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Size of data in implicit function problems and singular
perturbations for nonlinear Schrodinger systems

Pietro Baldi and Emanuele Haus

Abstract. We investigate a general question about the size and regularity of the data and the solu-
tions in implicit function problems with loss of regularity. First, we give a heuristic explanation of
the fact that the optimal data size found by Ekeland and Séré with their recent nonquadratic version
of the Nash-Moser theorem can also be recovered, for a large class of nonlinear problems, with
quadratic schemes. Then we prove that this heuristic observation applies to the singular perturbation
Cauchy problem for the nonlinear Schrédinger system studied by Métivier, Rauch, Texier, Zum-
brun, Ekeland, and Séré. Using a “free flow component” decomposition and applying an abstract
Nash—Moser—Hormander theorem, we improve the existing results regarding both the size of the
data and the regularity of the solutions.

1. Introduction

This paper is motivated by a general question concerning the size and regularity of the
data and the solutions in implicit function problems with loss of regularity. In the recent
work [4], Ekeland and Séré introduce a new iteration scheme in Banach spaces for solving
nonlinear functional equations of the form

Fu) =v,

where the linearized operator F'(u) admits a right inverse that loses derivatives. In such
situations, a well-established strategy for constructing a solution u consists in applying
a Nash—Moser iteration, essentially based on a quadratic Newton scheme combined with
smoothing operators. The scheme in [4] differs from the standard Nash—-Moser approach
in that it is not quadratic, and it consists in solving a sequence of Galerkin problems by a
topological argument (Ekeland’s variational principle). This gives two main improvements
with respect to the standard quadratic approach: the map F need not be twice differen-
tiable, and a larger ball for the datum v is covered.
The first point of the present paper is the observation that, for operators of the form

F(u) = Lu + N (u),
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where L is linear and N (u) = O(J|u||*) for some o > 1 in aball |u|| < R, the same size
of ball for the datum v as in [4] can also be obtained by quadratic Nash—-Moser schemes.
In Section 2 we explain the heuristics behind this simple, general observation.

In Sections 3—6 we consider the singular perturbation Cauchy problem for the nonlin-
ear Schrodinger system studied by Métivier and Rauch [10], Texier and Zumbrun [11], and
Ekeland and Séré [4], and we rigorously prove that the observation of Section 2 applies to
this PDE problem. The result of Sections 3—6 is stated in Theorem 3.4, which improves
the results in [4, 11] regarding the size of the data and also the regularity of the solution:
for initial data in a Sobolev space H*(R?) we prove that the solution of the Cauchy prob-
lem belongs to C([0, T'], H*(R?)) with the same regularity s, as is expected, and we give
the corresponding estimate for the solution in terms of its initial datum. For initial data of
a special “concentrating” form, see (3.5), Theorem 3.4 also improves the size of the ball
for the data with respect to [4, 1 1]; see Remark 3.7.

For initial data of the other special form considered in [11] (“fast oscillating” data;
see (3.5)), we improve the size of initial data in Theorem 3.5, which is proved in Sections
7-8. With respect to Theorem 3.4, the new ingredient is a “free flow decomposition” of
the unknown, which is a natural way of exploiting the interplay between the linear and
nonlinear parts of the system and the better L°° embedding properties of concentrating or
highly oscillating free flows (see Lemma 7.2), inspired by the “shifted map” trick of [11].
The price to pay for this improvement in the size of data is a loss of one derivative: for
data in H*(R%), the solution belongs to C ([0, T], H*~'(R¢)). Theorem 3.5 improves the
results of [4, 11] regarding both the regularity of the solution and the size of the data; see
Remark 3.7.

We point out that the loss of regularity in Theorem 3.5 is not due to the Nash—Moser
iteration: the loss of one derivative is introduced when solving the linearized Cauchy prob-
lem as a triangular system (see (7.14)) in two components, which are the “free flow”
component of the unknown and its correction — the Nash—Moser—-Hormander Theorem
A.1 just replicates the loss of one derivative for the nonlinear problem, without introduc-
ing additional losses. The loss of regularity in Theorem 3.5 equals exactly the number of
derivatives in the nonlinearity, which is 1 in system (3.1).

The main difference between our “free flow decomposition” and the “shifted map”
trick of [11] is that we treat the free flow as an unknown, although it is already completely
determined by the initial datum of the problem. In this way, Theorem A.1 regularizes the
free flow, introducing just one new dyadic Fourier packet at each step of the iteration.
This is the key ingredient for preserving the regularity of the linearized problem in the
nonlinear one, and it is somewhat reminiscent of a similar idea in Hérmander [5].

Technical details of the fact that the heuristic observation of Section 2 rigorously
applies to Theorems 3.4 and 3.5 are contained in Remarks 6.1 and 8.1. Other general
observations about the optimization of the data size in Nash—Moser schemes are in
Remarks 7.3 and 7.4.
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2. Large radius with quadratic schemes: an informal explanation

Consider a nonlinear problem of the kind
Fu) =v,

where v is given, u is the unknown, and F is a twice differentiable nonlinear operator in
some Banach spaces satisfying F(0) = 0. Assume that for all u in a ball ||u| < R the
linearized operator F’(u) admits a right inverse W(u) satisfying

[WQ@)h| < Allh|  forall lu] < R, 2.1
and the second derivative F” (u) satisfies
IF" @), w]l < Blalllw] forall ul <R (2.2

(in this discussion we ignore completely the questions about loss of derivatives, and we
only care about size). As explained in [4], the quadratic Newton scheme gives a solution
u of the equation F(u) = v for all v of size

ol < minf—— =}
v my—=—, (>
~ A’B" A
while, with topological arguments, one can prove the existence of a solution u for all v in
the larger ball

ol <

Da.l =

Our observation is that, for operators F in some large class, the two radii are of the same
order.
Indeed, assume that F is given by the sum of a linear part &£ and a nonlinear one

Fu) = £u + N(u).
Assume that N satisfies

IV @l < P
[N @Rl < PR, (2.3)
1N T, wlll < ul P~ ] w 24

for some p > 1, for all u in the ball ||| < 1, so that
IF" @), wll < el P~ (1] [Jw]].

Suppose that £ has a right inverse £, (namely ££;1 = I) and that

1
1€V ()| < 5 2.5)
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for u sufficiently small, say ||u| < R, so that, by Neumann series, the linearized operator
Fu)y=%+ N =2U+ L N ()

has the right inverse
W)= I+ £V @) et

with
@)l <2/£ .

Hence (2.1) holds with
A=2).

What is the “intrinsic” size of R? By (2.3), condition (2.5) holds for

1 1 >
M Nul? < <, e ful < (—)"
I el = 5 el = (g7

and therefore we fix

=

R:= (2”%1”)" — A, (2.6)

Moreover, by (2.4), condition (2.2) holds with

Thus

namely the two balls have the same size.

Remark 2.1. Even when £ ' N/(u) is an unbounded operator, so that the right invert-
ibility of F’(u) cannot be directly obtained by Neumann series, the heuristic argument
above still catches the right size of R, provided that the invertibility of F’(u) is obtained
by a perturbative procedure.

3. Application to a singular perturbation problem

Like Ekeland and Séré in [4], we consider the Cauchy problem studied by Métivier and
Rauch [10], and Texier and Zumbrun [11], which is a nonlinear system of Schrédinger
equations arising in nonlinear optics. In [10], Métivier and Rauch prove the existence of
local solutions of the Cauchy problem, with existence time 7' converging to 0 when the
Sobolev H*(R?) norm of the initial datum goes to infinity. In [11], Texier and Zumbrun
use a Nash—Moser scheme to improve this result, giving a uniform lower bound for 7" for
two classes of initial data (concentrating and highly oscillating) whose H*(R¢) norm goes
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to infinity. In [4], Ekeland and Séré apply their nonquadratic version of the Nash—-Moser
theorem, extending the result in [11] to even larger initial data.
Like in the aforementioned papers, we consider the system

N

dv; +idjAv; = Z(bjk(v,ax)vk + k(v 0x)0), j=1,....N, 3.1
k=1

where v = v(t,x) = (vy,...,UN) € C¥ is the unknown, (t,x)€[0,T] x R, Ay, AN
are constants, and b;x (v, dx), ¢jk (v, 0) are first-order differential operators

d d
bik(,9) = Y biix (W), i, 0x) = Y ctjk V), (32)
=1 =1
with byji, cgjr complex-valued C* functions of Re(vy), ..., Re(vy), Im(vy), ...,

Im(vy) of order
bej(v) = O([v]?),  cgjk(v) = O(|v|?) (3.3)

in a ball around the origin, for some integer p > 1.

Following [4, 10, 11], we assume these “transparency conditions’:
Assumption 3.1. We assume that

(i) A1,..., AN arereal and pairwise distinct;

(ii) forall j, k suchthat A; 4+ Ax = O there holds c;x = cj;

(iii) forall j, bj; is real.

Under these assumptions, the Cauchy problem for (3.1) is locally well posed in the
Sobolev space H*(R¢) for s > 1 4 d /2 ([10, Theorem 1.5]). As is natural in the case of

general initial data, the result in [10] gives an existence time 7 going to O as the initial
datum goes to oo in H* (Rd). In [4,11] it is assumed that p > 2, and special initial data

v(0,x) = £%a,(x) 3.4)
are considered, either concentrating or fast oscillating,
as(x) = ag(x/€) (concentrating), a,(x) = ag(x)e’*¥/¢ (oscillating), (3.5)

with & € R4, andinboth cases0 < ¢ < 1,5 > 0, ag € H“(Rd) for some large s .
In [4, 11] the following results are proved.
Theorem 3.2 ([11, Theorem 4.6]). Under the assumptions above, let d, p > 2 and
ke —o0,—1 d
o> G0 P (3.6)
p+1 2p—1

where o, = d /2 in the concentrating case, o, = 0 in the oscillating case, and k. is a
constant depending on (d, p). Let s1 be large enough, and let T > 0. If ag € H*(R?)
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for § large enough, and |ag| g5 is small enough, then, for all ¢ € (0, 1], the Cauchy
problem (3.1)~(3.4)~(3.5) has a unique solution in the space C([0, T], H*'"2(R%)) N
CO([0. T], HS' (RY)).

The second condition in (3.6) is not written explicitly in the statement of [ 11, Theorem
4.6], but it is used in its proof. The constant k. in (3.6) satisfies k. > max{6,3 + %};
see Remark 3.7.

Theorem 3.3 ([4, Theorem 6]). Under the assumptions above, let d, p > 2, let

d
>,
2(p—1)

and consider the concentrating case. Let s; > d/2 + 4 and T > 0. If ag € H¥(R?)
for § large enough, and ||ag||gs is small enough, then, for all ¢ € (0, 1], the Cauchy
problem (3.1)~(3.4)~(3.5) has a unique solution in the space C([0, T], H*'"2(R%)) N
CO([0, T], HS (RY)).

o (3.7

Following [11], we introduce the “semiclassical” Sobolev norms

If e o= (=2 A + D2 £l 2 may
= 1+ [£22(F O gy s € R (38)
where % is the Fourier transform on R¢ ,and 0 < ¢ < 1. The first theorem we prove in

this paper is the following.

Theorem 3.4. (i) (Existence) In the assumptions above, let T > 0, p > 1, d > 1, and
s1 > d /2 + 4. Then there exist constants C,C’ > 0, g9 € (0, 1], depending on T, p, d,
s1, and on Aj, bjk, cji in system (3.1), such that for all € € (0, &o), for all initial data
vo € H*'(R?) in the ball

1 d

[vollgsn = Cef. ¢ := » + > (3.9)

the Cauchy problem for system (3.1) with initial data v(0, x) = vo(x) has a solution
v e o0, T], H* (RY)) n ([0, T), H72(R?)),
which satisfies

sup [0l go1 + &> sup [30()] ysi-2 < C”[[voll o
tef0,T] tef0,T] ¢

(ii) (Higher regularity) If. in addition, vg € H*(R?) for s > s1, then

sup [[v()llgs + &> sup [[9:v(0) ] gs—2 < Csllvollmg
tef0,T] t€l0,T]

where Cg depends on s (and it is independent of ¢, vy, v).
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(iii) (Initial data of special form) In particular, initial data v of the form (3.4)—(3.5),
with ||ao|| grs1 ray < 1, belong to the ball (3.9) for all & sufficiently small if o + 0, > ¢,
namely

1 d
o> —+ — —0,, (3.10)
P 2

where 0, = d /2 in the concentrating case and 6, = 0 in the oscillating case.
In the next theorem we deal with the case p > 2, where the power p of the nonlinearity

is used to improve the lower bound for o, at the price of a loss of one derivative in the
solution with respect to the regularity of the datum.

Theorem 3.5. (i) (Existence) In the assumptions above, let T >0, p >2,d > 1, s; >

max{d + 4,6}, and
14+d/2—o0,
o> ——M—=,

p
where 6, = d /2 in the concentrating case and 6, = 0 in the oscillating case.

3.11)

Then there exist constants C > 0, g9 € (0,1], depending on T, p, d, s1, on A}, bj, cjk
in system (3.1), and on the difference 0 — (1 + d /2 — 7,)/ p, such that for all € € (0, &),
for all functions ag € H*' (R?) in the ball

laollzst < 1. (3.12)
the Cauchy problem for system (3.1) with initial data of the form (3.4)—(3.5) has a solution
ve 0, T, H' ' (RY) nC' ([0, T], H' 3 (RY))
on the time interval [0, T]. Such a solution v is the sum

vV=y 4+

of a “free flow” component y(t, x), which is the solution of the Cauchy problem for the
free Schrodinger system

dy; +irjAy; =0, j=1,...,N,
¥(0,x) = &%a,(x),

and a “correction” term v(t, x) satisfying v(0, x) = 0 and

sup [[5(1)]| yei-1 + &% sup [[0:5(1)]| yois < Ce7F2 ag]| st
tef0,T] € tef0,T] €

(ii) (Higher regularity) If. in addition, ag € H*(R?) for s > sy, then

sup [[5())lgs—1 + & sup [|0:5(0)l| s> < Cse” /|l s,
te[0,7T] t€l0,T]

where Cg depends on s (and is independent of ¢, ag).
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Remark 3.6 (Smallness in low norm). In the higher regularity case, the smallness
assumptions (3.9) in Theorem 3.4 and (3.12) in Theorem 3.5 are only required in the
low norm s, with radii independent of the high regularity s.

Remark 3.7 (Comparison with the results in [4, 10, 11]). As observed in [4, 1 1], Métivier
and Rauch [10] already provide existence for a fixed positive 7', uniformly in &, when

o>ovr:=14+d/2—o0,.

Hence [4, 11] and Theorems 3.4-3.5 give something new only for o < oumg.
The result of Texier and Zumbrun holds for d > 2, p > 2, and o above the threshold
ke —o0,—1

o7 i = —————

TZ Pt

([11, Theorem 4.6]), where the constant k. satisfies some conditions; in particular, k., > 6
and

d
kez34+ 2L
2p—1
whence
1 d p
017 = ( ———Ua)=c
p+1 2p—1

The threshold for o in our Theorem 3.5 is

* 1+d/2—0, omr
0] i=—m— = —.
4 V4
For all pairs (d, p) covered by [11] (namely d, p > 2), one has 0 < ¢ < orz, there-
fore we get a larger ball for the initial data. More precisely, regarding the data size, the
improvement of Theorem 3.5 with respect to [11] corresponds to the exponent ¢ in the
interval 0; < 0 < min{orz, omr}. Note that for some pairs (d, p) one has orz > omr
(see [11, Examples 4.8—4.9]), so that [11] gives no improvement with respect to [10]; our
result improves [10] in those cases also.
The result of Ekeland and Séré holds for d, p > 2, and o above the threshold
d p d
Ops ' = ——— — 0y = ————
BT o1 T 2p-1)
in the concentrating case o, = d /2 ([4, Theorem 6]). The threshold for ¢ in our Theorem

3.41s
« 1 d _
Oy = ; + E — Oy;
in particular, oy = 1/p in the concentrating case. Since oy < ogs forall d, p > 2, we get
a larger ball for the initial data also with respect to [4].
With respect to [4, 11] we also improve the regularity of the solution with respect to

that of the initial data: using Theorem 3.5, the solution is one derivative less regular than
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the data (the loss of regularity is 1), while with Theorem 3.4 the solution has the same
regularity as the data (the loss is 0). In [4, 11], instead, the loss of regularity depends in a
nontrivial way on several parameters of the iteration scheme: it blows up to +o0 in certain
parameter regimes, and, in particular, can never be 0.

Remark 3.8 (Role of dispersion). Like in the approach of Métivier and Rauch [10], Texier
and Zumbrun [11], and Ekeland and Séré [4], smoothing effects, Strichartz estimates, and
dispersive properties of the linear Schrodinger flow play no direct rdle in the present paper.

Another natural approach to the study of system (3.1) in the singular perturbation
regime (3.4)—(3.5) would be along the lines of the works of Kenig, Ponce, Vega, Cazenave,
Chihara, etc. (see e.g. [6,7] and the references therein), adapting “dispersive techniques”
to the present singular perturbation issue.

It would be interesting to understand (although outside the scope of the present paper)
whether the “inhomogeneous smoothing effect” of [6, 7], which provides a gain of one
derivative, could be used to prove a stronger version of Theorem 3.5 where the loss of
one derivative is removed and, simultaneously, the existence time, uniform in ¢, and the
threshold (3.11) are not deteriorated. Note, on the other hand, that in Theorem 3.4 there is
no loss (even if we use Nash—Moser).

In fact, our point of view in the study of (3.1) in the singular perturbation regime
(3.4)—(3.5) is very similar to that in [4, 1 1], which is somewhat the one of considering that
problem also as a “concrete test for abstract Nash—Moser theorems” outside the traditional
field of Hamiltonian dynamics where the loss of derivatives is due to the presence of small
denominators in Fourier series.

4. Functional setting

In this section we introduce weighted Sobolev norms and recall the basic inequalities that
will be used in the rest of the paper.
For s € R, we define

lull s ay = A Ul p2ray,  ullgggay = Azl L2®ays 4.1

where A* = (1 — A)*/2 is the Fourier multiplier of symbol (1 + |£]2)*/2 and Al =(1-
£2A)%/2 is that of symbol (1 + £2|£|2)%/2, namely, following [11],

gy = 11 = 28) 2ulamay = (1 + 6D 0@ 2rg) 5 €R. (42)
where 1 is the Fourier transform of u on Rd, and0 <e¢ <1.Forallu € H* (Rd), one has

(Reu)(§) = e790(c7'€),  (Raw)(x) := u(ex), 4.3)

whence
A Re = ReAS,  |[ull gsray = 2| Rett]| s may- (4.4)
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We define the scalar product
(M,U)Hg(Rd) = (A;M,AiU)LZ(Rd). 4.5)

To shorten the notation, we write || || gs instead of || || z7s(gay, and so on. Using (4.4), it
is immediate to obtain the Sobolev embedding and the standard tame estimates for prod-
ucts and compositions of functions in terms of the rescaled norms (4.2): for the Sobolev
embedding, one has

lellzoe = || Rett|zoe < Cooll Retullzzso = Coos™/[lull 20 (4.6)

for all sg > d/2, all u € H% (Rd), for some constant Cy, depending on s, d; for the
product, one has

luvllgs < Cs(lullzee vl + llullag vlize) 4.7

for all u, h € H(R%), all s > 0, for some constant Cs depending only on s, d; for the
composition, given any C* function f such that f(y) = O(y?) around the origin for
some integer p > 1, one has

£ @)z < Conrllull 2t 1uell s (4.8)

forall M > 0,allu € HS(Rd) in the ball ||u| L~ < M, all s > 0, for some constant Cs, as
depending only on s, M, d, f. Moreover,

el0%ullm < lull ysvie 4.9)

for all multi-indices @ € N¢.
For m > 0 integer, we define

ullwmoe := > [0%ullzeo,  [ullgmoe = D &l*[|0%u] L. (4.10)
aeN9 aeN4
loe|<m loe|<m
One has
2R = e R0, lullymeo = || Reu|wmos. (4.11)

Similarly to (4.8), given any C*° function f such that f(y) = O(y?) around the origin
for some positive integer p, one has

—1
£ @)oo < Conpa | Too 1ty (4.12)

for all M > 0, all u € W™°°(R9) in the ball ||Ju| L~ < M, all integers m > 0, for some
constant Cy, pr depending on m, M, d, f. For the product of two functions, we also have

levllgs < 6™ (Coy el oo 0112 + Csllelzz V] y0) (4.13)



Size of data in implicit function problems 1061

forall s > 0,50 > d/2,allu,v € H*(R?) N H*(R?), and
luvllgs < 2lullzeellvlias + Csllullpmee vl (4.14)

foralls >0,allve H S(Rd), allu € W’"’°°(Rd), where m is the smallest positive integer
such that m > s, and Cs depends on s, d. Estimate (4.14) is proved in the appendix (see
(B.8) in Lemma B.2). We remark that the constants Cy,, Cs, Cs,pr, Cip, i in (4.6), (4.7),
(4.8), (4.12), (4.13), (4.14) are independent of ¢, and Cj, is also independent of s.
For time-dependent functions u(t, x), t € [0, T], we denote, in short,
lullcoms = llullcqo.r.ms) lullcp s = lullcons + X 10rullcogs—2.  (4.15)
||”||C°W;" = ||“||C([0,T],W5’"'°°)’ ||”||c€1W€m = ||”||C0W€'” + 82||3tu||c0WEm*2~ (4.16)

The notation a <y b means a < Csb for some constant C, independent of &, possibly
depending on s; also, @ < b means a < Cb for some constant C independent of ¢ and s.

5. Analysis of the singular perturbation problem

In [4, 11], system (3.1) is written as
d;u +iA(0x)u = B(u, dx)u, 5.1

where u = (v,v) = (v1,...,V5, V1, ..., Uy) is the unknown, A(dy) is the constant coef-
ficients operator of second order

A@x) = diagA1, .. Ams —A1Lsooos —An)A,

B €
B=|s =],
(¢ 5)
B, € are the operator matrices with entries b (v, dx), ¢jk (v, dx) respectively, and B, €
have conjugate entry coefficients. To deal with concentrating or highly oscillating initial

data (3.5), in [11] the weighted Sobolev norms (4.2) are introduced. Recalling (4.9), it is
natural, as is done in [4, 1 1], to write the powers of ¢ as separate factors, writing (5.1) as

B(u, ) is the operator matrix

Ou+ie 2A(ed)u = ¢ ' B(u, dy)u, 5.2)

where A(dy) := &2 A(d,) and B(u,£d,) := eB(u, dx). In this way A(£dy) and B(u, £dy)
satisfy estimates that are uniform in &:

I A@ e < Collull s+ (5.3)
forall s € R, allu € H*(R?), with Cy = max{|A1],...,|An]|};

1B, e0.)hllms < Cs(lul Zo Vel e + 2" el s ledshllzoe) — (5.4)
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forall s > 0, all h € HT1(R?), all u € H*(R?) in the ball ||u||z= < 1; also, by (4.14)
and (4.12),

|BGe. )l < CllullZee Bl e + Collull 2 lull ool gy (5.5)

forall s > 0, all h € H*t'(R?), all u € WEIT1.00(R4) in the ball ||[u|z < 1, where [s]
is the integer part of s; and, by (B.13) and (4.12),

1B, )kl s < Cllullfo 1wl Il e (5.6)

forall -1 <s <0, all h € H*t(R?), all u € WH(R?) in the ball |ju||z < 1. The
constants in (5.3), (5.4), (5.5), (5.6) do not depend on ¢ € (0, 1]; Cyp, C in (5.3), (5.5), and
(5.6) are also independent of s.

We consider the Cauchy problem for (5.2) with initial data (3.4), namely

{ du+ P(u) =0, )
u(0) = uo,
where

P(u) =i 2A(ed)u —e " B(u,ed)u, uo(x) := &% (ag(x), as(x)). (5.8)

To apply our Nash—Moser theorem, we need to construct a right inverse for the linearized
problem and to estimate the second derivative of the nonlinear operator. Let us begin with
the linear inversion problem.

Analysis of the linearized problem. Given u(z, x), f1(¢, x), and f>(x), consider the
linear Cauchy problem for the unknown A(¢, x),

d:h + P'(u)h = fi, 5.9)
h(0) = f2,
where
P'(u)h =ie ?A(cdx)h — e ' B(u,edx)h + Ro(u)h, (5.10)
Ro(u)h := —& 13, B) (u, €dx)[h]u. (5.11)

Following [11], let
J:=A0.k) 1 Aj + A =0},

and let y € C2° (R4, R) be a frequency truncation such that 0 < y(§) < 1, y(§) = 1 for
|&] < 1/2, and x(&) = O for |£| > 1. Like in [11], we decompose B into the sum of a
resonant term, a nonresonant term, and a low-frequency term: B = B, + By + Bjs, where
the following hold:
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B
B := —d ¢ ,
€5 Ba

where 84 := diag(b11,....bnn), (€1)jk = cji if (j,k) € J,and (€);k := 0 oth-
erwise. By Assumption 3.1, the matrix B.(v, £) is Hermitian.

Bl el
By = (‘él 3_1) s
where (B1) 1= (1 — y)bjr if j #k, and (B)j5 :=0if j =k; (€V)jx := (1 — p)cjk
if (j.k) ¢ J,and (€"); 1= 0if (j. k) € J.

e The low-frequency term is
B €°
Bu:= (@0 3‘0)

where (8°)x = xbjr if j #k,and (B°),x :=0if j =k; (€% jx := ycju if (j k) ¢
J,and (€% :=0if (j,k) € J.
We recall the normal form transformation of [11] (see [11, proof of Lemma 4.5]): define
the pseudo-differential matrix symbol M (u(z, x), £) as

Bt 0,08
M (u(t. x).6) := {  ilE2(@; — o) ! ’ (5.12)
0 if wj = wy,

e The resonant term is

¢ The nonresonant term is

where
—Aj forj =1,...,N,
wj = .
Xj_N fOrj =N+1,...,2N.

Since the commutator of A and M is the matrix

[A§). M(u.§)] = (§1*(0) — )M . ) oy Hn- (5.13)

.....

one has
Bue(u(t, x),1§) —i[A(i§), M(u(r,x).§)] = 0.
Like in [11], we introduce the following semiclassical quantization of a symbol o (x, £):
oo (o)h(x) = ) [ (.o de,
By (5.12) and (5.5), one has

lope (M)Al g < CllullZe 1l g1 + Csllullfo_ol||MI|WE[s1+1,oo||h||H;1, (5.14)
lops(M)hllL2 < Cllullfoo Il g1 (5.15)
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forall s > 0, all ||u]|L~ < 1, all h. Hence there exists py > 0, independent of ¢, such that,
for u in the ball
8||u||11joo < po, (5.16)

one has
, 1 1
lleope (M) g1 < lleops (M)l 12 = Cellull o Al g1 = Sl g1 = S lAllL2. (5-17)
Therefore, by Neumann series, I + ¢ op,(M) is invertible in H; ! and in L2, and
(I + gop, (M) ' hllmg < Cllhllag + Css||u||1{’;1||u||W€[s]+1,oo||h||H;1 (5.18)

forall s > 0, foru € WE[S]H’OO(]Rd ) in the ball (5.16) (where pg is independent of s).
Under the change of variable

h= (I +&op,(M))g, (5.19)

the linear Cauchy problem (5.9) becomes

{ 9 + Qg = g1, 5.20)
®(0) = g2,
where
gri=U +eop(M)"fi. g2:=U+e0op, (M) i=ofo. (521
and, by (5.13),
9 + Q) := (I +eop,(M))™'(3; + P'(u))(I + gop,(M))
=0; +ie 2A(edy) — e ' Bi(u, £0y) + G(u), (5.22)
with
Gu) =+ 8op£(M))_1(8 op(M)e~ ' Bi(u,£0,) — e Bip(u, £dy)
+eop, (0, M) — e 'B(u,edy)e op,(M)
+ Ro(u)(I + gop,(M))) (5.23)

(we have used the trivial identity I — (I + K)™! = (I + K)71K for K = gop,(M)).
Now we prove an energy estimate for (5.22), and we start with the term G(u). By
(5.18), (5.14), (5.17), (5.5), (5.6), the first term in (5.23) satisfies, for s > 0,

I(Z + € 0pe (M)~ e 0p (M)e™" Br(u. £3:) |l g
2 2p—2
Ss ulz8 el + lullzee el oo el e @l 2

and

1T + £0op, (M) eop, (M) ™" Be(u, £9:)¢ll 2 S lullz5 " el e ol 2
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The low-frequency term By satisfies, for s > 0,

le™! Bir(u, £0.)@ | s S5 & ull ]’ lell g isr+1.00 101l L2
The term containing the time derivative of the symbol M is estimated, for s > 0, by
le ops (0 M)l S5 ellullfo’ 130 Loo Il g
+ (Il 7 1802 1.0 el oo ] ge01.00 (19l L) | g1

where
v := max{p — 2,0}, (5.24)

and, by (5.12),
-1
lle ope (8: M)@ll 1 < lleope (B M)@llL> < ellullfoo 19:2l|oo @]l g1
Next, Ro defined in (5.11) satisfies, for s > 0,
IR0 llms S5 & lullf (IIMIIW1w||<pIIHs + [lull 2 l@llL2). (5.25)
IRo(u)pllz> < & M ull 7! [l reellll L2 (5.26)
Hence G(u) in (5.23) satisfies, for all s > 0,
— -1
IG)ellas <s & ullf= (floely1.00 + &)1 9ullz) el ms
e 2= (Ul pvzes + 210l paer.e)
+ & |Jul| o l[eell 1,00 0:ullLeo } el 2. (5.27)
— -1
IGwelle S & 'ullf= (llaellyp1.00 + e[10:ul ) llgll 2 (5.28)

The constant coefficient operator A(£d, ) in (5.22) satisfies
Re(ie 2 A(edx)p, @)z = 0 (5.29)
because A; are all real. To estimate the term with B;(u, £€0,) in (5.22), we recall that
2Re(Xg. @) mp = (X + X)AJ9. Aip)r2 + 2Re([Ag, X]p, Ajp) L2

for any linear operator X, where X* is the adjoint of X with respect to the L? scalar
product and [, ] is the commutator, whence

2Re(X@, @)ms| < 1 X + X* 2w llols + 20[A% X1el2 e la:-
By the Hermitian structure of B,(u, £0dy),

1X + X leqon < e MulZe Tl o, X =6 Biluaedy).  (5.30)
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and, by (B.18), for X = ¢~ ! B,(u, £0,) one has

-1 —1
ITAS. Xlellrz s & ullze (lullyrecll@llag + lull e lellze).

Therefore,

- - -1
IRe(e™" Br(u. £0:)¢. @) mz | <5 €™ ull 7o (lull o0 ll g
+ llullyrac l@li2) el e

Re(e™" Be(u, £0:)p. ¢) 2] S & ullfs ull oo ol (5.31)
By (5.27)—(5.31), the solution ¢ of the linear equation d,¢ + Q(u)ep = g1 (see (5.20) and
(5.22)) satisfies
9 (l¢llFs) = 2Re(gr + &7 Be(u, £dx)9 — G(u)p, 9) us
Ss {lgllas + 7l Qull e + 211802l L) ol s
+ et (=" (llypeace + €180y prnee)
+ 2l Lol 1100 Dol ow) @l 2 Il (5.32)
0/(lel72) 5 e Ml 7! (el oo + 2 l0aull=)lil7 + g1z lelz.  (5.33)

If u satisfies
e ulZ (lull oo + €212l 1) < 1 (5.34)

on the time interval [0, 7], then for s > 0 the solution ¢ of (5.20) satisfies, with the notation
introduced in (4.15), (4.16),

lellcorz < ligillcorz + llg2llL2. (5.35)
lellcors <s llg1llcoms + 1g2llms
+ 8_1(||”||’5zoo||”||C€1Ws[s]+3 + hellGo poo lell o st el cpw2)
x (llg1llcorz + lIg21lr2) (5.36)

(first use (5.33), (5.34), and Gronwall to get (5.35), then insert (5.35) into (5.32) and use
Gronwall again).

By definitions (5.19), (5.21) and estimates (5.14), (5.15), (5.18), we deduce that the
solution / of the linear Cauchy problem (5.9) satisfies the same estimates (5.35), (5.36) as
¢ with f1, f> in place of g1, g2, namely, for all s > 0,

I2llcorz < Il fillcorz + I f2ll22, (5.37)
Ihllcoms <s I fillcoms + | f2llas
1 -1
+e (”u”IéOLoo”u”CSI i+ + ||u||”CoLoo||u||C0W£[s]+1 lullcrwz)
X (Il fillcorz + Il f2ll22)- (5.38)
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From the equation 0,2 + P’(u)h = f; one has, for all s real,
10kl < Nl fillms + 1P/ Q)R ag - (5.39)
By (5.6), (5.26), (5.34), for =1 < s < 0 one has
IP' )l gs < 72| hll gses (5.40)
and, by (5.5), (5.25), (5.34), for s > 0 one has
1Pkl S5 € 2l gssa + 7 2 Null e 2. (5.41)
Hence, by (5.37)—(5.41), for all s > —1 one has
19chllms Ss 1 fillcoggss> + I fallgs+2
e (el Zo g el g ygoes + o o Il oy el w)
x ([ fillcorz + Il f2lL2)-
Thus, recalling definition (4.15), & satisfies, for all s > 1,
Inllcams <s | fillcoms + 1 f2llmz
+ 8_1(||u||coLoo||u”C st + [l o oo Ul ot el crwz)
x (Il fillcorz + Il f2llL2)- (5.42)

In conclusion, we have proved the following result.

Lemma 5.1 (Right inverse of the linearized problem). Lets > 1 be real, and let u belong
1o C([0, T], Whsl+3.00(Ra))y 0 ([0, T], WEI+1L.00(R4Y), with (5.34) and (5.16). Then
forall fi € C([0,T], H*(R%)), all f, € H*(R?), the linear Cauchy problem (5.9) has a
(unique) solution h, which satisfies (5.42).

Estimate for the second derivative. By (3.2) and (5.8), the operator

P"(u)[h1, ha] = —&~" 8y B) (u, £8x) [h1]ha — 7" (9 B) (u, £dx) [h2) 1
— & (uu B) (u, £9x) [ ha]u

is the sum of terms of the form
e g (Whiedxhy + e g (U)haedxhy + e g (u)h1haedyu, (5.43)

where g(u) is a vector of components by (1) or cgjx (u). By (3.3), g(u) = O(|u|?) with
p > 1integer. For p > 3, by (4.8) one has for all « in the ball ||u||L~ < 1, forall s > 0,

g’ @)z < Iullf=s 18/ @)llas Ss el ullZ, (5.44)
lg” @)l < Mullf<?, 118" C)llas Ss lullas lull’. (5.45)
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For p =2, g(u) = g2(u) + g(u), where g,(u) is homogeneous of degree 2 in u and
&) = O(Jul®) (we do not distinguish whether g is of order 3 or higher). Thus g(u)
satisfies (5.44)—(5.45) with 3 in place of p, and g, satisfies (5.44) with 2 in place of
p, while g/ (u) is a constant, independent of u. For p = 1, one has g(u) = g1(u) +
g2(u) + g(u), where g1 (u) is linear in u and g, & are as above. Thus g/ (1) is a constant,
independent of u, and g (1) = 0.
By (5.43), (4.7), and (4.8), for all u in the ball ||u||z~ < 1, for all real s > 0, all integer
p = 1, one has
IP" @)1, ho] g
- -1
Ss e ull 7o Ul ggen M2lizoe + 1 llag I2ll .00
+ Ihillyreelhzllag + lhllLe h2] gs+1)
el el U g Wzl e+ W e )
+ & ull poollull g (el poe 2 llLoo + N llzoc 2] y1.00)

-1
+ &7 (lullpoo lull grser + lull e lull o el ) 1l 12l Loe. (5.46)

where v = max{p — 2, 0} has been defined in (5.24), and v3 := max{p — 3, 0}.

Estimates in H} spaces only. For the result in the concentrating case, it is convenient to
work directly in the H? class, avoiding the W,""> spaces. Thus, by (5.4), one has

IB(u, e0x)hl|ms < S_I’d/z(CsolluIIZEso 7l s+t + CSIIMIIZEO1 llellzzs 1]l yso+1) - (5-47)
forall s > 59 > d/2, all u in the ball
Croe™ 2]l o < 1, (5.48)
so that ||u||~ < 1. By (5.47) and (5.12),
[ ope (M)Al s < 8""1/2(Cs0||u||i,€so 1721l g1 + CS”u”ZEol llwell a2z 1]l so-1) - (5.49)

for s > s¢ > d/2, u in the ball (5.48). Thus there exists p3 > 0, independent of &, such
that for u in the ball
' P2 u|P s < ps, (5.50)

one has
_ 1
leope(M)hl 20 < Cooe' P2 ull sy Il oot < S WAl yomr- (5:5D)

Therefore, by Neumann series, / + ¢ op, (M) is invertible in H*° (R%), and

I+ eop (M) hllazz < Cogllhllzzz + Coe' P2 el g Nl 1Al oot (5.52)
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for s > 59 > d/2 and u in the ball (5.50). For u in the ball (5.50), for s > 59 > d /2, we
deduce the following estimates:

(I + g op (M) " eop,(M)e™" B (u, edx)¢l| s
So & P2l sy (Ul oo+ Iz + g g0) (5.53)

(to prove (5.53), we have used (B.22)),

e Bie(u, £9:)¢llmz S5 & P2 ulh) ollullmllwllu (5.54)

ll& ope (3: M) || 1
<, 81 pd/2{”u”17

o el o gz
+(I|u||p 19cullazs + lullypso ez 1902l o) @l o1} (5.55)
with v defined in (5.24), and
[Ro()@ s <s € 1”"”2llull,‘f,§01(IIMIIH,goﬂ el + llullgsell@lgso).  (5.56)
Hence
1Gellms <s 8_1_”"”2IIMII"’?01(IIMII sott + &2 3l o) o g
+ e P2l g (o + €11 0ullrg)
+ &2 o I 1920 o bl o (557)
for all s > s¢. By (5.30) and (B.27), for X = s_lBr(u, €0y), for s > s, one has
1X + X*gorry S €17 ”d/zllullp [l grso+1
AL XlgllLe S5 67! ”d/zllullpsol(llull sortl|@llas + llull s+l z0),

— d
IRe(X@, ¢)mz| <5 6777 /2||u||” (el gso+r ol s

+ lull s+ ll@ll go) ol ars - (5.58)
By (5.29), (5.57), and (5.58), we get energy estimates for ¢: for u in the ball

e PN e S T, (5.59)

the solution ¢ of the linear Cauchy problem (5.20) satisfies

lellcogzo < lgillcogso + g2l go. (5.60)
lellcoms <s llg1llcoms + l1&2las

—1—pd/2 -1
+e TP P ol s (8l cogeo + lg2llg)  (5.61)
&
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for all s > 9. Hence, following the same argument as above, the solution / of the Cauchy
problem (5.9) satisfies, for s > s¢ + 2,

Inllicras <s M fillcoms + | 21l e

—1—pd/2 -1
+e TP 2 el s (L fillcoggo + 1 f2llggo)- (5.62)
& &

We have obtained the following inversion for the linear problem.

Lemma 5.2. Let so > d/2, s > so + 2, and u € C([0, T], H**2(R%)) n C'([0, T,
H*(R4)), with (5.48), (5.50), and (5.59). Then for all f; € C([0,T], H*(R?)), all f> €
H*(R?), the linear Cauchy problem (5.9) has a (unique) solution h, which satisfies (5.62).

Also, by (5.46) and (5.48), for s > 59,

—1-pd/2 -1
IP"@)[h1, ha]ll gy S5 67 7P el o 11 g 12 o + 1l ggzo 2l o)

+ e O full et IR ozl ggro. (5.63)

6. Proof of Theorem 3.4

For a > O real, let

E, := C([0, T], H**t4®R%)) n C' ([0, T], H* 14 2(RY)), (6.1)
Fy :=C([0.T). H**4(R?)) x HO(R?), (6.2)

and, recalling the notation in (4.15), define

lulle, := llullcrgsoras  FIFe = (AL SR = Mfill o grsora + 1 f2ll gsora. (6.3)

Define the smoothing operators S, j € N, as the “semiclassical” crude Fourier trunca-
tions

Siu(x) := (2m) "2 / h()e'** de, (6.4)
el|<27
which satisfy all (A.2)-(A.8) with constants independent of ¢. Define
_ fOu+ P
() ._( L (6.5)

where P (u) is defined in (5.8). For |lu||g, < 1, the second derivative of ® satisfies (5.63),
which gives, for all a > 0,

19" @)1 halllFy S5 € P2 Nl (il o B2l 2 + 111 Eo 2] o)

+ e T2y 1w Nl gy B 2] - (6.6)
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For u in the ball
ulle, <% qi=~+ % 67
2 — ) . p 2 ’ .
conditions (5.48), (5.50), (5.59) are all satisfied for ¢ sufficiently small — more precisely,
for ¢ € (0, g¢], where g¢ := min{1, CS;p, pé/z}, and Cs,, p3 are the constants in (5.48),
(5.50), independent of e. Then, for u in the ball (6.7), Lemma 5.2 defines a right inverse
W (u) of the linearized operator ®'(u) (namely 2 = W(u) f solves the linear Cauchy prob-

lem ®'(u)h = f, which is (5.9)), with bound (5.62), which is

W) fllE, S5 1f1E + & P2l Il gl f LRy, @220 (6.8)

To reach the best radius for the initial data (see Remarks 7.3 and 7.4), we introduce the
rescaled norm

lulle, := &~ lull g, (6.9)
Thus (6.7) becomes
fulle, < 1. (6.10)

By (6.6) and (6.8), for all u in the unit ball (6.10) one has

19" )11, holllF, Ss € (lhtllgq s 1h2lles + N1l 2]l 60

+ llullgurs 172165 A2l e) (6.11)
fora > 0, because —1 — (v +2)d /2 + q(v + 3) > g (recall that v = max{p — 2,0}), and
@) flle, <s e U fllF + lulle,nll flIF) (6.12)

for a > 2. Hence @ satisfies the assumptions of Theorem A.1 with

ap=0, pu=a,=2, B=a>4,
a >2p—-2, U={uekE;:|ulg <1},
§1 =1, Mi(a) = Mz(a) = Cae?,

- (6.13)
Li(a) = La(a) = Cae™,  Mj3(a) = L3(a) = 0.

For any function ug = ug(x) € H%1#(R?), the pair g = (0,uq) € Fpg trivially satisfies
the first inequality in (A.12) with A = 1 (in fact, the inequality is an identity), because g
does not depend on the time variable.
Hence, by Theorem A.1, if ||g||F, < &, with § = Ce? given by (A.14), there exists
u € E, such that ®(u) = ®(0) + g = g. This means that we have solved the nonlinear
Cauchy problem (5.7), i.e. ®(u) = (0, up), on the time interval [0, T'] for all initial data
Ug in the ball
ol ysos < 8 = Ce, (6.14)

for all € € (0, g9]. By (A.13), the solution u satisfies
lulle, < Celglry, e lull gy yumes < Clolysoss-

The higher regularity part of Theorem 3.4 is also deduced from Theorem A.1.
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For data ug of the form uo(x) = £° (a,(x), as(x)) (see (5.8)), where a, is defined in
(3.5), one has
luollas = €% llacllms Ss €% llallms
(see (7.3), (7.1)), where g, = d /2 in the concentrating case, and o, = 0 in the fast oscil-
lating case. Hence u( belongs to the ball (6.14) for all ¢ sufficiently small if

||M0||H€so+ﬁ < CS0+586+63||3”H50H9 <§=Ce.

For ||a|| gso+8 < 1, this holds for o 4 0, > ¢, namely

1
> — 4+ — —0,.
o + 3 0.
Finally, given 51 > d/2 + 4, we define y := 51 — (d/2 + 4), so :=d/2 + y/2,
B =4+ y/2, s0that so > d/2, B > 4, and 51 = 5o + B. This concludes the proof of
Theorem 3.4.

Remark 6.1 (Confirmation of the heuristics discussion of Section 2 in Theorem 3.4).
The radius § given by the Nash-Moser Theorem A.1 is the minimum among 1/L, §,/L,
1/(L?>M); here (see (6.13)) these three quantities are all of order 4. In particular, the
“quadratic condition” § < 1/(L?M ), coming from the use of the second derivative ®" (1)
in the Nash—-Moser iteration, does not modify §. This is a confirmation of the heuristic
discussion of Section 2.

7. Free flow component decomposition

The “shifted map” trick used in [4, 1 1] consists in choosing the solution of the linear part
of the PDE as a starting point for the Nash—-Moser iteration. The reason the trick works
is that the free flow of functions of special structure (3.5) satisfies better estimates in L
norm than the free flow of general Sobolev functions. This, combined with the power p of
the nonlinearity in the equation, makes it possible to obtain solutions of larger size, which
are the sums of a free flow and a correction of smaller size.

Here we use this property in a different way, splitting the problem into components
of special structure (3.5) and corrections, introducing nonisotropic norms to catch the
different size effect.

For any function a € H*(R?) we define ;2,0 < ¢ < 1, as

(Toa)(x) = { a(x/e) (concentrating case), 7.1)

eix60/23(x)  (oscillating case),
so that, in both cases, (3.5) becomes a;, = Ja¢. To deal with conjugate pairs, define
Teca = (Toa, Tea), T, (b,b) :=T,'b.

Hence the initial datum u defined in (5.8) can be written as ug = &% 7z cao.
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Lemma 7.1. Leta € H*(R?), s > 0. Then the Fourier transform of Tsa is
(Tea)(€) = ea(et) (concentrating),  (Tea)(§) = A(§ —Eo/e) (oscillating). (7.2)
and one has
[Teallgs < e Q2llallas + CsllalL2), (7.3)
where

0, = d/2 (concentrating), o, =0 (oscillating). (7.4)

Proof. Formula (7.2) is a direct calculation. Then, in the concentrating case, ||Tzal gz =
£4/2||a|| gs. In the oscillating case, using the change of variable £ — &y/e = n and applying
(B.10), one has || Tea| gy < 2|lallas + Csléol* llallL2- u

Given any yo € H*(R?), let y = § yo denote the solution of the linear Cauchy problem

{ 0;y +ie 2A(cdy)y =0, 7.5)

¥(0,x) = yo(x),
so that § is the free Schrodinger solution map. For initial data of type 7 .a, the flow $ 7¢ ca

has special properties, which are used in [11, proof of Theorem 4.6], which we recall in
the following lemma.

Lemma 7.2. For all real s > 0, 5o > d/2, all multi-indices o € N?, for all t € R the
solution
Yy =38Tcca

of the linear Cauchy problem (7.5) with initial datum yo = T; ca satisfies

[y(@®)llLe < Csyllallzso. (7.6)
e2[10:y(0) L < Cyyllall o+, (7.7)
3%y (1) < Clajso lall grsoia. (1.8)
ly@llas = 1Tl gs. (7.9)

Proof. At each t one has |y(t, x)| S ||J(¢, -)||z1 by the inverse Fourier formula, and
[y, &) = |[9(0,8)| = |(J€E)| for all ¢z, £ because y solves (7.5). By (7.2), one has
||(/"J'E||L1 = ||a]|z1 in both cases. This proves (7.6) because, by Holder’s inequality,
lallr <so llallaso.

To prove (7.7) we use the equation in (7.5) recalling that e=2 A (3, ) = A(dy). Proceed-
ing as above, we get |9,y (¢, x)| < [ |S|2|@(.§)| d§&, and then we use (7.2) to conclude.
Similarly, (7.8) follows from [0%y (¢, x)| < [ €]/ [(T.a)(€)| d€. Finally, (7.9) is trivial. m

We look for a solution of the Cauchy problem (5.7) by decomposing the unknown u
into the sum of the solution of the free Schrodinger equation with initial datum u¢ of the
form (5.8) and a “correction” (¢, x) of smaller size.
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For any pair (a, i) where a = a(x) € H*(R¢) and ii = ii(¢, x) € C°([0,T], H*(R?)) N
C([0, T], HS~2(R?)) with (0, x) = 0, we define

&)(a, i) = (atu —i—aP(u)) , whereu = &°87; .a+ 1. (7.10)

Attime ¢ = 0 the function u in (7.10) satisfies u(0) = €% 7; a. Hence the Cauchy problem
(5.7) becomes
®(a, 1) = (0, a9). (7.11)

We solve (7.11) by applying our Nash—Moser—-Hormander theorem; therefore we have to
construct a right inverse for the linearized operator and to estimate the second derivative.
We only have to adapt the general analysis of Section 5 to functions u of the form (7.10).

Right inverse of the linearized operator. The differential of ® at the point (a, i7) in the
direction (b, /) is

&3/(3, ﬁ)(b,};) _ (Z)th —|—bP’(u)h) ’

where u = 8T, ca+ i, h=¢e"8T;.b+ I, (7.12)

and i1(0) = 0, 71(0) = 0. Given (a. i) and g = (g1. g2), with g1 = g1 (¢,x) and g = g (x),
the right inversion problem for the linearized operator ®’(a, %) consists in finding (b, /)
such that

~ ~ i d:th + P'(wh = g1,

& (a,i)b, i) =g, el (Wh = g1 (7.13)

b=g>

with u, h as in (7.12). Since the free flow £ § Tz cb = 7 § T; . g2 solves (7.5), and l;(O) =0
by construction, (7.13) is equivalent to the following problem for &:

dh + P'()h = g1 + e ' B(u. edx)e S Tz.c82 — Ro(1)e” S To e 82, a1

h(0) =0, '
namely h has to solve the linear Cauchy problem (5.9) with

fi=g1+ e_lB(u,sax)s"S’f;,ng — Ro(u)e’S8Tecg2, f2=0. (7.15)

The solution of (5.9) is estimated in Lemma 5.1; to apply that lemma, now we check
that u satisfies its hypotheses. By Lemma 7.2, (4.6), (4.9), (4.15), and (4.16), the function
u = 87T ca+ u satisfies

Il crwm Ssoum € lallgsom + &2l ¢y psom,  m € N. (7.16)

For all s, let
. @) llxs = & [lal s + & |ill e s (7.17)
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By (7.16), one has, in particular,
lell 200 + €2 [1sullzo0 g [l ) Ix50+2 (7.18)

and therefore there exists p; € (0, 1], depending only on s¢ and on the nonlinearity of the
problem, such that, for (a, %) in the ball

e (@, 1) |22 < P (7.19)

the function u = £°$T; ca + 1 satisfies (5.34) and (5.16). Hence Lemma 5.1 applies, and
h satisfies bound (5.42). Moreover, assuming (7.19), the factor in u appearing in (5.42)
satisfies

-1
Ul o poollell o pises + lullgo oo 12l o gyt el ¢ r2)
C; We COW;
~ -1 ~ ~ -
S 1@ )[Rz 11, 1) g tsteso s + 11 (@ ) [tz 1@, ) i1 1
Ss @ D125k 11 @ i) | gsso+ (7.20)

because [s] <s,v+ 1 =max{p —2,0} + 1> p — 1 and ||(a, &) |[ys+2 < L.
Thus we have to estimate f; in (7.15). By (5.5) and (5.25), using (7.18), (7.16), (7.17),
(7.9), and Lemma 7.1, for all s > 0 one has

lle™' B(u, £0x)e” $ Tz c g2 s
S5 €7@ D) | g 12 | g2l s
+ e (@, ) | G | . ) xbrso 1 g2l (7.21)
[Ro(w)e” S Te,c g2l
Ss €7 @ D) g2 182 s
+ &% (a, u)IIXSOH (@, o) || xt1+s0+2 1821 2 (7.22)
By (7.15), (7.21), (7.22), (7.20), and Lemma 5.1, for (a, 1) in the ball (7.19), for s > 1 we
obtain
Vellcame Ss Igillcoms + & @ DI mhall@ D) lxeras g1l o
+ 7@ )| fop i g2 st

+ &0 @, )12k | @, ) [ xsrso3 1l 2L (7.23)

Since b = g,, we get
(b, D)llxs = & [Ibllas + & 2llAll ) s
Ss e g1l coms + e TP @ )| 25k @ 1) [ xsesoallgn llcor2
+ &7 (14 &% 2 (@, @) |2, 40) €2 o
+ T2 1) | PO | 2 d0) [ o2l g2l (7.24)

for all (a, %) in the ball (7.19). As explained in Remark 7.3 in general, and in Remark (7.4)
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for our specific problem, for p > 1 it is convenient

(i)  to consider (a, %) in the ball

@, )|l s+ < paetTd/2=e)/p

ie. e 142 @, @)|12, 4 < 1. p2 =y (7.25)

which is smaller than the ball (7.19) if o, = 0, and it is the same ball if o, = d/2;

(i) torescale || ||xs so that (7.25) becomes a ball with radius O(1) (i.e. independent
of ¢) in the rescaled norm.

Thus we define
(@, @)z := ™1 /D/P (@, 41)||xs, (7.26)

and (7.24) becomes
(b, )|z S £ Y2H@OT1=4/DIP| 01| co s
+ O (1t (@, 0) 1 5010) 12l s

4 o H@1=dIP ) (o 1) ||§S‘01+2 Il (a, )| gs+s0+3

x (77" llg1llcorz + llg2llmr) (7.27)
for all s > 1, all (a, %) in the ball
(@ t) [ zso+2 < p2- (7.28)
Therefore, in the case p > 1,

(b, )|z <5 7 TO1=4I2IP (=02 0| co s + ||l prs+1) (7.29)

+ 1@ )l zs+so+3 (677" g1l corz + llg2llm)}

for all s > 1, all (a, &) in the ball (7.28).
For p = 1, the restriction to the ball (7.25) is not convenient (see Remarks 7.3 and
7.4), and we take, instead, u in the entire ball (7.19). Hence, for p = 1, we define

@, @)l zs := e[| (a, i) |xs, (7.30)
and (7.24) becomes

6. )|z <5 &2 |gillcoms + e 2@ )l gs+so+3 g1l cor2
+ &7+ %2 (a, ) || gso+2) | €2 [ s+
+ 0112 (a @) || gstsor3 || g2l g1 (7.31)

for all (a, 1) in the ball
I, )] zso+2 < p2. (7.32)
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Therefore, in the case p = 1,

10, )l zs S5 T2 {6 g1 llcoms + lg2llms+)
+ @ @)l zs+so+3 (677" g1l corz + llg2llan)} (7:33)

for all s > 1, all (a, %) in the ball (7.32).
Note that we have used norms || || zs for p = 1 and norms || || zs for p > 1.

Estimate for the second derivative. By (7.17), (7.16), (7.9), and Lemma 7.1, any func-
tion u = °8T; ca + u satisfies

lullze <5 € lallrs + il <s €%l a @) llxs,

llullzee < Ml (a i) |xs0,

(PR [CRD) PETEE

From (5.46) we deduce that

|P” )[Ry, holll s
Ss €@, i) |55 (101, A) s+t [[(2. 72) x50 + [I(b1. ) lxso [| (b2, h2)llxs+1)
+ &% (@, @) |l so 1 (@, @) [l xs+1 1 (b1 1) [lxs0 | (b2, ) 0 (7.34)
foru =e°ST;ca+ i, hy =e%ST;cb; + ﬁ,-, i=12,ands > 0.

With the norms || ||zs defined in (7.26), which we use in the case p > 1, from (7.34)
we get

| P u)lh1, holll s

<s Sd/2+(1+d/2_0“)/p ” (a’ ﬁ) Il%s_ol
X (b1, 7i1) | zs+1 | (b2, h2) | zso + [[(b1, A) [l z50 | (b2, 72) | zs+1)
+ gd/2HAFd/2=00/ P (2 17) | %y || (2, 17) || 51 1| (b1, Fi1) | 250 [| (b2, F22) || z50

Hence, for (a, %) in the ball (7.28), for s > 0, in the case p > 1, one has

| P"(u)lh1, ho]ll s Ss 8d/2+(1+d/270“)/p{||(bl,};1)”254rl [[(b2, 712) || zso (7.35)
+ (b1, i) zso [| (b2, Fi2) | zs 1
+ 1@, @)l zs+1 [ (b1 /1) | 250 [| (b2, 22) | 250 }-
For p = 1, with the norms | ||zs defined in (7.30), for (a, %) in the ball (7.32), for
s > 0, one has
1P @)1, kol S5 & {1101, Al zso1 (b2, ) 250
+ 111, 1) | 2o [| (b2, h2) || zs+1
+ 1@, )| zs+1 | (b1, )| zso (b2, h2) | zso }. (7.36)
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Remark 7.3 (Best rescaling for Nash—-Moser application). In this remark we discuss a
general, simple way to choose the best rescaling to obtain the largest size ball for the
solution when applying the Nash—-Moser Theorem A.l (or essentially any other Nash—
Moser theorem).

Suppose we have a nonlinear operator @ and a right inverse W(u) of its linearized
operator ®'(u), satisfying an estimate of the form

1@ @)gllxs < (A + BllulZo)lglys + Cllulls lulxslgllyso (7.37)
for all # in a low norm ball
lullxso < R (7.38)

for some positive constants 4, B, C, R, where || ||xs are the norms on the domain of ®,
| llys are those on its codomain, and s denotes high norms, while s¢ denotes low norms
(we ignore any possible loss of regularity, which is not the point in this discussion). From
(7.37), (7.38) we deduce the bound

Iw@)glxs < (A+ BRP)|gllys + CRP ™ ullxslIglyso (7.39)

for u in the ball (7.38). Then Theorem A.1 gives a solution of the problem ®(u) = ®(0) +
g for all data g in the ball
lgllyso <3, (7.40)

where (ignoring, at least for the moment, the contribution to § coming from the second
derivative ®” (u)[hy, h;] of the operator ®) the radius § is essentially given by

1 R
§ = min{z, Z}’ L = A+ BR? + CRP™!, (7.41)

Our goal is to find the best (i.e. the largest possible) radius § that we can obtain in this
situation.
First, we consider a rescaling of the norm || ||xs: for any A positive, let

Mullxs =t [lullzs. (7.42)
Then (7.37), (7.38) become
1w@)gllzs < (AL + BA P ull ) lglys + CA 2 ull b ullzs Igllys  (7.43)

for all u in the rescaled ball
lullzso < RA. (7.44)

From (7.43), (7.44) we get the bound
I%@)gllzs < (AX + BARP)||gllys + CRP™ |lull zs [l gllyso (7.45)

for u in the ball (7.44). Then Theorem A.1 solves the nonlinear problem for all data g in
the ball
lgllyso < 8(R), (7.46)
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where now the radius is

S(A) = min{ R !

YRR m} L(A) = A(A + BR?) + CRP™". (7.47)

For A > 1/R, one has

1 1

) = L(X) _ A(A+ BRP) + CRP-1’

(7.48)

which is a decreasing function of A, so that §(1) < §(1/R) forall A > 1/R.For0 < A <
1/R, one has
RA RA R

- = 7.4
L) A(A + BRP) + CRP™1 A+ BRP + CRP-1)-V’ (7.49)

S0 =

which is an increasing function of A, so that §(A) < §(1/R) for all A € (0, 1/R]. In other
words, the largest radius §(1) we can get by the rescaling (7.42) is attained at A = 1/R.
Note that A = 1/R is the value of A corresponding to the unit ball ||u]zs < 1 in the
rescaled norm (7.44). For A = 1/R we get the radius

1
AR + (B + C)RP 1’

§r :=8(1/R) = (7.50)

Second, we check whether taking u in a smaller ball can give a better balance among
the constants, and therefore a larger radius for the data. From (7.37), (7.38) we deduce
that, for every r € (0, R],

IW@)gllxs < (A+ BrP)lgllys + CrPullxs|gllyso (7.51)

for all u in the ball
[ullxso <. (7.52)

Apply the best rescaling of the form (7.42), which is
1
- llullxso =t flullzs. (7.53)

Then, by the discussion above, we obtain the radius

1
rl 4+ (B+C)rp 1’

8 =38(1/r) = (7.54)
A

To maximize the radius §, in (7.54), we minimize its denominator ¢(r) := Ar~—! +

(B + C)rP~overr € (0, R]. For p = 1, ¢ is decreasing in (0, c0), and then the largest

dy is attained at the largest r, namely r = R. For p > 1, ¢ is decreasing in (0, rp) and

increasing in (rg, 00), where

A\
ro i= (m) . (7.55)
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Hence min{gp(r) : r € (0, R]} is attained at r = rg if /o < R, and at r = R if R < ry,
namely at 7 = min{rg, R} in both cases. Therefore the best radius is

dgp forp =1,

max 8, =4 86g forp>1land R < ro, (7.56)
re(0,R]
8, forp>1landry<R.

In fact, to apply the result of this discussion to a specific operator, the only point one has
to check is whether ro < R or vice versa.

In this way we get the best radius ignoring the contribution coming from ®” (u), which
is a condition of the form § < M ~1L=2 (see Theorem A.1). Then one has to check that
introducing this additional constraint to the radius § does not change its optimal size. The
heuristic discussion of Section 2 shows that, in many situations, this is the case.

Remark 7.4. We see how the discussion of Remark 7.3 applies to our specific problem.
By (7.19) (ignoring the harmless constant p;) and (7.24) (ignoring g1, which will be
zero in the datum of the original nonlinear problem) one has

A’\*Ea, BNCN80+UQ_1_d/2’ ngl/p'

This gives ro ~ g(1+d/2—0)/p < R, and therefore the best choice is to restrict u to the
smaller ball ||u]|xso+2 < 7o and then to rescale as in (7.26), corresponding to A = 1/r.
In the previous case, by (5.59) and (5.62) one has

A~1, B+C~egP1 R~gl,

with ¢ = 1/p 4+ d/2. This gives ro ~ €7 ~ R, and therefore the best rescaling for the
linearized operator is (6.9), corresponding to A = 1/R.

8. Proof of Theorem 3.5

Let p > 1, and define

Eqy = H®TRY), (8.1)
Eqp = {iie C([0,T], H*TRY)) n C' ([0, T], H*T* 2(R?)) : (0, x) =0}, (8.2)
Eq = Eq1 X Eg 5, (8.3)
Fa1 = C([0, T], H®T4(R%)), (8.4)
Fup = HOTOTH(RY), (8.5)
Foi= Fa1 X Fao. (8.6)

We consider norms (7.26) on E,, namely

I, = @YD (e al gegra + 72 o4 rooa), ®.7)
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and, on F,, we define

—o—d/2

lgllr, = 1(g1. g2)llF, =€ g1l coggsota + llg2ll prso+ass (8.8)

(note that ||a|| gso+e and ||g2|| gso+e+1 in (8.7) and (8.8) are the standard Sobolev norms,
without ¢). For (a, i) € E; and g = (g1, g2) € F,, we define

Sj(a’ 7’Nt) = (Sjla7 Sjsﬁ)’ S]g = (S;:glv Sng)a (89)

where S¢, S} are the crude Fourier truncations &|§| < 2/, |§| < 2/ respectively, namely

spf@= 02 [ fedtras sirm=en [ et e
el§|<27 |E] <2/
Thus S; in (8.9) satisfy all (A.2)—(A.8) with constants independent of ¢.
We consider the operator @ defined in (7.10). The ball (7.28) becomes

(@, @) g, < p2. (8.10)

For all (a, 1) in the ball (8.10), by (7.29) the linearized problem P’ (a,u)(b, h~) = g has the
solution (b, &) =: W(a, u)g, which satisfies, for all a > 0,

19 (a,iD)gll £, S5 7T 2DIP( gl gy + 1@ D) £y 15 1€ 7o) (8.11)

where we assume that so > 1 and 5o > d /2. The second derivative of dis

P"(u)[hlyhz])

(2. @)[(br. ). (b2, )] = ( 0

whereu =°ST;ca+uand h; =e°ST;b; + l;l-, i =1,2.By (7.35) and (8.8), for (a, i)
in the ball (8.10), one has, fora > 0,
19" (a, i) [(by. 1) (b2, h2)]l
= 2 P () [hr. o)l o e
S &7 TR by, ) || By (B2, F2) [ 6
+ 1b1. Al £ I (b2 2) | £,
+ 1@, )| £y (b1 A1) | £, | (b2, B2) || £ }- (8.12)

Hence & satisfies the assumptions of Theorem A.1 with

ap=0. p=ar=2, B=a=s0+3>4 ay>26-2.
U={(@i)eEs:|(ai)lg <ps}, 6 =p2 Ms(a)=Ls@a)=0,
Mi(a) = My(a) = Cpe 0 THd/2=00)/p

(8.13)
Ll(a) = Lz(a) = Caga_(1+d/2_aa)/P.
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For any function ag = ag(x) € H*°TA+1(R¥), the pair g = (0,a9) € Fpg trivially satisfies
the first inequality in (A.12) with A = 1 (in fact, the inequality is an identity), because ag
does not depend on the time variable. Hence, by Theorem A.1, for every g = (0, ag) in
the ball
llaoll gso+s+1 = lIgllF, <6, (8.14)
with
§ = C8—U+(1+d/2—aa)/p (8.15)

given by (A.14), there exists (a, ) € E, such that &3(a, u) = &D(O, 0) + g = (0,a9). By
(7.10), this means that a = ap and the sum u = €% $ T cag + u solves the nonlinear Cauchy
problem (5.7) on the time interval [0, 7] with initial datum u(0) = uo = &% T ca0. By
(A.13),

I(a. @)l < CeoUHe/2=00IP|jg| g,

namely
&% llaoll grso+s + 8_d/2||fl||C€1H;vo+/3 = Ce%llagl gso a1,

whence
~ d/2
||u”C§H§°+B = Ceotd/ ||aO||HSo+ﬂ+1‘

All ||lag|| gso+8+1 < 1 belong to the ball (8.14) if 1 < §, and this holds for ¢ sufficiently
small if
14+d/2—o0,
o> ———.
p

The higher regularity part of Theorem 3.5 is also deduced from Theorem A.1.

Finally, given s; > max{6, d + 4}, we define s¢ := (s; — 4)/2, so that so >
max{1, d/2}, and the proof of Theorem 3.5 is complete.

Remark 8.1 (Confirmation of the heuristics discussion of Section 2 in Theorem 3.5).
The radius § given by the Nash-Moser Theorem A.1 is the minimum among 1/L, /L,
1/(L2M); here (see (8.13)) these three quantities are all of order ¢~@+(1+4/2=0w)/p 1y
particular, the “quadratic condition” § < 1/(L?M), coming from the use of the second
derivative ®”(u) in the Nash-Moser iteration, does not modify §. This is a confirmation
of the heuristic discussion of Section 2.

For completeness, now we perform the same analysis in the case p = 1. We consider
the same function spaces (8.1)—(8.6) as above, but now we use norms (7.30) on E,, namely
(see also (7.17))

_l_d/2||1/~t

(2, @)lle, := & [lall gsota + & 1 oo+ (8.16)
& &

and, on F,, we define

gl = lI(g1. 82)ll %,

= £ g1 | o pyrota + |82l eosa. 8.17)
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By (7.32), (7.33), and (7.36), for (a, it) in the ball

@@ ®)lle, = p2,

for a > 0 one has

1% d)glle, Ss €2 (gllg, + 1@ )llgy0 181l 7)
and
1" (a, i6)[(b1. h1). (b2, h2)] |l 5,
= & 7P @)k, ko]l o gyso+a
s 81_0{||(b1?ﬁl)||8a+1 (b2, h12) &,
+ (b1, )l (b2, 2 g
+ [l D) llg, ., |01, 711) [, 1 (b2, 712) 16, }-

Hence & satisfies the assumptions of Theorem A.1 with

ap=0, pu=a1=2, B=a=s0+3>4, ar>2p-2,
U={(au) € Ex:|(an)le, = p2}.
81 =p2, Ms(a) = L3s(a) =0,
Mi(a) = Ma(a) = Coe'™,  Li(a) = La(a) = Coe 07174/,

Hence, by Theorem A.1, for every g = (0, ap) in the ball

laoll grso+p+1 = lIglly <6

with
§ = Cs_“+l+d_2‘7“

1083

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

given by (A.14), there exists (a, i) € E4 such that &)(a, u) = (0,a9). By (A.13), the solu-

tion (a, 1) satisfies
~ —1—d
I(a.)]lg, < Ce” T 1742 g||g, .

namely
&7 |laoll gso+8 + S_d/2||ﬁ||C€1H;o+ﬂ = C80+0”_d/2||30||1130+ﬁ+l,

whence
||ﬁ||C51H;O+ﬂ = Ceoton ”aOHHSoHHl-

All |lag|| gso+8+1 =< 1 belong to the ball (8.21) if 1 < §, and this holds for ¢ sufficiently

small if
o>14+d—-20,.
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A. Nash-Moser-Hormander implicit function theorem

In this section we state the Nash—Moser—Hormander theorem of [1].
Let (Eg)a>0 be a decreasing family of Banach spaces with continuous injections
Eb —> Ea,
lulle, < llullg, fora <b. (A.1)

Set Eco = (),>0 Ea with the weakest topology making the injections Eo, < E, contin-
uous. Assume that there exist linear smoothing operators S;: Eg — Eo for j =0,1,...,
satisfying the following inequalities, with constants C bounded when a and b are bounded,
and independent of j,

ISjulle, < CllullE, for all a, (A2)
I1Sjullg, < C2/C~|S;ullE, ifa <b, (A3)
lu — Sjulg, < C277@ |y — S;ullg, ifa > b, (A4)
1(Sj 41 = Spullg, < C27O"D|(Sj41 = Spullg, foralla,b. (A5
Set

Rou := S1u, Rju = (Sj.:,.] - Sj)u, j =1 (A.6)

Thus
IRjullg, < C27® 9| Rju|g, foralla,b. (A7)

Bound (A.7) for j > 1is (A.5), while, for j = 0, it follows from (A.1) and (A.3). We also
assume that

o0
lul, < C Y IIRulF, foralla >0, (A.8)
Jj=0

with C bounded for a bounded (the “orthogonality property” for the smoothing operators).

Suppose that we have another family F, of decreasing Banach spaces with smoothing
operators having the same properties as above. We use the same notation for the smoothing
operators.

Theorem A.1 ([1]). (Existence) Let ay, az, o, B, ao, L be real numbers with
0<ag<up<a, a1+§<a<a1+,3, 20 < ap + as. (A.9)

Let U be a convex neighborhood of 0 in E,. Let ® be a map from U to Fy such that
®:U N Eqyy — Fyisof class C? forall a € [0, az — ], with

12" . wlllr, = Mi@ V]| Eayy 1wl Eay + 101 £y W11 Eay,)

FAM(@lul goy, + Ma(@) V] £, W]l £y (A.10)
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forallu e UN Eqy,, v,w e Eqqy, where M;2[0,a, — u] — R, i = 1,2, 3, are pos-
itive, increasing functions. Assume that ®'(v), for v € Eo N U belonging to some ball
lvllE,, <381, has a right inverse W(v) mapping Foo to Eq,, and that

W()glle, = Li(@)gllF, 50
L2 (@)l £,y + L3@]lgllr, foralla € lar,az], (A1)

where L;:[ay,a2] — R, i = 1,2, 3 are positive, increasing functions.
Then for all A > 0 there exists § > 0 such that, for every g € Fg satisfying

(o)
Y IRiglE, < Alglz,. lgllr, <3, (A.12)
j=0

there exists u € Ey solving ®(u) = ®(0) + g. The solution u satisfies
lulle, < CL123(a2)(1 + A)llgllF,. (A.13)

where L1335 = L1 + Ly + L3 and C is a constant depending on ay, as, o, 8. The constant
S is
§=1/B,

, (A.14)
B = C'Lizs(az) max{1/81,1 4+ A, (1 + A)L123(a2)Mi23(az — 1)},

where M123 = M1 + My + M3 and C' is a constant depending on a1, az, «, f.

(Higher regularity) Moreover, let ¢ > 0 and assume that (A.10) holds for all a €
[0,az + ¢ — ], W(v) maps Foo to Eq,+c, and (A.11) holds for all a € (a1, az + c].
If g satisfies (A.12) and, in addition, g € Fg. with

o0
Y olIRglF,,, < A2lgllF,,. (A.15)
j=0

for some A., then the solution u belongs to Ey+ ., with

]l Eose = Cel1(1+ AlgllFy + G2(1 + A)lIgl g, - (A.16)

where

91 1= L3+ Lia(LsM1 + Lizs(a2)M3)(1 + 2V), 9 :=Lip(1 +2Y),  (A17)
z 1= L123(a1)Mi123(0) + L12 M2, (A.18)
Lin:=Li+ Ly Ly :=Li(ax+c¢), i =1,2,3; M5 := My + My, M; := M;(ap +

¢c—w), i =1,2,3; N is a positive integer depending on ¢, ay, o, 8, and C,. depends on
ai, az a, p, c.
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B. Commutator and product estimates

In the next lemmas we give “asymmetric” inequalities for the Sobolev norm of commu-
tators and products of functions on R, with W”* norms (m integer) on one function
and H* norms (s real) on the other function. Estimate (B.1) is related to the Kato—Ponce
inequality (see e.g. [2, 3, 8]), but it is not clear how to deduce (B.1) directly from Kato—
Ponce. Hence we give here a proof of (B.1), entirely based on well-known estimates.

Lemma B.1. Let s > 0 be real, and let m be the smallest positive integer such that m > s.
Then there exists Cy such that

A% (uv) —uAvll2 < Cs(ullwree vl + llullwmeellv]lL2) (B.1)

forallu € W™ (R%), allv e H*"Y(R?) N L2(R?). The constant Cy is increasing in s,
and it is bounded for s bounded.
The same estimate holds with A® replaced by A*~19%, |a| = 1, namely

IA*T185 (o) —uA " 9%v L2 < Collullwr [0l s + lullwmee 0] L2).  (B.2)

Proof. We use the standard paraproduct decomposition uv = T,,v + (u — Tp,)v (following
Métivier [9]), and split

A (uv) —ul®v = [A°, TyJv + A°((u — Ty)v) — (u — T,) A’v.
The commutator [A®, T,] satisfies
7. ATl = Collullwreo [Vl s (B.3)
by [9, Theorem 6.1.4]. The second term satisfies
IA* (e = Tu))llz2 = I = Tu)vllas < 1w = T)vlam < Callullwmeellvlz (B.4)

by [9, Theorem 5.2.8]. By duality, the third term is also bounded by the right-hand side of
(B.4): for all h € L?, by Cauchy—Schwarz,

(= TA v h)2 = (0, A (= To) h)g2 < [ollp2ll(u — To) k| s

< lolle2 M = T)*hllgm.
where (u — T,)* is the adjoint of (u — T,,) with respect to the L? scalar product. Split
(w—T)" = " = Tyus) + (Tux — (Tw)"). (B.5)
The first component in the right-hand side of (B.5) satisfies

1™ = Ty )Rl gm < Cllu* llwmeollhliLz = Cllullwmes Al 2
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by [9, Theorem 5.2.8]. The second component in the right-hand side of (B.5) satisfies
1(Tur = (T)")hllam < Cllullwmoe ||7] 12
by [9, Theorem 6.2.4]. Hence ||(u — T,,)* k|| gm is bounded by Cy, ||u||wm.« ||| 12, and
(=T)A v h)2 < CllullwmevlL2lh] L2
for all A € L2. This implies that
[ — T)AvlL2 < Callullwmee|lvllLz. (B.6)

The sum of (B.3), (B.4), and (B.6) gives (B.1).
Similarly, one proves that (B.3), (B.4), and (B.6) also hold with A® in the left-hand
side replaced by A*719%, |a| = 1. Then (B.2) follows. n

Lemma B.2. Lets > 0 be real, and let m be the smallest positive integer such that m > s.
Then

luvllas < 2[ullLeellvllzs + Csllullwme vl (B.7)
for all u € W™m(R?), all v € H*(R?). The constant C is increasing in s, and it is
bounded for s bounded.

Moreover, forall0 < e < 1,
luvlag < 2lullzellvllas + Csllullymellv]lL2 (B.8)
with the same constant Cs as in (B.7) (in particular, Cy is independent of €).
Proof. By the triangular inequality and (B.1),
luvllas = [A° @)Lz < A (o) —uA’vl2 + [uA’v] L2
< Cs(lullwree vl gs—1 + llullwmesllv]lL2)
+ llulloe vl g (B.9)
By standard interpolation, with A = 1/m, for all K > 1 one has
w1l =1 < Nl 2 o ipmoo 1012 10 s

1 -
= E(”“”LWHUHHX)I ullwmos 0] prs-m K™)*

1
= g Uulizellvllas + llullwmee[vllzs-n K™)

1 —
= g lullizelvlas + K™l wmoo|v]| 2

(JJv]|gs—m < ||v]||2 because s —m < 0). We fix K larger than or equal to the constant Cy
in (B.9), and we obtain (B.7).

Inequality (B.8) is a straightforward consequence of (B.7), (4.4), (4.11), and the trivial
rescaling identity for the product R, (uv) = (R.u)(R.v). |
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Remark B.3. Let s, m be as in Lemmas B.1, B.2. Then m < [s] 4+ 1, where [s]

1088

is the

integer part of s (it is m = [s] for s a positive integer, and m = [s] 4+ 1 otherwise). As a

consequence, (B.1), (B.7), and (B.8) hold with [s] + 1 in place of m.
We prove here some elementary inequalities that we have used above.

Lemma B.4. For every real s > O there exists Cs > 1 such that

(a +b)° <2a* + Csb®  foralla,b > 0.

The constant Cs is increasing in s, with Cs = 1 for 0 <s < 1, and Cs — co as s — o0.

Proof. For b = 0 the inequality is trivial. For b > 0, divide by »* and set A = a/b. The
inequality holds with best constant C; = max{(1 + A)* —2A% : A > 0}, whichis C; = 1

forO<s<l,andCs; =2- (Zﬁ — l)_(s_l) fors > 1.
Lemma B.5. For every s > 0 there exists Cs > 1 (increasing in s) such that

(1 + (@ +b)>°* <4 +a®>* + Csb* foralla,b > 0.
Proof. Forall A > 0 one has 2ab = 2(aA'/?)(bA~1/2) < a®A + b2/ A, whence

1+a?+2ab+b2<1+a>(1+1)+b>(1+1/1)
<(14+a®>(1+1)+b>1A +1/1).

By Lemma B .4,

(14 (@+b)>° <201+ 1)U +a*)* + Cs(1 + 1/1)°b%.

Then we fix A = 21/ — 1, so that (1 + A)* =2and (1 + 1/1)* =22/ —1)~5,

In the proof of Lemma 7.1 we have used Lemma B.5 in the form
(1+ 101 + 2[nll&] + [&]*)° < 401+ [nP)* + Csléol>,  n.& € RY.
Also, by (B.10) one directly proves the inequality
luvlias < Csollullaso |vlias + Csllullas vl

for s > 0, so > d/2, which, by rescaling, implies inequality (4.13).

Lemma B.6. For all s > 0 real, all functions u, v on ]Rd, one has

ludxvll st Ss llullLoellvllas + llullwsrc vz,

luedxvlge-r s lullrellvlias + llul g vz,

where 0, denotes any 9%, |o| = 1.

(B.10)

(B.11)

(B.12)
(B.13)
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Proof. Write udv as dyx(uv) — (dxu)v. For s > 0, by (B.7) and Remark B.3,
10x o) [[gs—1 < lluvllas <s [ulleellvlias + [ullwm+rellvllLe. (B.14)
For s > 1, by (B.7) and Remark B.3,
[@x) vl ps—1 Ss [0xullzeevlps—1 + 0xullps-r+10 0] L2
Ss ullwis vl gs—1 + [ullwisiie 0] L2, (B.15)
while for0 < s <1,
[@xw)vgs—1 < [|@xu)vllL2 < |0xullzee o]z < ullwreo V] 2. (B.16)

The sum of (B.14) and (B.16) gives (B.12) for s € [0, 1]. For s > 1, the sum of (B.14) and
(B.15) gives (B.12) because, by interpolation,

lullwroe vl gs— < Nullellvllas + lullpsers [Vl gs-1-1

and ||v|| gs-1-11 < ||v]|L2. Inequality (B.13) can be proved similarly, or it can be deduced
from (B.12) by rescaling. ]

Lemma B.7. Forall s > 0 real, one has
1A% uloxvlirz s llullwrsllvlias + lullpsecollvllze. (B.17)
IAG uledxvlizz s lullypeellvllas + lull sz vllze, (B.18)
where 0y denotes any 0%, |a| = 1.

Proof. Write
[A%, u]dxv = [A®0x, u]v — A°((0xu)v).

By (B.2), ||[[AS0x, u]v|z2 is bounded by the right-hand side of (B.17); by (B.7),
[|(3xu)v|| gs is bounded by the right-hand side of (B.17). Thus (B.17) is proved. Inequality
(B.18) follows from (B.17) by rescaling. [

Lemma B.8. Foralls > 0, sg > d/2, one has
1A% ulvlle Ss Nullgsotrlvllgs—1 + lullas vl mso, (B.19)

IAG ulvllz2 <s éz“_d/z(llullﬁ,;w1 ol = + llullzg vll g2 (B.20)

The same inequalities also hold for A*~19%, A571ed%, |a| = 1, in place of A*, A3 respec-
tively.

Proof. In the Fourier transform of [A®, u]v one has 1 (§)v(n)o (£, ), where

o) =E+n =M =1+ [+ -1+ P2

For |£] < %|n| one has |0 (£, n)| <s (n)*"1|€|, leading to the term |[u| gso+1 ||V gs—1 in
(B.19). For |n| < 2|&| one has |o (&, n)| <s (£)°, leading to the term |u| gs||v|Fs in
(B.19). Inequality (B.20) follows by rescaling. ]
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Lemma B.9. For all s > 0 real, all functions u, v on R4, one has

udxvllgs—1 s llullmsolvlias + lullas|[vlaso
+ lullgsorr (vl s + lvllz2), (B.21)
—d/2

luedcvll g1 <5 &=l oo v llzz + lellzzg 01l 20

+ lull ot (0l g1 + lIvll22)} (B.22)
where 0y denotes any 9%, |a| = 1.

Proof. We adapt the proof of Lemma B.6. Write 0, v as dx (uv) — (dxu)v. For s > 0, by
(B.11),
[0x o)l -1 < lluvlles Ss Nullmsolvlias + llullaslvllaso. (B.23)

Fors > 1, by (B.11),

[(@x)vllgrs—1 Ss 0xullmso [Vl gs— + [10x1l| s [0 2o

Ss lullgsorr vl s + ullgs vz, (B.24)

while for0 < s <1,
[@xw)vllgs—1 < |@xw)vliL2 < [xullelvllLz S fullgsorrllv]iL2. (B.25)
Inequality (B.22) is deduced from (B.21) by rescaling. ]

Lemma B.10. For all s > 0 real, one has

A% uldxvlLe Ss lullgsorrlvllas + el gssillvllzso. (B.26)

A wledxvliLe S5 &2l sori 10lzs + el s [Vl o) (B.27)
where 0y denotes any 0%, |a| = 1.

Proof. Write [A®,u]0xv = [A0x,u]v — AS((dxu)v). By Lemma B.8, ||[A®0y, u]v||2 is
bounded by the right-hand side of (B.26); by (B.11), ||(dxu)v| gs is also bounded by the
right-hand side of (B.26). Thus (B.26) is proved. Inequality (B.27) follows by rescaling.

(]
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