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Adaptation to a heterogeneous patchy environment with
non-local dispersion

Alexis Léculier and Sepideh Mirrahimi

Abstract. In this work, we provide an asymptotic analysis of the solutions to an elliptic integro-
differential equation. This equation describes the evolutionary equilibria of a phenotypically struc-
tured population, subject to selection, mutation, and both local and non-local dispersion in a spatially
heterogeneous, possibly patchy, environment. Considering small effects of mutations, we provide
an asymptotic description of the equilibria of the phenotypic density. This asymptotic description
involves a Hamilton–Jacobi equation with constraint coupled with an eigenvalue problem. Based on
such analysis, we characterize some qualitative properties of the phenotypic density at equilibrium
depending on the heterogeneity of the environment. In particular, we show that when the heterogene-
ity of the environment is low, the population concentrates around a single phenotypic trait leading
to a unimodal phenotypic distribution. On the contrary, a strong fragmentation of the environment
leads to multi-modal phenotypic distributions.

1. Introduction

1.1. The model and motivations

We are interested in the study of evolutionary equilibria of phenotypically structured pop-
ulations in spatially heterogeneous and possibly patchy environments. Understanding the
interplay between heterogeneous selection, migration, and mutation is a major objective
of evolutionary biology theory and could lead to a better understanding of the speciation
process and the evolutionary response to global change [34]. Joint evolution and spatial
dispersion have to be considered in the study of species that need to adapt to climatic
change, or in epidemiology, where pathogenic viruses or bacteria may propagate in a
population that has been partially vaccinated or treated with antibiotics [20,21]. The math-
ematical problem then amounts to describing both phenotypic and spatial structure of the
population, and connects to key questions in evolutionary ecology about the evolution of
species ranges (where are the individuals?) and niches (which phenotypes are observed
within the species?).

2020 Mathematics Subject Classification. 35-XX.
Keywords. Elliptic integro-differential equations, asymptotic analysis, Hamilton–Jacobi equations,
evolutionary adaptation, spatial heterogeneity.

https://creativecommons.org/licenses/by/4.0/


A. Léculier and S. Mirrahimi 1226

We investigate particularly the effect of fragmented environment, considering non-
local dispersion. The non-local dispersion may have antagonistic effects on the population
dynamics. On the one hand, it may allow the population to reach new favorable geographic
regions which are not accessible by a local diffusion. On the other hand, it may also
impede local adaptation by bringing individuals with locally maladapted traits from other
regions. While the role of the non-local dispersion and the fragmentation of the environ-
ment is significant in many situations, as in the adaptation of forest trees to climate change
because of the effect of the wind on the seeds or the pollens, very few theoretical works
take it into account [22].

More precisely, we provide in this work an asymptotic analysis of the equilibria of a
non-local parabolic Lotka–Volterra-type equation, modeling the interplay between muta-
tion, selection, local and non-local dispersion in possibly fragmented environments. The
equation under study is8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

���@��n � �x@xxnC �xLn D n.R.x; �/ � ��.x// in � � ��A;AŒ;

�.x/ D

Z
��A;AŒ

n.x; �/ d� in �;

Ln.x; �/ D

Z
�

Œn.x; �/ � n.y; �/�K.x � y/ dy in � � ��A;AŒ;

@�xn.x; �/ D 0 on @� � ��A;AŒ; @��n.x;˙A/ D 0 on � � ¹˙Aº;

(1)

with � a bounded subset of R, representing the spatial domain. Here, n.x; �/ stands for
the density of a population at equilibrium at position x with a phenotypical trait � . The
term R.x; �/ corresponds to the intrinsic growth rate of individuals of phenotype � at
position x. The term �.x/ corresponds to the total size of the population at position x. Via
the term �� in the right-hand side of (E), we take into account a mortality rate due to the
uniform competition between the individuals at the same position, with intensity �. The
trait of the parent is transmitted to the offspring. However, the trait can be modified due to
the mutations which we model by a Laplace term with respect to � . We also consider that
the species is subject to a local and a non-local dispersion in the space variable x. Indeed,
in addition to a classical local dispersion term modeled by a Laplace term with respect to
x, we also take into account a non-local dispersion modeled by the integral operator L,
assuming that the individuals can jump from position x to position y with a rateK.x � y/.
Finally, we have denoted by @�x , @�� the exterior derivatives with respect to the variables x
and � . The Neumann boundary condition with respect to x models the fact that the species
cannot leave the domain. The Neumann boundary condition with respect to � means that
the mutants cannot be born with a trait in ��A;AŒc .

We are in particular interested in a regime where the mutations have small effects. To
study such a situation, we set �� D "2, with " a small parameter. We also set �x D � D 1
to reduce the amount of notation. The equation on the population density, denoted now
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by n", is then written8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�"2@��n" � @xxn" C Ln" D n".R.x; �/ � �".x// in � � ��A;AŒ;

�".x/ D

Z
��A;AŒ

n".x; �/ d� in �;

Ln".x; �/ D

Z
�

Œn".x; �/ � n".y; �/�K.x � y/ dy in � � ��A;AŒ;

@�xn".x; �/ D 0 on @� � ��A;AŒ; @��n".x;˙A/ D 0 on � � ¹˙Aº:

(E)

Note that when the mutation rate �� is small compared to the dispersion rate �x , equation
(1) can be brought to the equation above via a change of variables. Our objective is to
provide an asymptotic analysis of n" as the parameter " becomes vanishingly small.

Several questions motivate our analysis. Can we determine extinction and survival cri-
teria for this model? How would the population be spatially distributed at equilibrium?
Would all the spatial domain be exploited close to its local carrying capacity or would we
observe formation of clusters in certain zones of the environment? How would the popula-
tion be distributed phenotypically? Would the population be adapted locally everywhere,
or would we observe emergence of dominant traits? More specifically, would we observe
emergence of generalist traits being adapted to an average environment, or specialist traits
being adapted to certain zones of the environment? What will be the impact of the frag-
mentation of the habitat on the phenotypical distribution of the population? Would it lead
to the emergence of specialist traits?

1.2. The state of the art

Related models and the questions of spatial distribution and ecological niches were studied
from a numerical point of view in the biological literature, considering local dispersion and
a connected domain (see for instance [14, 31]). In particular, in [31] formation of clusters
was observed in a closely related model. While the authors suggested that the formation
of such clusters would be a result of the bounded domain or small mutational effects, they
did not provide any analytical support for such a hypothesis. This type of model, again in
the context of local dispersion, was later derived from stochastic individual-based models
by Champagnat and Méléard [12], where further numerical studies were provided (see
also [3] for a preliminary analysis of this model by Arnold, Desvillettes, and Prévost).
More recently, Alfaro, Coville, and Raoul [2] studied a closely related model, considering
again local dispersion but in unbounded domains. They proved propagation phenomena
and existence of traveling front solutions for parabolic equations close to (E) (see also the
related works [1, 9]). In the context of their study with unbounded domain, one expects
indeed that the population would propagate and get adapted locally in every position in
space attaining its local carrying capacity, which is in contrast with what we observe in
bounded domains, in particular with what we obtain in the present work. However, in this
model to our knowledge, there is as yet no result characterizing rigorously the population
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distribution at the back of the front (see however the work of Berestycki, Jin, and Silvestre
in [5] in a particular case with spatially homogeneous growth rate).

A large number of articles have also studied a closely related equation known as the
“cane-toads” model, where the growth rate is independent of the trait, but the trait influ-
ences the ability of dispersal leading to a � coefficient in front of the diffusion term in
space (see for instance [6–8, 33]). This equation is motivated by the propagation of cane
toads in Australia by taking into account the role of a phenotypical trait: the size of the
legs of the toads. Closer to our work, the steady states of a “cane-toads”-type model, in
the regime of small mutations, were studied by Perthame and Souganidis [30] and by Lam
and Lou [23]. In another related project, a model where similarly to (E) the growth rate,
and not the dispersion rate, depends on the phenotype, but considering a discrete spatial
structure, was studied by Mirrahimi and Gandon [27, 28]. In these works, an asymptotic
analysis of the steady states in the regime of small mutations was provided. In particular,
it was shown that the presence of spatial heterogeneity can lead to polymorphic situations,
which is the emergence of several dominant traits in the population.

In this work we will use an approach based on Hamilton–Jacobi equations, which is
adapted to study the small mutation regime (" small). A closely related approach was
first introduced in [17, 18], by Friedlin using probabilistic techniques and by Evans and
Souganidis using deterministic tools, to study the propagation phenomena in reaction-
diffusion equations. In the context of models from evolutionary biology and in the regime
of small mutations, this method was suggested by Dieckmann, Jabin, Mishler, and
Perthame [13]. In [29], Barles and Perthame provide the first rigorous results within this
approach and obtain a concentration phenomena considering homogeneous environments:
as the mutational effects become small, the solution converges to a Dirac mass. In this
case, the population at equilibrium is monomorphic (there is a single dominant trait in the
population). We quote [4] which extends the main results of [29]. This approach was then
widely extended to study more general models with heterogeneity. In particular, in the
context of the space heterogeneous environments, the works [9, 27, 30, 33] are within this
framework. However, the analyses provided in these previous works do not allow problem
(E) to be studied. The closest work is [9], which studies the propagation phenomenon in
an unbounded domain, considering a different rescaling. Note also that none of the previ-
ous works considered a non-local dispersion operator, which adds significant difficulties
to the analysis.

In an ecological context, fragmented environments and non-local spatial dispersion
phenomena were studied by Léculier, Mirrahimi, and Roquejoffre [24] and by Léculier
and Roquejoffre [25]. Neither work takes into account any phenotypical structure. In [24],
the authors study invasion phenomena in a Fisher–KPP equation involving a fractional
Laplacian arising in a fragmented periodic environment with Dirichlet exterior conditions.
In [25], the authors study the existence and uniqueness of bounded positive steady states
in a Fisher–KPP equation involving a fractional Laplacian in general fragmented environ-
ment with Dirichlet exterior conditions. One of the perspectives of the present work is
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to study models with other operators of dispersion, as the fractional Laplacian .�@xx/˛ ,
instead of �@xx C L, and considering Dirichlet exterior conditions.

1.3. The assumptions and the notation

The domain � � R is assumed to be bounded and composed of one or several connected
components:

� D

m[
iD1

�ai ; bi Œ with a1 < b1 < a2 < � � � < am < bm: (H1)

We assume that the growth rate verifies

R 2 C 1.x� � Œ�A;A�/ and kRkW 1;1.����A;AŒ / < CR: (H2)

Example 1. A typical example of a growth rate is written

R.x; �/ D r � g.bx � �/2:

In this example, r is the maximal growth rate. The above quadratic term indicates that
the optimal trait at position x is given by �o D bx. The term b is the gradient of the
environment: it indicates how fast the optimal trait varies as a function of position in space.
Moreover, g corresponds to the selection pressure. If g increases, the habitats becomes
more hostile for unsuitable individuals.

We make the following assumptions on K:

K 2 C 1.�/; K > 0; K.x/ D K.�x/;

0 < cK < K < CK ; and j@xKj < CK :
(H3)

We introduce here two eigenvalue problems associated to equation (E): let �.�; �/ be
the principal eigenvalue of the operator�@xx �L� ŒR.�; �/� ��Id and�" be the principal
eigenvalue of the operator �@xx � "2@�� � L � R with Neumann boundary conditions,
i.e. ´

�@xx 
� C L. � / � ŒR.�; �/ � �� � D �.�; �/ � in �;

@�x 
� D 0 in @�;

(2)

and ´
�@xx�" � "

2@���" C L�" �R�" D �"�" in � � ��A;AŒ;

@�x�" D @�� �" D 0 on @.� � ��A;AŒ/:
(3)

Throughout the article, we consider that the principal eigenfunctions (such as  � or �")
are taken positive with L2 norms equal to 1. The existence and some properties of � are
proved in Appendix A (the existence of � follows similar arguments to that of �, therefore
we leave it to the reader).



A. Léculier and S. Mirrahimi 1230

We make the following assumption:

9 �0 2 ��A;AŒ such that min
�2��A;AŒ

�.�; 0/ D �.�0; 0/ < 0: (H4)

Lemma 1. Under assumptions (H1)–(H4) we have

�" ���!
"!0

�.�0; 0/:

It follows obviously that

9 "0 > 0; 8" 2 �0; "0Œ; �" <
�.�0; 0/

2
< 0: (4)

We postpone the proof of Lemma 1 to Appendix B and we make the hypothesis that (4)
holds true.

1.4. The results and the strategy

First, we prove the following theorem which provides conditions for existence or non-
existence of a solution of (E) for all small values ".

Theorem 1. Under assumptions (H1)–(H4) for all " 2 �0; "0Œ there exists a non-trivial
positive bounded solution n" of (E). If Assumption (H4) does not hold and �.�0; 0/ > 0,
then there exists "0 >0 small enough such that for all " < "0, there does not exist a positive
solution n" to (E).

We expect indeed that in a dynamic version of (E), the solution would converge in long
time to a non-trivial stationary solution, that is a solution to (E), when such a non-trivial
steady state exists, and to 0 otherwise. Admitting such a property, the theorem above
provides us with conditions of survival and extinction of the population. The survival
condition means indeed that there exists at least one trait � such that �.�; 0/ < 0, so that
such a trait is viable in the absence of competition.

The proof of Theorem 1 follows that of Lam and Lou [23, Theorem 2.1] which treats
the case of local diffusion. This proof relies on a topological degree argument. In Section
4 we provide the additional arguments which allow the proof of [23] to be adapted to the
non-local operator L.

Next we perform the Hopf–Cole transformation

n".x; �/ D e
u".x;�/

" : (5)

This is the usual first step in the Hamilton–Jacobi approach (see [4,13,29]). The main idea
in this approach is to first study the limit of u" as "! 0, and next to obtain, from this limit,
information on the limit of the phenotypic density n". The advantage of this transforma-
tion is that the limit of u" is usually a continuous function that solves a Hamilton–Jacobi
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equation, while the limit of n" is a measure. Performing such a change of variable, we find
that u" is a solution to8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�
1

"
@xxu" �

j@xu"j
2

"2
� "@��u" � j@�u"j

2

C

Z
�

h
1 � e

u".y/�u".x/
"

i
K.x � y/ dy D R.x; �/ � �".x/ in � � ��A;AŒ;

�".x/ D

Z
��A;AŒ

n".x; �/ d� in � � A;AŒ;

@�xu".x; �/ D 0 on @� � ��A;AŒ; @��u".x;˙A/ D 0 in �:

(EHC)

We prove the following:

Theorem 2. Under assumptions (H1)–(H4), as "! 0 along subsequences, the following
hold:

(1) �" converges uniformly to a function � 2 C 1.�/ with

0 < c � � � C:

(2) u" converges uniformly to a continuous function u with u a viscosity solution of8̂̂<̂
:̂
�j@�u.�/j

2 D ��.�; �/;

maxu.�/ D 0;

@��u.˙A/ D 0;

(6)

where �.�; �/ is the principal eigenvalue introduced in (2). Moreover, the limit u
depends only on � .

(3) n" converges to a measure n in the sense of measures. Moreover,

suppn � � � ¹u.�/ D 0º � � � ¹�.�; �/ D 0º: (7)

The theorem above allows us to characterize the phenotypic density n, at the limit as
"! 0, via the Hamilton–Jacobi equation with constraint (6) coupled with the eigenvalue
problem (2) and the inclusion properties (7). We expect indeed that n would be the sum of
Dirac masses in � as follows:

n.x; �/ D

dX
iD1

�i .x/ı.� � �i /:

In Section 2 we will use the information obtained above to characterize the phenotypic
density n in some particular situations. On the one hand, we will identify a situation where
the phenotypic density at the limit will be a single Dirac mass in � corresponding to a
monomorphic population. On the other hand, we will show that a strong fragmentation of
the environment will lead to polymorphic situations.
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Let us present briefly below the main ingredients to prove (6). We first provide heuris-
tic arguments to understand how the Hamilton–Jacobi equation in (6) can be recovered.
To this end, we perform asymptotic developments of u" and �" with respect to the powers
of ", i.e.

u".x; �/ D u0.x; �/C "u1.x; �/C o."/ and �".x/ D �0.x/C o".1/:

Next we implement such asymptotic developments into (EHC) to obtain

1

"

�
�@xxu0 � 2j@xu0@xu1j �

j@xu0j
2

"

�
C

Z
�

Œ1 � e
u0.y;�/�u0.x;�/

" Cu1.y;�/�u1.x;�/Co".1/�K.x � y/ dy

� @xxu1 � j@xu1j
2
� j@�u0j

2
� ŒR � �0�C o".1/ D 0:

We then organize the equation by powers of ". Keeping the terms of order "�2, we find

@xu0.x; �/ D 0 ) u0.x; �/ D u0.�/:

Moreover, keeping the terms of order "0, we deduce that

�j@�u0.�/j
2
D ŒR.x; �/ � �0.x/�C @xxu1.x; �/C j@xu1.x; �/j

2

�

Z
�

Œ1 � eu1.y;�/�u1.x;�/�K.x � y/ dy: (8)

Setting z D exp.u1/ and substituting it in the equation above we obtain

�@xx z C L. z / � ŒR.x; �/ � �0.x/� z D j@�u0.�/j
2 z :

Since �j@�u0.�/j2 does not depend on x and z is a positive function, the equation above
suggests that z and �j@�u0.�/j2 are respectively the principal eigenfunction and eigen-
value introduced in (2). This leads in particular to the Hamilton–Jacobi equation in (6).

From a technical point of view, the convergence of .u"/">0 is proved using the Arzelà–
Ascoli theorem and a perturbed test function argument (see [15]). In order to apply the
Arzelà–Ascoli theorem, we provide first some regularity estimates on u". We prove in
particular, using Bernstein’s method, that the first derivatives are bounded. These bounds
rely on the establishment of Harnack-type inequalities. More precisely, we prove the fol-
lowing regularity results on u".

Theorem 3. Under assumptions (H1)–(H4), the following results hold true:

(1) [Harnack inequality] There exists a constant C > 0 (independent of the choice
of ") such that for all intervals I � ��A;AŒ with jI j D ", there holds

sup
.x;�/2��I

n".x; �/ � C inf
.x;�/2��I

n".x; �/: (9)
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(2) [Lipschitz bounds] There exists C > 0 such that for all " small enough,

j@xu"j � C" and j@�u"j < C: (10)

(3) [Bounds on �"] For all " small enough, �" is uniformly bounded in W 2;p.�/ for
all p 2 Œ1;C1�. Moreover, there exist c; C > 0 (independent of the choice of ")
such that

c � �" � C: (11)

(4) [Bounds on u"] The following holds true:

lim
"!0

sup
.x;�/2����A;AŒ

u" � 0;

�a < lim
"!0

inf
.x;�/2����A;AŒ

u";

(12)

with a > 0.

Remark. In Theorem 3 (1), the interval I can be at the boundary of ��A;AŒ, i.e.

I D ��A;�AC "Œ or I D �A � "; AŒ:

The combination of the local and the non-local diffusion terms makes the establish-
ment of such regularity estimates non-standard (see for instance [4] and [26] where such
estimates were obtained for related models with a local diffusion term). Here, the Harnack
inequality (9) is used to obtain the Lipschitz regularity estimate (10). However, the result
is by itself interesting since it extends the classical Harnack inequality to elliptic operators
with joint local and non-local diffusion terms.

Note finally that the constraint max� u.�/ D 0 is a consequence of the Hopf–Cole
transformation (5) and the fact that �" remains bounded away from 0, uniformly in ". For
a detailed proof of Theorem 2 we refer to Section 6.

1.5. Outline of the paper

In Section 2 we focus on the qualitative properties of the phenotypic density n and show
which types of qualitative conclusions we can obtain thanks to our theoretical results pre-
sented above. In Section 3 we investigate, by some numerical simulations, the qualitative
properties of n and confirm our theoretical results. In Section 4 we provide the existence
of n" by proving Theorem 1. Next we prove the regularity results given by Theorem 3 in
Section 5. Section 6 is devoted to the proof of Theorem 2.

As mentioned above, Appendix A is devoted to the existence of the eigenvalues
�.�; �/. We also prove some results in Appendix A that are stated and used in Section
2. Lemma 1 is proved in Appendix B.

The constants c, C are positive constants independent of the choice of " and may
change from line to line when there is no confusion possible.
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2. Qualitative properties of the population density n

The objective of this section is to show how the asymptotic results provided in Theorem 2
imply qualitative results on the population density n, at the limit as "! 0. Recall from
Theorem 2 that as "! 0 and along subsequences, n" tends weakly to a measure n and �"
converges uniformly to a function � such that

suppn � � �
®
� j u.�/ D 0

¯
� � �

®
� j �.�; �/ D min� 0 �.� 0; �/ D 0

¯
;

with uW Œ�A;A�! R the viscosity to8̂̂<̂
:̂
�j@�u.�/j

2 D ��.�; �/; � 2 ��A;AŒ;

@��u.˙A/ D 0;

maxu.�/ D 0;

and �.�; �/ the principal eigenvalue corresponding to the following problem:´
�@xx 

� C L. � / � ŒR.�; �/ � �� � D �.�; �/ � in �;

@�x 
� D 0 in @�:

Moreover, from the first item of Theorem 3 we deduce that

if �0 2 suppn.x0; �/ for some x0 2 �, then �0 2 suppn.x; �/ for all x 2 �.

Consequently, we have

suppn D � � �� ; �� �
®
� j u.�/ D 0

¯
�
®
� j �.�; �/ D min� 0 �.� 0; �/ D 0

¯
:

Note that it may happen that u.�/ D 0 for some � 2 Œ�A;A� but that � does not belong
to �� . Note also that Theorem 2 guarantees convergence of .n"; �"/ to .n; �/, only along
subsequences. It does not exclude the possibility of multiple limits .n; �/ as "! 0.

We expect indeed that u would take its maximum at some distinct traits such that the
phenotypic density n would have the form

n.x; �/ D

dX
iD1

�i .x/ı.� � �i /; �.x/ D

dX
iD1

�i .x/; �i .x/ > 0:

This expectation motivates the following definitions.

Definition 1. • Any trait � 2 �� is called an emergent trait.

• A population density is called monomorphic if the set of emergent traits, that is �� , is
reduced to a single point.

• A population density is called polymorphic if it is not monomorphic.
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With these definitions, any monomorphic population density is a Dirac mass with
respect to � , i.e.

n.x; �/ D �.x/ı.� � N�/:

In Section 2.1 we will show that, for a particular choice of R, there is at most one pos-
sible monomorphic limit .n; �/. In particular, under symmetry conditions on the set�, the
only possible monomorphic outcome at the limit would be n.x; �/ D �.x/ı.�/. We next
identify a situation in Section 2.2 where the phenotypic density n is indeed monomorphic.
Finally, we show in Section 2.3 that a strong fragmentation of the environment may lead
to polymorphic situations.

Before providing our qualitative results, we state the following technical result on the
principal eigenvalue � that in the next subsections will help us to obtain our qualitative
results. This result is proved in Appendix A.

Proposition 1. Under assumptions (H1)–(H3), the following identity holds true:

@��.�; �/ D �

Z
�

@�R.x; �/ 
� .x/2 dx: (13)

Corollary 1. Assume (H1)–(H4) and let N� 2 �� be an emergent trait. We haveZ
�

@�R.x; N�/ 
N� .x/2 dx D 0:

Next we consider some examples with explicit expressions of R. We illustrate how
Proposition 1 can be useful to characterize the emergent traits.

Example A. We fix �0 2 ��A;AŒ, and we define

R.x; �/ D r � g.� � �0/
2:

We assume that r is large enough such that (H4) holds true for � D �0. From Corollary 1,
we deduce that at any emergent trait N� , we have

2g. N� � �0/

Z
�

 
N� .x/2 dx D 0:

We deduce that the unique emergent trait is N� D �0. Therefore, the limit population is
monomorphic. Of course, this example is a toy model and does not involve any spatial
structure.

Example B. We define
R.x; �/ D r � g.� � bx/2: (14)

From Corollary 1 we deduce that for any emergent trait N� , we have

N� D b

Z
�

x 
N� .x/2 dx:
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This is not enough to conclude that the number of emergent traits is finite. However, we
can still remark that the emergent traits are fixed points of the application

�W � 7! b

Z
�

x � .x/2 dx: (15)

2.1. At most one possible monomorphic outcome

In this subsection we restrict our study to monomorphic limits. We will prove that, when
R is given by (14), the problem admits at most one monomorphic limit.

Proposition 2. Assume (H1)–(H4) and let n1.x; �/ D �1.x/ı.� � N�1/ and n2.x; �/ D
�2.x/ı.� � N�2/ be two monomorphic limits of the problem. Then �1 D �2.

Additionally, if R is given by (14), then �1 D �2.
Furthermore, if the domain � is symmetric with respect to x D 0, then the only possi-

ble emergent trait corresponding to a monomorphic population is N� D 0.

To prove Proposition 2, we will use the following Rayleigh quotient:

R.�; �; �/

D

R
�
j@x�j

2 dx C
R
���Œ�.x/��.y/�

2K.x�y/dx dy

2
�
R
�
ŒR.x; �/ � �.x/��2 dxR

�
�.x/2 dx

: (16)

We recall the classical link between � and R:

�.�; �/ D min
�2H1.�/

R.�; �; �/:

We will also use the following lemma.

Lemma 2. Assume (H1)–(H4) and that .n"/ converges in L1.w�.0;1/IM1.Rd // to
�.x/ı.� � �0/. Then �.�/ is the principal eigenfunction corresponding to the operator
��x C L � ŒR.�; �0/ � ��.

Proof. By passing weakly to the limit in equation (E), we obtain

�@xx�C L� D �.R.x; �0/ � �/;

which implies that � is the principal eigenfunction corresponding to the operator ��x C
L � ŒR.�; �0/ � ��.

Proof of Proposition 2. Let n1.x; �/ D �1.x/ı.� � �1/ and n2.x; �/ D �2.x/ı.� � �2/

be two possible limits. Our objective is to prove that

�1 D �2 for generic R satisfying (H2);

and

�1 D �2 if, furthermore, R is of the form of (14):
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From Theorem 2 we obtain

min
�
�.�; �i / D �.�i ; �i / D 0:

Let  i be the positive eigenfunction associated to the operator ��x CL� ŒR.�; �i /� �i �
by Proposition 6 with k ikL2 D 1 (i.e.  i D  �i ). Notice that since the limit is mono-
morphic and thanks to Lemma 2, we have for each case �i D ci i with ci > 0. Using the
Rayleigh quotient introduced in (16), we deduce that

0 D

Z
�

c21 1.x/
2 dx �R.�1; c1 1; c1 1/

D c21

Z
�

j@x 1j
2 dx C c21

R
���

Œ 1.x/ �  1.y/�
2K.x � y/ dx dy

2

� c21

Z
�

ŒR.x; �1/ � c1 1� 
2
1 dx (17)

and

0 �

Z
�

c21 1.x/
2 dx �R.�1; c2 2; c1 1/

D c21

Z
�

j@x 1j
2 dx C c21

R
���

Œ 1.x/ �  1.y/�
2K.x � y/ dx dy

2

� c21

Z
�

ŒR.x; �1/ � c2 2� 
2
1 dx: (18)

The last inequality holds since thanks to Theorem 2 we have

0 � �.�1; c2 2/ � R.�1; c2 2; c1 1/:

By subtracting (17) from (18), we deduce thatZ
�

.c1 1.x//
3 dx �

Z
�

.c1 1.x//
2c2 2.x/ dx: (19)

Following similar computations, we obtainZ
�

.c2 2.x//
3 dx �

Z
�

.c2 2.x//
2c1 1.x/ dx: (20)

By combining (19) and (20), we deduce thatZ
�

Œc1 1.x/ � c2 2.x/�
2.c1 1.x/C c2 2.x// dx � 0:

Since c1;2 1;2 > 0, we deduce that c1 1 D c2 2, and hence �1 D �2.
We next assume that R is given by (14) and conclude thanks to Corollary 1. Indeed,

since @�R.x; �i / D �2g.�i � bx/, we deduce that

�1 D
�b

2g

Z
�

xc1 
2
1 .x/ dx D

�b

2g

Z
�

xc2 
2
2 .x/ dx D �2:
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Finally, note that under symmetry conditions, if n.x; �/ D �.x/ı.�/ is a possible
monomorphic limit, then Qn.x; �/ D n.�x;��/ is also a possible monomorphic outcome.
We hence deduce in this case that � D 0.

2.2. A small selection pressure leads to a monomorphic population

First, we state a technical result about the dependence of �.�; �/ with respect to g. This
proposition is proved at the end of Appendix A.

Proposition 3. Assume that R is given by (14). Under hypotheses (H1)–(H3), there holds

�.�; �/ is non-decreasing with respect to g; (21)

and Z
�

j@� 
� .x/j2 dx ���!

g!0
0: (22)

Moreover, the above limit is uniform with respect to � .

Next we use Proposition 3 to provide a condition that ensures the existence of a set of
parameters such that the limit is monomorphic.

Proposition 4. Assume that R is given by (14). Under hypotheses (H1)–(H4), there exists
g0 > 0 such that if g 2 �0; g0Œ then there exists a unique emergent trait.

Proof. First, we differentiate � (defined by (15)) with respect to � , to obtain

�0.�/ D 2b

Z
�

x � .x/@� 
� .x/ dx:

Thanks to the Cauchy–Schwarz inequality and Proposition 3, we deduce that

j�0.�/j � 2b sup
x2�

jxj

Z
�

 � .x/2 dx

Z
�

@� 
� .x/2 dx

D 2b sup
x2�

jxj

Z
�

@� 
� .x/2 dx ���!

g!0
0:

Since the last inequality does not depend on the choice of � , we deduce the existence of a
uniform g0 > 0 such that for all g 2 �0; g0Œ we have

j�0.�/j < 1:

Thanks to Theorem 2 there exists at least one fixed point N� to �. Moreover, since � is
a contraction mapping, we recover that the fixed point N� is unique.

2.3. A strong fragmentation of the environment leads to polymorphism

In this subsection we consider the growth rate given by (14) and spatial domains of the
type

�d D .�d � a;�d/ [ .d; d C a/:
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Proposition 5. Under assumptions (H1)–(H4), for d � d0, with d0 a large enough con-
stant, the trait 0 is not included in the support of the phenotypic density n. As a conse-
quence, the population density is not monomorphic.

Proof. We first note that, for fixed d , there always exists r.d/ such that for all r � r.d/,
(H4) is satisfied so that thanks to Theorem 1 the population persists. We thus can assume
that, up to adjusting the constant r , we are in a situation where the population persists.

We prove that � D 0 is not an emergent trait. Let us suppose by contradiction that
� D 0 is included in the support of n.x; �/. Then the Rayleigh quotient (16) implies that

�.0; �/ D inf
�2H1.�/

R.0; �; �/ D 0 � �.�; �/ for all � 2 Œ�A;A�:

Let �0 2 H 1.�/ be such that

inf
�2H1.�/

R.0; �; �/ D R.0; �; �0/ D 0; k�0kL2.�/ D 1; �0 > 0:

We choose
�1 D �d � a=2; �2 D d C a=2:

We also define

�1 D Œ�d � a;�d�; �2 D Œd; d C a�; �
.1/
0 D �01�1 ; �

.2/
0 D �01�2 :

We will prove that when d is large enough,

k�
.1/
0 kL2�.�1; �/C k�

.2/
0 kL2�.�2; �/ < �.0; �/ D 0: (23)

Since k�.1/0 kL2 C k�
.2/
0 kL2 D 1, inequality (23) would imply

min.�.�1; �/; �.�2; �// < 0;

which is in contradiction with the positiveness of the eigenvalues �.�; �/ established in
Theorem 2 (2).

We consider the positive function �i , for i D 1;2, which minimizes R.0;�; �/ restricted
to the set �i , that is, the operator

R.0; �;�i ; �/

D

R
�i
j@x�j

2 dx C

R
�i��i

Œ�.x/��.y/�2K.x�y/dx dy

2
�
R
�i
ŒR.x; 0/ � �.x/��2 dx

k�k2
L2.�i /

;

and such that
k�ikL2.�i / D 1:

Note that here �i has its support in�i , while �0 has its support in�d . To prove (23), it is
enough to prove that

k�
.1/
0 k

2
L2

R.�1; �; �1/C k�
.2/
0 k

2
L2

R.�2; �; �2/ < R.0; �; �0/:
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We compute

k�
.i/
0 k

2
L2

R.�i ; �; �i /

D k�
.i/
0 k

2
L2

�
R.�i ; �;�i ; �i /C

1

2

Z
�i��j
i¤j

�2i .x/K.x � y/ dx dy

�
� k�

.i/
0 k

2
L2

�
R.�i ; �;�i ; �

.i/
0 /C

1

2

Z
�i��j
i¤j

�2i .x/K.x � y/ dx dy

�
D

Z
�i

j@x�
.i/
0 j

2 dx C
1

2

Z
�i��i

Œ�
.i/
0 .x/ � �

.i/
0 .y/�

2K.x � y/ dx dy

�

Z
�i

ŒR.x; �i / � �.x/��
.i/ 2
0 .x/ dx C

1

2
k�

.i/
0 k

2
L2

Z
�i��j
i¤j

�2i .x/K.x � y/ dx dy:

Combining the inequality above, for i D 1 and i D 2, we obtain

k�
.1/
0 k

2
L2

R.�1; �; �1/C k�
.2/
0 k

2
L2

R.�2; �; �2/

� R.0; �; �0/

C

Z
�1

ŒR.x; 0/ �R.x; �1/��
2
0.x/ dx C

Z
�2

ŒR.x; 0/ �R.x; �2/��
2
0.x/ dx

C
1

2
k�

.1/
0 k

2
L2

Z
�1��2

�21.x/K.x � y/ dx dy

C
1

2
k�

.2/
0 k

2
L2

Z
�2��1

�22.x/K.x � y/ dx dy:

We next note thatZ
�i

ŒR.x; 0/ �R.x; �i /��
2
0.x/ dx D �g�i

Z
�i

.2x � �i /�
2
0.x/ dx

� �g.d2 � a2=4/

Z
�i

�20.x/ dx:

We also haveZ
�i��j

�2i .x/K.x � y/ dx dy � akKkL1.R/

Z
�i

�2i .x/ dx D akKkL1.R/:

We deduce that

k�
.1/
0 k

2
L2

R.�1; �; �1/C k�
.2/
0 k

2
L2

R.�2; �; �2/

� R.0; �; �0/ � g.d
2
� a2=4/C

a

2
kKkL1.R/:

Therefore, for d large enough, we obtain

k�
.1/
0 k

2
L2

R.�1; �; �1/C k�
.2/
0 k

2
L2

R.�2; �; �2/ < R.0; �; �0/:

We conclude that � D 0 is not an emergent trait.
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It remains to show that the population density cannot be monomorphic. Indeed, if we
assume that n is monomorphic with N� as the only emergent trait, then since the domain �
is symmetric and according to Proposition 2, it follows that N� D 0. This is in contradiction
with the fact that � D 0 is not an emergent trait.

3. Some numerical illustrations

In this section we illustrate the numerical solutions of (E), for some particular examples,
considering the following type of growth rate:

R.x; �/ D r � g.bx � �/2:

We recall from Example 1 that in this case, r is a maximal growth rate and �g.bx � �/2

models the selection. The parameter g is the selection pressure whereas b is the gradient
of the environment. We provide numerical examples where we vary this set of parameters.

To find a numerical solution of (E), we solve numerically the parabolic equation8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@tn" � @xxn" � "
2@��n" C L.n"/ D ŒR � �"�n" in RC �� � ��A;AŒ;

�".t; x/ D

Z A

�A

n".t; x; �/ d� in RC ��;

@�xn" D @��n" D 0;

n.t D 0; x; �/ D n0.x; �/:

(Et )

We implement equation (Et ) by a semi-implicit finite difference method. We stop the
algorithm when we find a numerical steady state of (Et ): a numerical solution of (E).

First, we underline that in all the numerical resolutions, the density of the population
concentrates around one or several distinct trait(s). Moreover, these emergent traits are
present everywhere in space thanks to the local and the non-local migration. However, the
density of the population at the position x with a emergent trait �m depends on whether
this trait �m is adapted or not to the position x.

Figure 1 illustrates the convergence of n" to a Dirac mass as " goes to 0. The only
variation is with respect to the parameter " D 0:1, 0.01, and 0.001.

Next we focus on the qualitative properties established in Section 2; Figures 2 and 3
are numerical illustrations of Proposition 2. We fix� as a single connected component and
we investigate the dependence on the parameter g. We recover numerically that as g! 0

the limit density is monomorphic with an emergent trait at � D 0. For larger values of g,
the phenotypic density concentrates around several distinct traits. For each simulation, we
also provide the numerical distributions of �" (Figure 3); this density seems to be centered
around the point which maximizes R.�; N�/ (where N� is any emergent trait). Therefore,
when the emergent trait is unique, �" is increasing on ��2; 0Œ and then decreasing on �0; 2Œ
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(a) " D 0:1 (b) " D 0:01 (c) " D 0:001

Figure 1. Variation of the numerical solutions of (E) with respect to ". The others parameters are
fixed as follows: r D 1, b D 1, g D 0:1, � D ��2; 2Œ, and A D 2. We observe that the distribution
of the population concentrates around the emergent trait � D 0.

(a) g D 0:01 (b) g D 1 (c) g D 5

Figure 2. Variation of the numerical solutions n" of (E) with respect to g. The other parameters are
fixed as follows: r D 5, b D 1, "D 0:01,�D ��2; 2Œ, and AD 3. We recover that if g is small then
the population is monomorphic. For large values of g, there exist several distinct emergent traits.

whereas the spatial distribution can be more involved whenever there exist several distinct
emergent traits.

To conclude, we present in Figure 4 a numerical illustration of Proposition 5. Here, the
free parameter is the distance between the two connected components of �. We recover
that increasing the distance between the two connected components may lead to multiple
emergent traits.

4. Existence of a non-trivial solution of (E )

As mentioned in the introduction, we recall that the proof of existence of a non-trivial
solution is an adaptation of Lam and Lou [23, proof of Theorem 2.1]. The major difference
is the presence of the integral operator L. Therefore, we only provide the main elements
dealing with the integral operator L. We also skip the proof of non-existence of a non-
trivial solution, when (H4) does not hold, which follows from classical arguments.
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(a) g D 0:01 (b) g D 1 (c) g D 5

Figure 3. Variation of the numerical density �" of (E) with respect to g. The other parameters are
fixed as follows: r D 5, b D 1, " D 0:01, � D��2; 2Œ, and A D 3.

(a) � D ��1:1;�0:1Œ [ �0:1; 1:1Œ (b) � D ��2:5;�1:5Œ [ �1:5; 2:5Œ

Figure 4. Variation of the numerical solutions n" of (E) with respect to the distance between the
two connected components of �. The other parameters are fixed as follows: r D 1, b D 1, g D 1,
" D 0:01, and A D 2. We observe that for this set of parameters, increasing the distance induces a
polymorphic density population.

Proof of Theorem 1. We fix " 2 �0; "0Œ (where "0 is given by (4)). Let � 2 Œ0; 1� and n� be
a solution of8̂̂̂<̂

ˆ̂:
�@xxn� � "

2@��n� C Ln� D n� .R � ��� � .1 � �/n� / in � � ��A;AŒ;

�� .x/ D

Z
��A;AŒ

n� .x; �/ d� in �;

@�xn� .x; �/ D 0 on @� � ��A;AŒ; @��n� .x;˙A/ D 0 on � � ¹˙Aº:

(E� )

It is well known that for � D 0, according to (4), there exists a non-trivial steady solution
n0. As in [23], we prove that there exists a constant C" > 1 (which may depend on ") such
that we have for any � 2 Œ0; 1�,

C�1" �

Z A

�A

Z
�

n� dx d� � C":

Then one can conclude using a topological degree argument.
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The lower bound. Let v� be such that n� D �"v� (where �" is provided by (3)). First, we
remark that

L.v��"/ D v�L.�"/C �"L.v� /Cƒ.v� ; �"/

and

ƒ.v� ; �"/.x/ D

Z
�

Œ.v� .x/ � v� .y//.�".y/ � �".x//�K.x � y/ dy:

Then v� is a solution of

� �"@xxv� � 2@x�"@xv� � "
2�"@��v� � 2"

2@��"@�v� C �"L.v� /Cƒ.v� ; �"/C �"�"v�

D �v��"Œ��� C .1 � �/n� �:

If we multiply it by �"
v�

, we obtain

�@x.�
2
" @xv� / � "

2@� .�
2
" @�v� /C �

2
"L.v� /C �"ƒ.v� ; �"/

v�
D �2" .��" � ��� � .1� �/n� /:

Next we integrate over all the domain:Z A

�A

Z
�

�@x.�
2
" @xv� / � "

2@� .�
2
" @�v� /C �

2
"L.v� /C �"ƒ.v� ; �"/

v�
dx d�

D

Z A

�A

Z
�

�@x.�
2
" @xv� / � "

2@� .�
2
" @�v� /

v�
dx d�

C

Z A

�A

Z
�

�2"L.v� /C �"ƒ.v� ; �"/

v�
dx d�

D I1 C I2:

We next prove that I1 and I2 are negative. For I1, by an integration by parts, we have

I1 D

Z A

�A

Z
�

�@x.�
2
" @xv� / � "

2@� .�
2
" @�v� /

v�
dx d�

D �

Z A

�A

Z
�

�2"
v2�
.j@xv� j

2
C "2j@�v� j

2/ dx d� � 0:

For I2, using that K is even and the Fubini theorem, we obtain

I2 D

Z A

�A

Z
�

�2" .x/L.v� /.x/C �".x/ƒ.v� ; �"/.x/

v� .x/
dx d�

D

Z A

�A

Z
�

�".x/

v� .x/

Z
�

Œ.v� .x/ � v� .y//�".y/�K.x � y/ dy dx d�

D �

Z A

�A

Z
�

Z
�

h �".x/�".y/
v� .x/v� .y/

.v� .y/ � v� .x//
2
i
K.x � y/ dy dx d� � I2:
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We deduce that

I2 D �
1

2

Z A

�A

Z
�

Z
�

h �".x/�".y/
v� .x/v� .y/

.v� .y/ � v� .x//
2
i
K.x � y/ dy dx d� � 0:

Therefore, we have Z A

�A

Z
�

�2" Œ��" � ��� � .1 � �/n� � dx d� � 0:

Thanks to (4), we conclude that for " small enough,

j�.�0; 0/j

2
� ��" D ��"

Z A

�A

Z
�

�2" dx d� � sup.�2" /Œ� C .1 � �/�
Z A

�A

Z
�

n� dx d�:

The upper bound. First, we remark that thanks to the Neumann boundary conditions and
the parity of K, we haveZ A

�A

Z
�

�@xx.n� � @��n� C L.n� // dx d� D 0:

Therefore, if we integrate (E� ) with respect to x and � , we obtain� .1 � �/
2Aj�j

C
�

j�j

�
kn�k

2
L1
D

�

j�j

�Z
�

�� dx

�2
C
.1 � �/

2Aj�j

�Z A

�A

Z
�

n� dx d�

�2
� �

Z
�

�2� dx C .1 � �/

Z A

�A

Z
�

n2� dx d�

D

Z A

�A

Z
�

Rn� dx d� � CR

Z A

�A

Z
�

n� dx d� D CRkn�kL1 :

Conclusion. It follows that there exists a bounded non-trivial solution n" of (E). More-
over, we have indeed proved that there exist constants c; C > 0 such that

c

sup �2"
�

Z A

�A

Z
�

n" dx d� � C:

5. Regularity results

In this section we prove Theorem 3. The subsections correspond respectively to the proofs
of items (1), (2), (3), and (4) of Theorem 3. But, we need an intermediate result: �" is
uniformly bounded.

Lemma 3. Under assumptions (H1)–(H4), we have that for all " < "0,

0 � �" � CR

(where CR is introduced in (H2)). Moreover, there exists C > 0 such that for all " small
enough,

k�"kW 2;p.�/ � C:
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Proof. The L1-bounds. It is obvious that �" > 0. If we integrate (E) with respect to � ,
we obtain 8̂<̂

:�@xx�" C L�" D
Z A

�A

R.�; �/n".�; �/ d� � �
2
" in �;

@�x�" D 0 in @�:
(E�)

Recalling the L1 bounds on R (H2), it follows that

�@xx�" C L�" � CR�" � �
2
" :

We conclude thanks to the maximum principle that �" � CR.

The W 2;p.�/ bounds. Thanks to the L1 bounds on R;K; �" (assumptions (H2), (H3)
and the previous inequality), we may write (E�) in the form

�@xx�" D f";

with f" 2 L1.�/ uniformly bounded. The result follows from the standard elliptic esti-
mates.

Corollary 2. There exists a constant C > 0 such that for all " small enough,

j@x�"j � C: (24)

5.1. A Harnack inequality

The first step to prove the first item of Theorem 3 is to prove the result in the interior of
� � ��A;AŒ.

Theorem 4. For all .x0; �0/ 2 � � ��A;AŒ, and R0 > 0 such that

B3R0.x0/ � B3"R0.�0/ � � � ��A;AŒ;

there exists C.R0/ > 0 such that

sup
.x;�/2BR0 .x0/�B"R0 .�0/

n".x; �/ � C.R0/ inf
.x;�/2BR0 .x0/�B"R0 .�0/

n".x; �/: (25)

Next we prove that we can extend the solution thanks to a reflective argument (see
[10, Remark 9, p. 275]).

We perform the change of variable Qn.x; �/ D n".x; "�/. Therefore, we consider the
following scaled equation:´

�@xx Qn � @�� QnC L Qn D QnŒ zR � �� in � � ��"�1A; "AŒ;

@�x Qn D @�� Qn D 0 in @.� � ��"�1A; "AŒ/:
(E 0)

We have denoted by zR the function zR.x; �/ D R.x; "�/. Note that zR still verifies (H2).
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Proof of Theorem 4. Let .x0; �0/ 2 � � ��"�1A; "�1AŒ and a radius R0 > 0 be such that
B3R0.x0; �0/ � � � ��"

�1A; "�1AŒ. If we denote f .x; �/ D
R
�
Qn.y; �/K.y � x/ dy,

according to (H3) it follows that f 2 L1.B2R0.x0; �0//. From the classical Harnack
inequality, [19, Theorems 9.20 and 9.22, pp. 244–246], and using (H2), we deduce the
existence of C1 > 0 (depending on R0) such that

sup
.x;�/2BR0 .x0;�0/

Qn.x; �/

� C1 inf
.x;� 0/2BR0 .x0;�0/

Qn.x; � 0/C C1 sup
.x;� 00/2B2R0 .x0;�0/

jf .x; � 00/j

� C1 inf
.x;� 0/2BR0 .x0;�0/

Qn.x; � 0/C C1CK sup
� 002B2R0 .�0/

Z
�

Qn.x; � 00/ dx: (26)

The main element of the proof is to prove the following claim:

9C > 0 such that sup
�2B2R0 .�0/

Z
�

Qn.x; �/ dx � C inf
.x;�/2BR0 .x0;�0/

Qn.x; �/: (27)

It is clear that if (27) holds true, the conclusion follows.
First, we integrate (E 0) with respect to x. It follows, thanks to the Neumann boundary

conditions, that for all � 2 B3R0.�0/ we have

�@��

Z
�

Qn.x; �/ dx D

R
�
Qn.x; �/

�
zR.x; �/ � �.x/ �

R
�
K.x � y/ dy

�
dxR

�
Qn.x; �/ dx

Z
�

Qn.x; �/ dx

C

R
�

R
�
Qn.y; �/K.x � y/ dy dxR
�
Qn.x; �/ dx

Z
�

Qn.x; �/ dx:

Thanks to the L1-bounds on K, zR, � (assumptions (H2), (H3) and Lemma 3), and the
Fubini theorem, we have

�C �

R
�
Qn.x; �/

�
zR.x; �/ � �.x/ �

R
�
K.x � y/ dy

�
dxR

�
Qn.x; �/ dx

< C

and R
�

R
�
Qn.y; �/K.x � y/ dy dxR
�
Qn.x; �/ dx

� CK j�j:

It follows that

�C

Z
�

Qn.x; �/ dx � �@��

Z
�

Qn.x; �/ dx � C

Z
�

Qn.x; �/ dx:

Hence, we apply the Harnack inequality to � 2 B3R0.�0/ 7!
R
�
Qn.x; �/ dx into the ball

B2R0.�0/ and we deduce the existence of a constant C2 > 0 such that

sup
�2B2R0 .�0/

Z
�

Qn.x; �/ dx � C2 inf
�2B2R0 .�0/

Z
�

Qn.x; �/ dx: (28)
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Next, thanks to the L1-bounds on K, zR, � (assumptions (H2), (H3) and Lemma 3), it
follows that in � � B2R0.�0/,

cK inf
�2B2R0 .�0/

Z
�

Qn.y; �/ dy � cK

Z
�

Qn.y; �/ dy �

Z
�

Qn.y; �/K.x � y/ dy

� .�@xx � @�� / QnC C Qn:

From an inequality developed by Krylov (we refer to [11, Theorem 7.1, p. 565] and the
reference therein), we deduce the existence of a constant C3 > 0 such that

inf
B2R0 .�0/

Z
�

Qn.x; �/ dx � C3 inf
BR0 .x0;�0/

Qn.x; �/: (29)

Combining the previous inequality with (28) and (29) yields

sup
�2B2R0 .�0/

Z
�

Qn.x; �/ dx � C2 inf
�2B2R0 .�0/

Z
�

Qn.x; �/ dx � C2C3 inf
.x;�/2BR0 .x0;�0/

Qn.x; �/:

This concludes the proof.

5.2. Lipschitz estimates

We prove Theorem 3 (2) by the Bernstein method.

Proof of Theorem 3 (2). We recall the main equation satisfied by u":

�@xxu"

"
�
j@xu"j

2

"2
� "@��u" � j@�u"j

2
C

Z
�

Œ1 � e
u".y/�u".x/

" �K.x � y/ dy

D R.x; �/ � �" (30)

with Neumann boundary conditions. The first step is to differentiate (30) with respect to
x and multiply it by @xu"

"2
:

�
@xxxu"@xu"

"3
�
@x.
j@xu"j

2

"2
/@xu"

"2
C

Z
�

e
u".y/�u".x/

" K.x � y/ dy
@xu

2
"

"3

�
@xj@�u"j

2@xu"

"2
�
@x��u"@xu"

"

D

�R
�
Œe

u".y/�u".x/
" � 1�@xK.x � y/ dy C @xR � @x�"

�
@xu"

"2
:

Remarking that

@xxxu"@xu" D
@xx.j@xu"j

2/

2
� .@xxu"/

2

and

@x��u"@xu" D
@�� .j@xu"j

2/

2
� .@�xu"/

2
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yields

�
@xx.

j@xu"j
2

"2
/

2"
C
.@xxu"/

2

"3
�
@x.
j@xu"j

2

"2
/@xu"

"2
C

Z
�

e
u".y/�u".x/

" K.x � y/ dy
.@xu"/

2

"3

�
@xj@�u"j

2@xu"

"2
C
.@�xu"/

2

"
�
"@�� .

j@xu"j
2

"2
/

2

D

�R
�
Œe

u".y/�u".x/
" � 1�@xK.x � y/ dy C @xR � @x�"

�
@xu"

"2
: (31)

In the second step, we differentiate (30) with respect to � and multiply by @�u". With
computations similar to those presented above, we find

�
@xx.j@�u"j

2/

2"
C
.@�xu"/

2

"
� @�
j@xu"j

2

"2
@�u" �

"

2
@�� .j@�u"j

2/C ".@��u"/
2

� @� j@�u"j
2@�u" C

Z
�

�
@�u".x/

2 � @�u".x/@�u".y/
�

"
e
u".y/�u".x/

" K.x � y/ dy

D @�R@�u": (32)

Next we introduce

p".x; �/ D
j@xu".x; �/j

2

"2
C j@�u".x; �/j

2: (33)

If we combine (31) and (32) and rewrite in terms of p", it follows that

�
@xxp"

2"
�
"@��p"

2

C
1

"

Z
�

Œp".x; �/ � @�u".x; �/@�u".y; �/�e
u".y;�/�u".x;�/

" K.x � y/ dy

�
@xp"@xu"

"2
� @�p"@�u" C

2.@x�u"/
2

"
C
.@xxu"/

2

"3
C ".@��u"/

2

D

�Z
�

Œe
u".y/�u".x/

" � 1�@xK.x � y/ dy C @xR � @x�"

�
@xu"

"2
C @�R@�u": (34)

Let .x"; �"/ be such that

sup
.x;�/2����A;AŒ

p".x; �/ D p".x"; �"/:

Thanks to the Neumann boundaries conditions, we deduce that .x";�"/… @��@.��A;AŒ/.
Therefore, we distinguish three cases: either .x"; �"/ 2 � � ��A; AŒ or .x"; �"/ 2
@� � ��A;AŒ or .x"; �"/ 2 � � ¹˙Aº.

Case 1: .x"; �"/ 2 � � ��A; AŒ. First, we bound the right-hand-side of (34). Indeed,
thanks to the Harnack inequality (Theorem 3 (1)) and the L1-bounds on the derivative
of K, R, and �" (assumptions (H2), (H3) and (24) in Corollary 2), it follows that�Z

�

Œe
u".y/�u".x/

" � 1�@xK.x � y/ dy C @xR � @x�"

�
@xu"

"2
C @�R@�u" �

C
p
p

"
: (35)
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Next we evaluate (34) at .x"; �"/. We claim that

�@xxp".x"; �"/ � 0; �@��p".x"; �"/ � 0; @xp".x"; �"/ D @�p".x"; �"/ D 0;

1

"

Z
�

Œp".x"; �"/ � @�u".x"; �"/@�u".y; �"/�e
u".y;�"/�u".x";�"/

" K.x" � y/ dy � 0:
(36)

Indeed, the first inequalities follow easily since p.x"; �"/Dmaxp" and the last inequality
holds true thanks to the following computations:

1

"

Z
�

Œp".x"; �"/ � @�u".x"; �"/@�u".y; �"/�e
u".y;�"/�u".x";�"/

" K.x" � y/ dy

�
1

"

�Z
�

p".x"; �"/e
u".y;�"/�u".x";�"/

" K.x" � y/ dy

�
1

2

Z
�

@�u
2
".x"; �"/e

u".y;�"/�u".x";�"/
" K.x" � y/ dy

�
1

2

Z
�

@�u
2
".y; �"/e

u".y;�"/�u".x";�"/
" K.x" � y/ dy

�
�
1

2"

�Z
�

p".x"; �"/e
u".y;�"/�u".x";�"/

" K.x" � y/ dy

�

Z
�

p".y; �"/e
u".y;�"/�u".x";�"/

" K.x" � y/ dy

�
� 0:

We deduce thanks to (35) and (36) (and noticing 2.@x�u"/
2.x";�"/
"

� 0) that

1

2"

h@xxu".x"; �"/
"

C "@��u".x"; �"/
i2
�
1

"

h�@xxu".x"; �"/
"

�2
C ."@��u".x"; �"//

2
i

�
C
p
p".x"; �"/

"
:

Hence, using the original equation (30), we deduce that�
�p".x"; �"/C

Z
�

.1 � e
u".y;�"/�u".x";�"/

" /K.x" � y/ dy �R.x"; �"/C �".x"/

�2
� C

p
p".x"; �"/: (37)

Thanks to the L1-bounds on K, R, and �" (assumptions (H2), (H3) and Lemma 3), it
follows that p".x"; �"/ is uniformly bounded with respect to ". The conclusion follows.

Case 2: .x"; �"/ 2 @� � ��A; AŒ. First, note that p".x"; �"/ D j@�u".x"; �"/j2 in this
case. We claim also that p" verifies the Neumann boundary conditions at .x"; �"/. Indeed,
according to the Neumann boundary conditions satisfied by u", we can use a reflective
argument and differentiate p" on the boundary. We obtain

@xp".x"; �"/ D
2@xu".x"; �"/@xxu".x"; �"/

"2
C 2@�u".x"; �"/@x�u".x"; �"/ D 0
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because
@xu".x"; �"/ D 0 and @x�u".x"; �"/ D 0:

Since p.x"; �"/ D maxp", we deduce that

�@xxp".x"; �"/ � 0:

We conclude that (36) and (35) also hold true in this case and the conclusion follows from
the same computations as in the previous case.

Case 3: .x"; �"/ 2 � � ¹˙Aº. This case is treated in the same manner as the previous
case.

5.3. The bounds on �"

We recall the equation (E�) satisfied by �":8̂<̂
:�@xx�" C L�" D

Z A

�A

R.x; �/n".x; �/ d� � �
2
" in �;

@�x�" D 0 on @�:
(E�)

Proof of Theorem 3 (3). The uniform bound from above and the W 2;p bounds on �" are
already provided in Lemma 3. Here we prove the uniform lower bound. We start by prov-
ing that 0 < c � sup �". Next we prove that c < �" holds true in the whole domain �.

A lower bound on sup �". Assume by contradiction that there exists a sequence "k such
that

"k �����!
k!C1

0 and sup �"k �����!
k!C1

0:

Next, if we multiply (E) by �"k (introduced in (3)) and we integrate by parts, we obtain

�"

Z A

�A

Z
�

n"k�"k dx d� D �

Z A

�A

Z
�

�"kn"k�"k dx d�:

We deduce, thanks to (4), that for k large enough,

j�.�0; 0/j

2
� ��"k � sup �"k

R A
�A

R
�
n"k�"k dx d�R A

�A

R
�
n"k�"k dx d�

:

It is in contradiction with the hypothesis sup �"k �����!
k!C1

0. Therefore, there exists a con-
stant c > 0 such that

8" 2 �0; "0Œ; c � sup �": (38)

The lower bound on �" in the whole domain �. Let " < "0 and x0 2 � be such that

�".x0/ D sup �":

We conclude, thanks to (38) and the Lipschitz estimates obtained in Theorem 3 (2), that
for all x 2 �,

�".x/ D

Z A

�A

e
u".x;�/

" d� D

Z A

�A

e
u".x;�/�u".x0;�/Cu".x0;�/

" d� � �".x0/e
�C
� ce�C :
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5.4. The bounds on u"

Proof of Theorem 3 (4). First, we prove that there exists a > 0 such that �a < u". Thanks
to Theorem 3 (3), we know that there exists c > 0 such that for all " small enough we have

c <

Z A

�A

n".x; �/ d�:

We deduce the existence of .x0; �0/ 2 � � ��A;AŒ such that

c

2A
� n".x0; �0/:

Hence, it follows that
" log

� c
2A

�
� u".x0; �0/:

We conclude thanks to the Lipschitz estimates established in Theorem 3 (2) that

8.x; �/ 2 � � ��A;AŒ; �a � �2CAC "
h
log
� c
2A

�
� C j�j

i
� u".x; �/: (39)

Next, we prove that lim"!0 sup.x;�/2����A;AŒ u".x; �/ � 0. We prove it by contradic-
tion. Assume that there exists a > 0 and sequences "k ; .xk ; �k/ such that

"k �����!
k!C1

0 and u"k .xk ; �k/ > a:

Using the Lipschitz estimates provided by Theorem 3 (2), it follows for all � 2 .B a
4C
.�k/\

��A;AŒ/,

u"k .xk ; �/ D u"k .xk ; �/ � u"k .xk ; �k/C u"k .xk ; �k/ � �C j� � �kj C a �
a

2
;

where C corresponds to the Lipschitz estimate given by (10). We deduce that

�"k .xk/ � min
�
2A;

a

4C

�
e

a
2"k :

We conclude that lim infk!C1 �"k .xk/ D C1. This is in contradiction with the L1

bounds on �" established in Theorem 3 (3).

6. Convergence to the Hamilton–Jacobi equation

Proof of Theorem 2. We prove here the three items of Theorem 2.

Proof of (1): Convergence of �". Thanks to Theorem 3 (3), it follows that for " small
enough, 0 < c � �" � C and k�"kW 2;p.�/ � C . We deduce from the classical Sobolev
injection (see [10]) that �" converges, along subsequences, strongly in W 1;p.�/ and in
particular uniformly to � and � verifies

0 < c � � � C:
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Proof of (2): (i) Convergence to the Hamilton–Jacobi equation. The convergence of u"
to a viscosity solution of the Hamilton–Jacobi equation (6) can be obtained thanks to the
regularity results given in Theorem 3 and a perturbed test function argument, following
the heuristic argument provided in Section 1.4 .

From the Lipschitz estimates and the bounds established in Theorem 3 (2),(4), we
deduce thanks to the Arzelà–Ascoli theorem that up to a subsequence, .u"/">0 converges
locally uniformly to some continuous function u. Moreover, the limit function u does not
depend on x.

We prove that u is a viscosity solution of8<:�j@�uj2 D ��.�; �/;@��u.˙A/ D 0;

with �.�; �/ the principal eigenvalue of (2). First, we focus on the equation in the interior
of the domain and then we treat the boundary conditions.

The interior equation. We recall that for a fixed value � , Proposition 6 provides the
existence of a sequence of principal eigenvalues �.�; �"/ associated with a sequence of
positive eigenfunctions . �" /">0 of the operator �@xx C L � .R.x; �/ � �"/ with Neu-
mann boundary conditions, i.e.8<:�@xx �" C L. �" / � .R.x; �/ � �"/ �" D �.�; �"/ �" in �;

@�x 
�
" D 0 on @�:

(40)

Since  �" > 0, we introduce
‰�" D ln. �" /:

Let � be a test function such that u � � has a strict maximum at � 2 ��A;AŒ. Then there
exists .x"; �"/ 2 x� � ��A;AŒ such that �" ���!

"!0
� and

max
.x;�/2x����A;AŒ

u".x; �/ � �.�/ � "‰
�"
" .x/ D u".x"; �"/ � �.�"/ � "‰

�"
" .x"/:

We distinguish two cases: either x" 2 � or x" 2 @�.

Case 1: x" 2 �. Since u" is a classical solution of (EHC), we deduce that it is also a
viscosity solution, and therefore

�
@xx.�.�"/C "‰

�"
" .x"//

"
�
Œ@x.�.�"/C "‰

�"
" .x"//�

2

"2

C

Z
�

Œ1 � e‰
�"
" .y/�‰

�"
" .x"/�K.x" � y/ dy � "@�� .�.�"/C "‰

�"
" .x"//

� Œ@� .�.�"/C "‰
�"
" .x"//�

2
�R.x"; �"/C �".x"/ � 0:
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Remarking that � does not depend on x and the � value is fixed in ‰�"" , we deduce that

� @xx‰
�"
" .x"/ � Œ@x‰

�"
" .x"/�

2
C

Z
�

Œ1 � e‰
�"
" .y/�‰

�"
" .x"/�K.x" � y/ dy

�R.x"; �"/C �".x"/ � "@���.�"/ � Œ@��.�"/�
2
� 0: (41)

Next we observe that (40) implies

� @xx‰
�"
" .x"/ � Œ@x‰

�"
" .x"/�

2

C

Z
�

Œ1 � e‰
�"
" .y/�‰

�"
" .x"/�K.x" � y/ dy �R.x"; �"/C �".x"/

D �.�"; �"/:

Therefore, passing to the limit "! 0, thanks to the continuity of �.�; �/ with respect to �
and � (Proposition 6), it follows that

�Œ@��.�/�
2
� ��.�; �/:

Case 2: x" 2 @�. First, we remark that in this case,

�@xu".x"; �"/ D �@x‰
�"
" .x"/ D 0:

Therefore, we deduce that

�@x Œu".x"; �"/ � �.�"/ � "‰
�"
" .x"/� D 0:

Moreover, since

.u" � � � "‰
�"
" /.x"; �"/ D max.u" � � � "‰�"" /;

we have firstly by a reflective argument that

� @xx.u" � � � "‰
�"
" /.x"; �"/ � 0; (42)

and secondly we have

u".y; �"/ � u".x"; �"/ � "Œ‰".y/ �‰".x"/�: (43)

Inequalities (42) and (43) lead to

�@xx"‰
�"
" .x"/ � �@xxu".x"; �"/

and Z
�

Œ1 � e‰
�"
" .y/�‰

�"
" .x"/�K.x" � y/ dy �

Z
�

Œ1 � e
u".y;�"/�u".x";�"/

" �K.x" � y/ dy:

Therefore, the conclusion follows from a similar computation to above.
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The boundary conditions. Let � be a test function such that u � � has a strict maximum
at A (the proof works the same for �A). Then there exists .x"; �"/ 2 x� � Œ�A; A� such
that

�" ���!
"!0

A and max
.x;�/2x��Œ�A;A�

u" � � D .u" � �/.x"; �"/:

We distinguish two cases: .x"; �"/ 2 x� � ��A;AŒ or .x"; �"/ 2 x� � ¹Aº.

Case 1: .x"; �"/ 2 x�� ��A;AŒ. In this case, by a similar analysis to above, we deduce
that

�Œ@��.�"/�
2
� ��.�"; �/C o".1/:

Case 2: .x"; �"/ 2 x�� ¹Aº. In this case, since the maximum is reached on the bound-
ary, we deduce thanks to the boundary conditions of u",

�@���.�"/ D @�� .u" � �/.x"; �"/ � 0:

Taking the inferior limit, we conclude that

min.�Œ@��.A/�2 C �.A; �/; @���.˙A// � 0;

which corresponds to the boundary condition in the viscosity sense.
Finally, u is a subsolution of (6) in a viscosity sense. With similar arguments, u is also

a supersolution. We conclude that u is a viscosity solution of (6).

(ii) The constraint. The constraint max� u.�/ D 0 in (6) is a consequence of the Hopf–
Cole transformation (5) and the fact that �" remains bounded away from 0, uniformly in
".

If the constraint does not hold true, it follows, thanks to (12), that sup�2Œ�A;A� u.�/ <
�a < 0. Hence for " small enough, and thanks to the uniform convergence of u" to u, we
deduce that max.x;�/2��Œ�A;A� u".x; �/ < �a2 , which implies that �" < c for " sufficiently
small. This is in contradiction with Theorem 3 (3). We conclude that max�2Œ�A;A� u.�/
D 0.

Proof of (3). The convergence of n" and the inclusion property. The first inclusion
property in (7) can be obtained thanks to the Hopf–Cole transformation (5) and the uni-
form convergence of u" to u. The second inclusion property in (7) is a consequence of the
Hamilton–Jacobi equation (6) and the fact that the zero level set of u is also the set of the
maximum points of u. We detail these arguments below.

Thanks to the L1 bounds on �" (Theorem 3 (3)), we deduce that

c � kn"kL1.����A;AŒ / � C:

It follows that n" converges up to a subsequence and in the sense of measures to a measure
n. The measure n is non-negative and not trivial. We next prove that

suppn" � � �
®
� 2 ��A;AŒ j u.�/ D 0

¯
:
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Indeed, let � 2 C1c .� � ��A;AŒ/ be any positive test function such that

supp� � � �
®
� 2 ��A;AŒ j u.�/ D 0

¯c
: (44)

We prove that
R
�

R A
�A
�.x; �/n.x; �/ dx d� D 0.

To this end, we introduce �a D supsupp� u. According to (44), it follows that a > 0.
We deduce that for all " small enough and all .x; �/ 2 � � supp�, we have

u".x; �/ � �
a

2
: (45)

We conclude thatZ
�

Z A

�A

�.x; �/n.x; �/ d� dx D

Z
�

Z
supp�.x;�/

�.x; �/n.x; �/ d� dx

D lim
"!0

Z
�

Z
supp�.x;�/

�.x; �/n".x; �/ d� dx

D lim
"!0

Z
�

Z
supp�.x;�/

�.x; �/e
u".x;�/

" d� dx

� lim
"!0

Z
�

Z
supp�.x;�/

�.x; �/e
�a
2" d� dx

D 0:

We finally prove that ®
u.�/ D 0

¯
�
®
�.�; �/ D 0

¯
: (46)

To this end, note first that since u is a Lipschitz continuous function, it is a.e. differentiable.
Therefore, (6) implies that

�.�; �/ � 0 for a.e. � .

Moreover, since � is continuous with respect to � , the above inequality holds indeed for
all � . To prove (46), it is therefore enough to prove that for any �0 such that u.�0/ D 0,
we have

�.�0; �/ � 0:

This property can be derived by testing the equation in (6) against the test function '.�/�
0 at the point �0 for a viscosity subsolution criterion.

This concludes the proof of (3).

A. Existence and properties of �.�; �/

In this section we first establish a Hopf lemma. It is obtained by a classical argument, but
for the sake of completeness and because of the presence of the less classical non-local
operator L, we provide the proof. Next we verify the existence of �.�; �/. To finish we
provide the proof of some properties of � already stated in the article (namely Propositions
1 and 3).
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A.1. A Hopf lemma

In this section we prove the following Hopf lemma:

Lemma 4 (Hopf lemma). Let u be a smooth function defined on � such that

� @xxuC L.u/C c.x/u � 0; (47)

with c a non-negative bounded smooth function. If there exists x0 2 @� such that
minx2� u.x/ D u.x0/ < 0 then either u is constant or

@�xu.x/ < 0: (48)

The proof is in the spirit of the classical proof of the Hopf lemma (see [16, p. 250]).

Proof. Up to a scaling, there is no loss of generality if we assume that B.0; 1/ � � and
x0 D 1. Next we define

v.x/ D Œe�
3
4� � e��max.0;jxj2� 14 /�1B.0;1/.x/

for � a positive constant. We underline that v.x/ D e�
3
4� � 1 in B.0; 1

2
/. Next we claim

that by taking � large enough, for all x 2 B.0; 1/nB.0; 3
4
/ there holds

�@xxv.x/ D 2�e
��max.0;jxj2� 14 /.2�jxj2 � 1/ > 0;

Lv.x/ �

Z
B.0;1/

e��max.0;jyj2� 14 /K.x � y/ dy

�

Z
�

e��max.0;jxj2� 14 /K.x � y/ dy > 0:

(49)

The first inequality of (49) follows from a straightforward computation. For the second
inequality, according to assumption (H3) we have

lim inf
�!C1

Z
B.0;1/

e��max.0;jyj2� 14 /K.x � y/ dy �

Z
�

e��max.0;jxj2� 14 /K.x � y/ dy

� cK jB.0;
1
2
/j > 0:

Therefore, if � is large enough, (49) holds true.
Next we claim that if u is not constant, the minimum cannot be reached in the interior

of �. Otherwise, we deduce the existence of x1 2 � such that u.x1/ D �minx2� u < 0.
Since c is non-negative, we have

�@xxu.x1/ � 0; Lu.x1/ < 0; and c.x1/u.x1/ � 0:

Therefore, we deduce that

�@xxu.x1/C Lu.x1/C c.x1/u.x1/ < 0:

This is in contradiction with assumption (47).
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We deduce that minx2@B.0; 34 / u.x0/ � u.x/ < 0. Next, taking " small enough, there
holds that

8x 2 @B.0; 3
4
/; u.x0/ � u.x/ � "v.x/ < 0:

Since v D 0 on @B.0; 1/ and by definition of x0, it follows that

8x 2 @B.0; 1/; u.x0/ � u.x/ � "v.x/ � 0:

Moreover, according to (47), (49) and remarking that u.x0/ � "v.x/ � 0 for " small
enough, we deduce that for all x 2 B.0; 1/nB.0; 3

4
/,

� @xx.u.x0/ � u.x/ � "v.x//C L.u.x0/ � u � "v/.x/

C c.x/.u.x0/ � u.x/ � "v.x// � 0:

We deduce thanks to the maximum principle that u.x0/ � u.x/ � "v.x/ � 0 for all x 2
B.0; 1/nB.0; 3

4
/. We conclude that

@�xu.x0/ � �@�x"v.x0/ D �"2�e
� 3�4 < 0:

A.2. Existence of a principal eigenpair

Proposition 6. Under hypotheses (H1)–(H3), for a fixed bounded smooth function � and
a fixed value � 2 ��A; AŒ, there exists a principal eigenvalue �.�; �/ of the operator
�@xx C L. / � .R.�; �/ � �/ with Neumann boundary conditions, i.e.´

�@xx 
� C L. � / � .R.�; �/ � �/ � D �.�; �/ � in �;

@�x D 0 on @�:
(50)

The associated eigenfunction  � has a constant sign and is unique up to multiplication
by a constant. Moreover, the function �.�; �/ and  � are C 1 with respect to � and � 2
H 1.�/.

In the following, we will consider that  � is positive and of L2 norm equal to 1.

Proof. First, we prove the existence of the principal eigenpair by verifying that we can
apply the Krein–Rutman theorem (see [32, p. 122]). Since it is classical, we do not provide
all the details. The cone of functions where we apply the Krein–Rutman theorem is

K D
®
u 2 C 1C˛.�/ j u > 0 and @�xu D 0

¯
:

We define L.v/ as the unique solution of8̂̂̂<̂
ˆ̂:
�@xxL.v/C

Z
�

ŒL.v/.x/ �L.v/.y/�K.x � y/ dy

�.R.�; �/ � � � C/L.v/ D v in �;

@�xL.v/ D 0 on @�;
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where C > supx2�.R.x; �/� �.x// and v 2K. The operator L is linear, compact thanks
to the elliptic estimates. We have to prove that

8v 2 Kn¹0º; L.v/ 2 int.K/:

Let v be in K with v not trivial. By elliptic regularity, it follows that L.v/ 2 C 1C˛ and
@�xL.v/ D 0. It remains to prove that L.v/ > 0.

First we prove that if L.v/ is constant then it is necessarily a positive constant. Next
we prove that if L.v/ varies then L.v/ > 0.

Assume that L.v/ D c. Let Nx 2 � be such that v. Nx/ > 0. Moreover, the choice of C
gives �.R. Nx; �/ � �. Nx/ � C/ > 0 and since �@xxL.v/ D L.L.v// D 0, we deduce that

L.v/. Nx/ D c D
v. Nx/

�.R. Nx; �/ � �. Nx/ � C/
> 0:

Next we suppose that L.v/ is not constant. Assume by contradiction that there exists x
such that L.v/.x/ � 0. Let Nx0 2 x� be such that

inf
x2�

L.v/.x/ D L.v/. Nx0/:

Then either Nx0 2 � or Nx0 2 @�. In the first case, we deduce that

�@xxL.v/. Nx0/ � 0 and L.L.v//. Nx0/ < 0;

which leads to the contradiction

0 � v. Nx0/ D �@xxL.v/. Nx0/C L.L.v//. Nx0/ � .R. Nx0; �/ � �. Nx0/ � C/L.v/. Nx0/ < 0:

If Nx0 2 @�, since L.v/ is not constant, we deduce from Lemma 4 that @�xL.v/. Nx0/ < 0.
It is in contradiction with the Neumann boundary condition.

We conclude that we can apply the Krein–Rutman theorem and the conclusion follows.

Next we focus on the regularity of � and � with respect to � and �. The result follows
directly from the implicit function theorem applied to

GW .�; �; �; �/ 2 H 1.�/ �R �R �H 1.�/

7!

�
�@xx� C L� � ŒR.�; �/ � �C ���;

Z
�

�.x/2 dx � 1

�
:

The interested reader may refer to [16, Theorem 2, Chapter 11] for technical details in a
finite-dimensional setting.

The existence of the solution of (3) is also due to the Krein–Rutman theorem, and
therefore we do not provide the proof of existence.
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A.3. Some properties of �

We prove in this subsection two propositions that are stated in Section 2: Propositions 1
and 3.

Proof of Proposition 1. First recall from Proposition 6 that � and  � are C 1 functions
with respect to � . Differentiating (2) with respect to � leads to

@��.�; �/ 
�
C �.�; �/@� 

�

D �@xx@� 
�
C L.@� 

� / � ŒR.�; �/ � ��@� 
�
� @�R.�; �/ 

� : (51)

We multiply (51) by  � and integrate by parts, recalling
R
�
 � .x/2 dx D 1, to obtain

@��.�; �/ D �

Z
�

@�R.x; �/ 
� .x/2 dx

C

Z
�

@x@� 
�@x 

�
C L. � /@� 

�

� ŒR.x; �/ � � � �.�; �/�@� 
� � dx: (52)

We remark that multiplying (2) by @� � and integrating by parts leads toZ
�

@x 
�@x@� 

�
C L. � /@� 

�
� ŒR.x; �/ � � � �.�; �/� �@� 

� dx D 0:

The conclusion follows.

Proof of Proposition 3. We focus on the proof of (22), since the proof of (21) follows by
straightforward computations.

Since the function R is C 2 with respect to � and g, according to the implicit function
theorem, the eigenfunction  � is C 2 with respect to its parameters g and � . In this proof,
we will take this dependence with respect to the parameters into account in the notation:
we will denote  � by  �;g , �.�/ by , and R by Rg .

First, we establish that Z
�

.@� 
�;g.x//2 dx ���!

g!0
0

for a fixed value � 2 ��A;AŒ. Since k �;gk2
L2.�/

D 1, we deduce thatZ
�

 �;g.x/@� 
�;g.x/ dx D 0:

If we differentiate (50) with respect to � , we have that @� �;g is a solution in � of

� @xx@� 
�;g
C L.@� 

�;g/ � ŒRg.�; �/ � ��@� 
�;g
� @�Rg.�; �/ 

�;g

D �.�; g/@� 
�;g
C @��.�; g/ 

�;g :
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We then multiply the above equation by  �;g and integrate over � to obtainZ
�

.@x.@� 
�;g//2 dx �

R
���

Œ@� 
�;g.x/ � @� 

�;g.y/�2K.x � y/ dy dx

2

�

Z
�

ŒRg.x; �/ � �.x/�@� 
�;g.x/2 dx

D �.�; g/

Z
�

.@� 
�;g/2 dx C

Z
�

@�Rg.x; �/ 
�;g.x/@� 

�;g.x/ dx

C @��.�; g/

Z
�

 �;g.x/@� 
�;g.x/ dx:

Remarking that @�R0 D 0 and recalling that
R
�
 �;0.x/@� 

�;0.x/ dx D 0, we deduce
that @� �;0 belongs to the eigenspace associated to the principal eigenvalue �.�; 0/ of the
operator �@xx C L � ŒR0 � ��. Since this space is one-dimensional, engendered by  �;0

and using again that  �;0 is orthogonal to @� �;0, we conclude thatZ
�

.@� 
�;g.x//2 dx ���!

g!0
0:

Next, we prove that this convergence is uniform with respect to � . By compactness of
Œ�A;A� � Œ0; Qg� (for some Qg > 0), we deduce that there exists a uniform constant C > 0

such that for all .�; g/ 2 Œ�A;A� � Œ0; Qg� we have

j@�� 
�;g
j < C:

It follows that for any �1; �2 2 ��A;AŒ, we haveZ
�

.@� 
�1;g.x//2 dx �

Z
�

.@� 
�2;g.x//2 dx C 2C 2 mes.�/j�1 � �2j2

(where mes.�/ stands for the Lebesgue measure of �). Next we fix � > 0 and we prove
that for g < g0 (for some g0 > 0) we have (independently of the choice of � )Z

�

.@� 
�;g.x//2 dx < �:

By compactness of Œ�A; A�, there exists an integer i0 > 0 and �i 2 ��A; AŒ with i 2
¹1; : : : ; i0º such that

Œ�A;A� �

i0[
iD1

B
�
�i ;

r
"

4C 2 mes.�/

�
:

Next we define gi D sup¹g0 2 Œ0; Qg� W 8g < g0;
R
�
.@� 

�i ;g.x//2 dx < �
2
º (notice that

gi > 0). By setting g0 D mini2¹1;:::;i0º gi , for any � 2 ��A; AŒ, we conclude that for all
g < g0 we haveZ

�

.@� 
�;g.x//2 dx �

Z
�

.@� 
�i ;g.x//2 dx C 2C 2 mes.�/j� � �i j2 < �

with i 2 ¹1; : : : ; i0º such that � 2 B.�i ;
q

"
4C 2 mes.�/ /. This concludes the proof of the

uniform convergence.
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B. Proof of Lemma 1

The proof of Lemma 1 follows essentially the steps of the proof of the convergence of u"
(i.e. Theorem 2 (2)). Therefore, we will only emphasize the differences between the two
proofs. We made the choice to provide the proof of the convergence of u" rather than the
convergence of �" because it is the result that motivated the current study.

Proof of Lemma 1. We recall the equation satisfied by �" and �":´
�@xx�" � "

2@���" C L�" �R�" D �"�" in � � ��A;AŒ;

@�x�" D @�� �" D 0 on @.� � ��A;AŒ/:
(3)

The existence of �" is ensured by the Krein–Rutman theorem. Moreover, according to the
Krein–Rutman theorem, the sign of �" is constant. Therefore, we consider that �" > 0,
k�"kL2 D 1 and we define

v" D " ln.�"/:

Next we prove that �" is bounded from below and above respectively by � supR and
� infR.

First, we focus on the upper bound. Let . Nx; N�/ 2 x� � Œ�A;A� be such that

sup
.x;�/2x��Œ�A;A�

�".x; �/ D �". Nx; N�/:

If . Nx; N�/ 2 � � ��A;AŒ, it follows that

.�@xx�" � "
2@���" C L.�"//. Nx; N�/ � 0:

From (3), we deduce that
�" � �R. Nx; N�/ � � infR:

If . Nx; N�/ belongs to @.� � ��A;AŒ/, we conclude with a reflective argument and the same
computations as in the previous case. In any case, for all " > 0 we have

�" < � infR:

Next we focus on the lower bound. Let .x; �/ 2 x� � Œ�A;A� be such that

inf
.x;�/2x��Œ�A;A�

�" D �".x; �/:

With similar arguments to the upper bound, we deduce that

� supR � �R.x; �/ � �":

Therefore, �" is uniformly bounded from below and above, thus �" converges along sub-
sequences to �.
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Next, as we have established Lipschitz and uniform bounds on u", we can prove that
there exists a constant C > 0 such that

j@xv"j < C"; j@�v"j < C; �C < lim
"!0

inf
����A;AŒ

v"; and lim
"!0

sup
����A;AŒ

v" � 0:

Therefore, we deduce that v" converges along subsequences to v. Moreover, with similar
computations to the proof of Theorem 2 (2), we deduce that v is a viscosity solution of8<:�Œ@�v.�/�

2
D ��.�;��/;

max
�2Œ�A;A�

v.�/ D 0:
(53)

Next we claim that
�.�;��/ D �.�; 0/ � �: (54)

We postpone the proof of this claim to the end of this paragraph. Thanks to (53) and (54)
we deduce that 8<:�Œ@�v.�/�

2
D ��.�; 0/C �;

max
�2Œ�A;A�

v.�/ D 0:

Note that ��.�; 0/C � � 0 for all � 2 Œ�A; A�. Next we introduce �m 2 Œ�A; A� such
that

v.�m/ D max
�2Œ�A;A�

v.�/:

It follows that @�v.�m/ D 0 and ��.�m; 0/C � D 0 D max.��.�; 0/C �/. We deduce
thanks to (H4) that

0 D max.��.�; 0/C �/ D �min.�.�; 0//C � D ��.�0; 0/C �:

We conclude that
�.�0; 0/ D �:

We finish the proof by remarking that the previous convergence result holds for any sub-
sequence of �". Therefore, we conclude that

lim
"!0

�" D �.�0; 0/:

It remains to prove (54). Let  �� be the principal eigenfunction associated to the prin-
cipal eigenvalue of �.�;��/ with � a constant,´

�@xx 
�
� C L 

�
� � ŒR.�; �/C �� 

�
� D �.�;��/ 

�
� in �;

@�x 
�
� D 0 on @�:

It follows that

�@xx 
�
� C L 

�
� �R.�; �/ 

�
� D .�.�;��/C �/ 

�
�:

Since� is constant, �� >0 and by the uniqueness of the positive eigenfunction of�@xx C
L�R.�; �/ (up to multiplication by a scalar), we deduce that �.�;��/C�D �.�; 0/.
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