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On hysteresis–reaction–diffusion systems:
Singular fast-reaction limit derivation and

nonlinear hysteresis feedback

Klemens Fellner and Christian Münch

Abstract. This paper concerns a general class of PDE–ODE reaction–diffusion systems, which
exhibits a singular fast-reaction limit towards a reaction–diffusion equation coupled to a scalar hys-
teresis operator.

As applicational motivation, we present a PDE model for the growth of a population according
to a given food supply, coupled to an ODE for the turnover of a food stock. Under realistic conditions
the stock turnover is much faster than the population growth, yielding an intrinsic scaling parameter.
We present two natural models of consume rate functions such that the dynamics for the food stock
converges to a generalised play operator in the associated fast-reaction limit. We emphasise that
the structural assumptions on the considered PDE–ODE models are quite general and that analogue
systems might describe e.g. cell-biological buffer mechanisms, where proteins are stored and used
at the same time.

Finally, we present a new kind of hysteresis–diffusion-driven instability behaviour caused by
the nonlinear coupling between a reaction–diffusion equation and a scalar generalised play oper-
ator. We discuss in detail how this coupling with a generalised play operator can lead to spatially
inhomogeneous large-time behaviour or equilibration to a homogeneous state.

1. Introduction

This paper is concerned with the nonlinear dynamics created by the coupling of a spatially
distributed population with a spatially homogeneous stock and the corresponding fast-
reaction limit. Let the population be described by a density v.t; x/ depending on time
t � 0 and position x 2� within a sufficiently smooth domain� � Rd , d 2 ¹1; 2; 3º. The
total number of individuals is then given by

N.t/ WD
Z
�

v.t; x/ dx; t � 0:

Note the convention that small letters like v.t; x/ are used for spatial densities and indi-
vidual rates, while capital letters like N.t/ denote total amounts.
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The population is assumed to have equal access to an external food supply in terms
of a given nonnegative function F.t/ � 0. Alternatively, the population can also resort to
food stored in a common stock S.t/ � 0. The time change of the stock is the difference
between the food supply F and the total food consumption of the population. The food
consumption of each individual is modelled as a nonnegative, locally Lipschitz continu-
ous, food consumption rate c D c.S;N; F / to be detailed later:

" PS D F �Nc.S;N; F / D .F �Nc.S;N; F //C � .F �Nc.S;N; F //�; (1)

S.0/ D Sin � 0; (2)

where " � 1 denotes the timescale of the stock turnover compared to the population
dynamics and .F �Nc/C and .F �Nc/� denote the usual positive and negative parts.

Equation (1) implies that the population stocks the entire unconsumed food: a some-
what idealistic assumption. The stock loss .F �Nc/� requires a quasi-positivity condition
in order to ensure that stock levels calculated from (1) remain nonnegative, i.e. whenever
the stock is empty S D 0, then

.F �Nc.0;N; F //� D 0 for all .N; F / 2 .RC/2: (3)

Hence, (3) imposes a weak structural constraint on admissible consumption rate functions
c.S;N; F /.

The growth/decline of the population is described by a growth rate �.S;N; F / of the
form

�.S;N; F / D ƒ
�c.S;N; F /

cmin
� 1

�
; (4)

where ƒWR 7! R is a strictly monotone increasing, locally Lipschitz continuous function
with ƒ.0/ D 0 and cmin denotes the minimal individual consumption required for the
population not to decline.

Note that c and � are assumed spatially homogeneous not only for the sake of the
clarity of the presentation but also in view of the hysteresis–diffusion-driven instability,
which concerns exactly the destabilisation or stabilisation of a spatially homogeneous
large-time dynamics. Note that generalisations to spatially inhomogeneous consumption
and growth rates are quite straightforward; see Remark 6 below.

For T > 0, the dynamics of the population is modelled by the following (nonlinear)
PDE:

@tv �D�v D �.S;N; F /v in Œ0; T � ��; (5)

@�v D 0 on Œ0; T � � @�; (6)

v.0/ D vin � 0 in �; (7)

where D is a positive diffusion coefficient and � the outer unit normal. Note that (5)–(7)
entail the evolution of the population size N.t/:

PN.t/ D �.S;N; F /N.t/ in Œ0; T �; N.0/ D Nin WD
Z
�

vin.x/ dx > 0: (8)
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Under natural assumptions, yet without requiring any further details on c, the first
result of the paper proves existence of strong solutions.

Theorem 1 (Local/global existence and uniqueness of solutions to (1)–(8)). For T >

0, consider a nonnegative food supply 0 � F.t/ 2 W1;1.0; T /. Assume a nonnegative,
locally Lipschitz continuous consumption rate c.S; N; F /W .RC/3 7! R, which satisfies
(3) and extends to a continuous and locally Lipschitz continuous function on R2 � RC.
Assume nonnegative initial data 0 � Sin and 0 � vin 2 ¹v 2 H2.�/ W @�v D 0 on @�º with
positive initial population size 0 < Nin.

Then, for any " > 0, the PDE–ODE system (1)–(8) has a unique local solution .v; S/
with

S 2 C1.Œ0; T �/;

v 2 C
�
Œ0; T �IH2.�/� \ C

�
.0; T �IC2;ˇ .x�/�

\ C1
�
Œ0; T �IL2.�/� \ C1

�
.0; T �IC0;ˇ .x�/�;

which extends globally in time provided that c.S;N;F / (and thus �.S;N;F /) is bounded
along solutions. Note that any Hölder exponents 0 < ˇ < 2 � d

2
can be chosen by taking

s arbitrarily close to 2 in the Sobolev embedding Hs.�/ ,! C0;ˇ .x�/; see proof.
Moreover, solutions to (1)–(8) are nonnegative: .v.t; x/; S.t// � 0 for all t 2 Œ0; T �,

x 2 x�.

The main aim of this paper is to rigorously perform the singular fast-reaction limit
"! 0. Indeed, system (1)–(8) may serve as a simplified model for a human or animal
population, which maintains a stock, such as termites, for instance. Populations typically
reproduce on a timescale of months/days, yet stock turnover happens on a timescale of
hours/minutes, which implies " D O.10�3/. Alternative applications stem from cell bio-
logy, where the stock serves as a simple model for a buffer mechanism, which acts to
stabilise the concentration of a substance within certain limits; see e.g. [3, 20]. While the
separation of timescales in cell biology might be less strong, it is still required for such a
buffer mechanism to function.

All other ingredients in system (1)–(8) are set in a very simple way: a spatial homo-
geneous growth rate; a spatial homogeneous stock and food supply assuming e.g. that
the population balances inhomogeneities sufficiently fast to render them negligible; lin-
ear diffusion with a spatial homogeneous diffusion constant as the simplest model for
the mobility of the population within a fixed domain without influence of the homogen-
eous food supply. All of these model aspects could certainly be made more realistic when
focussing on a particular application and we refer to Remarks 5 and 6 that the results of
this paper generalise to many more complicated systems.

Theorem 3 below proves that solutions to system (1)–(8) converge – under natural
assumptions on the consumption rate c – in the limit "! 0 to solutions .v0; S0/ to a PDE
for v0 coupled to a hysteresis operator for S0. The hysteresis operator is a generalised play
operator, where admissible states are formed by the graphs of two nondecreasing curves,



K. Fellner and C. Münch 1170

S

f
cmin

Smax

U

c > f

" PS < 0 PS D 0
c D f

" PS > 0
c < f

L

Figure 1. An f –S phase-space diagram of a consumption rate c yielding in the limit "! 0 a stock
dynamic satisfying a generalised play operator with upper and lower threshold functions U and L.

which may partially overlap; see e.g. [28, Section III.2] or Theorem 3 below for a precise
definition as variational inequality. In order to emphasise that Theorem 3 holds for a large
class of consumption rates c, we specify here only the structural assumptions which are
required to prove Theorem 3 and postpone the details of two examples of consumption
rates to Section 2: first we rewrite the stock dynamics (1) in terms of the individual food
supply f D F=N , i.e.

" PS D N.f � c/; f .t/ WD F.t/

N.t/
;

and remark that f .t/ is well defined since (8), (4) and the properties of ƒ imply PN �
�jƒ.�1/jN and the "-independent a priori estimate

N.t/ � Nin exp.�jƒ.�1/jt / > 0; t � 0: (9)

Then Theorem 3 assumes the existence of a connected, closed area of the f –S phase
space, where the consumption rate c equals the individual food supply f and the stock
remains unchanged PS D 0. In Figure 1 we plot an according, prototypical partition of the
f –S phase space in the case that there exists a maximal stock level Smax. This area where
c D f is given in terms of upper and lower threshold functions U.f / and L.f /. Note that
the area where c D f may also include one-dimensional lines as shown in Figure 1.

In terms of modelling, the existence of such an area means that the individual food
consumption follows – within limits – the individual food supply, by psychological factors
and/or by biological factors like metabolic adaptation due to starving/fasting; see e.g.
[2, 19, 26].

Furthermore, we consider consumption rates c, which are strictly larger than f to the
left of U because individuals supplement the (too) low food supply f by resources of
the stock, i.e. " PS < 0 until the stock is depleted. On the other side, to the right of L, we
suppose c < f and the stock is increased by surplus food, i.e. " PS > 0 until Smax is reached.
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As depicted in Figure 1, we assume that the threshold functions U and L depend on the
individual food supply f .

Assumption 2 (Admissible consumption rates c for hysteresis limit). Suppose a nonneg-
ative, locally Lipschitz continuous consumption rate c.S; N; F /, which (i) is bounded in
N (a natural assumption for an individual rate), (ii) exhibits two locally Lipschitz con-
tinuous, monotone increasing threshold functions U.f / and L.f / with a nontrivial area
U.f / > L.f / and (iii) takes corresponding values c > f , c D f and c < f as sketched
in Figure 1. Moreover, assume that there exists an ("-independent) maximal stock level
Smax along solution trajectories.

We emphasise that Assumption 2, in particular the bound Smax, together with the
assumptions of Theorem 1, in particular F.t/ 2 W1;1.0; T /, and (9), ensures that such
a consumption rate c.S; N; F / is bounded independently of " along the corresponding
solutions, which thus extend globally in time.

For the sake of clearly denoting the limit "! 0, we use in the following "-subscripted
names for solutions to (1)–(8) with " > 0, i.e. v", N" WD

R
�
v" dx, S" and f" WD F=N".

Theorem 3 (Singular limit to PDE–hysteresis system). Suppose the assumptions of The-
orem 1 and Assumption 2. The following PDE–hysteresis system admits a unique solution
.v0; S0; N0/ with f0 WD F=N0:

@tv0 �D�v0 D �.S0; N0; F /v0 a.e. in .0; T / ��; (10)

@�v0 D 0 a.e. in .0; T / � @�; (11)

v0.0/ D vin a.e. in �; (12)

S0.0/ D min
®
max¹L.f0.0//; Sinº; U.f0.0//

¯
; f0.0/ D F.0/=N0.0/; (13)

PS0.t/.S0.t/ � z/ � 0 for all z 2 ŒL.f0.t//; U.f0.t//� a.e. in Œ0; T �; (14)

S0.t/ 2 ŒL.f0.t//; U.f0.t//� in Œ0; T �; (15)
PN0.t/ D �.S0; N0; F /N0.t/ in Œ0; T �; N0.0/ D Nin: (16)

Here, (13)–(15) identify S0 as a generalised play operator with input f0 for the curves U
and L and (16) follows from integrating (10).

Then, for all T > 0 and 2 � q <1, v0 has the same regularity as u" in Theorem 1
and S0 is in W1;1.0; T /. Finally, in the limit "! 0,

u" ! v0 in W1;q.0; T IL2.�// \ Lq.0; T IH2.�// and S" ! S0 in Lq.0; T /

and S".t/ and S0.t/ are uniformly bounded in t and " by S".t/; S0.t/ � Smax for all
t 2 Œ0; T �, for all " > 0.

Remark 4 (Remarks on the existence and uniqueness of the limiting system). The exist-
ence and uniqueness of solutions to (10)–(15) is part of Theorem 3. Existence follows by
showing that a limit .v0;S0;N0/ of .v";S";N"/ solves (10)–(15). The limit S0 is a general-
ised play operator for the Lipschitz continuous curves U andLwith input f0 D F=N0. By
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[28, Chapter III.2, Theorem 2.2], this generalised play operator is a Lipschitz continuous
hysteresis operator from C.Œ0; T �/ �R to C.Œ0; T �/. An alternative existence proof uses a
fixed point argument similar to [21, Theorem 3.1]. Crucial for proving uniqueness is the
estimate N0.t/ � ı.T / > 0 for all t 2 Œ0; T �, which follows from (9). Hence, f0 D F=N0
is Lipschitz continuous and uniqueness of .v0; S0;N0/ follows with a Grönwall argument.

Remark 5 (Generalisation to reaction–diffusion-system/ODE–hysteresis models). The
semigroup based existence theory of Theorem 1 can be extended to nonlinear reaction–
diffusion systems (see e.g. [23, Chapter 6]), where the reaction terms describe nonlinear
interactions (like food competition) between different species. For m-species models, the
total population size is given by N.t/ DPm

iD1

R
�
vi .t; x/ dx, and we expect that analog-

ous results to Theorem 3 can be proven via similar arguments.

Remark 6 (Generalisation to spatially heterogeneous models). It is also quite straight-
forward to generalise Theorems 1 and 3 to x-dependent consumption and growth rates.
Considering spatially heterogeneous models can be interesting for many applications.
Note that models involving x-dependent consumption rates c have to be adapted in the
sense that all terms .f � c/ have to be replaced by some functional evaluating c, for
example by .f � R

�
vc dx=N/.

Then similar proofs to those stated in this paper also apply to spatially heterogeneous
models as long as all functions are sufficiently regular in x and satisfy the correct boundary
conditions. For spatially inhomogeneous growth rates �, we remark that the evolution
equation for N also needs changing, for instance,

PN.t/ D
Z
�

�.N.t/; F .t/; S.t/; x/v.x; t/ dx � �k�.N.t/; F .t/; S.t/; �/kL1.�/N.t/:

which generalises the important lower bound (9) for N" and N0 on Œ0; T � independently
of ".

1.1. Outline and related works

The proof of existence and regularity in Theorem 1 for the consumption and growth rate
functions c and � and for fixed " > 0 adapts well-known methods of semigroup theory
(see e.g. [14, 23]) and is postponed to the final Section 5. Excellent references to the
analysis of PDE–hysteresis systems are also the books [5,28]. More specific references to
the well-posedness of reaction–diffusion models with spatially distributed hysteresis are
[11,12], which were used to describe pattern formation of growing colonies of the bacteria
Salmonella typhimurium; see also [15, 16] for the underlying modelling of the hysteretic
interaction of nondiffusive bacteria and diffusive nutrients/proteins.

In Section 2 we present two heuristic consumption rate models and prove that they
satisfy the assumptions of Theorems 1 and 3. A first model for c supposes a bounded
maximal consumption. As a consequence the stock could build up arbitrarily large, violat-
ing the bound Smax in Assumption 2. However, Proposition 7 proves under weak additional
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assumptions (on the food supply F.t/ and/or the population dynamics in (8)) that the stock
remains bounded by a constant Smax along solutions. The second consumption rate model
ensures a finite maximal stock level by forcing arbitrarily large consumption (or waste) as
stock levels approach Smax.

In Section 3 we prove Theorem 3. The proof generalises ideas of a related previous
result of ODE–hysteresis system [18]. For further references on multi-scale systems and
hysteresis limits we also refer to [27] modelling rate-independent oscillations in molecular
dynamical systems and the book [17] and the references therein.

Section 4 studies numerical examples. A first example illustrates Theorem 3 and plots
a typical evolution of S.t/, N.t/ and F.t/ of the PDE-hysteresis system (10)–(15) (sim-
ulation video as supplementary online material). A second example is constructed in
terms of a simple nonlinear PDE–hysteresis model and illustrates that the shape functions
U , resp. L of the generalised play operator can decide between spatial homogenisation
or unbounded growth of spatially inhomogeneous Fourier modes, a phenomenon which
could be called hysteresis–diffusion-driven instability. While the presented hysteresis–
diffusion-driven instability is – to our knowledge – a newly described phenomenon, there
are related references on pattern formation in PDE–hysteresis systems in the context of
bacteria colony models [7, 9, 10, 13], describing population dynamics [24] and modelling
gravity fingering in porous media [25].

2. Two models of consumption rate functions

In Sections 2.1 and 2.2 we present two prototypical models for consumption rate functions
of the form c D c.S;N; f / with f D F=N , which each lead to a stock dynamic given by
a generalised play operator in the singular limit "! 0. In Section 2.3, we prove that both
satisfy the assumptions of Theorems 1 and 3. Since both consumption rates c.S; N; f /
are autonomous and only depend on time via the arguments S.t/, N.t/, f .t/, we will
suppress the time dependency in c.S;N; f /.

2.1. A bounded consumption rate function without stock limitation

The function c1.S; N; f / constitutes a prototypical model for a uniformly bounded con-
sumption rate, i.e. we postulate a maximal possible individual consumption rate cmax >

cmin (recall that a minimal consumption cmin > 0 is required for the growth rate � to be
nonnegative) such that

0 � c1.S;N; f / � cmax:

As a consequence, whenever f .t/ > cmax, not all food can be consumed and the stock
level S.t/ increases, which is thus potentially unbounded. However, Proposition 7 in Sec-
tion 2.3 establishes mild suitable assumptions on F.t/ and the population dynamics such
that S.t/ remains bounded by a constant Smax along corresponding solutions and thus
satisfies Assumption 2.
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Figure 2. The f –S phase diagram for the consumption rate function c1 without stock limitation.
The lines S D c�1de .f / and S D c�1st;1.f / separate the depleting, neutral consumption and storing
regimes.

We model c1.S; N; f / as the concatenation of three regions in the f –S phase plane
(see Figure 2), which we call the depleting, neutral consumption and storing regimes.
Note that while these three regions are characterised by the two variables .f;S/, the actual
values of c1 also depend on N .

We state first the regionwise definition of the consumption rate function c1 before
discussing the modelling details:

c1.S;N; f / D

8̂̂<̂
:̂
f C S

N
.1 � e�N.1�f=cde.S/// if f < cde.S/;

f if cde.S/ � f � cst;1.S/;

cst;1.S/ if f > cst;1.S/;

(17)

where

cde.S/ D
c1de S C cmin

S C 1 for some c1de 2 .cmin; cmax/ and c�1de .f / D
f � cmin

c1de � f
; (18)

cst;1.S/ D cst C cmaxS

1C S for some cst 2 .c1de ; cmax/ and c�1st;1.f / D
f � cst

cmax � f
: (19)

In the following, we explain the modelling hypothesis leading to the definitions (17),
(18) and (19).

Depleting regime. The depleting regime refers to the left-sided area of the f –S phase
plane, where the individual food supply f is close to cmin (or below) and the popu-
lation resorts to supplies from the stock, yet depending on the available stock level
S : we fix first an intermediate supply level c1de 2 .cmin; cmax/ and consider situations
where the individual food supply f satisfies

cmin � f � c1de < cmax;
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which means that the total population N is quite large compared to the available food
supply F . We then postulate an upper threshold of the depleting regime (i.e. the val-
ues of f above which the population stops using the stock) as a monotone increasing
function cde.S/ 2 Œcmin; c

1
de � as plotted on the left-hand side of Figure 2. If the stock

is empty, it is natural to set cde.0/ D cmin, which is the critical rate of consumption
below which the population declines. A prototypical choice for cde.S/ is the function
(18), which saturates at c1de in the limit S !1, yet any strictly monotone C 1 func-
tion connecting .cmin; 0/ and .c1de ;1/ will yield equivalent results. Note that c1de is the
asymptotically largest consumption rate below which the population enters the deplet-
ing regime. It can be interpreted as a model parameter for how carefully the population
deals with the stock.

In the depleting regime, the stock consumption for all S > 0 yields (recall (1))

" PS D �.F �Nc1/� D N
�
f � c1.S;N; f /

�
< 0; (20)

since we consider c1.S; N; f / > f for S > 0. In particular, we model c1 such that
" PS D �l.S; N; f /S for some positive, bounded C 1 rate function l.S; N; f /. Such
a model specifies that the population uses a diminishing stock more carefully in a
roughly linear way. We recall that for S D 0, we require

c1.0;N; f / D f

to satisfy the quasi-positivity condition (3) which means that the population cannot
take from an empty stock. This condition entails c1.0;N;cmin/D cminD cde.0/. Finally,
we wish for c1.S;N; f / to be continuous in all variables and increasing in S .

All these requirements are satisfied by the following prototypical model for a
consumption rate c1.S; N; f / in the depleting regime, which chooses l.S; N; f / D
1 � e�N.1�f=cde.S// � 1, i.e.

c1.S;N; f / D f C S

N
.1 � e�N.1�f=cde.S/// for f < cde.S/:

Storing regime. As second regime, we consider the reverse situation when the food supply
F is large compared to the total population N . To define this regime, we introduce an
individual consumption level cst such that

c1de < cst < cmax

and consider the situation when f � cst. Recall that f � cmax entails that not all food
can be consumed. However, depending on the current stock level S , we postulate that
the population decides to store food whenever the individual food supply f surpasses a
threshold value cst;1.S/ < cmax; cf. Figure 2. The storing threshold cst;1.S/ is modelled
(similarly to cde.S/) as a monotone increasing function of S such that

cst D cst;1.0/ � cst;1.S/ < cmax:
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One interpretation of cst, which then equals the storing threshold at empty stock, can be
as a model parameter of how optimistic the population feels for future food supplies.
Moreover, since not all supplied food can be consumed for f � cmax, it is natural to set
limS!1 cst;1.S/D cmax. Hence, a suitable heuristic choice for cst;1.S/ is (19), but yet
again any such strictly monotone increasing C 1 function will yield equivalent results.
Finally, a prototypical (and very simple) model for c1 in the storing regime is

c1.S;N; f / D cst;1.S/ for f > cst;1.S/;

which means that the individual consumption c1 saturates at the maximal level cst;1.S/

for all larger food supply rates f > cst;1.S/.

Neutral consumption regime. For a medium individual food supply, i.e.

cde.S/ � f � cst;1.S/;

we assume that the population decides neither to increase nor decrease the stock
(although it can be replenished). This is equivalent to saying that the food consump-
tion c1 adapts to the individual food supply f within those bounds. As mentioned in
the introduction, such behaviour might stem from psychological factors and/or bio-
logical factors like metabolic adaptation due to starving/fasting; see e.g. [2, 19, 26].
Altogether, we have " PS D 0, c1.S;N; f / D f in this regime.

2.2. An unbounded consumption rate function ensuring limited stock

As an alternative model to the previous bounded consumption rate, we propose a second
consumption rate c2.S;N; f /, which enforces a maximal stock level Smax > 0 via poten-
tially unbounded consumption. In this context, unbounded consumption can be interpreted
as an unlimited tendency to waste resources in view of a well-filled stock; a behaviour
which humans seem to indulge only too easily by forgetting that so many resources are
limited. As in the previous subsection, we distinguish three regimes and state the definition
of c2.S;N; f / before discussing the modelling:

c2.S;N; f / D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
f C S

N
.1 � e�N.1�f=cde.S/// if f < cde.S/;

f if cde.S/ � f � cst;2.S/;

fe�.Smax�S/C

Ccst;2.S/.1 � e�.Smax�S/C/ if f > cst;2.S/:

(21)

Depleting regime. We choose the same depleting regime and consumption rate as in Sec-
tion 2.1: for a c1de 2 .cmin; cmax/, we use cde.S/ as defined in (18) and call the depleting
regime all states such that f < cde.S/. In particular, this implies

c2.S;N; f / D f C S

N
.1 � e�N.1�f=cde.S/// for f < cde.S/:
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Storing regime. Considering a small population in comparison to the food supply in the
sense that f > cst for a cst 2 .c1de ; cmax/, we postulate (analogously to Section 2.1) a
threshold f D cst;2.S/, above which the population decides to store food in the stock.
Again, it is natural to model cst;2.S/ as monotone increasing in S . A simple choice for
cst;2.S/ which satisfies all our conditions is

cst;2.S/ D S C cst , c�1st;2.f / D f � cst: (22)

Finally, a maximal stock value Smax is ensured by assuming that the individuals con-
sume/waste the entire individual food supply f once the stock level S has reached
Smax. A model of a prototypical continuous consumption rate for f > cst;2.S/ is given
by

c2.S;N; f / D
´
feS�Smax C cst;2.S/.1 � eS�Smax/ if f > cst;2.S/ and S < Smax;

f if f > cst;2.S/ and S � Smax:

Neutral consumption regime. Identically to Section 2.1, for an individual food supply
cde.S/ � f � cst;2.S/, we have " PS D 0, c2.S;N; f / D f .

2.3. Properties of the consumption rate functions c1 and c2

The following Proposition 7 and Corollary 9 ensure that both consumption rate models
satisfy the requirements of Theorems 1 and 3.

Proposition 7 (A priori bounds on S for consumption rate function c1). For fixed T > 0
and Fmax WD maxt2Œ0;T �¹F.t/º, Fmin WD mint2Œ0;T �¹F.t/º, either assume

kF kC.Œ0;T �/ � �cmaxNin exp.�jƒ.�1/jT / for some � 2 .0; 1/ (23)

or assume Fmax, Fmin, the initial population size Nin and ƒ in (4) are such that´
0<Fmin�F.t/�Fmax for all t2Œ0; T �, with 
 WD Fmax

Fmin

cmin
cmax

<1 and Nin� Fmin
cmin

;

ƒ.x/ � lx for all x � �1, l � jƒ.�1/j: (24)

Then there holds 0 � S.t/ � Smax for all t 2 Œ0; T � and " > 0 with

Smax WD max
°
Sin;

�cmax � cst

cmax.1 � �/
±
; resp. Smax WD max

°
Sin;


 � cst
cmax

1 � 

±
:

Remark 8. Assumptions (24) allow us to identify an invariant region for .N; S/ of the
form N � Fmin

cmin
and S 2 Œ0; 
�cst=cmax

1�

�. Note that without lower bounds Fmin and Nin, the

populationN can become arbitrarily small and that without an upper bound Fmax the stock
can grow arbitrarily large arbitrarily fast as "! 0.

Proof of Proposition 7. Estimate (9) yields, independently of ",

N.t/ � Nin exp.�jƒ.�1/jT / DW ı.T / for all t 2 Œ0; T �, for all " > 0: (25)
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Thus, by assumption (23), F is uniformly bounded by �cmaxı.T /. Consequently, f D
F=N is uniformly bounded by f � �cmax for all t 2 Œ0; T �, for all " > 0. In the case that
�cmax � cst, it follows that PS � 0 in Œ0; T � since c1 � f holds for f � cst in (20). Hence,
S � Sin for all t � 0 and " > 0. Otherwise, in the case that �cmax 2 .cst; cmax/, we have
PS � 0 if f � cst;1.S/ while PS � 0 provided f � cst;1.S/D cstCcmaxS

1CS
. Only in the second

case, we estimate

0 � PS D N

"

�
f � cst C cmaxS

1C S
�

� N

"

�
�cmax � cst C cmaxS

1C S
�
D N.1 � �/cmax

".1C S/
� �cmax � cst

cmax.1 � �/ � S
�
;

which implies that S is uniformly bounded by S.t/�max¹Sin;
�cmax�cst
cmax.1��/

º for all t 2 Œ0;T �,
for all " > 0.

Alternatively, suppose assumption (24). SinceN in (8) decays only if c1 � cmin, which
by definition of c1 only happens if c1 � f also holds, we estimate in such situations that

PN D �N � ƒ
� f

cmin
� 1

�
N � l

� F
cmin
�N

�
� l

�Fmin

cmin
�N

�
;

where we have used ƒ.x/ � lx for some l � jƒ.�1/j. Otherwise N is nondecreasing.
Hence, we obtain independently of " that

N � min
°
Nin;

Fmin

cmin

±
D Fmin

cmin
for all t 2 Œ0; T �, for all " > 0; (26)

by the assumption onNin in (24). Together with the definition of 
 < 1 in (24), this implies
the estimate f � Fmax=Nmin � 
cmax, which is a sufficient condition to avoid that S grows
unboundedly in the limit " ! 0; see Figure 2. Moreover, we have PS � 0 only if f �
cst;1.S/ D cstCcmaxS

1CS
. Hence,

PS D N

"
.f � cst;1.S// � 1

"

�
Fmax � Fmin

cmin

cst C cmaxS

1C S
�

D Fmincmax

"cmin

�

 �

cst
cmax
C S

1C S
�
;

which implies independently of " that

S.t/ � max
°
Sin;


 � cst
cmax

1 � 

±
D max

°
Sin;


cmax � cst

cmax.1 � 
/
±

for all t 2 Œ0; T �, for all " > 0:

Note that in the case cmax
 < cst, we always have PS � "�1.Fmax � Fmin
cmin

cst/ � 0.

Corollary 9 (Admissibility of the consumption rate functions c1 and c2). Consider the
consumption rate models c1.S; N; f / as defined in (17) and with Smax as given by Pro-
position 7 or c2.S;N; f / as given in (21) with Smax as in the definition.
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Then c1 and c2 satisfy the assumptions of Theorem 1 and Assumption 2. Moreover,
with 0 < cmin < c

1
de < cst < cmax, we have as upper and lower threshold functions

U.f / D min¹Smax; u.f /º with u.f / WD max¹0; c�1de .f /º and c�1de .f / D f �cmin
c1de �f

D

8̂̂<̂
:̂
0; f 2 Œ0; cmin/;

2 .0; Smax/ strictly monotone increasing; f 2 .cmin; Qc/;
Smax; f � Qc;

(27)

where Qc WD Smaxc
1
deCcmin

SmaxC1
is the smallest value where u. Qc/ D Smax holds, and

L.f / D max¹0; l.f /º with l.f / WD min¹Smax; c
�1
st;i .f /º

D

8̂̂<̂
:̂
0; f 2 Œ0; cst/;

2 .0; Smax/ strictly monotone increasing; f 2 .cst; cst;i .Smax//;

Smax; f � cst;i .Smax/;

(28)

where c�1st;i .f / is given in (19) or (22) for i D 1; 2 and l.cst/ D 0.

Proof. In order to verify the assumptions of Theorem 1, we observe first that both con-
sumption rates c1 and c2 are piecewise C 1-functions as long as f is well defined, which
follows from (9), i.e.N.t/� ı.T / > 0 for t 2 Œ0; T � and all T > 0 independently of " > 0.
Moreover, c1 and c2 are locally Lipschitz continuous in the points where the functions
are glued together. Estimate (9) implies furthermore that c1 and c2 can be considered as
nonnegative, locally Lipschitz continuous in the variable F 2 W1;1.0; T / (instead f )
independently of ". Next, both c1 and c2 satisfy the quasi-positivity condition (3) by con-
struction and therefore all the assumptions of Theorem 1. Concerning Assumptions 2, c1
and c2 are bounded in N by construction. Likewise by construction, they satisfy all the
conditions concerning the threshold functionsU andL as defined in (27) and (28). Finally,
Proposition 7 guarantees the maximal stock level Smax.

3. Limit "! 0

This section is devoted to the proof of Theorem 3. For the sake of clarity, we will use
"-subscripted names for solutions to (1)–(8) with " > 0: v", N" WD

R
�
v" dx, S" and f" WD

F=N".
A main difficulty in the limit "! 0 are bounds lacking on the derivative PS". One key

method of proof is to introduce a projection operator p" onto the ("-independent) area
PS" D 0 in the f"–S" phase-space diagram; cf. [18]. In order to appropriately define this

projection p", we require a uniform-in-" bound on the stock level S".
The main advantage of the projection operator p" is to bypass the unbounded deriv-

ative of S" in the limit " ! 0. As sketched in Figure 3, the upper and lower threshold
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S"

f"cmin cstQc

Smax

u.f"/ l.f"/

PS" D 0
f" D c

PS" < 0
f" < c

PS" > 0
f" > c

S"

p"

p"

S"

S" D p"

Figure 3. The sign of the derivative of S" and projection to p" in the f"–S" phase diagram (for
example c2).

functions u.f"/ and l.f"/ which envelop the area PS" D 0 have finite slope. Thus, the
derivatives of p" are bounded in norm independently of " in terms of the regularity of its
driving input variable f".t/ D F=N", i.e. by F; N" 2 W1;1.0; T / since N" is bounded
below independently of " > 0.

Before we prove Theorem 3, we would like to illustrate in terms of Figure 3 that the
limiting stock S0.t/ evolves as a generalised play operator between the curves u and l
with input f0 D F=N0. Note that Figure 3 plots the case of c2 as defined in Section 2.2;
see also (27) and (28) for details.

Let f0 D F=N0 be a piecewise monotone function on some intervals Œt1; t2�;

Œt2; t3�; : : : � Œ0; T �; then S0 behaves according to the following cases. Consider f0.t1/ 2
Œ0; Qc/ and S0.t1/ D u.f0.t1//; then

for t >t1:

8<:S0.t/Du.f0.t// as long as f0.t/ decays monotonically in Œ0; f0.t1//;

S0.t/�S0.t1/ as long as f0.t/ varies within .u�1.S0.t1//; l�1.S0.t1///:

If the first case occurs and stops, it starts an instance of the second case. If the second case
stops left of the lower threshold l , i.e. f0.t2/ < l�1.S0.t1//, it starts a new instance of the
second and possibly the first case. We consider rather the new behaviour, which occurs
when the second case stops at S0.t1/ D l.f0.t2// for f0.t2/ � cst. Then we have

for t >t2:

8<:S0.t/D l.f0.t// as long as f0.t/ increases monotonically in .f0.t2/; f0.t3/�;

S0.t/�S0.t2/ as long as f0.t/ varies within .u�1.S0.t2//; l�1.S0.t2///:

If the first case occurs and stops, it starts the second case. The stopping of the second case
at the upper threshold function u, i.e. S0.t2/D u.f0.t3//, leads back to the first set of two
cases with f0.t3/ 2 Œcmin; Qc�.
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Proof of Theorem 3. We consider a sequence of " > 0 which tends to zero. We recall that
Assumption 2 implies uniform bounds of S".t/ in " and t , i.e.

S".t/ � Smax > 0 for all " > 0, t � 0;
and that Proposition 7 proves this for the consumption rate example c1, while such uni-
form bounds are true for c2 by construction. Moreover, by Theorem 1, S" is nonnegative
independently of ".

Let p".S"; N"; F / be the following projection operator in the f"–S" phase space, cf.
Figure 3:

p".S"; f"/ WD

8̂̂<̂
:̂
l.f"/ if S" � l.f"/;
u.f"/ if S" � u.f"/ and f" � Qc, where u. Qc/ D Smax;

S" otherwise.

(29)

Note that 0 � S" � Smax implies 0 � p" � Smax. In particular, p".S"; f"/ D 0 < S" fol-
lows from downwards projections, whereas p".S"; f"/D Smax >S" follows from upwards
projections.

We divide the proof of the theorem into six steps.

Step 1: Boundedness of N" and p" in W1;1.0; T / independently of " > 0. As re-
marked in the introduction, Assumption 2 ensures that c.S;N; F / is bounded along solu-
tions independently of ". Hence, since ƒ in (4) is locally Lipschitz, we see that � D
ƒ.c.S; N; F /=cmin � 1/ is also bounded independently of ". Next, a Grönwall argument
applied to (8), i.e. PN D �N , yields boundedness of N" 2 C.Œ0; T �/\ C 1.0; T / independ-
ently of ". Moreover, estimate (9) implies that f" D F=N" is Lipschitz continuous on
Œ0; T � with a modulus L independent of ". Since u and l are Lipschitz continuous on Œ0; Qc�
and Œcst;1/ respectively, we conclude that u.f"/ is Lipschitz continuous for f" 2 Œ0; Qc�
and l.f"/ is Lipschitz continuous for f" 2 Œcst;1/.

Next we choose ı > 0 sufficiently small such that for all t1; t2 2 Œ0;T �with jt1 � t2j< ı
there holds

jf".t1/ � f".t2/j � Ljt1 � t2j < cst � Qc
2

: (30)

Let t0 2 Œ0; T � be given. The definition of p" implies that p".t0/ D S".t0/ and Pp".t0/ D
PS".t0/ D 0 almost surely whenever f" 2 Œ0; Qc� and S".t0/ < u.f".t0// or Qc � f".t0/ � cst

or f" > cst and S".t0/ > l.f".t0//; see also Figure 3.
Moreover, if f".t0/ < Qc, then (30) yields f".t/ < cst on Œt0; t0C ı�. Hence, since S"� 0,

in this case p".t/ D min¹u.f".t//; S".t/º in Œt0; t0 C ı�, and for a.e. t 2 Œt0; t0 C ı� there
holds

f".t0/ < Qc ) Pp".t/ D
8<:
d

dt
u.f"/.t/ if u.f".t// � S".t/;

0 if u.f".t// > S".t/;
on Œt0; t0 C ı�:

As a consequence, Pp" is bounded a.e. on Œt0; t0 C ı� independently of ".
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Finally, the case when f".t0/ > cst is treated analogously. Consequently, p" is bounded
in W1;1.0; T / independently of " > 0.

Step 2: Convergence of S" � p" to zero in Lq.0; T / for arbitrary q 2 .1;1/. For
arbitrary " > 0 and t 2 Œ0; T � we have

jS".t/ � p".t/j

D jS".0/ � p".0/j C
Z t

0

. PS".�/ � Pp".�// S".�/ � p".�/jS".�/ � p".�/j
d�

D jS".0/ � p".0/j C
Z t

0

PS".�/ S".�/ � p".�/jS".�/ � p".�/j„ ƒ‚ …
�0

d� �
Z t

0

Pp".�/ S".�/ � p".�/jS".�/ � p".�/j d�;

where the above inequality follows from the definition of p" for all � ; see Figure 3. Hence,

jS".t/ � p".t/j C
Z t

0

ˇ̌̌̌
PS".�/ S".�/ � p".�/jS".�/ � p".�/j

ˇ̌̌̌
d�

� jS".0/ � p".0/j C
Z t

0

j Pp".�/j d�; (31)

and the bounds of Step 1 imply that the right-hand side of (31) and thus jS".t/� p".t/j is
bounded independently of ". Similarly, we calculate

.S".t/ � p".t//2 � 2
Z t

0

PS".�/.S".�/ � p".�// d�

D .S".0/ � p".0//2 � 2
Z t

0

Pp".�/.S".�/ � p".�// d�:

For t D T , the above boundedness of jS" � p"j and Pp" (see Step 1) together with
PS".�/.S".�/ � p".�// � 0 yields that PS".S" � p"/ is bounded in L1.0; T / independently

of ". Hence,

"k PS".S" � p"/kL1.0;T /
"!0���! 0 ) " PS".�/.S".�/� p".�// "!0���! 0 for a.e. � 2 .0; T /:

By inserting " PS" D F � cN", it follows that�
F.�/ � c.S".�/; N".�/; F .�//N".�/

�
.S".�/ � p".�// "!0���! 0 a.e. � 2 .0; T /;

which implies S".�/ � p".�/ "!0���! 0 whenever the term�
F.�/ � c.S".�/; N".�/; F .�//N".�/

�
is bounded away from zero. However, when supposing�
F.�/ � c.S".�/;N".�/; F .�//N".�/

� D �f".�/ � c.S".�/;N".�/; F .�//�N".�/ "!0���! 0;
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it follows from N".�/ > ı.T / > 0 and the definition of p", i.e. p" D S" , f" D c, that
again S".�/ � p".�/! 0 as "! 0. Finally, since jS".�/ � p".�/j � 2Smax, Lebesgue’s
dominated convergence theorem yields that S" � p" converges to zero in Lq.0; T / for
arbitrary q 2 .1;1/.
Step 3: Weak convergence of a subsequence " ! 0 and compact embeddings. We
recall from Step 1 that since 0 � S" � Smax, F 2 W1;1.0; T / and N" > ı.T / hold
independently of ", the growth rate function �.S"; N"; F / D ƒ.c=cmin � 1/ is bounded
independently of ", which implies that N" is bounded in C.Œ0; T �/ independently of ".
Moreover, the norms of f" 2W1;1.0; T / are bounded independently of ". Also, 0 � S" �
Smax implies that S" is bounded with respect to the sup norm in C.Œ0; T �/, independently
of ". Moreover, with � bounded independently of ", the proof of Theorem 1 in Section 5
(see e.g. (45) and (46)) yields that the norm of v" is bounded independently of " in the
following solution space:

C
�
Œ0; T �IH2.�/� \ C

�
.0; T �IC2;ˇ .x�/� \ C1

�
Œ0; T �IL2.�/� \ C1

�
.0; T �IC0;ˇ .x�/�;

which embeds continuously into W1;1.0;T IL2.�//\L1.0;T IH2.�//. Also, by Step 1,
p" is bounded in W1;1.0; T / independently of ".

Consequently, we can extract a subsequence ¹"kºk and find some

S0 2 Lq.0; T / and v0 2W1;q.0; T IL2.�// \ Lq.0; T IH2.�//
such that .p"k ; v"k / converges to .S0; v0/ weakly in those spaces.

Next we use the following embeddings, where .�; �/�;1 denotes real interpolation:

W1;q..0; T /IL2.�// \ Lq..0; T /IH2.�// ,�,! Cˇ ..0; T /I .L2.�/;H2.�//�;1/
,! Cˇ .Œ0; T �IL2.�//;

W1;q..0; T /IL2.�// \ Lq..0; T /IH2.�// ,�,! C.Œ0; T �I .L2.�/;H2.�//�;q/
,! C.Œ0; T �IL2.�//;

for every 0 < � < 1 � 1=q and 0 � ˇ < 1=q0 � �; see e.g. [1, Theorem 3]. Moreover,
W1;q.0; T / is compactly embedded into C.Œ0; T �/.

Hence, v"k converges strongly to v0 in C.Œ0; T �I L2.�// and thus N"k converges
strongly to N0 D N.v0/ in C.Œ0; T �/ while p" converges strongly to S0 in C.Œ0; T �/.
Since by Step 2, S" � p" converges to zero in Lq.0; T / as "! 0, we obtain

S"k
k!1����! S0 in Lq.0; T /:

Step 4: .S0; v0/ solves the limiting system (10)–(15) and strong convergence. Recall
the growth rate (4), i.e. �.S; N; F / D ƒ.c.S; N; F /=cmin � 1/ for a locally Lipschitz
continuous function ƒ. We will first show by Step 3 and dominated convergence that

ƒ
�c.S"k ; N"k ; F /

cmin
� 1

�
v"k

"k!0����! ƒ
�c.S0; N0; F /

cmin
� 1

�
v0 in Lq..0; T /IL2.�//:

(32)
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Indeed, by Step 3 the subsequence v"k converges to v0 in C.Œ0; T �IL2.�//. Moreover, for
a further subsequence "k (again denoted by "k), it follows from S"k ! S0 in Lq.0;T / that

ƒ
�c.S"k .t/; N"k .t/; F .t//

cmin
� 1

�
"k!0����! ƒ

�c.S0.t/; N0.t/; F .t//
cmin

� 1
�

a.e. in Œ0; T �;

where we have used that c is locally Lipschitz continuous due toN".t/;N0.t/ > ı.T / > 0
and F.t/ � 0 and also that ƒ is locally Lipschitz continuous. Together with v"k .x; t/!
v0.x; t/ for all t 2 Œ0; T � and a.e. x 2 � (w.l.o.g. for the same subsequence "k), we obtain

ƒ
�c.S"k .t/; N"k .t/; F .t//

cmin
� 1

�
v"k .x; t/

"k!0����! ƒ
�c.S0.t/; N0.t/; F .t//

cmin
� 1

�
v0.x; t/

for a.e. t 2 Œ0; T � and a.e. x 2�. Moreover, by Assumption 2, c.S"k ;N"k ;F / is uniformly
bounded in Œ0;T � and this estimate also holds when S"k is replaced by any S with 0� S �
Smax. Hence, c.S0;N0;F / also is uniformly bounded in Œ0;T �. Sinceƒ is locally Lipschitz
continuous, it follows that jƒ.c.S"k ; N"k ; F /=cmin � 1/j �C and jƒ.c.S0; N0; F /=cmin �
1/j � C uniformly in Œ0; T � for some C > 0 independent of ". Therefore, since v"k .:; t/
and v0.:; t/ have a common upper bound in L2.�/ by Step 3, Lebesgue’s dominated
convergence theorem yields for a.e. t 2 Œ0; T �,


ƒ�c.S"k .t/; N"k .t/; F .t//

cmin
� 1

�
v"k .�; t /

�ƒ
�c.S0.t/; N0.t/; F .t//

cmin
� 1

�
v0.�; t /





L2.�/

! 0

as "k ! 0. Finally, since this sequence is also bounded uniformly in t 2 Œ0; T �, using
Lebesgue’s dominated convergence theorem again implies convergence in Lq.0; T / and
thus (32).

Next we observe that the Neumann realisation of �D� satisfies maximal parabolic
Sobolev regularity on L2.�/; see e.g. [8, Theorem 2.9] as a recent state-of-the-art refer-
ence. As a consequence,

v"k D .@t �D�/�1ƒ
�c.S"k ; N"k ; F /

cmin
� 1

�
v"k

"k!0����! .@t �D�/�1ƒ
�c.S0; N0; F /

cmin
� 1

�
v0

in W1;q..0; T /I L2.�// \ Lq..0; T /I H2.�//. Indeed, since v"k converges to v0 in
Lq..0; T /IL2.�//, this shows

v0 D .@t �D�/�1ƒ
�c.S0; N0; F /

cmin
� 1

�
v0
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S0

f0cmin cstQc

.f0.t0/; S0.t0//

.xl ; l.xl //

ıl

.xu; u.xu//

ıu

Smax

u l

Figure 4. An f0–S0 phase diagram: example for .f0.t0/; S0.t0// and xu and xl .

and that the weak convergence of v"k is actually strong. As a consequence, v0 solves the
limiting evolution equation

@tv0 �D�v0 D ƒ
�c.S0; N0; F /

cmin
� 1

�
v0 in .0; T / ��;

@�v0 D 0 on .0; T / � @�;
v0.0/ D vin on �:

We now analyse the limiting behaviour of S0 as a function of f0 D F=N0. Assume
first that at a time t0 2 Œ0;T �, the point .f0.t0/;S0.t0// is located in the f0–S0 phase-space
diagram between the graphs .x; l.x// for x � cst and .x; u.x// with x � Qc; cf. Figure 4
and recall that S0 � Smax.

We will show that this assumption implies PS0 D 0 a.e. on a sufficiently small interval
J with t0 2 J : for the point .f0.t0/; S0.t0//, we introduce any nearest point .xu; u.xu//
and the associated distance ıu, i.e.

ıu D k.xu; u.xu// � .f0.t0/; S0.t0//k with xu2 argmin
x;x�Qc

k.x; u.x// � .f0.t0/; S0.t0//k:

Note that .xu; u.xu// is unique due to the convexity of u. However, the following argu-
ment also holds for general increasing functions u. Analogously, we define any nearest
point .xl ; l.xl // and its distance ıl . Again, .xl ; l.xl // is unique due to the concavity of l ,
but the argument holds for general increasing functions l .

Due to the uniform convergence of f"k to f0 and of p"k to S0, as shown in Step 3, we
can choose "0 sufficiently small such that for all "k < "0 there holds

j.f"k ; p"k / � .f0; S0/j <
1

4
min¹ıu; ılº

uniformly in t 2 Œ0; T �. Hence, for all "k < "0, the point .f"k .t0/; p"k .t0// has a distance
larger than 3

4
min¹ıu; ılº to the graphs .x; l.x// for x � cst and .x; u.x// with x � Qc.
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As a consequence, there exists an open interval I 3 t0 such that for all t 2 I the
distance between .f"k .t/; p"k .t// and the graphs .x; l.x// and .x; u.x// is greater than
1
2

min¹ıu; ılº. From Steps 2 and 3, we know that .f"k .t/; S"k .t// � .f"k .t/; p"k .t// con-
verges to zero a.e. in I . Moreover, f"k converges uniformly to f0 and is Lipschitz con-
tinuous with a modulus independent of "k . Therefore, there is some t1 2 I , t1 < t0, with

j.f"k .t1/; S"k .t1// � .f"k .t1/; p"k .t1//j <
1

4
min¹ıu; ılº

for all "k sufficiently small (i.e. by eventually choosing "0 smaller). Moreover, for each
"k and for some t 2 Œ0; T �, if .f"k .t/; S"k .t// is located between the graphs .x; l.x// and
.x; u.x//, then S"k remains constant until the first time Qt > t when

S"k .Qt / D u.f"k .Qt // or S"k .Qt / D l.f"k .Qt //:

With the Lipschitz modulus of f"k being independent of "k , the trajectory .f"k ;S"k / keeps,
for all "k < "0, a positive distance to the graphs .x; l.x// and .x; u.x// on an interval
J WD I \ Œt1; T � 3 t0 if I is chosen sufficiently small. Furthermore, on J , it follows by
definition that

S"k D p"k and Pp"k D 0 a.e. in J and for all "k < "0:

Hence, for t 2 J ,

S0.t/ D lim
k!1

p"k .t/ D lim
k!1

p"k .t1/ D S0.t1/

and PS0 D 0 a.e. in J as claimed.
We will now consider the case when S0.t0/ D u.f0.t0//: for t 2 Œt0 � ı; t0 C ı� with

ı chosen in (30) (which excludes .f0; S0/ reaching the graph .x; l.x// in Œt0 � ı; t0 C ı�),
we know from the uniform convergence of f"k to f0, that PS"k .t/ � 0 for "k sufficiently
small; cf. Figure 3. We claim that therefore

Pp"k � 0 a.e. in Œt0 � ı; t0 C ı�:

The proof assumes in contradiction that for some t1 < t2 2 Œt0 � ı; t0C ı� and for some 0<
"k < "1 for "1 chosen sufficiently small p"k .t2/ > p"k .t1/. The "k-independent Lipschitz
continuity of p"k (see Step 1) implies the existence of a time t3 2 .t1; t2/ and a constant
ı1 > 0 such that

p"k .t2/ � ı1 > p"k .t/ for all t 2 Œt1; t3� and all "k < "1;

with 0 < "1 sufficiently small. Due to the a.e. pointwise convergence of S"k to p"k , there
exists a time t4 2 Œt1; t3� such that

S"k .t4/ < p"k .t2/ �
ı1

2
for all "k < "1;
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where "1 might again be chosen smaller. Now, because PS"k � 0 on Œt0 � ı; t0 C ı�, we
have

S"k .t/ < p"k .t2/ �
ı1

2
for all t 2 Œt4; t2� and all "k < "1:

In return, by using again that S"k � p"k converges to zero a.e.,

p"k .t/ < p"k .t2/ �
ı1

4
for a.e. t 2 Œt4; t2� and all "k < "1;

for "1 chosen sufficiently small. By the continuity of p"k , this estimate holds for all t 2
Œt4; t2�, which gives the contradiction p"k .t2/ < p"k .t2/ � ı1

4
. Hence, we have proven

Pp"k � 0 a.e. in Œt0 � ı; t0 C ı� and for "k sufficiently small. Since p"k converges to S0
uniformly and star-weakly in W1;1.0; T / due to Step 1, this also yields PS0 � 0 a.e. in
Œt0 � ı; t0 C ı�.

Altogether, by combining the situations with PS0 D 0 a.e. and PS0 � 0 a.e., we have
proven that PS0<0 in a set of positive measure is only possible if a.e. in this set S0Du.f0/:
In the analogous case when S0.t0/ D l.f0.t0//, it follows similarly that PS0 � 0 and that
PS0 > 0 in a set of positive measure is only possible if a.e. in this set S0 D l.f0/.

Summarising, we have shown that S0 satisfies for a.e. t 2 Œ0; T �,

PS0.t/.S0.t/ � z/ � 0 for all

´
z 2 Œ0; u.f0.t//� if f0.t/ � Qc;
z 2 Œl.f0.t//; Smax� if f0.t/ � cst;

PS0.t/ D 0 if Qc < f0.t/ < cst:

Because 0 � S0 � Smax, this shows that v0 and S0 solve (10)–(15).

Step 5: Uniqueness of solutions .v0;S0/ to the limiting system (10)–(15). The limit S0
is a generalised play for the Lipschitz continuous curves U D min¹Smax; u.f0/º and L D
max¹0; l.f0/ºwith input f0DF=N0. By [28, Chapter III.2, Theorem 2.2] this generalised
play is a Lipschitz continuous hysteresis operator from C.Œ0; T �/ � R to C.Œ0; T �/. Since
N0.t/ > ı.T / > 0 uniformly in Œ0; T �, the input f0 D F=N0 also is Lipschitz continuous.
The uniqueness of .v0; S0/ then follows by using a Grönwall argument; see e.g. [28].

The regularity properties of v0 follow essentially as in the proof of Theorem 1. Since
f0 2W1;1.0; T /, also S0 2W1;1.0; T / by [28, Chapter III.2, Theorem 2.3].

Step 6: Convergence of the whole sequence "! 0. Because every sequence ¹"º with
" ! 0 has a subsequence ¹"kºk such that v"k ! v0 in W1;q.0; T I L2.�// \ Lq.0; T I
H2.�// and S"k ! S0 in Lq.0; T /, uniqueness of the limit implies convergence of the
whole sequence .v"; S"/.

4. Numerical examples and discussion

In this section we present selected examples of the behaviour of hysteresis–reaction–
diffusion systems on the one-dimensional domain � D .0; 1/.
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Figure 5. Evolution of the population–hysteresis–diffusion system (10)–(15): time-periodic food
supply F.t/D 0:2.1� cos.t// (blue) and the resulting population sizeN (red) and stock S (yellow).

Numerical method

All numerical examples are implemented and simulated in Matlab using a uniform mesh
with 99 elements for the domain � D .0; 1/. The discretised Neumann realisation of
the Laplace operator �� is computed by a standard three-point stencil finite difference
scheme and the corresponding discretised eigenfunctions �k , k � 0, together with their
eigenvalues �k , can be computed by explicit formulas. The eigenfunctions are only used
for the specification of initial data.

The hysteresis operator is approximated by an ODE regularisation of the variational
inequality (34), similarly to [4] or [18]. As regularisation parameter we use "D 10�4. The
resulting approximative ODE–reaction–diffusion equation is solved by a semi-implicit
time-stepping procedure with implicit diffusion and explicit reaction with a step size dt D
7:5 � 10�5.

4.1. Simulation of the hysteresis–reaction–diffusion system (10)–(15)

The first example illustrates the population dynamical model (10)–(15) in the case of
consumption rate function c2 with parameters cmin D 0:35, c1de D 0:4, cst D 0:45 and
SmaxD 0:3. In particular, the food supply is time periodic, given asF.t/D 0:2.1� cos.t//.
Moreover, the initial data were set to Nin D 7, vin D Nin�1 C 2:5�2 C 2:5�3 and Sin D 0.

Figure 5 depicts the evolution of the scalar quantities F , N and S . More details can
be observed in a simulation video (see supplementary material). The video shows the time
evolution of v, S , F and F=N.v/. The upper plot in the video depicts the current location
of .F=N.v/; S/ (red dot) in phase space in relation to the upper (magenta) and lower
(cyan) boundary curves of the limiting generalised play operator and it can be verified that
S indeed approximates this generalised play operator. The legend also shows the current
value of S (see also Figure 5), as well as the maximal value of S during the previous



On hysteresis–reaction–diffusion systems 1189

cycle. The value is updated every time when S starts to decrease. The lower plot shows
the evolution of the population density v (blue).

Discussion. We observe that the hysteresis cycles initially gain amplitude before saturat-
ing. Qualitatively speaking, the system seems to behave like a nonlinear oscillator, which
adapts to the periodic external forcing within a transition phase.

The simulation video shows in more detail the interplay between the amplitude of the
hysteresis cycles, the current stock level S (red), the individual food supply f D F=N.v/
(green) and the total food supply F (yellow). The legend also shows the current value of
jv �N.v/j1 D

R
�
jv �N.v/jdx, as well as its maximal value during the last cycle. Note

that since
R
�
.v � N.v// D 0, we can interpret jv � N.v/j1 as a measure of the spatial

inhomogeneity of the population density v. The video updates the maximal values of S ,
resp. jv �N.v/j1 whenever they start to decrease.

We observe that although diffusion is clearly dominant since the maximal value of jv�
N.v/j1 decreases, the nonlinear coupling hysteresis–reaction leads nevertheless to large
oscillations of jv �N.v/j1. In fact, the following example will show that these nonlinear
effects can be so strong as to prevent spatial homogenisation and lead to the growth of
spatial inhomogeneities.

4.2. Interplay between scalar hysteresis and a reaction–diffusion equation

The subsequent examples detail the interplay between the geometric properties of the
two defining boundary curves U and L (see below) of a generalised play operator and
a reaction–diffusion model. For the sake of a clear discussion, our examples consider a
simple hysteresis–reaction–diffusion model and compare the numerical simulation with a
Fourier analysis of the analytic solution. Generalisations of our observations to systems
of hysteresis–reaction–diffusion equations are possible.

4.2.1. A simple hysteresis–reaction–diffusion model. For � D .0; 1/ and D > 0, we
consider the hysteresis–reaction–diffusion equation

@ty �D�y D Ry on � � .0;1/;
@�y D 0 on @� � .0;1/;
y.0/ D y0 on �;

(33)

where R is a generalised scalar play operator defined according to Lipschitz continuous
and strictly monotone increasing boundary curve functions U > LWR! R (see e.g. [28,
Chapter III.2]), i.e.

R.0/ D min
®
max¹L.Ty.0//; R0º;U.Ty.0//

¯
; R0 2 R;

PR.t/.R.t/ � z/ � 0 for all z 2 ŒL.Ty.t//;U.Ty.t//� for a.e. t > 0;

R.t/ 2 �L.Ty.t//;U.Ty.t//� for t � 0:
(34)

In (34), T is a linear and continuous functional on L2.�/ which is independent of time.
In particular, if defined on C.Œ0;1/IL2.�//, we find that .Ty/.t/ D .Ty.�; t // for t > 0
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and y 2 C.Œ0;1/IL2.�// serves as input to a scalar hysteresis operator. Accordingly, a
more precise notation is R D R.Ty;R0/ or R.Ty/ for short.

Specifically, we consider T to be a linear combination of Fourier coefficients of y
in terms of the eigenfunctions ¹�kºk�0 of the Neumann realisation of the Laplacian ��
(see e.g. [1] and recall that the eigenfunctions ¹�kºk�0 form an orthonormal basis of
L2.�/ while the eigenvalues satisfy �0 D 0 < �1 < �2 < � � � and �k !1 as k !1).
Recalling that �0 is a positive constant and in view of the goal of studying the interplay
between hysteresis and reaction, resp. diffusion, we consider T as a linear combination of
Fourier coefficients hu; �ki D hu; �kiL2..0;1// of spatially inhomogeneous eigenfunctions
¹�k.x/ºk�1:

Ty WD lm„ƒ‚…
>0

hy; �mi C
M�1X
iDmC1

li„ƒ‚…
�0

hy; �i i C lM„ƒ‚…
>0

hy; �M i; 1 � m < M; m;M 2 N: (35)

Another generic example for T could be the mean value functional TyDj�j�1 R
�
y.x/dx.

The system (33)–(35) will be considered subject to nontrivial initial data 0¤ y0 2 ¹v 2
H2.�/ W @�v D 0 on @�º. We choose y0 to be a linear combination of eigenfunctions �k .
In particular, we assume

0 < y
.m/
0 D hy0; �mi; 0 < y

.M/
0 D hy0; �M i and

0 � y.k/0 D hy0; �ki for m < k < M , while 0 D y.k/0 for 0 � k < m:
(36)

Remark 10. The assumption y.k/0 D 0 for 0 � k < m is made because those eigenmodes
would have no effect on R.Ty/. However, those low eigenmodes have a strong influence
on the large-time behaviour of y and would significantly complicate the interpretation of
the results.

4.2.2. Spatial homogenisation versus spatially inhomogeneous large-time behaviour.
In this section we show that geometric properties of generalised play operators (34) such
as convexity/concavity or the slope of U, resp. L can have a decisive influence on the
evolution of the model (33)–(36). In particular, the scalar hysteresis operator (34) can
decide between spatial homogenisation or unbounded growth of spatially inhomogeneous
Fourier modes. This dichotomy is illustrated in Figures 6 and 7.

Description. Figures 6 and 7 depict a numerical simulation of system (33)–(36) subject
to initial data y0 D .�1 C �2/=k�1 C �2kC.Œ0;1�/ and R0 D 0. Moreover, we have set the
diffusion coefficient and the parameters of the functional T in (35) toD D 1

�1
andmD 1,

M D 2, and l1 D 0:1, l2 D 0:4.
As boundary curves of the generalised play operator (34), we consider either a concave

or a convex upper curve U and a concave lower curve L:

Ucave.z/ D 1:2jzj0:5sign.z/C 0:1; resp. Uvex.z/ D 0:1097jzj2sign.z/C 1:1468;
L.z/ D 1:2jzj0:5sign.z/ � 0:1:
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.Tycave.t/; Rcave.t// for t 2 Œ0; 6�; .Tycave.0/; Rcave.0// D .1:77; 1:50/

0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8
0

0:5

1

1:5

2

Uvex

Ucave

L

.Tyvex.t/; Rvex.t// for t 2 Œ0; 6�; .Tyvex.0/; Rvex.0// D .1:77; 1:50/

Figure 6. (Top) Phase-space evolution of .Tycave; Rcave/ (blue) subject to Ucave (upper red; black
dashed Uvex for comparison) and L (lower red). (Bottom) Phase-space evolution of .Tyvex; Rvex/

(blue) subject to Uvex (upper red; black dashed Ucave for comparison) and L (lower red). Both
solutions start at the upper right end of the blue graphs at .1:77; 1:5/ and continue identically until
hitting Ucave, resp. Uvex at a point of identical slope. While the decay of .Tycave; Rcave/ to zero
yields spatial homogenisation, the turning of .Tyvex; Rvex/ leads to unbounded growth.

Note that the lack of Lipschitz continuity of Ucave and L at zero is irrelevant since Ty
remains positive during the entire simulation.

In the following, we denote by .yvex; Rvex/ the solution of (33) subject to Uvex and
we denote by .ycave; Rcave/ the solution for Ucave. Figure 6 compares the Ty–R phase-
space diagrams of two numerical solutions .Tyvex; Rvex/ and .Tycave; Rcave/ both starting
at the initial point .1:77; 1:5/. Hence, both solution trajectories initially move identically
to the left at constant R-level and hit the upper boundary at the same time tC D 0:15, at
a point where Ucave and Uvex share the same slope. With Ty continuing to decrease, both
solutions slide along their respective upper boundaries. While the top image in Figure 6
depicts the evolution of .Tycave; Rcave/ according to the concave shape of Ucave, the lower
image shows .Tyvex; Rvex/ following Uvex.

The key difference shown by Figure 6 is that the solution .Tycave; Rcave/ continues to
slide along Ucave and thus converges to zero (see discussion below), while .Tyvex; Rvex/

features a turning point at time t0D1:34when Tyvex starts to increase. In fact, .Tyvex;Rvex/

remains increasing, first at constantR-level, later sliding along the lower curve L and will
thus become unbounded (see discussion below).
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Figure 7. The solutions ycave.�; t / (blue line) and yvex.�; t / (brown line) of (33) subject to Ucave,
resp. Uvex at times t D 0:15; 1:34; 6. Being identical until tC D 0:15, ycave converges to zero, while
yvex starts to grow at t0 D 1:34 and continues to grow afterwards.

Figure 7 shows a plot of the corresponding solution ycave.�; t / and yvex.�; t / at selected
times t D 0:15; 1:34; 6. Until tC D 0:15, both solutions are equal. Afterwards, ycave.�; t /
converges to zero, while yvex.�; t / starts to grow.

Discussion and Fourier analysis. In order to analyse how the geometry of the scalar
generalised play operator (34) governs the behaviour of the (nonlinear) reaction–diffusion
equation (33), we expand y as a Fourier series in terms of the orthonormal basis ¹�kºk�0
of L2.0; 1/, i.e.

y.x; t/ D
1X
kD0

y.k/.t/�k.x/; with y.k/.t/ D hy.�; t /; �k.�/i:

Inserting into (33) yields for all k,

Py.k/.t/ D �k.t/y.k/.t/; with �k.t/ WD R.t/ �D�k for a.e. t > 0;

y.k/.0/ D hy0; �ki:
(37)

In the following we demonstrate that the difference between ycave and yvex stems from
a change of monotonicity of Fourier coefficients y.k/, which is a consequence of the dif-
ferent decay of R.t/ (and hence of a different sign of some �k.t/), as the solutions slide
along Ucave, resp. Uvex.

The initial data set the monotonicity of the Fourier coefficients y.k/ according to (37):
with

�k.0/ WD min
®
max¹L.Ty0/; R0º;U.Ty0/

¯ �D�k ;
we assume initial data R0, y0 and weights li , i D m; : : : ; M , with m and M from the
definition of the functional T in (35) such that (as in the example in Figures 6 and 7)

d

dt
.Ty/.0/ D

MX
iDm

li�i .0/y
.i/
0 < 0 and there exists m < I0 �M; (38)
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where
�k.0/ > 0 for 0 � k < I0; and �k.0/ < 0 for I0 � k �M:

Note that the �k are monotone decreasing in k in the same way as the eigenvalues �k are
monotone increasing. Hence, we introduce the monotonicity index

I.0/ WD I0; I.t/ WD
´

min¹k 2 N W �k.t/ � 0º if �0.t/ � 0;
�1 if �0.t/ < 0;

(39)

which points to the lowest nonincreasing Fourier mode y.k/ for k D 0; : : : ;1.

Remark 11. Note thatm� 1 in (35) (Figures 6 and 7 usemD 1) implies that T focuses on
the Fourier modes orthogonal to the lowest Fourier mode y.0/.t/D hy.�; t /; �0i, where �0
is a positive constant. Hence, while the zero-order Fourier mode y.0/.t/ � R

�
y.x; t/ dx

represents the total population, the higher-order Fourier modes y.k/.t/ for k � m determ-
ine whether the solution y converges to a space-homogeneous large-time behaviour. The
example of Figures 6 and 7 shows that despite being spatially homogeneous, the hyster-
esis operator (34) may not only prevent spatial homogenisation but yield growth of higher
Fourier modes, i.e. Fourier modes become unbounded in infinite time. We emphasise that
(33) is a scalar PDE and that the observed mechanism of conditional spatial homogenisa-
tion versus spatially inhomogeneous large-time behaviour is quite different to e.g. Turing
instability.

In Figures 6 and 7, since y.m/0 ; y
.M/
0 > 0 and (37), (38) are satisfied, the Fourier coeffi-

cient y.m/.t/ is strictly increasing while y.M/.t/ is strictly decreasing on some sufficiently
small time interval. It also holds that

d

dt
.Ty/.t/ D

MX
iDm

li�i .t/y
.i/.t/ < 0 for t > 0 sufficiently small: (40)

The evolution (40) is determined by the values/signs of the involved Fourier coefficients
�k.t/ D R.t/ �D�k and, hence, by the monotonicity index I.t/ defined in (39).

In return, the evolution of the�k.t/ is governed by the evolution ofR.t/ given by (34),
i.e. R.t/ is constant if R 2 .L.Ty.t//;U.Ty.t///, strictly increasing if R.t/DL.Ty.t//
and d

dt
.Ty/.t/ > 0, and strictly decreasing if R.t/ D U.Ty.t// and d

dt
.Ty/.t/ < 0.

Remark 12. Before analysing the dichotomy of Figures 6 and 7, we note first that Ty 2
C.Œ0; T �/ \ C1.0; T / for any T > 0. Moreover, R 2W1;1.0; T / and Ty 2W2;1.0; T /.

The following proposition provides a largely explicit analysis of the nonlinear beha-
viour depicted in Figures 6 and 7.

Proposition 13 (Spatial homogenisation versus fixed pattern versus unbounded growth).
Case I, spatial homogenisation: Assume that the monotonicity index I.t/ (39) drops to the
value m at some positive time tm > 0.
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Then d
dt
.Ty/ is negative for all t > tm. As a consequence,R.t/ remains nonincreasing

for all t > tm. Moreover, y.x; t/ either converges to zero (at least) exponentially fast or in
the special case that �m.tm/ D 0 and that

Ty.tm/ �
MX
mC1

liy
.i/.tm/e

�i .tm/tm � U�1.R.tm// (41)

holds, and then the overall decay in the input Ty of the hysteresis operator R is too
small to reach the upper boundary U. This implies R.t/ D R.t0/ for all t > tm and the
population density y.x; t/ converges to y.m/.tm/�m.x/.

Case II, growth: Case I does not occur and the monotonicity index I.t/ remains larger
than m.

Then the ordering of the �k.t/ implies in (40) that Ty stops decreasing at some time
t0 > 0, i.e. d

dt
.Ty/.t0/D 0. Consequently, for t > t0, Ty.t/ increases andR.t/ is constant

at first and increasing later, onceR.t/DL.Ty.t//. The growth of Ty does not stop and so
continues the consequential growth ofR.t/DL.Ty.t//. Hence, all �k.t/, k �m become
positive after finite time and the corresponding Fourier modes y.k/.t/ grow exponentially
fast. The leading-order contribution, however, is always given by y.m/.t/�m.x/.

Proof. Case I. If the monotonicity index I.tm/ D m for some tm > 0, then �m.tm/ � 0
and �k.tm/ < 0 for m < k <1. Hence, (40) yields d

dt
.Ty/.tm/ < 0 (since lM > 0) and

Ty 2 C1.0; T / (recall Remark 12) implies d
dt
.Ty/.t/ < 0 on a sufficiently small interval

t 2 Œtm; tm C "/. Therefore, PR.t/ � 0 a.e. on Œtm; tm C "/ since R can only increase if
R D L.Ty/ and d

dt
.Ty/ > 0. Consequently, �m.t/ D R.t/ � D�k � �m.tm/ � 0 on

Œtm; tmC "/ and therefore I.t/�m on Œtm; tmC "/. Note that if�m.tm/ < 0, then�m.t/ <
0 for all t > tm since R is nonincreasing and all Fourier modes y.k/.t/ for m � k � M
and thus Ty.t/ DPM

iDm liy
.i/.t/ decay (at least) exponentially fast to zero. Therefore

R.t/ and y.x; t/ converge (at least) exponentially fast to zero.
On the other hand, if �m.tm/D 0, it depends on the accumulated decay of Ty whether

R.t/ D R.t0/ and thus �m.t/ D �m.tm/ D 0 for all t > tm or whether there exists a time
t� � tm when R.t�/ D U.Ty.t�//, after which R.t/ < R.t�/ and �m.t/ < �m.t�/ D 0
for t > t�. In the second case – as above – it follows from then on that Ty.t/ and R.t/
and y.x; t/ converge (at least) exponentially to zero. In the first case, we note that R.t/
and all eigenvalues �k are constant in time as long as the hysteresis has not reached the
upper boundary. Accordingly, we integrate (40) using (37):

Ty.t/ D Ty.tm/C
Z t

tm

MX
m

li�i .tm/y
.i/.tm/e

�i .tm/s ds

D Ty.tm/C
MX
mC1

liy
.i/.tm/.e

�i .tm/t � e�i .tm/tm/:
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Hence, under condition (41), the hysteresis will remain bounded away from the upper
boundary for all times t > tm, which in return implies R.t/ is constant and �m.t/ D 0 for
all time t > tm and y.x; t/ converges to y.m/.t0/�m.x/.

Case II: If Case I does not apply then I.t/ > m holds and the exponential growth
of the Fourier coefficient y.m/.t/ versus the exponential decay of y.k/.t/ for k � I.t/
implies the existence of a time t0 > 0 such that d

dt
.Ty/.t0/D 0, as well as d

dt
.Ty/.t/ > 0

and PR.t/ � 0 a.e. on some time interval t 2 .t0; t0 C "/. The latter implies that the �k.t/
and thus the monotonicity index I.t/ are nondecreasing in time. Hence we can iterate
this argument and obtain d

dt
.Ty/.t/ > 0 for all t > t0 and PR.t/ � 0 for a.e. t > t0. In

particular, R.t/ remains constant equal to R.t/ D R.t0/ for all t � t0 until a time t� > t0
when R.t�/ D L.Ty.t�//. Afterwards, for t � t�, R.t/ increases according to R.t/ D
L.Ty.t//. It follows that I.t/ > M after some finite time and all Fourier modes y.k/.t/,
m� k �M grow exponentially. However, the main contribution to the solution y is again
given by y.m/.t/�m.x/.

Qualitative analysis of Figures 6 and 7. In the view of Proposition 13, Figure 6 can
now be interpreted more explicitly: after the identical initial decay of .Tyvex; Rvex/ and
.Tycave;Rcave/ until hitting the upper boundary U at tC D 0:15, it is the different decay of
Rcave D Ucave.Tycave/ and Rvex D Uvex.Tyvex/, which yields that Rcave.tm/ D D�1 D 1
at some time tm > tC at which the monotonicity index satisfies I.tm/ D m and Case I in
Proposition 13 applies to .Tycave; Rcave/.

On the other hand, Tyvex has a turning point at t0 D 1:34 and starts to increase again
after t0 with Rvex.t/ D Uvex.Tyvex.t0// constant. Note that the plot shows Rvex.t/ > 1

and thus I.t/ > m for all t � 0. Therefore, Tyvex grows monotonically as discussed in
Case II in Proposition 13. At time t� D 5:31, .Tyvex; Rvex/ hits the graph of L, and Tyvex

increases further for t � t� with Rvex.t/ D L.Tyvex.t//.

4.3. Generalisations

Under an additional assumption on U, L, Proposition 13 extends to cases with initially
increasing Ty.

Corollary 14 (Example with initially increasing Ty). Assume the upper boundary curve
U of the generalised play operator (34) is a strictly monotone increasing function with
U.0/ > 0, which is point symmetric at .0;U.0//, and set L D U � 2U.0/. Then the
following point symmetry holds: replace lm; lM > 0 and lmC1; : : : ; lM�1 � 0 in (35) by
lm; lM < 0 and lmC1; : : : ; lM�1 � 0 to obtain an operator zT. With R D R.Ty/ where y
solves (33), we obtainR.Ty/D�R.zTy/DW� zR. Consider the modified evolution problem

@ty �D�y D � zRy; @�y D 0; y.0/ D y0: (42)

Then the new solution Qy of (42) equals the solution y of (33) with lm; lM > 0 and
with lmC1; : : : ; lM�1 � 0. But now, zT Qy < 0 is initially increasing. Moreover, in the phase-



K. Fellner and C. Münch 1196

space diagram of zT Qy and zR, the new solution .zT Qy; zR/ is obtained by reflecting the old
solution .Ty;R/ at the origin. In Case I, zT Qy < 0 is always increasing so that Qy converges
to zero. In Case II, zT Qy is increasing until t0, and then decreasing, which leads to growth
of � Qy D j Qyj.
4.3.1. General influence of slope and curvature. The example in Section 4.2.2 is con-
structed in such a way that the difference in the curvature of U is responsible for spatial
homogenisation versus unbounded growth of solutions to (33)–(36). However, analogous
examples can be constructed with different slopes of U deciding the large-time behaviour
of solutions. The corresponding evolution of y depends mainly on the following two prop-
erties of U:

• Is U.z/ convex, linear or concave near z D Ty.tC/?

• What is the slope U0.z/ at z D Ty.tC/ (or near z D Ty.tC/ if U0.Ty.tC// is not
defined)?

Discussion. Assume, analogously to Figures 6 and 7, that the evolution of various solu-
tions y, Ty and R is identical for t 2 Œ0; tC� independently from the considered curve U.
After tC, the solutions .Ty;R/ slide in the phase-space diagram along the graphs of those
curves U at least for a short distance as long as Ty decreases, no matter whether Case I
or Case II applies:

Steep U. If U.z/ is “steep” near z D Ty.tC/, then R.t/ decreases “fast” compared to
Ty.t/ for t > tC. Hence, as long as d

dt
.Ty/.t/DPM

iDm li�i .t/y
.i/.t/ < 0withR.t/D

U.Ty.t//, also �k.t/, m � k � M decreases “fast” compared to the evolution of
Fourier coefficients y.k/.t/. If this decay happens sufficiently fast for given initial
data, we will find I.tm/ D m for some tm > tC and thus behaviour as in Case I of
Proposition 13 and y will converge to zero.

Flat U. On the other hand, if U.z/ is “flat” near z D Ty.tC/, R.t/ decreases “slowly”
compared to Ty for t > tC. Hence, as long as d

dt
.Ty/.t/ < 0 for t > tC also�k.t/,m�

k �M decreases “slowly” compared to the evolution of y.k/.t/. If this decay happens
sufficiently slowly for given initial data, it yields d

dt
.Ty/.t0/ D 0 while I.t0/ > m for

some t0 > tC. Thus, we observe behaviour as in Case II of Proposition 13 and y will
grow unboundedly.

The above observations carry over readily to U having different curvatures. Even if
Uvex and Ucave have the same slope at z D Ty.tC/, we observe that a sufficiently strongly
convex Uvex will yield d

dt
.Ty/.t0/D 0 while I.t0/ > m for some t0 > tC and thus Case II

and unbounded growth. On the other hand, sufficiently strongly concave Ucave will imply
I.tm/ D m for some tm > tC and, therefore, y will converge to zero as in Case I.

All these examples can be altered to take place at the lower boundary curve L. Con-
sider the point symmetric setting from Corollary 14 and the evolution problem (42).
Suppose convex, resp. concave curves L. Choose initial data and U in such a way that
the first contact zR.t�/ D L.T Qy.t�// is identical for all considered curves L. Moreover,
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assume the evolution of Qy, T Qy and zR to be equal for t 2 Œ0; t�� independently of L. Then
we find analogously to above,

• for sufficiently steep L and for d
dt
.T Qy/ > 0 such that zR increases sufficiently fast

compared to Qy.k/.t/, the solution Qy converges to zero as in Case I;

• for sufficiently flat L and d
dt
.T Qy/ > 0, zR increases slowly compared to Qy.k/.t/, yield-

ing Case II and unbounded growth of j Qyj;
• if Lvex is sufficiently convex, then Qy converges to zero according to Case I;

• if Lcave is sufficiently concave, then Case II and unbounded growth of j Qyj take place.

5. Existence, uniqueness and regularity of the solution .S; v/ to
(1)–(8)

In this section we consider arbitrary " > 0 fixed and prove existence and uniqueness of
nonnegative, strong solutions .S; v/ to system (1)–(8). For any open set X , we denote
by C1. xX/ the space of bounded and uniformly continuous functions on X , which have
bounded and uniformly continuous derivatives.

Proof of Theorem 1. We consider the Neumann realisation in L2.�/ of the Laplace oper-
ator with domain dom.�D�/ :D ¹v 2 H2.�/ W @�v D 0 on @�º; see e.g. [1, Introduction].

(I) Local existence of nonnegative solutions via Banach’s fixed point theorem. For
any ˛ 2 .0; 1� and sufficiently large ! > 0, we introduce the notation

A˛ WD .�D�C !/˛WX˛ � L2.�/! L2.�/; where X˛ WD dom.A˛/:

The embeddingsX˛ ,!H2˛.�/ are continuous for 0 < ˛ � 1, so thatX˛ ,! C0;ˇ .x�/ for
˛ > 3

4
and for some ˇ 2 .0; 1/ if the dimension d of � is less than or equal to 3; see e.g.

[1, Introduction] or [14,23]. Let ˛ 2 .3=4; 1� be arbitrary but fixed. Then, for v1; v2 2 X˛
and

Ni WD N.vi / D
Z
�

vi .x/ dx;

we estimate for some constant c > 0,

jN1 �N2j �
Z
�

jv1.x/ � v2.x/j dx � cj�j kv1 � v2kX˛ : (43)

Let Sin 2 RC and vin 2 dom.�D�/ with vin � 0 and Nin > 0 be given and consider the
closed ball

B˛ı WD BR�X˛ ..Sin; vin/; ı/

for some small ı > 0 to be chosen. Note that vin 2 X˛ for any ˛ 2 .0; 1�. If ı is small
enough, then (43) implies N.V / > 0 for all .S; V / 2 B˛

ı
. Moreover, since � is bounded

on bounded sets and because F and � are (locally) Lipschitz continuous, there exists
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a time T > 0 together with constants C0, C˛ , LF D LF .Sin; vin; T / > 0 and L� D
L�.Sin; vin;T / > 0 such that for arbitrary .S1; v1/; .S2; v2/ 2B˛ı and for all 0� t1; t2 � T ,
we estimate

k�.S1; N1; F .t1//v1 � �.S2; N2; F .t2//v2kL2.�/

� j�.S1; N1; F .t1//jkv1 � v2kL2.�/

C j�.S1; N1; F .t1// � �.S2; N2; F .t2//jkv2kL2.�/

� C0C˛kv1 � v2kX˛ C L�.jS1 � S2j C jN1 �N2j C LF jt1 � t2j/C˛kv2kX˛

� C˛
� C0
cj�j C L�.2ı C kvinkX˛ /

�
.jS1 � S2j C cj�jkv1 � v2kX˛ C LF jt1 � t2j/

� C1.jS1 � S2j C kv1 � v2kX˛ C jt1 � t2j/:
Note that the above estimate holds equally when replacing the left-hand-side norm L2.�/
by X˛ . We remark, moreover, that if � were space dependent but sufficiently smooth, an
estimate of the same form could be shown for L2.�/ replaced by dom.�D�/ if ˛ D
1. Continuing the proof of Theorem 1 for spatially homogeneous �, the above estimate
proves that the mapping .S;v; t/! �.S;N.v/;F.t//v is Lipschitz continuous fromB˛

ı
�

Œ0; T � into L2.�/.
Similarly, we obtainˇ̌

F.t1/ � F.t1/N1c.S1; N1; F .t1// �
�
F.t2/ � F.t2/N2c.S2; N2; F .t2//

�ˇ̌
� jF.t1/ � F.t2/j j1CN1c.S1; N1; F .t1//j
C jF.t2/j jN1c.S1; N1; F .t1// �N2c.S2; N2; F .t2//j
� LF jt1 � t2jC2 C FmaxjN1 �N2j jc.S1; N1; F .t1//j
C FmaxjN2j jc.S1; N1; F .t1// � c.S2; N2; F .t2//j
� C4.jS1 � S2j C kv1 � v2kX˛ C jt1 � t2j/;

where we used j1CN1c.S1;N1;F .t1//j<C2 independently of .S1; v1; t1/2B˛ı � Œ0;T �,
as well as (43). W.l.o.g. we can choose C4 D C1 from above.

In the following, we set ˛D 1, denoteA WD�D�, extend � and c to arbitrary functions
on R �R �RC and reformulate system (1)–(8) in terms of x D Av (see e.g. [23, Section
6.3]) and define the mild-formulation mapping8̂̂̂<̂
ˆ̂:
ˆWC.Œ0; T �IR � L2.�//! C.Œ0; T �IR � L2.�//;

ˆ.S; x/.t/ WD
0@Sin C 1

"

Z t

0

�
F.�/ �N.A�1x.�//c�S.�/; N.A�1x.�//; F.�/�� d�

et.�A/Avin C
R t
0
e.t��/.�A/�.S.�/; N.A�1x.�//; F.�//x.�/ d�

1A :
Next we introduce the closed set †,

† WD ®.S; x/ 2 C.Œ0; T �IR � L2.�// W .S.0/; x.0// D .Sin; Avin/; S � 0;
k.S; x/ � .Sin; Avin/kC.Œ0;T �IR�L2.�// � ı

¯
:
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Then, for T; ı > 0 small enough, the Lipschitz continuity of N W dom.�D�/! R (see
(43)) implies that N.A�1x/ > 0 at every time t 2 Œ0; T � and for all x 2 †. Moreover, the
Lipschitz continuity of .S; v; t/ 7! �.S; N.v/; F.t//v 2 dom.�D�/ and of .S; v; t/ 7!
F.t/� c.S;N.v/;F.t//N.v/2R in a neighbourhood of .Sin;vin;0/ in R� dom.�D�/�
Œ0; T �, yields (for sufficiently small T ) that ˆ maps the closed set † into itself and that ˆ
is a contraction.

Therefore, Banach’s fixed point theorem yields a unique fixed point .S; x/ 2 † of ˆ.
Note that since Sin � 0, the quasi-positivity property (3), i.e. .F � Nc.0; N; F //� D 0

and the local Lipschitz continuity of .S; v; t/! F.t/ � N.v.t//c.S.t/; N.v.t//; F .t//
ensure that S � 0 holds on Œ0; T � independently of T .

The function t 7! �.S.t/; N.A�1x.t//; F .t//A�1x.t/ is in C.Œ0; T �I L2.�//. With
some additional work (see e.g. [23]) one can show that t 7! x.t/ 2 L2.�/ is locally Hölder
continuous for t 2 .0; T �. Hence, S is locally Lipschitz continuous and so is the function
t 7! �.S.t/; N.A�1x.t//; F .t//A�1x.t/ 2 L2.�/ for t 2 .0; T �. This implies that the
linear inhomogeneous problem

Pw C Aw D �.S;N.A�1x/; F.�//A�1x; w.0/ D vin

has a unique solution w 2 C.Œ0; T �IL2.�// \ C1..0; T �IL2.�//, given by

w.t/ D et.�A/vin C
Z t

0

e.t��/.�A/�.S;N.A�1x/; F.�//A�1x d�:

Applying A to this equation shows that w D A�1x, which implies that the function w
solves (5)–(7). Moreover, w 2 C.Œ0; T �I dom.�D�// \ C1..0; T �I L2.�//. Since w is
unique, this proves that

.S; v/ WD .S;w/ 2 C
�
Œ0; T �IR � dom.�D�/� \ C1

�
.0; T �IR � L2.�/

�
is the unique local solution of (1)–(8). Having already shown S.t/� 0, we are left to prove
that the solution v of (5)–(7) satisfies v.t; x/ � 0 for all t 2 Œ0; T � and all x 2 x�. Note first
that j�.S.t/; N.t/; F .t//j � C uniformly in t 2 Œ0; T � for some C > 0. Let � < �C be
chosen arbitrarily and introduce the auxiliary function Qv D ve�t . This function solves the
evolution equation´

@t Qv.t; x/ �D� Qv.t; x/ D .�.S;N; F /C �/ Qv.t; x/ � 0 a.e. in .0; T / ��;
@� Qv.t; x/ D 0 a.e. in .0; T / � @�; (44)

subject to nonnegative initial data Qvin � 0. Moreover, j�.S.t/; N.t/; F .t//j C � � C C
� < 0 uniformly in Œ0; T �. Hence, by using weak parabolic maximum principle arguments
(see e.g. [6]), we test (44) with Qv� D min¹0; Qvº and obtain after integration by parts,

d

dt

Z
�

. Qv�/2
2

dx � �D
Z
�

jr. Qv�/j2 dx C .j�j C �/
Z
�

. Qv�/2 dx � 0:

Hence . Qvin/� D 0 implies that Qv� D 0 a.e. on � for all t > 0. Since v 2 C.Œ0; T � � x�/,
this yields v.t; x/ � 0 for all t 2 Œ0; T � and x 2 x�.
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(II) Higher regularity and strong solutions. Since

.S; v; t/ 7!
�
1
"
.F.t/ �N.v/c.S;N.v/; F.t///

�.S;N.v/; F.t//v

�
is locally Lipschitz continuous into R � L2.�/ on a neighbourhood of .Sin; vin/ in RC �
X˛ for any 0 < ˛ < 1 and for t > 0, it follows by classical arguments that t 7! d

dt
v.t/ is

locally Hölder continuous into X
 for any 0 < 
 < 1 and t > 0. As a consequence (see
e.g. [14, Theorem 3.5.2]), it follows that

.S; v/ 2 C
�
Œ0; T �IR � H2.�/

� \ C1
�
.0; T �IR � C0;ˇ .x�/�; (45)

where the exponent ˇ is as defined in Theorem 1.
Note that the derivative PS for t > 0 is given by

PS.t/ D 1

"
.F.t/ �N.v.t//c.S.t/; N.v.t//; F .t///;

and that the right-hand side is continuous and also bounded for t ! 0. Hence, S 2
C1.Œ0; T �/.

(III) Global existence and lower bound for N.v/. The assumption that c.S; N; F /
is bounded along solutions implies that the nonlinear functions t 7! �.S.t/; N.v.t//;

F .t//v.t/ and t 7! F.t/ � N.v.t//c.S.t/; N.v.t//; F .t// satisfy at most linear growth
estimates along solutions .S; v/ of (1)–(8), which yields global existence of solutions by
classical arguments; see e.g. [14, Corollary 3.3.5]. Moreover, estimate (9) shows for all
t 2 Œ0; T � that N.t/ � Nin exp.�jƒ.�1/jT / DW ı.T / > 0.

(IV) Further regularity and classical solutions. For t 2 .0; T /, we calculate

d

dt
v.t/ D �et.�A/Avin �

Z t

0

e.t��/.�A/�.S;N.v/; F /Av d�

C �.S.t/; N.v.t//; F .t//v.t/; (46)

and all functions on the right-hand side are contained in C.Œ0; T �IL2.�//. Consequently,
@tv is uniformly bounded in L2.�/, i.e. v 2 C1.Œ0; T �IL2.�//. Moreover, we recall that
t 7! �.S.t/; N.v.t//; F .t// is continuous and @tv.t/; v.t/ 2 C0;ˇ .x�/ for all t 2 .0; T �
from (II). Hence, for any fixed t > 0, we define h.x/ WD �@tv.t; x/ C �.S.t/; N.t/;
F .t//v.t; x/, and v.t; :/ solves the equation´

�D�z.x/ D h.x/ for x 2 �;
@�z D 0 for x 2 @�: (47)

Moreover, h 2 C0;ˇ .x�/ satisfies the solvability condition
R
�
hdx D 0 since v solves (5)–

(7). Thus, by [22, Theorem 3.1], problem (47) has a unique, normalised solution

z 2 C WD ®v 2 C2;ˇ .x�/ W R
�
v.x/ dx D N.u/ D 0¯:
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Moreover, [22, Theorem 4.1] yields that kzkC2;ˇ .x�/ � CkhkC0;ˇ .x�/ for a constant C D
C.�; ˇ; d/ > 0. Because v.t; :/ solves (47), the uniqueness of the normalised solution
z 2 C implies z D v.t; :/ � 1

j�j
N.v.t//. Therefore, the function v.t; :/ is contained in

C2;ˇ .x�/ with


v.t; :/ � N.v.t; ://j�j





C2;ˇ .x�/

� CkhkC0;ˇ .x�/

D Ck � @tv.t; :/C �.S.t/; N.t/; F .t//v.t; :/kC0;ˇ .x�/

� Ck � @tv.t; :/kC0;ˇ .x�/ C C j�.S.t/; N.t/; F .t//jkv.t; :/kC0;ˇ .x�/ <1:

Since the right-hand side is uniformly bounded for all 0 < t0 � t � T , we conclude v 2
L1..t0; T /IC2;ˇ .x�// for any t0 > 0. Finally, v 2 C..0; T �IC2;ˇ .x�// follows from a sim-
ilar estimate and the observations that t 7! �.S.t/;N.t/; F .t//v.t/ 2 C.Œ0; T �IC0;ˇ .x�//,
t 7! d

dt
v.t/ 2 C..0; T �IC0;ˇ .x�// and t 7! N.v.t// 2 C.Œ0; T �/.
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