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Abstract.We consider the problem of recovering linear imageBx of a signal x known to belong
to a given convex compact set X from indirect observation ! D Ax C � of x corrupted by
random noise � with finite covariance matrix. It is shown that under some assumptions on X

(satisfied, e.g. when X is the intersection of K concentric ellipsoids/elliptic cylinders, or the
unit ball of the spectral norm in the space of matrices) and on the norm k � k used to measure the
recovery error (satisfied, e.g. by k � kp-norms, 1 � p � 2, on Rm and by the nuclear norm on
the space of matrices), one can build, in a computationally efficient manner, a “seemingly good”
linear in observations estimate. Further, in the case of zero mean Gaussian observation noise
and general mappings A and B , this estimate is near-optimal among all (linear and nonlinear)
estimates in terms of the maximal over x 2 X expected k�k-loss. These results form an essential
extension of classical results [7, 24] and of the recent work [13], where the assumptions on X

were more restrictive, and the norm k � k was assumed to be the Euclidean one.
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tion.

1. Introduction

Broadly speaking, what follows contributes to a long line of research (see, e.g. [4,7–
9,11,30,31] and references therein) started by the pioneering works [15,16] and [24]
and aimed at building efficiently and analysing performance of linear estimates of
signals from noisy observations. Specifically, we consider the classical estimation
problem as follows: given a “sensing matrix” A 2 Rm�n and an indirect noisy
observation

! D Ax C � (1.1)

of unknown deterministic “signal” x known to belong to a given “signal set”X � Rn,
we are interested to recover the linear image Bx of the signal, where B 2 R��n is a
�The first author was supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025) and PGMO

grant 2016-2032H.
��Research of the second author was supported by NSF grantsCCF-1523768 and CMMI-1262063.
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given matrix. We assume that the observation noise � is random with unknown (and
perhaps depending onx) distribution belonging to some familyP ofBorel probability
distributions on Rm associated with a given nonempty convex compact subset Q of
the set of positive definitem�mmatrices. In this context, “associated”means that the
non-centered covariance matrix1 CovŒP � WD E��P f��T g of a distribution P 2 P is
�-dominated by some matrix from Q:

P 2 P ) 9Q 2 Q W CovŒP � � Q:2 (1.2)

We quantify the risk of a candidate estimate — a Borel function yx.�/WRm ! R� —
by its worst-case, under the circumstances, expected k � k-error defined as

RiskQ;k�kŒyxjX� D sup
x2X; P2P

E��P
˚
kBx � yx.Ax C �/k

	
I

here k � k is a given norm on R� .
We assume that signal set X is a special type symmetric w.r.t. the origin convex

compact set (a spectratope to be defined in Section 2.1), and require from the
norm k � k� conjugate to k � k to have a spectratope as the unit ball.3 This allows,
e.g. for X to be the (bounded) intersection of finitely many centered at the origin
ellipsoids/elliptic cylinders/k � kp-balls (p 2 Œ2;1�), or the (bounded) solution set of
a system of two-sided Linear Matrix Inequalities˚
x 2 Rn W �Lk � RkŒx� � Lk; k � K

	 �
RkŒx�: linear in x symmetric matrices

�
As for the norm k � k, it can be k � kp-norm on R� , 1 � p � 2, or the nuclear norm
on the space R� D Ru�v of matrices.

An important property of spectratopes is that they allow for precise concentration
inequalities for random (Rademacher and Gaussian) vectors, see [3, 17, 18, 25, 29]
and references therein. It plays a crucial role in what follows due to several important
implications:
– It allows for a tight computationally efficient upper bounding of the maximum of
a quadratic form over a spectratope (Proposition 2.2). The latter allow to efficiently
upper-bound the maximal over a spectratope risk of linear estimation (i.e. estimate of
the form yxH .!/ D HT!), and thus leads to a computationally efficient scheme for
building “presumably good” linear estimates with guaranteed risk (Proposition 3.5).

1For the sake of brevity and with some terminology abuse, in the sequel, we refer to E��P f��T g as
to covariance matrix of � � P . Note that within the proposed approach we do not need the observation
noise to be centered, except for the case of repeated observations, where we explicitly request for the
expectation of the noise to vanish (cf. Section 3.4 and Remark 3.6).

2Here and below, U � V (U � V ) means that U;V are symmetric matrices of the same size
and U � V is positive semidefinite (resp., positive definite); V � U (V � U ) means exactly the same
as U � V , (resp., U � V ).

3Obviously, any result of this type should impose some restrictions on X — it is well known that
linear estimates are “heavily sub-optimal” on some simple signal domains [5, 6, 23] (e.g. k � k1-ball).
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– It is also decisive in the implementation of the extended “Pinsker pro-
gram” [24]: when the family P of distributions contains all normal distributions
fN .0;Q/ W Q 2 Qg, it allows to tightly lower-bound the minimax risk of estimation
over spectratopes via the Bayesian risk of estimating a random Gaussian signal, and
to show that the presumably good linear estimates are “near-optimal” (optimal up to
logarithmic factors) among all estimates, linear and nonlinear alike.

An “executive summary” of our main result, Proposition 3.8, is as follows:
Given a spectratope X and assuming that the unit ball B� of the norm conjugate
to k � k is a spectratope as well, the efficiently computable optimal solutionH� to an
explicitly posed convex optimization problem yields a near-optimal linear estimate
yxH�.!/ D H

T
� !, specifically,

RiskQ;k�kŒyxH� jX� � C

q
ln
�
LRiskOpt�1Q;k�kŒX�

�
RiskOptQ;k�kŒX�; (�)

where C is an absolute constant, and L is polynomial in the (naturally defined)
sizes and magnitudes of the data specifying B and the spectratopes X, B�, and
RiskOptQ;k�k is the “true” minimax optimal risk associated with zero mean Gaussian
observation noises with covariance matrices from Q:

RiskOptQ;k�kŒX� D sup
Q2Q

inf
yx
max
x2X

E��N .0;Q/

˚
kBx � yx.Ax C �/k

	
;

the infimum being taken over all estimates, linear and nonlinear alike.

It should be stressed that the “nonoptimality factor” in (�) is logarithmic and is
completely independent of the sensing matrixA— the entity “primarily responsible”
for the minimax optimal risk.

The above result constitutes an important extension to the approach developed
in [13], the progress as compared to [13] being as follows:

– [13] dealt with the case ofP D fN .0;Q/g, i.e. the observation noise was assumed
to be zeromeanGaussianwith known covariancematrix, while nowwe allow forP to
be a general family of probability distributionswith covariancematrices�-dominated
by matrices from a given convex compact set Q � int SmC; 4
– Present results apply to an essentially wider family of signal sets: spectratopes
as compared to ellitopes considered in [13]; ellitopes are also spectratopes, see
Section 2.1, but not vice versa. For instance, the intersection of centered at the
origin ellipsoids/elliptic cylinders/k � kp-balls, p 2 Œ2;1�, is an ellitope (and thus
a spectratope), whereas the (bounded) solution set of a finite system of two-sided
LMI’s is a spectratope, but not an ellitope;

4From now on, Sk stands for the space of symmetric k � k matrices, and Sk
C

is the cone of positive
semidefinite matrices from Sk .
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– The analysis in [13] was limited to the case of k � k2-losses, while now we allow
for a much wider family of norms quantifying the recovery error.

Note that, in addition to observations with random noise, in what follows we
also address observations with “uncertain-but-bounded” and “mixed” (combined)
noise. In the latter case � , instead of being random, is selected, perhaps in adversarial
manner, from a given spectratope — the situation which was not considered in [13]
at all.

These results can also be considered as a new contribution to the line of
research initiated by [7], where it is proved (Proposition 4–Theorem 7) that if X

is convex, orthosymmetric and quadratically convex (that is, X D fx 2 Rn W
9t 2 T W x2i � ti ; i � ng with convex compact T � RnC), observations are
direct: ! D x C � , � � N .0; In/, Bx D x, and k � k D k � k2, the risk of an
efficiently computable linear estimate is within factor 1.25 of the minimax optimal
risk. The suboptimality guarantees provided by the latter result are essentially better
than those of Proposition 3.8 in the current paper. However, it is also essentially
more restrictive in its scope — an orthosymmetric convex and quadratically convex
set is a very special case of an ellitope, the observations should be direct, and k � k
should be k � k2.

Note that linear estimators can be efficiently built and optimized for some signal
domains which are not spectratopes, e.g. when X is given as a convex hull of a
finite set, e.g. X is k � k1-ball (in this case, the smallest risk linear estimate can be
“heavily nonoptimal” among all estimates). In general, however, optimizing risk
over just linear estimates in a computationally efficient fashion can be problematic.
Beyond the scope of spectratopes in the role of signal sets and unit balls of the
norms conjugate to those in which the recovery error is measured, the only known to
us general situation where “presumably good” linear estimation is computationally
tractable and results in (nearly) minimax optimal estimates is that where the recovery
error is measured in k � k1. In the latter case, the breakthrough papers [4, 12] (see
also [14]) imply that whenever X is a computationally tractable convex compact set
and the observation noise is Gaussian, an efficiently computable linear estimate is
k � k1-minimax optimal within the factor O.1/

p
ln.�/.

The main body of the paper is organized as follows. We start with describing
the family of sets we work with – the spectratopes (Section 2.1), and derive the
crucial for the rest of the paper result on tight upper-bounding the maximum of
a quadratic form over a spectratope (Section 2.2). Next we explain how to build
in a computationally efficient fashion “presumably good” linear estimates in the
case of stochastic (Section 3) and uncertain-but-bounded (Section 4) observation
noise and establish near-optimality of these estimates. All technical proofs are
relegated to Section 5. Appendix A lists principal rules of calculus of spectratopes.
Appendix B contains implementation details for the illustrative example (covariance
matrix estimation) presented in Section 3.4. Finally, Appendix C contains an
“executive summary” of conic duality, our principal working horse.
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2. Preliminaries

We start with describing the main geometric object we intend to work with — a
spectratope.

2.1. Spectratopes.
A basic spectratope is a set X � Rn given by basic spectratopic representation— a
representation of the form

X D
˚
x 2 Rn W 9t 2 T W R2kŒx� � tkIdk ; 1 � k � K

	
; (2.1)

where
(S1) RkŒx� D

Pn
iD1 xiR

ki are symmetric dk � dk matrices linearly depending
on x 2 Rn (i.e. “matrix coefficients” Rki belong to Sdk );

(S2) T 2 RKC is a monotonic set, meaning that T is a convex compact subset of RKC
which contains a positive vector and is monotone:

0 � t 0 � t 2 T ) t 0 2 T : 5

(S3) Whenever x ¤ 0, it holds RkŒx� ¤ 0 for at least one k � K.

Remark 2.1. By the Schur Complement lemma, the set (2.1) given by the data
satisfying (S1), (S2) can be represented as

X D

�
x 2 Rn W 9t 2 T W

�
tkIdk RkŒx�

RkŒx� Idk

�
� 0; k � K

�
:

By the latter representation, X is nonempty, closed, convex, symmetric w.r.t. the
origin, and contains a neighbourhood of the origin (the latter is due to the fact that T

contains a strictly positive vector). This set is bounded if and only if the data, in
addition to (S1), (S2), satisfies (S3).
A spectratope. X � Rp is a set represented as a linear image of a basic spectratope:

X D
˚
x 2 Rp W 9.y 2 Rn; t 2 T / W x D Py; R2kŒy� � tkIdk ; 1 � k � K

	
;

(2.2)
where P is a p � n matrix, and RkŒ��, T are as in (S1)–(S3). We call the quantity

D D

KX
kD1

dk

the size of spectratope X.

5The inequalities between vectors are understood componentwise.
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Example 1 (Ellitopes). An ellitopewas defined in [13] as a setX � Rn representable
as

X D
˚
x 2 Rn W 9.y 2 RN ; t 2 T / W x D Py; yTSky � tk; k � K

	
; (2.3)

where Sk � 0,
P
K Sk � 0, and T satisfies (S2). Basic examples of ellitopes are:

– bounded intersections of centered at the origin ellipsoids/elliptic cylinders: when-
ever Sk � 0 and

P
k Sk � 0,

K\
kD1

˚
x 2 Rn W xTSkx � 1

	
D
˚
x 2 Rn W 9t 2 T D Œ0; 1�K W xTSkx � tk; 1 � k � K

	
:

– k � kp-balls, 2 � p � 1:˚
x 2 Rn W kxkp � 1

	
D
˚
x 2 Rn W 9t 2 T WD ft � 0; ktkp=2 � 1g W x

TSkx WD x
2
k � tk; k � n

	
:

It is immediately seen that an ellitope (2.3) is a spectratope as well. Indeed, let
Sk D

Prk
jD1 skj s

T
kj
, rk D Rank.Sk/, be a dyadic representation of the positive

semidefinite matrix Sk , so that

yTSky D
X
j

.sTkjy/
2; 8y;

and let

�T D nftkj � 0; 1 � j � rk; 1 � k � Kg W 9t 2 T W
X
j

tkj � tk; k � K
o
;

Rkj Œy� D s
T
kjy 2 S1 D R:

We clearly have

X D
˚
x 2 Rn W 9

�
ftkj g 2 �T ; y� W x D Py; R2kj Œy� � tkj I1; 8k; j 	

and the right hand side is a valid spectratopic representation of X. Note that the
spectratopic size of X isD D

PK
kD1 rk .

Example 2 (“Matrix box”). Let L be a positive definite d � d matrix. Then the
“matrix box”

X D
˚
X 2 Sd W �L � X � L

	
D
˚
X 2 Sd W �Id � L�1=2XL�1=2 � Id

	
D
˚
X 2 Sd W R2ŒX� WD ŒL�1=2XL�1=2�2 � Id
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is a basic spectratope (augment R1Œ�� WD RŒ�� with K D 1, T D Œ0; 1�). As a result,
a bounded set X � Rn given by a system of “two-sided” Linear Matrix Inequalities,
specifically,

X D
˚
x 2 Rn W 9t 2 T W �

p
tkLk � SkŒx� �

p
tkLk; 1 � k � K

	
where SkŒx� are symmetric dk �dk matrices linearly depending on x, Lk � 0 and T

satisfies (S2), is a basic spectratope:

X D
˚
x 2 Rn W 9t 2 T W R2kŒx� � tkIdk ; 1 � k � K

	
ŒRkŒx� D L

�1=2

k
SkŒx�L

�1=2

k
�:

More examples of spectratopes can be built using their “calculus.” It turns out that
nearly all basic operations with sets preserving convexity, symmetry w.r.t. the origin,
and boundedness (these are “built-in” properties of spectratopes), such as taking
finite intersections, direct products, arithmetic sums, linear images, and inverse
linear images under linear embeddings, as applied to spectratopes, yield spectratopes
as well. Furthermore, a spectratopic representation of the result of such an operation
is readily given by spectratopic representations of the operands; see Appendix A for
principal calculus rules.

2.2. Upper-bounding quadratic form on a spectratope. We are about to establish
the first crucial in our context fact about spectratopes — the possibility to tightly
upper-bound an (indefinite) quadratic form over a spectratope. To proceed, we need
some definitions.

Linearmaps associatedwith a spectratope. Weassociatewith a basic spectratope
(2.1), (S1)–(S3) the following entities:
1. Linear mappings

Q 7! RkŒQ� D
X
i;j

QijR
kiRkj WSn ! Sdk :

As is immediately seen, we have

RkŒyy
T � � R2kŒy�; (2.4)

implying that RkŒQ� � 0 wheneverQ � 0, whence RkŒ�� is �-monotone:

Q0 � Q) RkŒQ
0� � RkŒQ�: (2.5)

Besides this, if � is a random vector taking values in Rn with covariance matrix Q,
we have

E�
˚
R2kŒ��

	
D E�

˚
RkŒ��

T �
	
D Rk

�
E�f��T g

�
D RkŒQ�; (2.6)

where the first equality is given by (2.4).
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2. Linear mappings ƒk 7! R�
k
Œƒk�WSdk ! Sn given by�

R�k Œƒk�
�
ij
D

1
2
Tr
�
ƒkŒR

kiRkj CRkjRki �
�
; 1 � i; j � n: (2.7)

It is immediately seen that R�
k
Œ�� is the adjoint of RkŒ��:

8.ƒk 2 Sdk ; Q 2 Sn/ W hƒk;RkŒQ�i D Tr
�
ƒkRkŒQ�

�
D Tr

�
R�k Œƒk�Q

�
D hR�k Œƒk�;Qi;

(2.8)

where hA;Bi D Tr.AB/ is the Frobenius inner product of symmetric matrices.
Besides this, we have6

ƒk � 0) R�k Œƒk� � 0: (2.9)

3. The linear spaceƒKDSd1�� � ��SdK of all ordered collectionsƒDfƒk 2Sdk gk�K
along with the linear mapping

ƒ 7! �Œƒ� WD
�
Tr.ƒ1/I : : : ITr.ƒK/

�
W ƒK ! RK :

Besides this, for a monotonic set T � RK we define:

– the support function of T

�T .g/ D max
t2T

gT t;

which clearly is a convex positively homogeneous, of degree 1, nonnegative real-
valued function on RK . Since T contains positive vectors, �T is coercive on RKC ,
meaning that �T .�

s/!C1 along every sequence f�s � 0g such that k�sk ! 1;

– the conic hull of T

KŒT � D cl
˚
Œt I s� 2 RKC1 W s > 0; s�1t 2 T

	
which clearly is a regular cone in RKC1 (i.e. it is closed, convex, and pointed with a
nonempty interior) such that

T D
˚
t W Œt I 1� 2 KŒT �

	
:

It is immediately seen that the cone .KŒT �/� dual toKŒT � can be described as follows:�
KŒT �

�
�
WD
˚
ŒgI r� 2 RKC1 W ŒgI r�T Œt I s� � 08Œt I s� 2 KŒT �

	
D
˚
ŒgI r� 2 RKC1 W r � �T .�g/

	
:

6Note that when ƒk � 0 and Q D yyT , the first quantity in (2.8) is nonnegative by (2.4), and
therefore (2.8) states that yTR�

k
Œƒk�y � 0 for every y, implying that R�

k
Œƒk� � 0.



Near-optimality of linear recovery from indirect observations 179

Proposition 2.2. Let C be a symmetric p � p matrix, let X � Rp be given by
spectratopic representation (2.2),

Opt D max
x2X

xTCx

and let

Opt� D min
ƒDfƒkgk�K

n
�T

�
�Œƒ�

�
W ƒk � 0; k � K; P

TCP �
X
k

R�k Œƒk�
o

�
�Œƒ� D ŒTr.ƒ1/I : : : ITr.ƒK/�

�
: (2.10)

Then (2.10) is solvable, and

Opt � Opt� � 2max
�
ln.2D/; 1

�
Opt; (2.11)

whereD D
P
k dk is the size of the spectratope X.

To explain where the result of the proposition comes from, let us prove right now
its easy part — the first inequality in (2.11); the remaining, essentially less trivial,
part of the proof is provided in Section 5.2. Let ƒ be a feasible solution to the
optimization problem in (2.10), and let x 2 X, so that x D Py for some y such that
R2
k
Œy� � tkIdk , k � K, for properly selected t 2 T . We have

xTCx D yT
�
P TCP

�
y

��
.a/

X
k

yTR�k Œƒk� y D
X
k

Tr
�
R�k Œƒk�yy

T
�
D�
.b/

X
k

Tr
�
ƒkRkŒyy

T �
�

D�
.c/

X
k

Tr
�
ƒkR

2
kŒy�

�
��
.d/

X
k

Tr
�
ƒktkIdk

�
D

X
k

tk Tr.ƒk/ D �T Œƒ� t

��
.e/

�T

�
�Œƒ�

�
;

where .a/ is due to the fact that ƒ is feasible for the optimization problem in (2.10),
.b/ is by (2.8), .c/ is by (2.4), .d/ is due to ƒK � 0 and R2

k
Œy��tkIdk , and .e/ is

by the definition of �T . The bottom line is that the value of the objective of the
optimization problem in (2.10) at every feasible solution to this problem upper-
bounds Opt, implying the first inequality in (2.11). Note that the derivation we have
carried out is nothing but a minor modification of the standard semidefinite relaxation
scheme.
Remark 2.3. Proposition 2.2 has some history. WhenX is an intersection of centered
at the origin ellipsoids/elliptic cylinders, it was established in [22]; matrix analogy
of the latter result can be traced back to [21], see also [26]. The case when X is a
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general-type ellitope (2.3) was considered in [13], with tightness guarantee slightly
better than in (2.11), namely,

Opt � Opt� � 4 ln.5K/Opt :

Note that in the case where X is an ellitope (2.3), Proposition 2.2 results in
a worse than O.1/ ln.K/ “nonoptimality factor” O.1/ ln.

PK
kD1 Rank.Sk//. We

remark that passing from ellitopes to spectratopes requires replacing elementary
bounds on deviation probabilities used in [13,22] by a more powerful tool — matrix
concentration inequalities, see [18, 29] and references therein.

3. Near-optimal linear estimation under random noise

3.1. Situation and goal. Given � �nmatrix B , consider the problem of estimating
linear image Bx of unknown deterministic signal x known to belong to a given set
X � Rn via noisy observation

! D Ax C �; (3.1)

whereA is a givenm�nmatrixA and � is random observation noise. In some signal
processing applications, the distribution of noise is fixed and is part of the data of the
estimation problem. In order to cover some interesting applications (cf. Section 3.4),
we allow for “ambiguous” noise distributions; all we know in advance is that this
distribution belongs to a familyP ofBorel probability distributions onRm associated,
in the sense of (1.2), with a given convex compact subset Q of the interior of the
cone SmC of positive semidefinitem�mmatrices. Actual distribution of noise in (3.1)
is somehow selected from P by nature (and may, e.g. depend on x).

In the sequel, for a Borel probability distribution P on Rm we write P4Q to
express the fact that CovŒP � is �-dominated by a matrix from Q:

fP4Qg ,
˚
9Q 2 Q W CovŒP � � Q

	
:

From now on we assume that all matrices from Q are positive definite.
Given Q and a norm k � k on R� , we quantify the risk of a candidate estimate —

a Borel function yx.�/WRm ! R� — by its .Q; k � k/-risk on X defined as

RiskQ;k�kŒyxjX� D sup
x2X;P4Q

E��P
˚
kyx.Ax C �/ � Bxk

	
; (3.2)

where k � k is some norm on R� . Our focus is on linear estimates— estimates of the
form

yxH .!/ D H
T!

given by m � � matrices H , and our current goal is to demonstrate that under some
restrictions on the signal domain X, a “good” linear estimate yielded by an optimal
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solution to an efficiently solvable convex optimization problem is near-optimal in
terms of its risk among all estimates, linear and nonlinear alike.

We assume here that setX is a spectratope (cf. (2.2)). Ideally, to compute a “good”
linear estimate onewould look forH whichminimizes the riskRiskQ;k�kŒyxH jX� inH .
This risk is generally difficult to compute even when X is a spectratope, and with our
approach, we minimize inH an efficiently computable upper bound on the risk rather
than the risk itself. In order this bound to be tight — good enough to allow to build a
near-optimal linear estimate, we have to impose further restrictions, specifically, we
make from now on the following
Assumption A. The unit ball B� of the norm k � k� conjugate to the norm k � k in the
definition (3.2) of the estimation risk is a spectratope:

B�D
˚
z 2 R� W 9y 2 Y W z DMy

	
;

Y WD
˚
y 2 Rq W 9r 2 R W S2` Œy� � r`If` ; 1 � ` � L

	
;

(3.3)

where the right hand side data are as required in a spectratopic representation.
Examples of norms k � k satisfying Assumption A include k � kq-norms on R� ,

1 � q � 2 (conjugates of the norms k � kp with 1=p C 1=q D 1, see Example 1 in
Section 2.1). Another example is nuclear norm k � kSh;1 on the space R� D Rp�q
of p � q matrices, kV kSh;1 D

P
�i .V /— the sum of singular values of a matrix V .

The conjugate of the nuclear norm is the spectral norm k � kSh;1 on R� D Rp�q , and
the unit ball of the latter norm is a basic spectratope (cf. Example 2 in Section 2.1):˚
Z 2 Rp�q W kZkSh;1 � 1

	
D
˚
Z W 9r 2 R D Œ0; 1� W S2ŒZ� � tIpCq

	
;

SŒZ� D

�
ZT

Z

�
:

It is immediately seen that the case when X is a spectratope (2.2) can be reduced to
the one where X is a basic spectratope — to this end it suffices to replace matrices
A and B with AP and BP , respectively, and to treat y rather than x D Py as the
signal underlying observation (3.1), see (2.2). We assume that this reduction has
been carried out in advance, so that from now on our signal set will be

X D
˚
x 2 Rn W 9t 2 T W R2kŒx� � tkIdk ; 1 � k � K

	
:

3.2. Building linear estimate. Observe that the .Q; k � k/-risk of the linear estimate
yxH .!/ D H

T!,H 2 Rm�� , can be upper-bounded as follows:

RiskQ;k�k

�
yxH .�/jX

�
D sup
x2X;P4Q

E��P
˚
kHT .Ax C �/ � Bxk

	
� sup
x2X



HTAx � Bx


C sup

P4Q

E��P
˚
kHT �k

	
� ˆX.H/C‰Q.H/;

(3.4)
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where

ˆX.H/ D max
x

˚
k.B �HTA/xk W x 2 X

	
; ‰Q.H/ D sup

P4Q

E��P
˚
kHT �k

	
:

While ˆX.H/ and ‰Q.H/ are convex functions of H , these functions can be
difficult to compute.7 In such a case, matrixH of a “good” linear estimate yxH which
is also efficiently computable can be chosen as a minimizer of the sum of efficiently
computable convex upper bounds on ˆX and ‰Q.

3.2.1. Upper-bounding ˆX.�/. With Assumption A in force, let us consider the
direct product spectratope

Z WD X � Y D
˚
ŒxIy� 2 Rn � Rq W 9s D Œt I r� 2 T �R W

R2kŒx� � tkIdk ; 1 � k � K; S
2
` Œy� � r`If` ; 1 � ` � L

	
D
˚
w D ŒxIy� 2 Rn � Rq W 9s D Œt I r� 2 S D T �R W

U 2i Œw� � siIgi ; 1 � i � I D K C L
	

with Ui Œ�� readily given by RkŒ�� and S`Œ��. Given a � � n matrix V and setting

W ŒV � D
1

2

�
V TM

M TV

�
it clearly holds

max
x2X
kVxk D max

x2X; z2B�
zTVx D max

x2X; y2Y
yTM TVx D max

w2Z
wTW ŒV �w:

Applying Proposition 2.2, we arrive at the following result (cf. Proposition 4.1):
Corollary 3.1. In the just defined situation, the efficiently computable convex function

x̂
X.H/ D min

ƒ;‡

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
W ƒ D

˚
ƒk 2 SdkC

	
k�K

;

‡ D
˚
‡` 2 Sf`C

	
`�L

;

� P
k R�

k
Œƒk�

1
2

�
B �HTA

�T
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
(3.5)

is a tight upper bound on ˆX.�/, namely,

8H 2 Rm�� W ˆX.H/ � x̂X.H/ � 2max
�
ln.2D/; 1

�
ˆX.H/;

D D
X
k

dk C
X
`

f`:

7For instance, computing‰X.H/ reduces to maximizing the convex function k.B�HTA/xk over
x 2 X, which is computationally intractable even when X is as simple as the unit box, and k � k is the
Euclidean norm.
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Recall, that here�
R�k Œƒk�

�
ij
D
1

2
Tr
�
ƒk
�
Rkik R

kj

k
CR

kj

k
Rkik

��
; where RkŒx� D

X
i

xiR
ki ;

�
S�` Œ‡`�

�
ij
D
1

2
Tr
�
‡`
�
S`i` S

j̀

`
C S

j̀

`
S`i`

��
; where S`Œy� D

X
i

yiS
`i ;

(3.6)
are the mappings (2.7) associated with Rk and S`,

�T .�/ D max
t2T

�T t; �R.�/ D max
r2R

�T r;

and

�
�
f„1; : : : ; „N g

�
D
�
Tr.„1/I : : : ITr.„N /

�
:

3.2.2. Upper-bounding ‰Q.�/. Our next observation is as follows (for proof, see
Section 5.4):

Lemma 3.2. Let Y be am� � matrix,Q 2 SmC, and P be a probability distribution
on Rm with CovŒP � � Q. Let, further, k � k be a norm on R� with the unit ball B�

of the conjugate norm k � k� given by (3.3). Finally, let ‡ D f‡` 2 Sf`C g`�L and a
matrix ‚ 2 Sm satisfy the constraint�

‚ 1
2
YM

1
2
M T Y T

P
` S�

`
Œ‡`�

�
� 0 (3.7)

(for notation, see (3.3) and (3.6)). Then

E��P
˚
kY T �k

	
� Tr.Q‚/C �R

�
�Œ‡�

�
: (3.8)

We have the following immediate consequence of Lemma 3.2.

Corollary 3.3. Let
�.‚/ D max

Q2Q
Tr.Q‚/ (3.9)

and

S‰Q.H/ D min
f‡`g`�L;‚2Sm

�
�.‚/C �R

�
�Œ‡�

�
W

‡` � 08`;

�
‚ 1

2
HM

1
2
M THT

P
` S�

`
Œ‡`�

�
� 0

�
: (3.10)

Then S‰Q.�/WRm�� ! R is efficiently computable convex upper bound on ‰Q.�/.
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Indeed, given Lemma 3.2, the only non-evident part of the corollary is that S‰Q.�/

is a well-defined real-valued function, which is readily given by Lemma 5.1, see
Section 5.1.

Remark 3.4. When ‡ D f‡`g`�L, ‚ is a feasible solution to the right hand side
problem in (3.10) and s > 0, the pair ‡ 0 D fs‡`g`�L, ‚0 D s�1‚ also is a feasible
solution; since �R.�/ and �.�/ are positively homogeneous of degree 1, we conclude
that S‰Q is in fact the infimum of the function

2

q
�.‚/�R

�
�Œ‡�

�
D inf
s>0

�
s�1�.‚/C s�R

�
�Œ‡�

��
over ‡;‚ satisfying the constraints of the problem (3.10).

In addition, for every feasible solution ‡ D f‡`g`�L, ‚ to the problem (3.10)
with MŒ‡� WD

P
` S�

`
Œ‡`� � 0, the pair ‡; y‚ D 1

4
HMM�1Œ‡�M THT is feasible

for the problem as well and 0 � y‚ � ‚ (Schur Complement Lemma), so that
�.y‚/ � �.‚/. As a result,

S‰Q.H/ D inf
‡

n
1
4
�
�
HMM�1Œ‡�M THT

�
C �R

�
�Œ‡�

�
W

‡ D
˚
‡` 2 Sf`C

	
`�L

; MŒ‡� � 0
o
: (3.11)

Illustration. Consider the case when kuk D kukp with p 2 Œ1; 2�, and let us apply
the just described scheme for upper-bounding ‰Q.�/, assuming Q D fV 2 SmC W
V � Qg for some given Q � 0, so that �.‚/ D Tr.Q‚/, ‚ � 0. The unit ball of
the norm conjugate to k � k, that is, the norm k � kq , q D p=.p � 1/ 2 Œ2;1�, is the
basic spectratope (in fact, ellitope)

B� D
˚
y 2 R� W 9r 2 R WD

˚
R�C W krkq=2 � 1

	
W S2` Œy� � r`; 1 � ` � L D �

	
;

S`Œy� D y`:

As a result, ‡ ’s from Remark 3.4 are collections of � positive semidefinite 1 � 1-
matrices, and we can identify them with �-dimensional nonnegative vectors � ,
resulting in �Œ‡� D � and MŒ‡� D Diagf�g. Besides this, for nonnegative �
we clearly have �R.�/ D k�kp=.2�p/. The optimization problem in (3.11) now
reads

S‰Q.H/ D inf
�2R�

˚
1
4
Tr
�
Q1=2H Diag�1f�gHTQ1=2

�
C k�kp=.2�p/ W � > 0

	
:

After setting a` D kCol`ŒQ1=2H�k2, (3.11) becomes

S‰Q.H/ D inf
�>0

�
1

4

X
i

a2i
�i
C k�kp=.2�p/

�
;
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resulting in S‰Q.H/ D kŒa1I : : : I a� �kp . Recalling what are ai ’s, we end up with

‰Q.H/ � S‰Q.H/ WD


�kCol1ŒQ1=2H�k2I : : : I kCol� ŒQ1=2H�k2

�


p
: (3.12)

Note that the bound (3.12) can be easily improved when � � N .0;Q/. Indeed, in this
case � D HT � is normal with components �i � N .0; a2i /, ai D kCol`ŒQ

1=2H�k2,
and therefore

‰Q.H/ D Efk�kpg �
�
E�fk�kppg

�1=p
D

p
2�.p C 1/=2

�1=2p

�X
i

a
p
i

�1=p
D

p
2�.p C 1/=2

�1=2p
kŒa1I : : : I a� �kp DW z‰Q.H/

�
� kŒa1I : : : I a� �kp

�
:

For instance, when p D 1 the bound z‰Q.H/ becomes exact and equalsr
2

�

X
i

ai D

r
2

�
‰Q.H/:

3.2.3. Putting things together: building presumably good linear estimate. Cor-
ollaries 3.1 and 3.3 imply the following recipe for building a “presumably good”
linear estimate:
Proposition 3.5. In the situation of Section 3.1 and under Assumption A, consider
the convex optimization problem (for notation, see (3.6) and (3.9))

Opt D min
H;ƒ;‡;‡ 0;‚

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C �.‚/ W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg; ‡
0
D f‡ 0` � 0; ` � Lg;� P

k R�
k
Œƒk�

1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0;

�
‚ 1

2
HM

1
2
M THT

P
` S�

`
Œ‡ 0
`
�

�
� 0

�
: (3.13)

The problem is solvable, and the H -component H� of its optimal solution yields
linear estimate yxH�.!/ D HT

� ! such that

RiskQ;k�k

�
yx.�/jX

�
� Opt : (3.14)

The only claim in Proposition 3.5 which is not an immediate consequence of
Corollaries 3.1, 3.3 is that problem (3.13) is solvable; this claim is readily given by
the fact that the objective clearly is coercive on the feasible set (recall that �.‚/ is
coercive on SmC due to Q � int SmC and that y 7! My is an onto mapping, since B�
is full-dimensional).
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Remark 3.6. In some applications, observations (1.1) have additional structure,
namely, ! is a T -element sample: ! D Œx!1I : : : I x!T � with components

x!t D xAx C �t ; t D 1; : : : ; T;

and �t are i.i.d. observation noises with zero mean distribution xP satisfying xP4 xQ
for some convex compact set xQ � int S xmC. In other words, we deal with repeated
observations, where for m D T xm,

A D Œ xAI : : : I xÃ

T

� 2 Rm�n for some xA 2 R xm�n;

Q D
˚
Q D Diagf xQ; : : : ; xQ™

T

g; xQ 2 xQ
	
:

(3.15)

It can be easily verified (see Section 5.5) that in the case of repeated observations
the optimization problem (3.13) responsible for the presumably good linear estimate
reduces to similar problem with size independent of T :
Proposition 3.7. In the case of repeated observations and under Assumption A,
the linear estimate of Bx yielded by an optimal solution to problem (3.13) can be
computed as follows. Consider the convex optimization problem

Opt D min
xH;ƒ;‡;‡ 0;x‚

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C

1
T
x�.x‚/ W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg; ‡
0
D ‡ 0` � 0; ` � Lg;� P

k R�
k
Œƒk�

1
2

�
BT � xAT xH

�
M

1
2
M T

�
B � xHT xA

� P
` S�

`
Œ‡`�

�
� 0;

�
x‚ 1

2
xHM

1
2
M T xHT

P
` S�

`
Œ‡ 0
`
�

�
� 0

�
; (3.16)

where
x�.x‚/ D max

xQ2 xQ

Tr. xQx‚/:

The problem is solvable, and the estimate in question is yielded by the xH -component xH�
of the optimal solution according to

yx
�
Œx!1I : : : I x!T �

�
D
1

T
xHT
�

TX
tD1

x!t ;

and the upper bound, provided by Proposition 3.5, on the risk RiskQ;k�kŒyx.�/jX� of
this estimate is Opt.
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3.3. Near-optimality in Gaussian case. The bound (3.14) for the risk of the linear
estimate yxH�.�/ constructed in (3.13) can be compared to the minimax optimal risk
of recovering Bx, x 2 X, from observations corrupted by zero mean Gaussian noise
with covariance matrix from Q; formally, this minimax optimal risk is defined as

RiskOptQ;k�kŒX� D sup
Q2Q

inf
yx.�/

h
sup
x2X

E��N .0;Q/

˚
kBx � yx.Ax C �/k

	i
;

where the infimum is taken over all estimates.
Proposition 3.8. Under the premise and in the notation of Proposition 3.5, let

M 2
� D max

W

˚
E��N .0;In/kBW

1=2�k2 W

W 2 W WD fW 2 SnC W 9t 2 T W RkŒW � � tkIdk ; 1 � k � Kg
	
I (3.17)

we have

RiskQ;k�k

�
yxH� jX

�
� Opt � C

s
ln.2F / ln

�
2DM 2

�

RiskOpt2Q;k�kŒX�

�
RiskOptQ;k�kŒX�;

(3.18)
where C is a positive absolute constant, and

D D
X
k

dk; F D
X
`

f`: (3.19)

For the proof, see Section 5.7.
Remark 3.9. The idea of the proof of Proposition 3.8 originates from [24]. Namely,
our goal is to upper-bound the optimal value Opt in the optimization problem (3.13),
which is an upper bound on the risk of the presumably good linear estimate yielded
by Proposition 3.5, in terms of the minimax optimal risk RiskOptQ;k�kŒX�. To this
end, we show that:
(1) Opt can be upper-bounded in terms of the optimal Bayesian risk

%ŒW;Q� D inf
yx.�/

EŒ�;���N .0;W /�N .0;Q/

˚
kB� � yx.A�C �/k

	
associatedwith observation noise � � N .0;Q/ and independent of this noise random
Gaussian signal � � N .0;W /, with properly selectedQ 2 Q and W 2 SnC;
(2) The above “properly selected W and Q” can be chosen in such a way that
the Bayesian risk %ŒW;Q� can, in turn, be upper-bounded in terms of the minimax
optimal risk RiskOptQ;k�kŒX�.
Combining (1) and (2), we arrive at the desired upper-bounding of Opt in terms of
RiskOptQ;k�kŒX�.
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It should be stressed that implementing the outlined, by itself quite transparent,
strategy is by far not straightforward; the main ingredients of the implementation
are Lemma 5.3 and the (far from being evident) fact that the upper bound (3.8)
on EfkY T �kg in the case of zero mean Gaussian � is tight, as stated by the following
lemma (see Section 5.6 for the proof).
Lemma 3.10. Let Y be an N � � matrix, let k � k be a norm on R� such that the
unit ball B� of the conjugate norm is the spectratope (3.3), and let � � N .0;Q/

for some positive semidefinite N � N matrix Q. Then the best upper bound on
 Q.Y / WD EfkY T �kg yielded by Lemma 3.2, that is, the optimal value OptŒQ� in
the convex optimization problem (cf. (3.10))

OptŒQ� D min
‚;‡

�
�R

�
�Œ‡�

�
C Tr.Q‚/ W ‡ D f‡` � 0; 1 � ` � Lg; ‚ 2 SN ;�

‚ 1
2
YM

1
2
M T Y T

P
` S�

`
Œ‡`�

�
� 0

�
(3.20)

(for notation, see (3.6) and Lemma 3.2) satisfies the identity

8.Q � 0/ W OptŒQ� D OptŒQ� WD min
G;‡Df‡`; `�Lg

�
�R

�
�Œ‡�

�
C Tr.G/ W ‡` � 0;�

G 1
2
Q1=2YM

1
2
M T Y TQ1=2

P
` S�

`
Œ‡`�

�
� 0

�
; (3.21)

and is a tight upper bound on  Q.Y /, namely,

 Q.Y / � OptŒQ� �
8

q
ln
�
4
p
2F=.

p
2 � e1=4/

�
p
2 � e1=4

 Q.Y / � 62
p
ln.44F / Q.Y /;

(3.22)
where F D

P
` f` is the size of the spectratope (3.3).

3.4. Illustration: covariance matrix estimation via indirect observations. Supp-
ose that we observe a sample

f�t D A�tgt�T ; (3.23)

where A is a given m � n matrix, and �1; : : : ; �T are sampled, independently of
each other, from zero mean Gaussian distribution with unknown covariance matrix #
known to satisfy


#� � # � #�; (3.24)

where 
 � 0 and #� � 0 are given. Our goal is to recover the linear image B.�/

of � , and the norm in which recovery error is measured satisfies Assumption A.
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For the covariance estimation problem to fit the framework presented in the
previous section we reformulate it as follows.
1. We represent the set f# 2 SnC W 
#� � # � #�g as the image of the basic
spectratope (matrix box)

V D fv 2 Sn W kvkSh;1 � 1g
�
k � kSh;1: the spectral norm

�
under affine mapping: we set #0 D ..1 C 
/=2/#�, � D .1 � 
/=2, and treat the
matrix

v D ��1#�1=2� .# � #0/#
�1=2
�

�
, # D #0 C �#

1=2
� v#1=2�

�
as the signal underlying our observations. Note that a priori information (3.24) on #
reduces to v 2 V .
2. We pass from observations �t to “lifted” observations �t�Tt 2 Sm, so that

Ef�t�Tt g D EfA�t�Tt AT g D A#AT D A
�
#0 C �A#

1=2
� v#1=2�

�
�

#Œv�

AT ;

and treat as “actual” observations the matrices

!t D �t�
T
t � A#0A

T ; 1 � t � T:

We have8

!t D Av C �t with Av D �A#1=2� v#1=2� AT and �t D �t�Tt � A#Œv�A
T : (3.25)

Observe that random matrices �1; : : : ; �T are i.i.d. with zero mean and covariance
mapping C Œv� (that of the random matrix-valued variable � D ��T � Ef��T g,
� � N .0; A#Œv�AT /) which satisfies (see Section 5.3 for the derivation)

8v 2 V W C Œv� � Q; he;Qhi D 2Tr.#�AT hA#�AT eA/; e; h 2 Sm: (3.26)

We have represented the problem of interest in the form described in Section 3.1 and
have specified all required data.

Numerical illustration. Here we report on preliminary numerical experiments with
the estimation problem stated above. They are restricted to the diagonal case where
A 2 Rn�n is nonsingular, B.�/ D B�BT with B 2 Rn�n, #� D In, and 
 D 0;
our goal is to recover B.�/ 2 Sn in the Frobenius (“Frobenius norm case”), or in

8In our current considerations, we need to operate with linear mappings acting from Sp to Sq .
We treat Sk as Euclidean space equipped with the Frobenius inner product hu; vi D Tr.uv/ and
denote linear mappings from Sp into Sq by capital calligraphic letters, like A, Q, etc. Thus, A

in (3.25) denotes the linear mapping which, on a close inspection, maps matrix v 2 Sn into the matrix
Av D AŒ#Œv�� #Œ0��AT .
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the nuclear norm (“nuclear norm case”). Our first observation is that the case of
square nonsingularA reduces immediately to the case of direct observationsA D In;
to this end it suffices to treat, as observations, vectors �t D A�1�t , see (3.23). It
is easily seen that the estimate given by Proposition 3.7 is “intelligent enough” to
recognize this possibility. Furthermore, the case of B 2 Rn�n reduces to the case of
diagonal B: if B D UDV T is the singular value decomposition of B , with our #�
and choice of the norm, we lose nothing when replacing B with D, and our design
again recognizes this possibility. Therefore, from the start, in our experiment we
assume that A D In and B.#/ D B#BT with diagonal B , and

#0 D
1
2
In; � D 1

2
; #Œv� D 1

2
In C

1
2
v; Av D 1

2
v:

Thus, the estimation problem in question is reduced to that of recovering the matrix

B#Œv�BT D 1
2
B2 C 1

2
BvB

from observations (3.25) stemming from a signal v known to satisfy v 2 V D

fv 2 Sn W v2 � Ing: The outlined setup, as compared to the general one, simplifies
dramatically optimization problem (3.16) (for details, see Appendix B) and allows to
run experiments with n in the range of hundreds.

In our simulations, we use T 2 f32; 128; 512g and diagonal matrix B with
diagonal entries Bi i D i�ˇ , with ˇ running through f0; 1; 2; 3g. For every
combination of T and ˇ from the just outlined ranges, we compute, in the Frobenius
and the nuclear norm cases, the linear estimate and (the upper bound on) its risk
as given by Proposition 3.7. Next, we run K D 100 simulations and record the
actual recovery errors as yielded by the linear estimate and the Maximum Likelihood
estimate (MLE) in the role of the reference point.9 In our experiments, the covariance
matrices underlying observations were generated as random rotations of diagonal
matrices with diagonal entries drawn, independently of each other, from the uniform
distribution on Œ0; 1�.

The results of experiments with covariance matrix of size n D 128 are presented
in Figures 1 and 2. The first figure displays the boxplots of the ratios of actual errors of
the linear estimators to the theoretical upper risk bounds for the Frobenius norm case
(plot (a)) and nuclear norm case (plot (b)). Each of four boxplot groups corresponds,
from left to right, to ˇ D 0, 1, 2, and 3; three boxplots inside each group correspond
to the observation sample lengths T D 32, 64, and 128. Boxplots for ratios of errors
of linear estimation to those of MLE for each simulation are displayed in Figure 2.
The “ordering” of boxplots is the same as in Figure 1; for better readability of the plots

9It is immediately seen that with our setup the ML estimate is as follows: given observations �t ,
1 � t � T (see (3.23) and recall that in our case A D In), we compute the empirical covariance
matrix yC D 1

T

PT
tD1 �t�

T
t . The MLE y# of the covariance matrix # of �t ’s is obtained by keeping

the eigenvectors of yC intact and projecting the eigenvalues of yC onto Œ0; 1�. The resulting MLE of
B.#/ D B#B is By#B .
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(a) Frobenius norm case.
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(b) Nuclear norm case.

Figure 1. Ratios of empirical errors of the linear estimation to the upper risk bounds. Boxplots for
100 realisations of randomized experiments.
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(a) Frobenius norm case.

0

0.5

1

1.5

2

2.5

3
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Figure 2. Boxplots for ratios of empirical errors of the linear estimation to the error of theMLE;
100 realisations of randomized experiments.

the data is “clipped” at the level 3. We see that no estimate “uniformly dominates”
the other one, and that the linear estimate outperforms the MLE when the number T
of observations is relatively low.10

4. Linear estimation under “uncertain-but-bounded” noise

We present here another application of the result of Proposition 2.2 — construction
of a linear estimate of a signal in the case of uncertain but bounded perturbation � in
the observation (1.1).

10The fact that the relative to linear estimation performance of MLE improves as T grows is completely
natural — the latter estimate is asymptotically optimal as T !1.
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4.1. Problem statement. Consider an estimation problemwhere, given an observa-
tion

! D Ax C �

of unknown signal x, known to belong to a given signal set X, one wants to recover
linear image Bx of x. Here A and B are given m � n and � � n matrices. Suppose
that all we know about � is that it belongs to a given compact set H (“uncertain-but-
bounded observation noise”). In the situation in question, given a norm k � k on R� ,
we quantify the accuracy of a candidate estimate ! 7! yx.!/ by its maximal on X

risk
RiskH

�
yxjX

�
D sup
x2X; �2H

kBx � yx.Ax C �/k

(“H -risk”).
This is a standard problem of optimal recovery (see, e.g. [19,20]). It is well known

that when H and X are convex compact sets, when specifying yx.!/ as (any) point
from fx 2 X W ! � Ax 2 Hg, we get a minimax optimal, within factor 2, estimate,
see also [27,28].We are about to show that when X and H are spectratopes, and the
unit ball of the norm k � k� conjugate to k � k is a basic spectratope, an efficiently
computable linear in observation estimate yxH D H! is near-optimal in terms of its
H -risk.11

Our initial observation is that the situation in question reduces straightforwardly
to that where there is no observation noise at all. Indeed, let Y D X �H ; then Y

is a spectratope, and we lose nothing when assuming that the signal underlying
observation ! is y D ŒxI �� 2 Y:

! D Ax C � D xAy; xA D ŒA; Im�;

while the entity to be recovered is

Bx D xBy; xB D ŒB; 0��m�:

With these conventions, the observation noise vanishes, while the H -risk of a
candidate estimate yx.�/WRm ! R� becomes the quantity

Riskk�k
�
yxjX �H

�
D sup
yDŒxI��2X�H

k xBy � yx. xAy/k:

To streamline the notation, let us assume that the outlined reduction has already been
carried out, so the problem of interest reads: given an observation

! D Ax 2 Rm;
11In the case where an “efficient description” of the sets H , X and the norm k � k is available, a

minimax optimal, within factor 2, nonlinear estimate can be computed efficiently. On the other hand,
its risk is generally hard to compute. Note that the linear estimate we discuss here, which comes with a
“reasonably tight” upper bound on its risk, can be of “numerical” interest in the situation where estimates
are to be computed repeatedly for different observations sharing common problem data — sets H , X and
the norm k � k.
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estimate the linear image Bx 2 R� of an unknown signal x known to belong to a
given spectratope X. The risk of a candidate estimate yx is defined as

Riskk�k
�
yxjX

�
D sup
x2X

kBx � yx.Ax/k;

and the norm k � k is such that the unit ball B� of the norm k � k� conjugate to k � k is
a basic spectratope:

B� WD
˚
u 2 R� W kuk� � 1

	
D
˚
u 2 R� W 9r 2 R W S2` Œu� � r`If` ; 1 � ` � L

	
;

where the right hand side data are as required in a spectratopic representation. By
the same reasoning as in Section 3.1, we lose nothing when assuming from now on
that the signal set is a basic spectratope:

X D
˚
x 2 Rn W 9t 2 T W R2kŒx� � tkIdk ; 1 � k � K

	
:

4.2. Near-optimality of linear estimation. Let yxH .!/ D HT! be a linear esti-
mate. We have

Riskk�k
�
yxH jX

�
D max

x2X



�B �HTA
�
x




D max
ŒuIx�2B��X

ŒuI x�T
� 1

2

�
B �HTA

�
1
2

�
B �HTA

�T �
ŒuI x�:

Applying Proposition 2.2, we arrive at item (i) of the following proposition (cf.
Corollary 3.1):

Proposition 4.1. In the situation of this section, consider the convex optimization
problem

Opt D min
H;‡Df‡`g;ƒDfƒkg

�
�R

�
�Œ‡�

�
C �T

�
�Œƒ�

�
W ‡` � 0; ƒk � 0; 8.`; k/;� P

` S�
`
Œ‡`�

1
2

�
B �HTA

�
1
2

�
B �HTA

�T P
k R�

k
Œƒk�

�
� 0

�
; (4.1)

where R�
k
Œ�� and S�

`
Œ�� are induced by RkŒ��, resp., SkŒ��, as explained in Section 2.1.

(i) The problem is solvable, and the risk of the linear estimate yxH�.�/ yielded by the
H -component of an optimal solution to (4.1) does not exceed Opt.

(ii) The linear estimate yxH� is near-optimal in terms of its H -risk:

Riskk�k
�
yxH� jX

�
� Opt � 2 ln.2D/RiskoptŒX�; D D

X
k

dkC
X
`

f`; (4.2)
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where RiskoptŒX� is the minimax optimal risk:

RiskoptŒX� D inf
yx
Riskk�k

�
yxjX

�
;

where inf is taken w.r.t. all possible estimates.

For a proof, see Section 5.8.

4.3. Numerical illustration. The construction12 from the proof of Proposition 4.1
item (ii) can be used to lower bound numerically the minimax risk Riskk�kŒyxH� jX�,
and we can compare the resulting lower bound on the “true” minimax risk with the
upper bound (4.1) on the risk of the linear estimate yielded by our approach, thus
quantifying numerically its conservatism.

We have conducted two experiments of the outlined type. In both experiments
the signal set X is the box

X D
˚
x 2 Rn W j jxj j � 1; 1 � j � n

	�
K D n; Rk D k

2eke
T
k ; k D 1; : : : ; K; T D Œ0; 1�

K
�
;

B is the n � n identity matrix, and n
2
� n sensing matrix A is a randomly rotated

matrix with singular values �j , 1 � j � n, forming a geometric progression, with
�1 D 1 and �n=2 D 0:01. In the first experiment the “dual-norm spectratope” B� is
a random parallelotope

B.P /
� D

˚
u 2 Rn W j�Ti xj � 1; 1 � i � n

	 �
L D n; R D Œ0; 1�L

�
:

In the second experiment B� is a random “matrix box”

B.M/
� D

�
u 2 Rn W




 nX
iD1

S ixi





Sh;1
� 1

� �
L D 1; R D Œ0; 1�

�
;

where S i 2 Rd�d are random symmetric matrices (n D d2=2 in the reported
experiments). With a natural implementations of the outlined bounding scheme we
arrive at simulation results presented in Figure 3. Observe that in all experiments
(100 random problems for each problem dimension) the suboptimality factor does not
exceed 1:9, while its theoretical estimation as in (4.2) varies in the interval Œ9:7; 22:2�.

12In short, the idea of the construction is as follows. We first note that the maximal norm kBxk for x
in the intersection of X and of the kernel of A, i.e. the optimal value of the problem

max
x
fkBxk W x 2X; Ax D 0g D max

x;u
fuTBx; u 2 B�; x 2X; Ax D 0g; (�)

lower bounds the minimax risk. Then we use semidefinite relaxation to compute a feasible solution ŒxuI xx�
to (�) and use the value xuTBxx to lower bound RiskoptŒX�. The reader is referred to the proofs of
Propositions 2.2 and 4.1 for details.



Near-optimality of linear recovery from indirect observations 195

n=8 n=16 n=32 n=64 n=128

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(a) Random parallelotope B.P/� .
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(b) Random “matrix box” B.M/
� .

Figure 3. Suboptimality factors as functions of the problemdimension. Boxplots for 100 realisa-
tions of randomized experiments.

Remark 4.2. Note that Propositions 3.5 and 3.8 also apply in the following “mixed”
observation scheme:

! D Ax C � C �;

where, as above,A is a givenm�nmatrix, x us unknown deterministic signal known
to belong to a given signal set X, � is a random noise with distribution known to
belong to a family P of Borel probability distributions on Rm satisfying (1.2) for a
given convex compact setQ � int SmC, and � is “uncertain-but-bounded” perturbation
known to belong to a given set H . As before, our goal is to recover Bx 2 R� via
observation !. Given a norm k � k on R� , we can quantify the performance of a
candidate estimate ! 7! yx.!/WRm ! R� by its risk

RiskQ;H ;k�k

�
yxjX

�
D sup
x2X;P4Q;�2H

E��P
˚
kBx � yx.Ax C � C �/k

	
:

Observe that the estimation problem associatedwith this “mixed” observation scheme
straightforwardly reduces to similar problem for random observation scheme, by the
same trick we have used in Section 4.1 to eliminate the observation noise. Indeed,
let us treat xC WD ŒxI �� 2 XC WD X � H and XC as the new signal/signal
set underlying our observation, and denote xAxC D Ax C �, xBxC D Bx, where
xA D ŒA; Im� and xB D ŒB; 0��m�. With these conventions, the “mixed” observation
scheme becomes

! D xAxC C �;

and for every candidate estimate yx.�/ it clearly holds

RiskQ;H ;k�k

�
yxjX

�
D RiskQ;k�k

�
yxjXC

�
:



196 A. Juditsky and A. Nemirovski

In other words, we are now in the situation of Section 3.1; assuming thatX andH are
spectratopes, so is XC, meaning that all results of Section 3 on constructing linear
estimates and their near-optimality are applicable in our present setup.

Note that within its scope (uncertain-but-bounded perturbation), Proposi-
tion 4.1 provides a stronger near-optimality characterisation of linear estimates than
Proposition 3.8. Indeed, the “suboptimality factor” in Proposition 4.1 depends
(logarithmically) solely on the sizes of the participating spectratopes, while in
Proposition 3.8 this factor is affected also by the actual minimax risk and deteriorates,
albeit only logarithmically, as the minimax risk goes to 0.

5. Proofs

5.1. Technical lemma. In the sequel, we repeatedly use the following technical
fact:
Lemma 5.1. Given basic spectratope (2.1), a positive definite n � n matrix Q and
setting ƒk D RkŒQ�, we get a collection of positive semidefinite matrices such thatP
k R�

k
Œƒk� is positive definite. As a corollary, wheneverMk , k � K, are positive

definite matrices, the matrix
P
k R�

k
ŒMk� is positive definite. In addition, the set

W D
˚
Q 2 Sn W Q � 0; 9t 2 T W RkŒQ� � tkIdk ; k � K

	
is nonempty convex compact set containing a neighbourhood of the origin.

Proof. Let us prove the first claim, Assuming the opposite, we can find a nonzero
vector y such that

P
k y

TR�
k
Œƒk�y � 0, whence

0 �
X
k

yTR�k Œƒk�y D
X
k

Tr
�
R�k Œƒk�Œyy

T �
�
D

X
k

Tr
�
ƒkRkŒyy

T �
�

(we have used (2.8) and (2.4)). Since ƒk D RkŒQ� � 0 due to Q � 0,
see (2.5), it follows that Tr.ƒkRkŒyy

T �/ D 0 for all k. Now, the linear
mapping RkŒ�� is�-monotone, andQ is positive definite, implying thatQ � rkyyT
for some rk > 0, whence ƒk � rkRkŒyy

T �. Therefore, Tr.ƒkRkŒyy
T �/ D 0

implies that Tr.R2
k
ŒyyT �/ D 0, that is, RkŒyy

T � D R2
k
Œy� D 0. Since RkŒ�� takes

values in Sdk , we get RkŒy� D 0 for all k, which is impossible due to y ¤ 0 and
property (S3), see Section 2.1.

The second claim is an immediate consequence of the first one. Indeed, whenMk

are positive definite, we can find 
 > 0 such that ƒk � 
Mk for all k � K;
invoking (2.9), we conclude that R�

k
Œƒk� � 
R�

k
ŒMk�, whence

P
k R�

k
ŒMk� is

positive definite along with
P
k R�

k
Œƒk�.

Finally, the only unevident component in the last claim of the lemma is that W is
bounded. To see that it is the case, let us fix a collection fMkg of positive definite
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matrices Mk 2 Sdk , and let us set M D
P
k R�

k
ŒMk�, so that M � 0 by already

proved part of the lemma. ForQ 2 W , we haveRkŒQ� � tkIdk , k � K, for properly
selected t 2 T , so that

Tr.QM/ D
X
k

Tr
�
QR�k ŒMk�

�
D

X
k

Tr
�
RkŒQ�Mk

�
�

X
k

tk Tr.Mk/

(we have used (2.8)), and the concluding quantity does not exceed properly selected
C <1 (since T is compact). Thus, W � fQ W Q � 0;Tr.QM/ � C g, whence W

is bounded due toM � 0.

5.2. Proof of Proposition 2.2.

5.2.1. Preliminaries: matrix concentration. We are about to use the following
deep matrix concentration result, see [29, Theorem 4.6.1]:

Theorem 5.2. Let Qi 2 Sn, 1 � i � I , and let �i , i D 1; : : : ; I , be independent
Rademacher (˙1 with probabilities 1=2) or N .0; 1/ random variables. Then for
all s � 0 one has

Prob
�


 IX

iD1

�iQi




>s� � 2n exp n � s2

2vQ

o
;

where k � k is the spectral norm, and vQ D k
PI
iD1Q

2
i k:

We also need the following immediate consequence of the theorem:

Lemma 5.3. Given spectratope (2.1), letQ 2 SnC be such that

RkŒQ� � �tkIdk ; 1 � k � K; (5.1)

for some t 2 T and some � 2 .0; 1�. Then

Prob��N .0;Q/f� 62 Xg � min
�
2De�1=2�; 1

�
; D WD

KX
kD1

dk :

Proof. When setting � D Q1=2�, � � N .0; In/, we have

RkŒ�� D Rk
�
Q1=2�

�
DW

nX
iD1

�i xR
ki
D xRkŒ��

withX
i

�
xRki
�2
D E��N .0;In/

˚
xR2kŒ��

	
D E��N .0;Q/

˚
R2kŒ��

	
D RkŒQ� � �tkIdk
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due to (2.6). Hence, by Theorem 5.2 as applied with Qi D xRki , s D
p
tk , we get

vQ � �tk , and therefore

Prob��N .0;Q/

˚
kRkŒ��k

2
� tk

	
D Prob��N .0;In/

˚
k xRkŒ��k

2
� tk

	
� 2dke�1=2�:

We conclude that

Prob��N .0;Q/f� 62 Xg � Prob��N .0;Q/

˚
9k W kRkŒ��k

2 > tk
	
� 2De�1=2�:

5.2.2. Proving Proposition 2.2.
1o. Under the premise of Proposition 2.2, let us set xC D P TCP , and consider the
conic problem

Opt# D max
Q;t

˚
Tr. xCQ/ W Q � 0; RkŒQ� � tkIdk ; 8k � K; Œt I 1� 2 KŒT �š

,t2T

	
:

(5.2)
Since T contains positive vectors, this problem is strictly feasible. Besides this, the
feasible set of the problem is bounded by Lemma 5.1 and since T is compact. Thus,
problem (5.2) is strictly feasible with bounded feasible set and thus is solvable along
with its conic dual, both problems sharing a common optimal value (Conic Duality
Theorem, see Appendix C):

Opt# D min
ƒDfƒkgk�K ;

ŒgIs�;L

n
s W Tr

�hX
k

R�k Œƒk� � L
i
Q
�
�

X
k

�
Tr.ƒk/C gk

�
tk

D Tr. xCQ/;8.Q; t/;ƒk � 08k; L � 0; s � �T .�g/
o

�
recall that the cone dual to KŒT � is fŒgI s� W s � �T .�g/g

�
D min

ƒ; ŒgIs�;L

n
s W
X
k

R�k Œƒk� � L D
xC ; g D ��Œƒ�;

ƒk � 0; 8k; L � 0; s � �T .�g/
o

D min
ƒ

n
�T

�
�Œƒ�

�
W

X
k

R�k Œƒk� �
xC ; ƒk � 0; 8k

o
D Opt� :

We see that (2.10) is solvable along with conic dual to problem (5.2), and

Opt# D Opt� :

2o. Problem (5.2), as we already know, is solvable; letQ�; t� be an optimal solution
to the problem. Next, let us set R� D Q

1=2
� , �C D R� xCR�, and let �C D UDU T

be the eigenvalue decomposition of �C , so that the matrix D D U TR� xCR�U is
diagonal, and the trace of this matrix is Tr.R� xCR�/ D Tr. xCQ�/ D Opt# D Opt�.
Now let V D R�U , and let � D V�, where � � R (i.e. � is n-dimensional
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random (Rademacher) vector with independent entries taking values ˙1 with
probabilities 1=2). We have

�T xC� D �T
�
V T xCV

�
� D �T

�
U TR� xCR�U

�
� D �TD� � Tr.D/ D Opt�; (5.3)

(recall thatD is diagonal) and

E�
˚
��T

	
D E�

˚
V��TV T

	
D V V T D R�UU

TR� D R
2
� D Q�:

From the latter relation,

E�
˚
R2kŒ��

	
D E�

˚
RkŒ��

T �
	
D Rk

�
E�f��T g

�
D RkŒQ�� � t

�
k Idk ; 1 � k � K:

(5.4)
On the other hand, with properly selected symmetric matrices xRki we have

xRkŒy� WD RkŒVy� D
X
i

xRkiyi

identically in y 2 Rn, whence

E�
˚
R2kŒ��

	
D E�

˚
R2kŒV��

	
D E�

nhX
i

�i xR
ki
i2o

D

X
i;j

E�f�i�j g xRki xRkj D
X
i

�
xRki
�2
:

This combines with (5.4) to imply thatX
i

�
xRki
�2
� t�k Idk ; 1 � k � K: (5.5)

3o. Let us fix k � K. Applying Theorem 5.2 with Qi D xRki and s D
p
t�
k
=�, we

derive from (5.5) that

Prob��R

˚
k xRkŒ��k

2 > t�k =�
	
� 2dke�1=2�;

and recalling the relation between � and �, we arrive at

Prob
˚
� W kRkŒ��k

2 > t�k =�
	
� 2dke�1=2�; 8� 2 .0; 1�: (5.6)

Now let us set x� D 1=2maxŒln.2D/; 1�, and let � 2 .0; x� /. For this �, the sum over
k � K of the right hand sides in inequalities (5.6) is < 1, implying that there exists
a realization x� of � such that

kRkŒx��k
2
� t�k =�; 8k;

or, equivalently,
xx WD �1=2P x� 2 X;

and
Opt � xxTC xx D ��T xC� D �Opt�

(the concluding equality is due to (5.3)). The resulting inequality holds true for every
� 2 .0; x� /, and we arrive at the right inequality in (2.11).
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5.3. Derivation of relation (3.26) of Section 3.4. Let us�-upper-bound the covar-
iance mapping C Œv� of � D ��T �Ef��T g, � � N .0; A#Œv�AT /. Observe that C Œv�

is a symmetric linear mapping of Sm into itself given by

hh;C Œv�hi D E
˚
hh; �i2

	
D E

˚
hh; ��T i2

	
� hh;Ef��T gi2; h 2 Sm:

Given v 2 V , setting � D #Œv�, so that 0 � � � #�, and denoting H .h/ D

�1=2AT hA�1=2, we obtain

hh;C Œv�hi D E��N .0;�/

˚
Tr2

�
hA��TAT

�	
� Tr2

�
hE��N .0;�/

˚
A��TAT

	�
D E��N .0;In/

˚
Tr2

�
hA�1=2��T �1=2AT

�	
� Tr2

�
hA�AT

�
D E��N .0;In/

˚�
�TH .h/�

�2	
� Tr2

�
H .h/

�
:

We have H .h/ D U Diagf�gU T with orthogonal U , so that for x� D U T� we get

E��N .0;In/

˚�
�TH .h/�

�2	
� Tr2

�
H .h/

�
D Ex��N .0;In/

˚�
x�T Diagf�gx�

�2	
�

�X
i

�i

�2
D Ex��N .0;In/

n�X
i

�i x�
2
i

�2o
�

�X
i

�i

�2
D

X
i¤j

�i�j C 3
X
i

�2i �
�X

i

�i

�2
D 2

X
i

�2i D 2Tr
��

H .h/
�2�
:

Thus,

hh;C Œv�hi D 2Tr
��

H .h/
�2�
D 2Tr

�
�1=2AT hA�AT hA�1=2

�
� 2Tr

�
�1=2AT hA#�A

T hA�1=2
� �

since 0 � � � #�
�

D 2Tr
�
#1=2� AT hA�AT hA#1=2�

�
� 2Tr

�
#1=2� AT hA#�A

T hA#1=2�
�

D 2Tr
�
#�A

T hA#�A
T hA

�
;

which implies (3.26).
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5.4. Proof of Lemma 3.2. In the case of (3.7), we have

kY T �k D max
z2B�

zT Y T � D max
y2Y

yTM T Y T �

��
(3.7)

max
y2Y

h
�T‚� C

X
`

yTS�` Œ‡`�y
i

D max
y2Y

h
�T‚� C

X
`

Tr
�
S�` Œ‡`�yy

T
�i

D�
(2.4); (2.8)

max
y2Y

h
�T‚� C

X
`

Tr
�
‡`S

2
` Œy�

�i
D�
(3.3)

�T‚� Cmax
y;r

nX
`

Tr
�
‡`S

2
` Œy�

�
W S2` Œy� � r`If` ; ` � L; r 2 R

o
��

‡`�0

�T‚� Cmax
r2R

X
`

Tr.‡`/r` � �T‚� C �R

�
�Œ‡�

�
:

Taking expectation of both sides of the resulting inequality w.r.t. distribution P of �
and taking into account that Tr.CovŒP �‚/ � Tr.Q‚/ due to ‚ � 0 (by (3.7)) and
CovŒP � � Q, we get (3.8).

5.5. Proof of Proposition 3.7. In the case of (3.15), problem (3.13) reads

Opt D min
HDŒ zH1I:::I zHT �;ƒ;‡;‡

0;

‚DŒ� t� �1�t;��T

(
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C

TX
tD1

x�.� t t / W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg; ‡
0
D f‡ 0` � 0; ` � Lg;� P

k R�
k
Œƒk�

1
2

�
BT � xA

T PT
tD1
zHt
�
M

1
2
M T

�
B �

�PT
tD1
zHT
t

�
xA
� P

` S�
`
Œ‡`�

�
� 0;

2666664
�1;1 � � � �1;T 1

2
zH1M

:::
: : :

:::
:::

�T;1 � � � �T;T 1
2
zHTM

1
2
M T zHT

1 � � �
1
2
M T zHT

T

P
` S�

`
Œ‡ 0
`
�

3777775 � 0
)
;

x�.�/ D max
xQ2 xQ

Tr. xQ�/;

(5.7)
where zHt are xm � � matrices, and � t� D Œ� � t �T , 1 � t; � � T , form a partition of
‚ 2 S xmT into xm � xm blocks. Problem (5.7) clearly admits a group of symmetries:
a permutation � of f1; : : : ; T g induces the transformation on the space of decision
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variables which keepsƒ;‡;‡ 0 intact and maps zHt into zH�.t/, and � t� into ��.t/�.�/;
this transformation preserves the feasible set and keeps intact the value of the
objective. Since the problem is convex and solvable, it admits a “symmetric” optimal
solution — one with zHt D zH , and � t t D � , 1 � t � T . From the concluding
semidefinite constraint in (5.7) it follows that�

� 1
2
zHM

1
2
zHTM T

P
` S�

`
Œ‡ 0
`
�

�
� 0;

where ‡ 0 stems from the symmetric solution in question. We conclude that Opt �
Opt, where

Opt D min
zH2R xm�� ;ƒ;‡;‡ 0;�

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C T x�.�/ W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg; ‡
0
D f‡ 0` � 0; ` � Lg;� P

k R�
k
Œƒk�

1
2

�
BT � T xAT zH

�
M

1
2
M T

�
B � T zHT xA

� P
` S�

`
Œ‡`�

�
� 0;

�
� 1

2
zHM

1
2
M T zHT

P
` S�

`
Œ‡ 0
`
�

�
� 0

�
: (5.8)

It is immediately seen that a feasible solution zH 2 R xm�� ; ƒ;‡;‡ 0; � to the
optimization problem in (5.8) gives rise to a feasible solution to (5.7) with the same
value of the objective, specifically, the solution H D Œ zH I : : : I zH�;ƒ;‡;‡ 0; ‚ D

Œ� t� D ��t;��T . We conclude that Opt D Opt, and an optimal solution
zH 2 R xm�� ; ƒ;‡;‡ 0; � to the optimization problem in (5.8) gives rise to a symmetric
optimal solution to (5.7). The associated linear estimate is

zHT

TX
tD1

!t ;

and its risk is upper-bounded by Opt D Opt. It remains to note that the optimization
problem in (3.16) is obtained from the optimization problem in (5.8) by substituting
zH D T �1 xH and � D T �2 x‚.

5.6. Proof of Lemma 3.10.
1o. Let us verify (3.21). When Q � 0, passing from variables .‚;‡/ in
problem (3.20) to the variables .G D Q1=2‚Q1=2; ‡/, the problem becomes exactly
the optimization problem in (3.21), implying that OptŒQ� D OptŒQ� when Q � 0.
As it is easily seen, both sides in this equality are continuous in Q � 0, and (3.21)
follows.



Near-optimality of linear recovery from indirect observations 203

2o. Let us set � D Q1=2� with � � N .0; IN / and Z D Q1=2Y . All we need to
complete the proof of Lemma 3.10 is to show that the quantity�

OptŒQ� D
�

Opt WD min
‚;‡Df‡`;`�Lg

�
�R

�
�Œ‡�

�
C Tr.‚/ W ‡` � 0;�

‚ 1
2
ZM

1
2
M TZT

P
` S�

`
Œ‡`�

�
� 0

�
(5.9)

satisfies

 I .Z/ � Opt �
8

q
ln
�
4
p
2F=.

p
2 � e1=4/

�
p
2 � e1=4

 I .Z/;

 I .Z/ D E��N .0;IN /

˚
kZT �k

	
:

(5.10)

3o. Let us represent Opt as the optimal value of a conic problem. Setting

K D KŒR� D cl
˚
Œr I s� W s > 0; r=s 2 R

	
;

we ensure that

R D
˚
r W Œr I 1� 2 K

	
; K� D

˚
ŒgI s� W s � �R.�g/

	
;

where K� is the cone dual to K. Consequently, (5.9) reads

Opt D min
‚;‡;�

†

� C Tr.‚/ W

‡` � 0; 1 � ` � L .a/�
‚ 1

2
ZM

1
2
M TZT

P
` S�

`
Œ‡`�

�
� 0 .b/�

� �Œ‡�I �
�
2 K� .c/

‡

: (P)

4o. Now let us prove that there exists matrix W 2 SqC and r 2 R such that

S`ŒW � � r`If` ; ` � L; (5.11)

and
Opt�

X
i

�i
�
ZMW 1=2

�
; (5.12)

where �1.�/ � �2.�/ � � � � are singular values.
To get the announced result, let us pass from problem (P) to its conic dual.

Applying Lemma 5.1 we conclude that (P) is strictly feasible; in addition, (P) clearly
is bounded, so that the dual to (P) problem (D) is solvable with optimal value Opt.
Let us build (D). Denoting by

ƒ` � 0; ` � L;

�
G �R

�RT W

�
� 0; Œr I �� 2 K
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the Lagrange multipliers for the respective constraints in (P), and aggregating these
constraints, the multipliers being the aggregation weights, we arrive at the following
aggregated constraint:

Tr.‚G/CTr
�
W
X
`

S�` Œ‡`�
�
C

X
`

Tr.ƒ`‡`/�
X
`

r` Tr.‡`/C�� � Tr
�
ZMRT

�
:

To get the dual problem, we impose on the Lagrange multipliers, in addition to the
initial conic constraints like ƒ` � 0, 1 � ` � L, the restriction that the left hand
side in the aggregated constraint, identically in‚, ‡` and � , is equal to the objective
of (P), that is,

G D I; S`ŒW �Cƒ` � r`If` D 0; 1 � ` � L; � D 1;

and maximize, under the resulting restrictions, the right-hand side of the aggregated
constraint. After immediate simplifications, we arrive at

Opt D max
W;R;r

˚
Tr.ZMRT / W W � RTR; r 2 R; S`ŒW � � r`If` ; 1 � ` � L

	
:

Note that r 2 R is equivalent to Œr I 1� 2 K, and W � RTR is the same as�
I �R

�RT W

�
� 0:

Now, to say that RTR � W is exactly the same as to say that R D SW 1=2 with the
spectral norm kSkSh;1 of S not exceeding 1, so that

Opt D max
W;S;r

˚
Tr
�
ŒZMŒSW 1=2�T

�
�
DTr.ŒZMW 1=2�ST /

W W � 0; kSkSh;1 � 1; r 2 R;

S`ŒW � � r`If` ; ` � L
	

and we can immediately eliminate the S -variable, using the well-known fact that for
every p � q matrix J , it holds

max
S2Rp�q ;kSkSh;1�1

Tr
�
JST

�
D kJ kSh;1;

where kJ kSh;1 is the nuclear norm (the sum of singular values) of J . We arrive at

Opt D max
W;r

˚
kZMW 1=2

kSh;1 W r 2 R; W � 0; S`ŒW � � r`Id` ; ` � L
	
:

The resulting problem clearly is solvable, and its optimal solution W ensures the
target relations (5.11) and (5.12).
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5o. GivenW satisfying (5.11) and (5.12), let UJV D W 1=2M TZT be the singular
value decomposition of W 1=2M TZT , so that U and V are, respectively, q � q and
N �N orthogonal matrices, J is q�N matrix with diagonal � D Œ�1I : : : I �p�; p D
minŒq; N �; and zero off-diagonal entries; the diagonal entries �i , 1 � i � p are the
singular values ofW 1=2M TZT , or, which is the same, of ZMW 1=2. Therefore, we
have X

i

�i � Opt : (5.13)

Now consider the following construction. Let � � N .0; IN /; we denote by �
the vector comprised of the first p entries in V�; note that � � N .0; Ip/,
since V is orthogonal. We then augment, if necessary, � by q � p independent
of each other and of � N .0; 1/ random variables to obtain a q-dimensional normal
vector � 0 � N .0; Iq/, and set � D U� 0; because U is orthogonal we also have
� � N .0; Iq/. Observe that

�TW 1=2M TZT � D �TUJV� D Œ� 0�T J� D

pX
iD1

�i�
2
i : (5.14)

To continue we need the following simple observations.
(1) One has

˛ WD Prob
� pX
iD1

�i�
2
i <

1

2

pX
iD1

�i

�
�

e1=4
p
2
Œ< 1�: (5.15)

The claim is evident when � WD
P
i �i D 0. Now let � > 0, and let us apply the

Cramer bounding scheme. Namely, given 
 > 0, consider the random variable

! D exp
�
1
2


X
i

�i � 

X
i

�i�
2
i

�
:

Note that ! > 0 a.s., and is > 1 when
Pp
iD1 �i�

2
i <

1
2

Pp
iD1 �i , so that ˛ � Ef!g,

or, equivalently, thanks to � � N .0; Ip/,

ln.˛/ � ln
�
Ef!g

�
D
1

2


X
i

�i C
X
i

ln
�
E
˚
expf�
�i�2i g

	�
�
1

2

h

� �

X
i

ln.1C 2
�i /
i
:

Function �
P
i ln.1C 2
�i / is convex in Œ�1I : : : I �p� � 0, therefore, its maximum

over the simplex f�i � 0; i � p;
P
i �i D �g is attained at a vertex, and we get

ln.˛/ � 1
2

�

� � ln.1C 2
�/

�
:

Minimizing the right hand side in 
 > 0, we arrive at (5.15).
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(2) Whenever ~ � 1, one has

Prob
˚
kMW 1=2�k� > ~

	
� 2F expf�~2=2g; (5.16)

with F given by (3.19).
Indeed, setting � D 1=~2 � 1 and ! D p�W 1=2�, we get ! � N .0; �W /. Let us
apply Lemma 5.3 to Q D �W , R in the role of T , L in the role of K, and S`Œ�� in
the role of RkŒ��. Denoting

Y WD
˚
y W 9r 2 R W S2` Œy� � r`If` ; ` � L

	
;

we have S`ŒQ� D �S`ŒW � � �r`If` , ` � L, with r 2 R (see (5.11)), so we are
under the premise of Lemma 5.3. Applying the lemma, we conclude that

Prob
˚
� W ~�1W 1=2� 62 Y

	
� 2F expf�1=.2�/g D 2F expf�~2=2g:

Recalling that B� D MY, we see that Probf� W ~�1MW 1=2� 62 B�g is indeed
upper-bounded by the right hand side of (5.16), and (5.16) follows.
(3) For ~ � 1, let

E~ D
n
.�; �/ W kMW 1=2�k� � ~;

X
i

�i�
2
i �

1

2

X
i

�i

o
:

Then one has

ProbfE~g � ˇ.~/ WD 1 �
e1=4
p
2
� 2F expf�~2=2g: (5.17)

Indeed, relation (5.17) follows from (5.15) and (5.16) due to the union bound.
When .�; �/ 2 E~ , we have

~kZT �k � kMW 1=2�k�kZ
T �k

� �TW 1=2M TZT �

D

X
i

�i�
2
i �

1

2

X
i

�i �
1
2
Opt;

(we have used (5.14) and (5.13)), so that whenever .�; �/ 2 E~ one has kZT �k �
1
2~

Opt. Hence, finally,

2E��N .0;IN /

˚
kZT �k

	
� Prob

˚
.�; �/ 2 E~

	
~�1Opt

�

h
1 �

e1=4
p
2
� 2F expf�~2=2g

i
~�1Opt;

and we arrive at (5.10) when specifying ~ as

~ D

s
2 ln

�
4
p
2F

p
2 � e1=4

�
:
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5.7. Proof of Proposition 3.8.

1o. Let

ˆ
�
H;ƒ;‡;‡ 0; ‚IQ

�
D �T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C Tr.Q‚/WM �Q! R;

where

M D

�
.H;ƒ;‡;‡ 0; ‚/ W ƒ D fƒk � 0; k � Kg;

‡ D f‡` � 0; ` � Lg; ‡
0
D f‡ 0` � 0; ` � Lg;� P

k R�
k
Œƒk�

1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0;

�
‚ 1

2
HM

1
2
M THT

P
` S�

`
Œ‡ 0
`
�

�
� 0

�
:

Looking at (3.13), we conclude immediately that the optimal value Opt in (3.13) is
nothing but

Opt D min
.H;ƒ;‡;‡ 0;‚/2M

�
x̂ .H;ƒ;‡;‡ 0; ‚/ WD max

Q2Q
ˆ.H;ƒ;‡;‡ 0; ‚IQ/

�
:

(5.18)
Note that the sets M and Q are closed and convex, Q is compact, and ˆ is a
continuous convex-concave function on M � Q. In view of these observations, the
fact that Q � int SmC combines with the Sion–Kakutani theorem to imply that ˆ
possesses saddle point .H�; ƒ�; ‡�; ‡ 0�; ‚�IQ�/ (min in .H;ƒ;‡;‡ 0; ‚/, max
inQ) on M �Q, whence Opt is the saddle point value of ˆ by (5.18). We conclude
that for properly selectedQ� 2 Q it holds

Opt D min
.H;ƒ;‡;‡ 0;‚/2M

ˆ.H;ƒ;‡;‡ 0; ‚IQ�/

D min
H;ƒ;‡;‡ 0;‚

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C Tr.Q�‚/ W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg; ‡
0
D f‡ 0` � 0; ` � Lg;� P
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k
Œƒk�

1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0;

�
‚ 1

2
HM

1
2
M THT

P
` S�

`
Œ‡ 0
`
�

�
� 0
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D min
H;ƒ;‡;‡ 0;G

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C �R

�
�Œ‡ 0�

�
C Tr.G/ W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg; ‡
0
D f‡ 0` � 0; ` � Lg;� P

k R�
k
Œƒk�

1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0;

�
G 1

2
Q
1=2
� HM

1
2
M THTQ

1=2
�

P
` S�

`
Œ‡ 0
`
�

�
� 0

�
D min

H;ƒ;‡

�
�T

�
�Œƒ�

�
C �R

�
�Œ‡�

�
C S‰.H/ W

ƒ D fƒk � 0; k � Kg; ‡ D f‡` � 0; ` � Lg;� P
k R�

k
Œƒk�

1
2
ŒBT � ATH�M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
;

S‰.H/ WD min
G;‡ 0

�
�R

�
�Œ‡ 0�

�
C Tr.G/ W ‡ 0 D f‡ 0` � 0; ` � Lg;�

G 1
2
Q
1=2
� HM

1
2
M THTQ

1=2
�

P
` S�

`
Œ‡ 0
`
�

�
� 0

�
;

(5.19)
where Opt is given by (3.13), and the equalities are due to (3.20) and (3.21).
2o. From now on we assume that the observation noise � in observation (3.1) is
� � N .0;Q�/. Besides this, we assume that B ¤ 0, since otherwise the conclusion
of Proposition 3.8 is evident.
3o. Let W be a positive semidefinite n � n matrix, let � � N .0;W / be random
signal, and let � � N .0;Q�/ be independent of �; vectors .�; �/ induce random
vector

! D A�C � � N
�
0; AWAT CQ�

�
:

Now, consider the problem where given ! we are interested to recover B�, and the
Bayesian risk of a candidate estimate yx.�/ is quantified by E�;�fkB�� yx.A�C �/kg.
Let us set

%ŒW � D inf
yx.�/

E�;�
˚
kB� � yx.A�C �/k

	
: (5.20)

Our first observation is that %ŒW � is “nearly attainable” with a linear estimate. Since
Œ!IB�� is zero mean Gaussian, the conditional expectation Ej!fB�g of B� given !
is linear in !: Ej!fB�g D xHT! for some xH depending on W only. Given an
estimate yx.�/, its Bayesian risk satisfies

% WD E�;!
˚
kB� � yx.!/k

	
D E!

˚
Ej!

˚
kB� � yx.!/k

		
� E!

˚
Ej!

˚
kB� � Ej!fB�gk

		
D E!

˚
kB� � xHT!k

	
;

(5.21)
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where the last inequality is due to the Anderson lemma [1]. Now (5.21) combines
with independence of �, � and the Jensen inequality to imply that

% � E�
˚
E�
˚
kB� � xHT .A�C �/k

		
� E�

˚
kE�

˚
B� � xHT .A�C �/

	
k
	
D E�

˚
k.B � xHTA/�k

	
;

that is,
E�
˚
k.B � xHTA/�k

	
� %: (5.22)

By “symmetric” reasoning,
E�
˚
k xHT �k

	
� %: (5.23)

In relations (5.22) and (5.23), xH depends solely onW , and % can be made arbitrarily
close to %ŒW �, thus we arrive at the following
Lemma 5.4. Let W be a positive semidefinite n � n matrix. Then the risk %ŒW �
defined by (5.20) satisfies the inequality

%ŒW � � 1
2

inf
H2Rm��

�
E��N .0;W /

˚
kŒB�HTA��k

	
CE��N .0;Q�/

˚
kHT �k

	�
: (5.24)

4o. Lemma 5.4 combines with Lemma 3.10 to imply the following result:
Lemma 5.5. Let W be a positive semidefinite n � n matrix. Then the risk %ŒW �
defined by (5.20) satisfies the inequality

%ŒW � �
�
2�ŒF �

��1 min
‡Df‡`;`�Lg;G;H

�
Tr.WG/C �R

�
�Œ‡�

�
C S‰.H/ W

‡` � 0; 8`;

�
G 1

2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
; (5.25)

where S‰.H/ is given by (5.19) and

�ŒF � D
8

p
2 � e1=4

s
ln
�

4
p
2F

p
2 � e1=4

�
:

Proof. LetH bem�� matrix. Applying Lemma 3.10 toN D m, Y D H ,Q D Q�,
we get

E��N .0;Q�/

˚
kHT �k

	
� ��1ŒF �S‰.H/: (5.26)

Applying Lemma 3.10 to N D n, Y D
�
B �HTA

�T ,Q D W , we get

�ŒF �E��N .0;W /

˚
kŒB �HTA��k

	
� min
‡Df‡`�0; `�Lg;G

�
�R

�
�Œ‡�

�
C Tr.WG/ W�

G 1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
:

The resulting inequality combines with (5.24) and (5.26) to imply (5.25).
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5o. For 0 < ~ � 1, let us set

.a/ W~ D
˚
W 2 SnC W 9t 2 T W RkŒW � � ~tkIdk ; 1 � k � K

	
;

.b/ Z D

��
‡ D f‡`; ` � Lg; G;H

�
W ‡` � 0; 8`;�

G 1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
:

(5.27)

Note thatW~ is a nonempty convex compact (byLemma5.1) set such thatW~ D ~W1,
andZ is a nonempty closed convex set. Consider the parametric saddle point problem

Opt.~/ D max
W 2W~

min
.‡;G;H/2Z

�
E.W I‡;G;H/ WD Tr.WG/C �R

�
�Œ‡�

�
C S‰.H/

�
:

(5.28)
This problem is convex-concave; utilizing the fact that W~ is compact and contains
positive definite matrices, it is immediately seen that the Sion–Kakutani theorem
ensures the existence of a saddle point whenever ~ 2 .0; 1�. We claim that

0 < ~ � 1) Opt.~/ �
p
~ Opt.1/: (5.29)

Indeed, Z is invariant w.r.t. scalings�
‡ D f‡`; ` � Lg; G;H

�
7!
�
�‡ WD f�‡`; ` � Lg; �

�1G;H
�
; Œ� > 0�:

When taking into account that �R.�Œ�‡�/ D ��R.�Œ‡�/, we get

E.W / WD min
.‡;G;H/2Z

E.W I‡;G;H/

D min
.‡;G;H/2Z

inf
�>0

E.W I �‡; ��1G;H/

D min
.‡;G;H/2Z

h
2

q
Tr.WG/�R

�
�Œ‡�

�
C S‰.H/

i
:

Because S‰ is nonnegative we conclude that wheneverW � 0 and ~ 2 .0; 1�, one has

E.~W / �
p
~E.W /;

which combines with W~ D ~W1 to imply that

Opt.~/ D max
W 2W~

E.W / D max
W 2W1

E.~W / �
p
~ max
W 2W1

E.W / D
p
~ Opt.1/;

and (5.29) follows.
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6o. We claim that

Opt.1/ D Opt; (5.30)

where Opt is given by (3.13) (and, as we have seen, by (5.19) as well). Note that
(5.30) combines with (5.29) to imply that

0 < ~ � 1) Opt.~/ �
p
~ Opt : (5.31)

Verification of (5.30) is given by the following computation. By the Sion–Kakutani
theorem,

Opt.1/ D max
W 2W1

min
.‡;G;H/2Z

˚
Tr.WG/C �R

�
�Œ‡�

�
C S‰.H/

	
D min
.‡;G;H/2Z

max
W 2W1

˚
Tr.WG/C �R

�
�Œ‡�

�
C S‰.H/

	
D min

.‡;G;H/2Z

n
S‰.H/C �R

�
�Œ‡�

�
Cmax

W

˚
Tr.GW / W W � 0; 9t 2 T W RkŒW � � tkIdk ; k � K

	o
D min

.‡;G;H/2Z

n
S‰.H/C �R

�
�Œ‡�

�
Cmax

W;t

˚
Tr.GW / W W � 0; Œt I 1� 2 KŒT �; RkŒW � � tkIdk ; k � K

	o
:

Now, usingConicDuality combinedwith the fact that .KŒT �/�DfŒgI s� W s��T .�g/g

we obtain

max
W;t

˚
Tr.GW / W W � 0; Œt I 1� 2 KŒT �; RkŒW � � tkIdk ; k � K

	
D min

Z;ŒgIs�;ƒDfƒkg

n
s W
˚
Z � 0; ŒgI s� 2

�
KŒT �

�
�
; ƒk � 0; k � K;

� Tr.ZW / � gT t C
X
k

Tr
�
R�k Œƒk�W

�
�

X
k

tk Tr.ƒk/ D G;

8
�
W 2 Sn; t 2 RK

�o
D min

Z;ŒgIs�;ƒDfƒkg

n
s W
˚
Z � 0; s � �T .�g/; ƒk � 0; k � K;

G D
X
k

R�k Œƒk� �Z; g D ��Œƒ�
o

D min
ƒ

n
�T

�
�Œƒ�

�
W ƒ D fƒk � 0; k � Kg; G �

X
k

R�k Œƒk�
o
;
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and we arrive at

Opt.1/ D min
‡;G;H;ƒ

�
S‰.H/C �R

�
�Œ‡�

�
C �T

�
�Œƒ�

�
W

‡ D f‡` � 0; ` � Lg; ƒ D fƒk � 0; k � Kg; G �
X
k

R�k Œƒk�;�
G 1

2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
D min

‡;H;ƒ

�
S‰.H/C �R

�
�Œ‡�

�
C �T

�
�Œƒ�

�
W

‡ D f‡` � 0; ` � Lg; ƒ D fƒk � 0; k � Kg;� P
k R�

k
Œƒk�

1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
D Opt [see (5.19)]:

Now we can complete the proof.

7o. Let us set

%� D inf
yx.�/

Risk
�
yxjX

�
; Risk

�
yxjX

�
D sup
x2X

E��N .0;Q�/

˚
kBx � yx.Ax C �/k

	
;

(5.32)
where inf is taken over all estimates. It is immediately seen that %� > 0 due toQ� � 0
(recall that Q� 2 Q and that Q � int SmC) combined with B ¤ 0 and 0 2 intX.
Consequently, there is an estimate zx.�/ such that RiskŒzxjX� � 3

2
%�. Further, when

x 2 Xnf0g, we have W WD xxT 2 W , see (3.17) and (2.4), and W 1=2 D W=kxk2.
Hence forM� as defined in (3.17) we have

M 2
� � E��N .0;In/

˚
kBW 1=2�k2

	
D kxk�22 kBxk

2E��N .0;In/

˚
.xT �/2

	
D kBxk2;

and we arrive at
x 2 X ) kBxk �M�: (5.33)

Now let us convert the estimate zx into the estimate yx defined as follows: yx.!/ is the
k � k-closest to zx.!/ point of the set BM� D fu W kuk � M�g. We have Bx 2 BM�

by (5.33), and because, by construction, yx is the closest to zx point of BM� , we get

x 2 X ) kBx � yx.!/k � kBx � zx.!/k C kzx.!/ � yx.!/k � 2kBx � zx.!/k:

We conclude that kyx.!/k �M� 8!, and

Risk
�
yxjX

�
� 2Risk

�
zxjX

�
� 3%�: (5.34)



Near-optimality of linear recovery from indirect observations 213

8o. For ~ 2 .0; 1�, let W~ be the W -component of a saddle point solution to the
saddle point problem (5.28). Then, by (5.31),
p
~ Opt � Opt.~/ D min

.‡;G;H/2Z

˚
Tr.W~G/C �R

�
�Œ‡�

�
C S‰.H/

	
D min

.‡;G;H/

�
Tr.W~G/C �R

�
�Œ‡�

�
C S‰.H/ W ‡` � 08`;�

G 1
2

�
BT � ATH

�
M

1
2
M T

�
B �HTA

� P
` S�

`
Œ‡`�

�
� 0

�
� 2�ŒF �%ŒW~ � (5.35)

(we have used (5.27.b) and (5.25); recall that %Œ�� is given by (5.20)). On the other
hand, when applying Lemma 5.3 to Q D W~ and � D ~, we obtain, in view of
relations 0 < ~ � 1, W~ 2 W~ ,

ı.~/ WD Prob��N .0;In/

˚
W 1=2
~ � 62 X

	
� 2D exp

˚
� .2~/�1

	
; (5.36)

withD given by (3.19). Setting

E~ D
˚
� W W 1=2

~ � 2 X
	
; Ec~ D RnnE~ ; † D DiagfIn;Q�g;

we have by definition of the risk %ŒW~ �

%ŒW~ � � E.�;�/�N .0;†/

˚
kBW 1=2

~ � � yx
�
AW 1=2

~ �C �
�
k
	

D E��N .0;In/

˚
E��N .0;Q�/

˚
kBW 1=2

~ � � yx.AW 1=2
~ �C �/k

		
D E��N .0;In/

˚
E��N .0;Q�/

˚
kBW 1=2

~ � � yx
�
AW 1=2

~ �C �
�
k
	
1f� 2 E~g

	
C E��N .0;In/

˚
E��N .0;Q�/

˚
kBW 1=2

~ � � yx.AW 1=2
~ �C �/k

	
1f� 2 Ec~g

	
� Risk

�
yxjX

�
C E��N .0;In/

˚�
kBW 1=2

~ �k CM�
�
1f� 2 Ec~g

	�
since kyx.�/k �M�

�
� 3%� CM�ı.~/C E��N .0;In/

˚
kBW 1=2

~ �k1f� 2 Ec~g
	�
we have used (5.34)

�
:

We conclude that

%ŒW~ � � 3%� CM�ı.~/C
�
E��N .0;In/

˚
kBW 1=2

~ �k2
	�1=2�Prob��N .0;In/f�2Ec~g

�1=2
� 3%� CM�

�
ı.~/C

p
ı.~/

� �
by (3.17); note that W~ 2 W due to ~ � 1

�
� 3%� C 2M�

p
ı.~/

�
since ı.~/ � 1

�
� 3%� C 2M�

p
2D exp

˚
� .4~/�1

	 �
we have used (5.36)

�
:

The bottom line here is that

0 < ~ � 1) %ŒW~ � � 3%� C 2M�
p
2D exp

n
�
1

4~

o
: (5.37)
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Observe that %� � M�, since due to (5.33), for the trivial — identically zero —
estimate xx.�/ of Bx one has RiskŒxxjX� �M�. It follows that setting

x~ D
1

4 ln
�
2M�
p
2D=%�

�
we ensure that x~ 2 .0; 1�, whence, by (5.37),

%ŒWx~ � � 4%�:

This combines with (5.35) to imply that
p
x~ Opt � 2�ŒF �%ŒWx~ � � 8�ŒF �%�:

Hence, finally,

Opt �
8�ŒF �
p
x~
%� �

64
p
2

p
2 � e1=4

s
ln
�

4
p
2F

p
2 � e1=4

�
ln
�
8M 2
�D

%2�

�
%�:

Noting that by definition of %� and RiskOptQ;k�kŒX� we have

%� � RiskOptQ;k�kŒX� �M�

(the concluding � is due to kBxk �M� for x 2 X), we arrive at (3.18).

5.8. Proof of Proposition 4.1.
1o. Item (i) is a direct consequence of Proposition 2.2, modulo the claim that
problem (4.1) is solvable, and we start with justifying this claim. Let F D ImA.
Clearly, feasibility of a candidate solution .H;ƒ;‡/ to the problem depends solely
on the restriction of the linear mapping z 7! HT z onto F , so that adding to the
constraints of the problem the requirement that the restriction of this linear mapping
on the orthogonal complement of F in Rm is identically zero, we get an equivalent
problem. It is immediately seen that in the resulting problem, the feasible solutions
with the value of the objective � a for every a 2 R form a compact set, so that the
latter problem (and thus, the original one) indeed is solvable.

Let us prove the near-optimality result of (ii).
2o. Observe that setting

% D max
x

˚
kBxk W x 2 X; Ax D 0

	
; (5.38)

we ensure that
RiskoptŒX� � %: (5.39)

Indeed, let xx be an optimal solution to the (clearly solvable) optimization problem
in (5.38). Then observation ! D 0 can be obtained from both the signals x D xx
and x D �xx, and therefore the risk of any (deterministic) recovery routine is at least
kBxxk D %, as claimed.
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3o. It may happen that KerA D f0g. In this case the situation is trivial: specifyingA�
as a partial inverse toA: A�A D In and settingHT D BA� (so thatB�HTA D 0),
‡` D 0f`�f` , ` � L, ƒk D 0dk�dk , k � K, we get a feasible solution to
the optimization problem in (4.1) with zero value of the objective, implying that
Opt# D 0; consequently, the linear estimate induced by an optimal solution to the
problem is with zero risk, and the conclusion of Proposition 4.1 is clearly true. With
this in mind, we assume from now on that KerA ¤ f0g. Denoting � D dimKerA,
we can build an n � � matrix E of rank � such that KerA is the image space of E.
4o. Setting

Z WD
˚
z 2 R� W Ez 2 X

	
D
˚
z 2 R� W 9.t 2 T / W xR2kŒz� � tkIdk ; k � K

	
; xRkŒz� D RkŒEz�;

C D

� 1
2
BE

1
2
ETBT

�
;

note that when z runs trough the spectratope Z, Ez runs exactly through the entire
set fx 2 X W Ax D 0g. With this in mind, invoking Proposition 2.2, we arrive at

% D max
gWkgk��1

max
z2Z

gTBEz D max
ŒuIz�2B��Z

ŒuI z�TC ŒuI z�

� Opt WD min
‡Df‡`W`�Lg;
ƒDfƒk ; k�Kg

�
�R

�
�Œ‡�

�
C �T

�
�Œƒ�

�
W ‡`�0; ƒk�0; 8.`; k/;

� P
` S
�
`
Œ‡`�

1
2
BE

1
2
ETBT ET

�P
k R�

k
ŒƒK �

�
E

�
� 0

�
(5.40)

(we have used the straightforward identity xR�
k
Œƒk� D ETR�

k
Œƒk�E). By the same

Proposition 2.2, the optimization problem in (5.40) specifying Opt is solvable, and

% � Opt � 2 ln.2D/%; D D
X
k

dk C
X
`

f`: (5.41)

5o. Let x‡ D fx‡`g, xƒ D fxƒkg be an optimal solution to the optimization problem
specifying Opt, see (5.40), and let

‡ D
X
`

S�` Œ
x‡`�; ƒ D

X
k

R�k Œ
xƒk�;

so that

Opt D �R

�
�Œx‡�

�
C �T

�
�Œxƒ�

�
and

�
‡ 1

2
BE

1
2
ETBT ETƒE

�
� 0: (5.42)
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We claim that for properly selected m � � matrixH it holds�
‡ 1

2

�
B �HTA

�
1
2

�
B �HTA

�T
ƒ

�
� 0: (5.43)

This claim implies the conclusion of Proposition 4.1: by the claim, we have Opt �
Opt, which combines with (5.41) and (5.39) to imply (4.2).

In order to justify the claim, assume that it fails to be true, and let us lead this
assumption to a contradiction. To this end, consider the semidefinite program

�� D min
�;H

�
� W

�
‡ 1

2

�
B �HTA

�
1
2

�
B �HTA

�T
ƒ

�
C �I�Cn � 0

�
: (5.44)

The problem clearly is strictly feasible, and the value of the objective at every feasible
solution is positive. In addition, the problem is solvable (by exactly the same argument
as in item 1o of the proof).

4o.b. As we have seen, (5.44) is a strictly feasible solvable problem with positive
optimal value ��, so that the problem dual to (5.44) is solvable with positive optimal
value. Let us build the dual problem. Denoting by�

U V

V T W

�
� 0

the Lagrange multipliers for the semidefinite constraint in (5.44) and taking inner
product of the left hand side of the constraint with themultiplier, we get the aggregated
constraint

Tr.U‡ /C Tr.Wƒ/C �
�
Tr.U /C Tr.W /

�
C Tr

�
.B �HTA/V T

�
� 0:

The equality constraints of the dual problem should make the homogeneous in �;H
part of the left hand side in the aggregated constraint identically equal to � , which
amounts to

Tr.U /C Tr.W / D 1; VAT D 0; (5.45)

so the aggregated constraint reads

� � �
�
Tr.U‡ /C Tr.Wƒ/C Tr.BV T /

�
:

The dual problem is to maximize the right hand side of the latter constraint over
Lagrange multiplier �

U V

V T W

�
� 0
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satisfying (5.45), and its optimal value is �� > 0, that is, there exists�
xU xV

xV T SW

�
� 0

such that A xV T D 0 and

Tr. xU‡ /C Tr.SWƒ/C Tr.B xV T / < 0: (5.46)

Adding to xU a small positive multiple of the unit matrix, we can assume, in addition,
that xU � 0. Now, the relation A xV T D 0 combines with the definition of E to imply
that xV T D EF for properly selected matrix F , so that�

xU F TET

EF SW

�
� 0:

Hence, by the Schur Complement Lemma,

SW � EF xU�1F TET ;

and (5.46) combines with ƒ � 0 to imply that

0 > Tr. xU‡ /C Tr.SWƒ/C Tr.B xV T /
D Tr. xU‡ /C Tr.SWƒ/C Tr.BEF /
� Tr. xU‡ /C Tr.EF xU�1F TETƒ/C Tr.BEF /

D Tr
��

‡ 1
2
BE

1
2
ETBT ETƒE

��
xU F T

F F xU�1F T

��
:

Bothmatrix factors in the concluding the chain Tr.�/ are positive semidefinite (the first
one due to (5.42), and the second—by theSchurComplementLemma); consequently,
the concluding quantity in the chain is nonnegative, which is impossible. We have
arrived at a desired contradiction.

A. Calculus of spectratopes

The principal rules of the calculus of spectratopes are as follows:
Finite intersections. If

X` D
˚
x 2 R� W 9.y` 2 Rn` ; t` 2 T`/ W

x D P`y
`; R2k`Œy

`� � t`kIdk` ; k � K`
	
; 1 � ` � L;
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are spectratopes, so is X D
T
`�L X`. Indeed, let

E D
˚
Œy D Œy1I : : : IyL� 2 Rn1 � � � � � RNL W P1y1 D P2y2 D � � � D PLyL

	
:

When E D f0g, we have X D f0g, so that X is a spectratope; when E ¤ f0g, we
have

X D
˚
x 2 R� W 9

�
y D Œy1I : : : IyL� 2 E; t D Œt1I : : : I tL� 2 T WD T1 � � � � � TL

�
W

x D Py WD P1y
1; R2k`Œy

`� � t`kIdk` ; 1 � k � K`; 1 � ` � L
	
I

identifying E and appropriate Rn, we arrive at a valid spectratopic representation
of X.
Direct product. If

X` D
˚
x` 2 R�` W 9.y` 2 Rn` ; t` 2 T`/ W

x` D P`y
`; R2k`Œy

`� � t`kIdk` ; k � K`
	
; 1 � ` � L;

are spectratopes, so is X D X1 � � � � �XL:

X1 � � � � �XL D
˚
x D Œx1I : : : I xL� W

9
�
y D Œy1I : : : IyL�; t D Œt1I : : : I tL� 2 T D T1 � � � � � T`

�
W

x D Py WD ŒP1y
1
I : : : IPLy

L�; R2k`Œy
`� � t`kIdk` ; 1 � k � K`; 1 � ` � L

	
I

Linear image. If

X D
˚
x 2 R� W 9.y 2 Rn; t 2 T / W x D Py; R2kŒy� � tkIdk ; k � K

	
is a spectratope and S is a � � � matrix, the set SX D fz D Sx W x 2 Xg is a
spectratope:

SX D
˚
z 2 R� W 9.y 2 Rn; t 2 T / W z D SPy; R2kŒy� � tkIdk ; k � K

	
:

Inverse linear image under embedding. If

X D
˚
x 2 R� W 9.y 2 Rm; t 2 T / W x D Py; R2kŒy� � tkIdk ; k � K

	
is a spectratope, andS is a ���matrixwith trivial kernel, the setS�1XDfz WSz2Xg

is a spectratope. Indeed, setting E D fy 2 Rm W Py 2 ImSg, we get a linear
subspace of Rn; if E D f0g, S�1X D f0g is a spectratope, otherwise we have

S�1X D
˚
z 2 R� W 9.y 2 E; t 2 T / W z D Qy; R2kŒy� � tkIdk ; k � K

	
;

where the linear mapping y 7! QyWE ! R� is uniquely defined by the relation
Py D SQy. When identifying E with appropriate Rn, we get a valid spectratopic
representation of S�1X.
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Arithmetic sum. If X`, ` � L, are spectratopes in R� , so is the arithmetic sum
X D X1 C � � � CXL of X`. Indeed, X is the image of X1 � � � � �XL under the
linear mapping Œx1I : : : I xL� 7! x1C � � � C xL, and taking direct products and linear
images preserve spectratopes.

B. Processing covariance estimation problem in the diagonal case

We start with setting some additional notation to be used when operating with
Euclidean space Sn.

– We denote xn D n.n C 1/=2 D dimSn, I D f.i; j / W 1 � i � j � ng, and for
.i; j / 2 I we set

eij D

(
eie

T
i ; i D j;

1p
2

�
eie

T
j C ej e

T
i

�
; i < j;

where ei are the standard basic orths inRn. Note that feij W .i; j / 2 Ig is the standard
orthonormal basis in Sn. Given v 2 Sn, we denote by x.v/ the vector of coordinates
of v in this basis:

xij .v/ D Tr.veij / D

(
vi i ; i D j;
p
2vij ; i < j;

.i; j / 2 I:

Similarly, for x 2 Rxn, we index the entries in x by pairs ij , .i; j / 2 I, and set
v.x/ D

P
.i;j /2Ip

xij e
ij , so that v 7! x.v/ and x 7! v.x/ are inverse to each other

linear isometries identifying the Euclidean spaces Sn and Rxn (recall that the inner
products on these spaces are, respectively, the Frobenius and the standard one).

– Recall that V is the matrix box˚
v 2 Sn W v2 � In

	
D
˚
v 2 Sn W 9t 2 T WD Œ0; 1� W v2 � tIn

	
:

We denote by X the image of V under the mapping x:

X D
˚
x 2 Rxn W 9t 2 Œ0; 1� W v2Œx� � tIn

	
:

Note that X is a basic spectratope.

Now we can assume that the signal underlying our observations is x 2 X, and the
observations themselves are

wt D x.!t / D x
�
1
2
v.x/

�
™
D
1
2
x

Czt ; zt D x.�t /:
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Note that zt 2 Rxn, 1 � t � T , are zero mean i.i.d. random vectors with covariance
matrixDŒx� satisfying, in view of (3.26), the relation

x 2 X ) DŒx� � 2Ixn

(recall that we are in the case of A D In, #� D In). Our goal is to estimate
B#Œv�BT D 1

2
BBT C 1

2
BvBT , or, what is the same, to recover

xBx WD
1

2
x
�
Bv.x/BT

�
:

Recall that we are in the situation where the norm in which the recovery error is
measured is either the Frobenius, or the nuclear norm on Sn; we “transfer” this
norm from Sn to Rxn. In the situation in question, Proposition 3.7 supplies the linear
estimate

yx
�
w.T /

�
D
1

T
HT
�

TX
tD1

wt

of xBx with H� stemming from the optimal solution to the convex optimization
problem presented in Proposition 3.7. It is immediately seen that under the
circumstances, this optimization problem reads:
in the Frobenius norm case:

Opt D min
xH;ƒ;�;�0;‚

�
Tr.ƒ/C � C � 0 C

2

T
Tr.‚/ W

xH 2 Rxn�xn; ƒ 2 SnC; � 2 RC; � 0 2 RC; ‚ 2 Sxn;�
R�Œƒ� 1

2

�
xBT � 1

2
xH
�

1
2

�
xB � 1

2
xHT
�

�Ixn

�
� 0;

�
‚ 1

2
xH

1
2
xHT � 0Ixn

�
� 0

�
I

(B.1)

in the nuclear norm case:

Opt D min
xH;ƒ;‡;‡ 0;‚

�
Tr.ƒ/C Tr.‡/C Tr.‡ 0/C

2

T
Tr.‚/ W

xH 2 Rxn�xn; ƒ 2 SnC; ‡ 2 SnC; ‡ 0 2 SnC; ‚ 2 Sxn;�
R�Œƒ� 1

2
Œ xBT � 1

2
xH�

1
2
Œ xB � 1

2
xHT � R�Œ‡�

�
� 0;

�
‚ 1

2
xH

1
2
xHT R�Œ‡ 0�

�
� 0

�
;

(B.2)
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where

R�ŒS� D
�
Tr
�
eijSek`

��
.i;j /2I;
.k;`/2I

2 Sxn; S 2 Sn:

So far, we did not use the fact that B is diagonal; this is what we intend to utilize
now. Specifically, it is immediately seen that with diagonal B ,

(1) The xn � xn matrix xB is diagonal, with diagonal entries xBij;ij D 1
2
Bi iBjj .

(2) Let E be the multiplicative group comprised of n � n diagonal matrices with
diagonal entries ˙1. Every matrix E 2 E induces diagonal xn � xn matrix FE with
diagonal entries˙1 such that

R�ŒESE� D FER�ŒS�FE ; 8
�
E 2 E; S 2 Sn

�
:

Indeed, when E 2 E and S 2 Sn, we have�
R�ŒESE�

�
ij;k`
D Tr

�
eij ŒESE�ek`

�
D Tr

�
SŒEek`E�ŒEeijE�

�
D Tr

�
SŒEi iEjjEkkE``e

k`eij �
�

D ŒFE �ij;ij ŒFE �k`;k` Tr
�
eijSek`

�
D ŒFER�ŒS�FE �ij;k`;

where FE is the diagonal xn � xn matrix with diagonal entries ŒFE �pq;pq D EppEqq ,
.p; q/ 2 I.

(3) When S 2 Sn is diagonal, R�ŒS� is diagonal as well.

Indeed, when S is diagonal and .i; j / 2 I, .k; `/ 2 I with .i; j / ¤ .k; `/,
the supports of matrices eij and .Sek`/T (the sets of cells where the entries of the
respective matrices are nonzero) do not intersect, whence�

R�ŒS�
�
ij;k`
D Tr

�
eijSek`

�
D

X
p;q

Œeij �pq
��
Sek`

�T �
pq
D 0:

Observe that by (1)–(3) problems (B.1) and (B.2) have optimal solutionswith diagonal
matrix components. To see this, let us start with the nuclear norm case. Let
xH�; ƒ�; ‡�; ‡

0
�; ‚� be an optimal solution to the problem. We claim that when

E 2 E , the collection FE xH�FE ; Eƒ�E;E‡�E;E‡ 0�E;FE‚�FE is an optimal
solution as well. Indeed, the values of the objective at the original and the transformed
solution clearly are the same, so that all we need in order to justify our claim is to
check that the transformed solution is feasible, which boils down to verifying that it
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satisfies the LMI constraints of the problem. We have:

�
R�ŒEƒ�E�

1
2

�
xBT � 1

2
FE xH�FE

�
1
2

�
xB � 1

2
ŒFE xH�FE �

T
�

R�ŒE‡�E�

�
D

�
FER�Œƒ�FE

1
2
FE
�
xBT � 1

2
xH�
�
FE

1
2
FE
�
xB � 1

2
xHT
�

�
FE FER�Œ‡��FE

�
D DiagfFE ; FE g

�
R�Œƒ� 1

2

�
xBT � 1

2
xH�
�

1
2

�
xB � 1

2
xHT
�

�
R�Œ‡��

�
DiagfFE ; FE g � 0;

where the first equality is due to (3) combined with diagonality of xB stated in (1).
Similarly,

�
FE‚�FE

1
2
FE xH�FE

1
2
FE xH

T
� FE R�ŒE‡ 0�E�

�
D

�
FE‚�FE

1
2
FE xH�FE

1
2
FE xH

T
� FE FER�Œ‡ 0��FE

�
D DiagfFE ; FE g

�
‚�

1
2
xH�

1
2
xHT
� R�Œ‡ 0��

�
DiagfFE ; FE g � 0:

Thus, the transformed solution indeed is feasible, as claimed. Since the problem
is convex, the average, over E 2 E , of the above transformations of an optimal
solution again is an optimal solution, let it be denoted xH#; ƒ#; ‡#; ‡

0
#; ‚#. By

construction, ƒ#; ‡#; ‡
0
# are diagonal, whence by (3), R�Œƒ#�;R

�Œ‡#�;R
�Œ‡ 0#� are

diagonal as well. This combines with diagonality of xB to imply, similarly to the
above, that if L is a diagonal xn � xn matrix with diagonal entries ˙1, the collection
L xH#L;ƒ#; ‡#; ‡

0
#; L‚#L is an optimal solution to (B.2). Averaging these optimal

solutions over L’s, we conclude that the problem has an optimal solution comprised
of diagonal matrices, as claimed. The same reasoning, with evident simplifications,
works in the case of Frobenius norm.

We see that when solving (B.1) and (B.2), we lose nothing when restricting
ourselves to candidate solutions with diagonal matrix components, which, by (1)
and (3), automatically ensures the diagonality of blocks in the LMI constraints of
the problem. As a result, we, first, reduce dramatically the design dimension of the
problem, and, second, can now replace “large-scale” LMI constraints (which now
state that some 2� 2 block matrices with diagonal xn� xn blocks should be � 0) with
a bunch of small — just 2 � 2— LMI’s, thus making the problems easily solvable
by the existing software, e.g. CVX [10], provided n is in the range of hundreds.
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C. Conic duality

A conic problem is an optimization problem of the form

Opt.P / D max
x

˚
cT x W Aix � bi 2 Ki ; i D 1; : : : ; m; Px D p

	
; (P)

where Ki are regular (i.e. closed, convex, pointed and with a nonempty interior)
cones in Euclidean spacesEi . Conic dual of (P) is “responsible” for upper-bounding
the optimal value in (P) and is built as follows: selecting somehow Lagrange
multipliers �i for the conic constraints Aix � bi 2 Ki in the cones dual to Ki :

�i 2 K�i WD
˚
� W h�; yi � 0; 8y 2 Ki

	
;

and a Lagrange multiplier � 2 Rdimp for the equality constraints, every feasible
solution x to (P) satisfies the linear inequalities h�i ; Aixi � h�i ; bi i, i � m, same
as the inequality �TPx � �Tp, and thus satisfies the aggregated inequalityX

i

h�i ; Aixi C �
TPx �

X
i

h�i ; bi i C �
Tp:

If the left hand side of this inequality is, identically in x, equal to �cT x (or, which is
the same, �c D

P
i A
�
i �i C P

T�, where A�i is the conjugate of Ai ), the inequality
produces an upper bound �h�i ; bi i � pT� on Opt.P /. The dual problem

Opt.D/ D min
�1;:::;�m;�

n
�

X
i

h�i ; bi i � p
T� W

�i 2 K�i ; i � m;
X
i

A�i �i C P
T� D �c

o
(D)

is the problem of minimizing this upper bound. Note that (D) is a conic problem
along with (P) — it is a problem of optimizing a linear objective under a bunch of
linear equality constraints and conic inclusions of the form “affine function of the
decision vector should belong to a given regular cone.” Conic problem, like (P), is
called strictly feasible, if it admits a feasible solution x for which all conic inclusions
are satisfied strictly: Aix�bi 2 intKi for all i . Conic Duality Theorem (see, e.g. [2])
states that when one of the problems (P), (D) is bounded13 and strictly feasible, then
the other problem in the pair is solvable, and Opt.P / D Opt.D/.

References

[1] T. W. Anderson, The integral of a symmetric unimodal function over a symmetric convex
set and some probability inequalities, Proc. Amer. Math. Soc., 6 (1955), no. 2, 170–176.
Zbl 0066.37402 MR 69229

13For a maximization (minimization) problem, boundedness means that the objective is bounded from
above (resp., from below) on the feasible set.

https://zbmath.org/?q=an:0066.37402
http://www.ams.org/mathscinet-getitem?mr=69229


224 A. Juditsky and A. Nemirovski

[2] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization. Analysis,
algorithms, and engineering applications, MPS/SIAM Series on Optimization, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Zbl 0986.90032
MR 1857264

[3] A. Buchholz, Operator Khintchine inequality in non-commutative probability,Math. Ann.,
319 (2001), no. 1, 1–16. Zbl 0991.46035 MR 1812816

[4] D. L. Donoho, Statistical estimation and optimal recovery, Ann. Statist., 22 (1994), no. 1,
238–270. Zbl 0805.62014 MR 1272082

[5] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995),
no. 3, 613–627. Zbl 0820.62002 MR 1331258

[6] D. L. Donoho and I. M. Johnstone, Minimax estimation via wavelet shrinkage, Ann.
Statist., 26 (1998), no. 3, 879–921. Zbl 0935.62041 MR 1635414

[7] D. L. Donoho, R. C. Liu, and B. MacGibbon, Minimax risk over hyperrectangles, and
implications, Ann. Statist., (1990), 1416–1437. Zbl 0705.62018 MR 1062717

[8] S. Efromovich, Nonparametric curve estimation. Methods, theory, and applications,
Springer Series in Statistics, Springer-Verlag, New York, 1999. Zbl 0935.62039
MR 1705298

[9] S. Efromovich and M. Pinsker, Sharp-optimal and adaptive estimation for heteroscedastic
nonparametric regression, Statist. Sinica, (1996), 925–942. Zbl 0857.62037 MR 1422411

[10] M. Grant and S. Boyd, The CVX Users’ Guide. Release 2.1, 2014. Available at: http:
//web.cvxr.com/cvx/doc/CVX.pdf

[11] I. A. Ibragimov andR. Z. Khasminskii, Statistical estimation. Asymptotic theory, translated
from the Russian by Samuel Kotz, Applications of Mathematics, 16, Springer-Verlag,
Berlin, New York, 1981. Zbl 0467.62026 MR 620321

[12] I. A. Ibragimov and R. Z. Khas’minskii, Estimation of linear functionals in gaussian noise,
Theory Probab. Appl., 32 (1988), no. 1, 30–39.

[13] A. Juditsky and A. Nemirovski, Near-optimality of linear recovery in gaussian observation
scheme under k � k2

2
-loss, to appear in Ann. Statist. arXiv:1602.01355

[14] A. B. Juditsky and A. S. Nemirovski, Nonparametric estimation by convex programming,
Ann. Statist., 37 (2009), no. 5A, 2278–2300. Zbl 1173.62024 MR 2543692

[15] J. A. Kuks and W. Olman, Linear minimax estimation of regression coefficients. II
(Russian), Izv. Akad. Nauk Ehst. SSR, Fiz. Mat., 20 (1971), 480–482. Zbl 0282.62054
MR 319298

[16] J. A. Kuks and W. Olman, Linear minimax estimation of regression coefficients. I
(Russian), Izv. Akad. Nauk Ehst. SSR, Fiz. Mat., 21 (1972), 66–72. Zbl 0227.62019
MR 319297

[17] F. Lust-Piquard, Inégalités de Khintchine dans Cp .1 < p < 1/, CR Acad. Sci. Paris,
303 (1986), 289–292. Zbl 0592.47038 MR 859804

[18] L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell, and J. A. Tropp, Matrix concentration
inequalities via themethod of exchangeable pairs,Ann. Probab., 42 (2014), no. 3, 906–945.
Zbl 1294.60008 MR 3189061

https://zbmath.org/?q=an:0986.90032
http://www.ams.org/mathscinet-getitem?mr=1857264
https://zbmath.org/?q=an:0991.46035
http://www.ams.org/mathscinet-getitem?mr=1812816
https://zbmath.org/?q=an:0805.62014
http://www.ams.org/mathscinet-getitem?mr=1272082
https://zbmath.org/?q=an:0820.62002
http://www.ams.org/mathscinet-getitem?mr=1331258
https://zbmath.org/?q=an:0935.62041
http://www.ams.org/mathscinet-getitem?mr=1635414
https://zbmath.org/?q=an:0705.62018
http://www.ams.org/mathscinet-getitem?mr=1062717
https://zbmath.org/?q=an:0935.62039
http://www.ams.org/mathscinet-getitem?mr=1705298
https://zbmath.org/?q=an:0857.62037
http://www.ams.org/mathscinet-getitem?mr=1422411
http://web.cvxr.com/cvx/doc/CVX.pdf
http://web.cvxr.com/cvx/doc/CVX.pdf
https://zbmath.org/?q=an:0467.62026
http://www.ams.org/mathscinet-getitem?mr=620321
https://arxiv.org/abs/1602.01355
https://zbmath.org/?q=an:1173.62024
http://www.ams.org/mathscinet-getitem?mr=2543692
https://zbmath.org/?q=an:0282.62054
http://www.ams.org/mathscinet-getitem?mr=319298
https://zbmath.org/?q=an:0227.62019
http://www.ams.org/mathscinet-getitem?mr=319297
https://zbmath.org/?q=an:0592.47038
http://www.ams.org/mathscinet-getitem?mr=859804
https://zbmath.org/?q=an:1294.60008
http://www.ams.org/mathscinet-getitem?mr=3189061


Near-optimality of linear recovery from indirect observations 225

[19] C.Micchelli and T. Rivlin, Lectures on optimal recovery, inNumerical analysis (Lancaster,
1984), 21–93, Lecture Notes in Mathematics, 1129, Springer, 1985. Zbl 0698.41024
MR 799030

[20] C. A. Micchelli and T. J. Rivlin, A survey of optimal recovery, in Optimal estimation in
approximation theory (Freudenstadt, 1976), 1–54, Proc. Internat. Sympos., Plenum, New
York, 1977. Zbl 0386.93045 MR 617931

[21] A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under
orthogonality constraints, Math. Program. Ser. B, 109 (2007), no. 2-3, 283–317.
Zbl 1156.90012 MR 2295145

[22] A. Nemirovski, C. Roos, and T. Terlaky, On maximization of a quadratic form over
intersection of ellipsoids with common center, Math. Program. Ser. A, 86 (1999), no. 3,
463–473. Zbl 0944.90056 MR 1733748

[23] A. Nemirovskii, Nonparametric estimation of smooth regression functions, J. Comput.
Sysr. Sci., 23 (1986), no. 6, 1–11. MR 844292

[24] M. Pinsker, Optimal filtration of square-integrable signals in gaussian noise, Prob. Info.
Transmission, 16 (1980), no. 2, 120–133. MR 624591

[25] G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps,
Astérisque, 247 (1998), vi+131pp. Zbl 0937.46056 MR 1648908

[26] A. M.-C. So, Moment inequalities for sums of random matrices and their applications
in optimization, Math. Program. Ser. A, 130 (2011), no. 1, 125–151. Zbl 1231.60007
MR 2853163

[27] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information, uncertainty,
complexity, Addison-Wesley Publishing Company, Advanced Book Program/World
Science Division, 1983. Zbl 0522.68041 MR 680041

[28] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-based complexity,
Academic Press, Boston, San Diego, and New York, 1988. Zbl 0654.94004 MR 958691

[29] J. A. Tropp, An introduction to matrix concentration inequalities, Found. Trends Mach.
Learn., 8 (2015), no. 1-2, 1–230. Zbl 06468266

[30] A. B. Tsybakov, Introduction to nonparametric estimation, revised and extended from the
2004 French original, translated by Vladimir Zaiats, Springer Series in Statistics. Springer,
New York, 2009. Zbl 1176.62032 MR 2724359

[31] L. Wasserman, All of nonparametric statistics, Springer Texts in Statistics, Springer, New
York, 2006. Zbl 1099.62029 MR 2172729

Received 24 May, 2017; revised 04 February, 2018

A. Juditsky, Laboratoire Jean Kuntzmann, Université Grenoble-Alpes,
700 Avenue Centrale, 38401 Domaine Universitaire de Saint-Martin-d’Hères, France
E-mail: anatoli.juditsky@univ-grenoble-alpes.fr
A. Nemirovski, H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA
E-mail: nemirovs@isye.gatech.edu

https://zbmath.org/?q=an:0698.41024
http://www.ams.org/mathscinet-getitem?mr=799030
https://zbmath.org/?q=an:0386.93045
http://www.ams.org/mathscinet-getitem?mr=617931
https://zbmath.org/?q=an:1156.90012
http://www.ams.org/mathscinet-getitem?mr=2295145
https://zbmath.org/?q=an:0944.90056
http://www.ams.org/mathscinet-getitem?mr=1733748
http://www.ams.org/mathscinet-getitem?mr=844292
http://www.ams.org/mathscinet-getitem?mr=624591
https://zbmath.org/?q=an:0937.46056
http://www.ams.org/mathscinet-getitem?mr=1648908
https://zbmath.org/?q=an:1231.60007
http://www.ams.org/mathscinet-getitem?mr=2853163
https://zbmath.org/?q=an:0522.68041
http://www.ams.org/mathscinet-getitem?mr=680041
https://zbmath.org/?q=an:0654.94004
http://www.ams.org/mathscinet-getitem?mr=958691
https://zbmath.org/?q=an:06468266
https://zbmath.org/?q=an:1176.62032
http://www.ams.org/mathscinet-getitem?mr=2724359
https://zbmath.org/?q=an:1099.62029
http://www.ams.org/mathscinet-getitem?mr=2172729
mailto:anatoli.juditsky@univ-grenoble-alpes.fr
mailto:nemirovs@isye.gatech.edu

	Introduction
	Preliminaries
	Spectratopes
	Upper-bounding quadratic form on a spectratope

	Near-optimal linear estimation under random noise
	Situation and goal
	Building linear estimate
	Near-optimality in Gaussian case
	Illustration: covariance matrix estimation via indirect observations

	Linear estimation under ``uncertain-but-bounded'' noise
	Problem statement
	Near-optimality of linear estimation
	Numerical illustration

	Proofs
	Technical lemma
	Proof of Proposition 2.2
	Derivation of relation (3.26) of Section 3.4
	Proof of Lemma 3.2
	Proof of Proposition 3.7
	Proof of Lemma 3.10
	Proof of Proposition 3.8
	Proof of Proposition 4.1

	Calculus of spectratopes
	Processing covariance estimation problem in the diagonal case
	Conic duality

