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Dynamics of nonlinear Klein–Gordon equations
in low regularity on S2

Joackim Bernier, Benoît Grébert, and Gabriel Rivière

Abstract. We describe the long-time behavior of small nonsmooth solutions to the nonlinear Klein–
Gordon equations on the sphere S2. More precisely, we prove that the low harmonic energies (also
called super-actions) are almost preserved for times of order "�r , where r� 1 is an arbitrarily large
number and "� 1 is the norm of the initial datum in the energy spaceH1 �L2. Roughly speaking,
it means that, in order to exchange energy, modes have to oscillate at the same frequency. The proof
relies on new multilinear estimates on Hamiltonian vector fields to put the system in Birkhoff normal
form. They are derived from new probabilistic bounds on products of Laplace eigenfunctions that
we obtain using Levy’s concentration inequality.

1. Introduction

The linear Klein–Gordon equation classically appears as a natural first candidate to
describe a relativistic version of quantum mechanics [13, Chap. 1] and it can be written
on the sphere as

@2tˆ.t; x/ D �ˆ.t; x/ � �ˆ.t; x/;

where � > 0 is an external parameter referred to as the mass (although physically speak-
ing,� is rather the square of the mass, up to taking cD 1 and „D 1), x 2S2 (the Euclidean
unit sphere of R3), t 2 R, ˆ.t; x/ 2 R and � denotes the Laplace–Beltrami operator on
the sphere. As usual, we rewrite this evolution equation as a first-order system

@t

�
ˆ

@tˆ

�
D

�
0 1

� � � 0

��
ˆ

@tˆ

�
and the change of variable

u WD .� ��/1=4ˆC i.� ��/�1=4@tˆ (1)

makes the linear Klein–Gordon equation diagonal,

i@tu D
p
� ��u:
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Indeed, it is well known that the spherical harmonics (i.e. the restriction to S2 of homoge-
neous harmonic polynomials on R3) make the Laplace–Beltrami operator diagonal:

L2.S2IR/ D
M
`2N

E`; where E` D Ker.�C `.`C 1/IdL2/ ' R2`C1 (2)

is the space of spherical harmonics of degree `. In other words, the linear Klein–Gordon
equation can be rewritten as

8` 2 N; i@t…`u D !`…`u; where !` WD
p
`.`C 1/C �

and …` denotes the orthogonal projector on E`.
On the one hand, it is relevant to note that the following quantities are constants of

motion for the linear Klein–Gordon equation:

Iv.u.t// D

ˇ̌̌̌Z
S2
u.t; x/v.x/dvolS2.x/

ˇ̌̌̌2
; with ` 2 N; v 2 E`:

Actually, they describe accurately its dynamics (up to the exact values of the frequencies
!`). However, they are too sharp to survive to perturbations of the linear Klein–Gordon
equation. Indeed, due to the multiplicities of the eigenvalues of the Laplace–Beltrami
operator (E` is of dimension 2`C 1), one could design spectral perturbations commuting
with its vector field but destroying completely these constants of the motion (and so a
fortiori we also expect the same phenomenon in the nonlinear case as in [36, 37]).

On the other hand, the harmonic energies (also called super-actions)

J`.u.t// WD k…`u.t/k
2
L2
DW E`.ˆ.t/; @tˆ.t//

are much more robust constants of motion because they do not describe the energy
exchanges inside the clusters E`. They only encode the energy preservation of each clus-
ter. Note that they can be rewritten (in the original variables .ˆ; @tˆ/) as

E`.ˆ.t/; @tˆ.t// WD .`.`C 1/C �/
1=2
k…`ˆ.t/k

2
L2

C .`.`C 1/C �/�1=2k…`@tˆ.t/k
2
L2
: (3)

In this paper we address the question of their preservation by a nonlinear perturbation
of the linear Klein–Gordon equation. More precisely, we consider the nonlinear Klein–
Gordon equation

@2tˆ.t; x/ D �ˆ.t; x/ � �ˆ.t; x/C g.x/.ˆ.t; x//
p�1; (KG)

where p � 3 is an integer and g 2 L1.S2IR/ is a given factor making the equation possi-
bly inhomogeneous. The equation is naturally equipped with initial dataˆ.0/ 2H 1.S2IR/
and P̂ .0/ 2 L2.S2IR/, i.e.

8x 2 S2; ˆ.0; x/ D ˆ.0/.x/ and @tˆ.0; x/ D P̂
.0/.x/:
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Focusing only on small solutions, " WD kˆ.0/kH1 Ck P̂ .0/kL2 � 1, (KG) is a perturbation
of the linear Klein–Gordon equation and the question of the preservation of the harmonic
energies (3) makes sense.

Since (KG) is locally well posed (see Section 6.1 for details), the dynamics of (KG)
remain close to the dynamics of the linearized equation for times of order "�.p�2/. As a
consequence, on such a timescale the super-actions are almost preserved. However, their
conservation on longer timescales is nontrivial. Actually, there exist counterexamples for
similar systems: the cubic wave equation on T2 [33] and the cubic Klein–Gordon equation
on S3 with a unit mass [12, 20]. Nevertheless, they are closely related to the existence
of resonances (i.e. the frequencies !` have to be rationally linked) which only hold for
exceptional values of the mass �.

For generic values of the mass �, in [3] , Bambusi, Delort, Grébert and Szeftel prove
the almost preservation, for very long times, of the harmonic energies of the nonlinear
Klein–Gordon equations on Zoll manifolds (which include Sd for all d � 2). Nevertheless,
their result only holds for very smooth solutions (in particular g has to be smooth). More
precisely, they prove1 that for all r� 1 chosen arbitrarily large, there exists s0.r/ such that
for all s � s0.r/, provided that " (the norm of the initial datum .ˆ.0/; P̂ .0// in H sC1=2 �

H s�1=2) is small enough, while jt j < "�r , the solution to the nonlinear Klein–Gordon
equation exists and it satisfies

jt j � "�r )
X
`2N

h`i2sjE`.ˆ.t/; @tˆ.t// � E`.ˆ
.0/; P̂ .0//j . "p: (4)

The main flaw of this result is the smoothness assumption s � s0.r/. Indeed, in their
construction, the smoothness parameter s0.r/ grows at least linearly with respect to r . In
other words, the longer the time during which they prove the preservation of the super-
actions is, the smoother the solutions have to be. This smoothness assumption is crucial
in their proof and is systematically used to prove similar results – see e.g. [2, 4, 5, 14,
19, 22, 23, 38]. Nevertheless, on simpler models, numerical experiments strongly suggest
that this assumption is irrelevant (i.e. s0.r/ should not depend on r); see e.g. [18, 19] for
discussions about (KG) on T .

Actually, in [3] the authors are interested in the preservation of super-actions because
they aim to prove the almost global well-posedness of the equation (i.e. well-posedness
for times of order "�r with r arbitrarily large). Roughly speaking, since

ku.t/k2H s D

X
`2N

h`i2sE`.ˆ.t/; @tˆ.t//;

they proceed by bootstrap: assuming that ku.t/k2H s � 2ku.0/k
2
H s ' "

2, they control the
variations of the super-action using (4) and, as a corollary, they deduce the sharper estimate

ku.t/k2H s D ku.0/k
2
H s CO.ku.0/k

p
H s /:

1Actually, they only prove an `1 instead of `1 estimate (4) (see [3, Rem. 3.21]). Indeed, since they
are only really interested in the variations of the H s-norm, they have not written a sharp estimate on the
variation of the super-actions. Nevertheless, estimate (4) would be a direct corollary of their proof.
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However, in low dimensions (d � 2), it is well known that smoothness is not required
to obtain solutions for very long times. Indeed, the preservation of the Hamiltonian

H .ˆ;@tˆ/D

Z
S2

jrˆ.x/j2

2
C�

.ˆ.x//2

2
C
.@tˆ.x//

2

2
�
g.x/.ˆ.x//p

p
dvolS2.x/ (5)

provides an a priori global control of the energy norm (H 1 � L2) of small solutions (see
Lemma 6.1). Hence, one can derive the global well-posedness of the Cauchy problem
associated with (KG) (provided that the initial data are small enough; see Proposition 6.2
for details). Therefore, it is all the more natural to try to remove the smoothness assump-
tion s � s0.r/ of [3] to control the variations of the harmonic energies.

In the following theorem, which is the main result of this paper, we control, without
regularity assumption, the variations of the low super-actions:

Theorem 1.1. For all r � p, all � > 0 and almost all � > 0, there exist "0 > 0, C > 0

and ˛r > 0 (depending only on r) such that, provided " WD kˆ.0/kH1 C k P̂ .0/kL2 < "0,
the global solution to (KG) satisfies

jt j < "�r ) 8` 2 N; jE`.ˆ
.0/; P̂ .0// � E`.ˆ.t/; @tˆ.t//j � C h`i

˛r "p�� :

Let us compare this result with that of [3] (i.e. (4)). For low super-actions (i.e. ` ' 1),
Theorem 1.1 is much better as it provides the same control on the variations of the super-
actions (up to the "�� loss) without requiring any smoothness assumption. Conversely,
contrary to (4), due to the h`i˛r loss, our result does not provide any information about the
variation of the very high super-actions (i.e. `� "�.p�2/=˛r ). Nevertheless, since the loss
with respect to ` is polynomial, Theorem 1.1 provides a nontrivial control of the variations
of some “quite high” super-actions (i.e. 1� `� "�.p�2/=˛r ).

Using this optimization and the a priori control on the energy norm of the solutions,
we derive the following corollary, which can be viewed as a kind of weak orbital stability
result.

Corollary 1.2. For all r � p, s < 1=2 and almost all �> 0, there exist "0 > 0, C > 0 and
ı > 0 (which does not depend on �) such that, provided " WD kˆ.0/kH1 C k P̂ .0/kL2 < "0,
the global solution of (KG) satisfies

jt j < "�r )





u.t/ �X
`2N

e�iH`.t/…`u.0/






H s

� C"1Cı ;

where H`.t/WE` ˝ C ! E` ˝ C are Hermitian maps and u 2 C 0.RIH 1=2/ is defined
by (1).

Further bibliographical comments

The question of the stability of the linear dynamics makes sense for most nonlinear partial
differential equations on confined domains. In high regularity, Birkhoff normal forms lead
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to many important successes in proving the stability of several other interesting systems:
[4,10,11,14,28,30,31,34,46] in the nonresonant case and [1,6,7,15] in the resonant case.

For Klein–Gordon, the papers [2, 4, 5, 14, 19, 22, 23, 38] provide results similar to that
of Bambusi, Delort, Grébert and Szeftel [3] (i.e. preservation of the super-actions up to
times of order "�r with r arbitrarily large) but hold on other manifolds or with quasi-linear
perturbations. The works [21, 24–27, 29] only reach shorter times of stability but improve
that given by the local well-posedness (i.e. they get stability for jt j < "�q with q > p � 2
but not arbitrarily large). On some manifolds, for high modes, due to the quasi-resonance
(i.e. when the small divisors are too small), some of these timescales seem so far to be
optimal. We also mention the recent works [9,35] about the existence of KAM tori for the
nonlinear Klein–Gordon equations.

Very recently, in [8], the first two authors have introduced a new way of performing
Birkhoff normal forms for Hamiltonians PDEs which, contrary to the previous results,
allows nonsmooth solutions to be dealt with. As in Theorem 1.1, they prove almost-
conservation, for very long times, in low regularity, of the low (super-)actions of several
nonlinear dispersive PDEs on tori or boxes (including nonlinear Klein–Gordon equations
on Œ0; �� with homogeneous Dirichlet boundary conditions). Nevertheless, as discussed
below, to be extended to more general domains (like spheres), this result requires nontriv-
ial multilinear vector field estimates. The derivation and the proof of these estimates on
the sphere S2 are the main technical novelties of this paper (see Sections 2 and 4).

Comments about the results

• The arbitrarily small loss "�� in Theorem 1.1 is the same as that of [8, Thm. 1.21]
(about nonlinear Schrödinger equations on T2). It is due to the fact that, in dimension
2, H 1 is not an algebra.

• Reasoning as in [8, Cor. 1.14], we could prove that Corollary 1.2 holds in the
critical case s D 1=2 provided that the initial data are a little smoother: " D
kˆ.0/kH1C� C k P̂ .0/kH� for some � > 0 (and ı would depend on �).

• We could consider much more general nonlinearity in (KG) (e.g. nonlocal or nonpoly-
nomial). Actually, we chose g.x/.u.x//p�1 for simplicity.

• We are quite confident that our results could be extended to Zoll surfaces. Never-
theless, it would generate a lot a technicalities. It seems to us that we could adapt
our multilinear estimates by considering clusters of quasi-modes (as in [3]) but the
cohomological equations would be much harder to solve (because they would not be
diagonal). Moreover, it would raise several interesting questions which deserve further
investigation. For example, is it possible to prove the preservation of the low actions
(i.e. not only the super-actions) for very long times on a generic Zoll manifold and
with a generic mass? Somehow, it would be one way to prove the stability of the linear
dynamics.
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• Conversely, it is not clear whether a similar result could be proven in a higher dimen-
sion (for example on S3). First, the equation would not necessarily be well posed.
Moreover, our method is strongly related to the fact that H 1 is an algebra (or almost
an algebra like on S2). Indeed, roughly speaking, the Birkhoff normal procedure gen-
erates vector fields of arbitrarily large order which are somehow similar to .ˆ;@tˆ/ 7!
ˆn with p � n � r C p. Hence, the requirement that the energy space is an algebra
looks unavoidable.

Comments about the proof

The proof of our results follows the new Birkhoff normal form strategy introduced by the
first two authors (see [8, §1.4] for an informal description of this new strategy). Roughly
speaking, compared with [2, 4], it consists in removing terms which are usually small
thanks to the smoothness assumption (and so which are unsolved in that case) using a
stronger nonresonance condition. More precisely, we need that the small divisors are con-
trolled by the smallest index instead of the third largest. Even if this new Diophantine
condition may seem too restrictive, it is typically satisfied for (KG) since the eigenvalues
of
p
� �� accumulate polynomially fast on ZC 1=2, which is an affine lattice. Actually

it is a quite direct application of [8, Prop. 2.1] as explained in Section 3.
Nevertheless, as usual, the implementation of a normal form procedure requires some

structures on the nonlinear part of the vector field of the equation: it has to belong to a
class of vector fields which is stable by Lie brackets, resolution of cohomological equa-
tions and whose vector fields enjoy good multilinear estimates in the energy space (here
H 1=2 with respect to the variable u defined by (1)). In [8], such classes have been devel-
oped to deal with Hamiltonian PDEs on tori (or boxes) in low regularity. Unfortunately, it
seems hopeless to adapt them in more general domains like spheres as they strongly rely
on the exceptionally good algebraic properties of the eigenfunctions of the Laplace oper-
ator (which are the complex exponentials). On spheres (and more generally on compact
Riemannian manifolds), Delort and Szeftel have developed powerful classes of vector
fields (see e.g. [25, 26]) on which most of the Birkhoff normal form results are based.
Unfortunately, these classes are unsuitable to work in low regularity as they require a lot
of smoothness and it seemed unlikely to us that they could be adapted in low regularity.
Hence, we chose to follow a slightly different route, relying on probabilistic tools referred
to as Levy’s concentration inequalities [39] (see Theorem 2.8), in order to build the Hamil-
tonian classes adapted to our problem. See Section 2 for the probabilistic estimates and
Section 4 for the multilinear vector field estimates.

Notation

It is natural (and usual) to index eigenvectors of the Laplace–Beltrami operators on S2 by
points in a discrete triangle. As a consequence, for all M 2 .0;1�, we define

TM WD ¹.`;m/ 2 N � Z j 0 � ` �M and � ` � m � `º:
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We warn the reader that, as usual, we adopt the following convenient abuse of notation:
being given M > 0, k 2 TM , � 2 ¹�1; 1º and u D .uk0/k02TM 2 CTM , we set

u�k D uk if � D 1 and u�k D uk if � D �1:

If p is a parameter or a list of parameters and x; y 2 R then we write x .p y if there
exists a constant c.p/, depending continuously on p, such that x . c.p/y. Similarly, we
write x &p y if y .p x and x �p y if x .p y .p x.

2. A good orthonormal basis

Recall that
E` D Ker.�C `.`C 1/IdL2.S2;R// ' R2`C1; (6)

and we will denote by B` the set of orthonormal bases of the Euclidean space E`. More
generally, we denote by B the set of orthonormal bases of L2.S2IR/:

B WD
®
b D .b`/`2N W 8` � 0; b` 2 B`

¯
:

Hence, an element in B` is an orthonormal basis of E` that we will denote by b` D
.e`;m/�`�m�` and an element of B can be represented as

b D .b`/`2N D .ek/k2T1 D .e.`;m//.`;m/2T1 :

When representing vector fields in a Hilbertian basis b D .ek/k2T1 2B (which seems
natural to perform Birkhoff normal forms), it is classical to end up with estimating quan-
tities of the form Z

S2
ek1.x/ � � � ekp .x/ dvolS2.x/;

where .k1; : : : ; kp/ is some fixed element in T
p
1 . In the case of the round sphere, an

orthonormal basis in B can be identified with a basis of homogeneous harmonic poly-
nomials on R3 and one can make use of this structure to get good estimates. For instance,
following [25, Ex. 4.2], we can verify that

91� j0 � r such that
X
j¤j0

j̀ < j̀0)

Z
S2
e.`1;m1/.x/ � � �e. p̀ ;mp/.x/dvolS2.x/D 0: (7)

See also [26, Prop. 1.2.1] for related results on more general manifolds. However, without
any assumption on the relative size of the j̀ , it seems that the best one can expect for a
general orthonormal basis is to apply Hölder’s inequality:ˇ̌̌̌Z

S2
e.`1;m1/.x/ � � � e. p̀ ;mp/.x/ dvolS2.x/

ˇ̌̌̌
� ke.`1;m1/kLp � � � ke. p̀ ;mp/kLp :
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Then a classical result on Laplace eigenfunctions [42] states that, for any .`; m/ 2 T1,
ke.`;m/kLp � Cph`i

ı.p/ with ı.p/ D max¹1
4
�

1
2p
; 1
2
�

2
p
º. Moreover, these bounds on

Lp-norms are known to be sharp along certain sequences of the standard basis of spherical
harmonics [43]. Despite these a priori bounds and thanks to spectral degeneracies, there
is some flexibility in the choice of the orthonormal basis b 2 B we are working with.
Following [16, Thm. 6] (see also [41, 45] or [47, Thm. 18.5]), one can in fact prove that
there exist many elements b in B (in fact almost all) for which theLp-norms are uniformly
bounded. Thus, for such a basis b, one can find a constant Cb > 0 such that, for every
.k1; : : : ; kp/ 2 T

p
1 , ˇ̌̌̌Z

S2
ek1.x/ � � � ekp .x/ dvolS2.x/

ˇ̌̌̌
� Cb : (8)

Unfortunately, this information does not seem to be enough to handle Birkhoff normal
forms for data with low regularity, as we are aiming to do. Hence, we need to work a
little more. As we will see in the upcoming sections, the missing information to handle
our Birkhoff normal form procedure is to construct an orthonormal basis in B for which
these integrals have enough decay when there exists an index 1 � j0 � p such that

. j̀ ; mj / D . j̀0 ; mj0/ ) j D j0:

To that aim, we will prove the following theorem which is the main result of this
section:

Theorem 2.1. Let g 2 L1.S2IR/ and let p � 3. Then there exist a constant Cg;p > 0
and an orthonormal basis b D .ek/k2T1 2 C

1.S2IR/T1 of L2.S2IR/ such that, for all
k D .k1; : : : ; kp/ 2 T

p
1 , we haveˇ̌̌̌Z

S2
ek1.x/ � � � ekp .x/g.x/ dvolS2.x/

ˇ̌̌̌
� Cg;p min

°
1;

logp.2C j`j1/p
‡.k/

±
; (9)

where j`j1 D max1�j�p j̀ and

‡.k/ WD max¹1º [
®
h j̀ i W 8j

0
¤ j; kj 0 ¤ kj

¯
: (10)

Moreover, b 2 B, i.e. for all k D .`;m/ 2 T1, we have

�e`;m D �`.`C 1/e`;m:

This theorem complements the properties given by (7) and (8) in the sense that it
shows that the integrals of interest are small even if all the j̀ are of the same order. The
only condition is that at least one of the eigenvectors appears with multiplicity 1 in the
integral. Note that the decay property we obtain is not that small but it will be enough for
our argument. We do not expect that the decay can be much increased except in higher
dimensions where the denominator should be h j̀ i

d�1
2 rather than h j̀ i

1
2 . We emphasize

that, contrary to (7), this is not valid for any orthonormal basis but only for a generic one
as (8) is. In order to prove this result, we will in fact refine the probabilistic approach used
to prove (8).
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Remark 2.2. As a corollary of the proof, we could also get a similar basis enjoying (9)
for a countable set of degrees p and functions g (but not uniformly).

2.1. Probabilistic setup

We start with a short review on Haar measures which will be used to define natural proba-
bility measures on the orthogonal group ofE`. Then we explain how to use these measures
to define probability measures on B and how they are related to the normalized volume
measure on the unit sphere S` of E`.

2.1.1. Background on Haar measures. Recall that, given a compact group G, there
exists a Radon measure mG on G such that for every Borel subset U � G and for every
g 2G, mG.gU /DmG.U / [32, Thm. 2.10]. This is called a (left-invariant) Haar measure
on G and for any nonempty open set U , one has mG.U / > 0 [32, Prop. 2.19]. Moreover,
if we fix mG.G/ D 1, then this measure is unique [32, Thm. 2.20]. The main example
we will use in the following is the orthogonal group O.d/ of Rd (with d 2 N�) or more
generally, the orthogonal group O.E/ of some Euclidean space E of dimension d .

Remark 2.3. For the sake of concreteness, let us give an explicit expression of mO.d/

in terms of measures on spheres. Given an orthonormal family .X1; : : : ; Xk/ in .Rd /k ,
we denote by �X1;:::;Xk

d�k�1
the normalized volume measure on Sd�1 \ Span¹X1; : : : ; Xkº?

induced by the Euclidean structure on Rd�1. Equivalently,

�d�k�1 WD
volSd�1\Span¹X1;:::;Xkº?

volSd�k�1.Sd�k�1/
:

With these conventions at hand and writing R D .X1; : : : ; Xd / 2 O.d/, one can verify
using the invariance of �j by rotation thatZ

O.d/

f .R/ dmO.d/.R/

D

Z
.Sd�1/d

f .X1; : : : ; Xd / d�X1;:::;Xd�10 .Xd / � � � d�
X1
d�2

.X2/ d�d�1.X1/:

In particular, if f .R/ D f .X1; : : : ; Xd / D g.X1/, thenZ
O.d/

f .R/ dmO.d/.R/ D

Z
Sd�1

g.X/ d�d�1.X/:

If we now fix some compact subgroup H of G, it also has a unique left-invariant
probability measure mH . This measure is naturally related to mG as follows. We define
G=H WD ¹Œg� D gH W g 2 Gº as the set of (left) cosets and according to [32, Thm. 2.51,
Cor. 2.53], there exists some G-invariant measure �G=H such that, for every continuous
function on G, one hasZ

G

f .g/ dmG.g/ D

Z
G=H

�Z
H

f .gh/ dmH .h/

�
d�G=H .Œg�/;
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or more compactly

mG D

Z
G=H

g�.mH / d�G=H .Œg�/: (11)

Remark 2.4. Again, we will use this disintegration of the measure in the case of the
orthogonal groupG DO.E/ and of a subgroupH DO.V /, where V is a linear subspace
(with the same Euclidean structure) of E. Here, an element R 2 O.V / is identified with
an element of O.E/ by letting RjV ? D IdV ? .

2.1.2. Probability measures on an orthonormal basis. The measure mO.E`/ induces a
probability measure P` on the set B` of orthonormal bases of E` through the map

R 2 O.E`/ 7! .Rˆ.`;m//�`�m�`;

where .ˆ.`;m//�`�m�` is a fixed orthonormal basis of E`, e.g. the one given by the stan-
dard (real-valued) spherical harmonics. More generally, using the Kolmogorov extension
theorem [44, Thm. 2.4.3], we define on the set B of orthonormal bases of Laplace eigen-
functions, the product measure

P D
C1O
`D0

P`:

If we fix some (nonempty) subset L of N, we can define the map

�L W b D .b`/`2N 2 B 7! .b`/`2L 2 BL WD

Y
`2L

B`:

The pushforward PL WD .�L/�P is defined asZ
BL

f dPL WD

Z
B

f ı �L dP ;

and it can be written as
PL D

O
`2L

P`:

Remark 2.5. When L D ¹`º, we just write P¹`º D P` as we did before. We will in fact
mostly work with PL for some finite set L.

We can also use the decomposition (11) in that context. For instance, one can fix a
subset M of ¹�`; : : : ; ` � 1; `º and define

V`;M WD Span¹ˆ`;m W m 2Mº:

Then, given an integrable function f on B`, one can writeZ
B`

f .b`/ dP`.b`/ (12)

D

Z
O.E`/=O.V`;M/

�Z
O.V`;M/

f ..RR1ˆ`;m/m/ dmO.V`;M/.R1/

�
d�O.E`/=O.V`;M/.ŒR�/:
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Remark 2.6. As R1ˆ`;m D ˆ`;m for m …M and for R1 2 O.V`;M/, the integralZ
O.V`;M/

f ..RR1ˆ`;m/m/ dmO.V`;M/.R1/

can be identified with an integral on the set of orthonormal bases B`;M of V`;M as we did
above.

2.1.3. Induced measures on spheres. On the one hand, as we aim to find an orthonormal
basis E` with good properties via probabilistic means, it is natural to work with the Haar
measure on the corresponding orthogonal group O.E`/. On the other hand, our main
probabilistic ingredient will be a result on the concentration of the volume measure on
spheres of large dimensions as the unit sphere S` of E` is when `! C1. As already
witnessed from Remark 2.3, the Haar measure is naturally related to such measures and,
in view of our applications, we now make this connection slightly more precise in our
context.

Fix k D .`;m/ in T1 and define the map

�.`;m/ W b` D .e.`;m0//�`�m0�` 2 B` 7! e.`;m/ 2 S`;

where S` is the unit sphere (for the L2-norm) in E`. The measure P` induces a measure
on the Euclidean sphere S` as follows:

8f 2 C0.S`/;

Z
S`

f d�2` WD
Z

B`

f ı �.`;m/ dP`: (13)

By invariance of the Haar measure through orthogonal transformations, this measure does
not depend on the choice ofm. Still by definition of the Haar measure, one can also check
that it is invariant under orthogonal transformations. Thus, by uniqueness of uniformly
distributed measures on the sphere [40, Thm. 3.4], it can be identified with the normalized
volume measure �2` on the 2`-dimensional sphere S` ' S2` of E` ' R2`C1.

Remark 2.7. In order to lighten the notation, rather than writing �.`;m/ ı �`, we will
also denote by �.`;m/ the map from B to S` that associates to b D .e.`0;m0//.`0;m0/2T1 the
eigenvector e.`;m/. The induced measure on S` remains the same by construction.

2.2. The key probabilistic ingredient

The key ingredient in the proof of (8) and of our proof of Theorem 2.1 is the following
property [39, Eq. 2.6]:

Theorem 2.8 (Levy’s inequality). Let d � 1 and let �d be the normalized volume measure
on Sd induced by the Euclidean structure on RdC1. Let F W Sd ! R be a continuous
function. Then, for every ı > 0,

�d
�®
jF �mF j � !F .ı/

¯�
� 2e�ı

2 d�1
2 ;
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where mF is a median of F , i.e. a real number such that

�d .¹F � mF º/ �
1

2
and �d .¹F � mF º/ �

1

2
;

and where !F .ı/ is the modulus of continuity of F :

!F .ı/ WD sup
®
jF.u/ � F.v/j W dSd .u; v/ � ı

¯
;

with dSd the geodesic distance.

In other words, this theorem states that functions with small oscillations on spheres of
large dimensions are almost constant. Following [16, 41, 47], let us illustrate how to use
this theorem when Fq.u/ WD kukLq.S2/ with 2 � q <1. Here u belongs to S` that we
identify with S2` by fixing some orthonormal basis .ˆ.`;m//�`�m�` of E`. One has

jFq.u/ � Fq.v/j � ku � vkLq.S2/ � ku � vk
2
q

L2.S2/
ku � vk

1� 2q

L1.S2/

� ku � vk
2
q

L2.S2/

�
sup
x2S2

ˇ̌̌̌ X̀
mD�`

hu � v;ˆ.`;m/iL2ˆ.`;m/.x/

ˇ̌̌̌�1� 2q
� ku � vkL2.S2/

�
sup
x2S2

² X̀
mD�`

ˆ.`;m/.x/
2

³� 1
2�

1
q

:

Now observing that the sum is the Schwartz kernel of the spectral projector 1`.`C1/.��/
evaluated on the diagonal and that this is a spherical-invariant quantity, we deduce that
these sums are independent of x 2 S2 and thus equal to 2`C 1. Hence, there exists some
constant c0 > 0 such that, for every ` � 1 and for every 2 � q <1,

jFq.u/ � Fq.v/j � ku � vkL2.S2/.2`C 1/
1
2�

1
q � c0dS2`.u; v/.2`C 1/

1
2�

1
q ;

from which we infer the existence of c1 > 0 (independent of ` and q) such that

8ı > 0; �2`
�®
u 2 S` W jkukLq �mFq j � ı

¯�
� 2e�c1ı

2`
2
q
:

Finally, the constant mFq can be estimated precisely through explicit calculations [16,
Thm. 6]. For our purpose, we will only use the existence of a constant c2 >

p
2 such that,

for every 2 � q <1, 1 �mFq � c2
p
q [16, Thm. 4]. In particular, there exists a constant

c1 > 0 such that, for every ƒ � 2c2
p
q, for every ` � 1 and for every 2 � q <1, one

has
�2`
�®
u 2 S` W kukLq � ƒ

¯�
� 2e�c1.ƒ�c2

p
q/2`

2
q
: (14)

This quantitative estimate will be useful in our construction of a good orthonormal
basis. Yet, besides these already known results, we will also need to apply Levy’s inequal-
ity one more time directly to the integrals we are interested in. In order to clarify the
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upcoming argument, let us give another simple application of Levy’s inequality that will
be in the spirit of our proof. We fix some h 2 L2.S2/ and we consider the map

F Wu 2 S` 7!

Z
S2
u.x/h.x/ dvolS2.x/:

By symmetry, the median of this function is equal to 0 and one has, thanks to the Cauchy–
Schwarz inequality,

jF.u/ � F.v/j � ku � vkL2khkL2 � c0khkL2dS2`.u; v/:

Hence, we deduce from Levy’s inequality applied with ı D logh`i
p
h`i

that

�2`

�°
u 2 S` W jF.u/j �

logh`ip
h`i

±�
� 2e

�c1
log2h`i
khk

L2 :

From that, we infer thatX
kD.`;m/2T1

P

�²
b 2 B W

ˇ̌̌̌Z
S2
ek.x/h.x/ dvolS2.x/

ˇ̌̌̌
�

logh`ip
h`i

³�
� 2

X
`2N

.2`C 1/e
�c1

log2h`i
khk

L2

<1:

In particular, thanks to the Borel–Cantelli lemma, we can derive that, given h 2 L2 and
for P -a.e. b 2 B, there exists a constant Cb > 0 such that

8k 2 T1;

ˇ̌̌̌Z
S2
ek.x/h.x/ dvolS2.x/

ˇ̌̌̌
� Cb

log.1C h`i/p
h`i

:

This is exactly the kind of decay we are looking for in Theorem 2.1, except that h is
a product of eigenfunctions inside b (rather than a fixed element h in L2). In order to
handle this problem, we will make use of the fact that most eigenfunctions have their Lq-
norm uniformly bounded and that this control on the Lq-norm can be made quantitative
thanks to (14). Due to the multiple and nested applications of Levy’s inequality, this turns
out to be a fairly tedious task. Yet the decay phenomenon we obtain is the same as the one
we have just described in this elementary calculation.

2.3. Proof of Theorem 2.1

For the sake of simplicity, it is convenient to endow T1 with the lexicographic order,
namely

k1 D .`1; m1/ 4 k2 D .`2; m2/ , `1 < `2 or .`1 D `2 and m1 � m2/: (15)

We will now estimate the probability that an orthonormal basis in B does not satisfy
the conclusion of Theorem 2.1 for a fixed k D .k1; : : : ; kp/ 2 T

p
1 with

k1 D .`1; m1/ 4 � � � 4 kp D . p̀; mp/: (16)
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Indeed, since the estimate of Theorem 2.1 is invariant by the action of the permutation
group on k, we can assume without loss of generality that k1; : : : ; kp are ordered.

In order to lighten the notation, we also define

A.k/ WD
®
k 2 T1 W 9 1 � j � p such that k D kj

¯
;

which is a set of cardinality � p so that

Fk.b/ WD

Z
S2
ek1.x/ � � � ekp .x/g.x/ dvolS2.x/

D

Z
S2

Y
k2A.k/

ek.x/
˛kg.x/ dvolS2.x/;

where 1 � ˛k � p for every k 2 A.k/. We always suppose in the following that g is not
identically 0.

2.3.1. Applying Levy’s inequality. We suppose that there exists 1 � j0 � p such that

. j̀ ; mj / D . j̀0 ; mj0/ ) j D j0:

In that case, we say that k satisfies property .S/. We denote by jC the largest index in
¹1; : : : ; pº with this property. In particular, ˛. j̀C ;mjC / D 1. We begin by treating the case
of multi-indices verifying .S/ and we also suppose for the moment that j̀C � p.

Following the above calculation, we aim to apply Levy’s inequality to the map

FCW e. j̀C ;mjC / 2 S j̀C
7!

Z
S2
ek1.x/ � � � ekp .x/g.x/ dvolS2.x/;

with .ekj /1�j¤jC�p fixed. By symmetry, the median mFC of FC is equal to 0. Moreover,
by the Hölder inequality, this is a Lipschitz map:

jFC.u/ � FC.v/j � kgkL1ku � vkL2

�Z
S2

Y
j¤jC

jekj .x/j
2 dvolS2.x/

� 1
2

� c0kgkL1dS2.u; v/

�Z
S2

Y
j¤jC

jekj .x/j
2 dvolS2.x/

� 1
2

� c0kgkL1dS2.u; v/
Y

k2A.k/n¹kjC º

kekk
˛k
L2.p�1/

:

Remark 2.9. Note that these two properties also hold true forFC ıRwhereR2O.E
j̀C
/.

In order to apply Levy’s inequality, we would at least need that the L2p�2-norms
appearing in the Lipschitz constant are uniformly bounded. To that aim, we set, forƒ> 0,

Bƒ.k/ WD
®
b 2 B W 8k 2 A.k/ n ¹kjCº; k�k.b/kL2.p�1/ � ƒ

¯
:
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In particular, for b 2 Bƒ.k/, the Lipschitz constant of FC is bounded by c0kgkL1ƒp�1.
Moreover, using (14), one finds that the complementary set of Bƒ.k/ is small. More pre-
cisely, for ƒ � 4c2

p
p, one has

P .Bƒ.k/c/ �
X

k2A.k/n¹kjC º

P
�®
b 2 B W k�k.b/kL2p�2.S2/ � ƒ

¯�
� 2

pX
jD1;j¤jC

e�c1.ƒ�2c2
p
p/2`

1
p�1
j :

Now fix some ƒ � 4c2
p
p and some ı > 0. For L � N, we set

Bƒ;L.k/ WD
®
b 2 BL W 8k 2 L � Z \ .A.k/ n ¹kjCº/; k�k.b/kL2.p�1/ � ƒ

¯
so that we can write

P
�®
b 2 B W jFk.b/j � ı

¯�
� P

�®
b 2 Bƒ;N.k/ W jFk.b/j � ı

¯�
C 2

pX
jD1;j¤jC

e�c1.ƒ�2c2
p
p/2`

1
p�1
j

�

Z
Bƒ;Nn¹ j̀Cº

.k/
P

j̀C

�®
b
j̀C
2 Bƒ; j̀C .k/ W jFk.b

0; b
j̀C
/j � ı

¯�
dPNn¹ j̀C º

.b0/

C 2

pX
jD1;j¤jC

e�c1.ƒ�2c2
p
p/2`

1
p�1
j :

Hence, b0 being fixed in BNn¹ j̀C º
, we are left with estimating, uniformly for b0 2

Bƒ;Nn¹ j̀C º.k/,
P

j̀C

�®
b
j̀C
2 Bƒ; j̀C .k/ W jFk.b

0; b
j̀C
/j � ı

¯�
; (17)

which can be analyzed using (12). Expressed in terms of the orthogonal group of E
j̀C

,
(17) can in fact be rewritten as

mO.E
j̀C
/

�®
R W .Rˆ

j̀C
;m/m 2 Bƒ; j̀C .k/ and jFk.b

0; .Rˆ
j̀C
;m/m/j � ı

¯�
: (18)

We are now exactly in position to apply the disintegration formula (12) with ` D j̀C ,
mC D mjC and

M D
®
k D .`;m/ … A.k/ W ` D j̀C

¯
[ ¹. j̀C ; mjC/º;

where we note that jMj � 2. j̀C C 1/ � p. From this and as the condition on Bƒ; j̀C .k/
only concerns indices m not belonging to M, we infer that (18) (and thus (17)) can be
rewritten asZ

O.E
j̀C
/=O.V

j̀C
;M/

1¹ŒR�W.Rˆ
j̀C
;m/m2Bƒ; j̀C

.k/º.ŒR�/ (19)

�mO.V
j̀C
;M/

�®
R1 W jFk.b

0; .RR1ˆ j̀C
;m/m/j � ı

¯�
d�O.E

j̀C
/=O.V

j̀C
;M /.ŒR�/:
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In order to estimate (17) and thus P .¹b 2 B W jFk.b/j � ıº/, we are left with determining
an upper bound on

mO.V
j̀C
;M/

�®
R1 W jFk.b

0; .RR1ˆ j̀C
;m/m/j � ı

¯�
;

uniformly for b0 2 Bƒ;Nn¹ j̀C º.k/ and for ŒR� such that .Rˆ
j̀C
;m/m 2 Bƒ; j̀C .k/. Equiv-

alently, as in (13), one gets in terms of measures on spheres,

mO.V
j̀C
;M/

�®
R1 W jFk.b

0; .RR1ˆ j̀C
;m/m/j � ı

¯�
D �jMj�1

�®
u 2 SjMj�1 W jFC.Ru/j � ı

¯�
;

where R is a fixed element in E
j̀C

and where the function FC is defined using a fixed
orthonormal family ¹ekj W 1� j ¤ jC � pº verifying kekj kL2.p�1/ �ƒ for every j ¤ jC.
Hence, using Levy’s inequality and recalling from Remark 2.9 that FC ı R is Lipschitz
and that its median is 0, we obtain

mO.V
j̀C
;M/

�®
R1 W jFk.b

0; .RR1ˆ j̀C
;m/m/j � ı

¯�
� 2e

�ı2
jMj�2

c20kgk
2
L1

ƒ2p�2 :

Gathering these bounds, we get

P
�®
b 2 B W jFk.b/j � ı

¯�
� 2e

�ı2
jMj�2

c20kgk
2
L1

ƒ2p�2
C 2

pX
jD1;j¤jC

e�c1.ƒ�2c2
p
p/2`

1
p�1
j :

Note that, for j̀C � p, one has jMj � 2 � 2 j̀C � p � j̀C .
In summary, we end up with the existence of two positive constants c1; c2 >0 (depend-

ing only on g, on p and on the geometry of S2) such that, for every ı > 0 and for every
ƒ � 4c2

p
p,

P
�®
b 2 B W jFk.b/j � ı

¯�
� 2e

�c1
ı2 j̀C

ƒ2p�2 C 2

pX
jD1;j¤jC

e�c1.ƒ�2c2
p
p/2`

1
p�1
j ; (20)

whenever k verifies .S/ and j̀C � p. TakingƒD logh p̀i (and thus p̀ large enough), we
can deduce the existence of a constant cp;g � 1 such that, for every ı > 0 and for every
k 2 T

p
1 with k1 4 � � � 4 kp D . p̀; mp/ verifying .S/,

P
�®
b 2 B W jFk.b/j � ı

¯�
� cp;ge

�c�1p;g
ı2h j̀C

i

log2.p�1/h p̀ i C cp;ge
�c�1p;g log2h p̀i:

Thus, we obtain

P
�°
b 2 B W jFk.b/j �

logph p̀ip
h j̀Ci

±�
� 2cp;ge

�c�1p;g log2h p̀i: (21)
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2.3.2. The conclusion. Given k 2 T
p
1 with k1 4 � � � 4 kp D . p̀;mp/ verifying property

.S/ and j̀C � p, we define the following probabilistic events:

�.k/ WD
°
b 2 B W jFk.b/j �

logph p̀ip
h j̀Ci

±
:

Applying (21), one has

X
k14���4kr W.S/ holds and j̀C � p

P .�.k// � Cp;g
C1X
`D1

`2pe�C
�1
p;g log2h`i <1:

In particular, thanks to the Borel–Cantelli lemma, we can conclude that, for P -a.e. b 2B,
one has b 2 �.k/c except for finitely many k verifying .S/ and j̀C � p. This yields
the conclusion of the theorem for indices verifying these two properties. Recall now
from2 [16, Thm. 6] that, for P -a.e. b 2 B, there exists a constant Cb > 0 such that, for
every k D .k1; : : : ; kp/ 2 T

p
1 ,ˇ̌̌̌Z

S2
ek1.x/ � � � ekp .x/g.x/ dvolS2.x/

ˇ̌̌̌
� Cb :

This last inequality yields the conclusion of the theorem whenever k does not satisfy .S/
or j̀C � p. Hence, taking an element in the intersection of these two subsets of full
measure concludes the proof of Theorem 2.1.

Remark 2.10. We note that we proved something slightly stronger than what was stated
in Theorem 2.1 as the conclusion holds true for P -a.e. orthonormal basis in B (with a
constant that depends on the choice of b).

3. A good mass

In this section we prove that, for almost all mass � > 0, the frequencies of (KG) are
nonresonant and thus well suited to proceed to a Birkhoff normal form reduction. The
frequencies of (KG) are defined by

8k D .`;m/ 2 T1; !k WD
p
`.`C 1/C �: (22)

They are the eigenvalues of the operator
p
� �� (see (2)).

The Birkhoff normal form process involves small divisors of the form

�.�;k/ D �1!k1 C � � � C �r!kr ; (23)

2This is in fact a rather direct consequence of (14) combined with Hölder’s inequality and the Borel–
Cantelli lemma.
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with r � 3, � 2 ¹�1; 1ºr and k 2 T r
1. Of course there may be cancellations in these

small divisors (the same term could appear both with a plus sign and with a minus sign).
Therefore it is useful to define the smallest effective index by

�.�;k/ D min
®
h j̀ i j 1 � j � r and

P
`iD j̀

�i ¤ 0
¯
[ ¹C1º; (24)

where, for all i 2 ŒŒ1; r��, we have set .`i ;mi / WD ki . The following proposition provides a
quite uniform lower bound for the small divisors of (KG).

Proposition 3.1. For almost all � > 0 and all r � 2, there exist 
r ; ˛r > 0 such that for
all k 2 T r

1, all � 2 ¹�1; 1ºr , we have either

j�.�;k/j � 
r�.�;k/�˛r (25)

or �.�;k/ D C1, i.e. r is even and there exists � in the symmetric group Sr such that

8j 2 ŒŒ1; r=2��; ��2j�1 D ���2j and !k�2j�1 D !k�2j :

Moreover, ˛r does not depend on �.

As already explained in the introduction, the key observation here is that the small
divisors that will appear in our normal formal procedure (see the proof of Theorem 5.1)
are controlled by the smallest effective index rather than the third largest index as for
instance in [3, Prop. 3.16]. This will allow us to remove many more terms when solving
cohomological equations.

Proof of Proposition 3.1 . First we note that the frequencies accumulate polynomially fast
on lattice ZC 1

2
:

!.`;m/ D
p
`.`C 1/C � D `

r
1C

1

`
C
�

`2
D

`!C1
`C

1

2
CO

�1
`

�
:

Moreover, it is well known (see e.g. [25, Prop. 4.8] and [2, Thm. 6.5]) that Proposition 3.1
holds if (25) is replaced by the weaker estimate

8y 2 Z;
ˇ̌̌y
2
C�.�;k/

ˇ̌̌
� 
r

�
r

max
jD1
hkj i

��˛r
:

Therefore, Proposition 3.1 is a consequence of [8, Prop. 2.1, p. 11] which only requires
the two above ingredients.

4. Hamiltonian formalism

We now introduce new families of norms on real-valued and homogeneous polynomials
on CTM that are well behaved with respect to the canonical symplectic structure on CTM

and thus well adapted to our initial PDE problem after diagonalization of �.
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4.1. Functional setting

We use the standard functional setting to deal with Hamiltonian systems. Nevertheless, to
avoid any possible confusion we recall it precisely (and we refer to [8, Sect. 3.1] for more
comments and details).

We consider M 2 .0;1/ as a fixed parameter and we note that CTM is a real finite-
dimensional vector space. We always consider this space as a Euclidean space for the `2

scalar product
8u; v 2 CTM ; .u; v/`2 WD <

X
k2TM

ukvk :

As a consequence, if H WCTM ! R, we have the relation

8k 2 TM ;
.rH/k

2
D @ukH DW

1

2
.@<ukH C i@=ukH/:

As usual, we implicitly equip CTM with the symplectic form .i �; �/`2 . Therefore, a smooth
map � WD ! CTM , where D is an open set of CTM , is symplectic if

8u 2 D ; 8v;w 2 CTM ; .iv; w/`2 D .id�.u/.v/; d�.u/.w//`2 :

Moreover, ifH;KWCTM ! R are two smooth functions, the Poisson bracket ofH andK
is defined by

¹H;Kº.u/ WD .irH.u/;rK.u//`2 :

Note that, as usual, it can be checked that we have

¹H;Kº D
X
k2TM

@<ukH@=ukK � @=ukH@<ukK D 2i
X
k2TM

@ukH@ukK � @ukH@ukK:

For all s 2 R, we define the hs-norm on CTM by

8u 2 CTM ; kuk2hs WD
X

kD.`;m/2TM

h`i2sjukj
2:

4.2. Multilinear estimates

In this paragraph we establish multilinear estimates for Hamiltonians which are homoge-
neous polynomials on CTM .

Definition 4.1 (Space Hr
M ). Given M � 0 and r � 2, Hr

M denotes the space of real-
valued homogeneous polynomials of degree r on the real vector space CTM .

Remark 4.2. By definition, every homogeneous polynomial H 2 Hr
M admits a unique

decomposition of the form

H.u/ D
X

�2¹�1;1ºr

X
k2T r

M

H �
k u

�1
k1
� � �u

�r
kr
;
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where .H �
k /.k;�/2T r

M�¹�1;1º
r is a sequence of complex numbers satisfying the reality con-

dition
H��k D H �

k (26)

and the symmetry condition

8� 2 Sr ; H
�1;:::;�r
k1;:::;kr

D H
��1 ;:::;��r
k�1 ;:::;k�r

: (27)

We endow this space of polynomials with two unusual norms k � kH and k � kC.
Roughly speaking, in our Birkhoff normal form process, the terms of the Taylor expansion
of the Hamiltonian are controlled with the H-norm, whereas the solutions to cohomolog-
ical equations are controlled with a C-norm (because they enjoy better properties).

Definition 4.3 (Norms k � kH and k � kC). Let M � 0, r � 2 and H;� 2 Hr
M ; we set

kHkH WD max
�2¹�1;1ºr

max
k2T r

M

jH �
k j
p
h`1i � � � h`ri

p
‡.k/ (28)

and
k�kC WD max

�2¹�1;1ºr
max
k2T r

M

j��k jh�1`1 C � � � C �r`ri
p
h`1i � � � h`ri

p
‡.k/; (29)

where kj DW . j̀ ; mj / for all j 2 ŒŒ1; r�� and ‡ is defined by (10).

As we will see in this section, these nonstandard norms are well behaved with the sym-
plectic operations (Poisson bracket, gradient) that are used when performing a Birkhoff
normal form procedure in Theorem 5.1. One reason for these nice properties is the fact
that they involve an extra regularity factor ‡.k/ which only depends on the largest simple
index kj D . j̀ ; mj / of k. Despite their unusual definition, these norms can be imple-
mented in our normal form argument as this exponent appears naturally in the multilinear
estimate of Theorem 2.1. See for instance (68) below.

Let us now turn to the nice properties enjoyed by these norms. They provide the fol-
lowing continuity estimate for the Poisson bracket:

Proposition 4.4. Let r; r 0 � 2 andM � 2. For allH 2Hr 0

M and all � 2Hr
M , their Poisson

bracket ¹�;H º is a homogeneous polynomial of degree r C r 0 � 2 (i.e. ¹�;H º 2HrCr 0�2
M )

enjoying the bound
k¹�;H ºkH .r;r 0 logMkHkHk�kC:

Proof. By definition of the Poisson bracket, we have

¹�;H º.u/ D 2i
X

K2TM

@ NuK
�.u/@uK

H.u/ � @uK
�.u/@ NuK

H.u/: (30)

Since the coefficients of H and K are symmetric (i.e. satisfy (27)), we have

@ NuK
�@uK

H D rr 0
X

�2¹�1;1ºr�1

� 02¹�1;1ºr
0�1

X
k2T r�1

M

k02T r 0�1
M

�
�;�1
k;K u

�1
k1
� � �u

�r�1
kr�1

H
� 0;1
k0;Ku

� 01
k01
� � �u

� 0
r 0�1

k0
r 0�1

: (31)
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Obviously, ¹�;H º defines a homogeneous polynomial of degree r C r 0 � 2. Hence, we
need to verify the reality condition (26) and the upper bound on the H-norm. For the latter,
we begin by estimating

P
K�

�;�1
k;K H

� 0;1
k0;K . By (28) and (29), denoting k2 T r�1

M , k0 2 T r 0�1
M ,

k00 D .k;k0/ and r 00 D r C r 0 � 2, we haveX
K2TM

j�
�;�1
k;K H

� 0;1
k0;Kj �

kHkHk�kCp
h`1i � � � h`r�1ih`

0
1i � � � h`

0
r 0�1i

(32)

�

X
KD.l;m/2TM

1

hlih�1`1 C � � � C �r�1`r�1 � li
p
‡.k;K/‡.k0;K/

:

We claim that for all K 2 TM we have

‡.k;k0/ � ‡.k;K/‡.k0;K/: (33)

Indeed, if ‡.k;k0/ D 1 the inequality is trivial so we can assume that

• either there exists 1 � i � r � 1 such that ‡.k;k0/D h`i i, kj ¤ ki for 1 � j � r � 1
with j ¤ i and k0j 0 ¤ ki for 1 � j 0 � r 0 � 1,

• or there exists 1 � i 0 � r 0 � 1 such that ‡.k;k0/D h`0i 0i, k
0
j 0 ¤ ki 0 for 1 � j 0 � r 0 � 1

with j 0 ¤ i 0 and kj ¤ k0i 0 for 1 � j � r � 1.

By symmetry of the problem, let us assume the former and let K D .l;m/ 2 TM .
If ‡.k;K/ � h`i i D ‡.k; k0/ then (33) holds true trivially. So let us assume that

‡.k;K/ < h`i i. This implies that KD ki (if not‡.k;K/ is the maximum of a list of num-
bers including h`i i). But then, if ‡.k0;K/ � hli, we deduce ‡.k0;K/ � h`i i D ‡.k;k0/,
which in turn implies (33). Thus it remains to consider the case ‡.k0;K/ < hli, which
leads to the existence of 1� j 0 � r 0 � 1 such that kj 0 DK (if not‡.k0;K/ is the maximum
of a list of numbers including hli). Therefore ki D kj 0 which contradicts the definition of i .

Implementing (33) in (32) and denoting a D �1`1 C � � � C �r�1`r�1, one is left with
estimating

X
KD.l;m/2TM

1

hlih�1`1 C � � � C �r�1`r�1 � li
� 4

MX
lD0

1p
1C .a � l/2

� 4

M�aX
jD�a

1p
1C j 2

� 8

MX
jD0

1p
1C j 2

. logM; (34)

independently of the value of a.
Inserting (33) and (34) in (32), we get uniformly with respect to � , � 0, k, k0,X

K2TM

j�
�;�1
k;K H

� 0;1
k0;Kj . logM

kHkHk�kCp
‡.k;k0/

p
h`1i � � � h`r�1ih`

0
1i � � � h`

0
r 0�1i

: (35)
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Then, denoting r 00 D r C r 0 � 2, k00 D .k;k0/ and � 00 D .�; � 0/, we define

M � 00

k00 WD 2irr
0
X

K2TM

�
�;�1
k;K H

� 0;1
k0;K � �

�;1
k;KH

� 0;�1
k0;K and P �

00

k00 D
1

r 00Š

X
�2Sr 00

M
� 00ı�
k00ı� :

By definition, P.u/ D ¹�;H º.u/ and the estimate (35) proves that

kP kH . rr 0 logMkHkHk�kC:

Finally, the coefficients of P are obviously symmetric and, by a direct calculation, we
verify that they satisfy the reality condition (26).

We now study the vector field on CTM associated with a Hamiltonian in Hr
M .

Lemma 4.5. Let M � 2 and r � 2. For all H 2Hr
M , H is a real-valued smooth map on

CTM which enjoys the bounds

8u 2 CTM ; krH.u/kh�1=2 .r .log.M//r=2kHkHkuk
r�1
h1=2

:

Proof. As a polynomial (of finitely many variables), any Hamiltonian H 2 Hr
M is a

smooth map on CTM . We aim to bound the norm by duality. To that aim, we fix v 2 CTM

and we need to estimate j.rH.u/; v/`2 j. Since the coefficients of H are symmetric, we
then write

j.rH.u/; v/`2 j � rkHkH
X

�2¹�1;1ºr

X
k2T r

M

ju
�1
k1
j

h`1i
1
2

� � �
jv
�r
kr
j

h`ri
1
2

� r2rkHkH
X

k2T r
M

h`1i
1
2 juk1 j

h`1i
� � �
h`ri

1
2 jvkr j

h`ri

� r2rkHkHkuk
r�1
h1=2
kvkh1=2

� X
kD.`;m/2TM

1

h`i2

�r=2
.r .log.M//r=2kHkHkuk

r�1
h1=2
kvkh1=2 :

Then by duality we obtain

krH.u/kh�1=2 .r .log.M//r=2kHkHkuk
r�1
h1=2

:

The C-norm provides a better estimate of the gradient:

Lemma 4.6. Let M � 2, r � 2. For all � 2 Hr
M and all u 2 CTM , we have the bounds

kr�.u/kh1=2 .r .log.M//.r�1/=2k�kCkuk
r�1
h1=2

(36)

and
kdr�.u/kL.h1=2/ .r .log.M//.r�1/=2k�kCkuk

r�2
h1=2

: (37)
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Proof. Without loss of generality, we assume that k�kC D 1. We aim to prove (36) by
duality i.e. for every v 2 CTM , we want to estimate j.r�.u/; v/`2 j. We denote Quk D
h`i

1
2 jukj and Qvk D h`i�

1
2 jvkj for all k D .`;m/ 2 TM in such a way that k Quk`2 D kukh1=2

and k Qvk`2 D kvkh�1=2 . Since the coefficients of � are symmetric, we have

.r�.u/; v/`2 D r
X

�2¹�1;1ºr

X
k2T r

M

��ku
�1
k1
� � �u

�r�1
kr�1

v
�r
kr
: (38)

Then, by applying the triangular inequality, we get

j.r�.u/; v/`2 j

� 2r
X

�2¹�1;1ºr�1

X
k2T r

M

1

h�1`1 C � � � C �r�1`r�1 � `ri
p
‡.k/

Quk1
h`1i
� � �
Qukr�1
h`r�1i

Qvkr :

At this stage, we notice that, for all k 2 T r
M , we have ‡.k/ � ‡ 0.k/, where ‡ 0.k/ D 1

except when kj ¤ kr for all j D 1; : : : ; r � 1 and in that case ‡ 0.k/ D h`ri. Thus

j.r�.u/; v/`2 j

� 2r
X

�2¹�1;1ºr�1

X
k2T r

M

1

h�1`1 C � � � C �r�1`r�1 � `ri
p
h`ri

Quk1
h`1i
� � �
Qukr�1
h`r�1i

Qvkr

C 2r
X

�2¹�1;1ºr�1

X
k2T r

M
91�i�r�1WkrDki

1

h�1`1 C � � � C �r�1`r�1 � `ri

Quk1
h`1i
� � �
Qukr�1
h`r�1i

Qvkr

D 2r.†1 C†2/:

First we estimate †1:

†1 D
X

�2¹�1;1ºr�1

X
k2T r

M

Quk1
h`1i
� � �
Qukr�1
h`r�1i

Qvkr

h�1`1 C � � � C �r�1`r�1 � `rih`ri
1
2

:

We notice that

X
kD.`;m/2TM

1

h`C ai2h`i
D

MX
`D0

2`C 1

h`i

1

h`C ai2
�

X
j2Z

4

hj i2
. 1

uniformly with respect to a 2 R andX
kD.`;m/2TM

1

h`i2
. log.M/:

Thus by Cauchy–Schwarz we get

†1 .r kukr�1h1=2
.log.M//.r�1/=2kvkh�1=2 :
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It remains to estimate †2. We can assume without lost of generality, but paying an extra
factor r , that kr�1 D kr . Then, by Cauchy–Schwarz, we get

†2 � r2
r�1

X
kr�12TM

Qukr�1 Qvkr�1

X
kD.`;m/2T r�2

M

Quk1
h`1i
� � �
Qukr�2
h`r�2i

.r kukr�1h1=2
.log.M//.r�2/=2kvkh�1=2 :

Putting together the estimates of †1 and †2 we conclude that, for all v 2 CTM ,

j.r�.u/; v/j .r .log.M//.r�1/=2kvkh�1=2kuk
r�1
h1=2

;

which in turn implies (36).
To prove (37) we just notice that since r�.u/ is a homogeneous polynomial, it can be

viewed as the trace of an .r � 1/-linear map on CTM : r�.u/ D F.u; : : : ; u/ with F that
can be expressed using (38). Thus, following the above proof, F satisfies

kF.u.1/; : : : ; u.r�1//kh1=2 .r .log.M//.r�1/=2ku.1/kh1=2 � � � ku
.r�1/
kh1=2 :

Then, since dr�.u/.v/ D F.v; u; : : : ; u/C � � � C F.u; : : : ; u; v/, we deduce (37).

Thanks to a standard duality argument, we rewrite estimate (37) in a negative Sobolev
space.

Corollary 4.7. Let M � 2, r � 2. For all � 2 Hr
M and u 2 CTM , we have

kdr�.u/kL.h�1=2/ .r .log.M//.r�1/=2k�kCkuk
r�2
h1=2

: (39)

Proof. By duality we have

sup
v2CTM

kvk
h�1=2

�1

kdr�.u/.v/kh�1=2 D sup
v2CTM

kvk
h�1=2

�1

sup
w2CTM

kwk
h1=2
�1

.w; dr�.u/.v//`2 :

Then by applying the Schwarz theorem we have

.w; dr�.u/.v//`2 D dŒ.w;r�.u//`2 �.v/ D dŒd�.u/.w/�.v/ D d2�.u/.w/.v/

D d2�.u/.v/.w/ D dŒ.v;r�.u//`2 �.w/ D .v; dr�.u/.w//`2 :

Therefore

sup
v2CTM

kvk
h�1=2

�1

kdr�.u/.v/kh�1=2 D sup
w2CTM

kwk
h1=2
�1

sup
v2CTM

kvk
h�1=2

�1

.v; dr�.u/.w//`2

D sup
w2CTM

kwk
h1=2
�1

kdr�.u/.w/kh1=2

D kdr�.u/kL.h1=2/:

As a consequence, (39) is just a corollary of estimate (37).



Dynamics of nonlinear Klein–Gordon equations on S2 1033

Finally, we define the flow associated with a Hamiltonian in Hr
M :

Proposition 4.8. Let M � 2, r � 3 and � 2 Hr
M . There exist

"0 &r
�
.log.M//.r�1/=2k�kC

��1=.r�2/ (40)

and a smooth map

ˆ�W

´
Œ�1; 1� � Bh1=2.CTM /.0; "0/! CTM ;

.t; u/ 7! ˆt�.u/;

solving the equation
� i@tˆ� D .r�/ ıˆ�; (41)

and such that for all t 2 Œ�1; 1�, ˆt� is symplectic, close to the identity

8u 2 Bh1=2.CTM /.0; "0/; kˆ
t
�u � ukh1=2 �

�
kukh1=2

"0

�r�2
kukh1=2 ; (42)

invertible
kˆt�.u/kh1=2 < "0 ) ˆ�t� ıˆ

t
�.u/ D u: (43)

Moreover, its differential enjoys the estimate

8u 2 Bh1=2.CTM /.0; "0/; 8� 2 ¹�1; 1º; kdˆ
t
�.u/kL.h�=2/ � 2: (44)

Proof. We note that (41) is an ODE associated with the smooth vector fieldX�D ir� and
therefore we deduce from the Cauchy–Lipschitz theorem that the flow ˆt�.u/ is locally
well defined for every u 2 CTM on some maximal interval .T�.u/; TC.u// containing 0.
Let us first show that, if kukh1=2 D " is small enough, then the solution is defined up to
time 1, equivalently TC.u/ � 1. To see this, we set

t0 WD sup
®
t 2 Œ0; TC.u// W 80 � s � t; kˆ

s
�.u/kh1=2 < 2"

¯
> 0:

In the case where TC.u/ <1, we note that t0 < TC.u/ by the maximality of the interval
of definition and we can verify that t0 � 1 provided " is chosen small enough. Indeed, if
t0 < 1, then we can write

" � kˆt0� .u/ � ukh1=2 �

Z t0

0

k.r�/ ıˆs�.u/kh1=2 ds

� C�.r�2/r t0.log.M//.r�1/=2"r�1k�kC;

for some constant 0 < Cr � 1, depending only on r coming from (36). From this, we infer

"�1
�
.log.M//.r�1/=2k�kC

�� 1
r�2 � C�1r jt0j

1
r�2 :
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Thus, as long as " � Cr ..log.M//.r�1/=2k�kC/
� 1
r�2 , we find that t0 � 1 and that the flow

is well defined up to time t D 1. The same holds in negative times. We now fix

"0 WD
Cr

2

�
.log.M//.r�1/=2k�kC

�� 1
r�2

so that t0 � 1 for every kukh1=2 D " < "0. Since ˆt�.u/ is the flow associated with a
Hamiltonian vector field, it is symplectic and invertible and we are left with the proof
of (42) and (44). For the former, we write as above, for �1 � t � 1,

kˆt�.u/ � ukh1=2 �

ˇ̌̌̌Z t

0

k.r�/ ıˆs�.u/kh1=2 ds
ˇ̌̌̌

� C�.r�2/r k�kC.log.M//.r�1/=2kukr�1
h1=2

�

�
kukh1=2

"0

�r�2
kukh1=2 :

It now remains to prove (44). Up to decreasing the value of "0 a little bit (by a factor
depending only on r), we can proceed as above by appealing to (37) and (39) and by
writing

dˆt�.u/ D IdC
Z t

0

dr�.ˆs�.u// ı dˆs�.u/ ds:

5. Birkhoff normal form

In this section, we aim to describe a procedure that, close to u D 0, allows Hamiltonians
on CTM that are of the form

H.u/ WD
1

2

X
k2TM

!kjukj
2
C P.u/;

where P 2 H
p
M , to be simplified. In other words, we will write a Birkhoff normal form

for H which means that, up to conjugation by a symplectomorphism and up to a small
remainder term, P can be replaced by a term Poisson commuting with the super-actions
composing the leading part of H :

8` � 0; J`.u/ D
X̀
mD�`

ju.`;m/j
2:

This will be used in Section 6 to put (KG) into a Birkhoff normal form and to prove our
main theorem. From now on, we fix an integer p � 3 (the degree of the nonlinearity of
(KG)) and � > 0 (the mass of (KG)) making the frequencies (!.`;m/ D

p
`.`C 1/C �)

nonresonant (in the sense of Proposition 3.1). Our precise Birkhoff normal form statement
reads as follows:



Dynamics of nonlinear Klein–Gordon equations on S2 1035

Theorem 5.1. Let a > 0, Cp > 0 and r � 1. Then there exist ˇ > 1 (independent of the
choice of �) and C > 1 such that the following holds.

For everyM � 2,N � 1 and every polynomial Hamiltonian of the formH WCTM !R,

H D Z2 C P
.p/ where Z2.u/ D

1

2

X
k2TM

!kjukj
2, P .p/ 2 H

p
M , kP .p/kH � CpBa;

with B D max.logM;N/, one can find "2 � .CBˇ /�1 and two smooth symplectic maps
� .0/ and � .1/ making the following diagram commute:

Bh1=2.CTM /.0; "2/
� .0/ //

id
CTM

33Bh1=2.CTM /.0; 2"2/
� .1/ // CTM ;

(45)

and close to the identity

8� 2 ¹0; 1º; kukh1=2 < 2
�"2 ) k� .�/.u/ � ukh1=2 �

�
kukh1=2

2�"2

�p�2
kukh1=2 ; (46)

such that, on Bh1=2.CTM /.0; 2"2/, H ı �
.1/ admits the decomposition

H ı � .1/ D Z2 CQ
�N
res CR; (47)

where Q�Nres WC
TM ! R is a polynomial of degree r C p � 1 commuting with the low

super-actions
8` 2 N; h`i � N ) ¹J`;Q

�N
res º D 0: (48)

Moreover, the remainder term R is a smooth function on Bh1=2.CTM /.0; 2"2/ satisfying

krR.u/kh�1=2 � CB
ˇ
kuk

rCp�1

h1=2
;

and, for all � 2 ¹0; 1º, we have the bounds

kd� .�/.u/kL.h1=2/ � 2
r and kd� .�/.u/kL.h�1=2/ � 2

r : (49)

Proof. The proof is similar to that of [8, Thm. 4.1]. Nevertheless, here, we have a weaker
control of the remainder term (h�1=2 instead of h1=2 in [8]) and the vector field and Pois-
son bracket estimates of Section 4 generate new constants we have to track. As usual, we
proceed by induction. More precisely, we choose n 2 ŒŒp; r C p�� as induction index and
assume that Theorem 5.1 holds if

• we replace (47) by

H ı � .1/ D Z2 C

rCp�1X
jDp

Q.j /
CR

where Q.j /
2 H

j
M satisfies kQ.j /

kH � CB
ˇ ; (50)
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• we replace (48) by

8` 2 N; 8j 2 ŒŒp; n � 1��; h`i � N ) ¹J`;Q
.j /
º D 0; (51)

• we replace (49) by

kd� .�/.u/kL.h1=2/ � 2
n�p and kd� .�/.u/kL.h�1=2/ � 2

n�p: (52)

Even if we do not write it explicitly, we note that each polynomialQ.j / depends implicitly
on n as well as R, "2 and � .�/. Moreover, we suppose that R verifies the quantitative
estimates of the theorem and that each Q.j / enjoys the same norm estimate as P .p/ up to
increasing the value of the constant Cp (in a way that depends only on .n;�; a/) and up to
increasing the value of a and ˇ (in a way that depends only on .n; a/). If n D p, there is
nothing to do: it is in fact enough to choose � .0/ D � .1/ D idCTM , R D 0, Q.p/ D P .p/,
Q.j / D 0 for j > p and ˇ D a. For the sake of clarity, we will denote with a symbol ]
the objects we are going to introduce at the step nC 1 (e.g. � .0/

]
; ˇ]). Before entering the

details of the proof, recall that one goes formally from step n to nC 1 by conjugating the
normal form (50) by the time 1 map of the Hamiltonian flow of some well-chosen function
�. The function � is chosen in such a way that the terms ofQ.n/ that do not commute with
the expected super-actions are canceled out by solving a certain cohomological equation.

Decomposition ofQ.n/. We split the polynomialQ.n/ asQ D LCU , the Hamiltonians
L;U 2 Hn

M being defined by

L�k D

´
.Q.n//�k if �.�;k/ � N;
0 otherwise;

and U �k D

´
0 if �.�;k/ � N;
.Q.n//�k otherwise;

where �.�; k/ is defined in (24) and denotes the smallest effective index of the small
divisor �.�;k/ defined in (23). Observe that, since these Hamiltonians are extracted from
Q.n/, they enjoy the same norm estimates.

U commutes with the low super-actions. Indeed, a direct computation shows that if
h`i � N , we have

¹J`; U º D 2i
X

�2¹�1;1ºn

X
k2T n

M

.�11!k1D!.`;0/ C � � � C �n1!knD!.`;0//U
�
k u

�1
k1
� � �u

�n
kn

D 2i
X

�2¹�1;1ºn

X
k2T n

M

� X
j W9m;kjD.`;m/

�j

�
U �k u

�1
k1
� � �u

�n
kn
:

However, since h`i � N , by definition of U and � (see (24)), either
P
j W9m;kjD.`;m/

�j
vanishes or U �k vanishes. Consequently, U and J` commute: ¹J`; U º.u/ D 0. We empha-
size that the definition of � as the smallest effective index is crucial here. Without it, we
would need some smoothness assumption on u to control these commutators. As a result,
we will have many more terms to solve in the upcoming cohomological equation but we
will be able to handle these extra factors thanks to the control of the small divisors given
by Proposition 3.1.
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The cohomological equation. The mass � has been fixed to make the frequencies
strongly nonresonant (according to Proposition 3.1). Therefore, there exist 
 2 .0; 1/
(depending only on .n; �/) and ˛ > 1 (depending only on n) such that

�.�;k/ � N ) j�.�;k/j � 
N�˛ DW ı: (53)

Therefore we set � 2 Hn
M to be the Hamiltonian defined by

��k WD
L�k

i�.�;k/
if �.�;k/ � N and ��k D 0 otherwise:

A direct computation shows that � is a solution of the cohomological equation

¹�;Z2º C L D 0: (54)

Let us now verify that we have a good control of the C-norm of �. First, the bounds

8y � 0; jhyi � yj � 1 and j
p
y.y C 1/C � � yj � �C 1

and the decomposition� nX
jD1

�j j̀

�
D

�� nX
jD1

�j j̀

�
�

nX
jD1

�j j̀

�
C

nX
jD1

�j . j̀ � !kj /C�.�;k/;

where kj D . j̀ ; mj / for all j 2 ŒŒ1; n��, provide the estimate

h�1`1 C � � � C �n`ni � .nC 1/.�C 1/C j�.�;k/j:

Therefore, as a consequence of (53) (since ı < 1) we have the bound

j��k j � .nC 2/.�C 1/ı
�1 jL�k j

h�1`1 C � � � C �n`ni

and so
k�kC .n;� ı�1kLkH .n;� ı�1kQ.n/

kH .n;� ı�1CBˇ :

The new variables. As usual, we have to compose the change of variables � at step n
with the Hamiltonian flow of � (see (58) below). Since they are only defined locally, we
have to pay attention to their domains of definition. Even though the overall strategy is
clear, it is a little tedious to check.

Since k�kC .n ı�1CBˇ and 
N�˛ DW ı, applying Proposition 4.8, we get a constant
K > 0 depending only on .n; C; �/, an exponent b > 0 depending only on .n; ˇ/ such
that, setting "1 D .KBb/�1=.n�2/, � generates a smooth map

ˆ�W

´
Œ�1; 1� � Bh1=2.CTM /.0; "1/! CTM ;

.t; u/ 7! ˆt�.u/;
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solving the equation �i@tˆ� D .r�/ ıˆ�, and such that for all t 2 Œ�1; 1�, ˆt� is sym-
plectic, close to the identity

kukh1=2 < "1 ) kˆt�u � ukh1=2 �
�
kukh1=2

"1

�n�2
kukh1=2 ; (55)

invertible
kˆ�t� .u/kh1=2 < "1 ) ˆt� ıˆ

�t
� .u/ D u: (56)

Moreover, the map u 7! dˆt�.u/ is continuous and we have the estimates

kukh1=2 < "1 ) kdˆt�.u/kL.h1=2/ � 2 and kdˆt�.u/kL.h�1=2/ � 2: (57)

As usual, we aim to define, for a proper choice of "]2,

�
.1/

]
WD � .1/ ıˆ1� on Bh1=2.0; 2"

]
2/ and �

.0/

]
WD ˆ�1� ı �

.0/ on Bh1=2.0; "
]
2/: (58)

To ensure that such a definition makes sense, we have to choose "]2 in such a way that

2"
]
2 � "1 and .kukh1=2 < 2"

]
2 ) kˆ1�.u/kh1=2 < 2"2/: (59)

"
]
2 � "2 and .kukh1=2 < "

]
2 ) k� .0/.u/kh1=2 < "1/: (60)

Let us analyze these conditions. First, we focus on (59). Provided that kukh1=2 < 2"
]
2 � "1,

since ˆ1� is close to the identity (see (55)), we have ˆ1�.u/ � 2kukh1=2 < 4"
]
2. Therefore,

to get (59) it is enough to have 2"]2 � min."2; "1/. Similarly, since � .0/ is close to the
identity (see (46)), to get (60) it is enough to ensure that 2"]2 � "1 and "]2 � "2.

Before fixing "]2, let us only assume that 2"]2 � min."2; "1/ and investigate which
conditions "]2 has to satisfy to ensure that � .1/

]
and � .0/

]
enjoy the properties described in

Theorem 5.1 (close to the identity, invertible, . . .).
First, let us note that � .1/

]
and � .0/

]
are obviously symplectic and their differentials

enjoy the bounds (52) thanks to (57) (with n! nC 1). Hence, it remains to prove that
�
.0/

]
and � .1/

]
are close to the identity in the sense of (46). To that aim, if kukh1=2 < "

]
2,

since both ˆ�1� and � .0/ are close to the identity, then we have

k�
.0/

]
.u/ � ukh1=2 �

�
k� .0/.u/kh1=2

"1

�n�2
k� .0/.u/kh1=2 C

�
kukh1=2

"2

�p�2
kukh1=2

�

�2kukh1=2
"1

�n�2
2kukh1=2 C

�
kukh1=2

"2

�p�2
kukh1=2 :

Therefore, since n � p and 2kukh1=2 < 2"
]
2 � "1, we deduce that

k�
.0/

]
.u/ � ukh1=2 �

�
kukh1=2

"
]
2

�p�2
kukh1=2

h2."]2/p�2
"
p�2
1

C
."
]
2/
p�2

"
p�2
2

i
:
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Moreover, since p � 3, if 3"]2 � min."2; "1/, we deduce that both ."]2/
p�2="

p�2
1 and

."
]
2/
p�2="

p�2
2 are bounded by 1=3. As a consequence, if 3"]2 � min."2; "1/ then � .0/

]

is close to the identity. It can be proven, with a similar decomposition, that if 6"]2 �
min."2; "1/ then � .1/

]
is also close to the identity.

Finally, we also note that if � .0/
]

is close to the identity, then it takes values in
Bh1=2.0; 2"

]
2/. Thus, as ˆ1� is invertible (see (56)), diagram (45) associated with � .0/

]
and

�
.1/

]
commutes.

To conclude this paragraph, we fix "]2 as large as possible to get all the properties of
�
.0/

]
and � .1/

]
, i.e.

"
]
2 D

1

6
min."2; "1/:

We note that, therefore, we have "]2 �
1
6

min..KBb/�1=.n�2/; .CBˇ /�1/ � .C]Bˇ]/�1

provided that C] � 6max.K1=.n�2/;C / and ˇ] �max.b=.n� 2/;ˇ/ (these constants will
be determined at the end of the proof).

The new Hamiltonian. We aim to describe the Taylor expansion of H ı � .1/
]

. Since t 7!
ˆt� is a smooth function solving the equation �i@tˆ� D .r�/ ı ˆ�, realizing a Taylor

expansion in t D 0 (on Bh1=2.0; 2"
]
2/) gives

H ı �
.1/

]
D H ı � .1/ ıˆ1� D Z2 ıˆ

1
� C

rCp�1X
jDp

Q.j /
ıˆ1� CR ıˆ

1
�

D Z2 C

rCp�1X
jDp

Q.j /
C ¹�;Z2º C

mnX
hD1

1

.hC 1/Š
adhC1� Z2

C

rCp�1X
jDp

mjX
hD1

1

hŠ
adh�Q

.j /
CR ıˆ1�

C

Z 1

0

� .1 � t /mnC1
.mn C 1/Š

.admnC2� Z2/ ıˆ
t
�

C

rCp�1X
jDp

.1 � t /mj

mj Š
.admjC1� Q.j // ıˆt�

�
dt ;

wheremj denotes the largest integer such that j Cmj .n� 2/ < r C p and ad� WD ¹�; �º.
In order to pool these terms by packets, we recall that by construction ¹�;Z2º D �L

is of order n, that � 2Hn
M is of degree n and that the Poisson bracket of two homogeneous

polynomials of degrees r1 and r2 is of degree r1 C r2 � 2. Therefore, we set

Q
.j /

]
D Q.j / if j < n; Q

.n/

]
D Q.n/

C ¹�;Z2º D Q
.n/
� L D U;

Q
.j /

]
D

X
j?Ch.n�2/Dj

1

hŠ
adh�Q

.j?/ �

X
nCh.n�2/Dj

1

.hC 1/Š
adh�L if j > n;
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R] D R ıˆ
1
� �

Z 1

0

� .1 � t /mnC1
.mn C 1/Š

.admnC1� L/ ıˆt�

C

rCp�1X
jDp

.1 � t /mj

mj Š
.admjC1� Q.j // ıˆt�

�
dt;

where h and j? are the indices on which the sums hold in the definition of Q.j /

]
.

If j � n, Q.j /

]
2 H

j
M commutes with the low super-actions3 and we have

kQ
.j /

]
kH � kQ

.j /
kH � CB

ˇ :

If j > n, we have Q.j /

]
2H

j
M and we apply Proposition 4.4 to estimate its norm. Indeed,

if j? C h.n � 2/ D j , we can use our estimate on k�kC to derive that

kadh�Q
.j?/kH .r .logM/hk�khCkQ

.j?/kH .r .
�1N ˛ logM/h.CBˇ /hC1

.r 
�hC hC1Bh.˛C1/C.hC1/ˇ ;

where we recall that B WD max.logM; N/. Similarly, L enjoying the same bound as
Q.n/, if nC h.n� 2/D j , we have kadh�LkH .r 
�hC hC1Bh.˛C1/C.hC1/ˇ . As a conse-
quence, since h� r C p, provided that C] &r 
�r�pC rCpC1 and ˇ] � .r C p/.˛C 1/C
.r C p C 1/ˇ, we have kQ.j /

]
kH � C]B

ˇ] for j > n.

Control of the remainder term. Now we are left with controlling rR] in h�1=2. We fix
u 2 CTM such that kukh1=2 < 2"

]
2. First we focus on R ıˆ1�.u/. By composition, we have

r.R ıˆ1�/.u/ D .dˆ
1
�.u//

�.rR/ ıˆ1�.u/;

where .dˆ1�.u//
� 2 L.CTM / denotes the adjoint of dˆ1�.u/. Moreover, by duality, we

have k.dˆ1�.u//
�kL.h1=2/ D kdˆ

1
�.u/kL.h�1=2/ � 2 . Therefore, since krR.u/kh�1=2 �

CBˇkuk
rCp�1

h1=2
and kˆ1�.u/kh1=2 � 2kukh1=2 , we have

kr.R ıˆ1�/.u/kh�1=2 � 2
rCpCBˇkuk

rCp�1

h1=2
:

Now we focus on .admjC1� Q.j // ı ˆt�.u/ where p � j � r C p � 1 and t 2 Œ0; 1�.
Arguing as above and using Proposition 4.4 to estimate the norm of the Poisson brackets
and Lemma 4.5 to estimate the norm of the gradient, we have

kr..admjC1� Q.j // ıˆt�/.u/kh�1=2

� 2k.r.admjC1� Q.j /// ıˆt�.u/kh�1=2

.r;� .ı�1 logM/mjC1.CBˇ /mjC2.logM/rj =2kˆt�.u/k
rj�1

h1=2
;

3Note that U has been designed to get this property.
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where rj D j C .mj C 1/.n � 2/ 2 ŒŒr C p; 2.r C p/�� (by definition of mj ). Thus, pro-
vided that

C] &r;� 
�r�p�1C rCpC2 and ˇ] � .˛ C 1/.r C p C 1/C ˇ.r C p C 2/C r C p;

we have kr..admjC1� Q.j // ı ˆt�/.u/kh�1=2 � C]B
ˇ]kuk

rCp�1

h1=2
. As above, the argument

works as well for the term involving L as it enjoys the same norm estimate as Q.n/.
Hence if, moreover, ˇ] � ˇ and C] &r C (to control R ıˆ1�.u/), we have

krR].u/kh�1=2 � C]B
ˇ]kuk

rCp�1

h1=2
:

Choice of C] and ˇ]. To conclude our induction step (and thus the proof), we just have
to pick the smallest constants enjoying all the constraints (and to note that they do not
depend on B):

ˇ] D .˛ C 1/.r C p C 1/C ˇ.r C p C 2/C r C p;

C] 'r max.
�rCp�1C rCpC2; K1=.n�2//:

6. Proofs of the main results

This final section is devoted to the proof of Theorem 1.1 and of its Corollary 1.2.

6.1. On the global well-posedness of (KG)

In dimension 2, the Sobolev norm H 1 controls all the Lebesgue norms Lq , 2 � q <1.
Therefore, a standard fixed point argument (which does not require any kind of Strichartz
estimate) provides the local well-posedness of the nonlinear Klein–Gordon equation (KG)
on the sphere S2 in the energy space H 1 � L2 (see e.g. [17, Thm. 6.2.2, p. 83]).

This nonlinear equation is Hamiltonian because it can formally be written as

@t

�
ˆ

@tˆ

�
D

�
0 1

�1 0

�
rH .ˆ; @tˆ/; (61)

where the Hamiltonian H is given by (5). Therefore, H is a constant of the motion of (KG)
(see e.g. [17, Prop, 6.2.3, p. 83]). It is especially useful since, as stated in the following
lemma, it is uniformly elliptic in a neighborhood of the origin:

Lemma 6.1. For all g 2 L1.S2IR/ and all � > 0, there exist C > 1 and "0 > 0 such
that for all .ˆ;‰/ 2 H 1 � L2.S2IR/, provided that kˆkH1 C k‰kL2 � "0, we have

C�1.kˆkH1 C k‰kL2/
2
� H .ˆ;‰/ � C.kˆkH1 C k‰kL2/

2:

Proof. It follows directly from the Sobolev embedding H 1 ,! Lp and from the fact that
p � 3.
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As a consequence, as stated in the following proposition we get the global well-
posedness of (KG) in a neighborhood of the origin in H 1 � L2 (see e.g. [17, Prop. 6.3.3,
p. 84]).

Proposition 6.2. For all � > 0 and all g 2 L1, there exist "1 > 0 and K > 1 such that,
as soon as " WD kˆ.0/kH1 C k P̂ .0/kL2 � "1, there exists a unique ˆ 2 C 0.RIH 1/ \

C 1.RIL2/ \ C 2.RIH�1/ solution to (KG). Moreover, it enjoys the bound

8t 2 R; kˆ.t/kH1 C k@tˆ.t/kL2 � K":

6.2. Proof of Theorem 1.1

One more, we fix the mass � > 0 (in a set of full measure) to make the frequencies
(!.`;m/ D

p
`.`C 1/C �) nonresonant in the sense of Proposition 3.1. The strategy is

the following. Using the above a priori estimates, we prove that the high super-actions
are under control as long as N D h`i & "�

p�2
˛rC1 for an arbitrary ˛r > 1. Thus, we only

have to deal with the low super-actions that we handle using the Birkhoff normal form of
Theorem 5.1. This requires making a truncation of the frequency up to a certain level M
in order to reduce to the finite-dimensional situation of this theorem. In order to ensure
that all the remainder terms are small in this reduction to finite dimension, we need to take
M of order "�r . Then the conclusion follows by combining our a priori estimates on the
solution with the normal form of Theorem 5.1 and by taking ˛r larger than the exponent
ˇ appearing in the remainder terms of that statement.

(KG) as a Schrödinger equation. We consider .ˆ.0/; P̂ .0// 2 H 1 � L2, satisfying " WD
kˆ.0/kH1 C k P̂ .0/kL2 < "0 � "1, where "0 will be determined at the end of the proof and
"1 is given by Proposition 6.2. Thanks to this proposition, one obtains a global solution ˆ
to (KG). Then, in order to diagonalize the linear part of (KG), we set (as usual)

u WD ƒˆC iƒ�1@tˆ; where ƒ WD .� ��/1=4:

Indeed, u belongs to C 0.RIH 1=2/ \ C 1.RIH�1=2/ and solves the equation

i@tu D ƒ
2u �ƒ�1.gŒƒ�1<u�p�1/: (62)

It is relevant to note that the harmonic energies E` (defined by (3)), that we aim to control
in Theorem 1.1, satisfy

8` 2 N; E`.ˆ.t// D k…`u.t/k
2
L2
WD J`.u.t//;

where …` is the orthogonal projection on the eigenspace E` as defined in (2). Moreover,
as a consequence of Proposition 6.2, there exists a constant K 0 > 1 depending only on �
such that

8t 2 R; ku.t/kH1=2 � K
0": (63)
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The N -truncation. The control of the high super-actions is a direct consequence of the
a priori bound (63). Indeed, applying the triangular inequality, we have

jJ`.u.t// � J`.u.0//j � J`.u.t//C J`.u.0// � 2h`i
�1
kuk2

L1t H
1=2
x

� 2h`i�1.K 0/2"2:

Being given ˛r > 1 (depending only on r), which will be optimized at the end of the proof,
we set

N .max/
WD "�

p�2
˛rC1 :

As a consequence, for all t 2 R we have

h`i � N .max/
) jJ`.u.t// � J`.u.0//j .r;� h`i˛r "p: (64)

Hence, from now on we will only focus on the variations of the low super-actions. More
precisely, we fix `? 2 N and N 2 R such that

N WD h`?i < N
.max/

and we aim to estimate the variations of J`?.u/.

The M -truncation. In order to reduce ourselves to the finite-dimensional situation of
our Birkhoff normal form Theorem 5.1, we are going to prove that the high enough modes
(larger thanM � 1) do not play any role in the dynamics for very long times (inH�1=2).
LetM � 2N .max/ be a constant that will be optimized later with respect to " and…�M be
the orthogonal projection on

L
`�M E`, i.e.

…�M WD
X
`�M

…` and …>M WD IdL2 �…�M :

We set

F .>M/.t/ WD …�M ŒN .…�Mu.t// �N .u.t//� where N .u/ WD ƒ�1.gŒƒ�1<u�p�1/:

Since u solves equation (62), u.�M/ WD …�Mu.t/ solves the nonautonomous equation

i@tu
.�M/

D ƒ2u.�M/
�…�MN .u.�M//C F .>M/.t/: (65)

We note that, since M � 2N .max/, we have M > `? and so

J`?.u
.�M// D J`?.u/: (66)

We aim to prove that the nonautonomous part of (65) (i.e. F .>M/.t/) is negligible pro-
vided that M is large enough. Indeed, as a consequence of the Sobolev embeddings
H 1 ,! L6.p�2/ ,! L3=2 ,! H�1, by Hölder and the mean value inequality, we have
(uniformly with respect to t )

kF .>M/
kH�1=2 .� kgˆp�1 � g.…�Mˆ/

p�1
kH�1

.�;g kˆp�1 � .…�Mˆ/p�1kL3=2

.�;g k.…>Mˆ/.j…�Mˆj
p�2
C jˆjp�2/kL3=2

.�;g k…>MˆkL2.k.…�Mˆ/
p�2
kL6 C kˆ

p�2
kL6/

.�;g M�1kˆkp�1H1 .�;g M�1"p�1:
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Therefore, from now, we assume that M � "�r , and we get

8t 2 R; kF .>M/.t/kH�1=2 .� "rCp�1:

Discretization. Thanks to Theorem 2.1, we get a basis .ek/k2T1 of L2 which diagonal-
izes the Laplace–Beltrami operator � and enjoys nice algebraic properties. In particular,
thanks to this basis, we identify

L
`�M E` with RTM (and the usual Sobolev norms with

the discrete ones).
We use this basis to rewrite the autonomous part of (65) as a Hamiltonian system:

i@tu
.�M/

D rH.u.�M//C F .>M/.t/; (67)

where
H D Z2 C P

.p/ with Z2.u/ D
1

2

X
k2TM

!kjukj
2

and P .p/ 2 H
p
M is defined, for all k D .k1; : : : ; kp/ 2 T

p
M and � 2 ¹�1; 1ºp , by

.P .p//�k D �
1

p2p

� pY
jD1

1

. j̀ . j̀ C 1/C �/1=4

�Z
S2
ek1.x/ � � � ekp .x/g.x/ dvolS2.x/:

Thanks to Theorem 2.1, the basis .ek/k2T1 has been chosen such that

kP .p/kH . .log.M//p: (68)

Note that the choice of the orthonormal basis of Theorem 2.1 is crucial here. With the
standard basis of spherical harmonics we would not get such good control on the nonlin-
earity.

Change of variables. Now we apply Theorem 5.1 (i.e. our Birkhoff normal form result)
to simplify the Hamiltonian part of (67). More precisely, we get some transformations
� .0/, � .1/, some Hamiltonians Q�Nres and R, some constants C , ˇ and "2 such that the
statement of Theorem 5.1 holds. We recall that B is defined by B D max.N; log.M//.

We will optimize the constants in such a way that we have

K 0" < .CBˇ /�1;

where K 0 has been defined in (63). As a consequence, we have

8t 2 R; ku.�M/.t/kh1=2 � K
0" < .CBˇ /�1 � "2:

Therefore, it makes sense to define

v WD � .0/ ı u.�M/:

Moreover, since the diagram (45) commutes we have

u.�M/
D � .1/ ı v:
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As a consequence, since � .0/ is symplectic and .d� .0/.u.�M///�1 D d� .1/.v/, we have

i@tv.t/ D r.Z2 CQ
�N
res /.v.t//CW.t/; (69)

where W is the new remainder term defined by

W.t/ WD rR.v.t//C d� .0/.u.�M/.t//.F .>M/.t//:

Let us estimate W . On the one hand, since � .0/ is close to the identity in the sense of
Theorem 5.1, we have

kv.t/kh1=2 � ku
.�M/.t/kh1=2 C kv.t/ � u

.�M/.t/kh1=2

� 2ku.�M/.t/kh1=2 � 2K
0" .� ": (70)

Hence, thanks to Theorem 5.1, we get krR.v.t//kh�1=2 .r;� Bˇ"rCp�1. On the other
hand, since d� .0/.u.�M/.t// is controlled in L.h�1=2/ (by 2r ), we deduce that

kd� .0/.u.�M/.t//.F .>M/.t//kh�1=2 .r;� "rCp�1:

Therefore, we have
kW.t/kh�1=2 .r;� Bˇ"rCp�1: (71)

Finally, let us note that, since � .0/ is close to the identity in the sense of Theorem 5.1 and
.CBˇ /�1 � "2, we have

ku.�M/.t/ � v.t/kh1=2 .r;� "p�1Bˇ.p�2/: (72)

Control of the low super-actions. As a consequence of (66), (72) and (70), we have

jJ`?.u.t// � J`?.v.t//j � ku.�M/.t/ � v.t/k`2.ku
.�M/.t/k`2 C kv.t/k`2/

.r;� "pBˇ.p�2/:

Hence, by the triangular inequality, we have

jJ`?.u.t// � J`?.u.0//j .r jJ`?.v.t// � J`?.v.0//j C "
pBˇ.p�2/:

However, since v solves (69), we have

@tJ`?.v.t// D ¹J`? ; Z2 CQ
�N
res º.v.t//C .irJ`?.v.t//;W.t//`2 :

By construction, since h`?i D N ,Z2CQ�Nres and J`? commute, i.e. ¹J`? ;Z2CQ
�N
res º D

0. As a consequence, using estimate (71) on W we have

j@tJ`?.v.t//j � j.irJ`?.v.t//;W.t//`2 j � krJ`?.v.t//kh1=2kW.t/kh�1=2

� 2kv.t/kh1=2kW.t/kh�1=2 .r;� Bˇ"rCp:

Consequently, while jt j � "�r , we have

jJ`?.u.t// � J`?.u.0//j .r;� "
pBˇ.p�2/ .r;�;� h`?i˛r "p�� (73)

provided that Bˇ.p�2/ .r;�;� N ˛r "�� where � > 0.
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Conclusion. As we wanted, in (64) and (73), we have controlled the variations of the
super-actions. Nevertheless, to get these results we have made some assumptions on our
parameters. Hence, to conclude, we have to check their compatibility and optimize them.

More precisely, we have to prove that there exists ˛r > 1 and "0 � "1 such that for all
" < "0 and all N < N .max/ D "�

p�2
˛rC1 , there exists M � 2 satisfying

.i/ Bˇ.p�2/ .r;�;� N ˛r "�� ; .ii/ K 0" < .CBˇ /�1;

.iii/ M � "�r ; .iv/ M � 2N .max/;

where B D max.N; log.M//. First, we set M D "�r (so (iii) is satisfied). Then we set
˛r D ˇ.p � 2/ and we note that estimate (i) holds. Finally, since p � r , we note that (ii)
and (iv) are clearly satisfied provided that "0 is small enough.

6.3. Proof of Corollary 1.2

For all t 2 R, let w.t/ 2 H 1=2.S2IC/ be defined, for all ` 2 N, by

…`w.t/ D

s
J`.u.0//

J`.u.t//
…`u.t/ if J`.u.t// ¤ 0 and …`w.t/ D …`u.0/ otherwise:

Indeed, recalling that J` D k…` � k
2
L2

, this function satisfies kw.t/kH1=2 D ku.0/kH1=2

and

8`2N; J`.w.t//D J`.u.0// and
p
J`.w.t/ � u.t//D j

p
J`.u.t//�

p
J`.w.t//j:

As a consequence, applying Theorem 1.1 (with � D 1=2), while jt j < "�r , for all ` 2 N,
we have

J`.u.t/ � w.t// � jJ`.u.t// � J`.w.t//j D jJ`.u.t// � J`.u.0//j .�;r h`i˛r "p�1=2:

Therefore, we have
ku.t/ � w.t/kH�˛r =2 .�;r ".2p�1/=4:

Consequently, since s < 1=2, setting � Dmin.1; 1�2s
1C˛r

/, by interpolation and using Propo-
sition 6.2, we get

ku.t/ � w.t/kH s .r;s ku.t/ � w.t/k1��H1=2ku.t/ � w.t/k
�
H�˛r =2

.r;s;� "1Cı ;

where ı WD �..2p � 1/=4 � 1/ > 0 (because p � 3). Finally, to see that there exist some
Hermitian operators H`.t/WE` ˝C ! E` ˝C such that

8` 2 N; …`w.t/ D e
iH`.t/…`u.0/;

it is enough to note that the unitary group of E` ˝ C acts transitively on the spheres and
that every unitary transform is the exponential of a skew-Hermitian operator (indeed, since
J`.w.t// D J`.u.0//, …`w.t/ and …`u.0/ belong to the same sphere).
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