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Abstract. It iswell known that density estimation on the unit interval is asymptotically equivalent
to a Gaussian white noise experiment, provided the densities have Hölder smoothness larger
than 1=2 and are uniformly bounded away from zero.We derive matching lower and constructive
upper bounds for the Le Cam deficiencies between these experiments, with explicit dependence
on both the sample size and the size of the densities in the parameter space. As a consequence,
we derive sharp conditions on how small the densities can be for asymptotic equivalence to
hold. The related case of Poisson intensity estimation is also treated.
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1. Introduction

In nonparametric density estimation on the unit interval, we observe n i.i.d. random
variables from an unknown probability density f supported on Œ0; 1�. This model is
closely related to Poisson intensity estimation, where we observe a Poisson process
on Œ0; 1� with unknown intensity function nf . The notion of “closeness” between
these problems can be made precise via the Le Cam deficiency ı and Le Cam
(pseudo-)distance �, which we recall in Appendix E. If the parameter space ‚
consists of densities f on Œ0; 1� that are uniformly bounded away from zero and
have Hölder smoothness larger than 1=2, then a seminal result of Nussbaum [25]
establishes that these models are asymptotically equivalent in the Le Cam sense to
the Gaussian white noise model where we observe the Gaussian process .Yt /t2Œ0;1�
such that

dYt D 2
p
f .t/dt C n�1=2dWt ; t 2 Œ0; 1�; f 2 ‚; (1.1)

with .Wt /t2Œ0;1� a Brownian motion. Brown and Zhang [3] constructed a parameter
space with Hölder smoothness exactly 1=2 such that asymptotic equivalence fails to
hold, thereby establishing the sharpness of the smoothness constraint.
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The main goal of this article is to sharply quantify the rate of the Le Cam distance
between these three models with explicit dependence on both the smoothness of the
underlying function class and the size of the functions contained therein. To this
end, we derive matching upper and lower bounds for the rates of the various Le Cam
deficiencies under general conditions. As a by-product, we characterize exactly how
small densities can be for asymptotic equivalence to hold between these models.
This is of particular interest in Poisson intensity estimation, where low count data
is characteristic of many applied problems. Furthermore, since our upper bound is
constructive and provably sharp, it provides a blueprint to transform Poisson data
into Gaussian data in an optimal way with respect to the Le Cam distance.

We henceforth take the parameter space ‚ D ‚n to be a sample size dependent
subspace of ˇ-smooth Hölder densities. Such a notion is widely used in high-
dimensional statistics and turns out to be natural in our setting as well. Density
estimation is a qualitatively different problem for densities taking values near zero,
both in terms of estimation rates [26, 29] and asymptotic equivalence, as we show
below. Indeed, an n-dependent threshold turns out to be the correct notion to
characterize “small densities”, much as in the case of high-dimensional statistics.
We show that under general conditions, the squared Le Cam deficiencies between
either the density estimation experiment or Poisson intensity experiment and the
corresponding Gaussian white noise model are of the order

1 ^ n
1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx; (1.2)

where ^ denotes the minimum. Our main restriction is that for the upper bound we
require smoothness ˇ � 1. Recall that two experiments are said to be asymptotically
equivalent if both deficiencies tend to zero. In particular, if f is uniformly bounded
away from zero, we recover the rate 1^n.1�2ˇ/=.2ˇC1/ and so asymptotic equivalence
holds if and only if ˇ > 1=2.

The Le Cam distance between two experiments controls the maximal difference
in statistical risk of decision problems with loss function bounded by one, see
Strasser [35], and Le Cam and Yang [18]. In particular, if one solves any such
decision problemby transformingPoisson data intoGaussian data, which is a common
approach as discussed below, then the rate (1.2) provides a bound on the contribution
to the risk from the data transformation when using an optimal transformation, for
instance the one considered in this article. The Le Cam distance thus provides a
sharp description of the statistical cost associated to reducing one problem to another
and allows one to characterize the optimal such reduction.

Whilst explicit formulas for the Le Cam deficiency are known for some
parametric models (cf. Torgersen [36, Sections 8.5–8.6]), the existing theory for the
Le Cam distance between nonparametric models focuses on necessary and sufficient
conditions for asymptotic equivalence. Explicit upper bounds for the LeCamdistance
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are, however, sometimes available. For the models we consider, Carter [5] obtained
suboptimal upper bounds using a multinomial approximation. In view of the lower
bound we prove here, the approach of Brown et al. [2] yields the correct rate in terms
of n, but not ‚, even though their result is not stated in this form. Our upper bound
construction is related to the quantile coupling employed in [2], though obtaining
the correct dependence on the density f in (1.2) imposes significant additional
technical challenges. Explicit upper bounds have also been obtained for various
regression models [10,32–34]. Existing lower bound results have focused on proving
asymptotic nonequivalence of models rather than lower bounding the rate of the
Le Cam deficiency, see [3, 7, 31, 38].

To understand the advantage of having rates for the Le Cam deficiency beyond
simply asymptotic equivalence, one can make the analogy with consistency versus
convergence rates for an estimator. Consistency specifies that an estimator will
eventually be close to the true parameter, but this may occur only for extremely large
sample sizes. In contrast, rates of convergence allow for a much finer understanding
of the performance of estimators and provide a framework to compare different
procedures. Asymptotic equivalence is a qualitative statement that the experiments
will be close in the limit, while the rates at which the deficiencies tend to zero provide
a quantitative insight into the speed of this convergence.

A major motivating application for this work is nonparametric Poisson intensity
estimation, where there is a long list of techniques on transforming Poisson data into
approximately Gaussian data. These methods typically use local binning together
with variations of the parametric square root transform, see for instance [1, 8, 20] or
the recent survey article [12]. Given that there are multiple proposed transformations,
one would like a theoretical concept to compare the quality of the different
transformations, in particular against some information-theoretic optimal benchmark.
With regards to a large class of decision procedures, such a benchmark is provided
by the Le Cam distance.

More abstractly, given two sequences of statistical experiments

En.‚/ D
�
�n;An; .P

n
� W � 2 ‚/

�
and Fn.‚/ D

�
�0n;A

0
n; .Q

n
� W � 2 ‚/

�
;

a (measurable) mapM that sends probability measures P n
�
to probability measures

on the measurable space .�0n;A0n/ represents a method to transform data arising
in En.‚/ into data comparable to that generated in Fn.‚/. In particular, one
seeks a method to convert data arising from P n

�
into a “synthetic” observation

that is a good approximation to true data generated from the corresponding Qn
�
,

uniformly over � 2 ‚. The quality of such an approximation can be measured by
the total variation distance sup�2‚ kMP n� �Q

n
�
kTV. If this converges to zero, then

no statistical test can asymptotically tell whether given data are transformed data
originating from En.‚/ or true data from Fn.‚/. The Le Cam deficiency therefore
provides a benchmark for optimality in this regard and a rate-optimal approximation
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can be defined as one such that the corresponding mapM � attains this lower bound
(up to constants):

sup
�2‚

kM �P n� �Q
n
�kTV � inf

M
sup
�2‚

kMP n� �Q
n
�kTV DW ı

�
En.‚/;Fn.‚/

�
:

In particular, since our upper bound on the Le Cam deficiency is constructive, one
can deduce from it an approximation of the Poisson model by the Gaussian white
noise model (1.1) that is rate-optimal in this sense.

While the sharpness of the smoothness condition in Nussbaum’s result has been
established, the extent to which one can relax the assumption that the densities must
be uniformly bounded away from zero has received little study. A notable exception
is Mariucci [22], who studies densities of the form f � g, where g is known and
possibly small and f is unknown and uniformly bounded away from zero. From
an applied perspective, a uniform lower bound on the density is artificial and one
would like to weaken this condition. Low Poisson counts occur in applications, such
as image denoising, and existing results can rely on Gaussian approximations [20].
This regime is not well-understood and it would therefore be useful to understand
how such a Gaussian approximation behaves for small densities.

The rate (1.2) allows us to characterize exactly how small a density can be
for asymptotic equivalence to hold between density estimation or Poisson intensity
estimation and the Gaussian model (1.1). For example, if

inf
f 2‚

inf
x
f .x/� n

1�2ˇ
2ˇC3 ;

then asymptotic equivalence still holds. Since “small” is defined in (1.2) in an
integrated sense, even weaker assumptions are required if the densities are small on a
shrinking set: for example asymptotic equivalence still holds if ‚ contains densities
of the form

f .x/ / xˇ C n
�ˇ
ˇC1 sn;

where sn ! 1. Densities can therefore come arbitrarily close to the threshold
n�ˇ=.ˇC1/, which turns out to be the absolute lower limit since, under very weak
assumptions, asymptotic equivalence fails if

inf
f 2‚

inf
x
f .x/ . n

�ˇ
ˇC1 ;

see Theorem 1 of [31].
One might naturally wonder why the rate of the Le Cam deficiency becomes

slower if the parameter space contains small densities. A possible explanation is
that the information about f contained in the data is not the same in the different
models. If f is small in some interval, then in density estimation we observe very
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few observations in this region, whereas in the Gaussian white noise model (1.1) the
whole path .Yt /t2Œ0;1� is observed and the difficulty lies rather in separating small
signal from noise. Due to the different structures of these estimation problems, it
seems reasonable that they are further apart in the Le Cam distance when the densities
are small.

By the localization principle, it suffices to consider a local parameter space for
upper bounds on the Le Cam distance. Sharp estimation rates are therefore crucial,
since they determine the size of the local parameter space. In both density estimation
and the Gaussian white noise model (1.1), small densities can be estimated with
a faster pointwise rate of convergence recently derived in [26] and [29]. If f is
ˇ-smooth in an appropriate sense, then the pointwise estimation rate at any x 2 .0; 1/
is, up to logn factors,

n
�

ˇ
ˇC1 C

�
f .x/

n

� ˇ
2ˇC1

: (1.3)

If f .x/ is larger than n�ˇ=.ˇC1/ then the rate is of order .f .x/=n/ˇ=.2ˇC1/, while
if f .x/ is very small, in the sense that f .x/ � n�ˇ=.ˇC1/, then the convergence
rate is n�ˇ=.ˇC1/. Small densities can therefore be estimated with faster rates
of convergence. Note that if f is bounded from below, we recover the standard
n�ˇ=.2ˇC1/-rate of convergence. We shall refer to f .x/ � n�ˇ=.ˇC1/ as the
regular regime and to f .x/ � n�ˇ=.ˇC1/ as the irregular regime. While the faster
convergence rate for small densities means we can localize better, this does not
translate into better rates for the Le Cam distance, since for small densities the local
approximations are much worse.

Assuming known smoothness ˇ, one can use a density or Poisson intensity
estimator yfn to find a local parameter space ‚. yfn/ containing the true density with
high probability and whose size is determined by the estimation rate. It then suffices
to restrict to this local parameter space and the rate of the Le Cam distance is of the
possibly much faster order

1 ^ n
1�2ˇ
2ˇC1 sup

f 2‚. yfn/

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx � 1 ^ n

1�2ˇ
2ˇC1

Z 1

0

yfn.x/
�
2ˇC3
2ˇC1 dx;

provided yfn achieves the pointwise estimation rate (1.3). We may thus obtain faster
rates for the local asymptotic equivalence of these models compared with their global
asymptotic equivalence. Local asymptotic equivalence has been studied for example
in [4, 11]. Given this, yfn can also be used to check whether the density lies in the
regime where local asymptotic equivalence holds. Plugging yfn into the rate (1.2)
yields the estimate

In. yfn/ WD 1 ^ n
1�2ˇ
2ˇC1

Z 1

0

yfn.x/
�
2ˇC3
2ˇC1 dx;
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which with high probability gives the order of the Le Cam distance over the local
parameter space ‚. yfn/. In particular, if f0 has points in the irregular regime,
then In. yfn/ will typically be close to one. This provides a practical pre-test to verify,
for example, if a Gaussian approximation is suitable for low-count Poisson data.

Although for small densities, density estimation and the Gaussian white noise
model (1.1) are no longer asymptotically equivalent, many aspects of their statistical
theory, such as consistent testing, remain the same, see [31] for further discussion.
Indeed, the fact that many statistical decision problems have nearly the same
asymptotic properties in these three models irrespective of the underlying density
size makes it difficult to prove lower bounds for the Le Cam deficiencies. In the
regular regime, that is if inff 2‚ infx f .x/ � n�ˇ=.ˇC1/, we bound the Le Cam
deficiency from below by the difference of the Bayes risks for a decision problem
on a discrete parameter space equipped with a non-uniform prior. Considering
non-uniform priors seems necessary here in order to achieve the correct rate. The
construction of the lower bounds provides many insights regarding the sense in which
these models differ.

Mathematically, many of our techniques build on earlier works on asymptotic
equivalence, in particular Nussbaum [25], Brown and Zhang [3], Brown et al. [2] and
Low and Zhou [19]. While the upper bounds expand many existing techniques, the
lower bounds require several new concepts. Other works on asymptotic equivalence
include Jähnisch and Nussbaum [14] for density estimation and Genon-Catalot et
al. [9], and Meister and Reiß [24] for Poisson intensity estimation.
Notation. For two positive sequence .an/n and .bn/n, we write an . bn if there
is exists a constant C independent of n, such that an � Cbn for all n � n0 and
some n0 � 1. If an . bn and bn . an, we write an � bn. Similarly, an � bn
means limn!1 an=bn D 0. In some proofs, we additionally require that the constant
does not depend on certain parameters and we always indicate this at the beginning
of the proof. For two functions f; g defined on the same domain, we write f � g
if f .x/ � g.x/ for all x. Let k�kp denotes the usualLp-norm. Given two probability
measures P;Q defined on the same measurable space, the total variation distance,
Hellinger distance and Kullback–Leibler divergence are denoted by kP � QkTV,
H.P;Q/, and KL.P;Q/, respectively.

2. Main results

We now formally define the three statistical experiments considered in this article.
Density estimation EDn .‚/. We observe n i.i.d. copies X1; : : : ; Xn of a random
variable on Œ0; 1� with unknown Lebesgue density f . The corresponding statistical
experiment is

EDn .‚/ D
�
Œ0; 1�n; �

�
Œ0; 1�n

�
;
�
P nf W f 2 ‚

��
with P n

f
the product probability measure of X1; : : : ; Xn.
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Poisson intensity estimation EPn .‚/. We observe a Poisson process on Œ0; 1� with
intensity function nf and unknown density f 2 ‚. We thus observe the point
process

PN
iD1 ıXi , where X1; X2; : : : are i.i.d. random variables with density f ,

N is an independent Poisson(n) random variable and ıx is the Dirac measure at x.
This is equivalent to observing X1; : : : ; XN . Denoting the distribution of this point
process by xP n

f
, we can write the corresponding statistical experiment as

EPn .‚/ D
�
M;M;

�
xP nf W f 2 ‚

��
;

where M is the space of point measures equipped with the appropriate � -algebra M,
see Section 4 of [25] for further details.

Gaussian white noise experiment EGn .‚/.Weobserve theGaussian process .Yt /t2Œ0;1�
given by

dYt D 2
p
f .t/dt C n�1=2dWt ; t 2 Œ0; 1�;

where f 2 ‚ is unknown and W is a Brownian motion. The Gaussian white noise
experiment is

EGn .‚/ D
�
C
�
Œ0; 1�

�
; �
�
C
�
Œ0; 1�

��
;
�
Qn
f W f 2 ‚

��
with Qn

f
the distribution of .Yt /t2Œ0;1�, C.Œ0; 1�/ the space of continuous functions

on Œ0; 1� and �.C.Œ0; 1�// the � -algebra generated by the open sets with respect to the
uniform norm.

Function spaces. Denote by bˇc the largest integer strictly smaller than ˇ. The
Hölder semi-norm is given by

jf jCˇ WD sup
x¤y;

x;y2Œ0;1�

jf .bˇc/.x/ � f .bˇc/.y/j=jx � yjˇ�bˇc

and the Hölder norm is kf kCˇ WD kf k1Ckf .bˇc/k1Cjf jCˇ . Consider the space
of ˇ-smooth Hölder densities with Hölder norm bounded by R,

Cˇ .R/ WD

�
f W Œ0; 1�! R W f � 0;

Z 1

0

f .u/ du D 1; f .bˇc/ exists; kf kCˇ � R
�
:

If f is allowed to depend on n and 0 < ˇ � 2, the pointwise rate of estimation
at any x 2 .0; 1/ over the parameter space Cˇ .R/ is given by (1.3), up to logn-
factors (see [26, Theorems 3.1 and 3.3] and [29, Theorems 1 and 2]). This rate of
convergence does not extend beyond ˇ D 2 using the usual definition of Hölder
smoothness [29, Theorem 3]. To take advantage of higher order smoothness, we
must therefore modify our function class.

A natural way to extend such rates to smoothness ˇ > 2 is to impose a shape
constraint. On Cˇ define the flatness seminorm

jf jHˇ D max
1�j<ˇ

kjf .j /jˇ=jf jˇ�j k1=j1 ;
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with 0=0 defined as 0 and jf jHˇ D 0 for ˇ � 1. The quantity jf jHˇ measures the
flatness of a function near zero in the sense that if f .x/ is small, then the derivatives
of f must also be small in a neighbourhood of x. Define

kf kHˇ WD kf kCˇ C jf jHˇ

and consider the space of densities

Hˇ .R/ WD
˚
f 2 Cˇ .R/ W kf kHˇ � R

	
:

Notice that Hˇ .R/ D Cˇ .R/ for ˇ � 1. Properties of the function space Hˇ .R/

are studied in [30].
We are now ready to state the main results, beginning with the upper bound for

Poissonization. The proof of the following theorem is given in Section 3.
Theorem 1 (Upper bound between density and Poisson intensity estimation). If
‚ � Hˇ .R/ for ˇ > 0, then

�
�
EDn .‚/;E

P
n .‚/

�2 . n
�

2ˇ
2ˇC1 log2 n sup

f 2‚

Z 1

0

�
1

f .x/
^ n

ˇ
ˇC1

� 1
2ˇC1

dx:

We deduce that the squared Le Cam distance is of order at most n�ˇ=.ˇC1/ log2 n
and so asymptotic equivalence holds for any ˇ > 0 irrespective of the size of the
densities in ‚. If the densities are uniformly bounded away from zero then this rate
improves to n�2ˇ=.2ˇC1/ log2 n. The log2 n factor is an artifact of the proof.

Poisson intensity estimation is equivalent to observing N � Poi.n/ i.i.d. obser-
vations from the density f . Since N D n C OP .

p
n/, one can compare this to

the statistical information contained in
p
n additional observations. Mammen [21]

showed that for smooth parametric i.i.d. models, adding rn observations changes the
squared Le Cam distance byO.r2n=n2/. Heuristically, the corresponding bound for a
d -dimensional parameter with explicit dependence on d is O.dr2n=n2/. The rate in
Theorem 1 can be viewed as a nonparametric analogue. Indeed, we show in Section 5
that there is an effective parameter dimension mn !1 such that the rate equals

mnr
2
n

n2
(2.1)

with rn D
p
n. In the parametric case “ˇ D1”, we recover the rate

O.r2n=n
2/ D O.1=n/:

Theorem 2 (Upper bound between Poisson intensity estimation and Gaussian white
noise). Let 1

2
< ˇ � 1. If ‚ � Hˇ .R/ and inff 2‚ infx f .x/� n�ˇ=.ˇC1/ log8 n,

then

�
�
EDn .‚/;E

G
n .‚/

�2
C�

�
EPn .‚/;E

G
n .‚/

�2 . 1^n
1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx:
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The statement assumes smoothness ˇ > 1=2 since for ˇ � 1=2, asymptotic
equivalence fails even if all densities are uniformly bounded away from zero [3]. The
main restriction of this result is the assumption that ˇ � 1. As in [2], our proof relies
on a Haar wavelet decomposition and heavily exploits the fact that the Haar basis
functions are locally constant and have disjoint support at a fixed resolution level,
see Section 4.4. For tight upper bounds in the case ˇ > 1, expansions with respect
to more regular wavelets are required, but without the specific structure of the Haar
wavelet the coupling of the empirical wavelet coefficients in our construction becomes
infeasible. Since in dimension d > 1 asymptotic equivalence is expected to hold for
ˇ > d=2, the multivariate extension of our result requires different techniques. A
heuristic discussion of the rate in Theorem 2 is deferred to Section 5, since it relies
on technical devices introduced in Section 4.

The Le Cam distance� is a pseudo-metric on the class of statistical experiments
with the same parameter space, see Appendix E. To prove Theorem 2, it is therefore
enough to establish the rate for �.EPn .‚/;EGn .‚//2 since by Theorem 1,

�
�
EDn .‚/;E

G
n .‚/

�2
� 2�

�
EDn .‚/;E

P
n .‚/

�2
C 2�

�
EPn .‚/;E

G
n .‚/

�2
D 2�

�
EPn .‚/;E

G
n .‚/

�2
C o

�
1 ^ n

1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx

�
:

For the lower bounds on the Le Cam deficiencies, we must take the supremum
over densities which are not isolated in the parameter space and thus need to introduce
a suitable notion of interior parameter space. As a neighbourhood of a density f �,
consider the band

U.f �/ WD
˚
f 2 Hˇ .R/ W 1

2
f � � f � 2f �

	
:

Given a parameter space ‚ � Hˇ .R/, let R0 < R be fixed. Define the interior
parameter space ‚0 as the space of all f 2 ‚\Hˇ .R0/ such that U.f / � ‚. The
dependence of ‚0 on R0 is omitted. For example, for an arbitrary sequence .ın/
consider the parameter space ‚ D ff 2 Hˇ .R/ W f � ıng. The corresponding
interior parameter space is then ‚0 D ff 2 Hˇ .R0/ W f � 2ıng.

For the lower bounds, we distinguish between the regular and irregular regimes,
that is whether inff02‚0 infx0 f .x0/ is larger or smaller than n�ˇ=.ˇC1/. In the
irregular case, asymptotic equivalence always fails under very weak assumptions on
the parameter space, see Theorem 1 of [31]. The level n�ˇ=.ˇC1/ is a fundamental
threshold separating the “small” and “large” density regimes from a statistical
perspective, as can be seen by the qualitatively different minimax estimation rates
in (1.3). One way to view this is through the bias-variance tradeoff for estimation
in the Gaussian model (1.1). In the regular regime, one obtains the classical
nonparametric bias-variance tradeoff, while in the irregular regime, the variance
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of an optimal estimator is strictly larger than its bias. Another perspective is the
information geometry of the problem, measured through the Hellinger distance,
which behaves differently in these two regimes. In the “large regime”, it behaves
like the L2-distance, thereby leading to the usual classical nonparametric behaviour,
including the rate. As a density approaches zero however, the Hellinger distance
behaves more like the L1-distance, leading to the same rates occurring in irregular
models, such as in nonparametric regression with one-sided errors [15]. For further
discussion see [26, 29].

Theorem 3 (Lower bound between Poisson intensity estimation and Gaussian white
noise). If ‚ � Hˇ .R/ for ˇ > 0 and inff02‚0 infx0 f0.x0/ � n�ˇ=.ˇC1/, then
there exists an integer n0 such that for all n � n0,

ı
�
EPn .‚/;E

G
n .‚/

�2
^ ı

�
EGn .‚/;E

P
n .‚/

�2 & 1 ^ n
1�2ˇ
2ˇC1 sup

f 2‚0

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx:

For sufficiently large n, the lower bound matches the rate obtained in Theorem 2,
provided that the supremum over f 2 ‚ is of the same order as the supremum over
f 2 ‚0. As in [3], the proof is based on the construction of a decision problem and
comparison of the Bayes risk in the two experiments, which yields a lower bound on
the Le Cam deficiency. Since we are interested in the rates of the Le Cam deficiencies,
the exact Bayes risks must be approximated up to second order. In fact, we explicitly
construct a separate decision problem for every parameter f 2 ‚0, which quantifies
how well we can separate f from elements in the local neighbourhood U.f /.

Theorem 4 (The Le Cam deficiencies between density estimation andGaussian white
noise). Let 1

2
< ˇ � 1. If ‚ � Hˇ .R/, inff 2‚ infx f .x/� n�ˇ=.ˇC1/ log8 n and

1^ n
1�2ˇ
2ˇC1 sup

f 2‚0

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx � 1^ n

1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx; (2.2)

then there exists an integer n0 such that for all n � n0,

ı
�
EDn .‚/;E

G
n .‚/

�2
� ı

�
EGn .‚/;E

D
n .‚/

�2
� 1 ^ n

1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx:

The remaining sections are structured as follows. In Sections 3 and 4, we derive
upper bounds for the Le Cam distance and prove Theorems 1 and 2. Some heuristics
behind the rates for Poissonization and Gaussian approximation are presented in
Section 5. Lower bounds can be found in Section 6, where we provide the proofs
of Theorems 3 and 4. Technical results are deferred to the appendix, which also
contains a brief summary of the Le Cam deficiency in Appendix E.
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3. Asymptotic equivalence between density estimation
and Poisson intensity estimation

We now prove Theorem 1, which states that if ‚ � Hˇ .R/ for some ˇ > 0, then

�
�
EDn .‚/;E

P
n .‚/

�2 . n
�

2ˇ
2ˇC1 log2 n sup

f 2‚

Z 1

0

�
1

f .x/
^ n

ˇ
ˇC1

� 1
2ˇC1

dx

� n
�

ˇ
ˇC1 log2 n! 0:

(3.1)

The two experiments differ in the number of i.i.d. copies of X � f which are
observed. In the density estimation model, we observe n copies and in the Poisson
intensity model N copies, where N is drawn from a Poisson distribution with
intensity n. One strategy to bound the Le Cam distance is to “synchronize” the
models in the sense that (pseudo)-observations are generated in the model with fewer
observations. [25, Proposition 4.1] and [18, p.73] establish bounds based on this idea
(see also the related earlier work of Le Cam [17] and Mammen [21]). Asymptotic
equivalence of the density and Poisson experiments then holds for Hölder balls
whenever the Hölder index is larger than 1=2. A slightly different approach was
employed by Low and Zhou [19], which gives asymptotic equivalence for all Hölder
balls with positive smoothness index. Below, we show that combining this technique
with the faster convergence rates for estimation of small signals yields the rate (3.1).

A key ingredient in the proof of Theorem 1 is the localization principle that we
recall in Appendix E. More precisely, we apply Lemma 12 to the local parameter
space

‚
ˇ
1 .f0/ WD

�
f 2 ‚ W

ˇ̌
f .x/ � f0.x/

ˇ̌
� C

�
logn
n

� ˇ
ˇC1
C C

�
logn
n
f0.x/

� ˇ
2ˇC1

; 8x 2 Œ0; 1�

�
with C some sufficiently large constant. The constantsR and C are of no importance
and therefore omitted in the notation. The right-hand side is the upper bound on the
pointwise convergence rate given in (1.3), up to logarithmic factors. The next result
establishes the rate of convergence for the Le Cam distance on the local parameter
space ‚ˇ1 .f0/. The proof is given in Appendix A.
Theorem 5. For any ˇ > 0,

�
�
EDn

�
‚
ˇ
1 .f0/

�
;EPn

�
‚
ˇ
1 .f0/

��2 . n
�

2ˇ
2ˇC1 log2 n

Z 1

0

�
1

f0.x/
^ n

ˇ
ˇC1

� 1
2ˇC1

dx:
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Theorem 6. Let ˇ > 0 and ‚ � Hˇ .R/. In the nonparametric density estimation
experiment EDn .‚/, there exists an estimator yfn taking values in a finite subset of ‚
which satisfies

inf
f02‚

P nf0

�
f0 2 ‚

ˇ
1

�
yfn
��
D 1 �O.n�1/;

provided the constantC in the definition of‚ˇ1 .f0/ is chosen large enough. Moreover,
there exists an estimator in EPn .‚/ with the same properties.

The proof can be found in Appendix C. The rate (3.1) is now a direct consequence
of Lemmas 12 and 13, which allow one to piece together a global Markov kernel
using the estimator from Theorem 6 and local Markov kernels from Theorem 5. This
completes the proof of Theorem 1.

4. Asymptotic equivalence between Poisson intensity estimation
and Gaussian white noise

To establish the rate of the Le Cam distance between the Poisson intensity estimation
experiment and the Gaussian white noise experiment, Section 4.1 introduces a
suitable local parameter space together with an orthonormal basis of L2Œ0; 1� which
depends on this space. The Poisson process is expanded with respect to this basis in
Section 4.2. The same is done for the Gaussian white noise model in Section 4.3. It
then remains to couple the empirical basis coefficients in the Gaussian and Poisson
models. In Section 4.4 we discuss general bounds on the Hellinger distance, which
are then applied to the specific problem in Section 4.5. The proof is completed in
Section 4.6.

4.1. Localization and basis expansion. As in the proof of Theorem 1, we apply
the localization principle (see Section E) and consider for any f0 2 ‚ � Hˇ .R/ the
local parameter space

‚ˇ .f0/ D ‚
ˇ
C;R.f0/ WD

�
f 2 ‚ W 1

32
f0 � f � 32f0

and n
Z 1

0

.f .x/ � f0.x//
4

f0.x/3
dx � Cn

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx

�
;

for a sufficiently large constant C , depending only on R and ˇ. By (1.3), the
convergence rate for estimation of f .x/ in the regular regime is .f0.x/=n/ˇ=.2ˇC1/
up to logn factors. Replacing f .x/ � f0.x/ by C 1=4.f0.x/=n/ˇ=.2ˇC1/ in the
definition of ‚ˇ .f0/ then yields equality. The localization constraint is written via
integrals rather than pointwise to prevent unnecessary logn factors in the rate of the
Le Cam distance. Localization using integral constraints was also used in Section 2.2
of Dalalyan and Reiß [6].
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From now on let us work on ‚ˇ .f0/. A common approach in asymptotic
equivalence is to further split the localized experiment into so-called doubly local
experiments (cf. Grama and Nussbaum [10]), such that on each of these single
subexperiments, the unknown parameter can be estimated at the localization rate in
the definition of ‚ˇ .f0/. Since f0 is known in the local experiment, we may use
it to define a partition of Œ0; 1�, which provides the appropriate shrinking intervals
generating the doubly local experiments. Define

z0 WD 0 and ziC1 WD zi C

�
f0.zi /

n

� 1
2ˇC1

:

Let m be the index of the largest zi smaller than 1. Define the boundary corrected
version .xi /iD0;:::;m as

xi WD zi for i < m and xm WD 1: (4.1)

Further, write

�i WD xi � xi�1 D

�
f0.xi�1/

n

� 1
2ˇC1

C .1 � zm/1.i D m/: (4.2)

By assumption,

inf
f02‚

inf
x
f0.x/� n

�
ˇ
ˇC1

and so, for any positive constant c and sufficiently large n,�
f0.x/

n

� 1
2ˇC1

� c

�
f0.x/

R

� 1
ˇ

for all x. Applying Lemma 6 gives

1
2
f0.zj�1/ � f0.x/ � 2f0.zj�1/

for all x 2 Œzj�1; zj � and all j D 1; : : : ; m. Since

1 � zm �

�
f0.zm/

n

� 1
2ˇC1

;

we obtain for the remainder term�
f0.xm�1/

n

� 1
2ˇC1

� �m � 3

�
f0.xm�1/

n

� 1
2ˇC1

: (4.3)
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This also shows that for any fixed positive constant c,

�m � c

�
f0.xm�1/

R

� 1
ˇ

provided n is sufficiently large. Applying Lemma 6 and zj D xj for j D 1; : : : ; m�1
yields

1
2
f0.xj�1/ � f0.x/ � 2f0.xj�1/ for all x 2 Œxj�1; xj �, j D 1; : : : ; m: (4.4)

We thus obtain a second localization by further restricting the data in the local
experiment with parameter space ‚ˇ .f0/ to the intervals Œxj�1; xj �. We motivate
the specific choice of this decomposition by a heuristic argument showing it is natural
in terms of double localization. The local parameter space ‚ˇ .f0/ is defined via
an integral rather than pointwise constraint to avoid unnecessary logn factors in the
rate, so for simplicity consider instead ‚ˇ1 .f0/ from Section 3. Since infx f0.x/�
n�ˇ=.ˇC1/, this localization constraint essentially means that the density is known
pointwise up to an error of order .f0.x/=n/ˇ=.2ˇC1/. To show that decomposing
Œ0; 1� into the intervals Œxj�1; xj � is correct in the sense of double localization, we
therefore have to show that on each interval Œxj�1; xj �, the density can be estimated at
the rate .f0.x/=n/ˇ=.2ˇC1/. In the Poisson experiment, the number of observations
in each interval is

#
˚
i W Xi 2 Œxj�1; xj �

	
D n

Z xj

xj�1

f .x/ dx COP

�s
n

Z xj

xj�1

f .x/ dx

�
and the estimator

yf .x/ WD #
˚
i W Xi 2 Œxj�1; xj �

	
=.n�j / D f .x/COP

��
f0.x/

n

� ˇ
2ˇC1

�
;

x 2 Œxj�1; xj �;

thus has the correct rate. A similar result holds in the Gaussian white noise model,
which completes the argument. We also note that for rate-optimal estimation of f
with smoothness ˇ � 1, in both experiments it suffices to approximate f by a
function that is constant on each such interval, see the proof of Theorem 7. The total
number of such intervalsmn can thus be viewed as the effective parameter dimension.

Wedefine an orthonormal basis ofL2Œ0; 1� by decomposing Œ0; 1� into the intervals
Œxi�1; xi �. Let

 D 1
�
� 2 Œ0; 1=2/

�
� 1

�
� 2 Œ1=2; 1�

�
be the Haar mother wavelet and set

 j;k WD 2
j=2 .2j � �k/
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as usual. Then

f1g [
˚
 j;k W j D 0; 1; : : : I k D 0; 1; : : : ; 2

j
� 1

	
forms an orthonormal basis ofL2Œ0; 1�. For the sequence .xi /iD1;:::;m defined above,
identify L2Œ0; 1� with

Nm
iD1L

2Œxi�1; xi � and consider the Haar basis on each of the
intervals Œxi�1; xi �, that is

�i WD �
�
1
2

i 1
�
� 2 .xi�1; xi �

�
and  i;j;k WD �

�
1
2

i  j;k
�
��1i .� � xi�1/

�
:

The support of  i;j;k is

Ii;j;k WD
�
xi�1 C�ik=2

j ; xi�1 C�i .k C 1/=2
j
�

and  i;j;k is positive on IC
i;j;k
D Ii;jC1;2k and negative on I�

i;j;k
WD Ii;jC1;2kC1.

For any i ,
f�ig [

˚
 i;j;k W j D 0; 1; : : : I k D 0; 1; : : : ; 2

j
� 1

	
is an orthonormal basis of L2Œxi�1; xi �. For f 2 L2Œ0; 1� write

ci WD

Z
f .u/�i .u/ du D �

�
1
2

i

Z xi

xi�1

f .u/ du

for the approximation coefficients and

di;j;k WD

Z
f .u/ i;j;k.u/ du

for the wavelet coefficients. With

ƒ WD
˚
.i; j; k/ W i D 1; : : : ; m; j D �1; 0; 1; : : : ; k D 0; : : : ; 0 _ .2j � 1/

	
;

di;�1;0 WD ci , and  i;�1;0 WD �i , any f 2 L2Œ0; 1� can be decomposed as

f D

mX
iD1

ci�i C

mX
iD1

1X
jD0

2j�1X
kD0

di;j;k  i;j;k D
X

.i;j;k/2ƒ

di;j;k  i;j;k

with convergence in L2Œ0; 1�.
Lemma 1. If f 2 Hˇ .R/ with 0 < ˇ � 1, then for j � 0,

jdi;j;kj � R.2
�j�i /

ˇC
1
2 :

Proof. With ai;j;k WD xi�1 C�ik=2j ,

di;j;k D
�
�i2

�j
��1
2

Z ai;j;kC�i=2
jC1

ai;j;k

f .u/ � f
�
uC�i=2

jC1
�
du:

Taking absolute values and using the Hölder continuity of f yields the result.
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4.2. Rewriting Poisson intensity estimation as a Poisson count model. We now
decompose the Poisson intensity experiment with respect to the basis from the
previous section. For that define a new statistical experiment as follows. Let
.X1; : : : ; XN / be the jump times of a Poisson process on Œ0; 1� with time-varying
intensity x 7! nf .x/. Define the counts

Ni;j;k WD #
˚
X` 2 Ii;j;k W ` D 1; : : : ; N

	
; .i; j; k/ 2 ƒ; 0 � j � xJ C 1;

where xJ is the smallest integer larger than 3 log2.n/ and Ii;j;k is the support of  i;j;k
defined in the previous section. We thus have

Ni;j;k � Poi
�
n

Z
Ii;j;k

f .u/ du

�
;

and the counts Ni;j;k and Ni 0;j 0;k0 are independent whenever Ii;j;k and Ii 0;j 0;k0 are
disjoint. Denote by xP n

1;f
the distribution of the vector .Ni;j;k/.i;j;k/2ƒ; 0�j� xJC1 and

by sn its length. With P .Nsn/ the power set of Nsn , the Poisson count experiment
EP1;n.‚/ is then defined as

EP1;n.‚/ WD
�
Nsn ;P .Nsn/;

�
xP n1;f W f 2 ‚

��
:

On the local parameter space this experiment is close to EPn .‚/.
Proposition 1. Under the assumptions of Theorem 2, it holds that

�
�
EP1;n

�
‚ˇ .f0/

�
;EPn

�
‚ˇ .f0/

��2
D o.n�1/:

Proof. The experiment EPn .‚
ˇ .f0// is by construction more informative than

EP1;n.‚
ˇ .f0//. It is thus enough to prove that the original Poisson intensity can

be nearly reconstructed from the counts .Ni;j;k/.i;j;k/2ƒ; 0�j� xJC1.
Consider a Poisson process on Œ0; 1� with intensity nfn, where

fn D
X

.i;j;k/2ƒ;

j� xJ

di;j;k  i;j;k :

By construction,  i;j;k is constant on IC
i;j;k
D Ii;jC1;2k and I�

i;j;k
WD Ii;jC1;2kC1.

Thus, fn is constant on the intervals Ii; xJC1;k and therefore the counts on the highest
resolution level j D xJ C 1, that is .Ni; xJC1;k/i;k , form a sufficient statistic for fn.
Since counts on lower resolution levels can be constructed from .Ni; xJC1;k/i;k , we
conclude that .Ni; xJC1;k/.i;j;k/2ƒ;0�j� xJC1 is also a sufficient statistic for fn.

By (E.1) it is enough to bound the squared Hellinger distance between a Poisson
process with intensity nf and a Poisson process with intensity nfn, uniformly over
f 2 ‚ˇ .f0/. Using Lemma 11(i), the squared Hellinger distance is bounded from
above by

n

Z 1

0

�p
f .x/ �

p
fn.x/

�2
dx:
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Together with Lemma 1 and inff 2‚ infx f .x/ � n�1,

�
�
EP1;n

�
‚ˇ .f0/

�
;EPn

�
‚ˇ .f0/

��2
� sup
f 2‚ˇ.f0/

n

Z 1

0

�p
f .x/ �

p
fn.x/

�2
dx

� sup
f 2‚ˇ.f0/

n2
Z 1

0

�
f .x/ � fn.x/

�2
dx

D sup
f 2‚ˇ.f0/

n2
mX
iD1

X
j> xJ

2j�1X
kD0

d2i;j;k

� R2n2
mX
iD1

�
2ˇC1
i 2�2

xJˇ
D o.n�1/;

since
Pm
iD1�

2ˇC1
i �

Pm
iD1�i D 1, xJ > 3 log2.n/ and ˇ > 1=2.

4.3. Sequence space representation of the Gaussian white noise experiment.
Given f0 define the step function approximation

Tnf0 D

mX
iD1

f0.xi�1/1
�
� 2 Œxi�1; xi /

�
:

On the local parameter space ‚ˇ .f0/, we introduce the statistical experiment

zEGn
�
‚ˇ .f0/

�
D
�
C Œ0; 1�; �

�
C Œ0; 1�

�
;
�
zQn
f W f 2 ‚

ˇ .f0/
��
;

where zQn
f
is the distribution of the path . zYt /t2Œ0;1� satisfying

d zYt D f .t/dt C n
�
1
2
p
Tnf0.t/ dWt ; t 2 Œ0; 1�; f 2 ‚.f0/: (4.5)

The following proposition generalizes Theorem 2.7 in [25] to small densities.
Proposition 2. Under the assumptions of Theorem 2, it holds that

�
�
EGn
�
‚ˇ .f0/

�
; zEGn

�
‚ˇ .f0/

��2 . n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

Proof. On ‚ˇ .f0/, the Gaussian white noise model is equivalent to observing
.Ut /t2Œ0;1� with

dUt D 2
�p
f .t/ �

p
Tnf0.t/

�
dt C n

�
1
2 dWt

and observing . zYt /t2Œ0;1� is equivalent to observing .Vt /t2Œ0;1� with

dVt D
�
f .t/ � Tnf0.t/

�
=
p
Tnf0.t/ dt C n

�
1
2 dWt :
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Using (E.1), Lemma 11(ii), (4.4), f 2 ‚ˇ .f0/, f0 2 Hˇ .R/ and (4.3), we can bound
the squared Le Cam distance�.EGn .‚ˇ .f0//; zEGn .‚ˇ .f0///2 by the supremum over
f 2 ‚ˇ .f0/ of

n

2

Z 1

0

�
2
�p
f .t/ �

p
Tnf0.t/

�
�
f .t/ � Tnf0.t/p

Tnf0.t/

�2
dt

D n

Z 1

0

�p
f .t/ �

p
Tnf0.t/

�4
2Tnf0.t/

dt

� 24n

mX
iD1

Z xi

xi�1

�
f .t/ � f0.t/

�4
C
�
f0.t/ � f0.xi�1/

�4
f0.xi�1/3

dt

� 27Cn
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1dx C 24R4n

mX
iD1

Z xi

xi�1

�
4ˇ
i

f0.xi�1/3
dt

�
�
27C C 2734ˇR4

�
n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx;

which completes the proof.

In the next step, we approximate (4.5) by the following sequence space model.
Denote byQn

1;f
the joint distribution of the (rescaled) empirical scaling and wavelet

coefficients,

Z�i;�1;0 WD n
p
�i

Z
�i .t/ d zYt ; for i D 1; : : : ; m;

Z�i;j;k WD

r
n

f0.xi�1/

Z
 i;j;k.t/ d zYt ; for .i; j; k/ 2 ƒ, 0 � j � xJ ;

where xJ is again the smallest integer larger than 3 log2.n/ (as in experiment
EP1;n.‚

ˇ .f0//). Notice that the observations are independent and normally
distributed with

Z�i;�1;0 � N

�
n

Z xi

xi�1

f .t/ dt; n�if0.xi�1/

�
and Z�i;j;k � N

�r
n

f0.xi�1/
di;j;k; 1

�
; for j � 0;

where di;j;k D
R
f .t/ i;j;k.t/ dt . Write s0n for the total number of coefficients and

define the experiment

EG1;n.‚/ WD
�
Rs
0
n ; �.Rs

0
n/;
�
Qn
1;f W f 2 ‚

��
:

Proposition 3. Under the assumptions of Theorem 2, it holds that

�
�
EG1;n

�
‚ˇ .f0/

�
; zEGn

�
‚ˇ .f0/

��2
D o.n�1/:
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Proof. Arguing as in the proof of Proposition 1 using Lemma 11(ii) instead of
Lemma 11(i) yields the result.

4.4. Information bounds for couplings. At this point, we have transformed the
Poisson intensity estimation and Gaussian experiments into sequence space experi-
ments, where the empirical scaling and wavelet coefficients are observed. To relate
these sequence models to each other, bounds on the information divergences between
(transformed) Poisson and Gaussian random variables are discussed.

We firstly transform a Poisson random variable N into a continuous random
variable by adding an independent uniform variable U on Œ�1

2
; 1
2
/. From the sum

N C U , we can recover N by taking the nearest integer, which shows that this
transformation is invertible. The sum can then be related to a normal random
variable with the same mean and variance. To state the following result we write

H.X; Y / WD H.PX ; PY / and KL.X; Y / WD KL.PX ; PY /

if X � PX and Y � PY .
Lemma 2. Let N � Poi.�/ and U be uniformly distributed on Œ�1

2
; 1
2
/ and

independent of N . If Z � N .�; �/, then

KL.N C U;Z/ D 1
8�

�
1C o.1/

�
as �!1:

Moreover, if Z0 � N .�; �0/, then

H 2.N C U;Z0/ �
1
4�

�
1C o.1/

�
C 4

�
�

�0
� 1

�2
as �!1:

Proof. Denote the Lebesgue density ofN CU by p and observe that on the interval
Œk � 1

2
; k C 1

2
/ this density equals e���k=kŠ. Since EŒN C U � D �,

Var.N C U/ D Var.N /C Var.U / D �C
1

12

and using the asymptotic expansion for the Poisson entropy (for instance, [16, Theo-
rem 2]),

KL.N C U;Z/ D

1X
kD0

Z kC1=2

k�1=2

log
�
e�� �

k

kŠ

p
2�� e

1
2�
.x��/2

�
p.x/ dx

D log
�p
2��

�
C

1

2�

�
�C

1

12

�
C

1X
kD0

log
�
e���k=kŠ

�
e��

�k

kŠ

D log
�p
2��

�
C
1

2
C

1

24�
�
1

2
log

�
2�e�

�
C

1

12�
CO

�
��2

�
D

1

8�

�
1C o.1/

�
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as � ! 1. For the second statement, using that the Hellinger distance satisfies
the triangle inequality and that the squared Hellinger distance is bounded by the
Kullback–Leibler divergence [37, Lemma 2.4],

H 2.NCU;Z0/ � 2KL.NCU;Z/C2H
2.Z0; Z/ �

1

4�

�
1Co.1/

�
C4

� �
�0
�1
�2
;

where the bound forH 2.Z0; Z/ follows from elementary computations.

If N � Poi.�/ and N 0 � Poi.�0/ are independent, then

N j.N CN 0/ � Bin
�
N CN 0; �=.�C �0/

�
;

whereBin.m; p/ denotes the binomial distributionwith parametersm and 0 � p � 1.
In experiment EP1;n.‚

ˇ .f0//, the conditional distribution of the Poisson counts at
resolution level J C 1 given the Poisson counts at lower resolution levels j � J is
therefore

Ni;JC1;2kj.Ni;j;k/.i;j;k/2ƒ;0�j�J D Ni;JC1;2kjNi;J;k � Bin
�
Ni;J;k; pi;J;k

�
(4.6)

with success probability

pi;J;k WD

R
I
C

i;J;k

f .u/ duR
Ii;J;k

f .u/ du
; (4.7)

where Ii;j;k , ICi;j;k are defined in Section 4.1. This property is tied to the Haar
wavelet expansion and there is no natural extension to otherwavelets or approximation
schemes. In the corresponding Gaussian model EG1;n.‚

ˇ .f0//, the observations are
independent and normally distributed and therefore the conditional distributions are
also normal. Working conditionally on lower resolution levels, we therefore need to
couple binomial and Gaussian random variables.

Notice that pi;J;k � 1=2 with equality if f is constant on Ii;J;k . As in the
Poisson case, we can make the distribution of Xm;p � Bin.m; p/ continuous if we
consider Xm;p C U with U uniform on .�1

2
; 1
2
� and independent of Xm;p . Denote

the c.d.f. ofXm;pCU byGm;p and considerˆ�1 ıGm;1=2.Xm;pCU/withˆ�1 the
quantile function of the standard normal distribution. The quantile transformation
ˆ�1 ıGm;1=2 depends on m but not on p. Moreover, for p D 1=2,

ˆ�1 ıGm;1=2.Xm;1=2 C U/ � N .0; 1/:

For general p this holds approximately and by Theorem 5 in [2],

H 2
�
N
�p
m.2p � 1/; 1

�
; ˆ�1 ıGm;1=2.Xm;p C U/

�
.
�
p � 1

2

�2
Cm

�
p � 1

2

�4
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and the hidden constant does not depend on m or p. Using the triangle inequality
and elementary computations, we obtain for any real number �,

H 2
�
N
�
�; 1

�
; ˆ�1ıGm;1=2.Xm;pCU/

�
.
�
��
p
m.2p�1/

�2
C
�
p�1

2

�2
Cm

�
p�1

2

�4
:

(4.8)
Lemma 2 and (4.8) are used in the next section to bound the Le Cam distance between
the sequence space experiments EP1;n.‚

ˇ .f0// and EG1;n.‚
ˇ .f0//.

4.5. Upper bound for the Le Cam distance between the Poisson and Gaussian
sequence space experiments. In this section, the proof of Theorem 3 in Brown et
al. [2] is generalized to small densities. Recall that in experiment EP1;n.‚

ˇ .f0// we
observe the counts .Ni;j;k/.i;j;k/2ƒ;0�j� xJC1. Let .Ui;j;k/.i;j;k/2ƒ;0�j� xJC1 be an
i.i.d. sequence of uniform random variables on .�1

2
; 1
2
� which is independent of the

Poisson counts. Motivated by the previous section, define a new statistical experiment

EP2;n
�
‚ˇ .f0/

�
D
�
Rs
0
n ; �.Rs

0
n/;
�
xP n2;f W f 2 ‚

ˇ .f0/
��
;

where xP n
2;f

is the distribution of the vector .Zi;j;k/.i;j;k/2ƒ;0�j� xJC1 with

Zi;�1;0 WD Ni;0;0 C Ui;0;0; i D 1; : : : ; m;

Zi;j;k WD ˆ
�1
ıGNi;j;k ;1=2.Ni;jC1;2k C Ui;j;k/; .i; j; k/ 2 ƒ; 0 � j � xJ :

(4.9)
Since the functionˆ�1ıGm;1=2 is invertible, we can successively recover the Poisson
counts .Ni;j;k/.i;j;k/2ƒ;0�j� xJC1 from these observations and therefore

�
�
EP1;n

�
‚ˇ .f0/

�
;EP2;n

�
‚ˇ .f0/

��
D 0:

The experiment EP2;n.‚
ˇ .f0// can now be compared to the Gaussian sequence

experiment EG1;n.‚
ˇ .f0//.

Proposition 4. Under the assumptions of Theorem 2, it holds that

�
�
EG1;n

�
‚ˇ .f0/

�
;EP2;n

�
‚ˇ .f0/

��2 . n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

Proof. Let us begin with some notation. Write p<J and pDJ for the joint density
of .Z�

i;j;k
/.i;j;k/2ƒ;�1�j<J and .Z�

i;j;k
/.i;j;k/2ƒ;jDJ respectively. Similarly, q<J

denotes the joint density of .Zi;j;k/.i;j;k/2ƒ;�1�j<J and qDJ j<J the density of the
conditional distribution .Zi;j;k/.i;j;k/2ƒ;jDJ j.Zi;j;k/.i;j;k/2ƒ;�1�j<J .
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The random variables .Z�
i;j;k

/ are independent and thus their joint densities factor
into products. Expanding the squared Hellinger distance in a telescoping sum and
then using this fact,

H 2
�
p< xJC1; q< xJC1

�
D 2

�
1 �

Z
p
p<0q<0

�
C 2

X
0�J� xJ

�Z
p
p<J q<J �

Z
p
p<JC1q<JC1

�
D H 2

�
p<0; q<0

�
C 2

X
0�J� xJ

Z
p
p<J q<J

�
1 �

Z
p
pDJ qDJ j<J

�
D H 2

�
p<0; q<0

�
C

X
0�J� xJ

Z
p
p<J q<JH

2.pDJ ; qDJ j<J /: (4.10)

On the lowest resolution level j D �1, theGaussian and Poisson randomvariables are
independent and soH 2

�
p<0; q<0

�
�
Pm
iD1H

2.Z�i;�1;0; Zi;�1;0/ [35, Lemma 2.17].
Together with (4.4) and Lemma 2 applied to

� D n

Z xi

xi�1

f .u/ du and �0 D n

Z xi

xi�1

f0.u/ du

(noting that �; �0 !1 since inff 2‚ infx f .x/� n�ˇ=.ˇC1/),

H 2
�
p<0; q<0

�
�

mX
iD1

1

n
R xi
xi�1

f
C 16

mX
iD1

�R xi
xi�1

f .x/ � f0.x/ dx

�if0.xi�1/

�2
DW .I/C .II/; (4.11)

Since f 2 ‚ˇ .f0/ and using (4.3) and (4.4), we find thatZ xi

xi�1

f � 2�6�if0.xi�1/ � 2
�6��1i n

�
2

2ˇC1f0.xi�1/
2ˇC3
2ˇC1 :

Applying (4.4) again yields

1

n
R xi
xi�1

f
� 26n

1�2ˇ
2ˇC1�if0.xi�1/

�
2ˇC3
2ˇC1

� 262
2ˇC3
2ˇC1n

1�2ˇ
2ˇC1

Z xi

xi�1

f0.x/
�
2ˇC3
2ˇC1 dx

(4.12)

and therefore

.I/ . n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:
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In order to bound the term .II/ in (4.11), we use Jensen’s inequality, that ab � a2Cb2
for real numbers a; b, and (4.4),

.II/ � 16
mX
iD1

1p
�if0.xi�1/

�Z xi

xi�1

.f .x/ � f0.x//
4

f0.xi�1/3
dx

�1=2
� 27n

Z 1

0

.f .x/ � f0.x//
4

f0.x/3
dx C 16

mX
iD1

1

n�if0.xi�1/
:

For the first term we use f 2 ‚ˇ .f0/ and for the second term we can argue as for .I/
to obtain the upper bound

H 2
�
p<0; q<0

�
� .I/C .II/ . n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx: (4.13)

We next bound the Hellinger distance H 2.pDJ ; qDJ j<J /. For that we show that
conditional on the observations at the lower resolution levels .Zi;j;k/.i;j;k/2ƒ;�1�j<J ,
the random vector .Zi;j;k/.i;j;k/2ƒ;jDJ has independent components. From the
definition (4.9), we conclude that conditioning on .Zi;j;k/.i;j;k/2ƒ;�1�j<J is the
same as conditioning on .Ui;j;k/.i;j;k/2ƒ;j<J and the counts .Ni;j;k/.i;j;k/2ƒ;j�J .
Since

Ni;JC1;2kj.Ni;j;k/.i;j;k/2ƒ;j�J D Ni;JC1;2kjNi;J;k; k D 0; : : : ; 2J � 1;

are independent, .Zi;j;k/.i;j;k/2ƒ;jDJ j.Zi;j;k/.i;j;k/2ƒ;�1�j<J must also have inde-
pendent components. This shows thatH 2.pDJ ; qDJ j<J / �

P2J�1
kD0 H 2.Z�

i;J;k
; Zi;J;k/.

Using moreover (4.6), (4.7) and (4.8), we can boundH 2.pDJ ; qDJ j<J / by

2J�1X
kD0

H 2
�
Z�i;J;k; Zi;J;k

�
.
2J�1X
kD0

�
EŒZ�i;J;k� �N

1=2

i;J;k
.2pi;J;k � 1/

�2
C
�
pi;J;k �

1
2

�2
CNi;J;k

�
pi;J;k �

1
2

�4
.

2J�1X
kD0

�
EŒZ�i;J;k� � ŒENi;J;k�

1=2.2pi;J;k � 1/
�2

C
�
1C

�
N
1=2

i;J;k
� ŒENi;J;k�

1=2
�2��

pi;J;k �
1
2

�2
CNi;J;k

�
pi;J;k �

1
2

�4
:

With this inequality, we can now bound
R p

p<J q<JH
2.pDJ ; qDJ j<J /. By the

Cauchy–Schwarz inequality,
R p

p<J q<J � 1, which yields a bound for the terms
not depending on Ni;J;k . For the terms depending on Ni;J;k we use thatZ p

p<J .x/q<J .x/ h.x/ dx �

�Z
h2.x/q<J .x/ dx

�1=2
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for all integrable functions h. By Lemma 3 in [2],

E
��
N
1=2

i;J;k
� ŒENi;J;k�

1=2
�4�
� 4

and therefore,Z
p
p<J q<JH

2.pDJ ; qDJ j<J /

.
mX
iD1

2J�1X
kD0

�
EZ�i;J;k � ŒENi;J;k�

1=2.2pi;J;k � 1/
�2

C

mX
iD1

2J�1X
kD0

�
pi;J;k �

1
2

�2
C

mX
iD1

2J�1X
kD0

q
EN 2

i;J;k

�
pi;J;k �

1
2

�4
DW .i/C .ii/C .iii/:

(4.14)

We bound the three sums .i/–.iii/ separately. We will frequently use the fact that
with

di;J;k D

Z
f .x/ i;J;k.x/ dx;

(4.7) can be rewritten as

2pi;J;k � 1 D

p
�idi;J;k

2J=2
R
Ii;J;k

f .x/ dx
:

(i) Observe that�
EŒZ�i;J;k� � ŒENi;J;k�

1=2.2pi;J;k � 1/
�2

D nd2i;J;k

�
1p

f0.xi�1/
�

p
�i2

�J=2qR
Ii;J;k

f .x/ dx

�2
:

With f 2 ‚ˇ .f0/ � Hˇ .R/ for ˇ � 1, (4.4), Jensen’s inequality, ab � a2 C b2,
and Lemma 1, the right hand side of the last display can be bounded by

26nd2i;J;k

�
2J��1i

R
Ii;J;k

f .x/ � f0.xi�1/ dx
�2

f0.xi�1/3

� 27nd2i;J;k

�
2J��1i

R
Ii;J;k

f .x/ � f0.x/ dx
�2
CR2.2�J�i /

2ˇ

f0.xi�1/3

� 27nd2i;J;k

�
2J��1i

R
Ii;J;k

.f .x/ � f0.x//
4 dx

�1=2
CR2.2�J�i /

2ˇ

f0.xi�1/3

� 28R4n
2�2Jˇ�

4ˇC1
i

f0.xi�1/3
C 2102J�2Jˇn

Z
Ii;J;k

.f .x/ � f0.x//
4

f0.x/3
dx:
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Using that f 2 ‚ˇ .f0/, (4.3) and (4.4),

.i/ . 2J�2Jˇn
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

(ii) With f 2 ‚ˇ .f0/, (4.4), Lemma 1, and (4.3),

.2pi;J;k � 1/
2
� 212R22�2Jˇ

�
2ˇ
i

f0.xi�1/2

� 21232ˇ�1R22�2Jˇn
1�2ˇ
2ˇC1�if0.xi�1/

�
2ˇC3
2ˇC1 :

Thus,

.ii/ . 2J�2Jˇn
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

(iii) Since Ni;J;k � Poi.n
R
Ii;J;k

f .u/ du/, we have

ŒEN 2
i;J;k�

1=2
� 1C n

Z
Ii;J;k

f .u/ du:

By definition 0 � pi;J;k � 1, and therefore

.2pi;J;k � 1/
4
� .2pi;J;k � 1/

2:

Using (4.4) and the same bound as for .ii/,

ŒEN 2
i;J;k�

1=2 .2pi;J;k � 1/
4

� .2pi;J;k � 1/
2
C 22534ˇR42�.4ˇC1/Jn

1�2ˇ
2ˇC1�if0.xi�1/

�
2ˇC3
2ˇC1 :

Together with the bound for .ii/, this also shows that

.iii/ . 2J�2Jˇn
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

Combining the bounds for .i/–.iii/ gives for (4.14),Z
p
p<J q<JH

2.pDJ ; qDJ j<J / . 2J�2Jˇn
1�2ˇ
2ˇC3

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

Summing over J and using that ˇ > 1=2 shows that with (4.10) and (4.13),

H 2
�
p xJ ; q xJ

�
. n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx;

which proves the assertion.
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4.6. Completion of the proof of Theorem 2. From Propositions 1–4, we deduce
that under the assumptions of Theorem 2,

sup
f02‚

�
�
EPn

�
‚ˇ .f0/

�
;EGn

�
‚ˇ .f0/

��
. n

1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx:

For the globalization step, the following result shows the existence of the required
estimators satisfying the conditions of Lemma 12.

Theorem 7. Under the assumptions of Theorem 2, there exists an estimator yfn
in EPn .‚/ taking values in a finite subset of ‚ and satisfying

inf
f02‚

xP nf0

�
f0 2 ‚

ˇ . yfn/
�
D 1 �O.n�1/:

Moreover, there exists an estimator in EGn .‚/ with the same properties.

Theorem 2 then follows from Lemmas 12 and 13.

5. Heuristics for the rates of the Le Cam deficiencies

Most results on asymptotic equivalence require minimal smoothness assumptions,
which are often difficult to explain heuristically. It is therefore unsurprising that the
rates we obtain for the Le Cam deficiencies can also be difficult to interpret. Perhaps
the best way to motivate these rates is to consider the doubly local decomposition of
experiments explained in Section 4.1. Each doubly local experiment is similar to a
parametric problem and the number mn of such experiments can be viewed as the
effective dimension of the problem. For the following heuristic argument, one should
think of the total variation distance as always being of the same order as the Hellinger
distance, which is typically the case in our situation. If the double localization splits
the model into (nearly) independent subproblems, then the overall squared Le Cam
deficiency is simply the sum of the squared Le Cam deficiencies for each of the
doubly local experiments.

While we do not use a double localization for the Poissonization in the proof of
Theorem 1, it is still instructive to consider such an approach. For Poissonization, the
Le Cam deficiencies for the doubly local experiments are all of the same order and
the full Le Cam deficiency is therefore proportional to the effective dimension mn.
For simplicity, we consider only the case infx f .x/ � n�ˇ=.ˇC1/. Let �j be as
in (4.2). By Lemma 6,

mn D

mnX
jD1

�j�
�1
j � n

1
2ˇC1

Z 1

0

f0.x/
�

1
2ˇC1 dx:
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If infx f .x/� n�ˇ=.ˇC1/ then the squared rate in Theorem5 can bewritten asmn=n,
up to unnecessary logn terms. The squared rate can therefore also be written as
mnr

2
n=n

2 for rn D
p
n, which motivates (2.1).

For the rate of the Le Cam deficiencies between Poisson intensity estimation
and the Gaussian white noise model, recall that we partition Œ0; 1� into the
intervals Œxj�1; xj �, with these shrinking intervals generating appropriate doubly
local subexperiments. On each such independent subexperiment, we must couple
a Poisson random variable with intensity parameter �j D n

R xj
xj�1

f .u/ du with a
corresponding N .�j ; �j / random variable. Since �j ! 1 as n ! 1, we may
use Lemma 2 to couple a Poi.�j / random variable with a N .�j ; �j / variable with a
squared Hellinger error of size 1=.4�j /Co.1=�j /. Using the independence structure
of the subexperiments, thesemn couplings yield a total squaredHellinger loss of order

mnX
jD1

1

�j
� 1 ^ n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1dx;

where the . direction follows from (4.12) and the & part can be similarly deduced.
This motivates the rate (1.2).

Of course, this decomposition into piecewise constant functions with mn
pieces is too crude, and represents only the first resolution level of a much finer
L2-decomposition based on Haar wavelets, which is used to prove Theorem 2 in
Section 4. However, it provides some insight into why the rate occurs already at low
resolution levels without the full technical encumbrance of the higher order remainder
terms, which are dealt with using quantile transformations in Section 4.5.

6. Lower bounds for Le Cam deficiencies in the regular regime

In this section, we prove Theorems 3 and 4. The difference in the Bayes risk for an
arbitrary prior and loss function bounded by one yields a lower bound for the Le Cam
deficiency. Let E1.‚/ and E2.‚/ be two experiments. If E.j /

�
Œ`.y�j ; �/�, j D 1; 2,

denotes the risk in experiment Ej .‚/ of the estimator y�j with respect to the loss
function `, then

ı
�
E1.‚/;E2.‚/

�
� inf
y�1

sup
y�2

sup
�2‚

E
.1/

�
Œ`.y�1; �/� �E

.2/

�
Œ`.y�2; �/�

provided the loss is bounded by one (see [18, Definition 1, p. 13]). This immediately
implies that for an arbitrary prior… on ‚,

ı
�
E1.‚/;E2.‚/

�
� inf
y�1

sup
y�2

Z
‚

E
.1/

�
Œ`.y�1; �/� d….�/ �

Z
‚

E
.2/

�
Œ`.y�2; �/� d….�/

(6.1)
and the right hand side is just the difference of the Bayes risks (see also [36, Coroll-
ary 6.3.7]).
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We argued in Section 4.1 that the doubly local decomposition is intrinsic to this
problem. For the lower bound, it is thus natural to again partition Œ0; 1� into the
intervals Œxj�1; xj �. On each such doubly local experiment we construct a two
hypothesis test, which are then combined into a global multiple testing problem. We
compute the Bayes risk in both experiments, which, together with (6.1), provides a
lower bound on the deficiencies.

Proof of Theorem 3. Throughout the proof, we write an . bn if an � Cbn for all
n � n0 and a finite constant C D C.ˇ;R/ which does not depend on j and the
parameter ˛ defined below. In the same way we use & and the big-O notation.

Pick a sequence .f0n/n � ‚0 such thatZ
f0n.x/

�
2ˇC3
2ˇC1 dx � 1

2
sup
f 2‚0

Z
f .x/

�
2ˇC3
2ˇC1 dx:

For convenience we omit the dependence of f0n on n, writing

f0 WD f0n and F0 WD

Z �
0

f0.u/ du:

Set ˇ0 D ˇ _ 2. Let KWR ! R be a ˇ0-smooth Hölder function with support
on Œ0; 1� such thatZ 1

0

K.u/ du D 0;

Z
K.u/2 du D 1; and

Z
K3.u/ du > 0:

Suppose additionally thatK 0.u/ D 0 for only finitely many u 2 Œ0; 1�. As an example
of a kernel satisfying these conditions, consider the L2-normalized version of

u 7! �4
3
hˇ 0.

4
3
u/C 4hˇ 0.4u � 3/;

where hˇ 0 is the density of a Beta.ˇ0 C 1; ˇ0 C 1/ distribution.
Let .xj /jD1;:::;m be the sequence in (4.1) and define the functions

x 7!  j .x/ D
˛j�

ˇ
j

f0.xj�1/
K

�
F0.x/ � F0.xj�1/

Fj

�
; j D 1; : : : ; m; (6.2)

where
Fj WD F0.xj / � F0.xj�1/; j WD

f0.xj�1/q
n�

2ˇ
j Fj

and 0 < ˛ � 1 is a constant that will be chosen later to be small enough.
The function  j has support Œxj�1; xj � and, since by assumption infx0 f0.x0/ �
n�ˇ=.ˇC1/, we can apply (4.4) and (4.3) to obtain

1
2
�jf0.xj�1/ � Fj � 2�jf0.xj�1/ and 1

3
� 2j � 2: (6.3)
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Since infx f0.x/� n�ˇ=.ˇC1/, this also implies

min
j
nFj !1

max
jD1;:::;m

k j k1 . max
jD1;:::;m

˛�
ˇ
j

f0.xj�1/
. max
jD1;:::;m

˛p
nFj

� ˛:

(6.4)

Define
�j;r WD

Z
 j .x/

rf0.x/ dx (6.5)

and observe that using the properties of K as well as the definitions of �j and j ,
�j;1 D 0, �j;2 D ˛2n�1 and

�j;3 D
˛33j�

3ˇ
j

f0.xj�1/3
Fj

Z
K3.u/ du &

˛3

n3=2
p
�jf0.xj�1/

: (6.6)

For higher moments, we frequently use the bound

�j;r � k j k
r
1Fj . ˛rFj =.nFj /

r=2: (6.7)

We are now ready to define the test densities. For � D .�1; : : : ; �m/ 2 f�1; 1gm,
consider

x 7! f� .x/ D f0.x/

�
1C

mX
jD1

�j j .x/

�
:

From �j;1 D 0 it follows that Z
f� .x/ dx D 1

and so f� are indeed probability densities. Observe also that

Fj D

Z xj

xj�1

f� .x/ dx:

With the sup-norm bound (6.4), it follows immediately that for any � 2 f�1; 1gm,
f� 2 U.f0/ � ‚. By Lemma 4, we also know thatf� 2 Hˇ .R/ for all � 2 f�1; 1gm
and n large enough.

We now construct a prior on these densities. Renaming the parameters f� $ � ,
we can take f�1; 1gm as the parameter space and may also conveniently write
P n
�
D P n

f�
and Qn

�
D Qn

f�
. We consider two priors called �C and ��,

which are product priors on the parameter space f�1; 1gm, that is for each
�0 D .�

0
1 ; : : : ; �

0
m/ 2 f�1; 1g

m,

�˙.�0/ D

mY
jD1

�˙.�
0
j /;
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with
�˙.�

0
j D 1/ D 1 � �˙.�

0
j D �1/ D e

˙2˛=.1C e˙2˛/:

This prior is non-uniform. Indeed, �C assigns more weight to vectors which have
more components beingC1 than �1. Both experiments behave very similarly under
uniform priors and non-uniformity seems necessary here to obtain a rate-optimal
separation of the experiments. The effect of ˛ can best be seen in Proposition 5
below. The priors �C and �� will lead to the lower bounds for the deficiencies
ı.EPn .‚/;E

G
n .‚// and ı.EGn .‚/;EPn .‚//, respectively.

Nextwe construct the loss function. Observe that with (4.2), (4.4), (4.3), and (6.3),
mX
jD1

1

nFj
D

mX
jD1

�j
1

n�jFj
� n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx: (6.8)

Since f0 is a density on Œ0; 1�, fx W f0.x/ � 1g ¤ ¿. Let Œxj1n ; xj2n � � Œ0; 1�,
j1n; j2n 2 f1; : : : ; mg, be a sequence of intervals such that

Œxj1n ; xj2n � \ fx W f0.x/ � 1g ¤ ¿

for all n and

n
1�2ˇ
2ˇC1

Z xj2n

xj1n

f0.x/
�
2ˇC3
2ˇC1 dx � 1 ^ n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx: (6.9)

If the right-hand side is is smaller than one, set

Œxj1n ; xj2n � D Œx0; xm� D Œ0; 1�:

If the right-hand side is exactly one, then arguing as in (6.8) yields

n
1�2ˇ
2ˇC1

Z xj

xj�1

f0.x/
�
2ˇC3
2ˇC1 dx � 1=.nFj /

for all j . By (6.4), each interval Œxj�1; xj � thus makes a vanishing contribution to
the integral, which proves the existence of sequences satisfying (6.9). Let

�.�; � 0/ D

mX
jD1

�j 1.�j ¤ � 0j / with �j WD
1p
nFj

1.j1n < j � j2n/ (6.10)

and for any A > 0, define the loss `A.�; � 0/ D 1.�.�; � 0/ � A/. This loss is one
if the weighted sum of the misclassified �j ’s exceeds the threshold A and is zero
otherwise. The reason for this particular weighting will become apparent later in the
proof as a consequence of Proposition 5 and Lemma 3. Arguing as for (6.8),

mX
jD1

�2j � 1 ^ n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx (6.11)
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and similarly

mX
jD1

�3j D

j2nX
jDj1nC1

1

.nFj /3=2
� n

1�3ˇ
2ˇC1

Z xj2n

xj1n

f0.x/
�
3ˇC4
2ˇC1 dx: (6.12)

The key step is the following factorization of the likelihood ratio. In the Poisson
experiment EPn , define Nj WD #fXi W Xi 2 .xj�1; xj �g and write X .j /1 ; : : : ; X

.j /
Nj

for
the observations in the interval .xj�1; xj �. UnderP n�0 , the countsNj are independent
Poisson random variables with intensity parameters

n

Z xj

xj�1

f�0.x/ dx D nFj

and the density of X .j /i is f�0.�/1.� 2 .xj�1; xj �/=Fj . We can factorize

dP n
�

dP n
�0

D

NY
iD1

1C
Pm
jD1 �j j .Xi /

1C
Pm
jD1 �

0
j j .Xi /

D

mY
jD1

NjY
iD1

1C �j j .X
.j /
i /

1C �0j j .X
.j /
i /
DW

mY
jD1

Pj .�j /

(6.13)
with Pj .�j / being independent random variables. Define the estimators

y�P˙ D .
y�P˙;j /jD1;:::;m

componentwise via y�P
˙;j 2 argmax�j2f�1;1g Pj .�j /�˙.�j /. Then

y�P˙;j ¤ �
0
j iff Pj .��0j / � e

˙2˛�0
j :

The random variables 1.y�P
˙;j ¤ �0j / are therefore independent and Bernoulli

distributed with success probabilities depending on the sign˙ of the prior and �0,

p˙;j .�0/ WD P
n
�0
.y�P˙ ¤ �

0
j / D P

n
�0

�
Pj .��

0
j / � e

˙2˛�0
j
�
:

We denote the Bernoulli distribution with parameter p by Ber.p/. For independent
random variables Zj .aj / � Ber.aj /, the risk of �P

˙
under the loss function `A

becomes

P�0
�
�.y�P˙ ; �0/ � A

�
D P

� mX
jD1

�jZj
�
p˙;j .�0/

�
> A

�
: (6.14)
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A similar factorization into independent products holds in the Gaussian white
noise experiment since by Girsanov’s formula,

dQn
�

dQn
�0

D exp
�
2
p
n

Z 1

0

�p
f� .s/ �

q
f�0.s/

�
dWs � 2n

pf� �qf�0 22�
D

mY
jD1

exp
�
2
p
n

Z xj

xj�1

�p
f� .s/ �

q
f�0.s/

�
dWs

� 2n

Z xj

xj�1

�p
f� .s/ �

q
f�0.s/

�2
ds

�
DW

mY
jD1

Qj .�j /:

In particular,Qj .�j / are independent. In analogy with the Poisson model, define the
estimators

y�G˙ D .
y�G˙;j /jD1;:::;m

componentwise via y�G
˙;j 2 argmax�j2f�1;1gQj .�j /�˙.�j /. Then

y�G˙;j ¤ �
0
j iffQj .��0j / � e

˙2˛�0
j :

With
q˙;j .�0/ WD Q

n
�0
.y�G˙;j ¤ �

0
j / D Q

n
�0

�
Qj .��

0
j / � e

˙2˛�0
j
�

wefind in the sameway as (6.14) that for independentZj .q˙;j .�0//�Ber.q˙;j .�0//,

Qn
�0

�
�.y�G˙ ; �0/ � A

�
D P

� mX
jD1

�jZj
�
q˙;j .�0/

�
> A

�
:

Proposition 5. Let ˆ be the c.d.f. of the standard normal distribution, � D ˆ0 be
its density and �j;r be defined by (6.5). Then for sufficiently large n, there exists a
constant C independent of ˛; n; j , such thatˇ̌

q˙;j .�0/ �ˆ.�˛ � �
0
j /
ˇ̌
�
C˛2

nFj

and ˇ̌
p˙;j .�0/ �ˆ.�˛ � �

0
j /�

n�j;3

6˛2
�.�˛ � �0j /

ˇ̌
�

C˛2p
nFj

:

With (6.6), we conclude that for sufficiently small ˛ > 0, the success probabilities
differ by a term of order at least ˛=

p
nFj . This is the key ingredient to show that

there is a difference in the Bayes risks for the two experiments. Recall that ˛ is
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the parameter modeling the non-uniformity of the prior and the size of the local
alternatives  j . If the prior is uniform then ˛ D 0, and a close inspection of the
proof shows that the difference in the success probabilities is then of the smaller order
1=.nFj /, so that non-uniformity of the prior is crucial in this construction.

The following proposition shows that y�P
˙

and y�G
˙

are Bayes estimators and uses
that the deficiency is lower bounded by the difference of the Bayes risks. A proof can
be found in Appendix B.

Proposition 6. Let‚; � and �˙ be as above. Then y�P
˙

and y�G
˙

are Bayes estimators
with respect to the priors �˙ in the Poisson intensity estimation and the Gaussian
white noise experiments, respectively.

Together with (6.1), the previous proposition thus shows that for any A > 0,

ı
�
EPn .‚/;E

G
n .‚/

�
�

X
�02‚

�
P n�0

�
�.y�PC ; �0/ � A

�
�Qn

�0

�
�.y�GC ; �0/ � A

��
�C.�0/

D

X
�02‚

�
P

� mX
jD1

�jZj
�
pC;j .�0/

�
> A

�
� P

� mX
jD1

�jZj
�
qC;j .�0/

�
> A

��
�C.�0/

(6.15)
and

ı
�
EGn .‚/;E

P
n .‚/

�
�

X
�02‚

�
P

� mX
jD1

�jZj
�
q�;j .�0/

�
> A

�
� P

� mX
jD1

�jZj
�
q�;j .�0/

�
> A

��
��.�0/:

We have therefore reduced lower bounding the Le Cam deficiency to computing
probabilities connected to weighted sums of independent Bernoulli random variables.
To finish the proof we need the following monotonicity property together with a
change of measure type inequality which are established next and proved separately
in Appendix B.

Remark 1. The probability P
�Pm

jD1 �jZj .aj / > A
�
is monotone increasing in

the parameters aj . Indeed if a0j � aj , then for � � Ber.aj =a0j / independent,
Zj .a

0
j / � �Zj .a

0
j / � Ber.aj /.

Lemma 3. Suppose that .pj /jD1;:::;m, .qj /jD1;:::;m and .ˇj /jD1;:::;m are vectors
with entries between zero and one such that for some 0 � ! � 1=2,

pj � qj C qj .1 � qj / !ˇj
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for all j D 1; : : : ; m. If .Zj .pj //jD1;:::;m are independent Ber.pj / random vari-
ables, then

P

� mX
jD1

ˇjZj .pj / > A

�
� exp

�
!A � !

mX
jD1

ˇj qj � 2!
2

mX
jD1

ˇ2j

�
P

� mX
jD1

ˇjZj .qj / > A

�
:

Recall that the difference of the success probabilities in Proposition 5 is of the
order at least ˛=

p
nFj . Together with the change of measure formula in Lemma 3,

this shows why the weights �j D 1=
p
nFj in the Hamming loss (6.10) are natural.

Let us only consider the case where �0 is drawn from �C, that is the case (6.15). The
other case can be proved analogously. By Proposition 5,

qj WD qC;j .�0/ D ˆ.�˛ � �
0
j /CO

�
˛2=.nFj /

�
and
pj WD pC;j .�0/ D ˆ.�˛ � �

0
j /C

�
n�j;3=.6˛

2/
�
�.�˛ � �0j /CO

�
˛2=

p
nFj

�
:

Choosing the constant ˛ small enough, ˆ.�2/ � qj � ˆ.1/ and moreover by (6.6)
we can always find a positive constant c > 0 such that pj � qj C cqj .1 � qj /˛�j ,
for all j D 1; : : : ; m. Denote the mean of qj D qC;j .�0/ under �C by xqj , let

r˛ D E�j��C Œˆ.�˛ � �j /� D ˆ.�˛ � 1/�C.�j D 1/Cˆ.�˛ C 1/�C.�j D �1/

and choose the constant in the loss `A as

A D r˛

mX
jD1

�j C 4

� mX
jD1

�2j

�1=2
:

Throughout the remaining proof we make frequent use of the formula
Pm
jD1 �

2
j . 1,

which follows immediately from (6.11). In particular, this allows us to conclude fromˇ̌̌̌ mX
jD1

�j .xqj � r˛/

ˇ̌̌̌
. ˛

mX
jD1

�2j

that for sufficiently small ˛ and n large enough,ˇ̌̌̌ mX
jD1

�j .xqj � r˛/

ˇ̌̌̌
�

� mX
jD1

�2j

�1=2
:

Define the set

D WD

�
�0 2 ‚ W

ˇ̌̌̌ mX
jD1

�j xqj �

mX
jD1

�j qj

ˇ̌̌̌
�

� mX
jD1

�2j

�1=2�
:
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Since pj � qj , all the summands in (6.15) are non-negative in view of Remark 1.
By Lemma 3 with ! D c˛, the definition of A and ex � x C 1, it follows that for
sufficiently small ˛ and n large enough,

ı
�
EPn .‚/;E

G
n .‚/

�
�

X
�02D

�
exp

�
c˛A � c˛

mX
jD1

�j qj � c
2˛2

mX
jD1

�2j

�
� 1

�
� P

� mX
jD1

�jZj .qj / > A

�
�C.�0/

� c˛

� mX
jD1

�2j

�1=2 X
�02D

P

� mX
jD1

�jZj .qj / > A

�
�C.�0/:

(6.16)
Recall that the expectation and the variance of

mX
jD1

�jZj .qj /

are
mX
jD1

�j qj and
mX
jD1

�2j qj .1 � qj /;

respectively. Let � be a Gaussian random variable with the same mean and variance.
By Berry–Esseen’s theorem there exists a universal constantC0 such that for �0 2 D ,

P

� mX
jD1

�jZj .qj / > A

�
� P

�
� > A

�
� C0

Pm
jD1 �

3
j�Pm

jD1 �
2
j

�3=2
� 1 �ˆ

�
6p

ˆ.�2/.1 �ˆ.1//

�
� C0

Pm
jD1 �

3
j�Pm

jD1 �
2
j

�3=2 ;
where we used that qj .1 � qj / � ˆ.�2/.1 � ˆ.1//. From (6.11), (6.12) and
Lemma 7, it follows that

mX
jD1

�3j �

� mX
jD1

�2j

�3=2
:

For all sufficiently large n,

inf
�02D

P

� mX
jD1

�jZj .qj / > A

�
�
1

2

�
1 �ˆ

�
6p

ˆ.�2/.1 �ˆ.1//

��
and the right-hand side is positive. Denote by Var�C the variance with respect to the
prior �C. Since 0 � qj � ˆ.1/, Chebychev’s inequality yields

�C.D/ D 1 � �C.‚ nD/ � 1 �
Var�C

�Pm
jD1 �j qj

�Pm
jD1 �

2
j

� 1 �ˆ.1/2 > 0:
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Together with (6.16), this shows that

ı
�
EPn .‚/;E

G
n .‚/

�
� const. �

� mX
jD1

�2j

�1=2
and with (6.11) this completes the proof for the lower bound of ı

�
EPn .‚/;E

G
n .‚/

�
.

A similar argument holds for the deficiency ı
�
EGn .‚/;E

P
n .‚/

�
, replacing the prior

�C by ��.

Proof of Theorem 4. Recall that by assumption, inff 2‚ infx f .x/ � n�ˇ=.ˇC1/.
Since f 2 ‚ � Hˇ .R/, f is also uniformly bounded and with Theorem 1,

�
�
EDn .‚/;E

P
n .‚/

�2 . n
�

2ˇ
2ˇC1 log2 n sup

f 2‚

Z 1

0

�
1

f .x/
^ n

ˇ
ˇC1

� 1
2ˇC1

dx

� n
1�2ˇ
2ˇC1 sup

f 2‚

Z 1

0

f .x/
�
2ˇC3
2ˇC1 dx:

Using (2.2) and that the Le Cam deficiency satisfies the triangle inequality, Theorem 3
implies

ı
�
EDn .‚/;E

G
n .‚/

�
� ı

�
EPn .‚/;E

G
n .‚/

�
��

�
EDn .‚/;E

P
n .‚/

�
&
�
n
1�2ˇ
2ˇC1 sup

f 2‚

Z
f .x/

�
2ˇC3
2ˇC1 dx

�1=2
:

Similarly, we can obtain the same lower bound for the deficiency ı.EGn .‚/;EDn .‚//
and this completes the proof.
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A. Proofs for Section 3

Proof of Theorem 5. We first construct a Markov kernel that maps density estimation
to the Poisson intensity model up to an error

ı
�
EDn

�
‚
ˇ
1 .f0/

�
;EPn

�
‚
ˇ
1 .f0/

��
. n
�

2ˇ
2ˇC1 log2 n

Z 1

0

�
1

f0.x/
^ n

ˇ
ˇC1

� 1
2ˇC1

dx:

(A.1)
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Throughout the proof, we always consider the parameter space‚ˇ1 .f0/ and thus omit
it in the notation, that is we write

EDn WD EDn
�
‚
ˇ
1 .f0/

�
;EPn WD EPn

�
‚
ˇ
1 .f0/

�
; : : : :

For �n WD
p
2n logn, let N � Poi.n � �n/ and define a new experiment GPn��n in

which we observe N ^ n i.i.d. random variables X1; : : : ; XN^n with density f . The
Le Cam deficiency satisfies the triangle inequality and so

ı
�
EDn ;E

P
n

�
� ı

�
EDn ;G

P
n��n

�
Cı.GPn��n ;E

P
n��n

�
Cı
�
EPn��n ;E

P
n

�
D .I/C.II/C.III/:

(I) Since GPn��n is not more informative than EDn , ı
�
EDn ;G

P
n��n

�
D 0.

(II) Denote by PX;N
f

the distribution of .X1; : : : ; XN^n; N / in experiment GPn��n .
Similarly, write QX;N

f
and QX jNn

f
for the distributions of .X1; : : : ; XN ; N / and

.X1; : : : ; XN /jN in experiment EPn��n . If N � n, both experiments are equally
informative. If M denotes the Markov kernel adding .N � n/ _ 0 times the first
observation,

zP
X;N
f
DMP

X;N
f
D
�
X1; : : : ; XN^n; X1; : : : ; X1™

.N�n/_0

; N
�
:

Writing zPX jN
f

for the conditional distribution given N ,

ı.GPn��n ;E
P
n��n

�
D inf

M
sup
f

kMPXf �Q
X
f kTV

� sup
f

E
�
k zP

X jN

f
�Q

X jN

f
kTV

�
� P .N > n/:

With Lemma 8(iii), we can further bound the right-hand side by 4=n.
(III) Let Ln WD n�1 logn and c WD .4C / _ .4C /.2ˇC1/=.ˇC1/ with C the constant
in the definition of ‚ˇ1 .f0/. Recall that N � Poi.n � �n/. In experiment EPm
we observe a Poisson process on Œ0; 1� with intensity mf . Adding an independent
Poisson process with intensity �n zf0, where

zf0 D f01
�
f0.x/ � cL

ˇ=.ˇC1/
n

�
;

we observe in experiment EPn��n a Poisson process with intensity

.n � �n/f C �n zf0:

Due to the choice of the constant c, we have

jf .x/�f0.x/j � CL
ˇ=.ˇC1/
n CC

�
Lnf0.x/

�ˇ=.2ˇC1/
�

1
4
f0.x/C

1
4
f0.x/ �

1
2
f0.x/
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whenever f0.x/ � cL
ˇ=.ˇC1/
n and f 2 ‚ˇ1 .f0/. This implies in particular that

under these conditions f .x/ � 1
2
f0.x/. Using the Hellinger bound for two Poisson

processes in Lemma 11(i), uniformly over f 2 ‚ˇ1 .f0/,

ı
�
EPn��n ;E

P
n

�2
�

Z �q
.n � �n/f .x/C �n zf0.x/ �

p
nf .x/

�2
dx

�
�2n
n

Z
f .x/1

�
f0.x/ < cL

ˇ
ˇC1
n

�
C
.f0.x/ � f .x//

2

f .x/
1
�
f0.x/ � cL

ˇ
ˇC1
n

�
dx

. logn
Z 1

0

L

ˇ
ˇC1
n 1

�
f0.x/ < cL

ˇ
ˇC1
n

�
C
.Lnf0.x//

2ˇ=.2ˇC1/

f0.x/
1
�
f0.x/ � cL

ˇ
ˇC1
n

�
dx

. logn
Z 1

0

L

ˇ
ˇC1
n ^ L

2ˇ
2ˇC1
n f0.x/

�
1

2ˇC1 dx

� n
�

2ˇ
2ˇC1 log2 n

Z 1

0

�
1

f0.x/
^ n

ˇ
ˇC1

� 1
2ˇC1

dx:

The upper bounds derived in .I/–.III/ imply (A.1). Estimating ı.EPn ;EDn / from above
can be done using the same arguments and leads to exactly the same rate in the upper
bound. Since �.EDn ;EPn / D ı.EDn ;EPn / _ ı.EPn ;EDn /, the proof is complete.

B. Additional proofs for Theorem 3

In this section, we provide proofs for the propositions occurring in the proof of
Theorem 3.
Lemma 4. Suppose that f0 2 Hˇ .R0/ and let

f� D f0 C f0

mX
jD1

�j j

with  j as defined in (6.2). Assume that infx f0.x/� n�ˇ=.ˇC1/. For any R > R0,
there exist ˛0 > 0 and n0 such that for any n � n0, whenever ˛ in the definition
of  j in (6.2) is smaller than ˛0,

f� 2 Hˇ .R/; for all � 2 f�1; 1gm:

Proof. The . symbol is used as in Theorem 3. Throughout the proof all statements
are considered to hold for sufficiently large n.
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Let ı > 0 be arbitrary. In .i/ we check that for sufficiently large n,

kf�k1 C jf� jCˇ � kf0k1 C jf0jCˇ C 2ı

and in .ii/ we verify that for sufficiently large n,

jf� jHˇ � jf0jHˇ C ı and kf
.bˇc/

�
k1 � kf

.bˇc/
0 k1 C ı:

Putting all the bounds together, we find that for sufficiently large n, .i/ and .ii/ imply

kf�kHˇ � kf0kHˇ C 4ı:

Since ı > 0 was arbitrary, this then gives the result.
Throughout the proof of .i/ and .ii/, we use freely the inequalities (6.3) and

max
jD1;:::;m

�
ˇ
j =f0.xj�1/! 0;

which is a consequence of infx f0.x/� n�ˇ=.ˇC1/.
(i) Recall that

kf kCˇ D kf k1 C kf
.bˇc/
k1 C jf jCˇ :

Since

kf�kCˇ � kf0kCˇ C
f0 mX

jD1

�j j


Cˇ
;

it remains to show that f0 mX
jD1

�j j


Cˇ
� 3ı:

By (6.4) and due to the disjoint support of  j for different j ,f0 mX
jD1

�j j


1
� ı:

In the next step we show that ˇ̌̌
f0

mX
jD1

�j j

ˇ̌̌
Cˇ
� ı:

By definition, the derivatives of the kernel functionK in the definition of  j in (6.2)
vanish on the boundary points u 2 f0; 1g and so�

f0

mX
jD1

�j j

�.bˇc/
.x/ D 0;
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whenever x D xj with j D 0; 1; : : : ; m. Thus, if x 2 Œxj�1; xj � and y 2 Œxj 0�1; xj 0 �
with j < j 0,

ˇ̌̌�
f0

mX
jD1

�j j

�.bˇc/
.x/ �

�
f0

mX
jD1

�j j

�.bˇc/
.y/
ˇ̌̌

�
ˇ̌
.f0 j /

.bˇc/.x/ � .f0 j /
.bˇc/.xj /

ˇ̌
C
ˇ̌
.f0 j 0/

.bˇc/.xj 0�1/ � .f0 j 0/
.bˇc/.y/

ˇ̌
:

Together with the inequality x C y � 21� .x C y/ for 0 <  � 1, which is a
consequence of the concavity of x 7! x , 0 <  � 1, it follows that if the Hölder
seminorm on each interval Œxj�1; xj � is bounded by ı=2, then the global Hölder
seminorm is less than ı. It is thus enough to show jf0 j jCˇ � ı=2.

For ˇ � 1, with (4.4) and (6.4),

jf0 j jCˇ � 2f0.xj�1/j j jCˇ C jf0jCˇk j k1 . ˛ � ˛0:

Choosing ˛0 small gives jf0 j jCˇ � ı=2. Now suppose ˇ > 1. The proof that
jf0 j jCˇ � ı=2 follows along the lines of the proof of Lemma 2 in [30]. For the
convenience of the reader, we nevertheless give the full proof here and only refer
to [30] for a more detailed exposition. With vj .x/ WD .F0.x/ � F0.xj�1//=Fj , we
can rewrite

f0.x/ j .x/ D ˛j�
ˇ
j f0.xj�1/

�1f0.x/.K ı vj /.x/:

For two r-times differentiable functions g, h,

.gh/.r/ D

rX
qD0

 
r

q

!
g.q/h.r�q/:

Moreover, by Faà di Bruno’s formula, we have for the qth derivative of K ı vj ,

.K ı vj /
.q/
D

X
cm1;:::;mq .K

.Mq/ ı vj /

qY
sD1

�
v
.s/
j

�ms
D

X
cm1;:::;mq

K.Mq/ ı vj

F
Mq
j

qY
sD1

�
f
.s�1/
0

�ms
;

where the sum is over all non-negative integers m1; : : : ; mq with

m1 C 2m2 C � � � C qmq D q; Mq WD

qX
`D1

m`;
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and cm1;:::;mq are suitable coefficients. The r th derivative of f0 j can thus be
rewritten as

˛j�
ˇ
j

f0.xj�1/

�
.Kıvj /f

.r/
0 C

rX
qD1

X 
r

q

!
cm1;:::;mq

K.Mq/ ı vj

F
Mq
j

f
.r�q/
0

qY
sD1

�
f
.s�1/
0

�ms�
;

(B.1)
where the second sum is over the same set of integers as above.

If x; y 2 Œxj�1; xj �, then by (6.3),

jK.q/.vj .x// �K
.q/.vj .y//j .

�
��1j jx � yj

�ˇ�r
for any q D 0; : : : ; r . By definition, f0 2 Hˇ .R0/ implies that

jf
.r/
0 .x/j � Rr=ˇ jf0.x/j

.ˇ�r/=ˇ

for all r D 1; : : : ; bˇc and all x 2 Œ0; 1�. Without loss of generality, we may assume
that x < y. Using Lemma 6 and the mean value theorem, we can argue as for
Equation (3.5) in [30] and find for s � bˇc � 1 and some � 2 Œx; y�,

jf
.s/
0 .x/ms � f

.s/
0 .y/ms j � msjf

.sC1/
0 .�/f

.s/
0 .�/ms�1jjx � yj

. R.smsC1/=ˇf0.xj�1/
.�1=ˇ/C..ˇ�s/=ˇ/ms�

1�.ˇ�r/
j jx � yjˇ�r

and
jf
.bˇc/
0 .x/ � f

.bˇc/
0 .y/j . Rjx � yjˇ�r :

In order to control j.f0 j /.r/.x/ � .f0 j /.r/.y/j, we rewrite this expression
using (B.1) with r D bˇc and control each factor separately, applying the inequality

jab � a0b0j � ja � a0jjbj C ja0jjb � b0j;

which holds for any a; a0; b; b0 2 R. This gives

jf0 j jCˇ . ˛
X
q

�
�
ˇ
j

f0.xj�1/

� r�Mq
ˇ

. ˛;

where for the second step we used maxj �ˇj =f0.xj�1/! 0. Thus,

jf0 j jCˇ � ı=2

for ˛ small and all sufficiently large n.
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(ii) We first show that
jf� jHˇ � jf0jHˇ C ı:

Equation (6.4) implies

jf� .x/=f0.x/j D
ˇ̌̌
1C

mX
jD1

�j j .x/
ˇ̌̌
D 1C o.1/;

uniformly over x. It is thus enough to prove

jf
.r/

�
.x/j �

�
jf0jHˇ C ı=2

�r=ˇ
jf0.x/j

.ˇ�r/=ˇ

for r D 1; : : : ; bˇc. If for any r D 1; : : : ; bˇc,ˇ̌
.f0 j /

.r/.x/
ˇ̌
�
�
.RC ı=2/r=ˇ �Rr=ˇ

�
jf0.x/j

.ˇ�r/=ˇ ; (B.2)

for all x 2 Œxj�1; xj �, j D 1; : : : ; m. Then, since x 7! .x C b/˛ � x˛ for b; x > 0
and 0 < ˛ � 1 is monotone decreasing and

jf
.r/
0 .x/j � jf0j

r=ˇ

Hˇ jf0.x/j
.ˇ�r/=ˇ

by assumption,

jf
.r/

�
.x/j � jf

.r/
0 .x/j C j.f0 j /

.r/.x/j �
�
jf0jHˇ C ı=2

�r=ˇ
jf0.x/j

.ˇ�r/=ˇ :

It thus remains to show (B.2). To see this, use (B.1) and f0 2 Hˇ .R0/. This yieldsˇ̌
.f0 j /

.r/
ˇ̌

.
X
q

�
�jf

�1=ˇ
0

�ˇ�Mq
f
.ˇ�r/=ˇ
0 ;

which implies (B.2) for sufficiently large n sinceMq � bˇc < ˇ and

max
j
�
ˇ
j =f0.xj�1/! 0:

The previous step also shows that

kf
.bˇc/

�
k1 � kf

.bˇc/
0 k1 C ı:

Proof of Proposition 5. We use ., & and the big-O notation in the same way as in
Theorem 3.

Expansion of q˙;j .�0j /. Recall that

f� D f0

�
1C

mX
jD1

�j j

�
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and that the  j have disjoint support. Using the identity
p
z � 1 D 1

2
.z � 1/ � 1

8
.z � 1/2 C 1

8
.z � 1/3.3C

p
z/=.
p
z C 1/3

for z D 1C �j j .x/ and z D 1C �0j j .x/, together with �j;2 D ˛
2=n and (6.4),

we find for �j ¤ �0j ,

Dj WD n

Z xj

xj�1

�p
f� .x/ �

q
f�0.x/

�2
dx D ˛2 CO

�
n�j;4

�
and in particular, Dj � ˛2=2 for all j if n is large enough. Therefore, by Taylor
expansion and straightforward computations,

q˙;j .�
0
j / D Q�0

�
Qj .��

0
j / � e

˙2˛�0
j
�

D ˆ
�
�D

1=2
j � ˛�0jD

�1=2
j

�
D ˆ.�˛ � �0j /CO

� ˛2
nFj

�
;

which proves the first part of the proposition.

Expansion of p˙;j .�0j /. Throughout this part of the proof we make freely use of the
inequalities (6.3) and (6.4). For a real number b with 1 � jbj > 0, consider the
difference log.1C b/ � log.1 � b/. By a fourth order Taylor expansion of both log
terms around one, we findˇ̌

log.1C b/ � log.1 � b/ � 2b
ˇ̌
�

2
3
jbj3 C

b4

2.1 � jbj/4
:

Recall the definition of Pj .�j / in (6.13). With b D �j j .X .j /i /, the likelihood ratio
for �j in the Poisson experiment EPn is

Pj .�j / D exp
�
rj;n C .�j � �

0
j /

NjX
iD1

 j .X
.j /
i /

�
; (B.3)

for a suitable remainder term rj;n satisfying jrj;nj . Nj k j k
3
1. Due to (6.4), there

is a constant cr such that

jrj;nj � 2crNj˛
3.nFj /

�3=2

(the factor 2 allows us to simplify expressions later). Define Ej WD E�0 Œ j .X
.j /
1 /�

and sj WD Std�0. j .X
.j /
1 //. Let

�j D
p
Nj

1
Nj

PNj
iD1  j .X

.j /
i / �Ej

sj
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and observe that

Ej D
1

Fj

Z
 j .x/f0.x/

�
1C

mX
jD1

�0j j .x/

�
dx D

˛2

nFj
�0j

and

s2j D F
�1
j

Z
 2j .x/f0.x/

�
1C

mX
jD1

�0j j .x/

�
dx �E2j

D
˛2

nFj
C
�j;3

Fj
�0j �

˛4

.nFj /2
;

implying for sufficiently large n,

˛

2
p
nFj

� sj �
2˛p
nFj

for all j D 1; : : : ; m: (B.4)

Since .1C x/�1=2 D 1 � x=2CO.x2/ for jxj � 1=2, we also have

˛p
nFj sj

D
�
1Cn�j;3˛

�2�0j �˛
2=nFj

��1=2
D 1�

n�j;3�
0
j

2˛2
CO

� ˛2
nFj

�
: (B.5)

The r th central moment of �0j j .X
.j /
1 / will be denoted by mj;r . With (B.5),

mj;3

s3j
D �0j

E�0
�
 j .X

.j /
1 /3

�
� 3E�0

�
 j .X

.j /
1 /2

�
Ej C 2E

3
j

s3j

D �0j
�j;3

Fj s
3
j

CO
�
˛=.nFj /

1=2
�

D �0j�j;3n
3=2
p
Fj˛

�3
CO

�
˛=.nFj /

1=2
�

(B.6)

and with (6.7),

max
j

mj;r=s
r
j . max

j
E�0

�
 j .X

.j /
1 /r

�
=srj . 1:

We can further rewrite (B.3) as

Pj .��
0
j / D exp

�
rj;n � 2

p
Nj sj �

0
j �j �Nj

2˛2

nFj

�
: (B.7)

For ` D 1; 2, let

B
.`/
j;n WD �

˛2
p
Nj

nFj sj
C .�1/`

cr˛
3
p
Nj

.nFj /3=2sj
�

˛�0jp
Nj sj
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and observe that the only randomness in B.`/j;n comes from Nj . Recall that

y�P˙;j ¤ �
0
j iff Pj .��0j / � e

˙2˛�0
j :

Due to (B.7), we therefore have

y�P˙;j ¤ �
0
j iff rj;n � 2�0j

p
Nj sj �j � 4˛

2Nj
�
nFj .f�0/

��1
> ˙2˛�0j

and thus
P�0

�
�0j �j � B

.1/
j;n

�
� pj;˙.�0/ � P�0

�
�0j �j � B

.2/
j;n

�
:

In the next step, we show that for ` D 1; 2,

P�0.�
0
j �j � B

.`/
j;n/ D ˆ.�˛ � �

0
j /˙ n�j;3=.6˛

2/�.�˛ � �0j /CO.˛
2=
p
nFj /:

To do that we need the following Edgeworth expansion, which is a simplification of
Petrov [27, p. 159] with k D 3.

Theorem 8. Let .Yi /iD1;:::;M be i.i.d. random variables with

EY1 D 0; � WD Std.Y1/; and EŒY 41 � <1:

Let v.t/ D EeitY1 and denote by GM the c.d.f. of � D M�1=2
P
i Yi=� . There

exists an absolute constant C such that for any t 2 R,ˇ̌̌
GM .t/ �ˆ.t/ �

1
p
M

EŒY 31 �

6�3
.1 � t2/�.t/

ˇ̌̌
� C

EŒY 41 �

�4M
C C

�
sup

juj��2=.12E jY1j3/

jv.u/j C
1

2M

�M
M 6:

To compute P�0.�0j �j � B
.`/
j;n/, we first condition on Nj . The bounds below are

only useful if Nj > 0 and we will later see that this is enough. Using Theorem 8,
there exists a constant C 0 such thatˇ̌̌
P�0

�
�0j �j � y

ˇ̌
Nj
�
�ˆ

�
y
�
�

mj;3

6
p
Nj s

3
j

.1 � y2/�.y/
ˇ̌̌

�
C 0

Nj
C C 0

�
sup
jt j�ıj

jvj .t/j C
1

2Nj

�Nj
N 6
j

with

jvj .t/j D
ˇ̌
E�0 exp

�
i t
�
 j .X

.j /
1 / �Ej

��ˇ̌
D
ˇ̌
E�0 exp

�
i t j .X

.j /
1 /

�ˇ̌
and

ıj D s
2
j =
�
12
p
mj;6

�
:
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Lemma 5. For n sufficiently large, there exists a constant L < 1 such that

max
j

sup
jt j�ıj

jvj .t/j � L < 1:

Proof. To simplify the proof, write �j D ˛j�
ˇ
j =f0.xj�1/ and observe that

with (B.4), �j � sj . Let W be a random variable with Lebesgue density fW
and V D g.W / for a continuously differentiable function g. Let v be such that for
all w 2 g�1.v/ the derivative g0.!/ is non-zero. For such a v, the density fV of V
is given by

fV .v/ D
X

w2g�1.v/

fW .w/

jg0.w/j
:

SinceK is by assumption continuously differentiable andK 0.u/ D 0 for only finitely
many different values of u 2 Œ0; 1�, the density of  j .X .j /1 / with X .j /1 generated
from P�0 is contained in the support Œ�j infK; �j supK� and almost everywhere
bounded from below by

inf
x2Œxj�1;xj �

f�0.x/

�j kK 0k1f0.x/
:

By (6.4), we have that for sufficiently large n this is lower bound by 1=.2�j kK 0k1/.
Subtracting and adding 1=.2�j kK 0k1/ to the density, we obtain for the characteristic
function,

jvj .t/j � 1 �
supK � infK
2kK 0k1

C
1

2�j kK 0k1

ˇ̌̌ Z �j supK

�j infK
eitu du

ˇ̌̌
D 1 �

supK � infK
2kK 0k1

C

ˇ̌̌sin.t�j .supK � infK/=2/
t�j kK 0k1

ˇ̌̌
:

Observe that
ıj D 1=

�
12sj

q
mj;6=s

6
j

�
& 1=sj & 1=�j

and therefore there exits a positive constant that does not depend on j such that

sup
jt j�ıj

jvj .t/j � sup
t�j�c>0

jvj .t/j:

Since the sinc-function sin.x/=x is smaller than one whenever x is bounded away
from zero, this implies

max
j

sup
t�j�c>0

jvj .t/j � L < 1:
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As a consequence of the previous lemma, we obtainˇ̌̌
P�0

�
�0j �j � y

ˇ̌
Nj
�
�ˆ

�
y
�
�

mj;3

6
p
Nj s

3
j

.1 � y2/�.y/
ˇ̌̌

.
1

Nj
:

For any real numbers y; z, there exist �; �0; �00 2 R such that by Taylor expansion

ˆ.y/ D ˆ.z/C .y � z/�.z/C 1
2
.y � z/2�0.�/

as well as

�.y/ D �.z/C .y � z/�0.�0/

and y2�.y/ D z2�.z/C .y � z/
�
2�00�.�00/C .�00/2�0.�00/

�
:

Together with maxj mj;3=s3j . 1 this yieldsˇ̌̌
P�0

�
�0j �j � y

ˇ̌
Nj
�
�ˆ.z/�.y�z/�.z/�

mj;3

6
p
Nj s

3
j

.1�z2/�.z/
ˇ̌̌

.
1

Nj
C.y�z/2:

(B.8)
In the next step, we show that

ˇ̌̌
B
.`/
j;n C ˛ ˙ �

0
j �

n�j;3

2˛2
C
˛2 � ˛�0jp
nFj sj

Nj � nFj

2nFj

ˇ̌̌
.
p
Nj˛

2

nFj
C
jNj � nFj j

2

.nFj /2

�
1C

p
nFjp
Nj

�
C

˛2p
nFj

: (B.9)

For that, decompose B.`/j;n C ˛ ˙ �
0
j into

.�1/`
cr˛

3
p
Nj

.nFj /3=2sj
�

˛2p
nFj sj

� p
Njp
nFj
� 1

�
C .˛ ˙ �0j /

�
1 �

˛p
nFj sj

�
˙

˛�0jp
nFj sj

�
1 �

p
nFjp
Nj

�
: (B.10)

Using (B.4), the first term is of order
p
Nj˛

2=.nFj /. Applying the identity
p
z � 1 D 1

2
.z � 1/ � 1

2
.z � 1/2=.

p
z C 1/2

to z D Nj =.nFj /,p
Njp
nFj
� 1 D

Nj � nFj

2nFj
CO

�
.Nj � nFj /

2

.nFj /2

�
; (B.11)
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which controls the second term in (B.10). For the last term, using

1 � z�1=2 D
p
z � 1 � .

p
z � 1/2=

p
z

together with (B.11) gives

1 �

p
nFjp
Nj
D
Nj � nFj

2nFj
CO

�
.Nj � nFj /

2

.nFj /2

�
1C

p
nFjp
Nj

��
:

Finally, the third term of (B.10) can be controlled with (B.5) and this proves (B.9).
Using (6.4), P.Nj D 0/ D exp.�nFj / decreases faster to zero than any power

of 1=.nFj /. Considering each term in (B.9) individually using Lemma 8(ii), that
EN

1=2
j � ŒENj �

1=2 and the Cauchy–Schwarz inequality gives

E�0
�
B
.`/
j;n1.Nj > 0/

�
D �˛ � �0j ˙

n�j;3

2˛2
CO

�
˛2p
nFj

�
and

E�0
�
.B

.`/
j;n C ˛ ˙ �

0
j /
21.Nj > 0/

�
. 1=.nFj /:

Applying this to (B.8) with y D B
.`/
j;n and z D �˛ � �0j , using (6.4), (B.4) and the

expression for the standardized cumulant mj;3=s3j in (B.6) gives

E�0
�
P.�0j �j � B

.`/
j;n

ˇ̌
Nj /

�
D E�0

�
P.�0j �j � B

.`/
j;n

ˇ̌
Nj /1.Nj > 0/

�
CO

�
e�.nFj /

�
D ˆ.�˛ � �0j /˙

n�j;3

6˛2
�.�˛ � �0j /CO

�
˛2=

p
nFj

�
:

This finally yields

p˙;j .�
0
j / D ˆ.�˛ � �

0
j /˙

n�j;3

6˛2
�.�˛ � �0j /CO

�
˛2=

p
nFj

�
;

which completes the proof of the second assertion of the proposition.

Remaining proofs.

Proof of Proposition 6. We first prove that y�P
˙

is a Bayes estimator in the Poisson
model. Denote by p� the density of P n� with respect to some dominating measure �.
In step .i/, we prove that any estimator

z� 2 argmax
�2‚

X
� 0W�.�;� 0/�A

p� 0�˙.�
0/ (B.12)

is a Bayes estimator. In step .ii/, we show that y�P
˙

is always contained in the argmax.
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(i) Observe that

inf
y�

X
�02‚

P n�0

�
�.y�; �0/ � A

�
�˙.�0/ D 1�sup

y�

Z X
�02‚

1.�.y�; �0/ < A/p�0�˙.�0/ d�:

Now X
�02‚

1
�
�.y�; �0/ < A

�
p�0�˙.�0/ � sup

�

X
�02‚

1
�
�.�; �0/ < A

�
p�0�˙.�0/;

which does not depend on y� anymore. The upper bound is attained by any estimator z�
satisfying (B.12).
(ii) Let y� be an arbitrary estimator. If L D

Pm
jD1 1.y�P˙;j ¤ y�j / is positive, we can

find a sequence of estimators
y�0 WD y�; y�1; : : : ; y�L�1; y�L WD y�

P
˙

such that for any r D 1; : : : ; L, y�r and y�r�1 differ in exactly one entry. Write
Ur D f� W �.y�r ; �/ � Ag. It is enough to prove that the sequenceX

�2Ur

�˙.�/p� ; r D 0; : : : ; L (B.13)

is monotone increasing in r . Let � D .�1; : : : ; �m/ and observe that by (6.13) the
densities p� and the priors �˙ factorize with respect to the components �j , that is

p� D

mY
jD1

p�j and �˙.�/ D

mY
jD1

�˙.�j /:

Going from y�r to y�rC1 we increase one of the factors, say the first one. It thus remains
to show thatX
�2Ur

�˙.�1/p�1�˙.�2/p�2 � � � � � �˙.�m/p�m

�

X
�2UrC1

�˙.�1/p�1�˙.�2/p�2 � � � � � �˙.�m/p�m

D

X
�2Ur

�˙.��1/p��1�˙.�2/p�2 � � � � � �˙.�m/p�m :

If .�1; �2; : : : ; �m/ and .��1; �2; : : : ; �m/ are both elements of Ur , the respective
terms cancel in both sums. We are thus left with the case that .�1; �2; : : : ; �m/ 2 Ur
and .��1; �2; : : : ; �m/ 62 Ur . In this case, we must have

mX
jD1

�j jy�
r
j � �j j � 2A and �1jy�

r
1 C �1j C

mX
jD2

�j jy�
r
j � �j j > 2A;
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implying �1 D y� r1 . Since by construction

�˙.y�
r
1 /py�r

1

� �˙.y�
rC1
1 /py�rC1

1

D �˙.�y�
r
1 /p�y�r

1

;

we finally see that (B.13) is monotone increasing in r and this completes the proof
of .ii/.

The same arguments hold for the Gaussian experiment, proving that y�G
˙
are Bayes

estimators as well.

Proof of Lemma 3. By Remark 1, it is enough to prove the result for

pj D qj C qj .1 � qj /!ˇj :

Define the set V WD fI � f1; : : : ; mg W
Pm
jD1 ˇj > Ag and notice that

P

� mX
jD1

ˇjZj .pj / > A

�
D

X
V 2V

Y
j2V

pj
Y
j2V c

.1 � pj /

� P

� mX
jD1

ˇjZj .qj / > A

�
inf
V 2V

Y
j2V

pj

qj

Y
j2V c

1 � pj

1 � qj
:

Moreover, for any V 2 V ,

R.V / WD log
Y
j2V

pj

qj

Y
j2V c

1 � pj

1 � qj

D

X
j2V

log
�
1C .1 � qj /!ˇj

�
C

X
j2V c

log
�
1 � qj!ˇj

�
:

For 0 � x � 1=2,

log.1C x/ � x � x2=2 and log.1 � x/ � �x � 2x2:

Since ! � 1=2,

R.V / � !
X
j2V

ˇj � !

mX
jD1

ˇj qj � 2!
2

mX
jD1

ˇ2j

� !A � !

mX
jD1

ˇj qj � 2!
2

mX
jD1

ˇ2j :
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C. Results for globalization

We now derive estimators for the globalization step of the proofs. Denote by ‚.f /
the local parameter space about a point f . We must show that if f0 is the true
parameter, there exists an estimator yfn such that f0 2 ‚. yfn/ with high probability.
To avoid measurability issues, we restrict yfn to take values in a finite subset‚0 � ‚,
whose cardinality may depend on n.

The construction of such estimators is similar in all the cases. In a first step,
we split the sample and use the first part for a preliminary kernel density estimator
of f0. The second part of the sample is then used for another estimator yf2n of f0,
whose bandwidth depends locally on the first estimator. This estimator is then shown
to satisfy f0 2 ‚. yf2n/ with high probability. Finally, we construct from yf2n an
estimator yfn with values in a finite subset of ‚. By the Arzelà -Ascoli theorem,
the Hölder ball Cˇ .R/ is compact with respect to the uniform topology. For any
decreasing positive sequence .ın/, the parameter space ‚ � Hˇ .R/ � Cˇ .R/ can
therefore be covered with respect to the uniform norm by finitely many ın-balls with
centers in‚. The set of centers‚0 form a finite subset of‚. Define the estimator yfn
as any element of ‚0 (i.e. center of a ball) that lies in ‚. yf2n/. We next show that if
f0 2 ‚. yf2n/, then the center of the ball covering f0 also lies in ‚. yf2n/, provided
that ın is chosen small enough. This shows that with high probability yfn 2 ‚0 � ‚.
We finally show that this also implies the assertion that f0 2 ‚. yfn/ with high
probability.

We begin with a preliminary result on kernel density estimators. For the definition
and construction of an `th order kernel see, for instance, [37, Definition 1.3 and
Section 1.2.2].

Theorem 9. Work in the density estimation experiment EDn .‚/. Consider a kernel
density estimator

yfnhx D .nhx/
�1

nX
iD1

K..Xi � �/=hx/

for a positive bandwidth function hx > 0 and some bˇc-th order kernel K with
support on Œ�1; 1�. Let a D a.ˇ/ be the constant from Lemma 6. If f 2 Hˇ .R/,
then with probability at least 1 � 2n1� ,ˇ̌
yfnhx .x/ � f .x/

ˇ̌
� R

�
kKk1 C

1

aˇ

�
hˇx C 2

�
kKk1 C kKk

2
2

� logn
nhx

C kKk2

s
8f .x/

logn
nhx

� R
�
kKk1 C

1

aˇ

�
hˇx C 2

�
kKk1 C 5kKk

2
2

� logn
nhx

C
1

2
f .x/

for all x 2 f1=n; 2=n; : : : ; 1g.
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Proof. Using Proposition 1.2 in [37], we can bound the bias byˇ̌
E
�
yfnhx .x/

�
� f .x/

ˇ̌
�
Rh

ˇ
x

bˇcŠ

Z
juˇK.u/j du � 2RkKk1h

ˇ
x :

Recall Bernstein’s inequality: if Z1; : : : ; Zn is a sequence of i.i.d. centered, real-
valued random variables such that jZi j � 1 a.s., then for any t > 0,

P

�ˇ̌̌ nX
iD1

Zi

ˇ̌̌
> t

�
� 2 exp

�
�

1
2
t2

nEŒZ21 �C
t
3

�
:

Defining Ghf .x/ WD supz2Œx�hx ;xChx � f .z/, this shows that

P nf

� ˇ̌̌ nX
iD1

K
�Xi � x

hx

�
�E

h
K
�Xi � x

hx

�iˇ̌̌
� 2kKk1 lognC 2kKk2

p
Ghf .x/nhx logn

�
� 2n� :

Together with a union bound and the bound for the bias, this proves that with
probability at least 1 � 2n1� ,

ˇ̌
yfnhx .x/ � f .x/

ˇ̌
� 2RkKk1h

ˇ
x C 2kKk1

logn
nhx

C 2kKk2

s
Ghf .x/ logn

nhx

for all x 2 f1=n; 2=n; : : : ; 1g. Let a D a.ˇ/ be the constant from Lemma 6. This
implies that Ghf .x/ � 2f .x/ whenever a�ˇRh

ˇ
x � Ghf .x/. If this does not hold,

we simply use Ghf .x/ � a�ˇRh
ˇ
x so that Ghf .x/ � 2f .x/C a�ˇRh

ˇ
x for all x.

Using that for positive numbers
p
aC b �

p
a C
p
b and 2

p
uv � u C 2v, this

finally gives that with probability at least 1 � 2n1� ,ˇ̌
yfnhx .x/ � f .x/

ˇ̌
� R

�
kKk1 C

1

aˇ

�
hˇx

C 2
�
kKk1 C kKk

2
2

� logn
nhx

C kKk2

s
8f .x/

logn
nhx

for all x 2 f1=n; 2=n; : : : ; 1g. This proves the first inequality. For the second
inequality, use 2

p
uv � uC 2v again.

Proof of Theorem 6. In the Poisson intensity estimation experiment, we observe
X1; : : : ; XN with N � Poi.n/. By Lemma 8(iii), P.N � n=2/ � 1 � 2e�n=16.
Thus, on an event with probability 1� o.1=n/, we can recover the density estimation
model with sample size bn=2c. It is therefore enough to prove the result for density
estimation.
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Throughout the following letK be an bˇc-th order kernel with support on Œ�1; 1�
and let n� WD bn=2c � n and Ln� WD .logn�/=n�. In the density estimation
experiment, we can split the sample in two independent samples of size n� and use
the first part of the sample to define the estimator

yf1n� D .n�h1n/
�1

n�X
iD1

K
�
.Xi � �/=h1n

�
with h1n D L1=.ˇC1/n� . The second part of the sample is then used for the estimator

yf2n� D .n�
yhn/
�1

2n�X
iDn�C1

K
�
.Xi � �/=yhn

�
with yhn D L1=.ˇC1/n� _ .Ln�

yf1n�.x//
1=.2ˇC1/. By the compactness argument given

at the beginning of Section C,‚ can be covered by finitely many L1-balls of radius
L
ˇ=.ˇC1/
n� having centers in ‚. Let us define an estimator yfn as any of the centers of

the covering balls in the set˚
f 2 ‚ W

ˇ̌
yf2n�

�
i
n

�
� f

�
i
n

�ˇ̌
� .C C 1/Lˇ=.ˇC1/n�

C C.Ln�
yf2n�.x//

ˇ=.2ˇC1/; i D 1; : : : ; n
	
:

If none of the centers are in this set then set yfn WD f � for some fixed parameter
f � 2 ‚.

Applying Theorem 9 with  D 2, there is a constant C1 such that

j yf1n�.
i
n
/ � f0.

i
n
/j � C1L

ˇ=.ˇC1/
n�

C f0.
i
n
/=2

for all i D 1; : : : ; n with probability at least 1 � 2n�1� . In particular, if f0. in / �
4C1L

ˇ=.ˇC1/
n� , then

1
4
f0.

i
n
/ � yf1n�.

i
n
/ � 7

4
f0.

i
n
/:

Applying Theorem 9 with  D 2 to yf2n� conditionally on X1; : : : Xn� , and treating
the cases f0. in / ? 4C1L

ˇ=.ˇC1/
n� separately, gives for some constant C3,ˇ̌

yf2n�
�
i
n

�
� f0

�
i
n

�ˇ̌
� C3L

ˇ=.ˇC1/
n�

C C3
�
f0
�
i
n

�
Ln�

�ˇ=.2ˇC1/
;

for all i D 1; : : : ; n, with probability at least 1 � 4n�1� � 1 � 8=.n � 1/. From now
on, let us work on the event where the previous inequalities hold. The switching
relation in Lemma 10 shows that we can exchange f0 by yf2n� on the right-hand side
and therefore, for a constant C4,ˇ̌

yf2n�
�
i
n

�
� f0

�
i
n

�ˇ̌
� C4L

ˇ=.ˇC1/
n�

C C4
�
yf2n�

�
i
n

�
Ln�

�ˇ=.2ˇC1/
;
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for all i D 1; : : : ; n. By construction, we can then conclude that if the constant C in
the definition of yfn is taken to be larger than C4, yfn must be a center of a ball from
the covering and

j yf2n�.
i
n
/ � yfn.

i
n
/j � .C4 C 1/L

ˇ=.ˇC1/
n�

C C4
�
yf2n�.

i
n
/Ln�

�ˇ=.2ˇC1/
;

for all i D 1; : : : ; n. With Lemma 10, we can replace yf2n�. in / by yfn.
i
n
/ and this

shows that for some constants C5; C6 and any i D 1; : : : ; n,ˇ̌
f0
�
i
n

�
� yfn

�
i
n

�ˇ̌
� C5L

ˇ=.ˇC1/
n�

C C5
�
max

�
f0
�
i
n

�
; yfn

�
i
n

��
Ln�

�ˇ=.2ˇC1/
� C6L

ˇ=.ˇC1/
n�

C C6
�
yfn
�
i
n

�
Ln�

�ˇ=.2ˇC1/
;

where the last step follows from Lemma 10 applied to

an D max
�
f0.

i
n
/; yfn.

i
n
/
�

and bn D min
�
f0.

i
n
/; yfn.

i
n
/
�
:

Finally, let x 2 Œ0; 1� be arbitrary and define ix WD argmini jx � i
n
j. Since f0; yfn 2

Hˇ .R/ and n�.1^ˇ/ � Lˇ=.ˇC1/n� , the triangle inequality givesˇ̌
f0.x/ � yfn.x/

ˇ̌
� 2Rn�.1^ˇ/ C

ˇ̌
f0
�
ix
n

�
� yfn

�
ix
n

�ˇ̌
� 2Rn�.1^ˇ/ C C6L

ˇ=.ˇC1/
n�

C C6
��
yfn.x/CRn

�.1^ˇ/
�
Ln�

�ˇ=.2ˇC1/
�
�
2RC C6

�
1CRˇ=.2ˇC1/

��
Lˇ=.ˇC1/n�

C C6
�
yfn.x/Ln�

�ˇ=.2ˇC1/
:

Since x was arbitrary, this shows that f0 2 ‚ˇ1 . yfn/ provided that the constant C in
the definition of ‚ˇ1 . yfn/ is taken large enough.

Proof of Theorem 7. The arguments in the proof always hold for sufficiently large n
although this is not always explicitly mentioned. Let f � 2 ‚ be an arbitrary fixed
parameter. In .I/ we prove the result for the Poisson intensity estimation experiment
and in .II/ the result is extended to the Gaussian white noise experiment EGn .‚/.

(I) We first construct two preliminary estimators yf1n and yf2n. GivenN � Poi.n/, let
N1 � Bin.N; 1=2/. Then .X1; : : : ; XN1/ and .XN1C1; : : : ; XN / are two independent
samples from the same Poisson intensity estimation experiment with n replaced by
n=2. If N1 > n=4, construct the estimator satisfying the conclusions of Theorem 6
based on the subsample .X1; : : : ; Xbn=4c/ and denote this estimator by yf1n. If
N1 � n=4, set yf1n D f �. LetLn D n�1 logn. By the conclusion of Theorem 6 and
Lemma 10, it follows for that some sufficiently large constant C , the event

� WD
˚
j yf1n.x/ � f0.x/j � CL

ˇ=.ˇC1/
n C C.f0.x/Ln/

ˇ=.2ˇC1/ for all x 2 Œ0; 1�
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has xP n
f0
-probability1�O.n�1/. Since by assumption inff02‚ infx f0.x/�L

ˇ=.ˇC1/
n ,

it follows that 1
2
f0 � yf1n � 2f0 on�. Based on yf1n, we estimate the sequence (4.1).

Let yz0 WD 0 and yziC1 WD yzi C . yf1n.yzi /=n/1=.2ˇC1/. Denote by ym the index of the
largest yzi smaller than 1 and define .yxi /iD0;:::;m as yxi WD yzi for i < ym and yx ym WD 1.
In analogy with (4.2), write

y�i WD yxi � yxi�1 D
�
yf1n.yxi�1/=n

�1=.2ˇC1/
C .1 � yz ym/1.i D ym/:

Using the same arguments as for (4.3) and (4.4), we obtain that on � and for
sufficiently large n,�

f0.yxj�1/=n
�1=.2ˇC1/

� y�j � 3
�
f0.yxj�1/=n

�1=.2ˇC1/ (C.1)
and

1

2
f0.yxj�1/ � f0.x/ � 2f0.yxj�1/; for all x 2 Œyxj�1; yxj �; (C.2)

for all j D 1; : : : ; ym.
Let N 0i WD #fj 2 fN1 C 1; : : : ; N g W Xj 2 Œyxi�1; yxi /g be the number of counts

in the interval Œyxi�1; yxi / based on the second part of the sample. Thus, conditionally
on X1; : : : ; XN1 , N 0i follows a Poisson distribution with intensity

E
�
N 0i jX1; : : : ; XN1

�
D
n

2

Z yxi
yxi�1

f0.u/ du:

Define the estimator

zf2n D

ymX
iD1

2N 0i

ny�i
1
�
� 2 Œyxi�1; yxi /

�
(C.3)

and denote by yf2n the projection of zf2n on Œ12 yf1n.x/; 2 yf1n.x/�, that is

yf2n.x/ D
�
zf2n.x/ ^ 2 yf1n.x/

�
_

yf1n.x/

2
: (C.4)

On �, 1
2
yf1n � f0 � 2 yf1n and thus 1

4
f0 � yf2n � 4f0 as well as

j yf2n.x/ � f0.x/j � j zf2n.x/ � f0.x/j;

for all x 2 Œ0; 1�.
We next show that on an event �1 with probability P.�1/ D 1 � O.n�1/, the

estimator yf2n.x/ satisfies

n

Z 1

0

�
f0.x/ � yf2n.x/

�4
yf2n.x/3

dx � C2n
1�2ˇ
2ˇC1

Z 1

0

yf2n.x/
�
2ˇC3
2ˇC1 dx (C.5)



156 K. Ray and J. Schmidt-Hieber

for some constant C2 which depends only on R and ˇ. Let

�i WD
n

2

Z yxi
yxi�1

f0.u/ du; !i WD 1=
�
ny�if0.yxi�1/

�
; and �i WD .N

0
i��i /=

p
�i :

On �, using f0 2 Hˇ .R/, (C.1) and (C.2),

n

Z 1

0

�
f0.x/ � yf2n.x/

�4
yf2n.x/3

dx

� 29n

Z 1

0

� �
f0.x/ �EŒ zf2n.x/jX1; : : : ; XN1 �

�4
C
�
EŒ zf2n.x/jX1; : : : ; XN1 � �

zf2n.x/
�4

f0.x/3

�

dx

� 212n

ymX
iD1

R4 y�
1C4ˇ
i

f0.yxi�1/3
C 216

ymX
iD1

�2i �
4
i

n3 y�3i f0.yxi�1/
3

� 34ˇ212R4n
1�2ˇ
2ˇC1

ymX
iD1

y�if0.yxi�1/
�
2ˇC3
2ˇC1 C 216

ymX
iD1

!i�
4
i

� 34ˇ215R4n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx C 216

ymX
iD1

!i�
4
i :

(C.6)

Due to

ymX
iD1

!i � n
1�2ˇ
2ˇC1

ymX
iD1

y�i

f0.yxi�1/.2ˇC3/=.2ˇC1/
� 8n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx;

(C.7)
min
i
�i � min

i

1
4
ny�if0.yxi�1/ �

1
4
n2ˇ=.2ˇC1/ inf

f02‚
inf
x
f0.x/

.2ˇC2/=.2ˇC1/
!1;

and Lemma 8(i), we find for some sufficiently large constant C1,

n

Z 1

0

�
f0.x/ � yf2n.x/

�4
yf2n.x/3

dx � C1n
1�2ˇ
2ˇC1

Z 1

0

yf2n.x/
�
2ˇC3
2ˇC1 dx

C 216
ymX
iD1

!i
�
�4i �EŒ�

4
i �
�
: (C.8)

For the second term, we apply the exponential inequality in Lemma 9. For
that we firstly verify that k!k1 log5 n .

P
i !i . Set f� WD infx f0.x/ and

x� 2 argminx f0.x/. For K 2 f2; 4g, denote by IK the largest interval such that
x� 2 IK and IK � fx W f� � f0.x/ � Kf�g. Let us derive a lower bound for the
cardinality of fi W yxi�1 2 I4g. If Œyxi�1; yxi /\ I2 ¤ ¿, then by (C.2), f .yxi�1/ � 4f�
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for sufficiently large n and so yxi�1 2 I4. The cardinality of fi W yxi�1 2 I4g

can therefore be lower bounded by the cardinality of fi W Œyxi�1; yxi / \ I2 ¤ ¿g.
If yxi�1 2 I4 then by (C.1), y�i � 3.4f�=n/

1=.2ˇC1/. Moreover by Lemma 6, the
Lebesguemeasure of the set I2 is at least a.f�=R/1=ˇ with a the constant in Lemma 6.
This means that the cardinality of fi W yxi�1 2 I4g is at least

a.f�=R/
1=ˇ

3.4f�=n/1=.2ˇC1/
D

a

3R1=ˇ41=.2ˇC1/
f

ˇC1
ˇ.2ˇC1/
� n

1
2ˇC1 & log5 n;

where for the last step we used that ˇ 7! .ˇC1/=.ˇ.2ˇC1// is monotone decreasing
for ˇ > 0 and that inff 2‚ infx f .x/� n�ˇ=.ˇC1/ log8 n by assumption. Recall the
definition of !i and observe that if i 2 I4, the ratio !i=k!k1 is bounded from
below by a constant. Consequently, k!k1 log5 n .

P
i Wyxi�12I4

!i �
P ym
iD1 !i

and the right-hand side can be further bounded using (C.7). By (C.1), (C.2), and
Lemma 7(ii),

lognk!k2 . logn
�
n
1�4ˇ
2ˇC1

Z 1

0

f0.x/
�
4ˇC5
2ˇC1 dx

�1=2
. n

1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx:

Since inff02‚ infx f0.x/� n�ˇ=.ˇC1/, we have

ym D

ymX
iD1

y�i=y�i � n
1

ˇC1

ymX
iD1

y�i D n
1

ˇC1

for all sufficiently large n. Thus, using Lemma 8(i) and mini �i !1, we can apply
the exponential inequality in Lemma 9 with p D 4 and t D 2 logn to obtain

ymX
iD1

!i
�
�4i �EŒ�

4
i �
�

. n
1�2ˇ
2ˇC1

Z 1

0

f0.x/
�
2ˇC3
2ˇC1 dx

with probability � 1 � yme2=n2 � 1 � e2=n. Together with (C.8), this shows that
there is a constant C2 depending only on ˇ and R, such that

n

Z 1

0

�
f0.x/ � yf2n.x/

�4
yf2n.x/3

dx � C2n
1�2ˇ
2ˇC1

Z 1

0

yf2n.x/
�
2ˇC3
2ˇC1 dx (C.9)

on an event �1 with probability P.�1/ � 1 � e2=n � P.�c/ D 1 �O.n�1/. This
proves (C.5).
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As in the proof of Theorem 6, we cover ‚ � Hˇ .R/ with finitely many balls of
sup-norm radius n�2 and centers in ‚. The estimator yfn is then defined as any of
the centers of the covering balls in the set�

f 2 ‚ W 1
8
f � yf2n � 8f; and n

Z 1

0

.f .x/ � yf2n.x//
4

yf2n.x/3
dx

� 8.C2 C 2/n
1�2ˇ
2ˇC1

Z 1

0

yf2n.x/
�
2ˇC3
2ˇC1 dx

�
: (C.10)

If none of the centers are in this set then set yfn WD f �.
By construction, the estimator yfn can take only finitely many values in the

parameter space ‚. We now show that on the event �1, yfn lies in the set (C.10).
By construction of the covering, it is enough to prove that on �1, any zf 2 ‚
with k zf � f0k1 � n�2 is in the set (C.10). Let us work on �1. Since
inff02‚ infx f0.x/ � 4n�ˇ=.ˇC1/ � 4n�1 and 1

4
f0 � yf2n � 4f0, it follows

that yf2n � 1=n and 1
8
zf � yf2n � 8 zf . Observe that�

zf .x/ � yf2n.x/
�4
� 8

�
zf .x/ � f0.x/

�4
C 8

�
f0.x/ � yf2n.x/

�4
� 8n�8 C 8

�
f0.x/ � yf2n.x/

�4
:

Using (C.9) and that k yf2nkL1 � 4R,

n

Z 1

0

�
zf .x/ � yf2n.x/

�4
yf2n.x/3

dx � 8n�4 C 8C2n
1�2ˇ
2ˇC1

Z 1

0

yf2n.x/
�
2ˇC3
2ˇC1 dx

� 8
�
C2 C o.1/

�
n
1�2ˇ
2ˇC1

Z 1

0

yf2n.x/
�
2ˇC3
2ˇC1 dx

(C.11)

for sufficiently large n. Thus on�1, yfn is in the set (C.10). We also know that 1
8
yfn �

yf2n � 8 yfn, which together with 1
4
f0 � yf2n � 4f0 gives 2�5 yfn � f0 � 25 yfn. By

the triangle inequality

jf0.x/ � yfn.x/j � jf0.x/ � yf2n.x/j C j yf2n.x/ � yfn.x/j

and using (C.10) and (C.11),

n

Z 1

0

.f0.x/ � yfn.x//
4

yfn.x/3
dx � Cn

1�2ˇ
2ˇC1

Z 1

0

yfn.x/
�
2ˇC3
2ˇC1 dx

for some sufficiently large constant C , which proves that f0 2 ‚ˇ . yfn/.

(II) By the same argument as in the proof of Lemma 13, we know that observing
.Yt /t2Œ0;1� with

dYt D 2
p
f .t/ dt C n�1=2 dWt ; t 2 Œ0; 1�;
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is equivalent to observing two independent processes .Yi;t /t2Œ0;1�, i D 1; 2, with

dYi;t D
p
f .t/ dt C n�1=2 dWi;t ; t 2 Œ0; 1�;

and Wi;t independent Brownian motions. Instead of observing one process with
noise level n�1=2, we can thus rewrite the experiment such that we observe two
independent processes with n replaced by n=2. By Theorem 1 in [29], there exists an
estimator yf3;n based on .Y1;t /t2Œ0;1� and a constant C3 depending only on ˇ and R,
such that inff02‚Qn

f0
. z�/ D 1 � o.n�1/ with

z� WD
nˇ̌
yf3;n.x/ � f0.x/

ˇ̌
� C3L

ˇ
ˇC1
n C C3

�
f0.x/Ln

� ˇ
2ˇC1 ; for all x 2 Œ0; 1�

o
:

Throughout the remaining proof, we work on the event z�. Replace yf1n by yf3n in
the construction of the sequence .yxi /iD0;::: ym in part .I/, labelling the new sequence
.zxi /iD0;:::; zm. Define also z�i D zxi � zxi�1. These sequences satisfy in particular the
relations (C.1) and (C.2) on z�, with zxi and z�i replacing yxi and y�i . Similarly to
(C.3) and (C.4), we define the estimators

yf4n D

zmX
iD1

�Y2;zxi � Y2;zxi�1
z�i

�2
1
�
� 2 Œzxi�1; zxi /

�
and yf4n.x/ D . zf4n.x/ ^ 2 yf3n.x// _

1
2
yf3n.x/. Thus on z�, 1

4
f0 � yf4n � 4f0 and

j yf4n.x/�f0.x/j � j zf4n.x/�f0.x/j for all x 2 Œ0; 1�. The next step is then to show
that (C.5) holds with probability 1�O.1=n/ and yf2n replaced by yf4n. To show this
notice that for x 2 Œzxi�1; zxi �,

zf4n.x/j.Y1;t /t
d
D

�
1

z�i

Z zxi
zxi�1

p
f0.u/ du

�2
C

2
p
nz�

3=2
i

Z zxi
zxi�1

p
f0.u/ du �iC

1

nz�i
�2i ;

where �i � N .0; 1/ are i.i.d. for i D 1; : : : ; zm and d
D means equal in distribution.

Using C.2 and the formula for the difference of two squares, the first term can be
approximated by

ˇ̌̌
f0.x/ �

�
1

z�i

Z zxi
zxi�1

p
f0.u/ du

�2 ˇ̌̌
�

1

z�i

Z zxi
zxi�1

jf0.x/ � f0.u/jp
f0.x/

du

�p
f0.x/C

1

z�i

Z zxi
zxi�1

p
f0.u/ du

�
� 3R z�

ˇ
i :
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With the expression for zf4n.x/j.Y1;t /t , the previous inequality and z!i WD
1=.nz�if0.zxi�1//,

n

Z 1

0

�
f0.x/ � yf4n.x/

�4
yf4n.x/3

dx

� 29n

Z 1

0

�
f0.x/ �EŒ zf4n.x/j.Y1;t /t �

�4
C
�
EŒ zf4n.x/j.Y1;t /t � � zf4n.x/

�4
f0.x/3

dx

� 21534R4
zmX
iD1

z�
4ˇC1
i

f0.zxi�1/3
C 215

zmX
iD1

z!3i C 2
21

zmX
iD1

z!i�
4
i C 2

15

zmX
iD1

z!3i .�
2
i � 1/

4:

The same argument as for (C.7) gives

zmX
iD1

z!i . n
1�2ˇ
2ˇC1

Z
f0.x/

�
2ˇC3
2ˇC1 dx:

Moreover, since inff02‚ infx f0.x/ � n�ˇ=.ˇC1/, also maxi z!i ! 0. Similar
arguments as in (C.6) show

n

Z 1

0

�
f0.x/ � yf4n.x/

�4
yf4n.x/3

dx . n
1�2ˇ
2ˇC1

Z 1

0

yf4n.x/
�
2ˇC3
2ˇC1 dx

C

zmX
iD1

z!i
�
�4i �E

�
�4i
��
C

zmX
iD1

z!3i
�
.�2i � 1/

4
�EŒ.�2i � 1/

4�
�
:

To control the second and third term, we apply Lemma 9with �i D �i and �i D �2i �1,
respectively. Notice that the moment condition in Lemma 9 is satisfied since

EŒ.�2i � 1/
r � � 2rEŒ�2ri �C 2

r
D 2r.2r/Š=rŠC 2r � 4rrr C 2r � 6rrr :

Following exactly the same arguments as for .I/, we see that we can apply Lemma 9
and obtain in analogy with (C.9) that

n

Z 1

0

�
f0.x/ � yf4n.x/

�4
yf4n.x/3

dx � C3n
1�2ˇ
2ˇC1

Z 1

0

yf4n.x/
�
2ˇC3
2ˇC1 dx (C.12)

holds with probability 1 �O.1=n/ for a constant C3 that only depends on ˇ and R.
The final step is now to show that there is also an estimator yfn which takes only
finitely many values in ‚ and also satisfies (C.12) and 1

8
yfn � yf4n � 8 yfn. The

construction and analysis of this estimator is exactly the same as in the Poisson
experiment considered in part .I/ and is therefore omitted. This completes the
proof.
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D. Technical results

Lemma 6 ([30, Lemma 1]). Suppose that f 2 Hˇ with ˇ > 0 and let a D a.ˇ/ > 0
be any constant satisfying .ea � 1/C aˇ=.bˇcŠ/ � 1=2. Then for

jhj � a

�
jf .x/j

kf kHˇ

�1=ˇ
;

we have
jf .x C h/ � f .x/j �

1

2
jf .x/j;

implying in particular,

jf .x/j=2 � jf .x C h/j � 3jf .x/j=2:

Lemma 7. (i) If .fn/n � Hˇ .R/ is a sequence of functions such that infx fn.x/�
n�ˇ=.ˇC1/ and Œxj1n ; xj2n � is as defined in (6.9), thenZ xj2n

xj1n

fn.x/
�
3ˇC4
2ˇC1 dx � n

1
4ˇC2

�Z xj2n

xj1n

fn.x/
�
2ˇC3
2ˇC1 dx

�3=2
:

(ii) If .fn/n � Hˇ .R/ is a sequence of functions such that infx fn.x/ �
n�ˇ=.ˇC1/ log3 n and ˇ � 1, then there is a constant C that is independent
of .fn/n such thatZ 1

0

fn.x/
�
4ˇC5
2ˇC1 dx � C

n1=.2ˇC1/

log2 n

�Z 1

0

fn.x/
�
2ˇC3
2ˇC1 dx

�2
:

Proof. (i) Set mn WD infx fn.x/ and E D Œxj1n ; xj2n �. Let Lk be the Lebesgue
measure of the set fx W 4kmn � fn.x/ < 4kC1mng \ E and denote by k� the
largest k such that Lk is positive. ThenZ

E

fn.x/
�
3ˇC4
2ˇC1 dx �

k�X
kD0

Lk.4
kmn/

�
3ˇC4
2ˇC1 : (D.1)

If k D k�, then 4k�C1mn � 1, since by construction of E, supx2E fn.x/ � 1.
Considering L�

k
7 .4k

�

mn/
1=.2ˇC1/n.ˇ

��1/=.2ˇC1/ with ˇ� D ˇ ^ 1, gives

Lk�.4
k�mn/

�
3ˇC4
2ˇC1 � n

ˇ��1
2ˇC1 4

3ˇC3
2ˇC1 C n

1�ˇ�

4ˇC2L
3=2

k�
.4k
�

mn/
�
3ˇC9=2
2ˇC1

� n
ˇ��1
2ˇC1 4

3ˇC3
2ˇC1 C 45n

1�ˇ�

4ˇC2

� Z
E

fn.x/
�
2ˇC3
2ˇC1 dx

�3=2
� n

1
4ˇC2

� Z
E

fn.x/
�
2ˇC3
2ˇC1 dx

�3=2
:

(D.2)
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For the last step we used thatZ
E

fn.x/
�
2ˇC3
2ˇC1 dx & 1 ^ n

2ˇ�1
2ˇC1 ;

which follows from the definition of E in (6.9) and the fact that fn is a density. If
k < k�, then by continuity there is an x 2 E such that fn.x/ D 2 � 4kmn and by
Lemma 6, Lk � a.4kmn=R/1=ˇ . Since

P
i jai j

3=2 � .
P
i jai j/

3=2,
k��1X
kD0

Lk.4
kmn/

�
3ˇC4
2ˇC1 �

R1=2ˇ
p
a

k��1X
kD0

L
3=2

k
.4kmn/

�
1
2ˇ
�
3ˇC4
2ˇC1

�
R1=2ˇ
p
a
m
�

ˇC1
ˇ.4ˇC2/

n

k��1X
kD0

L
3=2

k
.4kmn/

�
3ˇC9=2
2ˇC1

� n
1

4ˇC2

� k��1X
kD0

Lk.4
kmn/

�
2ˇC3
2ˇC1

�3=2
� 45n

1
4ˇC2

�Z
E

fn.x/
�
2ˇC3
2ˇC1 dx

�3=2
:

(D.3)

Together with (D.1) and (D.2) this yields the assertion.
(ii) Applying the same argument as for (D.1) with E D Œ0; 1� givesZ 1

0

fn.x/
�
4ˇC5
2ˇC1 dx �

k�X
kD0

Lk.4
kmn/

�
4ˇC5
2ˇC1 :

If k D k�, it is enough to treat the two cases L�
k

7 .4k
�

mn/
1=.2ˇC1/ and to argue as

for (D.2) in order to find that

Lk�.4
k�mn/

�
4ˇC5
2ˇC1 . 1C

�Z 1

0

fn.x/
�
2ˇC3
2ˇC1 dx

�2
.
n1=.2ˇC1/

log2 n

�Z 1

0

fn.x/
�
2ˇC3
2ˇC1 dx

�2
:

Arguing as for (D.3) yields
k��1X
kD0

Lk.4
kmn/

�
4ˇC5
2ˇC1 . m

�
ˇC1

ˇ.2ˇC1/
n

�Z 1

0

fn.x/
�
2ˇC3
2ˇC1 dx

�2
:

Since mn � n�ˇ=.ˇC1/ log3 n and .ˇ C 1/=.ˇ.2ˇ C 1// is monotone decreasing for
ˇ > 0, we find

m
�

ˇC1
ˇ.2ˇC1/

n �
n1=.2ˇC1/

log2 n
;

and this completes the proof for .ii/.



Sharp rates for the Le Cam distance 163

Lemma 8. Let N � Poi.�/. Then
(i) For any integer r > 0, EŒjN � �jr � � rr.1 _ �/r=2 for all � > 0,
(ii) For r > 0, EŒN�r1.N > 0/� D ��r CO.��r�1/ as �!1,
(iii) For any 0 � x � �,

P
�
jN � �j > x

�
� 2e

�
x2

2�
C
x3

2�2 :

Proof. Part .i/ is proved by induction. The statement is clearly true for r � 2. Now
suppose it is true for r � 2s. We want to show that it also holds for r � 2.s C 1/.
Consider first r D 2s C 2. The r th centralized moment satisfies the recurrence
relation

EŒ.N � �/r � D �

r�2X
kD0

 
r � 1

k

!
EŒ.N � �/k�

(cf. the proof of Lemma 3.1 in [28]). Thus,

EŒ.N � �/2sC2� � .1 _ �/sC1
2sX
kD0

 
2s C 1

k

!
.2s/k � .1 _ �/sC1.2s C 1/2sC2:

This shows that the statement also holds for r D 2s C 2. For r D 2s C 1, we apply
Jensen’s inequality and obtain

EŒjN � �j2sC1� � ŒE.N � �/2sC2�.2sC1/=.2sC2/ � .1 _ �/sC1=2.2s C 1/2sC1;

completing the proof of the induction step. Statement .ii/ is a consequence of
Corollary 4 in [39]. Let us now prove .iii/. Using exponential moments gives for
any t > 0,

P.N > �C x/ � e�.e
t�1�t/�tx :

Optimizing over t > 0 gives t D log..� C x/=�/ and using that � log.1 C z/ �
�z C 1

2
z2 for z > 0, yields

P.N > �C x/ � e
x�.xC�/ log. x

�
C1/
� e
�
x2

2�
C
x3

2�2 :

Writing P.N < �� x/ D P.�.N � �/ > x/ and following the same steps as above
gives

P.N � � < �x/ � e
x�.xC�/ log.1Cx

�
/
� e
�
x2

2�
C
x3

2�2 :

Lemma 9. Let m � 3 and suppose that �i , i D 1; : : : ; m, are independent random
variables satisfyingEŒj�i jr � � Arrr for all i D 1; : : : ; m and all integers r � 2. For
positive weights !1; : : : ; !m, integer p � 1 and any t > 0,

P

� mX
iD1

!i
�
�
p
i �EŒ�

p
i �
�
� 2e.2Ap/p max

�
k!k2; k!k1t

p
�
t

�
� me2�t : (D.4)
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Proof. Let q be an even, positive integer and �1; : : : ; �m be independent, centered
random variables with bounded qth moment. Applying Lemma 8(i) to bound
the explicit constant in Rosenthal’s inequality that is derived in Ibragimov and
Sharkhmetov [13], we have

E

�� mX
iD1

�i

�q�
� qq max

� mX
iD1

E
�
�
q
i

�
;

� mX
iD1

E
�
�2i
��q=2�

: (D.5)

We now apply this to show (D.4). There is nothing to prove in the case t � 2. Thus
it is enough to consider t > 2. Let q be now the largest even integer smaller than t
and observe that in particular, q � 2 as well. The moment bound (D.5) gives

E

�� mX
iD1

!i
�
�
p
i �EŒ�

p
i �
��q�

� qq max
� mX
iD1

.2!i /
q.Apq/pq;

� mX
iD1

!2i .2Ap/
2p

�q=2�
� qq2q.2Ap/pqmmax

�
k!k1q

p; k!k2
�q
:

Taking both sides in the inequality to the power q and applying Markov’s inequality
yields

P

� mX
iD1

!i
�
�
p
i �EŒ�

p
i �
�
� 2e.2Ap/p max

�
k!k2; k!k1t

p
�
t

�
� me�q � me2�t :

Lemma 10. Suppose that there are positive sequences .an/n, .bn/n, and .rn/n such
that for some ˇ > 0 and a positive constant C ,

jan � bnj � Cr
ˇ=.ˇC1/
n C C.anrn/

ˇ=.2ˇC1/:

Then there exists a finite constant zC that only depends on C and ˇ, such that

jan � bnj � zCr
ˇ=.ˇC1/
n C zC.bnrn/

ˇ=.2ˇC1/:

Proof. Without loss of generality, we can assume that C � 1. If

an � .4C /
.2ˇC1/=.ˇC1/rˇ=.ˇC1/n ;

then

jan � bnj � Cr
ˇ=.ˇC1/
n C C.anrn/

ˇ=.2ˇC1/
� an=4C an=4 � an=2;

and therefore an � 2bn. In this case we thus obtain

jan � bnj � Cr
ˇ=.ˇC1/
n C C.2bnrn/

ˇ=.2ˇC1/:
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Otherwise, if
an � .4C /

.2ˇC1/=.ˇC1/rˇ=.ˇC1/n ;

then
jan � bnj � C

�
1C .4C /ˇ=.ˇC1/

�
rˇ=.ˇC1/n :

E. Brief overview of the Le Cam deficiency

We briefly recall some basic facts about the Le Cam deficiency. General treatments
can be found in [18, 23, 35, 36].

Following [25, Definition 9.1], we call a statistical experiment E.‚/ D

.�;A; .P� W � 2 ‚// dominated if there exists a probability measure � such that
any P� is dominated by �. Moreover, E.‚/ is said to be Polish if � is a Polish
space and A is the associated Borel � -algebra. If E.‚/ D .�;A; .P� W � 2 ‚//

and F .‚/ D .�0;A0; .Q� W � 2 ‚// are two Polish and dominated experiments, the
Le Cam deficiency can be defined as

ı
�
E.‚/;F .‚/

�
WD inf

M
sup
�2‚

MP n� �Qn
�


TV;

where the infimum is taken over all Markov kernels from .�;A/ to .�0;A0/, see (68)
and Proposition 9.2 of [25]. For any three statistical experiments with the same
parameter space, the Le Cam deficiency satisfies the triangle inequality (cf. the proof
of Lemma 59.2 in [35]). The Le Cam distance

�
�
E.‚/;F .‚/

�
WD ı

�
E.‚/;F .‚/

�
_ ı

�
F .‚/;E.‚/

�
thus defines a pseudo-distance on the space of all experimentswith parameter space‚.

To derive bounds for the Le Cam deficiency, a common strategy is to construct
intermediate experiments that embed both statistical models into a common
probability space. Once the experiments are defined on the same measurable space,
takingM to be the identity yields (cf. [37, Lemmas 2.3 and 2.4])

�
�
E.‚/;F .‚/

�
� sup
�2‚

P n� �Qn
�


TV � sup

�2‚

H
�
P n� ;Q

n
�

�
� sup
�2‚

q
KL

�
P n
�
;Qn

�

�
;

(E.1)
whereH and KL denote the Hellinger distance and the Kullback–Leibler divergence,
respectively. Bounding the Le Cam distance therefore often reduces to bounding
information measures. In the next lemma we collect a number of facts that we use
repeatedly in this article.
Lemma 11. (i) Denote by xPƒ the distribution of the Poisson process with intensity

measure ƒ. If � is a measure that dominates ƒ1 and ƒ2 and �j D dƒj =d�,
then

H 2. xPƒ1 ;
xPƒ2/ D

Z �p
�1.x/ �

p
�2.x/

�2
d�.x/:
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(ii) For a function b and � > 0, denote byQb;� the distribution of the path .Yt /t2Œ0;1�
with dYt D b.t/dt C �dWt , where W is a Brownian motion. If ˆ denotes the
c.d.f. of the standard normal distribution, then

kQb1;� �Qb2;�kTV D 1 � 2ˆ
�
�

1
2�
kb1 � b2k2

�
;

H 2.Qb1;� ;Qb2;� / D 2 � 2 exp
�
�

1
8�2
kb1 � b2k

2
2

�
;

KL.Qb1;� ;Qb2;� / D
1
2�2
kb1 � b2k

2
2:

Proof. For a proof of .i/, see [18, p. 67] and [24]. Part .ii/ follows from Girsanov’s
formula

dQb;�=dQ0;� D exp
�
��1

Z
b.t/ dWt �

1
2
��2kbk22

�
together with

kP �QkTV D 1 � P
�
dQ
dP

> 1
�
�Q

�
dP
dQ
� 1

�
and H 2.P;Q/ D 2 � 2

Z
.dPdQ/1=2:

For upper bounds on the Le Cam distance, we use the localization technique
described in Section 3 of [25], which we briefly recall here. A sequence of
experiments En.‚/ D .�n;An; .P

n
�
W � 2 ‚// is said to allow sample splitting

if P n
�
D P

bn=2c

�
˝ P

dn=2e

�
, that is if the sample can be split into two independent

samples of size bn=2c and dn=2e. Moreover given En.‚/, define the sub-experiment
En.‚

0/ WD .�n;An; .P
n
�
W � 2 ‚0// for any ‚0 � ‚.

Lemma 12. Suppose that for any n � 2, En.‚/ D .�n;An; .P
n
�
W � 2 ‚// and

Fn.‚/ D .�
0
n;A

0
n; .Q

n
�
W � 2 ‚// are Polish experiments which are dominated and

allow sample splitting. Let y�1;n and y�2;n be two estimators based on a sample from
P
bn=2c

�
and Qdn=2e

�
respectively and assume that y�1;n and y�2;n only take values in

a finite subset of ‚. For any � 2 ‚, denote by Un.�/ � ‚ a neighbourhood of � .
Then, for n � 4,

�
�
En.‚/;Fn.‚/

�
� 8 sup

�2‚

�
max

r2fbn=2c;dn=2eg
�
�
Er.Un.�//;Fr.Un.�//

�
C P

bn=2c

�

�
� … Un.y�1;n/

�
CQ

dn=2e

�

�
� … Un.y�2;n/

��
:

Proof. We split the sample P n
�
D P

bn=2c

�
˝ P

dn=2e

�
and construct the estimator y�1;n

based on the sub-sample from P
bn=2c

�
. Define a new statistical experiment

Gn.‚/ D
�
�bn=2c ��

0
dn=2e;Abn=2c ˝A0

dn=2e;
�
P
bn=2c

�
˝Q

dn=2e

�
W � 2 ‚

��
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and observe that Gn.‚/ is also Polish and dominated. By Lemma 9.3 in [25] (last
display on p. 2427), it follows that

�
�
En.‚/;Gn.‚/

�
� 4 sup

�2‚

�
�
�
Edn=2e.Un.�//;Fdn=2e.Un.�//

�
C P

bn=2c

�

�
� … Un.y�1;n/

��
:

With the same arguments,

�
�
Gn.‚/;Fn.‚/

�
� 4 sup

�2‚

�
�
�
Ebn=2c.Un.�//;Fbn=2c.Un.�//

�
CQ

dn=2e

�

�
� … Un.y�2;n/

��
and since � is a pseudo-distance, the result follows.

The previous lemma essentially says that if the statistical experiments allow
sample splitting and if � can be estimated in both models with rate �n, then it is
sufficient to bound the Le Cam distance on a local parameter space consisting of
an �n-neighbourhood of some arbitrary �0. Bounding the Le Cam distance on a
local parameter space is often much more convenient since we can use the fact that
any parameter � is �n-close to �0. If the estimation rate �n can be obtained with
probability 1� ın, then by Lemma 12 this localization step adds O.ın/ to the global
Le Cam distance. In the experiments studied in this article, ın is much smaller than
the Le Cam distance between the local parameter spaces and so does not contribute
to the global Le Cam rate.
Lemma 13. Let ‚ � Hˇ .R/ for some ˇ > 0. The statistical experiments
EDn .‚/;E

P
n .‚/ and EGn .‚/ defined in Section 2 are Polish, dominated and allow

sample splitting.

Proof. The proof of Theorem 3.2 in [25] shows that the experiments are Polish.
The experiments are also dominated since supf 2Hˇ.R/ kf k1 < 1. The sample
splitting property is obvious for density estimation EDn .‚/. Consider now EPn .‚/.
Given N � Poi.�/, let N 0 � Bin.N; pn/ with pn D bn=2c=n. Then .X1; : : : ; XN 0/
and .XN 0C1; : : : ; XN / are two independent samples of the same Poisson intensity
estimation experiment with n replaced by bn=2c and dn=2e respectively. In the
Gaussian white noise experiment EGn .‚/, we can use that a Brownian motionW can
be written as

Wt D
�
n�1bn=2c

�1=2
W
.1/
t C

�
n�1dn=2e

�1=2
W
.2/
t ; t > 0;

for two independent Brownian motions W .1/ and W .2/. By Girsanov’s theorem,

dQn
f

dQn
0

D exp
�
2
p
n

Z 1

0

p
f .t/dWt � 2n

pf 2
2

�
D
dQ
bn=2c

f

dQ
bn=2c
0

dQ
dn=2e

f

dQ
dn=2e
0

and this completes the proof for EGn .‚/.
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