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A general result on the approximation of local
conservation laws by nonlocal conservation laws:

The singular limit problem for exponential kernels

Giuseppe Maria Coclite, Jean-Michel Coron, Nicola De Nitti,
Alexander Keimer, and Lukas Pflug

Abstract. We deal with the problem of approximating a scalar conservation law by a conservation
law with nonlocal flux. As convolution kernel in the nonlocal flux, we consider an exponential-type
approximation of the Dirac distribution. We then obtain a total variation bound on the nonlocal
term and can prove that the (unique) weak solution of the nonlocal problem converges strongly in
C.L1loc/ to the entropy solution of the local conservation law. We conclude with several numerical
illustrations which underline the main results and, in particular, the difference between the solution
and the nonlocal term.

1. Introduction

Nonlocal conservation laws have been studied quite intensively over the last decade with
a particular focus on models arising in traffic flow [6, 22, 33, 36, 41, 49, 58], supply chains
[35, 43, 60], pedestrian flow/crowd dynamics [24], opinion formation [2, 56], chemical
engineering [55, 62], sedimentation [7], conveyor belts [59] and more. For the underlying
dynamics, existence and uniqueness [13,16,28,39,44,47–49,51], (optimal) control prob-
lems [5, 15, 23, 27, 37, 42], and suitable numerical schemes [1, 12, 14, 31, 57] have been
analyzed.

In this work, “nonlocal” refers to the fact that the velocity V WR!R of the correspond-
ing flux f WR! R, i.e. f .s/ D sV .s/, s 2 R, does not depend on the solution locally at
a given space point but on the integral of the solution over a (spatial) neighborhood.

First, in [3] it was observed that, at least numerically, there is some hope that the
solution of the nonlocal conservation law converges to the local entropy solution when
the nonlocal term approaches a Dirac distribution. Positive results in this direction were
obtained in [63], provided that the limit entropy solution is smooth and the convolu-
tion kernel is even, and in [46] for a large class of nonlocal conservation laws under the
assumption of having monotone initial data. Under the assumption that the initial datum
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has bounded total variation, is bounded away from zero and satisfies a one-sided Lipschitz
condition, a positive result was obtained in [20]. In [9], for an exponential weight in the
nonlocal term, it was shown – provided that the initial datum is bounded away from zero
and has bounded total variation (but without monotonicity assumptions) – that the nonlo-
cal solutions converge (up to subsequences) to weak solutions of the corresponding local
conservation law; it was also shown that the limit is the unique entropy solution under the
additional assumption that V is an affine function. More recently, in [10], the result was
extended to more general fluxes.

A viscous nonlocal conservation law with kernel of exponential type was considered
in [17]: as the nonlocal term together with the viscosity approximation approaches zero,
the sequence of solutions converges to the local entropy solution. The positive effect of
viscosity in the nonlocal-to-local approximation process was previously studied in [18,
19, 21] for more general compactly supported kernels (see also [11] in the case of more
regular initial data and linear velocity).

In conclusion, although some progress has been made under rather restrictive assump-
tions, a general theory concerning convergence is missing. Even more, [20] demonstrates
via a counterexample that a total variation blow-up of the solution of the nonlocal con-
servation law can occur if the data is not bounded away from zero, so that the standard
methods via compactness in L1 seemed to be out of reach.

This is why, in this work, we focus instead on the corresponding nonlocal term: it
turns out that this term itself satisfies a local transport equation with nonlocal source (see
Lemma 3.1), and we can use this to show a uniform total variation bound (see Theo-
rem 3.2). Thanks to the specific structure of the nonlocal term this directly implies that
also the solution of the conservation law converges strongly in L1 (see Theorem 4.1 and
Corollary 4.1) (although it does not necessarily satisfy a total variation bound as discussed
before).

More precisely, we consider the following setting. For a nonlocal parameter � 2 R>0
and time horizon T 2 R>0, let q�W .0; T / � R! R be the unique weak solution (weak
solutions are unique in the nonlocal setup, compare the later-stated results, particularly
Theorem 2.1) of the nonlocal conservation law on R,

@tq�.t; x/C @x
�
V.W�Œq��.t; x//q�.t; x/

�
D 0; .t; x/ 2 �T ;

q�.0; x/ D q0.x/; x 2 R;

with �T WD .0; T / �R, supplemented by the nonlocal term W� with exponential weight

W�Œq�.t; x/ WD
1
�

Z 1
x

exp
�
x�y
�

�
q.t; y/ dy; .t; x/ 2 �T ;

and let qW�T !R be the entropy solution of the corresponding local conservation law on
R (for the “local theory” and corresponding entropy solutions, we refer to [8, 29, 34, 40]),

@tq.t; x/C @x
�
V.q.t; x//q.t; x/

�
D 0; .t; x/ 2 �T ; (1)

q.0; x/ D q0.x/; x 2 R: (2)
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Then we can show
q�

�!0
���! q in C.Œ0; T �IL1loc.R//:

We achieve this by first analyzing the nonlocal term W�Œq��. Thanks to the relation
�@2W�Œq���W�Œq��� q� , the strong convergence (of subsequences) of q to a weak solu-
tion of the local conservation law follows immediately from the strong convergence of
W� , which itself is guaranteed by the stated total variation bound in Theorem 3.2. Even-
tually, we use [10] to obtain that the solution is indeed also entropic. Even more, we show
that the nonlocal term W�Œq�� also converges to the local entropy solution.

Our “nonlocal-to-local convergence” result closes the gap between local and nonlocal
modeling of phenomena governed by conservation laws; moreover, it provides a way of
defining the entropy admissible solutions of local conservation laws as limits of weak
solutions to nonlocal conservation laws, which usually do not require an entropy condition
for uniqueness (see [26, 45, 48, 49]). This kind of singular limit would be an alternative to
the classical vanishing viscosity approach (see [8, 29, 40] and references therein). In the
case of a nonlocal approximation, no smoothing phenomena happen and the character of
the approximating equation remains somewhat “hyperbolic” (finite propagation of mass,
but infinite propagation of information).

Such a convergence result would also give additional insights into questions related to
control theory (see [5]), in the spirit of [25,32,38,52]. Showing control results for nonlocal
conservation laws might be easier due to the fact that these equations are invertible in
time, so that one can actually go back from a current state to the initial datum. Optimal
control problems might also become mathematically more approachable as the problem
with adjoint equations and shocks prohibiting differentiability in a certain local framework
might be resolvable in the nonlocal theory and one might then just consider the limit
controls when the nonlocal term approaches a Dirac.

2. Preliminary results on nonlocal conservation laws

In this section, we present some well-known and important results on existence and
uniqueness of solutions and their properties, which will become crucial in what follows.
We also state precisely the problem setup and the required assumptions.

Definition 2.1 (The nonlocal conservation law and the weak solution). Let T 2 R>0 be
given. For � 2 R>0 we consider the following nonlocal conservation law in the “density”
q�W�T ! R, �T WD .0; T / �R,

@tq�.t; x/C @x
�
V.W�Œq��.t; x//q�.t; x/

�
D 0; .t; x/ 2 �T ; (3)

q�.0; x/ D q0.x/; x 2 R; (4)

supplemented by the nonlocal term W� ,

W�Œq��.t; x/ WD
1
�

Z 1
x

exp
�
x�y
�

�
q�.t; y/ dy; .t; x/ 2 �T : (5)
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We call q0WR! R the initial datum and W�Œq��W�T ! R the nonlocal impact affect-
ing the velocity function V WR! R of the nonlocal conservation law. We say that q� 2
C.Œ0; T �I L1loc.R// is a weak solution for q0 2 L1loc.R/ and � 2 R>0 iff for all ' 2
C 1c ..�42; T / �R/ it holds that“

�T

@t'.t; x/q�.t; x/C @x'.t; x/V .W�Œq��.t; x//q�.t; x/ dx dt

C

Z
R
'.0; x/q0.x/ dx D 0: (6)

For the analysis to follow and the well-posedness, we require the following not restric-
tive assumptions:

Assumption 2.1 (Assumptions on input data). The functions in Definition 2.1 satisfy

• q0 2 L
1.RIR�0/ \ TV.R/,

• V 2 W
1;1

loc .R/ W V 0.s/ � 0 8s 2 .ess- infx2R q0.x/; kq0kL1.R//.

Theorem 2.1 (Existence and uniqueness of weak solutions and maximum principle).
Given Assumption 2.1, there exists a unique weak solution q 2 C.Œ0; T �I L1loc.R// \
L1..0; T /IL1.R// \ L1..0; T /I TV.R// of the nonlocal conservation law in Defini-
tion 2.1 and the following maximum principle is satisfied:

ess- inf
x2R

q0.x/ � q.t; x/ � kq0kL1.R/ a.e. .t; x/ 2 �T : (7)

Proof. See [44, Theorems 2.20, 3.2 & Corollary 4.3].

In the presented framework, we restrict ourselves to monotonically decreasing veloc-
ities and nonnegative initial datum. However, this can be extended directly to different
setups and is detailed in Remark 2.1.

Remark 2.1 (Generalization of the assumptions on the velocity function V ). The assump-
tion on V being monotonically decreasing (see Assumption 2.1) can be changed to V
monotonically increasing as long as one also changes the nonlocal range for q 2 C.Œ0; T �I
L1loc.R// as

W�Œq�.t; x/ WD
1
�

Z x

�1

exp
�
y�x
�

�
q.t; y/ dy; .t; x/ 2 �T :

Analogously, the results can be extended to hold also for nonpositive initial datum when
changing the nonlocal term accordingly. We do not go into details.

Even more, when assuming that V 0.s/s has a sign for all s 2R, one does not need even
a maximum principle to be satisfied and thus the initial datum can be chosen arbitrarily in
L1.R/\TV.R/ (no sign restrictions). However, then one does not obtain convergence of
q� but of W� , which remains essentially bounded and for which the total variation bound
derived in Theorem 3.2 still holds. However, Theorem 4.2 is not directly applicable and
we are left with the limit being a weak solution. Compare also Remark 3.2.
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3. Total variation bound on the nonlocal term

As we will tackle the convergence first in the nonlocal termW�Œq��, we deduce a transport
equation with a nonlocal source which will enable us to study W�Œq�� without q� itself.

Lemma 3.1 (Transport equation with nonlocal source satisfied by the nonlocal term).
Given the dynamics in Definition 2.1, the nonlocal term W�Œq�� as in (8) is Lipschitz con-
tinuous and satisfies the following transport equation with nonlocal source in the strong
sense:

@tW�.t; x/C V.W�.t; x//@xW�.t; x/

D �
1
�

Z 1
x

exp
�
x�y
�

�
V 0.W�.t; y//@yW�.t; y/W�.t; y/ dy; .t; x/ 2 �T ; (8)

W�.0; x/ D
1
�

Z 1
x

exp
�
x�y
�

�
q0.y/ dy; x 2 R: (9)

In particular, for � 2 R>0, we have W� 2 W 1;1.�T /.

Proof. We first show thatW�Œq�� is Lipschitz continuous. To this end, recall the definition
in (5) and compute for .t; x/ 2 �T ,

@xW�Œq��.t; x/ D @x
1
�

Z 1
x

exp
�
x�y
�

�
q�.t; y/ dy

D
1
�
W�Œq��.t; x/ �

1
�
q�.t; x/: (10)

However, as � 2 R>0, W�Œq�� 2 L1.�T / and q� 2 L1.�T / thanks to Theorem 2.1, we
obtain the uniform boundedness of the spatial derivative. The time derivative is slightly
more tricky. Due to the lack of regularity, we use the method of characteristics analyzed
in [44, Lemma 2.6] to write down the solution q� and have on .t; x/ 2 �T ,

@tW�Œq��.t; x/ D @t
1
�

Z 1
x

exp
�
x�y
�

�
q�.t; y/ dy

D @t
1
�

Z 1
x

exp
�
x�y
�

�
q0.�.t; yI 0//@2�.t; yI 0/ dy

D @t
1
�

Z 1
�.t;xI0/

exp
�
x��.0;zIt/

�

�
q0.z/ dz

D �
1
�2

Z 1
�.t;xI0/

exp
�
x��.0;zIt/

�

�
q0.z/@3�.0; zI t / dz

�
1
�
q0.�.t; xI 0//@1�.t; xI 0/: (11)

Recalling some nice properties of the characteristics [44, Lemma 2.6] and in particular

@3�.0; �.t; yI 0/I t / D V.W�Œq��.t; y// 8.t; y/ 2 �T ;

@1�.t; yI 0/ D �@2�.t; yI 0/V .W�Œq��.t; y// 8.t; y/ 2 �T ;
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we obtain, by continuing (11),

@tW�Œq��.t; x/ D �
1
�2

Z 1
�.t;xI0/

exp
�
x��.0;zIt/

�

�
q0.z/@3�.0; zI t / dz

�
1
�
q0.�.t; xI 0//@1�.t; xI 0/

D �
1
�2

Z 1
x

exp
�
x�y
�

�
q0.�.t; yI 0//@3�.0; �.t; yI 0/I t /@2�.t; yI 0/ dy

C
1
�
q0.�.t; xI 0//@2�.t; xI 0/V .W�Œq��.t; x//

D �
1
�2

Z 1
x

exp
�
x�y
�

�
q�.t; y/V .W�Œq��.t; y// dy

C
1
�
q�.t; x/V .W�Œq��.t; x//:

This expression is essentially bounded for � 2R>0 so that we obtain the claimed Lipschitz
continuity. Next, we show that the nonlocal operator indeed satisfies the Cauchy problem
in (8)–(9). Using the identity computed for @tW� above, we have for the left-hand side of
(8) and .t; x/ 2 �T ,

@tW�Œq��.t; x/C V.W�Œq��.t; x//@xW�Œq��.t; x/

D
1
�
q�.t; x/V .W�Œq��.t; x// �

1
�2

Z 1
x

exp
�
x�y
�

�
q�.t; y/V .W�Œq��.t; y// dy

C V.W�Œq��.t; x//
�
1
�
W�Œq��.t; x/ �

1
�
q�.t; x/

�
D V.W�Œq��.t; x//

1
�
W�Œq��.t; x/

�
1
�2

Z 1
x

exp
�
x�y
�

�
.W�Œq��.t; y/ � �@yW�Œq��.t; y//V .W�Œq��.t; y// dy

D V.W�Œq��.t; x//
1
�
W�Œq��.t; x/

�
1
�2

Z 1
x

exp
�
x�y
�

�
W�Œq��.t; y/V .W�Œq��.t; y// dy

C
1
�

Z 1
x

exp
�
x�y
�

�
@yW�Œq��.t; y/V .W�Œq��.t; y// dy

D �
1
�

Z 1
x

exp
�
x�y
�

�
V 0.W�Œq��.t; x//@yW�Œq��.t; y/W�Œq��.t; y/ dy;

where we have used the identity in (10) twice and integration by parts. However, the last
term is indeed the right-hand side of (8). The nonlocal term W� also satisfies the initial
datum in (9), which is a direct consequence of the definition of W� in (5) when plugging
in t D 0 (this is possible as the solution is regular enough, i.e. q� 2 C.Œ0; T �IL1loc.R//.

Remark 3.1 (Fully local equation in W�). The transport equation in W� in (8) with non-
local source can also be transformed into a fully local equation (as in [17]) involving
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higher derivatives and particularly a mixed space-time derivative:

@tW�.t; x/C @x
�
V.W�.t; x//W�.t; x/

�
D �@2txW�.t; x/C @x

�
V.W�.t; x//@xW�.t; x/

�
; .t; x/ 2 �T ;

W�.0; x/ D
1
�

Z 1
x

exp
�
x�y
�

�
q0.y/ dy; x 2 R:

For Theorem 3.2, where we prove a total variation bound on W� uniform in �, we
require a density or stability result which enables us to smooth the solution. This result,
stated below, is borrowed from [46, Theorem 4.17].

Theorem 3.1 (Stability of the nonlocal conservation law w.r.t. the initial datum). Let
Assumption 2.1 hold, and let C1;C2 2 R�0 be given such that

Q.C1;C2/ WD
®
u 2 TVloc.R/ W kukL1.R/ � C1 ^ jujTV.R/ � C2

¯
:

Let q0 2Q.C1;C2/ be given and denote by q the solutions to the corresponding nonlocal
conservation law.

Then the solutions to the corresponding nonlocal conservation laws (denoted by q)
satisfy the following C.Œ0; T �IL1.R// stability estimate, i.e.

8" 2 R>0 9 ı 2 R>0 W

8 Qq0 2 Q.C1;C2/ with kq0 � Qq0kL1.R/ � ı) kq � QqkC.Œ0;T �IL1.R// � ";

where Qq is the solution to the corresponding nonlocal conservation law with initial
datum Qq0.

Proof. Almost the required result can be found in [46, Theorem 4.17] with the difference
that the kernel of the nonlocal operator is supposed to have compact support while here we
have an exponential kernel (5) with evidently noncompact support. However, the changes
for this result also holding for the exponential kernel are minor, and we do not go into
details.

The next theorem shows that the nonlocal term has a total variation which cannot
increase over time and thus presents the key ingredient for our proof of convergence later.

Theorem 3.2 (Total variation bound in the spatial component of W – uniformly in �).
The nonlocal term W� defined in (5) but which also satisfies the identity demonstrated in
Lemma 3.1 admits – uniformly in � – a total variation bound, i.e.

jW�.t; �/jTV.R/ � jW�.0; �/jTV.R/ � jq0jTV.R/ 8� 2 R>0; 8t 2 Œ0; T �:

Proof. We take advantage of the stability result in Theorem 3.1, which tells us that when
smoothing q0 by q"0 W� q0 � '", with '" being a standard mollifier [53, C.4 Mollifiers]
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with smoothing parameter " 2 R>0, the corresponding solution q"� will be close in the
C.Œ0; T �IL1.R// topology. Additionally, as the initial datum is smooth, so is the corre-
sponding solution (see [44, Corollary 5.3]) which we will denote by q"� . We now prove the
total variation bound. As q"� is smooth, the total variation coincides with the L1-norm of
the derivative and we can estimate for t 2 Œ0; T � as follows:

d
dt

Z
R
j@xW

"
� .t; x/j dx

D

Z
R

sgn.@xW "
� .t; x//@

2
txW

"
� .t; x/ dx

D �

Z
R

sgn.@xW "
� .t; x//V .W

"
� .t; x//@

2
xxW

".t; x/ dx

�

Z
R

sgn.@xW "
� .t; x//V

0.W "
� .t; x//.@xW

"
� .t; x//

2 dx

C
1
�

Z
R

sgn.@xW "
� .t; x//V

0.W "
� .t; x//W

"
� .t; x/@xW

"
� .t; x/ dx

�
1
�2

Z
R

sgn.@xW "
� .t; x//

Z 1
x

exp
�
x�y
�

�
V 0.W "

� .t; y//@yW
"
� .t; y/W

"
� .t; y/ dy dx

D

Z
R
2ı0.@xW

"
� .t; x//V .W

"
� .t; x//@xW

"
� .t; x/@

2
xxW

"
� .t; x/ dx

C

Z
R

sgn.@xW "
� .t; x//V

0.W "
� .t; x//.@xW

"
� .t; x//

2 dx

�

Z
R

sgn.@xW "
� .t; x//V

0.W "
� .t; x//.@xW

"
� .t; x//

2 dx

C
1
�

Z
R

sgn.@xW "
� .t; x//V

0.W "
� .t; x//W

"
� .t; x/@xW

"
� .t; x/ dx

�
1
�2

Z
R

sgn.@xW "
� .t; x//

Z 1
x

exp
�
x�y
�

�
V 0.W "

� .t; y//@yW
"
� .t; y/W

"
� .t; y/ dy dx

�
1
�

Z
R
j@xW

"
� .t; x/jV

0.W "
� .t; x//W

"
� .t; x/ dx

�
1
�2

Z
R
V 0.W "

� .t; y//j@yW
"
� .t; y/jW

"
� .t; y/

Z y

�1

exp
�
x�y
�

�
dx dy (12)

�
1
�

Z
R
j@xW

"
� .t; x/jV

0.W "
� .t; x//W

"
� .t; x/ dx

�
1
�

Z
R
V 0.W "

� .t; y//j@yW
"
� .t; y/jW

"
� .t; y/ exp

�
y�y
�

�
dy

D 0:

We thus obtain
jW "
� .t; �/jTV.R/ � jW

"
� .0; �/jTV.R/ � jq0jTV.R/; (13)
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where the last inequality follows from the assumption on q0 2 TV.R/ as stated in Assump-
tion 2.1 and the definition of the initial value for W� as in (9):

kW "
� .0; �/kTV.R/ D sup

 2C 1c .R/W
k kL1.R/�1

Z
R
 0.x/W "

� Œq
"
0�.x/ dx

D sup
 2C 1c .R/W
k kL1.R/�1

Z
R
 0.x/ 1

�

Z
R>0

exp
�
x�y
�

�
q"0.y/ dy dx

D sup
 2C 1c .R/W
k kL1.R/�1

Z
R
 0.x/ 1

�

Z
R<0

exp
�
z
�

�
q"0.x � z/ dy dx

D sup
 2C 1c .R/W
k kL1.R/�1

sup
z2R<0

Z
R
 0.x C z/q"0.x/ dy

D sup
 2C 1c .R/W
k kL1.R/�1

Z
R
 0.x/

Z
R
'".x � y/q0.x/ dx dy

� sup
y2R

Z
R
'".x � y/ sup

 2C 1c .R/W
k kL1.R/�1

Z
R
 0.z/q0.z/ dz dx

� jq0jTV.R/:

As (13) is uniform in ."; �/ 2 R2>0, we are done.

Remark 3.2 (Total variation bound and the required assumptions on the velocity V ). The
key step in the proof of the total variation bound stated in Theorem 3.2 can be located in
the estimate around (12). Reconnecting to Remark 2.1, it is enough to assume the velocity
satisfies V 0.s/s � 0 for all s 2 R to obtain the uniform total variation bound without any
sign restriction on the initial datum.

4. Convergence nonlocal to local

Using the results in Section 3, we can show next that the set of nonlocal terms is compact
in the canonical C.Œ0; T �IL1loc.R// topology.

Theorem 4.1 (Compactness ofW� in C.Œ0;T �IL1loc.R//). The set .W�/�2R>0 � C.Œ0;T �I

L1loc.R// of solutions to (8)–(9) is compactly embedded into C.Œ0; T �IL1loc.R//, i.e.®
W� 2 C.Œ0; T �IL

1
loc.R// W W� satisfies (8)–(9); � 2 R>0

¯ c
,�! C.Œ0; T �IL1loc.R//:

Proof. The proof consists of applying the Ascoli theorem in [61, Lemma 1]. We state the
details in the following.
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Let B be a Banach space. Then [61, Lemma 1] states that a set F � C.Œ0; T �IB/ is
relatively compact in C.Œ0; T �IB/ iff

• F.t/ WD ¹f .t/ 2 B W f 2 F º is relatively compact in B for all t 2 Œ0; T �;

• F is uniformly equicontinuous, i.e.

8� 2 R>0;9 ı 2 R>0;8f 2 F ;8.t1; t2/ 2 Œ0; T �
2 with jt1 � t2j � ı W

kf .t1/ � f .t2/kB � �:

We start with setting B D L1loc.R/ and F.t/ WD ¹W�.t; �/ 2 L1loc.R/ W � 2 R>0º. Thanks
to Theorem 3.2, we know that W�.t; �/ has a uniform total variation bound and by [53,
Theorem 13.35], the set F.t/ is compact in L1loc.R/, i.e.

F.t/
c
� L1loc.R/ 8t 2 Œ0; T �:

It remains to show the second point, the uniform equicontinuity. To this end, we again
smooth the initial datum q0 by a q"0 for " 2 R>0 as in the proof of Theorem 3.2 and call
the corresponding smooth nonlocal term W "

� for an � 2 R>0. Then we can estimate

kW "
� .t1; �/ �W

"
� .t2; �/kL1.R/ D





Z t1

t2

@tW
"
� .s; �/ ds






L1.R/

;

plugging in (8) and using the triangle inequality,

�





Z t1

t2

V.W "
� .s; �//@2W

"
� .s; �/ ds






L1.R/

C





Z t1

t2

1
�

Z 1
�

exp
�
��y
�

�
V 0.W "

� .s; y//@yW
"
� .s; y/W

"
� .s; y/ dy ds






L1.R/

;

applying (7),

� kV kL1..0;kq0kL1.R///jW
"
� jL1..0;T /ITV.R//jt1 � t2j

C kV 0kL1..0;kq0kL1.R///kW
"
� kL1..0;T /IL1.R//jW

"
� jL1..0;T /ITV.R//jt1 � t2j

and finally Theorem 3.2 and (7),

� .kV kL1..0;kq0kL1.R/// C kV
0
kL1..0;kq0kL1.R///kq0kL1.R//jq0jTV.R/jt1 � t2j:

As this is a uniform bound in � 2 R>0 and " 2 R>0, we have the uniform equicontinuity
so that we indeed obtain the claimed compactness.

As a direct result, from the strong convergence of W� we have also the strong conver-
gence of q� to a weak solution of the local conservation law as the following corollary
states:
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Corollary 4.1 (Limit of q� and W� are weak solution to the local equation). For every
sequence .�k/k2N�1 � R>0 with limk!1 �k D 0, there exists a subsequence (for rea-
sons of convenience again denoted by �k) and a function q� 2 C.Œ0; T �IL1loc.R// so that
the solution q�k 2 C.Œ0; T �IL

1
loc.R// of the nonlocal conservation law as given in Defi-

nition 2.1 converges in C.Œ0; T �IL1loc.R// to the limit point q� and so does the nonlocal
termW�k as given in (5). Additionally, q� is a weak solution of the local conservation law
(1)–(2). In equations,

lim
�!0
kq� � q

�
kC.Œ0;T �IL1loc.R//

D 0 ^ lim
�!0
kW� � q

�
kC.Œ0;T �IL1loc.R//

D 0;

where q� satisfies for all ' 2 C 1c ..�42; T / �R/,“
�T

@t'.t; x/q
�.t; x/C @x'.t; x/V .q

�.t; x//q�.t; x/ dx dt

C

Z
R
'.0; x/q0.x/ dx D 0: (14)

Proof. Thanks to Theorem 4.1, W WD ¹W�k I k 2 N�1º
c
� C.Œ0; T �IL1loc.R//, i.e. the set

W is compact in C.Œ0; T �IL1loc.R// and there exists a limit point q� 2 C.Œ0; T �IL1loc.R//
so that we obtain

lim
k!1

kW�k � q
�
kC.Œ0;T �IL1loc.R//

D 0:

The identity in (10) directly implies

kW�k .t; �/ � q�k .t; �/kL1.R/ D �kjW�k .t; �/jTV.R/ � �kjq0jTV.R/

and thus we also obtain

lim
k!1

kq�k � q
�
kC.Œ0;T �IL1loc.R//

D 0:

It remains to be shown that q� is indeed a weak solution. This directly follows from the
strong convergence of q�k to q� in C.Œ0;T �IL1loc.R// and due to the essential and uniform
bound on q� as given in Theorem 2.1 in (7).

However, the previous result can actually be strengthened, and indeed we obtain that
the limit q� is unique (in particular, every subsequence converges) and that this limit is
the weak entropy solution of the corresponding local conservation law.

Theorem 4.2 (Convergence to the entropy solution). Given Assumption 2.1, and assum-
ing that the flux s 7! sV .s/ is strictly convex/strictly concave on Œess- infx2R q0.x/;

kq0kL1.R/�, the nonlocal term W�Œq�� and the corresponding nonlocal solution q� 2
C.Œ0;T �IL1loc.R// of the nonlocal conservation law in Definition 2.1 converge in C.Œ0;T �I
L1loc.R// to the entropy solution of the corresponding local conservation law (see (1)–(2)).
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Figure 1. Solution of the nonlocal balance law with exponential kernel (top, (5)) and constant kernel
(bottom, (15)) supplemented by the piecewise constant initial datum stated in (16) plotted in the
space-time domain. From left to right � is decreasing, � 2 ¹10�1; 10�2; 10�3º. The rightmost figure
is “by eye” not distinguishable from the corresponding local solution. Color bar: 0 1

Proof. This is a direct consequence of the convergence of W� , q� to a weak solution of
the local conservation laws in C.Œ0; T �IL1loc.R//, Corollary 4.1 and of [10]. Therein, by
taking advantage of the minimal entropy condition in [30, 54], it is shown that a solution
q� of the nonlocal conservation law in Definition 2.1 with uniform TV bound converges to
the entropy solution of the local problem, given that the flux is strictly convex or concave.
However, when checking the proof carefully, it turns out that it suffices to assume that the
solution q� converges strongly to a weak solution q�, which is the case. The uniqueness
follows as every limit point is, by the previous argument, an entropy solution and the
entropy solution is unique, thus each subsequence converges to the same limit point and
thus, for every sequence .�k/k2N�1 � R>0 with limk!1 �k D 0 we have q�k ! q� (for
k !1) in C.Œ0; T �IL1loc.R//.

5. Numerical illustrations

Some numerical results concerning the convergence can be found in [46]. We rely on
a solver based on characteristics [50] which is nondissipative. On the basis of a simple
example, we want to shed more light on the difference between the total variation of q�
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Figure 2. Left: Solution of the nonlocal balance law with exponential kernel (top, (5)) and constant
kernel (bottom, (15)) supplemented by the piecewise constant initial datum stated in (16) and its
corresponding nonlocal term plotted for t D 0:5 and � 2 ¹10�1; 10�2; 10�3º. Right: Evolution of
the corresponding total variations showing a monotone decreasing nature in terms of the nonlocal
term (dotted lines) which is also the case for the local counterpart. In terms of the total variation of
the solution itself (dashed dotted lines), the total variation approaches 3. This is because the zero in
the initial datum (x 2 .13 ;

2
3 /) moves and shrinks but does not vanish for all � 2 R>0 and t 2 .0; T �,

resulting in an additional total variation of 2, compared to the total variation of the solution to the
local equation being 1 for all t 2 .1; T /.

and the nonlocal counterpart W�Œq�� (see Figure 1, upper row). We further demonstrate
that the result should still hold for general nonlocal kernels by using as “worst case” a
constant kernel, i.e. for q 2 C.Œ0; T �IL1loc.R// \ L

1..0; T /IL1.R//,

W�Œq�.t; x/ WD
1
�

Z xC�

x

q.t; y/ dy; x 2 R: (15)

This is illustrated in the lower row of Figure 1. The examples rely on the following initial
datum:

q0 �
1
2
�.0; 13 /

C �R
> 23

: (16)

It seems to be true that a total variation bound on the nonlocal term holds also for the
“extreme case” of a constant kernel and that also the solution still converges to the local
entropy solution.
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The crucial points of the chosen initial datum are the roots for x 2 .1
3
; 2
3
/. These roots

are moving but kept in the nonlocal solution q� for all times (see Figure 2). This results
in an increase of the total variation. In the nonlocal term W there are by construction of
the initial datum, as well as the exponential kernel, no roots, and the solution is smoothed
resulting in an – as proven – nonincreasing total variation.

6. Future work

The presented results open many possibilities for future research. We detail some of them:

(1) Is it possible to obtain the same results for different kernels still satisfying the
required monotonicity assumption for the solution to satisfy a maximum principle (see for
this particularly Section 5 and Figure 1, lower row)? The considered exponential kernel
provides a nice structure, which is crucial in our analysis for showing the stated results.
However, from a numerical point of view, it seems that, as long as the kernel is monoton-
ically decreasing, the convergence should hold (see again Figure 1).

(2) What happens in the case of a fully symmetric nonlocal kernel which is sensitive
to both propagating directions? However, such a kernel immediately implies that the solu-
tions cannot satisfy a maximum principle (for an illustration see for instance [46, Example
7.3, Figure 9]). Then, recalling [20], it is also apparent that one cannot expect the solution
to converge in a strong or weak sense to the entropy solution, but there is hope – compare
particularly the numerics in [46, Example 7.3] – for convergence in a measure-valued
sense.

(3) Do we also obtain convergence in the case of the initial boundary value problem?
In [49], we introduced the corresponding initial boundary value problem where the right-
hand side boundary is located in the nonlocal term. The natural question is then whether
the nonlocal conservation law on a bounded domain converges to the local entropy solu-
tion with boundary datum in the sense of [4].
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