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Abstract.We study themaximum likelihood estimator of density of n independent observations,
under the assumption that it is well approximated by a mixture with a large number of
components. The main focus is on statistical properties with respect to the Kullback–Leibler
loss. We establish risk bounds taking the form of sharp oracle inequalities both in deviation
and in expectation. A simple consequence of these bounds is that the maximum likelihood
estimator attains the optimal rate ..logK/=n/1=2, up to a possible logarithmic correction, in the
problem of convex aggregation when the number K of components is larger than n1=2. More
importantly, under the additional assumption that the Gram matrix of the components satisfies
the compatibility condition, the obtained oracle inequalities yield the optimal rate in the sparsity
scenario. That is, if the weight vector is (nearly) D-sparse, we get the rate .D logK/=n. As
a natural complement to our oracle inequalities, we introduce the notion of nearly-D-sparse
aggregation and establish matching lower bounds for this type of aggregation.
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1. Introduction

Assume that we observe n independent random vectors X1; : : : ;Xn 2 X drawn
from a probability distribution P � that admits a density function f � with respect to
some reference measure �. The goal is to estimate the unknown density by a mixture
density. More precisely, we assume that for a given family of mixture components
f1; : : : ; fK , the unknown density of the observations f � is well approximated by a
convex combination f� of these components, where

f�.x/ D

KX
jD1

�jfj .x/; � 2 BKC D
n
� 2 Œ0; 1�K W

KX
jD1

�j D 1
o
: (1.1)

The assumption that the component densities F D ffj W j 2 ŒK�g are known
essentially means that they are chosen from a dictionary obtained on the basis of
previous experiments or expert knowledge.
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We focus on the problem of estimation of the density function f� and the weight
vector � from the simplex BKC under the sparsity scenario: the ambient dimensionK
can be large, possibly larger than the sample size n, but most entries of � are either
equal to zero or very small.

Our goal is to investigate the statistical properties of the Maximum Likelihood
Estimator (MLE), defined by

y� 2 argmin
�2…

n
�
1

n

nX
iD1

logf�.X i /
o
; (1.2)

where the minimum is computed over a suitably chosen subset … of BKC . In the
present work, we will consider sets … D …n.�/, depending on a parameter � > 0

and the sample fX1; : : : ;Xng, defined by

…n.�/ D

�
� 2 BKC W min

i2Œn�

KX
jD1

�jfj .X i / � �

�
: (1.3)

Note that the objective function in (1.2) is convex and the same is true for set (1.3).
Therefore, the MLE y� can be efficiently computed even for large K by solving a
problem of convex programming. To ease notation, very often, we will omit the
dependence of…n.�/ on � and write…n instead of…n.�/.

The quality of an estimator y� can be measured in various ways. For instance, one
can consider the Kullback–Leibler divergence

KL.f �jjfy�/ D

(R
X
f �.x/ log f

�.x/
fy�.x/

�.dx/; if P �
�
f �.X/=fy�.X/ D 0

�
D 0;

C1; otherwise;
(1.4)

which has the advantage of bypassing identifiability issues. One can also consider
the (well-specified) setting where f � D f�� for some �� 2 BKC and measure the
quality of estimation through a distance between the vectors y� and �� (such as the
`1-norm ky� � ��k1 or the Euclidean norm ky� � ��k2).

The main contributions of the present work are the following:
(a) We demonstrate that in the mixture model there is no need to introduce sparsity
favoring penalty in order to get optimal rates of estimation under theKullback–Leibler
loss in the sparsity scenario. In fact, the constraint that the weight vector belongs to
the simplex acts as a sparsity inducing penalty. As a consequence, there is no need
to tune a parameter accounting for the magnitude of the penalty.
(b) We show that the maximum likelihood estimator of the mixture density
simultaneously attains the optimal rate of aggregation for the Kullback–Leibler
loss for at least three types of aggregation: model-selection, convex and D-sparse
aggregation.
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(c) We introduce a new type of aggregation, termed nearly D-sparse aggregation
that extends and unifies the notions of convex andD-sparse aggregation. We establish
strong lower bounds for the nearly D-sparse aggregation and demonstrate that the
maximum likelihood estimator attains this lower bound up to logarithmic factors.

1.1. Related work. The results developed in the present work aim to gain a better
understanding (a) of the statistical properties of the maximum likelihood estimator
over a high-dimensional simplex and (b) of the problem of aggregation of density
estimators under the Kullback–Leibler loss. Various procedures of aggregation1 for
density estimation have been studied in the literature with respect to different loss
functions. [8, 12, 33] investigated different variants of the progressive mixture rules,
also known as mirror averaging [10, 34], with respect to the Kullback–Leibler loss
and established model selection type oracle inequalities2 in expectation. Same type
of guarantees, but holding with high probability, were recently obtained in [1, 7] for
the procedure termedQ-aggregation, introduced in other contexts by [9, 24].

Aggregation of estimators of a probability density function under theL2-loss was
considered in [26], where it was shown that a suitably chosen unbiased risk estimate
minimizer is optimal both for convex and linear aggregation. The goal in the present
work is to go beyond the settings of the aforementioned papers in that we want
simultaneously to do as well as the best element of the dictionary, the best convex
combination of the dictionary elements but also the best sparse convex combination.
Note that the latter task was coined D-aggregation in [20] (see also [5]). In the
present work, we rename it in D-sparse aggregation, in order to make explicit its
relation to sparsity.

Key differences between the latter work and ours are that we do not assume the
sparsity index to be known and we are analyzing an aggregation strategy that is
computationally tractable even for large K. This is also the case of [3, 6], which are
perhaps the most relevant references to the present work. These papers deal with the
L2-loss and investigate the lasso and the Dantzig estimators, respectively, suitably
adapted to the problem of density estimation. Their methods handle dictionary
elements ffj g which are not necessarily probability density functions, but has the
drawback of requiring the choice of a tuning parameter. This choice is a nontrivial
problem in practice. Instead, we showhere that the optimal rates of sparse aggregation
with respect to the Kullback–Leibler loss can be attained by procedure which is tuning
parameter free.

Risk bounds for the maximum likelihood and other related estimators in the
mixture model have a long history [18, 19, 21]. For the sake of comparison we
recall here two elegant results providing non-asymptotic guarantees for the Kullback–
Leibler loss.

1We refer the interested reader to [29] for an up to date introduction into aggregation of statistical
procedures.

2This means that they prove that the expected loss of the aggregate is almost as small as the loss of the
best element of the dictionary ff1; : : : ; fKg.
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Theorem 1.1 ([18, Theorem 5.1]). Let F be a finite dictionary of cardinality K of
density functions such thatmaxf 2F kf

�=f k1 � V . Then, the maximum likelihood
estimator over F , yf ML

F
2 argmaxf 2F

Pn
iD1 logf .X i /, satisfies the inequality

Ef �
�
KL

�
f �jj yf ML

F

��
�
�
2C logV

��
min
f 2F

KL.f �jjf /C
2 logK
n

�
: (1.5)

Inequality (1.5) is an inexact oracle inequality in expectation that quantifies the
ability of yf ML

F
to solve the problem of model-selection aggregation. The adjective

inexact refers to the fact that the “bias term” minf 2F KL.f �jjf / is multiplied by
factor strictly larger than one. It is noteworthy that the remainder term .2 logK/=n
corresponds to the optimal rate of model-selection aggregation [11, 28]. In relation
with Theorem 1.1, it is worth mentioning a result of [33] and [8], see also [14,
Theorem 5] and [12, Corollary 5.4], establishing a risk bound similar to (1.5) without
the extra factor 2C logV for the so called mirror averaging aggregate.

Theorem 1.2 ([21, p. 226]). Let F be a finite dictionary of cardinality K of
density functions and let Ck D

˚
f� W k�k0 � k

	
be the set of all the mixtures

of at most k elements of F (k 2 ŒK�). Assume that f � and the densities fk
from F are bounded from below and above by some positive constants m and M ,
respectively. Then, there is a constant C depending only on m and M such that,
for any tolerance level ı 2 .0; 1/, the maximum likelihood estimator over Ck ,
yf ML
Ck
2 argmaxf 2Ck

Pn
iD1 logf .X i /, satisfies the inequality

KL
�
f �jj yf ML

Ck

�
� min
f 2Ck

KL.f �jjf /C C
� log.K=ı/

n

�1=2
(1.6)

with probability at least 1 � ı.

This result is remarkably elegant and can be seen as an exact oracle inequality in
deviation for D-sparse aggregation (for D D k). Furthermore, if we choose k D K
in Theorem 1.2, then we get an exact oracle inequality for convex aggregation with
a rate-optimal remainder term [28]. However, it fails to provide the optimal rate for
D-sparse aggregation.

Closing this section, we would like to mention the recent work [32], where oracle
inequalities for estimators of low rank density matrices are obtained. They share a
common feature with those obtained in this work: the adaptation to the unknown
sparsity or rank is achieved without any additional penalty term. The constraint that
the unknown parameter belongs to the simplex acts as a sparsity inducing penalty.

1.2. Additional notation. In what follows, for any integer i 2 Œn�, we denote byZ i
the K-dimensional vector Œf1.X i /; : : : ; fK.X i /�

> and by Z the n � K matrix
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ŒZ>1 ; : : : ;Z
>
n �
>. We also define `.u/ D � logu, u 2 .0;C1/, so that the MLE y�

is the minimizer of the function

Ln.�/ D
1

n

nX
iD1

`
�
Z>i �

�
: (1.7)

For any set of indices J � ŒK� and any � D .�1; : : : ; �K/> 2 RK , we define �J as
theK-dimensional vector whose j th coordinate equals �j if j 2 J and 0 otherwise.
We denote the cardinality of any J � ŒK� by jJ j. For any set J � f1; : : : ; Kg and
any constant c � 0, we introduce the compatibility constants [30] of aK�K positive
semidefinite matrix A,

�A.J; c/ D inf
�

c2jJ jkA1=2vk22
.ckvJ k1 � kvJ ck1/2

W v 2 RK ; kvJ ck < ckvJ k1

�
; (1.8)

x�A.J; c/ D inf
�
jJ jkA1=2vk22
kvJ k

2
1

W v 2 RK ; kvJ ck1 < ckvJ k1

�
: (1.9)

The risk bounds established in the present work involve the factors �A.J; 3/ and
x�A.J; 1/. One can easily check that x�A.J; 3/ � �A.J; 3/ �

9
4
x�A.J; 1/. We also

recall that the compatibility constants of a matrix A are bounded from below by the
smallest eigenvalue of A.

Let us fix a function f0WX ! R and denote xfk D fk � f0 and

xZ i D Œ xf1.X i /; : : : ; xfK.X i /�
>; (1.10)

for i 2 Œn�. In the results of this work, the compatibility factors are used for the
empirical and population Gram matrices of vectors xZk , that is when A D y†n and
A D † with

y†n D
1

n

nX
iD1

xZ i xZ
>

i ; † D EŒ xZ1 xZ
>

1 �: (1.11)

The general entries of these matrices are . y†n/k;l D 1=n
Pn
iD1
xfk.X i / xfl.X i / and

.†/k;l D EŒ xfk.X1/ xfl.X1/�, respectively. We assume that there exist positive
constants m andM such that for all densities fk with k 2 ŒK�, we have

8x 2 X; m � fk.x/ �M: (1.12)

We use the notation V D M=m. It is worth mentioning that the set of dictionaries
satisfying simultaneously this boundedness assumption and the aforementioned
compatibility condition is not empty. For instance, one can consider the functions
fk.x/ D 1C 1=2 sin.2�kx/ for k 2 ŒK�. These functions are probability densities
w.r.t. the Lebesgue measure on X D Œ0; 1�. They are bounded from below and from
above by 1=2 and 3=2, respectively. Taking f0.x/ D 1, the corresponding Grammatrix
is † D 1=8 IK , which has all eigenvalues equal to 1=8.
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1.3. Agenda. The rest of the paper is organized as follows. In Section 2, we state our
main theoretical contributions and discuss their consequences. Possible relaxations
of the conditions, as well as lower bounds showing the tightness of the established
risk bounds, are considered in Section 3. A brief summary of the paper and some
future directions of research are presented in Section 4. The proofs of all theoretical
results are postponed to Section 5 and Section 6.

2. Oracle inequalities in deviation and in expectation

In this work, we prove several non-asymptotic risk bounds that imply, in particular,
that the maximum likelihood estimator is optimal in model-selection aggregation,
convex aggregation and D-sparse aggregation (up to log-factors). In all the results
of this section we assume the parameter � in (1.3) to be equal to 0.

Theorem 2.1. Let F be a set of K � 4 densities satisfying the boundedness
condition (1.12). Denote by fy� the mixture density corresponding to the maximum
likelihood estimator y� over …n defined in (1.7). There are constants c1 � 32V 3,
c2 � 288M

2V 6 and c3 � 128M 2V 6 such that, for any ı 2 .0; 1=2/, the following
inequalities hold

KL.f �jjfy�/ � inf
J�ŒK�

�2BK
C

�
KL.f �jjf�/

C c1

� log.K=ı/
n

�1=2
k�J ck1 C

c2jJ j log.K=ı/
n� y†n

.J; 3/

�
;

(2.1)

KL.f �jjfy�/ � inf
J�ŒK�

inf
�2BK

C

�JcD0

�
KL.f �jjf�/C

c3jJ j log.K=ı/
nx� y†n

.J; 1/

�
(2.2)

with probability at least 1 � ı.

The proof of this and the subsequent results stated in this section are postponed
to Section 5. Comparing the two inequalities of the above theorem, one can notice
two differences. First, the term proportional to k�J ck1 is absent in the second risk
bound, which means that the risk of the MLE is compared to that of the best mixture
with a weight sequences supported by J . Hence, this risk bound is weaker than the
first one provided by (2.1). Second, the compatibility factor x� y†n.J; 1/ in (2.2) is
larger that its counterpart � y†n.J; 3/ in (2.1). This entails that in the cases where the
oracle is expected to be sparse, the remainder term of the bound in (2.1) is slightly
looser than that of (2.2).



KL-aggregation in density estimation 7

A first and simple consequence of Theorem 2.1 is obtained by taking J D ¿ in
the right hand side of the first inequality. Then, k�J ck1 D k�k1 D 1 and we get

KL.f �jjfy�/ � inf
�2BK

C

KL.f �jjf�/C c1
� log.K=ı/

n

�1=2
: (2.3)

This implies that for every dictionary F , without any assumption on the smallness
of the coherence between its elements, the maximum likelihood estimator achieves
the optimal rate of convex aggregation, up to a possible3 logarithmic correction, in
the high-dimensional regime K � n1=2. This essentially recovers the result of [21]
recalled in Theorem 1.2 above. In the case of regression with random design,
analogous results can be found in [16], [15] and the references therein.

The main compelling feature of our results is that they show that the MLE
adaptively achieves the optimal rate of aggregation not only in the case of
convex aggregation, but also for the model-selection aggregation and D-(convex)
aggregation. For handling these two cases, it is more convenient to get rid of the
presence of the compatibility factor of the empirical Gram matrix y†n. The latter can
be replaced by the compatibility factor of the population Gram matrix, as stated in
the next result.
Theorem 2.2. Let F be a set of K densities satisfying the boundedness condi-
tion (1.12). Denote by fy� the mixture density corresponding to the maximum
likelihood estimator y� over…n defined in (1.7). There are constants c4 � 32V 3C4,
c5 � 4:5M

2.8 V 3 C 1/2 and c6 � 2M 2.8 V 3 C 1/2 such that, for any ı 2 .0; 1=2/,
the following inequalities hold

KL.f �jjfy�/ � inf
J�ŒK�

�2BK
C

�
KL.f �jjf�/

C c4

� log.K=ı/
n

�1=2
k�J ck1 C

c5jJ j log.K=ı/
n�†.J; 3/

�
;

(2.4)

KL.f �jjfy�/ � inf
J�ŒK�

inf
�2BK

C

�JcD0

�
KL.f �jjf�/C

c6jJ j log.K=ı/
nx�†.J; 1/

�
(2.5)

with probability at least 1 � 2ı.
The main advantage of the upper bounds provided by Theorem 2.2 as compared

with those of Theorem 2.1 is that the former is deterministic, whereas the latter
involves the compatibility factor of the empirical Gram matrix which is random. The
price to pay for getting rid of randomness in the risk bound is the increased values
of the constants c4, c5 and c6. Note, however, that this price is not too high, since

3In fact, the optimal rate of convex aggregation when K � n1=2 is of order
�
log.K=n1=2/=n

�1=2.
Therefore, even the logK term is optimal wheneverK � Cn1=2C˛ for some ˛ > 0.
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obviously 1 � M � L and, therefore, c4 � 1:25c1, c5 � 1:56c2 and c6 � 1:56c3.
In addition, the absence of randomness in the risk bound allows us to integrate it and
to convert the bound in deviation into a bound in expectation.
Theorem 2.3 (Bound in expectation). Let F be a set of K densities satisfying the
boundedness condition (1.12). Denote by fy� the mixture density corresponding to
the maximum likelihood estimator y� over …n defined in (1.7). There are constants
c7 � 20V

3 C 8, c8 �M 2.22V 3 C 3/2 and c9 �M 2.15V 3 C 2/2 such that

EŒKL.f �jjfy�/� � inf
J�ŒK�

�2BK
C

�
KL.f �jjf�/C c7

� logK
n

�1=2
k�J ck1 C

c8jJ j logK
n�†.J; 3/

�
;

(2.6)

EŒKL.f �jjfy�/� � inf
J�ŒK�

inf
�2BK

C

�JcD0

�
KL.f �jjf�/C

c9jJ j logK
nx�†.J; 1/

�
: (2.7)

In inequality (2.7), upper bounding the infimum over all sets J by the infimum
over the singletons, we get

EŒKL.f �jjfy�/� � inf
j2ŒK�

�
KL.f �jjfj /C

c9 logK
nx�†.J; 1/

�
: (2.8)

This implies that the maximum likelihood estimator f O� achieves the rate logK
n

in
model-selection type aggregation. This rate is known to be optimal in the model of
regression [24]. If we compare this result with Theorem 1.1 stated in Section 1.1,
we see that the remainder terms of these two oracle inequalities are of the same
order (provided that the compatibility factor is bounded away from zero), but
inequality (2.8) has the advantage of being exact.

We can also apply (2.7) to the problem of convex aggregation with small
dictionary, that is for K smaller than n1=2. Upper bounding jJ j by K, we get

EŒKL.f �jjfy�/� � inf
�2BK

C

KL.f �jjf�/C
c9K logK
nx�†.ŒK�; 1/

: (2.9)

Assuming, for instance, the smallest eigenvalue of † bounded away from zero
(which is a quite reasonable assumption in the context of low dimensionality), the
above upper bound provides a rate of convex aggregation of the order of K logK

n
. Up

to a logarithmic term, this rate is known to be optimal for convex aggregation in the
model of regression.

Finally, considering all the sets J of cardinality smaller than D (with D � K)
and setting x�†.D; 1/ D infJ WjJ j�D x�†.J; 1/, we deduce from (2.7) that

EŒKL.f �jjfy�/� � inf
�2BK

C
Wk�k0�D

KL.f �jjf�/C
c9D logK
nx�†.D; 1/

: (2.10)
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According to [25, Theorem 5.3], in the regressionmodel, the optimal rate ofD-sparse
aggregation is of order .D=n/ log.K=D/, whenever D D o.n1=2/. Inequality (2.10)
shows that the maximum likelihood estimator over the simplex achieves this rate up
to a logarithmic factor. Furthermore, this logarithmic inflation disappears when the
sparsityD is such that, asymptotically, the ratio logD= logK is bounded from above
by a constant ˛ < 1. Indeed, in such a situation the optimal rate

D log.K=D/
n

D
D logK
n

�
1 �

logD
logK

�
is of the same order as the remainder term in (2.10), that is .D logK/=n.

3. Discussion of the conditions and possible extensions

In this section, we start by announcing lower bounds for the Kullback–Leibler
aggregation in the problem of density estimation. Then we discuss the implication
of the risk bounds of the previous section to the case where the target is the weight
vector � rather than the mixture density f� . Finally, we present some extensions to
the case where the boundedness assumption is violated.

3.1. Lower bounds for nearly-D-sparse aggregation. As mentioned in previous
section, the literature is replete with lower bounds on the minimax risk for various
types of aggregation. However most of them concern the regression setting either
with random or with deterministic design. Lower bounds of aggregation for density
estimation were first established by [23] for the L2-loss. In the case of Kullback–
Leibler aggregation in density estimation, the only lower bounds we are aware
are those established by [14] for model-selection type aggregation. It is worth
emphasizing here that the results of the aforementioned two papers provide weak
lower bounds. Indeed, they establish the existence of a dictionary for which the
minimax excess risk is lower bounded by the suitable quantity. In contrast with this,
we establish here strong lower bounds that hold for every dictionary satisfying the
boundedness and the compatibility conditions.

Let F D ff1; : : : ; fKg be a dictionary of density functions on X D Œ0; 1�. We
say that the dictionaryF satisfies the boundedness and the compatibility assumptions
if for some positive constantsm;M and �, we havem � fj .x/ �M for all j 2 ŒK�,
x 2 X. In addition, we assume in this subsection that all the eigenvalues of the Gram
matrix † belong to the interval Œ~�; ~��, with ~� > 0 and ~� <1.

For every 
 2 .0; 1/ and any D 2 ŒK�, we define the set of nearly-D-sparse
convex combinations of the dictionary elements fj 2 F by

HF .
;D/ D
n
f� W � 2 BKC such that min

J WjJ j�D
k�J ck1 � 


o
: (3.1)
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In simple words, f� belongs to HF .
;D/ if it admits a 
 -approximately D-sparse
representation in the dictionary F . We are interested in bounding from below the
minimax excess risk

R
�
HF .
;D/

�
D inf

Of

sup
f �

n
EŒKL.f �jj Of /� � inf

f�2HF .
;D/
KL.f �jjf�/

o
; (3.2)

where the inf is over all possible estimators of f � and the sup is over all density
functions over Œ0; 1�. Note that the estimator Of is not necessarily a convex
combination of the dictionary elements. Furthermore, it is allowed to depend on
the parameters 
 and D characterizing the class HF .
;D/. It follows from (2.6),
that if the dictionary satisfies the boundedness and the compatibility condition, then

R
�
HF .
;D/

�
� C

��
2 logK
n

�1=2
C
D logK
n

�^� logK
n

�1=2
; (3.3)

for some constantC depending only onm;M and ~�. Note that the last term accounts
for the following phenomenon: If the sparsity indexD is larger than amultiple of

p
n,

then the sparsity bears no advantage as compared to the `1 constraint. The next result
implies that this upper bound is optimal, at least up to logarithmic factors.

Theorem 3.1. Assume that log.1 C eK/ � n. Let 
 2 .0; 1/ and D 2 ŒK� be
fixed. There exists a constant A depending only on m, M , ~� and ~� such that
R.HF .
;D// is larger than

A

��

2

n
log

�
1C

K



p
n

��1=2
C
D log.1CK=D/

n

�^�
1

n
log

�
1C

K
p
n

��1=2
:

(3.4)

This is the first result providing lower bounds on the minimax risk of aggregation
over nearly-D-sparse aggregates. To the best of our knowledge, even in the Gaussian
sequence model, such a result has not been established to date. It has the advantage
of unifying the results on convex and D-sparse aggregation, as well as extending
them to a more general class. Let us also stress that the condition log.1C eK/ � n
is natural and unavoidable, since it ensures that the right hand side of (3.3) is smaller
than the trivial bound logV .

3.2. Weight vector estimation. The risk bounds carried out in the previous sec-
tion for the problem of density estimation in the Kullback–Leibler loss imply risk
bounds for the problem of weight vector estimation. Indeed, under the boundedness
assumption (1.12), the Kullback–Leibler divergence between two mixture densities
can be shown to be equivalent to the squared Mahalanobis distance between the
weight vectors of these mixtures with respect to the Gram matrix. In order to go
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from the Mahalanobis distance to the Euclidean one, we make use of the restricted
eigenvalue

�RE† .s; c/ D inf
v2�.s;c/

k†
1=2vk22; (3.5)

with �.s; c/ WD fv W 9J � ŒK� s.t. jJ j � s; kvJ ck1 � ckvJ k1 and kvJ k2 D 1g.
This strategy leads to the next result.

Proposition 3.2. LetF be a set ofK � 4 densities satisfying condition (1.12). Denote
by fy� the mixture density corresponding to the maximum likelihood estimator y�
over …n defined in (1.7). Let �� the weight-vector of the best mixture density:
�� 2 argmin� KL.f �jjf�/, and let J � be the support of ��. There are constants
c10 �M

2.64V 3 C 8/ and c11 � 4M 2.8V 3 C 1/ such that, for any ı 2 .0; 1=2/, the
following inequalities hold

ky� � ��k1 �
c10jJ

�j

x�†.J �; 1/

� log.K=ı/
n

�1=2
; (3.6)

ky� � ��k2 �
c11

�RE
†
.jJ �j; 1/

�2jJ �j log.K=ı/
n

�1=2
; (3.7)

ky� � ��k22 �
c11

�RE
†
.jJ �j; 1/

�2 log.K=ı/
n

�1=2
(3.8)

with probability at least 1 � 2ı.

In simple words, this result tells us that the weight estimator y� attains theminimax
rate of estimation jJ �j.log.K/=n/1=2 over the intersection of the `1 and `0 balls,
when the error is measured by the `1-norm, provided that the compatibility factor
of the dictionary F is bounded away from zero. The optimality of this rate — up
to logarithmic factors — follows from the fact that the error of estimation of each
nonzero coefficients of �� is at least cn�1=2 (for some c > 0), leading to a sum of the
absolute values of the errors at least of the order jJ �jn�1=2. The logarithmic inflation
of the rate is the price to pay for not knowing the support J �. It is clear that this
reasoning is valid only when the sparsity jJ �j is of smaller order than n1=2. Indeed,
in the case jJ �j � cn1=2, the trivial bound ky� � ��k1 � 2 is tighter than the one
in (3.6).

Concerning the risk measured by the Euclidean norm, we underline that
there are two regimes characterized by the order between upper bounds in (3.7)
and (3.8). Roughly speaking, when the signal is highly sparse in the sense
that jJ �j is smaller than .n= logK/1=2, then the smallest bound is given by (3.7)
and is of the order .jJ �j log.K//=n. This rate is can be compared to the rate
.jJ �j log.K=jJ �j//=n, known to be optimal in the Gaussian sequence model. In the
second regime corresponding to mild sparsity, jJ �j > .n= logK/1=2, the smallest
bound is the one in (3.8). The latter is of order .log.K/=n/1=2, which is known to be
optimal in the Gaussian sequence model. For various results providing lower bounds
in regression framework we refer the interested reader to [22, 25, 31].
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3.3. Extensions to the case of vanishing components. In the previous sections we
have deliberately avoided any discussion of the role of the parameter �, present in
the search space …n.�/ of the problem (1.2)–(1.3). In fact, when all the dictionary
elements are separated from zero by a constant m, a condition assumed throughout
previous sections, choosing any value of � � m is equivalent to choosing � D 0.
Therefore, the choice of this parameter does not impact the quality of estimation.
However, this parameter might have strong influence in practice both on statistical
and computational complexity of the maximum likelihood estimator. A first step in
understanding the influence of � on the statistical complexity is made in the next
paragraphs.

Let us consider the case where the condition minx minj fj .x/ � m > 0 fails,
but the upper-boundedness condition maxx maxj fj .x/ � M holds true. In such a
situation, we replace the definition V D M=m by V D M=�. We also define the
set …�.�/ D f� 2 BKC W P

�.f�.X/ � �/ D 1g. In order to keep mathematical
formulae simple, we will only state the equivalent of (2.2) in the case of m D 0. All
the other results of the previous section can be extended in a similar way.
Proposition 3.3. Let F be a set of K � 2 densities satisfying the boundedness
condition supx2X fj .x/ � M . Denote by fy� the mixture density corresponding to
the maximum likelihood estimator y� over…n.�/ defined in (1.7). There is a constant
Nc � 128M 2V 4 such that, for any ı 2 .0; 1=2/,

KL.f �jjfy�/ � inf
J�ŒK�

inf
�2…�.�/
�JcD0

�
KL.f �jjf�/C

NcjJ j log.K=ı/
nx� y†n

.J; 1/

�
C

Z
X

.log� � logfy�/Cf �d� (3.9)

on an event of probability at least 1 � ı. Furthermore, if infx2X f �.x/ � �, then,
on the same event, we have

kf ��fy�k
2
L2.P�/

� 2M 2 inf
J�ŒK�

inf
�2…�.�/
�JcD0

�
KL.f �jjf�/C

NcjJ j log.K=ı/
nx� y†n

.J; 1/

�
: (3.10)

The last term present in the first upper bound,Z
X

.log� � logfy�/Cf �d�

is the price we pay for considering densities that are not lower bounded by a given
constant. A simple, non-random upper bound on this term isZ

X

max
k2ŒK�

.log� � logfk/Cf �d�:

Providing a tight upper bound on this kind or remainder terms is an important problem
which lies beyond the scope of the present work.
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4. Conclusion

In this paper, we have established exact oracle inequalities for themaximum likelihood
estimator of a mixture density. This oracle inequality clearly highlights the interplay
of three sources of error: misspecification of the model of mixture, departure from
D-sparsity and stochastic error of estimating D nonzero coefficients. We have also
proved a lower bound that show that the remainder terms of our upper bounds are
optimal, up to logarithmic terms. This lower bound is valid not only for the maximum
likelihood estimator, but for any estimator of the density function. As a consequence,
the maximum likelihood estimator has a nearly optimal excess risk in the minimax
sense.

In all the results of the present paper, we have assumed that the components of
the mixture model are deterministic. From a practical point of view, it might be
reasonable to choose these components in a data driven way, using, for instance, a
hold-out sample. This question, as well as the problem of tuning the parameter �,
constitute interesting and challenging avenues for future research.

5. Proofs of results stated in previous sections

This section collects the proofs of the theorems and claims stated in previous sections.

5.1. Proof of Theorem 2.1. The main technical ingredients of the proof are a
strong convexity argument and a control of the maximum of an empirical process.
The corresponding results are stated in Lemma 5.2 and Proposition 5.3, respectively,
deferred to Section 5.6. We denote by xZ the n �K matrix Œ xZ1; : : : ; xZK �.

Since y� is aminimizer ofLn.�/, see (1.2) and (1.7), we know thatLn.y�/ � Ln.�/
for every � . However, this inequality can be made sharper using the (local) strong
convexity of the function `.u/ D � log.u/. Indeed, Lemma 5.2 below shows that

1

n

nX
iD1

`
�
fy�.X i /

�
�
1

n

nX
iD1

`
�
f�.X i /

�
�

1

2M 2n
kxZ.y� � �/k22: (5.1)

On the other hand, if we set '.�;x/ D
R
.logf�/f �d� � logf�.x/, we have

Ef � Œ'.�;X i /� D 0 and

`
�
f�.X i /

�
D KL.f �jjf�/ �

Z
X

f � logf �d� C '.�;X i /: (5.2)

Combining inequalities (5.1) and (5.2), we get

KL.f �jjfy�/ � KL.f �jjf�/�
1

2M 2n
kxZ.y���/k22C

1

n

nX
iD1

�
'.�;X i /�'.y�;X i /

�
:

(5.3)
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The next step of the proof consists in establishing a suitable upper bound on the noise
term ˆn.�/ �ˆn.y�/ where

ˆn.�/ D
1

n

nX
iD1

'.�;X i /: (5.4)

According to the mean value theorem, setting �n WD supx�2…n


rˆn.x�/

1, for

every vector � 2 …n, it holds that

jˆn.y�/ �ˆn.�/j � sup
x�2…n



rˆn.x�/

1ky� � �k1 D �nky� � �k1: (5.5)

This inequality, combined with (5.3), yields

KL.f �jjfy�/ � KL.f �jjf�/ �
1

2M 2n
kxZ.y� � �/k22 C �nky� � �k1: (5.6)

Using the Gram matrix y†n D 1=nxZ>xZ, the quantity kxZ.y� � �/k2 can be rewritten
as

kxZ.y� � �/k22 D nk y†
1=2

n .y� � �/k
2
2: (5.7)

We proceed with applying the following result.
Lemma 5.1 ([2, Lemma 2]). For any pair of vectors �;� 0 2 RK , for any pair of
scalars � > 0 and % > 1, for anyK�K symmetric matrixA and for any set J � Œp�,
the following inequality is true

2�%�1
�
k� � � 0k1 C %k�k1 � %k�

0
k1

�
� kA.� � � 0/k22

� 4�k�J ck1 C
.%C 1/2�2jJ j

%2�A2.J; c%/
; (5.8)

where c% D .%C 1/=.% � 1/.

Choosing A D y†
1=2

n =.
p
2M/, � D �n and % D 2 (thus c% D 3) we get the

inequality

�nk��y�k1�kA.��y�/k22 � 4�nk�J ck1C
9�2njJ j

4�A2.J; 3/
; 8J 2 f1; : : : ; pg: (5.9)

One can check that �A2.J; 3/ D � y†n
.J; 3/=.2M 2/. Combining the last inequality

with (5.6), we arrive at

KL.f �jjfy�/ � KL.f �jjf�/C 4�nk�J ck1 C
9M 2�2njJ j

2� y†n
.J; 3/

: (5.10)

Since the last inequality holds for every�, we can insert an inf� in the right hand side.
Furthermore, in view of Proposition 5.3 below, with probability larger than 1� ı, �n
is bounded from above by 8V 3.log.K=ı/=n/1=2. This completes the proof of (2.1).
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To prove (2.2), we follow the same steps as above up to inequality (5.6). Then,
we remark that for every � in the simplex satisfying �J c D 0, it holds

k.y���/J ck1 D ky�J ck1 D 1�ky�J k1 D k�J k1�ky�J k1 � k.y���/J k1: (5.11)

Therefore,

k y†
1=2

n .y� � �/k
2
2 �
x� y†n

.J; 1/k.� � y�/J k
2
1

jJ j
;

we have with probability at least 1 � ı

�nky� � �k1 �
1

2M 2n
kZ.y� � �/k22 � 2�nk.y� � �/J k1 �

1

2M 2
k y†

1=2

n .y� � �/k
2
2

� 2�nk.� � y�/J k1 �
x� y†n

.J; 1/k.� � y�/J k
2
1

2M 2jJ j

�
2�2nM

2jJ j

x� y†n
.J; 1/

: (5.12)

Replacing the right hand term in (5.6) and taking the infimum, we get the claim of
the corollary. Since, in view of Proposition 5.3 below, with probability larger than
1 � ı, �n is bounded from above by 8V 3.log.K=ı/=n/1=2, we get the claim of (2.2).

5.2. Proof of Theorem 2.2. Let us denote v D y���. According to (5.6) and (5.7),
we have

KL.f �jjfy�/ � KL.f �jjf�/C �nky� � �k1 �
1

2M 2
k y†

1=2

n .y� � �/k
2
2 (5.13)

� KL.f �jjf�/C �nkvk1

�
1

2M 2
k†

1=2vk22 C
1

2M 2
v>.† � y†n/v:

(5.14)

As v is the difference of two vectors lying on the simplex, we have kvk1 � 2. Let
k† � y†nk1 D maxj;j 0 j.† � y†n/j;j 0 j stand for the largest (in absolute values)
element of the matrix † � y†n. We have

v>.† � y†n/v � k† � y†nk1kvk
2
1 � 2k† �

y†nk1kvk1: (5.15)

Setting x�n D �n CM�2k† � y†nk1, we get

KL.f �jjfy�/ � KL.f �jjf�/C x�nky� � �k1 �
1

2M 2
k†

1=2.y� � �/k22: (5.16)

Following the same steps as those used for obtaining (5.10), we arrive at

KL.f �jjfy�/ � KL.f �jjf�/C 4x�nk�J ck1 C
9x�2nM

2jJ j

2�†.J; 3/
: (5.17)
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The last step consists in evaluating the quantiles of the random variable x�n. To this
end, one checks that the Hoeffding inequality combined with the union bound yields

P
˚
k† � y†nk1 > t

	
� K.K � 1/ exp

�
�2nt2=M 4

�
; 8t > 0: (5.18)

In other terms, for every ı 2 .0; 1/, we have

P
�
k† � y†nk1 �M

2
� log.K2=ı/

2n

�1=2�
� 1 � ı: (5.19)

Note that for ı � 1, we have log.K2=ı/ � 2 log.K=ı/. Combining with
Proposition 5.3, this implies that x�n � .8V 3 C 1/.log.K=ı/=n/1=2 with probability
larger than 1 � 2ı. In view of (5.17), this completes the proof of (2.4). The proof
of (2.5) is omitted since it repeats the same arguments as those used for proving (2.2).

5.3. Proof of Theorem 2.3. According to (5.17), for any � 2 … and any J �
f1; : : : ; Kg, we have

EŒKL.f �jjfy�/� � KL.f �jjf�/C 4k�J ck1EŒx�n�C
9M 2jJ j

2�†.J; 3/
EŒx�2n�: (5.20)

Recall now that x�n D �n CM�2k y†n �†k1 and, according to Proposition 5.3, we
have

EŒ�n� � 4V 3
�2 log.2K2/

n

�1=2
and VarŒ�n� �

V 2

2n
: (5.21)

Using Theorem A.1, one easily checks that

EŒk y†n �†k1� �M 2
� log.2K2/

2n

�1=2
: (5.22)

This implies that

EŒx�n� � .8V 3 C 1
�� log.2K2/

2n

�1=2
: (5.23)

Similarly, in view of the Efron–Stein inequality, we have VarŒk y†n �†k1� � M4

2n
.

This implies that

EŒx�2n� � .EŒx�n�/2 C
˚�

VarŒ�n�
�1=2
CM�2

�
VarŒk y†n �†k1�

�1=2	2 (5.24)

� .8V 3 C 1
�2 log.2K2/

2n
C
.V C 1/2

2n
(5.25)

� 1:615.8V 3 C 1
�2 logK

n
: (5.26)

Combining (5.23), (5.26) and (5.20), we get the desired result.
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5.4. Proof of Proposition 3.2. Using the strong convexity of the function u 7!
� logu over the interval Œm;M� and the fact that �� minimizes the convex function
� 7! KL.f �jjf�/, we get

KL.f �jjfy�/ � KL.f �jjf��/C
1

2M 2
k y†

1=2

n .y� � �
�/k22: (5.27)

Combining with (5.16), in which we replace � by ��, we get

k†
1=2.y� � ��/k22 � 2M

2x�nky� � �
�
k1: (5.28)

Let us set v D y� ���. If v D 0, then the claims are trivial. In the rest of this proof,
we assume kvk1 > 0. In view of (5.11), we have kvk1 � 2kvJ�k1. Therefore, using
the definition of the compatibility factor, we get

kvk21 � 4kvJ�k
2
1 �

4jJ �j k†
1=2vk22

x�.J �; 1/
�
8jJ �jM 2x�nkvk1

x�.J �; 1/
: (5.29)

We have already checked that x�n � .8V 3 C 1/.log.K=ı/=n/1=2 with probability
larger than 1 � 2ı. Dividing both sides of inequality (5.29) by kvk1 and using the
aforementioned upper bound on x�n, we get the desired bound on kvk1 D ky� ���k1.

In order to bound the error v D y� � �� in the Euclidean norm, we denote
by OJ the set of D D jJ �j indices corresponding to D largest entries of the
vector .jv1j; : : : ; jvK j/. Since kvk1 � 2kvJ�k1, we clearly have kvk1 � 2kv OJ k1.
Therefore,

kvk22 D kv OJ k
2
2 C kv OJ ck

2
2 (5.30)

� kv OJ k
2
2 C kv OJ ck1kv OJ ck1 (5.31)

� kv OJ k
2
2 C
kv OJ k1

D
kv OJ ck1 (5.32)

� kv OJ k
2
2 C

1

D
kv OJ k

2
1 � 2kv OJ k

2
2: (5.33)

Combining this inequality with the definition of the restricted eigenvalue and
inequality (5.28) above, we arrive at

kv OJ k
2
2 �
k†

1=2vk22
�RE.D; 1/

�
2M 2x�nkvk1

�RE.D; 1/
(5.34)

�
4M 2x�n.kv OJ k1 ^ 1/

�RE.D; 1/
�
4M 2 x�n.

p
Dkv OJ k2 ^ 1/

�RE.D; 1/
: (5.35)

Dividing both sides by kv OJ k2, taking the square and using (5.33), we get

kvk2 �
p
2 kv OJ k2 �

4
p
2M 2jJ �j

1=2 x�n

�RE.jJ �j; 1/

^ 2
p
2M x�

1=2
n

�RE.jJ �j; 1/1=2
: (5.36)

This inequality, in conjunction with the upper bound on x�n used above, completes
the proof of the second claim.
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Figure 1. The plot of the function u 7! Ǹ.u/, used in the proof of Proposition 3.3, superposed
on the plot of the function u 7! `.u/ D � logu. We see that the former is a strongly convex
surrogate of the latter.

5.5. Proof of Proposition 3.3. We repeat the proof of Theorem 2.1 with some small
modifications. First of all, we replace the function `.u/ D � log.u/ by the function

Ǹ.u/ D

(
� log.u=�/; if u � �;
.1 � u

�
/C 1

2
.1 � u

�
/2; if u 2 .0; �/:

(5.37)

One easily checks that this function is twice continuously differentiable with a second
derivative satisfyingM�2 � Ǹ00.u/ � ��2 for every u 2 .0;M/. Furthermore, since
Ǹ.u/ D `.u=�/ for every u � �, we have NLn.y�/ D Ln.y�/, where we have used the
notation NLn.�/ D 1

n

Pn
iD1
Ǹ.f�.X i //. Therefore, similarly to (5.1), we get

1

n

nX
iD1

Ǹ
�
fy�.X i /

�
�
1

n

nX
iD1

Ǹ
�
f�.X i /

�
�

1

2M 2n
kxZ.y� � �/k22; (5.38)

for every � 2 …�.�/. Let us define N'.�;x/ D Ǹ.f�.x// �
R
Ǹ.f�/f

�d� and
N̂
n.�/ D

1
n

Pn
iD1 N'.�;X i /. We haveZ

Ǹ.fy�/ f
�d�

�

Z
Ǹ.f�/ f

�d� �
1

2M 2n
kxZ.y� � �/k22 C

1

n

nX
iD1

�
'.�;X i / � '.y�;X i /

�
(5.39)
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�

Z
Ǹ.f�/ f

�d� �
1

2M 2n
kxZ.y� � �/k22 C sup

�2…n.0/

kr N̂ n.�/k1

�
WD�n

ky� � �k1:

(5.40)

Notice that � 2 …�.�/ implies that Ǹ.f�/ D log� � logf� and that Ǹ.fy�/ �
log� � logfy� � .log� � logfy�/C. Therefore, along the lines of the proof of (2.2)
(see, namely, (5.12)), we get

KL.f �jjfy�/ � KL.f �jjf�/C
2�2nM

2jJ j

x� y†n
.J; 1/

C

Z
X

.log� � logfy�/Cf �d�: (5.41)

We can repeat now the arguments of Proposition 5.3 with some minor modifications.
First of all, we rewrite �n as �n D maxlD1;:::;K �l;nwith �l;n D sup�2…n.0/ j@l N̂ n.�/j.
One checks that the bounded difference inequality and the Efron–Stein inequality can
be applied with an additional factor 2, since for Fl.X/ D sup�2…n.0/ j@l N̂ n.�/j, we
have

jFl.X/ � Fl.X0/j �
2M

n�
D
2V

n
: (5.42)

Therefore, for every l 2 ŒK�, with probability larger than 1 � .ı=K/, we have

�l;n � EŒ�l;n�C V
�2 log.K=ı/

n

�1=2
and VarŒ�n� �

.2V /2

n
:

By the union bound, we obtain that with probability larger than 1 � ı,

�n � max
l

EŒ�l;n�C V
�2 log.K=ı/

n

�1=2
:

Thus, to upper bound EŒ�l;n�, we use the symmetrization argument:

EŒ�l;n� � 2E
�

sup
�2…n.0/

ˇ̌̌1
n

nX
iD1

�i Ǹ
0
�
f�.X i /

�
fl.X i /

ˇ̌̌�
(5.43)

� 2ME
�

sup
�2…n.0/

ˇ̌̌1
n

nX
iD1

�i Ǹ
0
�
f�.X i /

�ˇ̌̌�
(5.44)

�
2M

�
E
�ˇ̌̌1
n

nX
iD1

�i

ˇ̌̌�
C 2ME

�
sup

�2…n.0/

ˇ̌̌1
n

nX
iD1

�i
�
Ǹ0
�
f�.X i /

�
� Ǹ
0.0/

�ˇ̌̌�
;

(5.45)

where the second inequality comes from [4, Th. 11.5]. Note that the function Ǹ0, the
derivative of Ǹ defined in (5.37), is by construction Lipschitz with constant 1=�2.
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Therefore, in view of the contraction principle,

EŒ�l;n� �
2M

�
E
��1
n

nX
iD1

�i

�2�1=2
C
4M

�2
E
�

sup
�2…n.0/

1

n

nX
iD1

�if�.X i /

�
(5.46)

�
2M

�
p
n
C
4M

�2
E
�

sup
k2ŒK�

1

n

nX
iD1

�ifk.X i /

�
(5.47)

�
2M

�
p
n
C
8M 2

�2

� logK
2n

�1=2
�
2V 2.1C 2

p
2 logK/

p
n

: (5.48)

As a consequence, we proved that with probability larger than 1 � ı, we have

�n � 8V
2
� logK

n

�1=2
:

This completes the proof of the first inequality. In order to prove the second one, we
simply change the way we have evaluated the term

R
Ǹ.fy�/f

� in the left hand side
of (5.39). Since Ǹ is strongly convex with a second order derivative bounded from
below by 1=M 2, we have

Ǹ.fy�/ � Ǹ.f
�/C Ǹ0.f �/.fy� � f

�/C
1

2M 2
.fy� � f

�/2:

Since f � is always larger than �, the derivative Ǹ0.f �/ equals 1=f �. Integrating
over X, we get the second inequality of the proposition.

5.6. Auxiliary results. We start by a general convex result based on the strong con-
vexity of the � log function to derive a bound on the estimated log-likelihood.
Lemma 5.2. Let us assume that M D maxj2ŒK� kfj k1 < 1. Then, for any
� 2 BKC , it holds that

Ln.y�/ � Ln.�/ �
1

2M 2n
kxZ.y� � �/k22: (5.49)

Proof. Recall that y� minimizes the function Ln defined in (1.7) over …n.
Furthermore, the function u 7! `.u/ is clearly strongly convex with a second order
derivative bounded from below by 1=M 2 over the set u 2 .0;M�. Therefore, for
every yu 2 .0;M�, the function z̀given by:

z̀.u/ D `.u/ �
1

2M 2
. Ou � u/2; u 2 .0;M�; (5.50)

is convex. This implies that the mapping

� 7! zLn.�/ D Ln.�/ �
1

2M 2n
kZ.y� � �/k22 (5.51)
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is convex over the set � 2 BKC . This yields4

zLn.�/ � zLn.y�/ � sup
v2@ zLn.y�/

v>.� � y�/; 8� 2 BKC : (5.52)

Using the Karush–Kuhn–Tucker conditions and the fact that y� minimizes Ln, we get
0K 2 @Ln.y�/ D @ zLn.y�/. This readily gives zLn.�/� zLn.y�/ � 0, for any � 2 BKC .
The last step is to remark that Z.y���/ D xZ.y���/, since both y� and � have entries
summing to one.

The core of our results lies in the following propositionwhich bound the deviations
of the empirical process part.
Proposition 5.3 (Supremum of empirical process). For any � 2 BKC and x 2 X,
define'.�;x/ D

R
.logf�/f ��logf�.x/and considerˆn.�/ D 1

n

Pn
iD1 '.�;X i /.

If K � 2, then for any ı 2 .0; 1/, with probability at least 1 � ı, we have

�n D sup
�2…n



rˆn.�/

1 � 8V 3� log.K=ı/n

�1=2
: (5.53)

Furthermore, we have EŒ�n� � 4V 3.2 log.2K2/=n/1=2 and VarŒ�n� � V 2=.2n/.

Proof. To ease notation, let us denote

g�;l.x/ D
fl.x/

f�.x/
� E

�
fl.X/

f�.X/

�
and

F.X/ D sup
�2…n



rˆn.�/

1 D sup
.�;l/2…n�ŒK�

ˇ̌̌1
n

nX
iD1

g�;l.X i /
ˇ̌̌
; (5.54)

where X D .X1; : : : ;Xn/. To derive a bound on F , we will use the McDiarmid
concentration inequality that requires the bounded difference condition to hold for F .
For some i0 2 Œn�, let X0 D .X1; : : : ;X

0
i0
; : : : ;Xn/ be a new sample obtained

from X by modifying the i0th element X i and by leaving all the others unchanged.
Then, we have

F.X/ � F.X0/ D sup
.�;l/2…n�ŒK�

ˇ̌̌1
n

nX
iD1

g�;l
�
X i

�ˇ̌̌
� sup
.�;l/2…�ŒK�

ˇ̌̌1
n

nX
iD1

g�;l
�
X 0i
�ˇ̌̌

(5.55)

� sup
.�;l/2…n�ŒK�

ˇ̌̌1
n

nX
iD1

g�;l
�
X i

�
�
1

n

nX
iD1

g�;l
�
X 0i
�ˇ̌̌

(5.56)

4We denote by @g the sub-differential of a convex function g .
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D sup
.�;l/2…n�ŒK�

ˇ̌̌1
n

�
g�;l

�
X i0

�
� g�;l

�
X 0i0

��ˇ̌̌
�
V

n
; (5.57)

where the last inequality is a direct consequence of assumption (1.12). Therefore,
using the McDiarmid concentration inequality recalled in Theorem A.2 below, we
check that the inequality

F.X/ � E
�
F.X/

�
C V

r
log.1=ı/
2n

(5.58)

holds with probability at least 1 � ı. Furthermore, in view of the Efron–Stein
inequality, we have

VarŒ�n� D VarŒF .X/� �
V 2

2n
: (5.59)

Let us denote

G WD
˚
.fl=f�/ � 1; .�; l/ 2 …n � ŒK�

	
and Rn;q.G / the Rademacher complexity of G given by

Rn.G / D E�
�

sup
.�;l/2…n�ŒK�

ˇ̌̌1
n

nX
iD1

�i

� fl.X i /

f�.X i /
� 1

�ˇ̌̌�
; (5.60)

with �1; : : : ; �n independent and identically distributedRademacher randomvariables
independent of X1; : : : ;Xn. Using the symmetrization inequality (see, for instance,
[13, Theorem 2.1]) we have

EŒF .X/� D EŒ�n� � 2EŒRn.G /�: (5.61)

Lemma 5.4. The Rademacher complexity defined in (5.60) satisfies

Rn.G / � 4V
3

r
logK
n

: (5.62)

Proof. The proof relies on the contraction principle of [17] that we recall in
Appendix A for the convenience. We apply this principle to the random variables

Xi;.�;l/ D f�.X i /=fl.X i / � 1

and to the function  .x/ D .1C x/�1 � 1. Clearly  is Lipschitz on Œ 1
V
� 1; V � 1�

with the Lipschitz constant equal to V 2 and  .0/ D 0. Therefore

Rn.G / � E�
�
sup
.�;l/

1

n

nX
iD1

�i 
�
X i;.�;l/

��
C E�

�
sup
.�;l/

1

n

nX
iD1

�i .� /
�
X i;.�;l/

��
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� 2V 2E�
�

sup
.�;l/2…n�ŒK�

1

n

nX
iD1

�iX i;.�;l/

�
D 2V 2E�

�
sup

.�;l/2…n�ŒK�

1

n

nX
iD1

�i

�f�.X i /

fl.X i /
� 1

��
: (5.63)

Expanding f�.X i / we obtain

E�
�
sup
.�;l/

1

n

nX
iD1

�i

�f�.X i /

fl.X i /
� 1

��
D E�

�
sup
.�;l/

KX
kD1

�k

n

nX
iD1

�i

�fk.X i /

fl.X i /
� 1

��
D E�

�
max
k;l2ŒK�

1

n

nX
iD1

�i

�fk.X i /

fl.X i /
� 1

��
: (5.64)

We apply now Theorem A.1 with s D .k; l/, N D K2, a D �V , b D V and
Yi;s D �i

�
fk.X i /
fl .X i /

� 1
�
. This yields

E�
�

max
k;l2ŒK�

1

n

nX
iD1

�i

�fk.X i /

fl.X i /
� 1

��
� 2V

� logK2
2n

�1=2
: (5.65)

This completes the proof of the lemma.

Combining inequalities (5.58, 5.61) and Lemma 5.4, we get that the inequality

F.X/ � 8V 3
� logK

n

�1=2
C V

� log.1=ı/
2n

�1=2
(5.66)

holds with probability at least 1 � ı. Noticing that V � 1 and, for K � 2,
ı 2 .0;K�1=31/ we have

8
p
logK C

p
.1=2/log.1=ı/ � 8

p
log.K=ı/;

we get the first claim of the proposition. The second claim is a direct consequence
of Lemma 5.4 and (5.61).

6. Proof of the lower bound for nearly-D-sparse aggregation

We prove the minimax lower bound for estimation in Kullback–Leibler risk using
the following slightly adapted version of Theorem 2.5 from [27]. Throughout this
section, we denote by �min;†.k/ and �max;†.k/, respectively, the smallest and the
largest eigenvalue of all k � k principal minors of the matrix †.
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Theorem 6.1. For some integer L � 4 assume that HF .
;D/ contains L elements
f�.1/ ; : : : ; f�.L/ satisfying the following two conditions.
(i) KL.f�.j/ jjf�.k// � 2s > 0, for all pairs .j; k/ such that 1 � j < k � L.
(ii) For product densities f n

`
defined on Xn by

f n` .x1; : : : ;xn/ D f�.`/.x1/ � � � � � f�.`/.xn/

it holds
max
`2ŒL�

KL.f n` jjf
n
1 / �

logL
16

: (6.1)

Then
inf
Of

sup
f 2HF .
;D/

Pf
�
KL.f jj Of / � s

�
� 0:17: (6.2)

To establish the bound claimed in Theorem 3.1, we will split the problem into
two parts, corresponding to the following two subsets of HF .
;D/

HF .0;D/ D
˚
f� W � 2 BKC s.t. 9J � ŒK� with k�J ck1 D 0 and jJ j � D

	
;

HF .
; 1/ D
˚
f� W � 2 BKC s.t. �1 D 1 � 
 and

KX
jD2

�j D 

	
: (6.3)

We will show that over HF .0;D/, we have a lower bound of order log.1CK=D/=n
while over HF .
; 1/, a lower bound of order

�

2

n
log

�
1CK=.


p
n/
��1=2 holds true.

Therefore, the lower bound over HF .
;D/ is larger than the average of these bounds.
For anyM � 1 and k 2 ŒM � 1�, let �M

k
be the subset of f0; 1gM defined by

�Mk WD
˚
! 2 f0; 1gM W k!k1 D k

	
: (6.4)

Before starting, we remind here a version of the Varshamov–Gilbert lemma (see, for
instance, [25, Lemma 8.3]) which will be helpful for deriving our lower bounds.
Lemma 6.2. LetM � 4 and k 2 ŒM=2� be two integers. Then there exist a subset
� � �M

k
and an absolute constant C1 such that

k! �!0k1 �
k C 1

4
8!;!0 2 � s.t. ! ¤ !0 (6.5)

and L D j�j satisfies L � 4 and

logL � C1k log
�
1C

eM

k

�
: (6.6)

We will also use the following lemma that allows us to relate the KL-divergence
KL.f� jjf�0/ to the Euclidean distance between the weight vectors � and � 0.
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Lemma 6.3. If the dictionary F satisfies the boundedness assumption (1.12), then
for any f� ; f�0 2 HF .
;D/ we have

1

2V 2M
k†

1=2.� 0 � �/k22 � KL.f� jjf�0/ �
V 2

2m
k†

1=2.� 0 � �/k22: (6.7)

Proof. Using the Taylor expansion, one can check that for any u 2 Œ1=V; V �, we have

.1 � u/C
1

2V 2
.u � 1/2 � � logu � .1 � u/C

V 2

2
.u � 1/2:

Therefore,

1

2V 2

Z
X

�f�0
f�
� 1

�2
f� d� � KL.f� jjf�0/ �

V 2

2

Z
X

�f�0
f�
� 1

�2
f� d�: (6.8)

Since F satisfies the boundedness assumption, we get

1

2MV 2

Z
X

�
f�0 � f�

�2
d� � KL.f� jjf�0/ �

V 2

2m

Z
X

�
f�0 � f�

�2
d�: (6.9)

The claim of the lemma follows from these inequalities and the fact thatZ
X

�
f�0 � f�

�2
d� D k†

1=2.� 0 � �/k22:

6.1. Lower bound on HF .0;D/. We show that the lower bound

D

n
log

�
1C

eK

D

�^�1
n
log

�
1C

K
p
n

��1=2
holds when we consider the worst case error for f � belonging to the set HF .0;D/.
Proposition 6.4. If log.1C eK/ � n then, for the constant

C2 D
C1mx�†.2D; 0/

29V 2M.C1m _ 4V 2�max;†.2D//
�

C1m~�

29V 2M.C1m _ 4V 2~�/
; (6.10)

we have

inf
Of

sup
f 2HF .0;D/

Pf
�
KL.f jj Of / � C2

D log.1CK=D/
n

^� log �1CK=pn�
n

�1=2�
� 0:17: (6.11)

Proof. We assume that D � K=2. The case D > K=2 can be reduced to the case
D D K=2 by using the inclusion HF .0;K=2/ � HF .0;D/. Let us set

A1 D 4 _ 16V
2�max;†.2D/=.C1m/
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and denote by d the largest integer such that

d � D and d2 log
�
1C

eK

d

�
� A1n: (6.12)

According to Lemma 6.2, there exists a subset � D f!.`/ W ` 2 ŒL�g of �K
d

of
cardinality L � 4 satisfying

logL � C1d log.1C eK=d/

such that for any pair of distinct elements !.`/, !.`0/ 2 � we have

k!.`/ �!.`
0/
k1 � d=4:

Using these binary vectors !.`/, we define the set D D f�.1/; : : : ;�.L/g � BKC as
follows:

�.1/ D !.1/=d; �.`/ D .1 � "/�.1/ C "!.`/=d; ` D 2; : : : ; L: (6.13)

Clearly, for every " 2 Œ0; 1�, the vectors �.`/ belong to BKC . Furthermore, for any pair
of distinct values `; `0 2 ŒL�, we have

k�.`/ � �.`
0/
k
q
q D ."=d/

q
k!.`/ �!.`

0/
k1 � ."=d/

qd=4:

In view of Lemma 6.3, this yields

KL.f�.`/ jjf�.`0// �
x�†.2d; 0/

4V 2Md



�.`/ � �.`0/

2
1
�
x�†.2D; 0/

64V 2M
�
"2

d
: (6.14)

Let us choose
"2 D

d2 log.1C eK=d/
nA1

: (6.15)

It follows from (6.12) that " � 1. Inserting this value of " in (6.14), we get

KL.f�.`/ jjf�.`0// � 2C2
d log.1C eK=d/

n
: (6.16)

This inequality shows that condition (i) of Theorem 6.1 is satisfied with

s D C2 .d=n/ log.1C eK=d/:

For the second condition of the same theorem, we have

max
`2ŒL�

KL.f n` jjf
n
1 / D nmax

`
KL.f�.`/ jjf�.1// (6.17)

�
nV 2�max;†.2d/

2m
max
`
k�.`/ � �.1/k22 (6.18)
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�
nV 2�max;†.2D/

m
�
"2

d
; (6.19)

since one can check that

k�.`/ � �.1/k22 � ."=d/
2
k!.`/ �!.1/k1 � 2"

2=d:

Therefore, using the definition of ", we get

max
`2ŒL�

KL.f n` jjf
n
1 / �

nV 2�max;†.2D/

m
�
C1dm log.1C eK=d/
16nV 2�max;†.2D/

(6.20)

D
C1d log.1C eK=d/

16
�

logL
16

: (6.21)

Theorem 6.1 implies that

inf
Of

sup
f 2HF .0;D/

Pf
�
KL.f jj Of / � C2

d log.1C eK=d/
n

�
� 0:17: (6.22)

We use the fact that d is the largest integer satisfying (6.12). Therefore, either
d C 1 > D or

.d C 1/2 log
�
1C

eK

d C 1

�
� A1n: (6.23)

If d � D, then the claim of the proposition follows from (6.22), since

d log.1C eK=d/ � D log.1C eK=D/:

On the other hand, if (6.23) is true, then

d log.1C eK=d/ �
1

2
.d C 1/ log.1C eK=.d C 1//

�
1

2

�
A1nlog.1C eK=.d C 1//

�1=2
: (6.24)

In addition, d2 log.1C eK=d/ � A1n implies that .d C 1/2 � A1n. Combining the
last two inequalities, we get the inequality

d log.1C eK=d/ � 1=2
�
A1nlog.1C eK=

p
A1n/

�1=2
�
�
nlog.1C eK=

p
n/
�1=2

:

Therefore, in view of (6.22), we get the claim of the proposition.

6.2. Lower bound on HF .
; 1/. Next result shows that the lower bound


2

n
log

�
1C

K



p
n

�
holds for the worst case error when f � belongs to the set HF .
; 1/.



28 A. S. Dalalyan and M. Sebbar

Proposition 6.5. Assume that� log.1C eK/
n

�1=2
� 2
: (6.25)

Then, for the constant

C3 D
C1mx�†.2D; 0/

212V 4M�max;†.2D/
;

it holds that

inf
Of

sup
f 2HF .
;1/

Pf
�
KL.f jj Of / � C3

n
2
n

log
�
1C

K



p
n

�o1=2�
� 0:17: (6.26)

Proof. Let C > 2 be a constant the precise value of which will be specified later.
Denote by d the largest integer satisfying

d
p
log.1C eK=d/ � C


p
n: (6.27)

Note that d � 1 in view of the condition .log.1CeK/=n/1=2 � 2
 of the proposition.
This readily implies that d � C


p
n and, therefore,




d
� C�1

n1
n
log

�
1C

eK

C

p
n

�o1=2
� 2C�2

n1
n
log

�
1C

K



p
n

�o1=2
: (6.28)

Let us first consider the case d � .K � 1/=2. According to Lemma 6.2, there exists
a subset � � �K�1

d
of cardinality L satisfying

logL � C1d log
�
1C

e.K � 1/

d

�
and k!.`/ �!.`

0/
k1 � d=4

for any pair of distinct elements !;!0 taken from �. With these binary vectors in
hand, we define the set D � BKC of cardinality L as follows:

D D
˚
� D

�
1 � 
; 
!=d

�
W ! 2 �

	
: (6.29)

It is clear that all the vectors of D belong to HF .
; 1/. Let us fix now an element
of D and denote it by �1, the corresponding element of� being denoted by !1. We
have

max
�2D

KL.f n� jjf
n
�1
/ �

nV 2

2m
max
�2D
k†

1=2.� � �1/k22 (6.30)

�
nV 2�max;†.2d/


2

2md2
max
!2�
k! �!1k22 (6.31)

�
nV 2�max;†.2d/


2

md
: (6.32)
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The definition of d yields

.d C 1/
p
log.1C eK=.d C 1// > C


p
n;

which implies that


2

d
� 2.d C 1/


2

.d C 1/2
� 2.d C 1/

log.1C eK=.d C 1//
nC 2

�
4d log.1C e.K � 1/=d/

nC 2
: (6.33)

Combined with Equation (6.32), this implies that

max
�2D

KL.f n� jjf
n
�1
/ �

nV 2�max;†.2d/

m
�
4d log.1C e.K � 1/=d/

nC 2
(6.34)

D
4V 2�max;†.2d/

mC 2
� d log.1C e.K � 1/=d/: (6.35)

Choosing

C 2 D 2 _
64V 2�max;†.2d/

C1m

we get that

max
�2D

KL.f n� jjf
n
�1
/ �

1

16
C1d log.1C e.K � 1/=d/ �

logL
16

:

Furthermore, for any �;� 0 2 D , in view of Lemma 6.3 and (6.28), we have

KL.f� jjf�0/ �
x�†.2d; 0/

4V 2Md



� � � 0

2
1
D
x�†.2d; 0/


2

4V 2Md3
k! �!0



2
1

(6.36)

�
x�†.2d; 0/

64V 2M
�

2

d
(6.37)

�
x�†.2d; 0/

32V 2MC 2
�

n
2
n

log
�
1C

K



p
n

�o1=2
: (6.38)

Since x�†.2d; 0/=32V 2MC 2 D 2C3, this implies that Theorem 6.1 can be applied,
which leads to the inequality

inf
Of

sup
f 2HF .
;1/

Pf
�
KL.f jj Of / � C3

n
2
n

log
�
1C

K



p
n

�o1=2�
� 0:17: (6.39)

To complete the proof of the proposition, we have to consider the case d > .K�1/=2.
In this case, we can repeat all the previous arguments for d D K=2 and get the desired
inequality.
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6.3. Lower bound holding for all densities. Now that we have lower bounds in
probability for HF .0;D/ and HF .
; 1/, we can derive a lower bound in expectation
for HF .
;D/. In particular, to prove Theorem 3.1, we will use the inequality

R
�
HF .
;D/

�
� inf

Of

sup
f �2HF .0;D/[HF .
;1/

EŒKL.f �jj Of /�: (6.40)

Proof of Theorem 3.1. To ease notation, let us define

r.n;K; 
;D/ D

�

2

n
log

�
1C

K



p
n

��1=2
C
D log.1CK=D/

n

^� log.1CK=pn/
n

�1=2
:

(6.41)
We first consider the case where the dominating term is the first one, that is�


2

n
log

�
1C

K



p
n

��1=2
�
3D log.1CK=D/

n
: (6.42)

On the one hand, sinceD � 1, we have

3D log.1CK=D/
n

�
log.1C eK/

n
: (6.43)

On the other hand, using the inequality log.1C x/ � x, we get�

2

n
log

�
1C

K



p
n

��1=2
�



p
n

�
log.1C eK/C log

�
1C

1

e2
2n

��1=2
(6.44)

� 


�
log.1C eK/

n

�1=2
C



p
n

�
1

e2
2n

�1=2
(6.45)

� 


�
log.1C eK/

n

�1=2
C

log.1C eK/
2n

: (6.46)

Combining (6.42), (6.43) and (6.46), we get� log.1C eK/
n

�1=2
� 2
: (6.47)

This implies that we can apply Proposition 6.5, which yields

inf
Of

sup
f 2HF .
;D/

Pf
�
KL.f jj Of / � C3

n
2
n

log
�
1C

K



p
n

�o1=2�
� 0:17: (6.48)

In view of (6.42), this implies that

inf
Of

sup
f 2HF .
;D/

Pf
�
KL.f jj Of / � 3

4
C3 r.n;K; 
;D/

�
� 0:17: (6.49)
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We now consider the second case, where the dominating term in the rate is the second
one, that is�

2

n
log

�
1C

K



p
n

��1=2
�
3D log.1CK=D/

n

^� log.1CK=pn/
n

�1=2
: (6.50)

In view of Proposition 6.4, we have

inf
Of

sup
f 2HF .
;D/

Pf
�
KL.f jj Of / � C2

D log.1CK=D/
n

^� log �1CK=pn�
n

�1=2�
� 0:17: (6.51)

In view of (6.50), we get

inf
Of

sup
f 2HF .
;D/

Pf
�
KL.f jj Of / � 1

4
C2 r.n;K; 
;D/

�
� 0:17: (6.52)

Thus, we have proved that log.1C eK/ � n implies that

inf
Of

sup
f 2HF .
;D/

Pf
�
KL.f jj Of / � C4 r.n;K; 
;D/

�
� 0:17; (6.53)

for some constantC4 > 0, whatever the relation between 
 andD. The desired lower
bound follows now from the Tchebychev inequality

E
�
KL.f jj Of /

�
� C4 r.n;K; 
;D/Pf

�
KL.f jj Of / � C4 r.n;K; 
;D/

�
:

A. Concentration inequalities

This section contains some well-known results, which are recalled here for the sake
of the self-containedness of the paper.
Theorem A.1. For each s D 1; : : : ; N , let Y1;s; : : : ; Yn;s be n independent
and zero mean random variables such that for some real numbers a; b we have
P.Yi;s 2 Œa; b�/ D 1 for all i 2 Œn� and s 2 ŒN �. Then, we have

E
�
max
s2ŒN �

1

n

nX
iD1

Yi;s

�
� .b � a/

� logN
2n

�1=2
;

E
�
max
s2ŒN �

ˇ̌̌1
n

nX
iD1

Yi;s

ˇ̌̌�
� .b � a/

� log.2N /
2n

�1=2
:

(A.1)

Proof. We denote

Zs D
1

n

nX
iD1

Yi;s for s D 1; : : : ; N ,

and Zs D �
1

n

nX
iD1

Yi;s for s D N C 1; : : : ; 2N .



32 A. S. Dalalyan and M. Sebbar

For every s 2 Œ2N �, the logarithmicmoment generating function s.�/ D logEŒe�Zs �
satisfies

 s.�/ D log
�Y

i

EŒe�Yi;s=n�
�
D

nX
iD1

logEŒe�Yi;s=n� �
�2.b � a/2

8n
; (A.2)

where the last inequality is a consequence of the Hoeffding lemma (see, for
instance, [4, Lemma 2.2]). This means that Zs is sub-Gaussian with variance-factor
� D .b � a/2=4n. Therefore, Theorem 2.5 from [4] yields

EŒmax
s
Zs� �

p
2� log.2N /;

which completes the proof.

We group and state together the bounded differences and the Efron–Stein
inequalities ([4], Theorems 6.2 and 3.1, respectively).

Theorem A.2. Assume that a function f satisfies the bounded difference condition:
there exist constants ci , i D 1; : : : ; n such that for all i D 1; : : : ; n, all
X D .X1; : : : ; Xi ; : : : ; Xn/ and X 0 D .X1; : : : ; X

0
i ; : : : ; Xn/ where only the i th

vector is changed
jf .X/ � f .X 0/j � ci : (A.3)

Denote

� D

nX
iD1

c2i : (A.4)

Let Z D f .X1; : : : ; Xn/ where Xi are independent. Then, for every ı 2 .0; 1/,

P
n
Z � EZ C

�� log.1=ı/
2

�1=2o
� 1 � ı; and VarŒZ� �

�

2
: (A.5)

Next we state the contraction principle of [17]; a proof can be found in [4,
Theorem 11.6].

Theorem A.3. Let x1; : : : ; xn be vectors whose real-valued components are indexed
by T , that is, xi D .xi;s/s2T . For each i D 1; : : : ; n let 'i W R! R be a 1-Lipschitz
function such that 'i .0/ D 0. Let �1; : : : ; �n be independent Rademacher random
variables, and let ‰W Œ0;1/! R be a non-decreasing convex function. Then

E
�
‰
�1
2
sup
s2T

ˇ̌̌ nX
iD1

�i'i .xi;s/
ˇ̌̌��
� E

�
‰
�
sup
s2T

ˇ̌̌ nX
iD1

�ixi;s

ˇ̌̌��
(A.6)
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��
: (A.7)
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