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Abstract. Given a Lipschitz and convex function f on a compact and convex domain in Rn,
we construct an exploratory distribution � of f in the following sense. Let g be a Lipschitz and
convex function on the same domain, such that either g D f , or alternatively the minimum of g
is " smaller than the minimum of f . Then � is such that poly.n="/ noisy evaluations of g at
i.i.d. points from � suffices to determine with high probability whether g D f or g ¤ f . As an
example of application for such exploratory distributions we show how to use them to estimate
the minimax regret for adversarial bandit convex optimization.
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1. Introduction

Let K � Rn be a convex body of diameter at most 1, and f WK ! Œ0;C1/ a
non-negative convex function. This paper is concerned with the following question:
Can we find a measure � associated with the function f , such that for every convex
function g which is substantially different from f , one has that �.ff ¤ gg/ is rather
large?

Put more precisely, we are interested in finding a measure � with the following
property: For any function g which takes a negative value �" at some point,
one has �.fjf � gj > �"g/ > ı for constants �; ı as large as possible. The
constants �; ı are expected to have two features: First, we would like to avoid the
curse of dimensionality in the sense that both constants depend polynomially on the
dimension n. Second, we would like the dependence on " to be logarithmic.

We denote by c a universal constant whose value can change at each occurrence.
Our main theorem reads:

Theorem 1.1. Let K � Rn be a convex body of diameter at most 1. Let f WK !
Œ0;C1/ be convex and 1-Lipschitz, and let " > 0. There exists a probability
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measure � on K such that the following holds true. For every ˛ 2 K and for every
convex and 1-Lipschitz function gWK ! R satisfying g.˛/ < �", one has

�
�n
x 2K W jf .x/�g.x/j >

c

n7:5 log.1C n="/
max."; f .x//

o�
>

c

n3 log.1C n="/
:

Remark 1.2. Observe that without the convexity assumption on g, one can only
ensure that �.ff ¤ gg/ is of the order �."nC1/. To see this, take K D Œ0; 1�n,
f � 0, and for ˛ 2 K define g˛ D min.0;�"C jx � ˛j/. In particular f and g˛
are distinct only on the ball B.˛; "/ centered at ˛ and of radius ". Clearly one has,
for any probability measure �, that inf˛2K �.B.˛; "// . "n (since there exist a set
of ˛ 2 K of cardinality �."n/ such that such that B.˛; "/ are mutually disjoint).
This implies that for some ˛ the probability under � to see a point where f and g˛
are distinct is O."n/.

As an example of application for the above result we resolve a long-standing gap
in bandit convex optimization1. We refer the reader to [4] for an introduction to bandit
problems (and some of their applications). The bandit convex optimization problem
can be described as the following sequential game: at each time step t D 1; : : : ; T ,
a player selects an action xt 2 K , and simultaneously an adversary selects a
convex (and 1-Lipschitz) loss function `t WK 7! Œ0; 1�. The player’s feedback is
its suffered loss, `t .xt /. We assume that the adversary is oblivious, that is the
sequence of loss functions `1; : : : ; `T is chosen before the game starts. The player
has access to external randomness, and can select her action xt based on the history
Ht D .xs; `s.xs//s<t . The player’s perfomance at the end of the game is measured
through the regret:

RT D

TX
tD1

`t .xt / � min
x2K

TX
tD1

`t .x/;

which compares her cumulative loss to the best cumulative loss she could have
obtained in hindsight with a fixed action, if she had known the sequence of losses
played by the adversary. A major open problem since [8, 11] is to reduce the gap
between the

p
T -lower bound and the T 3=4-upper bound for the minimax regret of

bandit convex optimization. In dimension one (i.e. K D Œ0; 1�) this gap was closed
recently in [5] and our main contribution for this problem is to extend this result to
higher dimensions:
Theorem 1.3. There exists a player’s strategy such that for any sequence of convex
(and 1-Lipschitz) losses one has

ERT � c n
11 log4.T /

p
T ;

where the expectation is with respect to the player’s internal randomization.

1Since the publication of the conference version of this paper [6], new strategies have been found for
bandit convex optimization with improved running time [9] and also improved regret bound [7].
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We observe that this result also improves the state of the art regret bound for the
easier situation where the losses `1; : : : ; `T form an i.i.d. sequence. In this situation
the best previous bound was obtained by [2] and is O.n16

p
T /, up to logarithmic

terms.
Using Theorem 1.1 we prove Theorem 1.3 in Section 4. Theorem 1.1 itself is

proven in Section 3.

2. Intuition for Theorem 1.1

2.1. Some examples. Before describing the central ideas of our construction, we
begin with a few examples of functions which suggest where some of the difficulties
lie, and give an intuition as to how to overcome those difficulties.

In each of these following examples, we will define a function f over a domain
� � Rn, and for every ˛ 2 �, the function g˛ will be defined as the convex envelope
of the function

zg.x/ D

(
�"; x D ˛;

f .x/; otherwise:

For all ˛ 2 �, we consider the set

S˛ D
˚
x 2 � W jg˛.x/ � f .x/j � c"

	
:

The exploratory property of the measure � implies that �.S˛/ � c for all ˛ 2 �,
where the constant c depends inverse-polynomially on n and on j log "j.

Our first example is in two dimensions. Consider the function f W Œ�1; 1�2 ! R
defined by f .x; y/ D x2. It is not hard to check that for any ˛ 2 f0g � Œ�1; 1�, we
have S˛ � D for the strip D D Œ�2

p
"; 2
p
" � � Œ0; 1�. Consequently, we get that

the �.D/ > c even though the Lebesgue measure of D is polynomially small with
respect to ".

Next, consider the function f .x/ D jxj2 defined on � D fx 2 Rn W jxj � 1g. It
is not hard to show that:

g.x/ D f .x/ iff jx � ˛j2 � "C j˛j2 :

Another simple calculation then shows that when j˛j D 1, the volume of S˛ is
exponentially small as a proportion of �. This example shows that in order to attain
a polynomial bound in the dimension, some of the “exploration” should occur near
the minimum of f . Indeed further scrutiny would reveal that at distance O.1=

p
n/

from the origin, the set S˛ is effectively a half-space, thus in this case by taking �
to be uniform on a ball of radius 1=

p
n we would be able to differentiate between f

and g˛ with constant probability.
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Finally, consider the function

f .x1; : : : ; xn/ D

nX
iD1

"
i=nx2i

The measure � assigned to this function should be able to associate a different scale
with every coordinate direction. It is clear that by considering a linear transformation
this example becomes similar to f .x/ D jxj2, however in the general case such a
linear transformation does not exist.

2.2. Line of sight argument. One of the central ideas of our proof is based on a
“line of sight” argument. First, let us illustrate this idea in one dimension. Suppose
that the functions f; gW Œ0; 1� ! R are convex, and fix a point x0 2 Œ0; 1� and an
interval I � Œ0; 1�. Suppose that g.x0/ < f .x0/. Observe the following fact: if
for any x 2 I the open segment connecting the points .x0; g.x0// and .x; f .x//
does not intersect the graph of f , then there must exist a point x0 2 I such that
g.x/ ¤ f .x/. In this case, we say that the point .x0; g.x0// has an open line of sight
to the graph of f on the interval I . This can be made quantitative in the following
sense: if f 0.x/.x0 � x/ > 0 for all x 2 I and g.x0/ < �", then there must exist a
point x0 such that jf .x0/ � g.x0/j � "jI j=2.

The multi-dimensional version of this argument is slightly more involved: the
interval I is replaced by some ball B , and the condition f 0.x/.x0 � x/ > 0 needs to
be replaced by a sort of smoothness condition: one needs that rf be contained in a
small ball. This inspires the definition of a jolly-good triplet (defined in the beginning
of Section 3.4). Roughly speaking, .z; �; t/ 2 �� Sn�1 �RC is a jolly-good triplet
if the gradient of f is almost constant around the point z, in the sense that for most
of the points x in a small ball (with radius�.1=poly.n/) around the point z, one has
that rf .x/ 2 B.t�; t=poly.n//. Given a triplet as above, it is implied that any point
in the setA D fx W hx; �i > C g (for some not too small constantC > 0) has a line-of
sight to most of the points in a ball around the point z, therefore, any function g such
that g.˛/ < �" for some ˛ 2 Amust be quite different from the function f in a large
proportion of the points of B .

Thus, provided that one has found a jolly-good triplet .z; �; t/, by asserting that
the density of � in the ball B.z; ı/ is bounded from below, one can make sure that
the points of the set A (defined above) will be “explored” by �. The line-of-sight
argument takes place in Section 3.5 and in particular in Lemma 3.6.

2.3. Existence of smooth regions in arbitrary convex functions. The key to apply
the line of sight argument in high dimension is to find a jolly-good triplet (in fact many
as we will see shortly). That is we want to find a ball where f is essentially smooth
(in the sense that the gradient is Lipschitz at most points in that ball). Intuitively
this corresponds to a quantitative version of Alexandrov theorem, which states that a
convex function is smooth (i.e. it has a second derivative) almost everywhere.
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To prove the existence of a jolly-good triplet we use the following contraction
argument, see Lemma 3.5 for the details. Fix a ball B of radius ı, then by Poincaré’s
inequality one can upper bound the “standard deviation” of the gradient of f on that
ball by ı times the average value of the Laplacian of f on B . Thus it only remains
to control this latter value, which is also equal to the value of the Laplacian of g at
the center of B , where g is equal to f convolved with the (normalized) indicator
of a ball of radius ı. In other words it only remains to exhibit a single point where
the Laplacian of g is small. By Gauss theorem the average value of the Laplacian
is controlled by the maximal gradient norm (see Lemma 3.9), and since g is smooth
we know that we can find some ball where all the gradients of g are small (namely
around the minimum of g). Thus the average of the Laplacian of g on that ball is
small, and in particular this means that there exists a point where the Laplacian of g
is small.

2.4. The exploratory iteration scheme. Using a jolly-good triplet together with the
line of sight argument one can “explore” f efficiently against any g whose minimizer
is in some halfspace at a small distance from the origin, see Lemma 3.3. Crucially we
show next that in fact one can find many jolly-good triplets, see Section 3.4, so that
one can efficiently explore against all points, except possibly in a small strip. This is
summarized in Lemma 3.2. Finally we show how to deal with this possibly bad strip
in Section 3.3. The idea is simply to repeatedly apply the previous argument in this
strip, until one reaches a strip so thin that we have essentially reduced the dimension
of the problem by 1, at which point one concludes by induction.

3. An exploratory distribution for convex functions

In this section we will describe the construction of the exploratory distribution �,
and prove Theorem 1.1. We fix a convex function f which satisfies the conditions
of the theorem throughout the section.

3.1. The one-dimensional case. Since our proof of Theorem 1.1 will proceed by
induction, our first goal is to establish the result in dimension 1. This task will be
much simpler than the proof for a general dimension, but already contains some of
the central ideas used in the general case. In particular, a (much simpler) multi-scale
argument is used.

The main ingredient is the following lemma which is easy to verify by picture
(we provide a formal proof for the sake of completness).
Lemma 3.1. Let f; gWR ! R be two convex functions. Suppose that f .x/ � 0.
Let x0; ˛ 2 R be two points satisfying ˛� 1 < x0 < ˛, and suppose that g.˛/ < �"
for some " > 0 and that

f 0.x/ � 0; 8x > x0: (3.1)
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Let � be a probability measure supported on Œx0; ˛� whose density with respect to
the Lebesgue measure is bounded from above by some ˇ > 1. Then we have

�
�˚
x W jf .x/ � g.x/j > 1

4
ˇ�1max."; f .x//

	�
�
1

2
:

Proof. We first argue that, without loss of generality, one may assume that f attains
its minimum at x0. Indeed, we may clearly change f as we please on the interval
.�1; x0/ without affecting the assumptions or the result of the Lemma. Using the
condition (3.1) we may therefore make this assumption legitimate.

Assume, for now, that there exists x1 2 Œx0; ˛� for which f .x1/ D g.x1/. By
convexity, and since f .x0/ � 0 and g.˛/ < 0, if such point exists then it is unique.
Let h.x/ be the linear function passing through .˛; g.˛// and .x1; f .x1//. By
convexity of g, we have that

jg.x/ � f .x/j � jh.x/ � f .x/j

for all x 2 Œx0; ˛�. Now, since h.˛/ < �" and since ˛ < x1 C 1, we have

h0.x0/ < �."C f .x0//:

Moreover, since we know that f .x/ is non-decreasing in Œx0; ˛�, we conclude that

jg.x/ � f .x/j � jh.x/ � f .x/j

D jh.x/ � f .x1/j C jf .x/ � f .x1/j

D ."C f .x1//jx � x1j C jf .x/ � f .x1/j

� max."; f .x//jx � x1j; 8x 2 Œx0; ˛�:

It follows that˚
xI jf .x/ � g.x/j < 1

4
ˇ�1max."; f .x//

	
� I WD

�
x1 �

1
4
ˇ�1; x1 C

1
4
ˇ�1

�
but since the density of � is bounded by ˇ, we have �.I / � 1

2
and we’re done.

It remains to consider the case that g.x/ < f .x/ for all x 2 Œx0; ˛�. In this case,
we may define

zg.x/ D g.x/C
f .x0/ � g.x0/

˛ � x0
.˛ � x/:

Note that zg.x/ � g.x/ for all x 2 Œx0; ˛�, which implies that

jg.x/ � f .x/j � jzg.x/ � f .x/j

for all x 2 Œx0; ˛�. Since zg.x0/ D f .x0/, we may continue the proof as above,
replacing the function g by zg.
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We are now ready to prove the one dimensional case. The proof essentially
invokes the above lemma on every scale between " and 1.

Proof of Theorem 1.1. The case nD1. Let x02K be the point where the function f
attains its minimum and set d D diam.K/. Define N D dlog2 1="e C 4. For all
0 � k � N , consider the interval

Ik D
�
x0 � d2

�k; x0 C d2
�k
�
\K

and define the measure �k to be the uniform measure over the interval Ik . Finally,
we set

� D
1

N C 2

NX
kD0

�k C
1

N C 2
ıx0

where ıx0
is a Dirac measure supported on x0. Now, let ˛ 2 K and let g.x/ be

a convex function satisfying g.˛/ � �". We would like to argue that �.A/ �
1=.8 log.1C 1="// for

A D
˚
x 2K W jf .x/ � g.x/j � 1

8
max."; f .x//

	
:

Set k D dlog1=2.j˛ � x0j=d/e. Define Q.x/ D x0 C d2
�k.x � x0/ and set

zf .x/ D f .Q.x//, zg.x/ D g.Q.x//, z̨ D Q�1.˛/ and consider the interval

I D Q�1.Ik/ \
˚
x W .x � x0/.˛ � x0/ � 0

	
It is easy to check that, by definition I is an interval of length 1, contained in the
interval Œx0; z̨ �. Defining z� D �I , we have that the density of z� with respect to the
Lebesgue measure is equal to 1. An application of Lemma 3.1 for the functions zf ; zg,
the points x0; z̨ and the measure z� teaches us that

�k.A/ D �Q�1.Ik/

�˚
x W j zf .x/ � zg.x/j � 1

8
max."; zf .x//

	�
�

1
2
z�
�˚
x W j zf .x/ � zg.x/j � 1

8
max."; zf .x//

	�
�
1

4
:

By definition of the measure �, we have that whenever k � N , one has

�.A/ �
1

N C 2
�

1

8 log.1C 1="/
:

Finally, if k > N , it means that j˛ � x0j < 2�N < "
4
. Since the function g is

1-Lipschitz, this implies that g.x0/ � � "2 which in turn gives

jf .x0/ � g.x0/j �
1
8
max."; f .x0//:

Consequently, x0 2 A and thus

�.A/ � �.fx0g/ D
1

N C 2
�

1

8 log.1C 1="/
:

The proof is complete.
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3.2. The high-dimensional case. We now consider the case where n � 2. For a
measurable, bounded set � � Rn and a direction � 2 Rn we denote

S�;� D
˚
x 2 � W jhx; �ij � 1

4

	
;

and �� for the uniform measure on �. For a distribution � we write Cov.�/ D
EX��XX>. Moreover we denote by B.x; r/ the Euclidean ball of radius r centered
at x.

As we explain in Section 3.3 our construction iteratively applies the following
lemma:
Lemma 3.2. Let " > 0, L 2 Œ1; 2n�. Let � � Rn be a convex set with 0 2 �
and Cov.��/ D Id. Let f W� ! Œ0;1� be a convex and L-Lipschitz function with
f .0/ D 0. Then there exists a probability measure � on� and a direction � 2 Sn�1

such that for all ˛ 2 � n S�;� and for every convex function gW� ! R satisfying
g.˛/ < �", one has

�
�n
x 2 � W jf .x/ � g.x/j >

1

250n7:5 log.1C n="/
max."; f .x//

o�
>

1

16n
: (3.2)

The above lemma is proven in Section 3.4. A central ingredient in its proof is, in
turn, the following Lemma, which itself is proven in Section 3.5.
Lemma 3.3. Let " > 0,� � Rn a convex set with diam.�/ �M , and f W�! RC
a differentiable convex function. Assume that there exist ı 2 .0; 1=32n2/,
z 2 � \ B.0; 1=16/, � 2 Sn�1 and t > 0 such that

�B.z;ı/

�
.rf /�1

�
B
�
t�;

t

16n2

���
�
1

2
: (3.3)

Then for all ˛ 2 � satisfying h˛; �i � 1
8
and j˛j � 2n and for all convex function

gW�! R satisfying g.˛/ < �", one has

�B.z;ı/

�n
x 2 � W jf .x/ � g.x/j >

ı

213M
p
n
max."; f .x//

o�
>
1

8
:

3.3. From Lemma 3.2 to Theorem 1.1: a multi-scale exploration. An intermedi-
ate lemma in this argument will be the following:
Lemma 3.4. There exists a universal constant c > 0 such that the following holds
true. Let " > 0, � � Rn a convex set with 0 2 � and Cov.��/ D Id. Let
f W�! Œ0;1/ be a convex and 1-Lipschitz function. Then there exists a measure �
on �, a point y 2 � and a direction � 2 Sn�1 such that for all ˛ 2 � satisfying

jh˛ � y; �ij �
c"

16n10
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and for every convex function gW�! R satisfying g.˛/ < �", one has

�
�n
x 2 � W jf .x/�g.x/j >

c

n7:5 log.1C n="/
max."; f .x//

o�
>

c

n2 log.1C n="/
:

(3.4)

3.3.1. From Lemma 3.4 to Theorem 1.1. Given Lemma 3.4, the proof of Theo-
rem 1.1 is carried out by induction on the dimension. The case n D 1 has already
been resolved above. Now, suppose that the theorem is true up to dimension n � 1,
where the constant c > 0 is the constant from Lemma 3.4. Let K 2 Rn and f satisfy
the assumptions of the theorem. DenoteQ D Cov.�K/

�1=2 and define

� D Q.K/; zf .x/ D f .Q�1.x//

so that zf W� ! R. Since diam.K/ � 1, we know that for all u 2 Sn�1,
Var ŒProju �K � � 1, where Proju �K denotes the push forward of�K by x ! hx; ui,
in other words for a measurable A � R, we define

Proju �K.A/ D �K
�
fx W hx; ui 2 Ag

�
:

This implies that kQ�1k � 1. Consequently, the function zf is 1-Lipschitz. We now
invoke Lemma 3.4 on � and zf which outputs a measure �1, a point y 2 � and a
direction � . By translating f and K , we can assume without loss of generality that
y D 0. Fix some linear isometry T WRn�1 ! �?. Define

�0 D T �1 Proj�?
�
� \ fx W jhx; �ij � ıg

�
where ı D c"=16n10 and c is the universal constant from Lemma 3.4. Since zf is
convex, there exists I � R �Rn so that

zf .x/ D sup
.a;y/2I

.aC hx; yi/ ; 8x 2 �: (3.5)

Wemay extrapolate zf .x/ to the domainRn by using the above display as a definition.
We now define a function hW�0 ! R by

h.x/ WD sup
w2Œ�ı;ı�

zf .T .x/C w�/: (3.6)

It is clear that diam.�0/ � 1. Moreover, h is 1-Lipschitz since it can be written as the
supremum of 1-Lipschitz functions. We can therefore use the induction hypothesis
with �0; h.x/ to obtain a measure �2 on �0. Next, for y 2 Rn�1, define

N.y/ WD
˚
x 2 � W T �1.Proj�? x/ D y

	
and set

�.W / D
1

n
�1.Q.W //C

n � 1

n

Z
�0

Vol1.Q.W / \N.u//
Vol1.N.u//

d�2.u/

for all measurable W � Rn, where Vol1.�/ denotes the 1-dimensional Hausdorff–
Lebesgue measure.
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Fix ˛ 2 K , let gWK ! R be a convex and 1-Lipschitz function satisfying
g.˛/ � �". Recall that c denotes the universal constant from Lemma 3.4. Define

A D
n
x 2K W jf .x/ � g.x/j >

c

n7:5 log.1C n="/
max."; f .x//

o
:

The proof will be concluded by showing that �.A/ � c=.n3 log.1C n="//.

Define zg.x/ D g.Q�1.x// and remark that zg is 1-Lipschitz. First consider the
case that jhQ˛; �ij � ı, then by construction, we have

�.A/ �
1

n
�1.Q.A//

D
1

n
�1

�n
x 2 �I j zf .x/ � zg.x/j >

c

n7:5 log.1C n="/
max."; f .x//

o�
(3.4)
�

c

n3 log.1C n="/
;

and we’re done.
Otherwise, we need to deal with the case that jhQ˛; �ij < ı. Define q.x/ to be

the function obtained by replacing zf .x/ with zg.x/ in equation (3.6) and consider the
set

A0 D
n
x 2 �0I jh.x/ � q.x/j >

c

.n � 1/7:5 log.1C n="/
max."; h.x//

o
:

By construction of the measure �2 we have �2.A0/ � c=..n� 1/3 log.1C n="//. We
claim that N.A0/ � Q.A/, which implies that

�.A/ �
n � 1

n

Z
A0

Vol1.Q.A/ \N.u//
Vol1.N.u//

d�2.u/ D
n � 1

n
�2.A

0/ �
c

n3 log.1C n="/

which will complete the proof. Indeed, let y 2 N.A0/. Define z D T �1.Proj�? y/,
so that z 2 A0. Let w1; w2 2 N.z/ be points such that

h.z/ D zf .w1/; q.z/ D zg.w2/:

Such points exist since, by continuity, the maximum in equation (3.6) is attained.
Now, since z 2 A0, we have by definition that

j zf .w1/ � zg.w2/j >
c

.n � 1/7:5 log.1C n="/
max."; zf .w1//:
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Finally, since the functions zf ; zg are 1-Lipschitz, we have that

j zf .y/ � zg.y/j � j zf .w1/ � zg.w2/j � j zf .y/ � zf .w1/j � jzg.y/ � zg.w2/j

�
c

.n � 1/7:5 log.1C n="/
max."; zf .w1// � jy � w1j � jy � w2j

�
c

.n � 1/7:5 log.1C n="/
max."; zf .y// � 4ı

D
c

.n � 1/7:5 log.1C n="/
max."; zf .y// �

c"

4n10

�
c

n7:5 log.1C n="/
max."; zf .y//

which implies, by definition, that y 2 Q.A/. The proof is complete.

3.3.2. From Lemma 3.2 to Lemma 3.4. We construct below a decreasing sequence
of domains �0 � �1 � � � � � �N . Let x0 2 � be a point where f .x/ attains its
minimum on �. Set �0 D � � x0. Given i � 0, we define the domain �iC1,
given the domain �i , by induction as follows. Define Qi D Cov.��i

/�
1=2 and

fi .x/ D f .Q
�1
i .x C x0// � f .x0/. We have

jrfi .x/j D
ˇ̌
Q�1i rf .Q

�1
i .x//

ˇ̌
� kQ�1i k:

Now, by Lemma 3.7 we know that

diam.�i / � diam.�/ � nC 1

which implies that


Q�1i 

 � nC 1. We conclude that fi is .nC 1/-Lipschitz. We

may therefore invoke Lemma 3.2 for the function fi defined by on the setQi�i , with
L D n C 1. This lemma outputs a direction � and a measure � which we denote
by �i and �i respectively. We define

�iC1 D Q
�1
i SQi�i ;�i

:

Equation (3.2) yields that for a universal constant c > 0,

�i

�n
x � x0 W jf .x/ � g.x/j >

c

n7:5 log.1C n="/
max."; f .x//

o�
>
c

n
(3.7)

for all functions g.x/ such that g.˛/ < �", whenever ˛ 2 �i n�iC1.
Fix a constant c0 > 0whose valuewill be assigned later on. Define ı D c0"=16n10

and let
N D min

˚
i W 9� 2 Sn�1 such that jhx; �ij < ı, 8x 2 �i

	
:

In other words, N is the smallest value of i such that �i is contained in a slab of
width 2ı. Our next goal is to give an upper bound for the value of N . To this end,
we claim that

Vol.�iC1/ � 1
2
Vol.�i /; (3.8)
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which equivalently says

Vol.SQi�i ;�i
/ � 1

2
Vol.Qi�i /:

Let X � �Qi�i
and observe that P .jhX; �i ij �

1
4
/ D Vol.S�i ;�i

/=Vol.Qi�i /.
Clearly hX; �i i is a log-concave random variable which, by definition of Qi ; has
variance 1. Using that the density of a log-concave distribution of unit variance is
bounded by 1 (see e.g. [12, Lemma 5.5]) one gets P .jhX; �i ij �

1
4
/ � 1

2
, which

proves (3.8). It is now a simple application of Lemma 3.8 to see that for all i there
exists a direction vi 2 Sn�1 such that

hvi ;Cov.�i /vi i � c1
p
n 2�

2i=n:

where c1 > 0 is a universal constant. Together with Lemma 3.7, this yields

diam.Projvi
�i / � 2

p
c1 n

5=42�
i=n:

By definition of N , this gives

N � n log1=2
n

5=4
p
c1
C n log1=2 ı � n.12C 2c1 C 40 log.1C n="/ � log c0/:

Take c0 D min.c; 1/2=.28.1C c1//. A straightforward calculation gives

c

N
>

c0

n log.1C n="/
: (3.9)

Finally, we define

�.W / D
1

N

NX
iD1

�i .W � x0/

for all measurable W � Rn.
For ˛ 2 � n fx W jhx � x0; vN ij � ıg consider a convex function g.x/ satisfying

g.˛/ < �". Define z̨ D ˛ � x0 and zg.x/ D g.x C x0/ � f .x0/ and remark that
zg.z̨/ < �". By definition of N , there exists 1 � i � N such that z̨ 2 �i n�iC1.
Thus, equation (3.7) gives

�
�n
x 2 � W jf .x/ � g.x/j >

c0

2n7:5 log.1C n="/
max."; f .x//

o�
>

c

nN

(3.9)
>

c0

n2 log.1C n="/
:

The proof is complete.
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3.4. From Lemma 3.3 to Lemma 3.2: covering the space via regions with stable
gradients. We say that a .z; �; t/ is a jolly-good triplet if jzj � 1

16
and (3.3) is

satisfied for some appropriate ı, namely ı D 1=.Cn6j log.1C Ln="/j/ with C > 0

a universal constant whose value will be decided upon later on. Intuitively given
Lemma 3.3 it is enough to find a polynomial (in n) number of jolly-good triplets for
which the corresponding set of � -directions partially covers the sphere Sn�1. The
notion of covering we use is the following: For a subsetH � Sn�1 and for 
 > 0, we
say thatH is a 
 -cover if for all x 2 Sn�1, there exists � 2 H such that h�; xi � �
 .

Next we explain how to find jolly-good triplets in Section 3.4.1, and then how to
find a 
 -cover with such triplets in Section 3.4.2.

3.4.1. A contraction lemma. The following result shows that jolly-good triplets
always exist, or in other words that a convex function always has a relatively big set
on which the gradient map is approximately constant. Quite naturally the proof is
based on a smoothing argument together with a Poincaré inequality.
Lemma 3.5. Let r; �; L > 0 and 0 < � < 1 such that L > 2�r . Let � � Rn be a
convex set, and f W�! R be L-Lipschitz and �-strongly convex, that is

r
2f .x/ � � Id; 8x 2 �:

Let x0 2 � such that B.x0; r/ � �. Then there exist a triplet

.z; �; t/ 2 B.x0; r/ � Sn�1 � Œ�r=2;C1/

such that
�B.z;ı/

�
.rf /�1.B.t�; �t//

�
�
1

2
(3.10)

for ı D �r=.16n2 logL=�r/.

Proof. We consider the convolution g D f ? h, where h is defined by

h.x/ D
1fx2B.0;ı/g
Vol.B.0; ı//

:

We clearly have that g is also �-strongly convex. Let xmin be the point where g attains
its minimum in �. We claim that

jrg.x/j �
�r

2
; 8x 2 � n B.xmin; r=2/: (3.11)

Indeed by strong-convexity of g we have for all y 2 �,

jrg.y/j �
1

jy � xminj
hrg.y/; y � xmini � jy � xminj�:

which proves (3.11).
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Next, define B0 D B.x0; r/ andD D B0 n B.xmin; r=2/. It is clear that

Vol.D/
Vol.B0/

�
1

2
:

Let � be the push forward of�D under x 7! jrg.x/j. According to (3.11) and by the
assumption that f is L-Lipschitz, we know that � is supported on Œ�r=2; L�. Thus,
there exists some t 2 Œ�r=2; L� such that �.Œt; 2t �/ � .2 logL=�r/�1. Define

A D
˚
x 2 B0 W jrg.x/j 2 Œt; 2t �

	
;

so we know that

Vol.A/
Vol.B0/

�
Vol.A/
Vol.D/

Vol.D/
Vol.B0/

�
1

4 logL=�r
:

Recall that
Voln�1.@B.0; r//
Voln.B.0; r//

D
nC 1

r
:

Using Lemma 3.9, we now have that

1

Vol.A/

Z
A

�g.x/ dx � t
Voln�1.@B0/

Vol.A/

D t
Voln�1.@B0/
Vol.B0/

Vol.B0/
Vol.A/

� 8ntr�1 logL=�r:

Consequently, there exists a point z 2 A for which jrg.z/j � t and �g.z/ �
8ntr�1 logL=�r. In other words, by the definition of g, we have that

1

Vol.B.z; ı//

Z
B.z;ı/

�f .x/ dx � 8ntr�1 logL=�r:

Fix 1 � i � n, and define w.x/ D hrf .x/ � rg.z/; ei i, where ei is the i th vector
of the standard basis. Note that

jrw.x/j D jr2f .x/ei j � �f .x/:

By definition of g.x/ and w.x/, we have
R
B.z;ı/w.x/ dx D 0, thus applying the

Poincaré inequality for a ball (see e.g. [1]) yields thatZ
B.z;ı/

jw.x/j dx � ı

Z
B.z;ı/

jrw.x/j dx:

Thus combining the last three displays, and using that ı D �r=.16n2 logL=�r/, one
obtains

1

Vol.B.z; ı//

Z
B.z;ı/

jw.x/j dx � 8ıntr�1 logL=�r �
�t

2n
:



Exploratory distributions for convex functions 87

By using the fact that jrf .x/�rg.z/j �
Pn
iD1 jhrf .x/�rg.z/; ei ij , this yields

1

Vol.B.z; ı//

Z
B.z;ı/

jrf .x/ � rg.z/j dx �
�t

4
�
�jrg.z/j

2
:

Finally applying Markov’s inequality one obtains (3.10) for the triplet�
z;
rg.z/

jrg.z/j
; jrg.z/j

�
:

3.4.2. Concluding the proof with the contraction lemma. We first fix some � > 0
and, at this point, suppose that r2f .x/ � �Id for all x 2 �. Later on we will argue
that this assumption can be removed. Define h�.x/ D supy2�hx; yi, the support
function of �. Consider the set

‚ D
˚
� 2 Sn�1 W h�.�/ �

1
8

	
and letH be set of directions obtained from jolly-good triplets, more precisely,

H D
n
� 2 Sn�1 W 9z 2 Rn; t 2 .0; 1/

such that (3.3) is true with ı D
1

228n6 log.1C Ln=�/

o
:

Define 
 D 1=16n. Next, we show thatH [‚ is a 
 -cover. Let ' 2 Sn�1. Our
objective is to find � 2 H [‚ such that h�; 'i � �
 .

First suppose that ' … 8�. In that case, by the Hahn–Banach theorem and since
0 2 �, there exists w 2 Rn such that h';wi D 1 and hw; yi � 1

8
for all y 2 �. In

other words, we have for � D w=jwj that

h�.�/ �
1

8jwj
�
1

8
;

which implies that � 2 ‚. Since h';w=jwji � 0, we are done.
We may therefore assume that '=8 2 �. Since Cov.��/ D Id, then by

Lemma 3.7 there exists a point w 2 Rn such that jwj � n C 1 and B.w; 1/ � �.
Define r D 1=213n2 and take

B0 D B.'=32C rw; r/:

Note that by convexity and by the fact that 0 2 �, we have that B0 � �. We now
use Lemma 3.5 for the ball B0 with � D 1=211n2, and ı D 1=.228n6 log.1C Ln=�//

to obtain a jolly-good triplet .z.�/; �; t/. Denote z D z.�/. We want to show that
h�; 'i � �
 . Observe that by convexity of f and since f attains its minimum at
x D 0, one has hrf .x/; xi � 0 for any x. Thus, by definition of a jolly-good triplet
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one can easily see that h�; zi � �.� C ı/. Also by definition z is in B0 and thus
j32z � ' � 32rwj � 32r . This implies:

h�; 'i D h�; ' � 32z C 32rwi C 32h�; zi � 32rh�;wi

� �j' � 32z C 32rwj � 32r jwj � 32� � 32ı � �
1

16n
:

This concludes the proof thatH [‚ is a 
 -cover.
Next we use Lemma 3.10 to extract a subsetH 0 � H such that jH 0j � nC 1 and

H 0 [ ‚ is also a 
 -cover for Sn�1. An application of Lemma 3.11 with M D 2n

now gives that there exists v 2 Sn�1 such that

� \

� \
�2H 0[‚

˚
x W hx; �i � 1

8

	�
D � \

� \
�2H 0

˚
x W hx; �i � 1

8

	�
� S�;v:

Finally, an application of Lemma 3.3 gives us that for all ˛ 2 � n S�;v and every
function g such that g.˛/ < �" one has for some � 2 H 0,

�B.z.�/;ı/

�n
x 2 � W jf .x/ � g.x/j >

ı

213M
p
n
max."; f .x//

o�
>
1

8
:

Defining � D 1
jH 0j

P
�2H 0 �B.z.�/;ı/, we get

�
�n
x 2 � W jf .x/ � g.x/j >

1

242n7:5 log.1C Ln=�/
max."; f .x//

o�
>

1

16n
:

(3.12)
It remains to remove the uniform convexity assumption. This is done by considering
the function

x 7! f .x/C �jxj2

in place of f in the above argument. Since jxj �M � 2n for all x 2 �, the equation
(3.12) becomes

�
�n
x 2 � W jf .x/�g.x/j >

c

242n7:5 log.1C Ln=�/
max."; f .x//�4n2�

o�
>

1

16n
:

Finally choosing � D ."=220n10/2 one easily obtains

�
�n
x 2 � W jf .x/ � g.x/j >

1

250n7:5 log.1C n="/
max."; f .x//

o�
>

1

16n
;

which concludes the proof.
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3.5. Proof of Lemma 3.3. Themain ingredient of the proof is the following technical
result.
Lemma 3.6. Let � � Rn be a domain satisfying Diam.�/ � M . Let f W� !
Œ0;1/ be a non-negative convex function letgW�! R be a convex function satisfying
g.˛/ < �", for some ˛ 2 �. Let z 2 Rn and consider the ball B D B.z; ı/. Let
D � B be a set satisfying

hrf .x/; ˛ � xi � 0; 8x 2 D: (3.13)

Assume also that �B.D/ � 1
2
and that jz � ˛j � nı. Define

A D
n
x W jf .x/ � g.x/j >

ı

213M
p
n
max."; f .x//

o
:

Then one has �D.A/ � 1
4
.

Proof. For x 2 �, define ‚˛.x/ D .x � ˛/=.jx � ˛j/ and for � 2 Sn�1 write
N.�/ D ‚�1˛ .�/. Denote by �� the one-dimensional Lebesgue measure on the
needle N.�/. Let �B ; �D be the push-forward of �B ; �D under ‚˛ . Moreover, for
every � 2 Sn�1, the disintegration theorem ensures the existence of a probability
measure �D;� on N.�/, defined so that for every measurable test function h one hasZ

h.x/ d�D.x/ D

Z
Sn�1

Z
N.�/

h.x/ d�D;� .x/ d�D.�/ (3.14)

(in other words, �D;� is the normalized restriction of �D to N.�/). Define the
measures .�B;� /� in the same manner.

It is easy to verify that �D is absolutely continuous with respect the the uniform
measure on Sn�1, which we denote by � . Denote

q.�/ WD
d�D

d�
.�/ and w.�/ WD

d�B

d�
.�/:

Using Lemma 3.13 we obtain that

d�D;�

d��
.x/ D

�n

Vol.D/q.�/
jx � ˛jn�11fx2Dg; (3.15)

and
d�B;�

d��
.x/ D

�n

Vol.B/w.�/
jx � ˛jn�11fx2Bg; (3.16)

where �n is a constant depending only on n.
For every � 2 Sn�1, define L.�/ to be the length of the interval N.�/ \ B .

Consider the set
L D

n
� W L.�/ >

ı

32
p
n

o
:
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According to Lemma 3.12 we have thatZ
Sn�1nL

w.�/ d�.�/ �
1

8
:

Now, since D � B and �B.D/ � 1
2
, we have that q.�/ � 2w.�/ for all � 2 Sn�1,

which gives

�D.L/ D

Z
L

q.�/ d�.�/ �
3

4
:

Next, consider the set

S D
n
� 2 Sn�1I q.�/ �

w.�/

4

o
:

Since
R

Sn�1
q.�/
w.�/

d�B.�/ D 1 we have

�D.S/ D

Z
S

q.�/

w.�/
d�B.�/ D 1 �

Z
Sn�1nS

q.�/

w.�/
d�B.�/ �

3

4
:

Using a union bound, we have that �D.L \ S/ � 1
2
.

Fix � 2 L \ S , we would like to give a lower bound on �D;� .A/. In view of
Lemma 3.1, we thus need an upper bound on the density of �D;� . Recall that � 2 S ,
implies q.�/

w.�/
�

1
4
and that by (3.15) and (3.16), we have for all x 2 N.�/ \ B ,

d�D;�

d�B;�
.x/ D

Vol.B/w.�/
Vol.D/q.�/

1x2D � 8: (3.17)

Denote Œa; b� D B \ N.�/ for a; b 2 Rn. Assume that a is the interior of the
interval Œ˛; b� (if this is not the case, we simply interchange between a and b). By the
assumption � 2 L, we know that jb� aj � ı=32

p
n. WritingZ D �n=Vol.B/w.�/

so that, according to (3.16),

d�B;�

d��
.x/ D Zjx � ˛jn�11fx2Bg;

and since �B;� is a probability measure,

Z�1 D

Z b

a

jx � ˛jn�1 dx

where, by slight abuse of notation we assume that a; b; ˛ 2 R. Thus,

Z �
32
p
n

ıja � ˛jn�1
:
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Combined with (3.17), this finally gives

d�D;�

d��
.x/ � 28

p
n

ı

jx � ˛jn�1

ja � ˛jn�1
� 28

p
n

ı

�
jb � ˛j

ja � ˛j

�n�1
D 28

p
n

ı

�
1C
jb � aj

ja � ˛j

�n�1
� 28

p
n

ı

�
1C

2ı

nı � ı

�n�1
� 28e2

p
n

ı
;

where in the second to last inequality we used the assumption that jz � ˛j � nı.
Define the map U WR! N.�/ by

U.x/ D ˛ CM.j˛j � x/�

and consider the functions zf .x/ D f .U.x// and zg.x/ D g.U.x//. Denote
x0 D minU�1.D \ N.�// and remark that x0 2 Œj˛j � 1; j˛j�. Note that,
thanks to equation (3.13), the assumption (3.1) holds for the functions zf ; zg and
the points x0; j˛j. We can now invoke Lemma 3.1 for these functions with � being
the pullback of �D;� by U.x/. According to the above inequality one may take
ˇ D 28e2.M

p
n=ı/ and obtain

�D;� .A/ �
1

2
:

Integrating over � 2 L \ S concludes the proof:

�D.A/ �

Z
S\L

�D;� .A/ d�D.�/ �
1

2
�D.L \ S/ �

1

4
:

Proof of Lemma 3.3. Suppose that .z; �; t/ satisfy equation (3.10). Fix ˛ 2 �

satisfying h˛; �i � 1
8
and a function g.x/ satisfying g.˛/ < �". DefineB D B.z; ı/

andD D
˚
x 2 BI jrf .x/ � � t j < 1

16
n�2t

	
. Let �B be the uniform measure on B .

According to (3.10), we know that �B.D/ � 1
2
. Now, for all x 2 D we have that

rf .x/ D t .� C y/ with jyj < 1
16
n�2 so we get�

rf .x/;
˛ � x

j˛ � xj

�
D

t

j˛ � xj

�
h˛; �i C h˛ � x; yi � hx; �i

�
>

t

j˛ � xj

�
1
8
�

1
16

�
j˛j C jxj

�
n�2 � jxj

�
� 0; 8x 2 D

where we used the fact that D � B and so jxj < jzj C ı � 1
16

and the fact that
j˛j � 2n. Note that the above implies the assumption (3.13). Moreover remark that

jz � ˛j � 1
4
�
1
8
�

1
8
� nı:

We can thus now invoke Lemma 3.6 to get �B.A/ � 1
8
where

A D
˚
x 2 � W jf .x/ � g.x/j > ı

213M
p
n
max."; f .x//

	
:

This completes proof.
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3.6. Technical lemmas. We gather here various technical lemmas.
Lemma 3.7. Let C be a convex body in Rn. Then

diam.C / � .nC 1/kCov.�C /k1=2: (3.18)

On the other hand, if Cov.�C / � Id then C contains a ball of radius 1.
Furthermore, for all v 2 Sn�1 one has

sup
x2C

hv; xi � inf
x2C
hv; xi � .nC 1/hv;Cov.�C /; vi1=2:

Proof. The first and second parts of the lemma are found in [3, Section 3.2.1]. For
the third part, we write C 0 D Cov.C /�1=2C and u D Cov.C /1=2v=jCov.C /1=2vj.
We have

sup
x2C

hv; xi � inf
x2C
hv; xi D sup

x2C 0
hv;Cov.C /1=2xi � inf

x2C 0
hv;Cov.C /1=2xi

D sup
x2C 0
hCov.C /1=2v; xi � inf

x2C 0
hCov.C /1=2v; xi

D jCov.C /1=2vj
�
sup
x2C 0
hu; xi � inf

x2C 0
hu; xi

�
(3.18)
� .nC 1/jCov.C /1=2vj:

Lemma 3.8. Let C � D � Rn be two convex bodies with 0 2 C . Suppose that
Vol.C /=Vol.D/ � ı, then there exists u 2 Sn�1 such that

hu;Cov.�C /ui � c
p
nı

2=n
hu;Cov.�D/ui: (3.19)

where c > 0 is a universal constant.

Proof. Define � D �D and � D �C . By applying a linear transformation to
both � and �, we can clearly assume that Cov.�/ D Id. Let f .x/ be a log-concave
probability density in Rn. According to [10, Corollary 1.2 and Lemma 2.7], we have
that

c1 �
�
sup
x2Rn

f .x/
�1=n� det Cov.f /�1=2n

� c2n
1=4 (3.20)

where c1; c2 > 0 are universal constants. Denote by f .x/ and g.x/ the densities
of � and �, respectively. Since the densities of �, � are binary-valued, we have that

sup
x2Rn

f .x/ D f .0/ � ıg.0/ D ı sup
x2Rn

g.x/:

We finally get�
det Cov.�/

�1=n (3.20)
� c22
p
ng.0/�

2=n

D c22ı
2=n
p
nf .0/�

2=n

(3.20)
� .c2=c1/

2
p
n
�
det Cov.�/

�1=n
ı

2=n
D .c2=c1/

2
p
n ı

2=n:
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The lemma follows by taking u to be the eigenvector corresponding to the smallest
eigenvalue of Cov.�/.

Lemma 3.9. Let g be a convex function defined on a Euclidean ball B � Rn. Let
A � B be a closed set such that 8x 2 A, jrg.x/j � t . ThenZ

A

�g.x/ dx � t Voln�1.@B/:

Proof. Since g is convex, we can write

g.x/ D sup
y2B

wy.x/;

where wy.x/ D hx � y;rg.y/i C g.y/. Define

zg.x/ D sup
y2A

wy.x/:

Clearly zg is convex and zg.x/ D g.x/ for all x 2 A. Moreover jr zg.x/j � t for all
x 2 Rn. Using Gauss’s theorem, we haveZ
A

�g.x/ dx �

Z
B

�zg.x/ dx D

Z
@B

hrzg.x/; n.x/i dHn�1.x/ � t Voln�1.@B/;

which concludes the proof.

Let 
 > 0. Recall that we say that H � Sn�1 is a 
 -cover if for all x 2 Sn�1,
there exists � 2 H satisfying

h�; xi � �
: (3.21)

Lemma 3.10. Let H � Sn�1 be a 
 -cover. Then there exists a subset I � H with
jI j � nC 1 such that I is a 
 -cover.

Proof. We first claim that there is a point y 2 Conv.H/ with jyj � 
 . Indeed, if
we assume otherwise then by the Hahn–Banach theorem there exists z� 2 Sn�1

such that h�; z�i > 
 for all � 2 H , which means the vector �z� violates the
assumption (3.21). By Caratheodory’s theorem, there exists I � H with jI j � nC1
such that y 2 Conv.I /. Write I D .�1; : : : ; �nC1/. Now let x 2 Rn with jxj � 1.
Then since hx; yi � �
 , we have

nC1X
iD1

˛i hx; �i i � �


for some non-negative coefficients f˛ignC1iD1 satisfying
PnC1
iD1 ˛i D 1. Thus there

exists � 2 I for which (3.21) holds.



94 S. Bubeck and R. Eldan

Lemma 3.11. Let� � Rn be a convex set with diam.�/ �M and such that 0 2 �.
LetH be a 
 -cover. Then there exists z� 2 Sn�1 such that˚

˛ 2 � W 8� 2 H; h˛; �i < M

	
�
˚
˛ 2 � W jh˛; z�ij � 2M


	
:

Proof. Since f˛ 2 � W 8� 2 H; h˛; �i < M
g is a convex set which contains 0,
showing that it does not contain a ball of radius 2M
 is enough to show that it is
included in some slab f˛ 2 � W jh˛; z�ij � 2M
g. Now suppose that our set of interest
f˛ W 8� 2 H; h˛; �i < M
g actually contains a ball B.x; 2M
/ with jxj 2 .0;M/.
Let � 2 H be such that hx=jxj; �i � �
 , and thus in particular hx; �i � �M
 .
Then one has by the inclusion assumption that h�; x C 2M
�i < M
 , but on the
other hand one also has h�; x C 2
M�i � 
M which yields a contradiction, thus
concluding the proof.

Lemma 3.12. Let ı > 0, x0 2 Rn, B D B.x0; ı/ and ˛ 2 Rn n B . For x 2 Rn,
define‚˛.x/ D .x �˛/=.jx �˛j/, and let �B be the push-forward of �B under‚˛ .
For every � 2 Sn�1, define L.�/ to be the length of the interval ‚�1˛ .�/ \ B . Then
one has

�B

�
� W L.�/ >

ı

32
p
n

�
�
7

8
:

Proof. Note that, by definition,

x 2 B and x C
ı

32
p
n

˛ � x

j˛ � xj
2 B ) L .‚˛.x// >

ı

32
p
n
:

Furthermore it is easy to show that for all y 2 B ,

y C
ı

32
p
n

˛ � x0

j˛ � x0j
2 B ) y C

ı

32
p
n

˛ � y

j˛ � yj
2 B:

Thus letting X � �B we see that the lemma will be concluded by showing that

P

�
X C

ı

32
p
n

˛ � x0

j˛ � x0j
2 B

�
�
7

8
:

Defining
zB D B

�
x0 �

ı

32
p
n

˛ � x0

j˛ � x0j
; ı

�
;

the statement boils down to proving that P .X 2 zB/ � 7
8
. By applying an affine

linear transformation to both B and zB , this is equivalent to

Vol
�
B
�
�

c

2
p
n
e1; 1

�
\ B

�
c

2
p
n
e1; 1

��
Vol.B.0; 1//

�
7

8
;



Exploratory distributions for convex functions 95

where e1 is the first vector of the standard basis. Next, by symmetry around the
hyperplane e?1 , we have

Vol
�
B
�
�

1

64
p
n
e1; 1

�
\ B

�
1

64
p
n
e1; 1

��
Vol.B.0; 1//

D

2Vol
�
B
�
�

1

64
p
n
e1; 1

�
\
˚
xI hx; e1i � 0

	�
Vol.B.0; 1//

:

Thus, it is enough to show that P .jZj > 1=64
p
n/ � 7

8
, where Z D hX 0; e1i and

X 0 � �B.0;1/. Observe that Var ŒZ� � 1
8n

and that Z is log-concave (in particular
the density of Z=Var ŒZ� is bounded by 1). This implies that for any t > 0

P
�
jZj < t

p
Var ŒZ�

�
< 2t;

and thus the lemma follows by taking t D 1
16
.

Lemma 3.13. Let A � Rn. For x 2 Rn, define ‚˛.x/ D .x � ˛/=.jx � ˛j/, and
let �A be the push-forward of�A under‚˛ . Assume that �A is absolutely continuous
with respect the the uniform measure � on Sn�1 and denote q.�/ WD d�A

d�
.�/. Finally

let �A;� be the normalized restriction of �A on N.�/ D ‚�1˛ .�/, defined so that for
every measurable test function h one hasZ

h.x/ d�D.x/ D

Z
Sn�1

Z
N.�/

h.x/ d�A;� .x/ d�A.�/: (3.22)

Denoting �n for the .n�1/-dimensional Hausdorff measure of Sn�1 one then obtains
d�A;�

d��
.x/ D

�n

Vol.A/q.�/
jx � ˛jn�11fx2Bg: (3.23)

Proof. First observe that the existence of �A;� is ensured by the disintegration
theorem. Now remark that using the integration by polar coordinates formula we
have for every measurable test function ',Z

Rn

'.x/ dx D �n

Z
Sn�1

Z 1
0

rn�1'.˛ C r�/ dr d�.�/:

Now, by definition of q.�/, we have for every test function ',Z
Sn�1

Z 1
0

rn�1'.˛Cr�/ dr d�.�/ D

Z
Sn�1

Z 1
0

rn�1q.�/�1'.˛Cr�/ dr d�A.�/:

Taking '.x/ D h.x/1x2A, we finally getZ
h.x/ d�A.x/ D

1

Vol.A/

Z
A

h.x/ dx

D
�n

Vol.A/

Z
Sn�1

Z 1
0

rn�1q.�/�1h.˛ C r�/1f˛Cr�2Ag dr d�A.�/:
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Since the above is true for every measurable function h, together with equation (3.22)
we get that for every function h and every � 2 Sn�1, one must haveZ

N.�/

h.x/ d�� .x/ D
�n

Vol.D/q.�/

Z 1
0

rn�1h.˛ C r�/1f˛Cr�2Ag dr

D
�n

Vol.A/q.�/

Z
N.�/

jx � ˛jn�1h.x/1fx2Ag d�� .x/

and the claimed identity (3.23) follows.

4. Proof of Theorem 1.3

Following [5] we reduce the proof of Theorem 1.3 to upper bounding the Bayesian
maximin regret (this reduction is simply an application of Sion’s minimax theorem).
In other words the sequence .`1; : : : ; `T / is now a random variable with a distribution
known to the player. Expectations are now understood with respect to both the latter
distribution, and possibly the randomness in the player’s strategy. We denote Et
for the expectation conditionally on the random variable Ht . As in [5] we analyze
the Bayesian maximin regret with the information theoretic approach of [13], which
we recall in Subsection 4.1. A key contribution of our work is then to propose in
Subsection 4.2 a new strategy for the Bayesian convex bandit problem, which can be
viewed as an "-greedy strategy, where the value of " is derived from the form of the
posterior, and the exploration strategy is derived from Theorem 1.1.

4.1. The information ratio. Let xK D f Nx1; : : : ; NxKg be a 1=
p
T -net ofK , formally

taken to be K
1=
p
T
\ .1=

p
T /Zn where K" is the euclidean "-extension of K. Note

that
j xKj �

ˇ̌
1p
T

Zn \ Œ�1; 1�n
ˇ̌
� .4T /

n=2:

We define a random variable Nx� 2 xK such that

TX
tD1

`t . Nx
�/ D min

x2 xK

TX
tD1

`t .x/:

Using that the losses are Lipschitz one has

RT �
p
T C

TX
tD1

�
`t .xt / � `t . Nx

�/
�
: (4.1)

We introduce the following key quantities, for x 2K ,

rt .x/ D Et
�
`t .x/ � `t . Nx

�/
�

and vt .x/ D Vart
�
Et .`t .x/j Nx

�/
�
; (4.2)
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where Vart denotes the variance conditional on Ht . In words, conditionally on the
history, rt .x/ is the (approximate) expected regret of playing x at time t , and vt .x/
is a proxy for the information about Nx� revealed by playing x at time t . It will
be convenient to rewrite these functions slightly more explicitly. Let i� 2 ŒK�

be the random variable such that Nx� D Nxi� . We denote by ˛� its distribution,
which we view as a point in the K � 1 dimensional simplex. Let ˛t D Et˛�.
In words ˛t D .˛1;t ; : : : ; ˛K;t / is the posterior distribution of x� at time t . Let
fi;t ; ft WK ! Œ0; 1�, i 2 ŒK�; t 2 ŒT �, be defined by, for x 2K ,

ft .x/ D Et`t .x/; fi;t .x/ D Et
�
`t .x/j Nx

�
D Nxi

�
:

Then one can easily see that

rt .x/ D ft .x/�

KX
iD1

˛i;tfi;t . Nxi / and vt .x/ D

KX
iD1

˛i;t
�
ft .x/� fi;t .x/

�2
: (4.3)

The main observation in [13] is the following lemma, which gives a bound on the
accumulation of information (see also [5, Appendix B] for a short proof).

Lemma 4.1. One always has E
PT
tD1 vt .xt / �

1
2
log.K/.

An important consequence of Lemma 4.1 is the following result which follows
from an application of the Cauchy–Schwarz inequality (and (4.1)):

E
TX
tD1

rt .xt / �
p
T CC

TX
tD1

p
Evt .xt / ) ERT � 2

p
T CC

r
T

2
log.K/: (4.4)

In particular a strategy which obtains at each time step an information proportional
to its instantaneous regret has a controlled cumulative regret:

Etrt .xt / �
1
p
T
C C

p
Etvt .xt /; 8t 2 ŒT � ) ERT � 2

p
T C C

r
T

2
log.K/:

(4.5)
[13] refers to the quantity Etrt .xt /=

p
Etvt .xt / as the information ratio. They show

that Thompson Sampling (which plays xt at random, drawn from the distribution ˛t )
satisfies Etrt .xt /=

p
Etvt .xt / � K (without any assumptions on the loss functions

`t WK ! Œ0; 1�). In [5] it is shown that in dimension one (i.e. n D 1), the latter
bound can be improved using the convexity of the losses by replacing K with a
polylogarithmic term in K (Thompson Sampling is also slightly modified). In the
present paper we propose a completely different strategy, which is loosely related
to the Information Directed Sampling of [14]. We describe and analyze our new
strategy in the next subsection.
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4.2. A two-point strategy. We describe here a new strategy to select xt , condition-
ally on Ht , and show that it satisfies a bound of the form given in (4.5). To lighten
notation we drop all time subscripts, e.g. one has

r.x/ D f .x/ �

KX
iD1

˛ifi . Nxi / and v.x/ D

KX
iD1

˛i
�
fi .x/ � f .x/

�2
:

Our objective is to describe a random variable X 2K which satisfies

Er.X/ �
1
p
T
C C

p
Ev.X/; (4.6)

where C is polylogarithmic in K (recall that K � .4T /n). We now describe the
construction of our proposed random variable X (or to put it differently we describe
a new algorithm for the Bayesian convex bandit problem), and we prove that it
satisfies (4.6).

Let x� 2 argminx2K f .x/. We translate the functions so that f .x�/ D 0 and
denote L D

PK
iD1 ˛ifi . Nxi /. If L � �1=

p
T then X WD x� satisfies (4.6), and thus

in the following we assume that L � �1=
p
T .

Step 1. We claim that there exists " 2 ŒjLj=2; 1� such that

˛
�˚
i 2 ŒK� W fi . Nxi / � �"

	�
�

jLj

2 log.2=jLj/"
: (4.7)

Indeed assume that (4.7) is false for all " 2 ŒjLj=2; 1�, and let Y be a random variable
such that P .Y D �fi . Nxi // D ˛i , then

jLj D EY �
jLj

2
C

Z 1

jLj=2

P .Y � x/ dx <
jLj

2
C

Z 1

jLj=2

jLj

2 log.2=jLj/x
dx D jLj;

thus leading to a contradiction. We denote I D fi 2 ŒK� W fi . Nxi / � �"g with "
satisfying (4.7).

Step 2. We show here the existence of a point Nx 2 K and a set J � I such that
˛.J / � c=.n3 log.1C n="// ˛.I / and for any i 2 J ,

jf . Nx/ � fi . Nx/j �
c

n7:5 log.1C n="/
max."; f . Nx//: (4.8)

We say that a point is good for fi if it satisfies (4.8), and thus we want to prove the
existence of a point Nx which is good for a large fraction (with respect to the posterior)
of the fi ’s. Denote

Ai D
n
x 2K W jf .x/ � fi .x/j �

c

n7:5 log.1C n="/
max."; f .x//

o
;
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and let � be the distribution given by Theorem 1.1. Then one obtains:

sup
x2K

X
i2I

˛i1fx 2 Aig �

Z
x2K

X
i2I

˛i1fx 2 Aig d�.x/

D

X
i2I

˛i�.Ai / �
c

n3 log.1C n="/
˛.I /;

which clearly implies the existence of J and Nx.

Step 3. Let X be such that P .X D Nx/ D ˛.J / and P .X D x�/ D 1 � ˛.J /. Then

Er.X/ D jLj C ˛.J /f . Nx/;

and using the definition of Nx one easily see that:p
Ev.X/ �

p
˛.J /v. Nx/ �

s
˛.J /

X
i2J

˛i .fi . Nx/ � f . Nx//
2

�
c

n7:5 log.1C n="/
˛.J /max."; f . Nx//:

Finally, since ˛.J / � cjLj=."n3 log2.1 C n="//, the two above displays clearly
implies (4.6).
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