition A.10. (i) The ordered kernel set partition �.i1; i2; : : : ; in/ of a multiindex
.i1; i2; : : : ; in/ is defined as follows. First, pick the smallest value, say p1, from i1; i2; : : : ; in
and define the blockP1D¹k 2 Œn� j ik Dp1º. Next, pick the second smallest value p2 from
i1; i2; : : : ; in and define the block P2 D ¹k 2 Œn� j ik D p2º. By repeating this procedure,
we obtain an ordered set partition .P1; P2; : : :/, which we denote by �.i1; i2; : : : ; in/.

(ii) The kernel set partition x�.i1; i2; : : : ; in/ of a sequence of indices is defined as the
underlying set partition �.i1; i2; : : : ; in/ of the corresponding ordered kernel set partition.
In other words, it is the equivalence relation such that by p � q if and only if ip D iq .

Definition A.11 (Order dropping map). Let � 7! x� be the map from OP n onto Pn which
drops the order on blocks, that is,

.P1; P2; : : :/ 7! ¹P1; P2; : : :º:

We say that an ordered set partition is in canonical order if the blocks are sorted in ascend-
ing order according to their minimal elements.

It will be convenient to transfer as much structure as possible from ordinary set par-
titions to ordered set partitions when no confusion can arise. For example, the notation
P 2 � indicates that P is a block of x� . Let us next introduce a natural partial order rela-
tion on OP n.

Definition A.12 (Refinement order). Given two ordered set partitions

� D .P1; P2; : : : ; Pp/ and � D .S1; S2; : : : ; Ss/ 2 OP n;

we define the order relation � � � by the following requirements:

(i) x� � x� as set partitions.

(ii) If Pi � Sk ; Pj � Sl for i < j , then k � l .

Remark A.13. In other words, � � � if every block of � is a union of a contiguous
sequence of blocks of � . The elements dominated by a given ordered set partition � are
obtained as follows:

(1) pick a label i

(2) split the block with label i into two

(3) label one of the pieces with i and the other one with i C 1

(4) increment by one all other labels larger than i .

See Figure 3 for examples.
This order makes .OPA;�/ a poset (but not a lattice as will be seen shortly). The

Hasse diagram of OP 3 is shown in Figure 4; the order is read from outside to inside.
Note that � � � implies x� � x� , but not vice versa.

We consider the following subclasses of ordered set partitions on Œn�.
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1 2 1 2 1

1 2 3 2 1 1 3 2 3 1 2 3 1 3 2

6� � �

Figure 3. Examples of the order on OP n.

123 13=2

3=1223=1

2=13

12=3 1=23

3=1=2

3=2=1

2=3=1

2=1=3

1=2=3

1=3=2

Figure 4. The poset OP 3, ordered from outside to inside. The maximal element is in the center, the
minimal elements are on the periphery.

Definition A.14 (Classes of ordered set partitions). (i) An ordered set partition � 2 OP n

is called noncrossing if the underlying set partition x� has this property. The set of ordered
noncrossing partitions of Œn� is denoted by ON Cn. Outer blocks and inner blocks of an
ordered noncrossing partition are defined according to the case of noncrossing partitions.

(ii) An interval ordered set partition of Œn� is an ordered set partition � such that
x� 2 	n. The set of interval ordered set partitions of Œn� is denoted by O	n.

(iii) A noncrossing ordered set partition � D .P1; P2; : : : ; Pj�j/ is called monotone
partition if for every nesting the outer block precedes the inner block; in other words, the
order of the blocks implements a linearization of the partial order given by the nesting
relation. The set of monotone partitions is denoted by Mn.

Example A.15. Figure 5 shows some examples of monotone and non-monotone parti-
tions whose underlying noncrossing partition is x� D .
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1 2 3 1 3 2 2 3 1

2 1 3 3 1 2 3 2 1

Figure 5. Monotone partitions (upper row) and non-monotone partitions (lower row). The labeled
numbers denote the order of blocks.

Remark A.16. Interval partitions are characterized by the property that the canonical
order defined in Definition A.11 extends to the entire blocks, i.e., the blocks of an inter-
val partition ¹I1; I2; : : : ; Ipº can be uniquely ordered so that i < j whenever i 2 Is ,
j 2 It , s < t . This ordering provides a natural embedding 	n � O	n and we may write
.I1; I2; : : : ; Ip/ 2 	n rather than ¹I1; I2; : : : ; Ipº 2 	n.

In Section 6, we need the following extension of ordered set partitions.

Definition A.17. An ordered pseudopartition of Œn� is a sequence .P1; P2; : : : ; Pp/ of
disjoint subsets of Œn� such that

Sp
iD1 Pi D Œn� with empty blocks allowed. We keep the

notation j�j D p for the length, now including empty blocks. The set of ordered pseu-
dopartitions of Œn� is denoted by OP P n.

Lemma A.18 (See, e.g., [7]). The poset of ordered set partitions OP n is isomorphic to
the poset of nonempty chains in the boolean lattice 2n with the reverse refinement order,
i.e., a chain ; D A0 � A1 � � � � � Ak D Œn� is smaller than a chain ; D B0 � B1 � � � � �
Bl D Œn� if it is finer, i.e., as sets

¹B0; B1; : : : ; Blº � ¹A0; A1; : : : ; Akº:

Proof. The bijection is given by the map

ˆn W .A1 � A2 � � � � � Ak/ 7! .A1; A2 n A1; A3 n A2; : : : ; Ak n Ak�1/:

Moreover, when the empty chain is added, OP n becomes a lattice isomorphic to the
face lattice of the permutohedron [7,69]. With this alternative picture it is now easy to see
a join semilattice structure, namely the join operation corresponds to the intersection of
chains in the chain poset.

We denoted by O1n WD .Œn�/ the unique maximal ordered set partition. On the other hand
there are several minimal elements, namely all permutations of the minimal set partition
O0n WD .¹1º; ¹2º; : : : ; ¹nº/. Consequently there is no meet operation, but we define the
following associative but noncommutative replacement. It turns OP n into a band, i.e., a
semigroup in which every element is an idempotent; however it is not a skew lattice.

Definition A.19. (i) For an ordered set partition � D .S1; S2; : : : ; Ss/ 2 OP n and a
nonempty subset P � Œn�, let the restriction �cP 2 OPP be the ordered set partition
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.P \ S1; P \ S2; : : : ; P \ Ss/ 2 OPP , where empty sets are dropped; see [51], where
this operation arises in the context of Hopf algebras.

(ii) For � D .P1; P2; : : : ; Pp/; � D .S1; S2; : : : ; Ss/ 2 OP n, we define the quasi-
meet operation � f � 2 OP n to be .P1 \ S1; P1 \ S2; : : : ; P1 \ Ss; P2 \ S1; P2 \
S2; : : : ; P2 \ Ss; : : : ; Pp \ Ss/, where empty sets are skipped. In other words, the quasi-
meet is the concatenation of the restrictions � f � D �cP1�cP2 � � � �cPp .

Remark A.20. The quasi-meet operation is associative and coincides with the multiplica-
tion operation in the Solomon–Tits algebra of the symmetric group [61] which resurfaced
recently in the domain of Markov chains [12, 13] and Hopf algebras of noncommutative
quasi-symmetric functions [6].

Proposition A.21. (i) The quasi-meet operation on OP n is compatible with the
meet operation on Pn, in the sense that � f � D x� ^ x� .

(ii) � f � � � for any �; � 2 OP n.

(iii) If � � � 2 OP n, then � f � � � f � for any � 2 OP n.

(iv) � f � D � ” x� � x� .

(v) � f � D � ” � � � .

Proof. The first three items are immediate from the definition. To see (iv), assume first
� f � D � . Then by (i) also x� D x� ^ x� � x� . Conversely, if x� � x� , then x� ^ x� D x� and
by (ii) � f � � � . Since the number of blocks of x� ^ x� and � f � are equal, we must
have � f � D � .

As for (v), if � f � D � then it follows from (ii) that � � � . On the other hand, if
� � � and � D .B1; B2; : : : ; Bk/, then � f � D �cB1�cB2 � � � �cBk and the order of the
blocks of � remains unchanged, so � f � D � .

To describe the interval structure of the poset OP n we start with principal ideals.

Definition A.22. Let P be a poset. A down-set or order ideal is a subset I such that
x 2 I and y � x implies y 2 I . The principal ideal generated by x, denoted by #x, is
the smallest down-set containing x, i.e.,

#x D ¹y 2 P W y � xº:

The following proposition is immediate.

Proposition A.23. The principal ideal generated by an element � D .P1; P2; : : : ; Pp/ 2
OP n is canonically isomorphic to

OPP1 �OPP2 � � � � �OPPp

via the map
� 7!

�
�cP1 ; �cP2 ; : : : ; �cPp

�
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1 2 2 2 2 2 1 1

1 3 2 3 3 2 1 1 1 3 2 3 2 2 1 1

1 4 2 4 3 2 1 1

1 3 3 3 3 3 2 2

1 4 3 4 4 3 2 2 1 4 3 4 3 3 2 2

1 5 3 5 4 3 2 2

Figure 6. An interval isomorphic to 	2 � 	3.

There is no direct analogue of Proposition A.7 for ordered set partitions; instead the
next proposition shows that the interval structure can be expressed in terms of lattices of
interval partitions.

Proposition A.24. Let �; � 2 OP n be ordered set partitions of size j� j D s and j�j D p
respectively such that � � � . If � D .P1; P2; : : : ; Pp/, let kj be the number of blocks
of � contained in Pj , j 2 ¹1; 2; : : : ; pº. Then k1 C k2 C � � � C kp D s and as a poset
the interval Œ�; �� is canonically isomorphic to 	k1 � 	k2 � � � � � 	kp . More precisely, if
� D .S1; S2; : : : ; Ss/ � � 2 OP n, then there exists a unique � D .T1; T2; : : : ; Tp/ 2 	s
such that

� D
� [
i2T1

Si ;
[
i2T2

Si ; : : : ;
[
i2Tp

Si

�
:

The map ˆ W 	T1 � 	T2 � � � � � 	Tp ! Œ�; �� by

.�1; �2; : : : ; �p/ 7!
� [
i2T1;1

Si ;
[
i2T1;2

Si ; : : : ;
[

i2T1;k1

Si ; : : : ;
[
i2Tp;1

Si ; : : : ;
[

i2Tp;kp

Si

�
;

where �i D .Ti;1; Ti;2; : : : ; Ti;ki /, is a bijection, and so its inverse establishes a bijection

‰ WD ˆ�1 W Œ�; ��! 	k1 � 	k2 � � � � � 	kp

with ki WD jTi j. The composition .k1; k2; : : : ; kp/ is called the type of the interval Œ�; ��.

The example in Figure 6 is isomorphic to 	2 � 	3.
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Proof. Let � D .P1; P2; : : : ; Pp/. Each block of � is the union of blocks of � , and so we
can find A � Œs� such that P1 D

S
i2A Si . We show that there exists k such that A D Œk�.

Suppose that there are 1� u < v � p such that u … A and v 2 A. Then there is j � 2 such
that Su � Pj . This contradicts the fact that u < v, Sv � P1 and � � � . Hence A D Œk�
for some k. Removing the first block of � and the first k blocks of � we can repeat the
argument with the ordered set partitions .SkC1;SkC2; : : : ;Ss/� .P2;P3; : : : ;Pp/ and find
P2 D

S
kC1�i�kCl Si for some l . After a finite number of iterations we thus construct a

unique interval partition � D .T1; T2; : : : ; Tp/ 2 	s such that

� D
� [
i2T1

Si ;
[
i2T2

Si ; : : : ;
[
i2Tp

Si

�
:

Clearly the image of ˆ is contained in Œ�; �� and ˆ is injective and it remains to show
surjectivity. To this end pick an arbitrary � 2 Œ�; ��. From the first part of the proposition
we infer that � � � is of the form

� D
� [
i2G1

Si ;
[
i2G2

Si ; : : : ;
[
i2Gt

Si

�
for some  D .G1; G2; : : : ; Gt / 2 	s . Since � � � , the partition  must be finer than � .
Hence, each restriction cTi 2 	Ti ; i 2 Œp�, consists of sequence of consecutive blocks of
 without splitting any original block G1; G2; : : : ; Gt 2  . Hence we obtain

ˆ
�
.1; 2; : : : ; p/

�
D �

and the map ˆ is indeed bijective.

A.3. Incidence algebras and multiplicative functions

Let .P;�/ be a (finite) partially ordered set. The incidence algebra I .P / D I .P;C/ is
the algebra of functions supported on the set of pairs ¹.x; y/ 2 P � P W x; y 2 P Ix � yº
with convolution

f � g.x; y/ D
X
x�z�y

f .x; z/g.z; y/:

For example, if P is the n-set ¹1; 2; : : : ; nº with the natural order, then I .P / is the alge-
bra of n � n upper triangular matrices. The algebra I .P / is unital with the Kronecker
function ı.x; y/ serving as the unit element and a function f 2 I .P / is invertible if and
only if f .x; x/ is nonzero for every x 2 P . An example of an invertible function is the
Zeta function, which is defined as �.x; y/ � 1. Its inverse is called the Möbius function
of P , denoted �.x;y/. For functions F;G W P !C we have the fundamental equivalence
(“Möbius inversion formula”)�

8x 2 P W F.x/ D
X
y�x

G.y/
�
”

�
8x 2 P W G.x/ D

X
y�x

F.y/�.y; x/
�
:
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A function f 2 I .Pn/ (actually a family of functions) is called multiplicative if there is a
characteristic sequence .fn/n�1 such that for any pair �; � 2 P we have

f .�; �/ D
Y

f
ki
i

where ki are the structural constants of the interval Œ�; �� from Proposition A.7. It can
be shown [18] that the multiplicative functions form a subalgebra of the incidence alge-
bra I .Pn/. For example, the Zeta function is multiplicative with characteristic sequence
.1; 1; : : :/ and the Möbius function is multiplicative as well with characteristic sequence
�n D .�1/

n�1.n � 1/Š, cf. [56, 58]; more precisely, if � D ¹P1; P2; : : : ; Ppº then

�P .�; �/ D

pY
iD1

.�1/ki�1.ki � 1/Š; (A.1)

where ki D #.�cPi /. Multiplicative functions on the lattice of set partitions provide a com-
binatorial model for Faà di Bruno’s formula which expresses the Taylor coefficients of a
composition of exponential formal power series in terms of the coefficients of the original
functions, see [18, 67]; in the case of noncrossing partitions the convolution is commu-
tative and can be modeled as multiplication of certain power series (“S -transforms”),
see [49]. The lattice of interval partitions combinatorially models the composition of
ordinary formal power series, see [33]. From Proposition A.24 one might guess that con-
volution on the poset of ordered set partitions is also related to some kind of function
composition, and Proposition A.26 below shows that this is indeed the case for a certain
class of functions to be defined next.

Definition A.25. Denote by N1fin the set of finite sequences of positive integers:

N1fin D

1[
pD1

Np:

For m 2 N let FOPm be the set of C-valued functions f on the set of m-chains´
.�1; : : : ; �m/ 2

1[
nD1

.OP n � � � � �OP n/„ ƒ‚ …
m fold

j �1 � �2 � � � � � �m

µ
:

We are concerned with different levels of reduced incidence algebras.

(i) A function f 2 FOP 2 is said to be adapted if there is a family

.fk/k2N1fin
� C

such that
f .�; �/ D fk1;:::;kp ;

where .ki /
p
iD1 is the type of the interval Œ�; �� as defined in Proposition A.24.

The family .fk/k2N1fin
is called the defining family.
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(ii) To any adapted function f 2 FOP 2 we associate its multivariate generating
function

Zf .z/ D
X
k2N1fin

fkz
k ; z D .z1; z2; z3; : : :/

with the usual multiindex convention zk D zk11 z
k2
2 � � � , where z1; z2; : : : are com-

muting indeterminates.

(iii) A function f 2 FOP 2 is said to be multiplicative if it is adapted and moreover
the defining family satisfies

fk1;:::;kp D

pY
iD1

fki :

If f is multiplicative, then the sequence of values fn D f .O0n; O1n/ is called the
defining sequence of f .

(iv) To a multiplicative function f 2 FOP 2 we associate the (univariate) generating
function

Zf .z/ D

1X
nD1

fnz
n:

(v) A function f 2 FOP 3 is said to be quasi-multiplicative if there is an array of
coefficients .fjk/1j;kD1 � C such that

f .�; �; �/ D

pY
iD1

Y
G2i

fi;jGj;

where .1; : : : ; p/ is the image of � under the map ‰ in Proposition A.24. The
array .fjk/1j;kD1 is called the defining array of f .

(vi) To a quasi-multiplicative function f 2 FOP 3 we associate a sequence of (uni-
variate) generating functions

Z
.j /

f
.z/ D

1X
kD1

fjkz
k ; j 2 N:

(vii) For f 2 FOP 3 and g 2 FOP 2 we define the convolution

.f o g/.�; �/ WD
X

�2Œ�;��

f .�; �; �/ g.�; �/; � � �:

This latter provides a combinatorial model for the composition of multivariate func-
tions.

Proposition A.26. If a function f 2FOP 3 is quasi-multiplicative and g 2FOP 2 is adapt-
ed then f o g 2 FOP 2 is adapted and

Zfog.z/ D Zg
�
Z
.1/

f
.z1/; Z

.2/

f
.z2/; : : :

�
; z D .z1; z2; : : :/:
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Proof. We use the notations in the statement of Proposition A.24. Pick any � 2 Œ�; �� and
let .1; 2; : : : ; p/ WD ‰.�/ be its image under ‰. Thus

i D .Gi;1; Gi;2; : : : ; Gi;ri / 2 	ki

is an interval partition and we have the bijective images

‰
�
Œ�; ��

�
D 	jG1;1j � 	jG1;2j � � � � � 	jG1;r1 j � 	jG2;1j � � � � � 	jGp;rp j;

‰
�
Œ�; ��

�
D 	j1j � 	j2j � � � � � 	jp j:

Hence

.f o g/ .�; �/ D
X

�2Œ�;��

f .�; �; �/ g.�; �/

D

X
.1;2;:::;p/2	k1�	k2�����	kp

pY
iD1

� Y
G2i

fi;jGj

�
gj1j;j2j;:::;jp j

D

X
ri2Œki �;1�i�p

X
.nik/i2Œp�;k2Œri �

ni1Cni2C���CniriDki ;1�i�p

pY
iD1

� riY
kD1

fi;nik

�
gr1;r2;:::;rp

DW .f o g/k1;k2;:::;kp :

This shows that for every pair .�; �/ the value f o g.�; �/ is determined by the structural
sequence .k1; : : : ; kp/ and thus f o g is adapted. Now multiplying the terms with zk and
summing over k we obtain

Zfog.z/ D
X

kD.k1;k2;:::/2N1fin

.f o g/kz
k

D

X
p�1

X
rD.r1;r2;:::;rp/2Np

X
.ni1;:::;niri /2Nri

1�i�p

pY
iD1

� riY
kD1

fi;nikz
nik
i

�
gr1;r2;:::;rp

D

X
p�1

X
rD.r1;r2;:::;rp/2Np

gr1;r2;:::;rp

pY
iD1

Z
.i/

f
.zi /

ri

D Zg
�
Z
.1/

f
.z1/; Z

.2/

f
.z2/; : : :

�
:

Corollary A.27. If f; g 2 FOP 2 are multiplicative, then so is f � g and

Zf �g.z/ D Zg
�
Zf .z/

�
:

Proof. Given a multiplicative function f 2 FOP 2 , we lift it to a quasi-multiplicative func-
tion Qf 2 FOP 3 via its defining family Qfjk D fk , i.e.,

Qf .�; �; �/ WD f .�; �/
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and the generating functions are Z.j /
Qf
.z/ D Z Qf .z/ for all j � 1. On the other hand, g is

multiplicative, therefore adapted with gk1;:::;kp D gk1 � � �gkp and has generating function

Zg.z1; z2; : : :/ D

1X
pD1

X
.k1;k2;:::;kp/2Np

gk1gk2 � � �gkpz
k1
1 z

k2
2 � � � z

kp
p

D

1X
pD1

Zg.z1/Zg.z2/ � � �Zg.zp/:

By Proposition A.26

Z Qfog.z1; z2; : : :/ D

1X
pD1

Zg
�
Zf .z1/

�
Zg
�
Zf .z2/

�
� � �Zg

�
Zf .zp/

�
:

This shows that . Qf o g/k1;k2;:::;kpD
Qp
iD1 hki , where hk WD 1

kŠ
dk

dzk

ˇ̌
zD0

Zg.Zf .z//. There-
fore Qf o g D f � g is multiplicative and Zf �g D Zg.Zf .z//.

A.4. Special functions on the poset of ordered set partitions

We define several special functions in the case of ordered set partitions, and compute their
generating functions.

Definition A.28. Given ordered set partitions � � � � � D .P1; P2; : : : ; Pp/ 2 OP n, a
sequence t D .t1; t2; : : :/ 2 RN and a number t 2 R we define

ˇt .�; �/ D

pY
iD1

�
ti

#.�cPi /

�
;

ˇt .�; �/ D ˇ.t;t;:::/.�; �/;

t .�; �; �/ D

pY
iD1

Y
G2i

�
ti

jGj

�
;

where
�
t
n

�
is the generalized binomial coefficient and .1; 2; : : : ; p/ is the image of � by

the map ‰ in Proposition A.24. Moreover, for � � � we define

Œ� W �� D
Y
P2x�

#.�cP /;

Œ� W ��Š D
Y
P2x�

#.�cP /Š; (A.2)

z�.�; �/ D
1

Œ� W ��Š
;

z�.�; �/ D
.�1/j� j�j�j

Œ� W ��
: (A.3)
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Remark A.29. (i) The combinatorial significance of the numbers (A.2) is

Œ� W ��Š D #¹�j� � � and x� D x�º: (A.4)

(ii) The values ˇt .�; �/ and t .�; �; �/ depend only on the first j�j elements of t .
(iii) ˇt ; ˇt ; t are related via

ˇt .�; �/ D t .�; �; �/ and t .�; �; �/ D

pY
iD1

ˇti
�
�cPi ; �cPi

�
:

Since every interval in OP n is isomorphic to a product of lattices of interval parti-
tions (Proposition A.24) and thus is a Boolean lattice, it follows that the semilattice of
ordered set partitions is Eulerian, i.e., its Möbius function only depends on the rank and
�OP .�; �/ D .�1/

j� j�j�j, see [56, Proposition 3 and its Corollary]. Hence if � � � we
may write,

z�.�; �/ D
�P .x�; x�/

Œ� W ��Š
;

z�.�; �/ D
�OP .�; �/

Œ� W ��
D
�P .x�; x�/

Œ� W ��Š
D �P .x�; x�/ z�.�; �/;

where the Möbius function �P was defined in formula (A.1).
As a consequence of observation (A.4) we have the following connection between the

Möbius inversion on OP and P .

Proposition A.30. Let f W OP ! C be a function which is invariant under permutations
of the blocks, i.e., f .�/ D f .� 0/ whenever x� D x� 0 and denote by Nf W P ! C the cor-
responding function on P , then the convolutions f �OP

z� and f �OP z� are invariant as
well and are given by

f �OP
z�.�/ D Nf �P �P .x�/;

f �OP z�.�/ D Nf �P �P .x�/;

i.e., X
�2OP
���

f .�/ z�.�; �/ D
X
�2P
��x�

Nf .�/;

X
�2OP
���

f .�/ z�OP .�; �/ D
X
�2P
��x�

Nf .�/�.�; x�/:

Proposition A.31. (i) The function ˇt 2 FOP 2 is adapted with defining family

.ˇt /k D

pY
iD1

�
ti

ki

�
:
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(ii) The function t 2 FOP 3 is quasi-multiplicative with defining array

.t /jk D

�
tj

k

�
:

(iii) The functions ˇt ; z�; z� 2 FOP 2 are multiplicative with defining sequences

ˇt .O0n; O1n/ D

�
t

n

�
;

z�.O0n; O1n/ D
1

nŠ
;

z�.O0n; O1n/ D
.�1/n�1

n
:

Proof. The claims follow by definition and by Proposition A.24.

Corollary A.32. (i) The inverse function (with respect to the convolution �) of z� is z�.
(ii) For s; t 2 R1 we have

s o ˇt D ˇsıt ;

where s ı t D .s1t1; s2t2; : : :/.
(iii) ˇt satisfies the semigroup property ˇs � ˇt D ˇst for s; t 2 R.

Proof. (i) Since Zz�.z/ D log.1C z/ and Zz� .z/ D e
z � 1, we have

Zz�
�
Zz� .z/

�
D z:

(ii) We have

Z.j /s .z/ D

1X
kD1

�
sj

k

�
zk D .1C z/sj � 1;

Zˇt .z/ D
X
k

pY
iD1

�
ti

ki

�
z
ki
i D

X
p�1

pY
iD1

�
.1C zi /

ti � 1
�
:

By Proposition A.26, Zsoˇt .z/ D Zˇt .Z
.1/
s .z1/; Z

.2/
s .z2/; : : :/, which equals Zˇsıt .z/.

(iii) We can use

Zˇt .z/ D

1X
nD1

�
t

n

�
zn D .1C z/t � 1

and Corollary A.27.
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