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Abstract. We investigate the clustering performances of the relaxed K-means in the setting of
sub-Gaussian Mixture Model (sGMM) and Stochastic Block Model (SBM). After identifying
the appropriate signal-to-noise ratio (SNR), we prove that the misclassification error decays
exponentially fast with respect to this SNR. These partial recovery bounds for the relaxed
K-means improve upon results currently known in the sGMM setting. In the SBM setting,
applying the relaxedK-means SDP allows us to handle general connection probabilities whereas
other SDPs investigated in the literature are restricted to the (dis-)assortative case (where within
group probabilities are larger than between group probabilities). Again, this partial recovery
bound complements the state-of-the-art results. All together, these results put forward the
versatility of the relaxed K-means.
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1. Introduction

The problem of clustering is that of grouping similar “objects” in a data set. It
encompasses many different instances such as partitioning points in a metric space,
or partitioning the nodes of a graph.

1.1. K -means and a convex relaxation. When these objects can be represented as
vectors in a Euclidean space, some of the most standard clustering approaches are
based on the minimization of the K-means criterion [35]. Observing n objects and
writing Xa 2 Rp for the object a 2 f1; : : : ; ng, the K-means criterion of a partition
G D .G1; : : : ; Gk/ of f1; : : : ; ng is defined as
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where k � k stands for the Euclidean norm. This criterion quantifies the dispersion of
each group around its centroid in order to favor homogeneous partitions. AK-means
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procedure then aims at finding a partition yG that minimizes, at least locally, the
K-means criterion. However, solving this problem is NP-hard and it is even hard to
approximate [7].

In general, iterative procedures such as Lloyd’s algorithm [35] and its variants [5]
are only shown to converge to a local minimum of the K-means criterion.
Alternatively, Peng and Wei [41] have suggested to relax the K-means criterion
to a Semi-Definite Program (SDP) followed by a rounding step. See the next section
for a definition. The resulting program is provably solvable in polynomial time. This
work is dedicated to promoting Peng andWei’s procedure and some of its variants by
(i) putting forward its versatility by handling both vector and general graph clustering
problems and (ii) assessing its near-optimal performances.

1.2.Sub-GaussianMixtureModels (sGMM)andStochastic Block Models (SBM).
In the computer-science and statistical literature, the most popular approach to assess
the performances of a procedure is the “model-based” strategy. It assumes there
exists a true unknown partition G of the “objects” and that the data have been
randomly generated from a probability distribution rendering this partition. Then,
one can assess the performances of a clustering procedure by comparing the partition
estimated from the data to G.

For vector clustering, it is classical to assume that the vectors Xa are distributed
according to a sub-Gaussian Mixture Model (sGMM). In a sGMM with partition G,
the random variables Xa are assumed to be independent and for a 2 Gk , the random
variable Xa is assumed to follow a sub-Gaussian distribution centered at �k 2 Rp

andwith covariancematrix†k . In other words, variablesXa whose indices a belongs
to the same group are identically distributed and variables Xa and Xb whose indices
belong two different groups have different means. See Section 3.1 for a definition.

Node clustering in a network has been widely investigated within the framework
of Stochastic Block Models (SBM) [27] and its variants. According to a SBM with
partition G, the network edges are sampled independently and the probability of
presence of an edge between any two nodes a 2 Gk and b 2 Gl is equal to some
quantity Pkl 2 Œ0; 1� only depending on the groups. In other words, two nodes a
and b belonging to the same group inG share the same probability of being connected
to any other node c.

These two random models have attracted a lot of attention in the last decade. See
e.g. [1,39] for two recent reviews on SBM and [17,19,28,31,34,36,37,43,44,46] for
recent contributions on sGMM. A large body of the literature on these two models
focuses on pinpointing the right scaling between the model parameters allowing to
recover the partition G from the data. For sGMM, this translates into identifying the
minimal distancemink¤l k�k��lkwithin themixtures means, such that, there exists
a clustering procedure, if possible running in polynomial time, that recovers G with
high probability. Most of the works concentrate on two types of recovery: perfect
recovery, where one wants to recover exactly the partitionG with high probability and
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weak-recovery where the estimated partition yG is only required to be more accurate
than random guessing. The goal is then to identify the precise threshold at which
perfect or weak recovery can occur. We refer to [1] for a review of these questions
in SBM. Between these two extreme regimes, when the best possible classification
is neither perfect nor trivial, the objective is to maximize the proportion of well-
classified data. Given two partitions yG D . yG1; : : : ; yGK/ and G D .G1; : : : ; GK/

of f1; : : : ; ng into K non-void groups, we define the proportion of non-matching
points

err . yG;G/ D min
�2SK

1

2n

KX
kD1

ˇ̌
Gk 4 yG�.k/

ˇ̌
; (2)

where A 4 B represents the symmetric difference between the two sets A and B
and SK represents the set of permutations on f1; : : : ; Kg. When yG is a partition
estimating G, we refer to err . yG;G/ as the misclassification proportion (or error) of
the clustering. The problem of minimizing this error has attracted less attention but
see [2, 8, 16–18,20, 22, 24, 47] for some related contributions.

Among the polynomial-time clustering procedures, Semi-Definite-Programs (SDP)
have proved to be versatile and they have been investigated in a large range of
clustering problems, including clustering in SBM [15, 20, 24, 25, 30, 42], sGMM
[17,34, 37, 44] or in block covariance models [9, 11]. While not always reaching the
exact threshold for weak/perfect clustering in several cases [30, 42], SDP algorithms
are versatile enough in order to enjoy some robustness properties [20, 38, 42], which
are not met by more specialized algorithms (see [38] for more details). However,
most SDPs require the partition to be balanced or that, at least, the size of each group
is known in advance. Besides, all SDPs studied for SBM clustering arise as convex
relaxations of min-cut optimization problems [15,20,24,25,30,33,42] and therefore
only fall within the framework of assortative SBM where within group probabilities
of connection are larger than between group probabilities of connection. In other
words, the diagonal entries of P have to be larger than its off-diagonal entries.

1.3. Our contribution. In this work, we provide misclassification error bounds for
the relaxedK-means of Peng andWei [41] combined with a rounding step, both in the
sGMM and the SBM frameworks. Compared to other SDPs, this convex relaxation
of K-means has the nice feature to only require the knowledge of the number of
groups (which can sometimes be estimated, as in [11]). Hence, there is no need to
know the size of the clusters, nor the parameters of the model. The details about this
SDP and the subsequent rounding step are given in Section 2.

Some of the first partial recovery results for SDPs have been derived using the
Grothendieck inequality [17, 24]. The corresponding misclassification error bounds
scale with a square-root decay with respect to an appropriate signal-to-noise ratio.
More recently, Fei and Chen [20] have dramatically improved such bounds in the
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context of assortative SBM, by proving misclassification error bounds for their SDP
that actually exponentially decays with respect to this signal-to-noise ratio. Our
results and our proof techniques are inspired by this work.

Let us first give a glimpse of our results on sGMM, by specifying it to the special
case of Gaussian mixture models, with K groups of equal size m D n=K and
equal covariance †. The general statement of the results for possibly unbalanced
groups and unequal covariances in sGMM is postponed to Section 3. Write � D
mink¤l k�k � �lk for the minimal Euclidean distance between the means of the
components and write R† D j†j2F =j†j

2
op for the ratio between the square Frobenius

norm of† and the the square operator norm of†. This ratio can be interpreted as an
effective rank of† and is always smaller than the ambient dimensionp. In the sequel,
c stands for a positive numerical constant. Then, Theorem 1 in Section 3 entails
that, with high probability, the proportion of misclassified observations decreases
exponentially fast with the signal to noise ratio

s2 D
�2

j†jop
^

n�4

Kj†j2F
; (3)

at least, as long as the condition s2 � cK, or equivalently

�2 � cj†jop

�
1 _

r
R†

n

�
K (4)

is met. The shape (3) of the signal-to-noise ratio is new and it differs from the
classical signal-to-noise ratio zs 2 D �2=j†jop considered e.g. in [36]. We explain in
Section 3.3 why the exponential decay should be with respect to s2, at least in the
isotropic case. Since err . yG;G/ � 1=n implies that the partition yG is equal to G,
the exponential decay with respect to s2 ensures perfect recovery of the clustering
with high-probability when s2 � c.K _ log.n//, recovering the results of [44]. It
also ensures a better than random guess clustering when (4) is met, which improves,
in high-dimensional setting, upon state-of-the art results in [36, 37].

On the SBM side, we explain how the relaxedK-means procedure can be applied
to general SBM to cluster nodes presenting similar connectivity profiles. Instead of
the previously discussed SDPs that look for a partition with maximal within-group
connectivity, this allows us to handle general unknown connection matrices P and
thereby going far beyond the assortative case. Denoting bym the size of the smallest
group in G, we prove that, with high probability, the misclassification proportion
decreases exponentially fast with the signal-to-noise ratio

s2 D m �min
j¤k

kPj W � PkWk
2

jP j1
; (5)

at least as long as the condition s2 � cn=m is met. Here, Pj W stands for the j -th
row of P and jP j1 denotes the supremum norm. Note that this result encompasses
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sparse graph, where the connection probability may scale as a constant divided by n.
When specified to the classical case with all within-group probabilities equal to p
and all between-group probabilities equal to q, with q < p, and all groups of the
same size, we recover the results obtained by [20] for a relaxed version of the MLE,
but without knowing that we are in the assortative case, nor knowing the group sizes.

1.4. Connection to the literature. Only a few papers have previously proved theo-
retical properties on the relaxed K-means of [41]. [6,29,34] obtain perfect recovery
results for the so-called stochastic ball models and Gaussian mixture models, and [37]
provides bounds on the estimation of the centers of the means in the sGMM, under a
condition stronger than (4). Closer to the present paper, [11,44] (see also [10]) prove
perfect recovery results in the setting of block covariance models and sGMM. To the
best of our knowledge, the main result of [44] provides the weaker condition in high-
dimension (p � n) ensuring perfect recovery with polynomial-time algorithm in the
sGMM. This condition is s2 � c.K _ log.n//, with s2 defined by (3). Theorem 1
below extends this result to the partial recovery regime, in the sense that the main
result in [44] can be recovered from Theorem 1.

In the sGMM setting, the paper [36] derives partial recovery results for Lloyd
algorithm (with a suitable initialization). To the best of our knowledge, these
results are the strongest ones in the literature. In the setting discussed above,
they prove a decay of the misclassification proportion exponentially fast relative
to zs 2 D �2=j†jop, with a minimal signal-to-noise requirement

�2 � cj†jopK
2
�
1 _

pK

n

�
:

Here, the requirement is proportional to K2j†jop in low-dimension, which is larger
than our Kj†jop by a factor K. In high-dimension, since we always have R† � p,
the factor pK=n is also much larger than our

p
R†=n in condition (4). This more

limited range of validity is partially due to the fact that [36] investigates exponential
decay with respect to zs 2 D �2=j†jop, rather than the suitable signal-to-noise ratio s2
given by (3). We refer to Section 3.3 (and Appendix B) for a short explanation of
this point. Yet, compared to us, [36] have a tight constant in the exponential rate.

During the wrap-up of this paper, we became aware of an independent and
simultaneous work of Fei and Chen [21], which also investigate partial recovery
in sGMM with another SDP. They show interesting connections between their SDP
and the error of the supervised classification problem with known centers, and derive
some partial recovery bounds based on it. Their results also have a more limited
range of validity than ours, as they require groups of the same size and a minimal
signal-to-noise condition of the form

�2 � cj†jop

�
K
�
1 _

p

n

�
C

r
Kp log.n/

n

�
;
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instead of (4). As before, this more limited condition is partially due to the fact
that they investigate exponential decay with respect to zs 2 D �2=j†jop, instead of s2
given by (3).

In the SBM setting, most results on partial recovery [2, 16, 20, 22, 47] cover the
assortative setting. The papers [16, 22, 47] investigate some two-steps procedures
based on a spectral algorithm. The papers [22, 47] derive tight misclassification
bounds for their algorithm, showing sharp exponential decay with respect to the
signal-to-noise ratio. Closer to us, [20] proves similar results for an SDP, with
less tight constants than [22, 47], but a wider range of validity. Compared to these
results, our results does not provide sharp constants as in [22, 47]. Yet, they provide
some new results for partial recovery in non-assortative cases and they only require
a mild condition on the size of the smallest cluster. To the best of our knowledge,
(i) our results are the first results about clustering with an SDP in non-assortative
cases and (ii) the only known exponential bounds for partial recovery in general
SBM are those of [2] which handle the sparse setting where the matrix P scales as
P D P0=n, withP0 fixed and n!1. Their results are optimal in the vicinity of the
weak recovery threshold. Our results cover a setting with slightly more signal (the
misclassification error has to be smaller than e�cK), and the results do not overlap. In
particular, as discussed in Section 4, our exponential rate (5) involved in Theorem 2
is faster by (at least) a factor K than the exponential rate involved in [2], though the
rate of [2] cannot be improved in the vicinity of the weak recovery threshold. Hence
both results are more complementary than comparable.

Since our work has been made available, two follow-up papers have extended
and complemented our results. [13] have proved an exponential clustering error with
respect to the SNR s2 (3) for sGMM in infinite dimensional Hilbert spaces with
common covariance matrix. For spherical mixtures with K D 2, [40] has proved a
minimax lower bound showing that the clustering error exp.�cs2/ is optimal.

1.5. Organization and notation. The paper is organized as follows. In Section 2,
we recall the relaxedK-means SDP derived by [41] and we explain how the partition
is derived from the solution of the SDP. Section 3 covers the sGMM and Section 4
covers the SBM. We explain the main lines of the proofs and discuss the main
arguments in Section 5. Finally, the full proof of the two main theorems can be found
in Section 6 and Section 7.

Notation. To anymatrixM we denote by Row.M/ the set of its rows, by jM j1 the `1
norm of its entries, by jM jop its operator norm with respect to the `2 norm, by jM jF
its Frobenius norm, by jM j� its nuclear norm and by Tr.M/ its trace. We also
associate to a diagonal matrixD, the pseudo-norm jDjV D maxaDaa �minaDaa.
Besides, for any A;B with the same dimensions, we write hA;Bi D

P
ab AabBab

for its canonical inner product. For a vector x we write kxk2 for its Euclidean norm
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and h� ; �i for the corresponding inner product. In the sequel, 1 stands for the indicator
function.

For two sequences un and vn (possibly depending on other parameters), we write
un . vn (resp. un & vn) when there exists some numerical constant c > 0 such that
un � cvn (resp. un � cvn). Given x; y 2 R, x _ y (resp. x ^ y) stands for the
maximum (resp. the minimum) of x and y.

2. Relaxed K -means

We have n “objects” that we want to cluster. In the case of sGMM, these objects are
p-dimensional vectors, and in the case of SBM they corresponds to the the nodes
of a graph. For each object a, we have a p-dimensional vector of observations: In
the sGMM setting, the observation related to a is the vector Xa 2 Rp and in the
SBM the observation is the vectorXa 2 f0; 1gn recording presence/absence of edges
between a and the other nodes (hence p D n is this case). We denote by X 2 Rn�p ,
the n � p matrix whose a-th row is given by Xa. In particular, in the SBM case, X
is simply the adjacency matrix of the graph.

Peng and Wei [41] have observed that any partition G of f1; : : : ; ng can be
uniquely represented by a n� nmatrix B 2 Rn�n such that Bab D 0 if and only if a
and b are in different group and Bab D 1=jGkj if a and b are in the same group Gk .
The collection of such matrices when G spans the collection of all partitions withK
groups may be described as

P D
˚
B 2 Rn�n W symmetric; B2 D B; Tr.B/ D K; B1 D 1; B � 0

	
:

Here, B � 0 means that all entries of B are nonnegative and B2 refers to the matrix
product ofB with itself. Peng andWei [41] have shown that minimizing the classical
K-means criterion (1) is equivalent to maximizing hXXT ; Bi over the space P .
Writing zB for such a maximizer, the K-means clustering is obtained from zB by
grouping together indices a; b which have a non-zero entry zBab .

The constraint set P is non-convex and solving the K-means problem is
NP-hard [7]. Peng and Wei [41] then propose to relax the constraint set P by
dropping the condition B2 D B to consider

C D
˚
B 2 Rn�n W Positive Semi Definite, Tr.B/ D K; B1 D 1; B � 0

	
;

and hence solve the relaxed K-means SDP

yB 2 argmaxB2C hXXT ; Bi : (6)

Obviously, the solution yB does not necessarily belong to P and then does not provide
a clustering. One has therefore to rely on a rounding step to obtain a proper partition.
If yB is close to the true matrix B , one should expect that rows of yB belonging to the
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same group are similar. This is why the final step is obtained by applying a clustering
algorithm on the rows of yB . As in [20], we apply here an approximate K-medoids
on the rows of yB . Let us detail this final step.

To any partition G D .G1; : : : ; GK/ of f1; : : : ; ng into K (non empty) groups,
we can associate a partition matrix A 2 Rn�K defined by Aik D 1i2Gk . Let us
denote by AK the set of such matrices and by Rows. yB/ the set of the rows of yB .
Then a �-approximate K-medoids on the rows of yB is a pair . yA; yM/ with yA 2 AK ,
yM 2 Rk�n, Rows. yM/ � Rows. yB/ and fulfilling

j yA yM � yBj1 � � min
A2AK ;

Rows.M/�Rows. yB/

jAM � yBj1 : (7)

We refer to [12] for a polynomial-time algorithm producing such an output . yA; yM/

with � D 7. Then a partition is obtained from yA by setting yGk D fi W yAik D 1g.
In the sequel, yG is said to be a relaxedK-means solution if yG is derived from any

7-approximateK-medoids on the rows of yB obtained in (6). All our partial recovery
bounds are for this partition yG.

As a final remark,K-means is known to suffer from a bias which tends to produce
groups of similar width, see e.g. [44]. As explained in [11, 44], K-means and its
relaxed version can be debiased when useful (e.g. for high-dimensional mixtures with
unequal traces Tr.†k/). We refer to Section 3.4 for details.

3. Clustering sub-Gaussian mixtures

3.1. Model. We observe n independent random vectors X1; : : : ; Xn 2 Rp . We ass-
ume that there exists an unknown partition .G1; : : : ; GK/ of f1; : : : ; ng and K
unknown p-dimensional vectors �1; : : : ; �K 2 Rp , such that

Xa D �k CEa for any a 2 Gk ;

with Ea centered, independent with covariance †k . We recall that m D mink jGkj
stands for the size of the smallest group.

The larger the Euclidean distance between two centers �jk D k�k � �j k, the
more easily we can recover the unknown partition from the observationsX1; : : : ; Xn.
Hence, we denote by � D minj¤k �jk the minimal distance between two distinct
centers, which will represent the signal part in the signal-to-noise ratio.

The hardness of the clustering problem also depends on the concentration of
the random vectors Ea around zero. A common distributional assumption when
analyzing clustering is the sub-Gaussiannity assumption. For a centered random
vector Z 2 Rp and L > 0, we say that Z is SubG(LIp) if the random variables
Z1; : : : ; Zp are independent and EŒexp.tZi /� � exp.t2L2=2/ for all t 2 R



Partial recovery bounds for clustering with the relaxed K-means 325

and i D 1; : : : ; p. For sub-Gaussian mixture, we make the following distributional
assumption.

Assumption A1. There exists L > 0 such that †�1=2
k

Ea is SubG.L2Ip/.

Under this assumption, two quantities mainly drive the noise width in the signal-
to-noise ratio: the maximum scaled operator norm of the covariances

�2 D L2max
k
j†kjop ;

and the maximum scaled Frobenius norm of the covariances

�2 D L2max
k
j†kjF :

Actually, as shown in Theorem 1 below, the misclassification error of the relaxed
K-means decreases exponentially fast with the signal-to-noise ratio

s2 D
�2

�2
^
m�4

�4
; (8)

where m denotes the size of the smallest cluster. This particular definition of the
signal-to-noise ratio is new and is further discussed below.

Remarks. (1) When the random variable Ea is normally distributed with covari-
ance †k , it fulfills Assumption A1 with L D 1.

(2) Weobserve that the randomvariableE1; : : : ; En are all sub-GaussianSubG.�2Ip/,
and we can always upper-bound �2 by �2 � p�2, with equality in the spherical case
where the covariances †k are proportional to the identity matrix. Yet, this upper
bound is crude when the covariances are far from being proportional to the identity
matrix.

3.2. Partial recovery bound. Let us denote by � 2 Rn�n the diagonal matrix with
entries �aa D Tr.†k/ for a 2 Gk . As shown in [44] (see also [11]), when the
trace of the covariances †1; : : : ; †K are unequal, i.e. when � is not proportional to
the identity, it is useful to de-bias the relaxed K-means (6) by removing from XXT
a preliminary estimator y� of � . This estimator can be y� D 0 (no correction)
when the covariances have equal traces or be equal to (17) as defined in Section 3.4
when the trace of the covariances are unequal. This leads to the so-called Pecok
estimator [11, 44]

yB 2 argmaxB2C hXXT � y�;Bi : (9)

As explained in Section 2, yG is then computed as any 7-approximate K-medoid
solution of yB . We recall the notation jDjV D maxaDaa �minaDaa.
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Theorem 1. There exist three positive constants c; c0; c00 such that the following
holds. Assume that Assumption A1 holds,

�2 �
64j� � y�jV

m
; (10)

and that s2 (as defined in (8)) satisfies s2 � c00n=m, then the proportion of
misclassified points is upper bounded by

err . yG;G/ � e�c
0s2 ;

with probability at least 1 � c=n2,

Leaving aside Condition (10), which will be discussed below, one observes that
the misclassification error decreases exponentially fast with respect to the signal-to-
noise ratio s2 as soon as s2 is large enough. We further discuss this result in the next
two paragraphs, first discussing the cases of equal covariance traces and then turning
to unequal trace case.

3.3. Equal traces case. We assume here that all the covariance matrices †k have
equal trace. Hence, � is proportional to the identity and j�jV D 0. So, when
choosing y� D 0 in (9), Condition (10) becomes �2 � 0 which always holds.

Non-trivial recovery. Theorem 1 ensures non-trivial recovery as soon as s2 & n=m.
Introduce R† as the ratio

R† D
�4

�4
D

maxkD1;:::;K j†kj2F
maxkD1;:::;K j†kj2op

� max
kD1;:::;K

j†kj
2
F

j†kj2op
� p ; (11)

which can be interpreted as an effective rank of the mixture model. In order to
compare this result with those in the literature, let us discuss this condition in the
special case of balanced partition withK groups of equal sizem D n=K. Theorem 1
guaranties a non-trivial recovery as soon as s2 & K, or equivalently

�2

�2
&
�
1 _

r
R†

n

�
K ; (12)

with a misclassification error upper-bounded by e�c0K with high-probability. Taking
for granted that, aswe advocate below, the exponential decay e�c0s2 is optimal in some
cases, we cannot hope for a weaker condition than (12) to ensure a misclassification
error of at most e�c0K when K . log.n/ (for larger K a misclassification
proportion of e�c0K � 1=n ensures perfect recovery). Yet, it is possible to get a
weaker dependence in K when K & log.n/. Actually, in a large sample setting
where n & p3K2 log.pK/, [46] derives clustering guaranties for an iterate spectral
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clustering under the weaker condition�2 & �2.
p
K log.n/C log.n//. Nevertheless,

we emphasize that our result, contrary to theirs, holds in the high-dimensional regime
p � n1=3. For the different goal of learning the means in a large sample size setting,
some recent papers [19,28,31] have shown that a separation� � K� in the numberK
of cluster is enough for learning the means in polynomial time, when the sample size
is larger than n � poly .p1=�; k/. For the same question, [37] has shown that, in a
large sample size setting, the relaxed K-means succeeds to learn the means when
�2=�2 & K2, which is a stronger requirement than (12). Turning back to our
problem of deriving exponential bound for the misclassification proportion, [36]
provides such bounds for the Lloyd algorithm under the minimal requirement

�2

�2
& K2

�
1 _

pK

n

�
; (13)

which, again, is stronger than (12). To the best of our knowledge, our result is the first
result of this kind for an SDP in this setting. We mention yet, that in an independent
and simultaneous work, Fei and Chen [21] have derived a similar in spirit result in the
very precise setting where the groups are of equal size. Actually, for an SDP taking as
input that all groups have the same size n=K, [21] shows non-trivial recovery when

�2

�2
&
�
1 _

p

n

�
K C

r
Kp log.n/

n
: (14)

Since we always have R† � p, the requirement (14) of [21] or (13) of [36] are
stronger than (12), especially in the practical case where p is larger than n, but the
effective rank R† is small compared to p.

Intermediate regime. In the intermediate regimewheren=m.s2..n=m/_log.n/,
the misclassification rate of our procedure decays at the exponential rate s2 D
�2

�2
^
m�4

�4
. To simplify the discussion, we assume again that the clustering is made

of K groups of equal size m D n=K. For spherical mixtures, the misclassification
rate of the Bayes classifier decays at the exponential rate zs 2 D �2

�2
� s2. In view of

the definition of s2 and R†, Theorem 2 ensures that relaxed K-means achieves this
optimal rate as soon as

�2

�2
&
�
1 _

R†

n

�
K : (15)

Such exponential rates have already been obtained in [21, 36] but under the
corresponding stronger separation conditions (13) and (14). Nevertheless, the
numerical constants in the exponential rate of [36] are tighter than ours.
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In the high-dimensional setting R† > n, the misclassification rate of relaxed
K-means decays at the slower exponential rate �4n

�4KR†
< �2

�2
when the distances

between the means satisfy r
R†

n
K .

�2

�2
.
R†

n
K : (16)

To the best of our knowledge, this moderate signal regime was not previously covered
in the literature. The discrepancy between the rates �4n

�4KR†
and �2

�2
may seem

suboptimal. Yet, as we explain below, this discrepancy is inherent to the lack of
knowledge of the location of the means of the clusters, and it seems unavoidable in
our clustering setting.

Actually, let us consider the arguably simpler problem of Gaussian supervised
classification with a two-class balanced partition, a common spherical covariance
†k D �Ip and opposite means ��1 D ��1 uniformly distributed on the Euclidean
sphere @B.0;�=2/. More precisely, assume that we have n labeled observations
.Xa; Za/ 2 Rp � f�1; 1g, for a D 1; : : : ; n distributed as follows. The labels
Z1; : : : ; Zn are i.i.d. with uniform distribution on f�1; 1g, a random vector � 2 Rp

is sampled uniformly over the sphere @B.0;�=2/ independently ofZ1; : : : ; Zn, and,
conditionally on Z1; : : : ; Zn; �, the Xa are independent Gaussian random variables
with mean Za� and covariance �2Ip . Then, direct computations (see Appendix B
for details) show that the classifier minimizing the probability of misclassification of
a new observation is

yh.x/ D sign
�D1
n

nX
aD1

ZaXa; x
E�
:

According to the invariance of the distribution by rotation, the probability of
misclassification is given by

P
�
Znew ¤ yh.Xnew/

�
D P

�D�
�
C

�
p
n
;
�

�
C �0

E
< 0

�
;

where � D Œ�=2; 0; : : : ; 0� 2 Rp , and �; �0 are two independent standard Gaussian
vectors in Rp . For

�2

�2
&
�
1 _

p

n

�
;

this error is of exponential order �2=�2 whereas, for�
1 _

r
p

n

�
.
�2

�2
.
�
1 _

p

n

�
;

the error is of exponential order n�4=p�4, see again Appendix B for details. Hence,
even in this simpler toy model, the exponential rate with respect to s2 D �2

�2
^
n�4

2p�4
is
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intrinsic. To formalize this argument, one should prove rigorously a minimax lower
bound for our clustering problem, but this is beyond the scope of this paper.

When the common covariance † is not spherical, we cannot argue anymore
that the exponential rate s2 is optimal. Actually, in the Gaussian supervised
classification setting with known means ��1; �1 and (common) covariance †,
the probability of misclassification is known to decay exponentially fast with the
Mahalanobis distance d2†.��1; �1/ D .�1 � ��1/

T†�1.�1 � ��1/ rather than
�2=�2 D k�1 � ��1k

2=j†jop, see e.g. Section 9.5.1 in [23]. Hence, we expect that
the optimal rate of decay should involve d2† instead of �2=�2, at least for Gaussian
mixtures when the sample size is large. Since K-means criterion is tightly linked to
isotropic (sub-)Gaussian mixtures, it is unlikely that the relaxedK-means procedure
enjoys an exponential decay with respect to d2†. In addition, we explain in the
discussion page 340 at the end of Section 5.1, that the term m�4=�4 showing up
in (8) is a variance term which seems hard to avoid. We emphasize yet that, despite
these drawbacks, the exponential decay e�c0s2 remains interesting in this setting, as
it is “dimensionless,” in the sense that it depends only on the effective rank R† of †
and not on the ambient dimension p.

Perfect recovery. Theorem1 ensures perfect recovery as soon as s2& log.n/_.n=m/.
This requirement exactly matches the requirement derived in Theorem 1 of [44] and
it is, to the best of our knowledge, the sharpest known result for polynomial-time
algorithms in high-dimension (p � n). In the large sample size setting where
n & p3K2 log.pK/, [46] ensures perfect recovery for an iterative spectral clustering
under the condition �2 & �2.

p
K log.n/ C log.n// which is weaker than our

s2 & log.n/ _ .n=m/ for K � log.n/. Again, this lack of optimality is likely
to be an artifact of the proof which is only valid when s2 & K. Actually, when
K � log.n/, the condition s2 & K enforces e�c0s2 � 1=n .

3.4. Unequal trace case. As long as Condition (10) of Theorem 1 is satisfied, the
misclassification rates err . yG;G/ is less than e�c0s2 as for the equal trace case. Let
us first discuss some regimes and choice of y� under which (10) is valid, and then
discuss the upper-bound.

3.4.1. Choice of y� . First, observe that, when the covariance matrices †k have
unequal traces, uncorrected convex K-means may not satisfy (10) if k�kV �
m�2=64. Such a behavior is not an artifact of our proof techniques but is intrinsic
for K-means as argued in Proposition 3 of [44].

When the covariance matrices†k have unequal traces, we suggest to use in (9) the
estimator y� introduced in [11,44] and defined as follows. For any a; b 2 f1; : : : ; ng,
let

V.a; b/ WD max
c;d2f1;:::;ngnfa;bg

ˇ̌̌̌D
Xa �Xb;

Xc �Xd

kXc �Xdk2

Eˇ̌̌̌
;
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denote a measure of dissimilarity between a and b. Then, let

yb1 D argminb2f1;:::;ngnfag V.a; b/ and yb2 WD argmin
b2f1;:::;ngnfa;yb1g

V.a; b/

denote the two indices most similar to a with respect to this dissimilarity. Our
estimator y� is defined by

y� WD Diag
�
hXa �Xyb1

; Xa �Xyb2
iaD1;:::;n

�
: (17)

When m > 2, denoting by 
2 D L2maxk Tr.†k/ the maximum scaled trace of
the covariances (with L defined in Assumption A1), Proposition 4 of [44] ensures,
that with probability higher than 1 � c=n2

jy� � �j1 .
�
�2lognC �


p
logn

�
: (18)

Hence, Condition (10) holds with probability larger than 1 � c=n2 as soon as the
condition

�2 &
�2 log.n/C 
�

p
log.n/

m
(19)

is met. This condition can be compared to the condition s2 & n=m arising in
Theorem 1 by reformulating it as

�2

�2
^
m�4


2�2
&

log.n/
m

:

In particular, we observe that this requirement is weaker than the condition s2 & n=m

when
j†kjop Tr.†k/ .

n

log.n/
j†kj

2
F ; for all k D 1; : : : ; K : (20)

This last condition is mild. For instance, it is met when the ratio between the singular
values �`=�1 of each †k decays faster than 1=`1C� with � > 0. It also holds when
the condition number of each †k is upper bounded by n= log.n/.

3.4.2. Discussion of the exponential rate. Contrary to the equal trace case, even
for spherical covariances†k D �2kIp , we cannot argue anymore that our exponential
rate s2 is optimal. Actually, in this case the signal-to-noise ratio s2 should involve

xs2 D min
j¤k

k�j � �kk
2

j†kjop _ j†j jop
rather than

minj¤k k�j � �kk2

maxk j†kjop
;

at least in the Gaussian case with large sample sizes. Some results on perfect
recovery with respect to this signal-to-noise ratio xs2 have been derived in [3, 46] in
the asymptotic setting where n ! 1. We do not know whether exponential decay
with respect to xs2 can be proved for the corrected relaxed K-means.
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We emphasize that previously mentioned works [3,37,46] are restricted to perfect
recovery in the large sample size setting where (at least) n � p, while Theorem 1
provides a partial recovery bound that holds under conditions (19) or (20) which are
non-asymptotic and can hold in any dimension p. As for [21], they prove exponential
decay with respect to zs 2 D minj¤k k�j � �kk2=maxk j†kjop in a higher signal
regime and only for clusters of equal sizes.

4. Clustering in Stochastic Block Models (SBM)

4.1. Stochastic BlockModel (SBM). We observe an undirected graph with n nodes
labeled by a D 1; : : : ; n. We assume that the edges are independent and that there
exists an unknown partition .G1; : : : ; GK/ of the nodes and a symmetric matrix
P 2 Œ0; 1�K�K such the probability to have an edge between a 2 Gk and b 2 Gj is
equal to Pjk when a ¤ b and 0 when a D b. In other words, the adjacency matrix
X 2 Rn�n is symmetric, with zero diagonal and independent lower-diagonal entries
fulfilling EŒXab� D Pjk for any a 2 Gk and b 2 Gj , with a ¤ b.

Let us denote bymk the cardinality ofGk . There is a strong interest in the analysis
of recovery properties of SDP like

max
B2C 0
hX; Bi; with C 0 D

n
B W PSD; Bab � 0; Baa D 1; jBj1 D

X
k

m2k

o
; (21)

or variants of it. Such SDP are derived as a convex relaxation of theMLEoptimization
in the case where within group probability of connection Pkk are all equal to p and
between group probability of connection Pjk are all equal to q with q < p, see
e.g. [15, 42]. In the assortative setting, where the within group probabilities of
connection are larger than the between group probabilities of connection, such SDP
enjoy some very nice properties at all regimes, see [15, 18, 20, 24, 25, 42].

Yet, we observe that SDP like (21) seek for partitions maximizing within group
connectivity. So they are tied to the assortative setting and we cannot expect some
good performances far away from this setting.

Instead of these SDP, we propose to solve (6) or a variation of it, which is a
relaxed-version of K-means applied to the adjacency matrix. The heuristic is as
follows: two nodes a and b belonging to the same group share the same connectivity
profile, that is, up to diagonal terms, the expectation of the columns Xa and Xb are
equal. Therefore, it is tempting to recover the groups of the SBM by using distance
clustering on the columns of the adjacency matrix X. In particular, (6) seeks for
groups of nodes sharing similar connectivity profiles, instead of groups with maximal
within group connectivity. The main difference between (6) and the SDP like (21), is
that the maximization is applied to XXT D X2 instead of X. So, compared to SDP
like (21), the SDP (6) seeks for a partition where the groups have a high density of
common neighbors rather than a high density of connections. Hence, the SDP (6) is
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not tied to the assortative case and can handle arbitrary matrices P . We also point
out, that, contrary to previous SDP investigated in the literature for SBM clustering,
the relaxed K-means (6) does not require the knowledge of the size of the groups,
nor the knowledge of some parameters of P . Yet, in order to handle appropriately
the sparse setting where jP j1 D o.log.n/=n/, we need to add a constraint on jBj1
in the program (6) to prevent the solution of K-means to produce too unbalanced
partitions. As pointed in the previous section, the norm jBj1 of a matrix B 2 P

corresponding to a true partition is the inverse of the size of the smallest cluster. Thus,
adding a constraint on jBj1 will avoid the formation of too unbalanced partitions.

Hence, we propose to solve the following constrained version of the relaxed
K-means (6)

yB 2 argmaxB2ChXXT ; Bi ; (22)

where, for K=n � ˛ � 1,

C˛ D
˚
B 2 Rn�n W Positive Semi Definite, Tr.B/ D K; B1 D 1; 0 � B � ˛

	
:

As explained in Theorem 2 below, the parameter ˛ can be chosen equal to 1 when
jP j1 � log.n/=n, but its choice is more constrained when jP j1 � log.n/=n. We
explain below Theorem 2 how ˛ can be chosen in a data-driven way.

As for the mixture of sub-Gaussian, the signal strength driving the exponential
decay will be related to the Euclidean distance between two rows of the expected
adjacency matrix. A row of X can be written as Xa D �k � Pkkea C Ea, with
Œ�k�b D Pjk and Ea D Xa � EŒXa� for a 2 Gk and b 2 Gj . The square Euclidean
distance between �k and �j is

k�k � �j k
2
D

X
`

m`.Pk` � Pj`/
2
� mkPkW � Pj Wk

2:

Similarly to the sub-Gaussian setting, we define

�2 WD min
j¤k

�2jk I �2jk WD
X
`

m`.Pk` � Pj`/
2
� mkPkW � Pj Wk

2 ; (23)

which represents the signal strength in our analysis.
We point out that kPkW � Pj Wk �

p
2 �min.P /, with �min.P / the smallest

eigenvalue of P , so that � �
p
2m�min.P /.

Since the variance of a Bernoulli variable with small probability of success is
roughly equal to this probability, we control the variance of Ea with the following
assumption.

Assumption A10. We have jP j1 � L.

Under this assumption, wewill prove that the misclassification error of the relaxed
K-means decreases exponentially fast with the signal-to-noise ratio s2 D �2=L.
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4.2. Main result. We consider a partition yG obtained from 7-approximateK-med-
oid solution of yB as obtained in (22). Next theorem provides an upper bound on the
misclassified nodes decreasing exponentially fast with s2.
Theorem 2. Assume that Assumption A10 holds and set s2 D �2=L, with� defined
by (23). Then, there exist three positive constants c; c0; c00, such that for any 1=m �
L � 1= log.n/,

1

m
� ˛ � ˛.L/ WD

K3

n
e4nL (24)

and
s2 � c00n=m ; (25)

with probability at least 1 � c=n2, the proportion of misclassified nodes is upper
bounded by

err . yG;G/ � e�c
0s2 :

We observe that we always have

˛.L/ D
K3

n
e4nL �

K3

m
�
m

n
e4n=m �

104

m
;

so Condition (24) is non-void. We discuss this condition into more details in the next
section.

In practice, we can set ˛ to the value y̨ D K3

n
e2ndX ^ 1, where dX denotes the

density of the graph. Next corollary provides a partial recovery bound when plugin
this data driven choice for ˛ in (22).
Corollary 1. Assume that Assumption A10 holds, that 1=m � L � 1= log.n/, that
the density dX fulfills EŒdX� � n�1 and

1

m
�
K3

n
enEŒdX� : (26)

Then, there exist three positive constants c, c0, c00, such that when s2 � c00n=m,
and when setting ˛ D y̨ in (22), then err . yG;G/ � e�c

0s2 with probability at
least 1 � c=n2.

Indeed, n.n� 1/dX=2 is stochastically dominated by a binomial distribution with
parameter .n.n � 1/=2; jP j1/ so that dX � 2jP j1 with probability higher than
1 � e�0:3n.n�1/jP j1 and hence y̨ � ˛.L/ ^ 1. Conversely, the Bernstein inequality
together with EŒdX� � n�1 ensures that dX � EŒdX�=2 with probability larger than
1 � c=n2. Hence (26) ensures that m�1 � y̨ with probability larger than 1 � c=n2.

4.3. Discussion. An SDP not tied to the assortative case. Our results cover a
wide range of settings going beyond the assortative case usually handled by SDP
algorithms. This is due to the fact that usual SDP criteria considered SBM clustering
are derived as convex relaxation of MLE in the assortative case; while (6) is derived
as a convex relaxation of K-means.
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On Condition (24). The constraint jBj1 � ˛.L/ is needed in our proofs in order
to avoid the concentration of yB on the high-degree nodes. We observe first that
˛.L/ � 1 when

L �
log.n=K3/

4n
;

in which case we can take ˛ D 1, which amounts to remove the constraint.
For smaller value of L the constraint jBj1 � ˛.L/ becomes active, with ˛.L/

decreasing when L decreases down to the extreme value L D 1=m. We emphasize
again that the condition on ˛ does not require the knowledge of the true size of the
groups but only constrains the size of the smallest group. Besides, Condition (24)
can be met as long as m � n

K3
e�4nL. For L scaling as l0=n, the size of smallest

cluster can still be as small as n
K3
e�4l0 allowing for unbalanced partitions.

Assortative case. To start with, let us make explicit the value of s2 D �2=L in
the assortative case, with within group probabilities of connection p, between group
probabilities of connection q (with q < p) and balanced group sizes (m � n=K).
In this case, s2 D 2m.p � q/2=p, and we obtain the same rate of exponential decay
as in [2, 16, 20, 22, 47], but without the tight constants of [22, 47] in the exponential
rate. We emphasize yet that we handle unknown group sizes, and with only a mild
constraint on the group the sizes. Besides, Theorem 2 ensures perfect recovery for

.p � q/2

p
&
K.K _ log.n//

n
;

matching the best known results (up to constants) for polynomial-time algo-
rithms [15].

Partial recovery for the general model. To the best of our knowledge, outside
the assortative case, the only other exponentially decaying misclassification error is
stated in Theorem 4 in [2] for a quite different procedure. Their results do not cover
the same regime as ours, since they focus on the sparse regime where P D P0=n

with P0 a fixed matrix and n ! 1. For simplicity, let us discuss again the case
of balanced groups where m � n=K. With our notation, Theorem 4 in [2] shows
(under some conditions) that, in the sparse regime, the misclassification error is
upper-bounded by e�czs 2 where

zs 2 D
m�min.P /

2

K�max.P /
:

Since �2min.P / � 2�
2=m and �max.P / � jP j1, we observe that

zs 2 �
2�2

KjP j1
D

2

K
s2 ;
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so that their exponential decay with respect to zs 2 is slower than the exponential decay
with respect to s2. Yet, this discrepancy between the rates is partly due to the fact
that the exponential decay e�czs 2 in [2] is valid in regimes where our Condition (25)
for Theorem 2 is not met. In other words, when the signal is low, [2] achieves the
exponential decay e�czs 2 which is not covered by our theory, while for stronger signals
(where s2 & K holds), our exponential decay e�cs2 is faster at least by a K factor.
We again emphasize that Theorem 2 is also valid in denser regime than that of [2].

Perfect recovery for the general model. From Theorem 2, we derive that relaxed
K-means achieves exact recovery as long as

s2 &
n

m
_ log.n/ : (27)

Again, the only other results we are aware of in the general model is from [2]
where the authors consider the asymptotic regime P D xP log.n/=n with xP (and
therefore alsoK) fixed and n!1. In this setting, they proved that perfect recovery
is possible in the balanced case (m D K=n) if and only if

lim
n!1

m

log.n/
min
j¤k

DC.Pj WjjPkW/ > 1 ; (28)

where, for two vectors q and p,

DC.qjjp/ D max
t2Œ0;1�

X
x

px

�
1 � t C t

qx

px
�

� qx
px

�t�
: (29)

Since �2 is based on the Euclidean distances between the columns of P instead
ofDC, our results cannot guaranty perfect recovery up to the exact threshold of (28).
Yet, in the case where minj;k Pjk=maxjk Pjk is bounded away from zero, we
can compare �2 to minj¤kDC.Pj WjjPkW/. Actually, according to Lemma 18 in
Appendix A, we have

DC.qjjp/ �
1

4�

X
x

.px � qx/
2

px
; when min

x

qx

px
� � > 0 :

Hence, when minj;k Pjk � �maxj;k Pjk , we have

m �min
j¤k

DC.Pj WjjPkW/ �
m

4�2
min
j¤k

kPj W � PkWk
2

jP j1
D

s2

4�2
;

so that s2 and m �minj¤kDC.Pj WjjPkW/ differs from at most a factor 1=.4�2/. As a
consequence, in the asymptotic setting of [2], Condition (27) achieves up to constants
(depending on �) the optimal threshold (29).

When the ratiomaxjk Pjk=minjk Pjk is unbounded, our SNR s2 involving jP j1
is no longer optimal. For example, in the weak assortative setting with clusters of
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equal sizes, [4] derives some performance bounds which are better than ours when
maxjk Pjk=minjk Pjk is unbounded.

Finally, we point out that we do not need to de-bias the relaxedK-means as in (9)
for the sGMM. This is due to the fact that the size of the bias is small compared to
the size of the fluctuations in this setting.

5. Outline of the proofs

We write B� 2 C for the matrix associated to the true partition G of the data set.
Following the definition in Section 2, we have B�

ab
D 0 unless a and b belong to the

same group, in which case B�
ab
D 1=jGkj.

5.1. Outline of the proof of Theorem 1. In this section, we describe the main lines
of the proof of Theorem 1. We refer to Section 6 for all the details. The proof relies
on three main arguments detailed below:

(1) First, similarly to [14,20], the misclassification proportion of the finalK-medoid
clustering (7) can be directly controlled by the `1-norm j yB � B�j1, see Section 6.3.

(2) Second, by comparing hXXT � y�;B�i � hXXT � y�; yBi, we can upper-bound
jB� yB � B�j1, (which is closely related to j yB � B�j1) by some “noise” terms.

(3) Third, a careful analysis of the noise terms provides the claimed result.
Following [20], we use the key inequality

nX
iD1

aibi �

jbj1X
iD1

ai

for any a1 � a2 � � � � � an and b1; : : : ; bn 2 Œ0; 1�, combined with tight upper-
bounds on sums of ordered statistics. This bound involving ordered statistics is tighter
than the classical

nX
iD1

aibi � jaj1jbj1

combinedwith upper-bound on `1-norms. We underline, that this classical reasoning
based on `1-norms is not tight enough in order to handle partial recovery results in
this setting.

For simplicity, we assume throughout this section that all the inter-cluster distances
�jk D k�k � �j k are equal to � D minj¤k �jk , for j ¤ k. We refer to Section 6
for the general case. As claimed in the first point above, our main task is to prove the
bound j yB � B�j1 � ne�c

0s2 , with probability at least 1 � c=n2.
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Let A 2 Rn�K denote the membership matrix Aik D 1i2Gk , let � 2 RK�p be
the matrix whose k-th rows is given by �k and let E 2 Rn�p be the matrix whose
a-th rows is given byEa. The observedmatrixX can then be written asX D A�CE.
For any matrix B 2 C , expanding the product XXT , we can decompose the scalar
product

hXXT � y�;B� � Bi D hA��TAT ; B� � Bi C hEET � �;B� � Bi
C h� � y�;B� � Bi C hA�ET CE�TAT ; B� � Bi :

The first term can be interpreted as a signal term, which is minimized inC atB D B�.
The three remaining terms involve the noise.

Signal term. Some basic algebra (see Lemma 4 in Section 6) shows that this writes
as

hA��TAT ; B� � yBi D
1

4
�2jB� � B� yBj1 : (30)

Since B� 2 C , by definition of yB we have hXXT � y�;B� � yBi � 0 and hence

1

4
�2 jB� � B� yBj1 � noise terms :

With a suitable control of the three noise terms we can therefore hope to get a control
on jB� � B� yBj1. Relying on the following inequality

jB� � yBj1 �
2n

m
jB� � B� yBj1 (31)

proved in Lemma 1, Section 6, this will allows us in turn to control jB� � yBj1. Let
us explain how we can control each of the three noise terms, and how they contribute
to the final result.

Quadratic terms. The quadratic term hEET ��; yB �B�i is the most delicate one.
We observe first, that for any matrixM , the product B�M averages the rows ofM
within the groups

ŒB�M�ab D
1

jGkj

X
c2Gk

Mcb; for all a 2 Gk :

As a consequence, the variance of the entries ofB�.EET ��/ is reduced by a factor
at least

p
m compared to EET � � . So decomposing

EET � � D B�.EET � �/C .EET � �/B�

� B�.EET � �/B� C .I � B�/.EET � �/.I � B�/ ;
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we observe that we need to control three terms similar to hB�.EET � �/; yB �B�i,
and a last term h.I � B�/.EET � �/.I � B�/; yB � B�i. Since B� is a projection
matrix, this last term involves the projection of EET � � onto the orthogonal of the
range ofB�. The three first terms benefits from the averaging effect described above,
but not the last one. Instead, we control the last term as in [11, 44]

h.I � B�/.EET � �/.I � B�/; yB � B�i

� jEET � �jopj.I � B
�/. yB � B�/.I � B�/j�

�
1

2m
jEET � �jopjB

�
� B� yBj1 ;

(32)

see Lemma 1 for the last inequality. Since jEET � �jop . �2
p
n C �2n

with probability at least 1 � c=n2, we obtain that (32) is upper-bounded by
�2 jB� � B� yBj1=16 under the assumption s2 & n=m. So this term is smaller than
half of the signal term, and we can remove it at the price of losing a factor 2 in the
signal level. We emphasize that the condition s2 & n=m is exactly tailored to get this
control, and hence it is fully driven by the upper-bound jEET ��jop . �2

p
nC�2n.

Let us now turn to the three terms of the form

hB�.EET � �/; yB � B�i D hB�.EET � �/; B� yB � B�i :

The simple inequality hA;Bi � jAj1jBj1 as in [11, 44] leads to the control

hB�.EET � �/; yB � B�i �
�2
p
log.n/C �2 log.n/
p
m

jB� � B� yBj1 ; (33)

with high probability. This control is good enough to prove perfect recovery at the
right scale, but it is too crude in order to exhibit partial recovery rates. Instead, we
adapt the clever analysis of [20], which relies on the upper-bound,

hA;Bi �

jBj1X
jD1

A.j / ; for any B with 0 � Bab � 1 ;

where A.1/ � A.2/ � � � � are the entries of A ranked in decreasing order and
bX
jD1

aj D a1 C � � � C aŒb� C
�
b � Œb�

�
aŒb�C1 ;

where Œb� is the integer part of b. Lemma 9 based on the Hanson–Wright inequality
provides a control of the sum of the ordered statistics of B�.EET ��/ ensuring that
with probability at least 1 � c=n2, the following inequality holds

hB�.EET � �/; B � B�i

.
�
�2
p
m

s
log

� nK3

jB� � B�Bj1

�
_ �2 log

� nK3

jB� � B�Bj1

��
jB� � B�Bj1 ; (34)
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simultaneously for all B 2 C fulfilling jB� � B�Bj1 . m. The main difference
compared to (33), is that the log.n/ has been replaced by something of the form
log.n=jB� � B�Bj1/. As it will appear clearly in the last step, moving from log.n/
to log.n=jB� � B�Bj1/ is the key to obtain the control ne�c0s2 on jB� � B� yBj1.
We point out that (34) is only guaranteed for B 2 C fulfilling jB� � B�Bj1 . m.
So we need to first get such a bound.

Contrary to [20], we do not use Grothendieck’s inequality for a preliminary
control, but instead we apply a first time our upper-bound in order to get the rough
bound jB� � B�Bj1 � nK3e�c

p
n=m . m when s2 & m=n and then apply

again our analysis by using jB� � B�Bj1 . m. We refer to Section 6.2 below
Lemma 8 (page 345) for the details.

Gamma term. The term h� � y�; yB � B�i can be directly controlled by Inequal-
ity (B12) of [44], which is recalled in Lemma 5 for convenience

h� � y�; yB � B�i �
2

m
j� � y�jV jB

�
� B� yBj1 :

Condition (10) exactly ensures that the right hand side is upper-bounded by

�2 jB� � B� yBj1=32 :

So this term is smaller than a quarter of the signal term, and we can again remove it
at the price of loosing another factor 2 in the signal level.

Cross-products term. It remains to upper-bound the cross-products term

hA�ET CE�TAT ; yB � B�i D
X
j¤k

X
a2Gk ; b2Gj

hEa �Eb; �k � �j iBab :

We recall that we describe here the case where the�jk are all equal to� for j ¤ k.
The general case is treated in Section 6. We observe first that hEa; �k � �j i is
sub-Gaussian SubG.�2�2/ andX

j¤k

X
a2Gk ; b2Gj

jBabj D
1

2
jB� � B� yBj1 ;

see Lemma 1 for this last equality. Hence, building again on the inequality hA;Bi �PjBj1
jD1A.j / and deviation bounds for sub-Gaussian random variables, we obtain that

hA�ET CE�TAT ; yB �B�i � jB��B� yBj1

s
�2�2 log

� nK3

jB� � B� yBj1

�
; (35)

with probability at least 1 � c=n2.
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Conclusion. Take for granted that we have jB� � B� yBj1 . m. Then combining
the above bounds leads to

�2jB� � B� yBj1

.
�
�2
p
m

s
log

� nK3

jB� � B� yBj1

�
_ �2 log

� nK3

jB� � B� yBj1

��
jB� � B� yBj1 ;

with probability at least 1 � c00=n2. This bound can be rewritten as

s2 . log
� nK3

jB� � B� yBj1

�
and hence jB� � B� yBj1 � nK3e�c

0s2 .
In light of the three last bounds, we can traceback the terms contributing to the

two parts of s2 D .�2=�2/ ^ .m�4=�4/. The second term m�4=�4 in s2 comes
from the first term in the upper-bound (34). The ratio �2=

p
m in (34) is driven by

the variance term in the Hanson–Wright inequality, so there is very little room for
possible improvement. The first term �2=�2 in s2 mainly comes from (35), and
secondary from the second term in (34). As above, the term �� arising in (35) is
a variance term, so there is again very little room for possible improvement on this
side.

Recalling Inequality (31), the bound jB� �B� yBj1 � nK3e�c
0s2 obtained above

ensures that jB� � yBj1 � 2nK3.n=m/e�c
0s2 . This last inequality does not seem

to meet our expectations. Yet, when s2 & n=m, it enforces the targeted inequality
jB� � yBj1 � ne

�c0s2 for some smaller constant c0.

5.2. Outline of the proof of Theorem 2. Let us defineD the diagonal matrix with
Daa D Pkk for a 2 Gk and X0 D XCD. We observe that

jXXT � X0.X0/T j1 � jDj1
�
jXj1 C jX0j1

�
� 2L ;

so, when �2 & Ln=m we have

jhXXT � X0.X0/T ; yB � B�ij � 2LjB� � yBj1

� 4L
n

m
jB� � B� yBj1 � 0:05�

2
jB� � B� yBj1 :

So we can replace X by X0 in our analysis, since this term is smaller than a fraction
of the signal term.

Since X0a D �k CEa, with Œ�k�b D Pjk and Eab D Xab �EŒXab� for b 2 Gj ,
the proof of Theorem 2 follows similar lines as that of Theorem 1. The main
differences lies in the symmetry of X and the different stochastic control of the
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Bernoulli variables. We briefly sketch the main lines below. Again, for simplicity,
we assume in this section that �jk D � for all j ¤ k.

As in the previous section, we have

hX0.X0/T ; B� � yBi D
1

4
�2jB� � B� yBj1

C hEET ; B� � yBi C hA�ET CE�TAT ; B� � yBi :

Cross-product terms. The cross-product terms are handled similarly as before, the
main difference is that we rely on Bernstein’s inequality instead of sub-Gaussian
deviations, producing an additional term. Since var.Eai / � L and j�j1 � L, we
get the same bound as before, with �2 replaced by L and the additional term equal
to L times the sum of jB� � B� yBj1 ordered exponential random variables

hA�ET CE�TAT ; yB � B�i � jB� � B� yBj1

s
L�2 log

� nK3

jB� � B� yBj1

�
C LjB� � B� yBj1 log

� nK3

jB� � B� yBj1

�
: (36)

Quadratic terms. We use the same decomposition as before, except that � is absent
here. Actually the operator norm of � is upper bounded by nL which is smaller than
the size of the fluctuations of EET around � .

First, we consider the expression involving .I � B�/EET .I � B�/. When L �
log.n/=n, we can directly use the bound (32) since, in that regime, jEET jop � cnL
(see e.g. [32]). Unfortunately, for a smaller L, the operator norm jEET jop can only
be upper-bounded by nLC log.n/ (up to a multiplicative constant). Actually, even
for L of order 1=n, the nodes with the highest degree enforces an operator norm of
size at least log.n/= log log.n/. Being compelled to follow an alternative approach for
bounding this expression, we use, classically for sparse graphs, a trimming argument
which amounts to remove high degree nodes to the adjacencymatrix. For the trimmed
adjacency matrix we can now apply the bound (32) since the operator norm of this
trimmed matrix is at most cnL. Then, it remains to upper bound the residual term by
a `1=`1 bound. Relying on the box-constraint jBj1 � ˛.L/, we will then guaranty
that this residual remains under control.

As for the term hB�EET ; yB � B�i, we need to control some quadratic forms of
centered Bernoulli variables. We get a control of the right order by splitting them
into pieces and considering apart different sub-cases. The symmetry of X induces
some interlaced dependencies that must be handled with care. It is the main hurdle
of the proof.
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At the end of the day, we obtain a bound of the form

hEET ; B� � yBi � 0:05�2jB� � B� yBj1 C LjB
�
� B� yBj1 log

� nK3

jB� � B� yBj1

�
;

for the quadratic terms. Then, the end of the proof of Theorem 2 follows the same
line as those of Theorem 1.

6. Proof of Theorem 1

We provide in this section the full proof of Theorem 1. We recall thatm D mink jGkj
stands for the size of the smallest group. In the sequel, BaGk stands for a-th row ofB
restricted to the column in Gk whereas BGkGl stands for the restriction of B to rows
in Gk and columns in Gl . For two indices j and k, .�1/jDk equals �1 when j D k
and 1 when j ¤ k.

6.1. A few useful formulas. We start by gathering some useful formulas, in partic-
ular relating jB� � Bj1 to jB� � B�Bj1.
Lemma 1. We have for any B 2 C

.B� � B�B/ab D
1

mk
�

1

mk

X
c2Gk

Bcb if a; b 2 Gk ;

D �
1

mk

X
c2Gk

Bcb if a 2 Gk , b … Gk

and
jB� � B�BB�j1 D jB

�
� B�Bj1 D 2

X
j¤k

jBGjGk j1 ;

and

j.I � B�/B.I � B�/j� �
jB� � B�Bj1

2m
and

jB� � Bj1 �
2n

m
jB� � B�Bj1 :

Besides, for any n � n matrix B , we have

jB� � B�Bj1 _ jB
�
� BB�j1 � jB

�
� Bj1 :

Proof of Lemma 1. The two first displays follows from direct computations. The
third display is given by (57) in [11]. For the next to last display, we observe that

j.I � B�/B.I � B�/j1 � nj.I � B
�/B.I � B�/j� �

n

2m
jB� � B�Bj1 :



Partial recovery bounds for clustering with the relaxed K-means 343

The claim follows from

B D B�B C .I � B�/B.I � B�/C BB� � B� C B� � B�BB�

and hence

jB��Bj1 � jB
�
�B�Bj1Cj.I�B

�/B.I�B�/j1CjBB
�
�B�j1CjB

�
�B�BB�j1 :

For the last display, we use that for a 2 Gk ,

.B�M/ab D jGkj
�1

X
c2Gk

Mcb :

By the triangular inequality, this implies that

jB�M j1 D

KX
kD1

X
a2Gk

nX
bD1

ˇ̌̌
jGkj

�1
X
c2Gk

Mcb

ˇ̌̌
� jM j1 :

Similarly jMB�j1 � jM j1 and the last display follows by takingM D B� � B and
using .B�/2 D B�.

The next two lemmas recall two useful probabilistic bounds.
Lemma2 (Hanson–Wright inequality). Let " be the vector obtained by concatenation
of †�1=2

k.1/
E1; : : : ; †

�1=2

k.n/
En.

Under Assumption A1, the random vector " is sub-Gaussian SubG.L2Inp/ and
for all t > 0

P
�
"TA" � EŒ"TA"� � L2

�
jAjF
p
t C jAjopt

��
� e�ct :

We refer to [45] for a proof of this lemma. Next lemma rephrases Lemma A1
in [44].
Lemma 3. Let E be the n � p matrix ET D ŒE1; : : : ; En� Under Assumption A1,
we have for all t > 0

P
�
jEET � EŒEET �jop � �

2
p
t C �2t

�
� 2 � 9ne�ct :

6.2. Bounding jB� � B� yBj1. We recall that s2 D min.�2=�2; m�4=�4/. As
explained in Section 5.1, the main step in the proof of Theorem 1 is to prove that for
s2 & n

m
, we have with probability at least 1 � c=n2

jB� � B� yBj1 � nK
3 exp.�cs2/ : (37)

For any B 2 C , we have the decomposition

hXXT � y�;B� � Bi D hS C � � y� CW CW 0; B� � Bi
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where for a 2 Gk , b 2 Gj ,

Sab D �0:5k�k � �j k
2

W 0ab D hEa �Eb; �k � �j i

Wab D hEa; Ebi � EŒhEa; Ebi� :

Since B� 2 C , we have hXXT � y�;B� � yBi � 0 by definition of yB , and hence

hS;B� � yBi � h� � y�; yB � B�i C hW; yB � B�i C hW 0; yB � B�i : (38)

For the term in the left-hand side of (38), direct computations combined with
Lemma 1 give the following evaluation of the signal.
Lemma 4. We set bjk D jBGkGj j1 and �jk D k�k � �j k. Then, for any B 2 C ,
we have

hS;B� � Bi D 0:5
X
j¤k

�2jkbjk �
�2

4
jB� � B�Bj1 :

For the first term in the right-hand side of (38), we lift from [44] the next lemma
(see (B12) in [44]). Recall that jDjV D maxaDaa �minaDaa.
Lemma 5. For any diagonal y� , and any B 2 C , we have

h� � y�;B � B�i �
2

m
j� � y�jV jB

�
� B�Bj1 :

For the second term in the right-hand side of (38), as explained in the Section 5.1,
we decompose W into W D .I � B�/W.I � B�/C B�W CWB� � B�WB�.

In order to control the scalar product involving .I � B�/W.I � B�/, we get by
combining Lemma 3 and Lemma 1 the following bound.
Lemma 6. Under Assumption A1, we have with probability at least 1 � c=n2

h.I � B�/W.I � B�/; B � B�i �
�2
p
nC �2n

m
jB� � B�Bj1 ;

simultaneously for all B 2 C .
Hence, when s2 & n

m
and when (10) holds, we have

h.I � B�/W.I � B�/; yB � B�i C h� � y�; yB � B�i � 0:75hS;B� � yBi :

The remaining terms involving W are controlled by the next lemma proved in
Section 6.2.1.
Lemma 7. We set ı D jB�.B� � B/j1 and we assume that Assumption A1 holds.
Then, with probability at least 1 � c=n2, we have for all B 2 C

hB�W;B � B�i .
ı
p
m

�
�2
p
log.nK3=ı/C �2

p
ı _ 1 log.nK3=ı/

�
:

The same bound holds for hB�WB�; B � B�i.
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It remains to control the last term in the right-hand side of (38) with the following
lemma, proved in Section 6.2.2.
Lemma 8. We set ı D jB�.B� � B/j1. Under Assumption A1, with probability at
least 1 � c=n2, we have for all B 2 C

hW 0; B � B�i . �
X
j¤k

�jkbjk

q
log.nK=bjk/

. �
p
hS;B� � Bi

p
ı log.nK3=ı/ :

Conclusion. Focusing on yB , we set ı D jB�.B� � yB/j1. Combining (38) with

hW; yB � B�i D h.I � B�/W.I � B�/; yB � B�i

C 2hB�W; yB � B�i � hB�WB�; yB � B�i ;

and the five previous lemmas, we obtain that when s2 & n
m

and when (10) holds,
with probability at least 1 � c=n2

hS;B� � yBi . �

q
hS;B� � yBi

p
ı log.nK3=ı/

_
ı
p
m

�
�2
p
log.nK3=ı/C �2

p
ı _ 1 log.nK3=ı/

�
:

According to Lemma 4, we have hS;B� � yBi � �2ı=4, and hence the previous
bound ensures that

�2 . �2 log.nK3=ı/ _
1
p
m

�
�2
p
log.nK3=ı/ _ �2

p
ı _ 1 log.nK3=ı/

�
. �2 log.nK3=ı/ _

1
p
m

�
�2
p
log.nK3=ı/ _ �2

p
ı log.nK3=ı/

�
: (39)

Since jB�j1 D j yBj1 D n and ı � jB�� yBj1 (see Lemma 1), we always have ı � 2n
by the triangular inequality. Let us prove that we actually have ı . m. From (39)
and ı � 2n, we obtain

�2 . �2
r
n

m
log.nK3=ı/ _

1
p
m

�
�2
p
log.nK3=ı/

�
and hence

ı � nK3 exp
�
� c

�rm

n

�2

�2

�
^
m�4

�4

�
� nK3 exp

�
� c

r
m

n
s2
�
� nK3 exp

�
� c0

r
n

m

�
;
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where the last bound comes from s2 & m=n. Hence,

ı . m.n=m/4 exp
�
� c0

p
n=m

�
. m :

We can now conclude. Since ı . m, the bound (39) gives

�2 . �2 log.nK3=ı/ _
1
p
m

�
�2
p
log.nK3=ı/

�
from which follows

ı � nK3 exp.�cs2/ :

The proof of (37) is complete.

6.2.1. Proof of Lemma 7. In the following we use the notation mk D jGkj, and
hence m D mink mk . Since B� is a projection matrix, we observe that

hB�W;B � B�i D hB�W;B�B � B�i :

We have

hB�W;B�B � B�i D

KX
k;jD1

X
b2Gj

z
.j;k/

b
ˇkb ;

where ˇkb D mkj.B� � B�B/abj with a 2 Gk and

z
.j;k/

b
D
.�1/jDk

mk

X
a2Gk

Wab; for b 2 Gj :

We observe that 0 � ˇkb � 1 and jˇkGj j1 D j.B
� � B�B/GkGj j1 DW bjk . Hence,

writing z.j;k/
.1/
� z

.j;k/

.2/
� � � � for the sequence fz.j;k/

b
W b 2 Gj g ranked in decreasing

order, we have

hB�W;B�B � B�i �

KX
j;kD1

bjkX
uD1

z
.j;k/

.u/
;

with the convention that for b D r C f with r integer and 0 � f < 1,

bX
uD1

au D .a1 C � � � C ar/C farC1 �
� rX
uD1

au

�
_

� rC1X
uD1

au

�
: (40)

and for 0 � b < 1,
Pb
uD1 au � ba.1/.

We control the sum of ordered statistics by the next lemma proved at the end of
this section.
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Lemma 9. For any integer q in Œ1;mj � and t � 0, we have

P
h qX
uD1

z
.j;k/

.u/
&
r
q

m
.�2
p
t C �2t /

i
� C qmj e

�ct :

Let us choose tq D c00q log.nK=q/. Since C qn � .en=q/q ,

mjX
qD1

C qmj e
�ctq �

nX
qD1

e�c
0q log.nK=q/ .

1

.nK/2
;

where the last bound can be obtained e.g. by

nX
qD1

e�c
0q log.nK=q/

�

p
nX

qD1

e�0:5c
0q log.nK/

C

nX
qD
p
n

e�c
0q log.K/ .

1

.nK/2
:

Hence, with probability at least 1 � c=.nK/2, we have simultaneously for all
integers 1 � q � mj ,

qX
uD1

z
.j;k/

.u/
. q

r
1

m

�
�2
p
log.nK=q/C �2

p
q log.nK=q/

�
:

From (40), we deduce that

bjkX
uD1

z
.j;k/

.u/
. bjk

r
1

m

�
�2
q
log.nK=bjk/C �2

q
bjk _ 1 log.nK=.bjk _ 1//

�
:

With a union bound over j; k D 1; : : : ; K we obtain that the inequality above holds
simultaneously for all j; k with probability at least 1�c=n2. As a consequence, with
Jensen’s inequality and

p
bjk �

p
ı, we get

hB�W;B�B � B�i .
KX

j;kD1

bjk

r
1

m

�
�2
q
log.nK=bjk/C �2

p
ı _ 1 log.nK=bjk/

�
.

ı
p
m

�
�2
p
log.nK3=ı/C �2

p
ı _ 1 log.nK3=ı/

�
:

The term hB�WB�; B��Bi D hB�WB�; B�.B��B/B�i can be handled in the
same way as hB�W;B �B�i, by noticing that jB�.B��B/B�j1 D jB�.B��B/j1
according to Lemma 1.

Proof of Lemma 9. Let " be the vector obtained by concatenation of

†
�1=2

k.1/
E1; : : : ; †

�1=2

k.n/
En ;
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which is sub-Gaussian SubG.L2Inp/. Let ˝ refer to the Kronecker product. For a
subsetQ � Gj with cardinality q, we haveX

b2Q

z
.j;k/

b
D
.�1/jDk

mk

X
a2Gk ; b2Q

�
ETa Eb � EŒETa Eb�

�
:

For a subset Q � f1; : : : ; ng, define 1Q 2 f0; 1gp such that .1Q/i D 1 if i 2 Q.
Define

A D
.�1/jDk

mk
1Gk1

T
Q

fulfilling jAjF D jAjop D
p
q=mk . Then, with †.j;k/ D †

1=2

k
†
1=2
j , we haveX

b2Q

z
.j;k/

b
D "T .†.j;k/ ˝ A/" � E

�
"T .†.j;k/ ˝ A/"

�
:

Hence, since j†.j;k/jF � �2=L2 and j†.j;k/jop � �2=L2, we have

j†.j;k/ ˝ AjF � �
2pq=.L2

p
m/ and j†.j;k/ ˝ Ajop � �

2pq=.L2
p
m/ :

The bound then follows from Lemma 2, and the C qmj possible choices of subset Q.

6.2.2. Proof of Lemma 8. To start with, we observe that

hW 0; B � B�i D
X
j¤k

X
a2Gk ; b2Gj

hEa �Eb; �k � �j iBab :

By symmetry, it is enough to control
P
j¤k

P
a2Gk ; b2Gj

hEa; �k��j iBab . Define
bjk D jBGkGj j1. Since jBaGj j1 � 1, we haveX

j¤k

X
a2Gk ; b2Gj

hEa; �k � �j iBab D
X
j¤k

X
a2Gk

hEa; �k � �j ijBaGj j1

�

X
j¤k

bjkX
aD1

z
.j;k/

.a/
;

where z.j;k/
.1/
�z

.j;k/

.2/
�� � � corresponds to the values .z.j;k/a DhEa; �k � �j i Wa2Gk/

ranked in decreasing order. The next lemma, proved at the end of this section, provides
a control on the sum of the ordered statistics.
Lemma 10. Under Assumption A1, with probability at least 1�c=n2, simultaneously
for all j ¤ k and all integers 1 � q � mk

qX
aD1

z
.j;k/

.a/
. ��jkq

p
log.nK=q/ :



Partial recovery bounds for clustering with the relaxed K-means 349

As a consequence, the Cauchy–Schwarz and Jensen inequalities, and (40) ensure
that

hW 0; B � B�i . �
X
j¤k

�jkbjk

q
log.nK=bjk/

. �

sX
j¤k

�2
jk
bjk

s
ı
X
j¤k

ı�1bjk log.nK=bjk/

. �
p
hS;B� � Bi

s
ı log

�X
j¤k

nK=ı
�

� �
p
hS;B� � Bi

p
ı log.nK3=ı/ ;

which is the inequality claimed in Lemma 8.
It remains to prove Lemma 10. Let q � mk denote a positive integer.

Since the .z.k;j /a W a 2 Gk/ are independent and sub-Gaussian SubG.�2�2
jk
/,

for any .a1; : : : ; aq/ we have
Pq
iD1 z

.j;k/
ai sub-Gaussian SubG.q�2�2

jk
/ under

Assumption A1. Hence

P
h qX
aD1

z
.j;k/

.a/
> t

i
� C qmke

�t2=.2�2�2
jk
qjk/ :

For tqjk D c0��jkqjk
p
log.nK=qjk/, we then have

P
h
9qjk W

qjkX
aD1

z
.j;k/

.a/
> c0��jkqjk

q
log.nK=qjk/

i
�

X
j¤k

mkX
qj;kD1

C
qjk
mk e

�cqjk log.nK=qjk/

.
K2

.nK/c
.
1

n2

for c � 2.

6.3. Final clustering bound. We recall that, similarly to [20], the final clustering
is provided by a 7-approximateK-medoids (7) on the rows of the matrix yB output by
(6) or (9). Next lemma connects the misclassification error err . yG;G/ defined by (2)
to the `1-norm jB� yB � B�j1.
Lemma 11. The proportion err . yG;G/ of misclassified points is upper bounded by

err . yG;G/ � 60
� n
m

�2 jB� yB � B�j1
n

:
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Combining Lemma 11 and (37), we get that, when s2 & n
m
, with probability at

least 1 � c=n2,
err . yG;G/ � 60

� n
m

�5
e�c
0s2
� e�c

00s2 :

Theorem 1 then follows.

6.3.1. Proof of Lemma 11. The proof of Lemma 11 is close to the proof of
Proposition 3 in [20]. We sketch below the main lines of this proof, referring
to [20] when the arguments are the same.

We define zB D yA yM , with . yA; yM/ obtained in (7) and we define A� 2 Rn�k by
A�
ak
D 1a2Gk . We also define the sets

Tk D fa 2 Gk W jB
�
aW � .

zBB�/aWj1 < 1g ; Sk D Gk n Tk ; R1 D fk W Tk D ;g ;

R2 D fk W Tk ¤ ; and yAaW D yAbW 8a; b 2 Tkg ; and R3 D f1; : : : ; Kg n .R1 [R2/ :

The proof is decomposed into 4 steps.
Step 1: For a 2 Tk and b 2 Tj with k ¤ j , we have jB�aW �B�bWj1 � 2 since a 2 Gk
and b 2 Gj , and jB�aW � . zBB�/aWj1 C jB�bW � . zBB

�/bWj1 < 2 by definition of Tk
and Tj . Hence,

j. zBB�/aW� . zBB
�/bW/j1 � jB

�
aW�B

�
bWj1�jB

�
aW� .

zBB�/aWj1�jB
�
bW� .

zBB�/bWj1 > 0 ;

and so zBaW ¤ zBbW from which follows that yAaW ¤ yAbW.
Hence, for j; k 2 R2, a 2 Tk and b 2 Tj , we have

yAaW ¤ yAbW if and only if j ¤ k :

So all points in [k2R2Tk are well classified. Hence, there exists a permutation �
such thatˇ̌

fa W yA�.a/W ¤ A
�
aWg
ˇ̌
� n �

X
k2R2

jTkj D S C
X
k2R3

jTkj � S C jR3jn ;

where S D
PK
kD1 jSkj.

Step 2: The same arguments as in Claim 2 in [20] ensures that jR3j � jR1j.

Step 3: We prove now the inequalities mjR1j � S � jB� � zBB�j1. Actually, we
have

S �
X
k2R1

jSkj D
X
k2R1

jGkj � mjR1j

by definition of R1 and m D mink jGkj. In addition, since jB�aW � . zBB�/aWj1 � 1
for a 2 [kSk ,

S �
X
k

X
a2Sk

jB�aW � .
zBB�/aWj1 � jB

�
� zBB�j1 :
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Step 4: The same arguments as in Claim 4 in [20] ensure that

jB� � zBj1 � 15jB
�
� yBj1 :

We can now conclude. Combining the 3 first steps, we obtain thatˇ̌
fa W yA�.a/W ¤ A

�
aWg
ˇ̌
� S.1C n=m/ � .1C n=m/jB� � zBB�j1 :

In addition, Step 4 and Lemma 1 ensure that

jB� � zBB�j1 � jB
�
� zBj1 � 15jB

�
� yBj1 � 30

n

m
jB� � B� yBj1 :

The claim of Lemma 11 then holds by combining the last two displays.

7. Proof of Theorem 2

We provide in this section a full proof of Theorem 2. The lines are very closed to
those of the proof of Theorem 1. In particular, all we need is to prove in (37) in our
setting. As explained in Section 5.2, we have

hXXT ; B� � yBi � hX0.X0/T ; B� � yBi � 0:05�2jB� � B� yBj1 ;

so

hS;B� � yBi D 0:5
X
j¤k

�2jkbjk

� hEET ; yB � B�i C hW 0; yB � B�i C 0:05�2jB� � B� yBj1 ;

with W 0
ab
D hEa �Eb; �k � �j i for a 2 Gk and b 2 Gj .

The cross-product hW 0; yB � B�i can be easily bounded with a variation of
Lemma 8.
Lemma 12. With probability at least 1 � c=n2, we have for all B 2 C

hW 0; B � B�i .
p
hS;B� � Bi

p
ıL log.nK3=ı/C Lı log

�nK3
ı

�
;

where ı D jB�.B� � B/j1.
The term hEET ; yB � B�i must be handled with more care. We first focus on

h.I � B�/EET .I � B�/; yB � B�i :

Lemma 13. When �2 & Ln=m, with probability at least 1 � c=n2, we have

h.I � B�/EET .I � B�/; yB � B�i � 0:05�2jB� � B� yBj1 ;
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when L � log.n/=n, and

h.I � B�/EET .I � B�/; yB � B�i � 0:05�2jB� � B� yBj1 C 0:04n.nL/
2e�cnL ;

when L � log.n/=n and ˛.L/ � K3n�1ecnL. In particular, either

jB� � B� yBj1 � nK
3e�c�

2=4L

or
h.I � B�/EET .I � B�/; yB � B�i � 0:06�2jB� � B� yBj1 :

It remains to control the average terms of the form hB�EET ; yB � B�i.
Lemma 14. When �2 & Ln=m, with probability at least 1 � c=n2, we have

hB�EET ; yB � B�i � 0:05�2ı C c0Lı log
�nK3
ı

�
:

Putting the last three lemmas together, we conclude that, either ı D jB��B� yBj1
fulfills ı � nK3e�c�2=4L, or with probability larger than 1 � c00=n2, we have

ı�2 . ıL log.nK3=ı/ :

In any case, it follows that ı � nK3e�c
0�2=L with probability at least 1 � c=n2,

which gives (37). We conclude the proof of Theorem 2 by following the same lines
as for Theorem 1.

7.1. Proof of Lemma 12. As in the proof of Lemma 8, we denote by z.j;k/
.1/

�

z
.j;k/

.2/
� � � � the values .z.j;k/a D hEa; �k � �j i W a 2 Gk/ ranked in decreasing

order and we have

hW 0; B � B�i �
X
j¤k

jBGjGk j1X
aD1

z
.j;k/

.a/
;

where we use the same convention as in (40) when jBGjGk j1 is not an integer. For
anyQ � Gk with cardinality q we have

X
a2Q

z.j;k/a D

X
a2Q

nX
iD1

�
.Eai1i<a CEia1i>a/.�k � �j /i

�
:

Since each variable Eab for a < b appears at most twice,X
i

var
�
Eai .�k � �j /i

�
� L�2jk and jEai .�k � �j /i j � 2L ;
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Bernstein’s inequality ensures that

P
hX
a2Q

z.j;k/a &
q
qL�2

jk
t C Lt

i
� e�t :

The conclusion of Lemma 12 is then derived by following the same lines as in the
proof of Lemma 8.

7.2. Proof of Lemma 13. We first consider the case L � log.n/=n and then turn to
the sparse case L � log.n/=n. When L � log.n/=n, according e.g. to Theorem 5.2
in [32] we have jEET jop . nL, so (32) ensures that when �2 & Ln=m

h.I � B�/EET .I � B�/; yB � B�i .
nL

m
jB� � B� yBj1 � 0:05�

2
jB� � B� yBj1 :

Let us now consider the case L � log.n/=n. As mentioned in Section 5.2, we use a
trimming argument. Let Xtr be the matrix X where we have removed the nodes with
degrees larger than 
nL, with 
 D 28 C 2, and set E tr D Xtr � EŒX�. It is known
that removing the high-degree nodes drastically reduces the operator norm of the
adjacency matrix. For instance, Lemma 5 in [20] ensures that jE tr.E tr/T jop . nL

so when �2 & Ln=m, we have

h.I � B�/E tr.E tr/T .I � B�/; yB � B�i � 0:05�2jB� � B� yBj1 : (41)

Similarly as in [20], we bound now the residual terms with a `1=`1 bound.
Compared to [20], the main additional difficulty comes from the quadratic residuals,
whereas the SDP in [20] was only linear in X. The first step is to bound the `1 norm
of the residual terms by the sum of the square degrees of the trimmed nodes. We
start from

hEET �E tr.E tr/T ; .I � B�/ yB.I � B�/i

� j.I � B�/ yB.I � B�/j1jEE
T
�E tr.E tr/T j1

� 2˛.L/jEET �E tr.E tr/T j1

� 2˛.L/
�
j.E �E tr/2j1 C 2j.E �E

tr/E tr
j1

� (42)

since j yBj1 � ˛.L/.

Control of j.E �E tr/2j1. The matrix E � E tr D X � Xtr is the adjacency matrix
of the graph where we have only kept the edges involving at least one node with with
degree larger than 
nL and their neighbors. The `1 norm j.E �E tr/2j1 then counts
the number of paths of size 2 in this graph. Write T for the set of nodes with degree
larger than 
nL. To evaluate the number of paths .i1; i2; i3/ of size 2 in this graph,
we consider apart the two cases i2 2 T and i2 … T .
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Consider first the case where the node i2 belongs to T . Since both i1 and i3 are
neighbors of i2, we have at most

P
i2T d

2.i/ such paths, where d.i/ is the degree
of i . Consider now the case where i2 … T . In this case, i1 and i3 belong to T . Since
the degree of i2 is less than 
nL � d.i1/, the number of such paths is again smaller
than

P
i2T d

2.i/. So, we have the bound

j.E �E tr/2j1 � 2
X
i2T

d2.i/ :

Control of j.E �E tr/E trj1. We have

j.E �E tr/E tr
j1 � j.E �E

tr/Xtr
j1 C j.E �E

tr/EŒX�j1 ;

and we bound separately the two terms in the right hand side of the above inequality.
First, we notice that j.E � E tr/Xtrj1 corresponds to the number of size 2 paths
.i1; i2; i3/ such that i1 belongs to T and both i2 and i3 do not belong to T . Since
d.i2/ < d.i1/, we have again

j.E �E tr/Xtr
j1 �

X
i2T

d2.i/ :

As for j.E�E tr/EŒX�j1, this corresponds to the sumof theweights .E�E tr/i1i2EŒXi2i3 �
associated to paths .i1; i2; i3/. Since the weight EŒXi2i3 � of the edge .i2; i3/ is
less than L, the total weight of paths starting from i1 2 T is upper-bounded by
nL

P
i2T d.i/ and the total weight of paths starting from i1 … T is also upper-

bounded by nL
P
i2T d.i/, so

j.E �E tr/EŒX�j1 � 2nL
X
i2T

d.i/ �
X
i2T

d2.i/

since T is made of high-degree nodes.
Coming back to (42), we conclude that

hEET �E tr.E tr/T ; .I � B�/ yB.I � B�/i � 8˛.L/
X
i2T

d2.i/ : (43)

It remains to bound the sum of the squared highest degrees.

Control of
P

i2T d
2.i /. We control the sum with a stratification argument. First,

we shall get rid of the dependencies in X that are due to the symmetry.

d2.i/ D
� X
j Wj>i

Xij C
X
j Wj<i

Xij
�2
� 2

� X
j Wj>i

Xij
�2
C 2

� X
j Wj<i

Xij
�2
:
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For a node i , we write d1.i/ D
P
j Wj>i Xij and d2.i/ D

P
j Wj<i Xij . As a

consequence,

X
i2T

d2.i/ � 4

nX
iD1

d21 .i/1d1.i/�
Ln=2 C 4
nX
iD1

d22 .i/1d2.i/�
Ln=2 :

We focus on the first term, the second term can be bounded in the same way by
symmetry. The following technical Lemma is stated in general form as it will
be applied several times in the manuscript. Henceforth, log2 refers to the binary
logarithm.

Lemma 15. Consider any ` > 0 such that `L � 1. Let I � f1; : : : ; ng, Ji �
fi C 1; : : : ; ng, with jJi j � ` and Si D

P
j2Ji

Eij for i D 1; : : : ; n. For r0 � 2 and
any integer r � 1 we set yr D 2r0Cr`L and Ir D fi 2 I W yr < Si � yrC1g. Then,
for 1=14 � � � 1=2, we have

P
h\
r�1

˚
jIr j � 2n2

��.rCr0�2/yr
	i
� 1 �

1C log2.��1 log.2n//
.2n/.1��/=4�

;

for n � 2. In addition, we always have Si � �`L and for I0 D fi 2 I W Si � y1g

P
hX
i2I0

S2i . n`L
i
� 1 � 1=n3 :

Since Xij 2 Œ0; 1�, d1.i/ � nLC
P
j�i Eij . Take r0 D 6, I D f1; : : : ; n � 1g

and Ji D fi C 1; : : : ; ng for i 2 I . Since we restrict ourselves to indices i such that
d1.i/ � 
nL=2, our choice of 
 implies that Si > y1. Taking ` D n and � D 1=10
in Lemma 15, we obtain with probability at least 1 � c=n2 that

nX
iD1

d21 .i/1d1.i/�
nL=2 �
1X
rD1

jIr j.nLC 2
r0CrC1nL/2

� 28n.nL/2
1X
rD1

2�.r0Cr�2/.nL2
r0Cr=10�2/

� 28n.nL/2
1X
rD1

2�11:8.r0Cr�2/nL

� 29n.nL/2e�40nL :
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So putting the pieces together with (42), we obtain

hEET �E tr.E tr/T ; .I � B�/ yB.I � B�/i � 212˛.L/n.Ln/2e�40nL

� 0:04.Ln/2K3e�4nL ;

where the last inequality holds when L � 1=m � 2=n and ˛.L/ � K3

n
e4nL. Then,

with (41), we conclude that

h.I �B�/EET .I �B�/; yB �B�i � 0:05�2jB� �B� yBj1C 0:04.Ln/
2K3e�4nL :

(44)
Let us prove the last statement of the lemma. Assume that ı D jB� � B� yBj1 �

nK3e��
2=L and hence

ı�2 � nLK3.�2=L/e��
2=L :

Since n=m . �2=L � 4nL and xe�x is decreasing for x > 1, then
.�2=L/e��

2=L � 4nLe�4nL and ı�2 � 4K3.nL/2e�4nL. Coming back to (44)
concludes the proof.

7.3. Proof of Lemma 14. In order to properly handle the dependences between the
symmetric entries of E we split E into two parts E D U C U T where the upper
triangular matrix U is such that Uab D Eab for a < b and Uab D 0 else. We have
E2 D U 2 C .U T /2 C UU T C U TU and by symmetry we only need to control
hB�U TU; yB � B�i and hB�.U T /2; yB � B�i.

7.3.1. CaseU TU . As in the proof of Lemma 7, all we need is to prove the following
bound. For 1 � j; k � K and b 2 Gj , define

z
.j;k/

b
D

�
.�1/jDk

mk

nX
iD1

X
a2Gk

UiaUib W b 2 Gj

�
:

Let z.j;k/
.1/
� z

.j;k/

.2/
� � � � be the random variables z.j;k/

b
ranked in decreasing order.

Lemma 16. There exists an event � of probability at least 1 � c=n2, such that for
all 1 � j; k � K and for any integer q 2 Œ1;mj � and t � 0, we have

P
h
� \

n qX
uD1

z
.j;k/

.u/
& L

� qn
mk
C t

�oi
� 3C qmj e

�c0t : (45)
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To conclude from Lemma 16, we simply apply as in Lemma 7 a union bound

P
h
9q W

qX
uD1

z
.j;k/

.u/
&
nLq

mk
C Lq log

�nK
q

�i
� P Œ�c�C P

h
� \

n
9q W

qX
uD1

z
.j;k/

.u/
&
nLq

mk
C Lq log

�nK
q

�oi
�
c

n2
C 3

X
j;k

nX
qj;kD1

C
qjk
mk e

�cqjk log.nK=qjk/

.
1

n2
C

K2

.nK/c
.
1

n2
;

for c � 2. We denote bjk D jBGkGj j1 so that ı D
P
j;k bjk . Then, arguing as

in Lemma 7, we use order variables with the convention (40) together with Jensen’s
inequality to conclude

hB�UU T ; yB � B�i �

KX
k;jD1

bjkX
uD1

z
.j;k/

.u/

.
KX

k;jD1

bjkL
� n
mk
C log

�nK
bjk

��
. ıL

� n
m
C L log

�nK3
ı

��
:

Since we assume that � & Ln=m, we have proved the desired bound.

Proof of Lemma 16. With the notation of Lemma 15, for 1 � k � K let us
take J .k/i D Gk \ fi C 1; : : : ; ng, `.k/ D mk , � D 1=14, r0 D 2, and
S
.k/
i D

P
b2J .k/ Uib D

P
b2J .k/ Eib . Define accordingly, the sets I

.k/
r and

�k D
n X
i2I

.k/
0

.S
.k/
i /2 . nmkL

o\ \
r�1

˚
jI .k/r j � 2n2

��mkLr2
r0Cr

	
; (46)

and y.k/r D 2r0Cr`.k/L. Then, according to Lemma 15, the event � D \K
kD1

�k
holds with probability at least 1 � c=n2. Let us now prove (45). We consider apart
the case j ¤ k and j D k. In the remainder of the proof, k is fixed and to alleviate
the notation, we simply write Ir and Si for I .k/r and S .k/i .
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Case j ¤ k. LetQ be a subset ofGj with cardinality q, and set Ti;Q D
P
b2Q Uib

for i 2 f1; : : : ; ng. Then, we haveX
b2Q

z
.j;k/

b
D

1

mk

nX
iD1

SiTi;Q :

Since all the entries ofU are independent andQ\Ji D ;, the Ti;Q’s are independent
from the Si ’s. Let us first upper-bound the sumX

i2I0

SiTi;Q D

nX
iD1

.Si1S2
i
�y2
1
/Ti;Q

on�. Working conditionally on the .Si W i 2 I0/, we havewith Bernstein’s inequality

P

�X
i2I0

SiTi;Q &
s
qL

X
i2I0

S2i t CmkLt
ˇ̌̌
Si W i 2 I0

�
� e�t ;

Hence, since
P
i2I0

S2i . nmkL on �, we have

P
h
� \

X
i2I0

SiTi;Q & L
p
qnmkt CmkLt

i
� e�t ; (47)

for any t > 0. Let us now upper-boundX
r�1

X
i2Ir

SiTi;Q

on �. Since such Si are positive, we have for � > 0

E
h
exp

�
�
X
r�1

X
i2Ir

SiTi;Q

�
1�
i

� E
h
exp

�
Lq

X
r�1

X
i2Ir

�
e�Si � 1 � �Si

��
1�
i

� E
h
exp

�
Lq

X
r�1

jIr j
�
e2�mkL2

r0Cr

� 1 � 2�mkL2
r0Cr

��
1�
i

� exp
�
2nLq

X
r�1

2��mkLr2
r0Cr

e2�mkL2
r0Cr

�
:

For � D � log.2/=4, we have

E
h
exp

�� log.2/
4

X
r�1

X
i2Ir

SiTi;Q

�
1�
i
� exp

�
2nLq

X
r�1

2��mkLr2
r0Cr�1

�
� e2nLqe

�cmkL

� enLq ;
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since L & mk . This gives

P
h
� \

X
r�1

X
i2Ir

SiTi;Q > t
i
� e�

� log.2/t
4 CnLq :

Together with (47), we obtain that

P
h
� \

nX
iD1

SiTi;Q & nLq CmkLt
i
� 2e�t

and so
P
h
� \ max

Q�Gj ; jQjDq

X
b2Q

z
.j;k/

b
&
nLq

mk
C Lt

i
� 2C qmj e

�t :

Case j D k. We start from

X
b2Q

z
.j;k/

b
D �m�1k

nX
iD1

SiTi;Q :

Unfortunately, the sums Si and Ti;Q are no longer independent asQ � Gk and Ti;Q
is therefore a subsum of Si . We define k.i/ as the index in f1; : : : ; Kg such that
i 2 Gk.i/ and we set

Ji D Gk \ fi C 1; : : : ; ng ; Li D Pk.i/k ; and Ni D
X
a2Ji

Xia D Si C jJi jLi :

We observe that conditionally on Ni , the sum Hi D
P
b2Q\fiC1;:::;ngXib follows a

hypergeometric distribution with parameter .qi ; Ni ; jJi j/, where

qi D jQ \ fi C 1; : : : ; ngj � q :

Let H 0i be a random variable with binomial .qi ; Ni=jJi j/ distribution conditionally
onNi . Since x ! e��Six is continuous and convex, according to Theorem 4 of [26],
we have conditionally on Si

EŒe��SiHi jSi � � EŒe��SiH
0
i jSi � :

Hence, conditionally on Si , we apply Chernoff bound to
P
i2I0

SiHi together with
the above control of the Laplace transform. This allows us to get a Bernstein-like
inequality. Hence, with probability higher than 1 � e�t we have

�

X
i2I0

SiTi;Q D �
X
i2I0

Si .Hi � qiLi /
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� �

X
i2I0

qiSi

� Ni
jJi j
� Li

�
C c

pX
i2I0

qiS
2
i

Ni

jJi j
t C cmkLt

� �

X
i2I0

qiS
2
i

jJi j
C c

p
max
i2I0

Ni
X
i2I0

qiS
2
i

jJi j
t C cmkLt

. mkLt ;

where we used in the last line that Ni D Si C jJi jLi � .1C 2r0/mkL for i 2 I0.
When Si > 0, we have

�SiTi;Q � qLSi ;

since each entry Eab is larger or equal to �L. For i 2 Ir with r � 1, we have
yr < Si � 2yr and hence, on �

�

X
i

X
r�1

SiTi;Q1i2Ir � 2qL
X
r�1

jIr jyr

� 4nqL
X
r�1

2r0CrmkL2
��mkLr2

r0Cr

� 4nqL2�cmkL ;

since mkL & 1. Hence arguing as before we obtain that for t � 0

P
h
� \ max

Q�Gk WjQjDq

X
b2Q

z
.j;k/

b
&
nLq

mk
C Lt

i
� C qmj e

�t :

The proof of Lemma 16 is complete.

7.3.2. Case .U T /2. The case .U T /2 is somewhat more messy, due to interlaced
rows/columns dependences. Recall, that for two indices j and k, .�1/jDk equals�1
when i D k and 1 when i ¤ k. For 1 � j � k and b 2 Gj , define

z
.j;k/

b
D
.�1/jDk

mk

nX
iD1

X
a2Gk

UiaUbi ;

and let z.j;k/
.1/

� z
.j;k/

.2/
� � � � be the random variables z.j;k/

b
ranked in decreasing

order. Compared to U TU , the difficulty is that the same random variables Uia can
occur several times in the definition of z.j;k/

b
.

Lemma 17. There exists an event � of probability at least 1 � c=n2, such that for
all 1 � j; k � K and for any integer q 2 Œ1;mk� and t � 0, we have

P
h
� \

n qX
uD1

z
.j;k/

.u/
& L

� qn
mk
C t

�oi
� c00C qmke

�c0t : (48)
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As for the previous case, we easily conclude from Lemma 17 by applying a union
bound together with Jensen’s inequality.

Proof of Lemma 17. The event � is defined as the intersection

� D � \ \7uD1 \
K
kD1 �

.u/

k
;

where the event � D \k�k is introduced in (46) the previous proof and the events
�
.u/

k
are defined along the proof. Let us split the sum

.�1/jDk
nX
iD1

X
a2Gk ;b2Q

UiaUbi

into two parts depending whether i 2 Gk or not.

Case i … Gk. ForQ � Gj , consider the sum

.�1/jDk
X
i…Gk

X
a2Gk ;b2Q

UiaUbi D .�1/
jDk

X
i…Gk

SiT
0
i;Q ; (49)

with Si D
P
a2Gk

Uia as in the proof of Lemma 16 (we dropped the exponent .k/
to alleviate the notation) and T 0i;Q D

P
b2Q Ubi . In the collection of .Si /’s and

.T 0i;Q/’s, all the random variables are independent since the sums respectively run on
the setsGc

k
�Gk andQ�Gck that do not intersect. As a consequence, (49) is handled

exactly as the case j ¤ k in Lemma 16. We conclude that for all 1 � j; k � K and
allQ � Gj of size q, we have

P
h
� \

n
.�1/jDk

X
i…Gk

X
a2Gk ;b2Q

UiaUbi &
nLq

mk
C Lt

oi
. e�t : (50)

Case i 2 Gk and j ¤ k. ForQ � Gj , we consider the sum

.�1/jDk
X
i2Gk

X
a2Gk ;b2Q

UiaUbi D .�1/
jDk

X
i…Gk

SiT
0
i;Q ; (51)

with Si D
P
a2Gk

Uia and T 0i;Q D
P
b2Q Ubi . As above, the indices run inGk�Gk

andQ�Gk which do not intersect. Again, (51) is handled exactly as the case j ¤ k
in Lemma 16. We conclude that for all 1 � j; k � K with j ¤ k and all Q � Gj
of size q, we have

P
h
� \

n X
i…Gk

X
a2Gk ;b2Q

UiaUbi &
nLq

mk
C Lt

oi
. e�t : (52)
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Case i 2 Gk and j D k. It remains to upper-bound the sum

�

X
i2Gk

X
a2Gk

Uia
X
b2Q

Ubi ; (53)

for Q � Gk . It is the main hurdle of the proof. Indeed, we multiply row sumsP
a2Gk

Uia of the matrixU (restricted toGk�Gk) to columns sums of the matrixU .
As in the previous proof, we consider separately small and large row sumofU . Define
the set of indices corresponding to small Si ’s

I0 D fi 2 Gk W Si � 5mkLg ; (54)

where we recall that Si D
P
a2Gk

Uia.
Define `b D jGk \ fb C 1; : : : ; ngj � mk and Nb D Sb C `bPkk . Given the

collection .Si /, i 2 Gk , the binary random variable Ubi C Pkk is distributed as a
sampling of size 1 in an urn of size `b containing Nb ones. Hence, we split the
sum (53) into three pieces to center the random variables Ubi .

�

X
i2Gk

X
a2Gk ;a>i

X
b2Q;b<i

UiaUbi

D �

X
b2Q

X
i2Gk ; i>b

SiUbi

D �

X
i2Gk

Si
X

b2Q; b<i

�Nb
`b
� Pkk

�
�

X
i2Gk

Si
X

b2Q; b<i

�
Ubi C Pkk �

Nb

`b

�
� �

X
b2Q

�Nb
`b
� Pkk

� X
i2Gk ; i>b

Si �
X
i2I0

Si
X

b2Q; b<i

�
Ubi C Pkk �

Nb

`b

�
C

X
i2Ic

0

Si
X

b2Q; b<i

Nb

`b

D E1 CE2 CE3 ;

where we used that Si > 0 for i 2 I c0 .
We shall prove that the three following bounds hold, for any t � 1,

1�jE1j . qnL ; (55)
P Œ� \ fE2 & qnLCmkLtg� � 2e

�t ; (56)
P Œ� \ fE3 & qnLC tg� � e�t ; (57)

and thatP Œ�� � 1�c=n2. Gathering these three bounds, we obtain for all 1 � k � K
and allQ � Gk , we have

P
h
� 1�

X
i…Gk

X
a2Gk ;b2Q

UiaUbi &
nLq

mk
C Lt

i
. e�t : (58)

Together with (50) and (52), this concludes the proof. It remains to show (55)–(57).
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Control of E1. The random variable
P
i>b; i2Gk

Si is distributed as a Binomial
random variable with parameters Pkk and nb � `2

b
=2. By Bernstein’s inequality

together with a union bound, we derive that, on an event�.1/
k

with probability higher
than 1 � 1=n3, we haveˇ̌̌X

i>b

Si

ˇ̌̌
. `b

p
L log.n/C log.n/ (59)

jNbj . `bLC
p
`bL log.n/C log.n/ . `bLC log.n/ ; (60)

uniformly on b 2 Gk . Consider any b such that `2
b
L � log.n/. Then,ˇ̌̌�Nb

`b
� Pkk

� X
i2Gk ; i>b

Si

ˇ̌̌
. L3=2`b

p
log.n/C log3=2.n/

p
L . nL ; (61)

since mkL � 1 and L � 1= log.n/.
Now assume that `2

b
L � log.n/ and L � log.n/=n. By definition, we have

Nb � `b almost surely. Together with (59), this leads us toˇ̌̌�Nb
`b
� Pkk

� X
i2Gk ; i>b

Si

ˇ̌̌
. log.n/ � nL : (62)

Next, we consider the case where `2
b
L � log.n/ and L � log.n/=n. If `b > n1=4,

then (59) leads us toˇ̌̌�Nb
`b
� Pkk

� X
i2Gk ; i>b

Si

ˇ̌̌
. L log.n/C

log2.n/
n1=4

. 1 . nL : (63)

Let b0 such that `b0 D bn1=4c (if it exists). Then,
P
i2Gk ; i>b0

Ni follows a binomial
distribution with parameters Pkk � log.n/=n and r �

p
n. On an event �.2/

k
with

probability higher than 1 � 1=n3, it is no higher than 5. Under this event, we have
for any b � b0, ˇ̌̌�Nb

`b
� Pkk

� X
i2Gk ; i>b

Si

ˇ̌̌
. 1 � nL : (64)

Gathering (61)–(64) and summing over all b 2 Q, we have proved (55).

Control ofE2. Wework conditionally toSi . In such a case, for a fixed b, the random
variables ..Ubi CPkk/i>b/ are distributed as a sampling without replacement of Nb
ones in an urn of size `b . Then, according to Theorem 4 of [26], the Laplace transform
of �

P
b2Q

P
i>b Si .Ubi CPkk �Nb=`b/ conditional to the .Si /i is upper bounded

by that of�
P
b2Q

P
i>b Si .

zEib�Nb=`b/where the zEib are independent and follow
a Bernoulli distribution with parameters Nb=`b .
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Hence, we can apply Bernstein’s inequality conditionally to Si to obtain that with
probability at least 1 � e�t

E2 .

pX
i2I0

S2i

� X
b2Q; b<i

Nb

`b

�
t CmkLt ; (65)

since supi2I0 jSi j � 5mkL. We define s� D log2.n/,Q� D fb 2 Q W `b � s�g and
QC D fb 2 Q W `b > s

�g. Then, we split the sum into two partsX
i2I0

S2i

X
b2Q; b<i

Nb

`b
D

X
i2I0

S2i

X
b2QC; b<i

Nb

`b
C

X
i2I0

S2i

X
b2Q�; b<i

Nb

`b
:

Sum overQC. By Bernstein’s inequality, we have, simultaneously for all i 2 Gk ,

jSi j1i2I0 .
p
mkL log.n/C

�
log.n/ ^ .mkL/

�
.
p
mkL log.n/

on an event �.3/
k

with probability higher than 1 � 1=n3. Since the random variables
S2i 1i2I0 are independent and their variance is less than 6`2i L

2 C `iL, we derive
from Bernstein’s inequality that, on an event�.3/

k
\�

.4/

k
with probability higher than

1 � 2=n3, for all b 2 QC, we haveX
i>b

S2i 1i2I0 . `2bLC

q
Œ`3
b
L2 C `2

b
L� log.n/CmkL log2.n/

. `bmkLCmkL log2.n/ . `bmkL ; (66)

since log2.n/ � `b � mk and mkL � 1. Under this event, we obtainX
i2I0

S2i

X
b2QC; b<i

Nb

`b
. mkL

X
b2QC

Nb :

Then,
P
b2QC

Nb is stochastically dominated by a Binomial distribution with
parameters L and qmk , hence we derive from Bernstein’s inequality thatX

b2QC

Nb . qmkLC t ;

with probability higher than 1 � e�t . Gathering (65), (66), and the last bound, we
obtain

P
�
� \

˚
EC2 & mkL.

p
qt C t /

	�
� 2e�t ; (67)

where EC2 corresponds to the sum E2 restricted to the indices b 2 QC.
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Sum over Q�. We consider two subcases. First assume that L � n�1=4. SinceP
i W`i�s

� S2i �
Plog2.n/�1
iD1 i2 � log6.n/ and, since Nb � `b , we derive thatX
i2I0

S2i

X
b2Q�; b<i

Nb

`b
� q log6.n/ . qL2nmk : (68)

Next, we assume that L � n�1=4. Let b� D minfb 2 Gk W `b � s�g. Since, by
definition of s� and b�, we haveˇ̌˚

.i; a/ W i; a 2 Gk; i � b� C 1; a � i C 1
	ˇ̌
� .s�/2=2 D log4.n/=2 ;

the sums .Si /i>b� involves less than log4.n/=2 independent Bernoulli random
variables with parameters less that L. Hence, on an event �.5/

k
with probability

larger than 1 � 1=n3, at most 10 of them are equal to one andX
i2I0

S2i

X
b2Q�; b<i

Nb

`b
. q.L2 log6.n/C 1/ . qL2nmk ; (69)

since mkL � 1. Gathering (65)–(69), we have proved (56).

Control ofE3. IfL � log.n/=mk , then Bernstein’s inequality enforces that I c0 D ;
and therefore E3 D 0 with probability higher than 1 � 1=n3. Let us call �.6/

k
the

corresponding event. Hence, we assume henceforth that L � log.n/=mk . We claim
that, on an event �.7/

k
with probability larger than 1 � 1=n3, we haveX

i>b

Si1i2Ic
0

. `b C log3.n/ ; (70)

uniformly over all b 2 Gk . The proof of this claim is a slight variation on the proof of
Lemma 15. We provide it here for the sake of completeness. With probability higher
than 1 � 1=n3, we have maxi Si . log.n/. Write log2 for the binary logarithm. Fix
any b 2 Gk and decompose

X
i>b

Si1i2Ic
0
�

blog2.c00 log.n/=mkL/cX
rD1

X
i>b

52rLmk1Si2Œ5�2r�1Lmk ;5�2rLmk � :

The random variables
P
i>b 1Si2Œ5�2r�1Lmk ;5�2rLmk � are stochastically dominated

by binomial distributions with parameters `b and pr , where pr � e�c
02rLmk is

the probability that a Binomial distribution with parameters .mk; L/ is larger than
5 � 2r�1Lmk . Applying Bernstein’s inequality together with a union bound, we
conclude that, simultaneously for all b and all r ,X

i>b

1Si2Œ5�2r�1Lmk ;5�2rLmk � . `be
�c02r�1Lmk C log.n/ ;
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with probability higher than 1 � 1=n3. This leads us to

X
i>b

Si1i2Ic
0
�

blog2.c00 log.n/=mkL/cX
rD1

c2rLmk
�
`be
�c02rLmkC log.n/

�
. `bC log3.n/ ;

since Lmk � 1. We have proved the claim (70).

As for E2, we decomposeQ D QC [Q�, with s� now set to s� D log3.n/.

Sum overQC. Let us work on the event �.7/
k

so that (70) holds. Hence, as for E2,
according to Bernstein’s inequality, we have with probability larger than 1 � e�tX

b2QC

Nb

`b

X
i2Ic

0
; i>b

Si .
X
b2QC

Nb . qmkLC t : (71)

Sum overQ�. As forE2, we consider two subcases depending whether L � n�1=4
or L > n�1=4. If L � n�1=4, we have, as argued in E2, that

P
i>b�

Ni is less than
10 on an event�.5/

k
with probability larger than 1� 1=n2. Under this event, we haveX

b2Q�

Nb

`b

X
i2Ic

0
; i>b

Si . q . qmkL : (72)

If L > n�1=4, we use the crude boundX
b2Q�

Nb

`b

X
i2Ic

0
; i>b

Si � q.s
�/2 . qLn : (73)

Putting (71)–(73) together, we conclude that on the event � which has a probability
larger than 1 � 7=n2 we have proved (57).

7.4. Proof of Lemma 15. With no loss of generality we only consider the case
I D f1; : : : ; ng. Let us first handle the upper-bound on the sum

Pn
iD1 S

2
i 1S2

i
�y2
1
,

with y1 D 2r0C1`L. We observe that the variance of S2i is upper bounded by 3`L,
hence, according to Bernstein’s inequality,

nX
iD1

S2i 1S2
i
�y2
1

. `L
�
nC

p
log.n/

�
C y21 log.n/ ;

with probability at least 1 � 1=n3. We observe that

y21 log.n/ . .`L/2 log.n/ . n`L
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according to the assumptions on L, so with probability at least 1 � 1=n3

nX
iD1

S2i 1S2
i
�y2
1

. n`L :

We now turn to the first part of the lemma. We shall first work around a bound
of P .yr < Si � yrC1/. We set h.x/ D .1C x/ log.1C x/ � x � x log.x=4/ for
x � 0 and yr D 2r0Cr`L. Denoting �2i the variance of Si , we deduce fromBennett’s
inequality that, for r � 1,

P .yr < Si � yrC1/ � P .Si > yr/ � e
��2
i
h.yr=�

2
i
/
� exp

h
� yr log

� yr
4�2i

�i
� 2�`L.rCr0�2/2

r0Cr

DW pr ;

since �2i � `L.
Next, we use again Bennett’s inequality to ensure that jIr j is small. For 1=14 �

� � 1=2, and r � 1, Bennett’s inequality again ensures that

P
�
jIr j � 2np

�
r

�
� exp

�
� nprh

�
p�.1��/r

��
� exp

�
� 0:5np�r log

�
p�.1��/r

��
;

since h.x/ � x log.x/=2 for x � e2 and since � � 1=2 and pr � 2�16 is small
enough. Since r0 � 2, we have 2np�r < 1 for r � r� D log2.��1 log.2n//. Let �0
be the event

�0 D
\
r�1

˚
jIr j � 2np

�
r

	
D

br�c\
rD1

˚
jIr j � 2np

�
r

	\˚
jfi W Si > yr�gj D 0

	
:

So we have

P .�0c/ �
br�cX
rD1

exp
�
� 0:5np�r log

�
p�.1��/r

��
C exp

�
� 0:5np�r� log

�
p
�.1��/
r�

��
:

For x 2 .0; 1/, the function �� W x 7! x� log.x/ is decreasing when � log.x/ < �1
and then increasing. Since .2n/�1=� � pr � 2�16, �� .pr/ achieves its maximum
at pr D .2n/�1=� for � 2 Œ1=10; 1=2�. For � 2 Œ1=14; 1=10/, its maximum its
achieved either at pr D 2�16 or pr D .2n/�1=� and it can be checked to be reached
at pr D .2n/�1=� as long as .2n/�1=� � 2�16. Note that for smaller nT , the event�0
reduces to f

ˇ̌
fi W Si > yr�g

ˇ̌
D 0g. For n � 2, we conclude that

P .�0c/ �
�
br�c C 1

�
exp

�
�
1 � �

4�
log.2n/

�
�

log2.��1 log.2n//C 1
.2n/.1��/=4�

:
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A. About CH-divergence

Lemma 18. The CH-divergence defined by (29) fulfills

DC.qjjp/ �
1

4�

X
x

.px � qx/
2

px
; when min

x

qx

px
� � > 0 :

Proof. The function ft .y/ D 1�tCty�yt is convex and fulfills ft .1/ D 0 D f 0t .1/
and

f 00t .1C u/ �
u2

4�
; for all 1C u � � and t 2 Œ0; 1� :

Setting ux D .qx � px/=px , we get the claimed result.

B. Lower bound on misclassification probability in supervised
Gaussian classification with unknown means

In this section, we derive a lower-bound on the misclassification probability of
the Bayes classifier, in the Gaussian supervised classification problem with two
balanced classes, with identical spherical covariances†k D �Ip and opposite means
��1 D ��1 uniformly distributed on the Euclidean sphere @B.0;�=2/ in Rp .

We denote by L D .Xa; Za/aD1;:::;n the learning sample distributed as follows.
The labels Z1; : : : ; Zn are i.i.d. with uniform distribution on f�1; 1g, a random
vector � 2 Rp is sampled uniformly over the sphere @B.0;�=2/ independently of
Z1; : : : ; Zn, and, conditionally on Z1; : : : ; Zn; �, the Xa are independent Gaussian
random variables with mean Za� and covariance �2Ip .

The classifier minimizing the misclassification probability P ŒZnew ¤ yh.Xnew/�

over all the �.L/-measurable classifiers yh is the Bayes classifier given by

yh.x/ D sign
�

P ŒZ D 1jX D x;L� � P ŒZ D �1jX D x;L�
�
:

Let us compute the Bayes classifier in our setting. Indeed, the classification problem
is scaling-invariant.

For ı 2 f�1; 1g and x 2 Rp , we have

P
�
Z D ıjX D x;L

�
D

Z
@B.0;�=2/

P
�
Z D ıjX D x;L; �

�
d P

�
�jX D x;L

�
:

Direct computations give

P ŒZ D ıjX D x;L; �� D P ŒZ D ıjX D x; ��

D
e�0:5kıx��k

2=�2

e�0:5kxC�k
2=�2 C e�0:5kx��k

2=�2
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and

d P
�
�jX D x;L

�
/
�
e�0:5kxC�k

2=�2
C e�0:5kx��k

2=�2
�
e�0:5

P
a kZaXa��k

2=�2 :

Hence, by using that k�k D �=2 on @B.0;�=2/, and by denoting by 
 the uniform
distribution on @B.0;�=2/, we obtain

P ŒZ D ıjX D x;L�

D

R
@B.0;�=2/

e�0:5kıx��k
2=�2e�0:5

P
a kZaXa��k

2=�2d
.�/R
@B.0;�=2/

.e�0:5kxC�
0k2=�2 C e�0:5kx��

0k2=�2/e�0:5
P
a kZaXa��

0k2=�2d
.�0/

D

R
@B.0;�=2/

e�hıxC
P
aZaXa;�i=�

2
d
.�/R

@B.0;�=2/
e�hxC

P
aZaXa;�

0i=�2d
.�0/C
R
@B.0;�=2/

e�h�xC
P
aZaXa;�

0i=�2d
.�0/
:

Since F.v/ D
R
@B.0;�=2/

ehv;�id
.�/ depends only on kvk and is monotone
increasing with kvk, we obtain that

P ŒZ D 1jX D x;L� > P ŒZ D �1jX D x;L�

”


x CX

a

ZaXa


2 > 

 � x CX

a

ZaXa


2

”
˝
x;
X
a

ZaXa
˛
> 0 ;

and finally

yh.x/ D sign
�D1
n

nX
aD1

ZaXa; x
E�
:

For any � > 0, the probability of misclassification of the Bayes classifier is given
by

P
�
Znew ¤ yh.Xnew/

�
D

Z
@B.0;�=2/

P
�
Zyh.X/ < 0j�

�
d
.�/

D

Z
@B.0;�=2/

P
h˝
�C

�
p
n
�; �C ��0

˛
< 0j�

i
d
.�/ ;

where � and �0 are two independent standard Gaussian random variables in Rp . The
above conditional probability is invariant over @B.0;�=2/ hence we only need to
evaluate it for a fixed � 2 @B.0;�=2/, say �� D Œ�=2; 0; : : : ; 0�. Let us set

W D �2
�
�
p
1C 1=n

��1˝
��;

1
p
n
� C �0

˛
;
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which follows a standard Gaussian distribution in R and S D �h�; �0i. Then, we
have

P
�
Znew ¤ yh.Xnew/

�
D P

h˝
�� C

�
p
n
�; �� C ��

0
˛
< 0

i
D P

h �2
4�2

<
�

2�

r
1C

1

n
W C

1
p
n
S
i
:

We observe that .�W;S/ has the same distribution as .W; S/, hence by a union
bound

P
h �2
4�2

<
�

2�

r
1C

1

n
jW j C

1
p
n
S
i
� 2P

h �2
4�2

<
�

2�

r
1C

1

n
W C

1
p
n
S
i
:

By using that the distributions of S and W are symmetric and that a _ .2b � 2a/ �
a _ .b=2/, we get

P
h �2
4�2

<
�

2�

r
1C

1

n
jW j C

1
p
n
S
i

� P
h �2
4�2

<
1
p
n
S
i
C P

h �2
2�2

<
�

2�

r
1C

1

n
jW j I

1
p
n
jS j �

�2

4�2

i
� P

h �2
4�2

<
1
p
n
S
i_�

P
h�
�
< jW j

i
� P

h 1
p
n
jS j >

�2

4�2

i�
� P

h �2
4�2

<
1
p
n
S
i_�

2P
h�
�
< W

i
� 2P

h 1
p
n
S >

�2

4�2

i�
� P

h �2
4�2

<
1
p
n
S
i_ 1

2
P
h�
�
< W

i
:

Putting the pieces together, we get

4P
�
Znew ¤ yh.Xnew/

�
� P

h�
�
< W

i_
P
h �2
4�2

<
1
p
n
S
i
:

We observe that S is distributed as the product of a standard Gaussian real random
variable with the square-root of an independent �2 random variable with p degrees
of freedom. Since a �2 random variable with p degrees of freedom is larger than p=2
with probability larger than 1=2, we then have

P
h
S >

p
n�2

4�2

i
�
1

2
P
hrp

2
W >

p
n�2

4�2

i
�
1

2
P
h
W >

p
n�2

p
8p �2

i
:

We then obtain the lower bound on the Bayes probability of misclassification

P
�
Znew ¤ yh.Xnew/

�
� c exp

�
� c0

��2
�2
^
n�4

p�4

��
;

for some numerical constants c; c0 > 0.
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