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Estimating graph parameters with random walks

Anna Ben-Hamou, Roberto I. Oliveira and Yuval Peres

Abstract. An algorithm observes the trajectories of random walks over an unknown graph G,
starting from the same vertex x, as well as the degrees along the trajectories. For all finite
connected graphs, one can estimate the number of edges m up to a bounded factor in
O.trel

3=4
p
m=d / steps, where trel is the relaxation time of the lazy random walk on G and d is

the minimum degree in G. Alternatively, m can be estimated in O.tunif C trel5=6
p
n /, where n

is the number of vertices and tunif is the uniform mixing time on G. The number of vertices n
can then be estimated up to a bounded factor in an additional O.tunifmn / steps. Our algorithms
are based on counting the number of intersections of random walk paths X; Y , i.e. the number
of pairs .t; s/ such that Xt D Ys . This improves on previous estimates which only consider
collisions (i.e. times t with Xt D Yt ). We also show that the complexity of our algorithms is
optimal, even when restricting to graphs with a prescribed relaxation time. Finally, we show
that, given either m or the mixing time of G, we can compute the “other parameter” with a
self-stopping algorithm.
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1. Introduction

What can one learn from the random walk on a graph long before the graph is fully
covered? Our motivation is the analysis of large networks that can contain millions
(or even billions) of nodes and edges. Direct manipulation or full observations of
such huge graphs are typically impractical. Random-walk-based methods, which
are local and lightweight, are often used in dealing with this kind of graph (see
Das Sarma et al. [8] and the references therein). Our problem, then, is to determine
the least number of random walk steps that are needed to compute interesting graph
parameters via random walks.1

We assume our algorithm has black-box access toK random walks of length t on
a graph G starting from the same fixed vertex x. It then produces an estimate y
t of a
parameter 
 D 
.G/ of interest, solely by looking at the traces of the random walks

1This paper is an extended and improved version of the SODA conference proceeding [2].
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and the vertex degrees along the way. The goal is to achieve
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with t0 as small as possible. In general, the time complexity parameter t0 will depend
on the error parameter " and on unknown characteristics of the graph. This leads
us to consider the possibility of “self-stopping” algorithms that decide on their own
when to stop exploring G.

1.1. What we do. Let us describe our results in more detail, postponing the precise
definition of the model to Section 2. In Section 3, we build on recent results of Peres
et al. [19] and Oliveira and Peres [18] to derive bounds on the number of intersections
between two independent random walks X; Y , i.e. the number of pairs of times .t; s/
with Xt D Ys . Using new bounds from [18], we show in particular that if X and Y
are two independent lazy random walks on G, and if �I denotes the time of the first
intersection between X and Y , i.e.

�I D inf
˚
t � 0; fX0; : : : ; Xtg \ fY0; : : : ; Ytg ¤ ;

	
;

then
max
x;y2V

Ex;y�I . trel
3=4
p
m=d

where m is the number of edges in G and d is the minimum degree.
In Section 4, we focus on the particular case of regular graphs. Using intersection

counts gives us a simple algorithm for estimating numbers of vertices n of a regular
graphG inO.trel3=4

p
n / random walk steps. Moreover, we prove that this algorithm

is optimal. More specifically, for any n and 1 . t.n/ . n2, we construct a
graph G with about n vertices and relaxation time about t.n/. We then show that
any rw algorithm that finds the number of vertices of this graph requires at least
�.t.n/3=4

p
n / time steps.

We then consider arbitrary graphs G in Section 5. In Section 5.1, we show that
the number of edges m of G can be estimated in time of order .trel3=4

p
m=d / ^

.tunif C trel
5=6
p
n /, where tunif is the uniform mixing time on G, and we prove in

Section 5.2 that the bound trel5=6
p
n is tight for the estimation of the number of edges

on graphs with any prescribed relaxation time. We then show in Section 5.3 that
the bound tunif5=6

p
n, which suffices to estimate the number of edges, may not be

sufficient to estimate the number of vertices. However, provided a good estimate for
the number of edges is known, the number of vertices follows from estimation of the
mean degree, which can be done in times of order .m=n/tunif . Altogether, the number
of vertices in general graphs can be estimated with random walks in time of order�

trel
3=4
p
m=d

�
^
�
trel
5=6
p
n
�
C tunif

m

n
;

and this is optimal.
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Up to this point all algorithms we described are essentially optimal for our model.
They are also space-efficient. They just need to store a single real number and
maintain a list of visits to each vertex, which is only read or changed during visits.
Another desirable trait of our algorithms is that they run in sub-linear time when the
mixing time is small (less than o.n3=5/). This property of (relatively) fast mixing is
expected to hold in social networks [14] and other large graphs.

However, our algorithms also suffer from a serious drawback: they are not self-
stopping. As it turns out, this is unavoidable. We argue in Section 6 that it is not
possible to devise a sublinear stopping time at which one can be reasonably sure that
our parameters are well estimated. This is true even if our graph is guaranteed to be
3-regular and have polylog mixing time. We deduce that, while it may be possible
to know the size of a graph after sub-linear time, knowing that we already know the
size may take much longer.

We complement these results by showing that if either m or the mixing time is
known, the other parameter can be estimated with few steps via a self-stopping
algorithm. In Section 7, we show how one can use an upper-bound � on the
mixing time to compute the number of edges via a self-stopping algorithm with time
complexity O.�3=4

p
m log logm/ (or O.�3=4

p
n log logn/ steps if G is regular).

Section 8 then presents a result for estimating tx.ı/, the `2-mixing time from x,
with time complexity O.tx.ı=4/3=4

p
m log log tx.ı=4//, assuming a good estimate

for the number of edges is available. A corollary is that both the mixing time from x

and the number of edges m can be approximated by a self-stopping algorithm with
time complexity O.�3=4

p
m log logm/, assuming an upper-bound � on the uniform

mixing time is available.

1.2. Background. Our result relates to the large body of work on inferring graph
(or Markov chain) parameters from random walks. We give here a brief overview of
these papers, with a focus on results most closely resembling ours.

In some cases, one has to estimate parameters from a single path of the random
walk. One possibility is to use return times to the initial vertex to estimate n or m,
as proposed by Cooper et al. [7] and Benjamini et al. [4]. Other parameters, such as
the spectral gap, may be quite challenging to estimate (see Hsu et al. [10] and Levin
and Peres [15]). In any case, all of these algorithms require time that is at least of the
order of the number of vertices, whereas our own algorithms are sublinear in certain
cases.

Another line of work, which is closer to ours, is to consider several, say k,
random walks started from the same vertex x. Typically, estimators in this case rely
on collisions of random walks at their endpoints. If each random walk has length
greater than the mixing time tunif , then the k-sample formed by their endpoints is
an independent sample with nearly stationary distribution over the vertex set. In the
case whereG is regular, the problem comes down to estimating the size of a finite set
through independent uniform samples from that set. It is well known that counting
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collisions and resorting to the birthday paradox allow one to estimate nwith order
p
n

samples. The time complexity, measured by the total number of random walk steps,
is then of order tunif

p
n (the same kind of method was also used by Benjamini and

Morris [3] to estimate the mixing time of regular graphs). If the graph is not regular,
the stationary distribution is no longer uniform, and estimation of the support size
can be more challenging (see [6] and [20] on support size estimation, and [1] on
the related question of testing closeness between distributions). Katzir et al. [13]
showed, through a variant of collision counting, that taking k D O.

p
n C m=n/

suffices to estimate n (if one is willing to use more information about the graph, the
bound may be improved to k D O.k�k�12 C m=n/, where k�k2 is the Euclidean
norm of the stationary distribution �). Kanade et al. [12] established a corresponding
lower bound for k in this setting. This yields a time complexity of tunif.

p
nCm=n/.

Kanade et al. [12] asked whether the factor tunif in those bounds was really necessary
or whether more efficient estimators could be designed. Indeed, in those methods,
each unit of information already costs tunif steps. Can we improve the performance
by using the information held by the whole trajectories of walks ? We show that this
is indeed the case, and that considering intersections of random walks’ paths (instead
of collisions at their endpoints) gives strictly more information, and leads to optimal
time complexity.

Our results are just a first step towards understanding estimation via random walks.
It would be interesting to understand what other graph parameters can be computed
efficiently in our model. Extensions of our results to oriented graphs and other
models of access to the graph (including distributed access as in [8]) would also be
worthwhile.

2. Notation and definitions

Let G D .V;E/ be a finite connected graph on n vertices and m edges. For u 2 V ,
we let deg.u/ D jfv 2 V; fu; vg 2 Egj be the degree of u.

Randomwalks and estimators. Our estimators take as input trajectories of random
walks, along with the degrees of visited vertices. However, they do not rely
on a particular vertex labeling. To make this more precise, we introduce the
profile of a sequence of vertices. For t � 1 and for a sequence of vertices
ut D .u0; : : : ; ut�1/ 2 V t , let r.ut / be the length-t sequence where each vertex
is replaced by the index of its first occurrence in ut . For instance, the image of
the sequence .g; a; a; c; g; d; a; b; d/ by r is .1; 2; 2; 3; 1; 4; 2; 5; 4/. Note that r is
invariant under vertex-relabeling. The profile ˆ of ut is then defined as

ˆ.ut / D
�
r.ut /; .deg.ui //t�1iD0

�
:
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In other words, for each finite length sequence of vertices ut , the functionˆ captures
the ranks of occurrence and the degrees, and takes values in

S D
[
t�1

N2t :

Now let x 2 V be some fixed vertex. An estimator is a function estWS ! R,
which takes as input the profile of the trajectories of K independent lazy random
walks (lrw) of length t , all started at x. More precisely, for integers K,
t � 1, let X .1/; : : : ; X .K/ be K independent lrw on G started at x, and define
X.i/t D .X

.i/
0 ; : : : ; X

.i/
t�1/, the trajectory of X .i/ up to time t � 1, for i D 1; : : : ; K.

Letting 
.G/ be some parameter of interest (e.g. 
.G/ D n or 
.G/ D m), the goal
is to produce a map estWS ! R, returning the value

y
K;t D est
�
ˆ
�
X.1/t ; : : : ;X.K/t

��
;

such that, for all connected graph G D .V;E/, for all x 2 V , for all t � t ."; G/ and
K � K.";G/,

Px

�ˇ̌̌
y
K;t


.G/
� 1

ˇ̌̌
>
1

2

�
� " ; (2.1)

for t ."; G/�K.";G/ as small as possible. The product t ."; G/�K.";G/ corresponds
to the total number of random walk steps and will often be referred to as the time
complexity of the estimator. Let us point out right away that, in our estimation
procedures, the critical quantity will be t ."; G/, the random walks’ length, rather
than K.";G/, the number of random walks, which will simply be chosen according
to the desired precision ".

Convergence of random walks. To study the large-time behavior of our estimators,
it is natural to take advantage of the convergence of lrw to its stationary distribution� ,
given by �.u/ D deg.u/=2m. Denote by tunif the uniform mixing time defined as

tunif D inf
�
t � 0; max

x;y2V

ˇ̌̌P t .x; y/
�.y/

� 1
ˇ̌̌
�
1

4

�
;

Also, letting 1 D �1 > �2 � � � � � �n � 0 be the eigenvalues of P in decreasing
order (the fact that all eigenvalues are non-negative is by laziness of the walk), the
relaxation time is defined as

trel D

�
1

1 � �2

�
�

Self-stopping algorithms. The time t ."; G/ above which Inequality (2.1) holds usu-
ally depends on unknown parameters of the graph, possibly on 
.G/ itself. This
prompts the search for self-stopping algorithms, i.e. algorithms which automatically
stop at some random time, according to what has been seen so far. One then needs
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to control both the error probability for the returned value, and the expected value of
the stopping time (see Sections 6, 7 and 8).

3. Intersections of random walks

We start by some results on intersections of random walks’ trajectories.
For X and Y two independent lrw on a finite connected graph G D .V;E/, the

number of intersections between X and Y up to time t � 1 is defined as

It D

t�1X
iD0

t�1X
jD0

IfXiDYj g :

For non-regular graphs, a more relevant quantity is the weighted number of
intersections, defined as

It D

t�1X
i;jD0

1

deg.Xi /
IfXiDYj g :

WhenX and Y start at x and y respectively, the probability law will be denoted Px;y
and the corresponding expectation Ex;y . When x D y, we just write Px and Ex .
Let P be the transition matrix of X and

gt .x; u/ D

t�1X
iD0

P i .x; u/

be the expected number of visits to vertex u before time t (also known as Green’s
function). We have

ExIt D
X
u2V

gt .x; u/
2

deg.u/
: (3.1)

The expected number of intersections is intimately related to return probabilities.
Indeed, by reversibility, deg.x/gt .x; u/ D deg.u/gt .u; v/ and we get

ExIt D

t�1X
i;jD0

P iCj .x; x/

deg.x/
� (3.2)

We also defineJt to be the weighted number of intersections counted from themixing
time tunif , i.e.

Jt D

tunifCt�1X
i;jDtunif

1

deg.Xi /
IfXiDYj g :
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Proposition 1. For all finite connected graph G D .V;E/ with m edges, minimum
degree d and relaxation time trel, for all x 2 V ,

t2

2m
� ExIt �

t2

2m
C
16trel

3=2

d
; (3.3)

and
ExI2t � 4

�
max
a2V

EaIt
�
ExIt : (3.4)

Proposition 2. For all finite connected graph G D .V;E/ with m edges, n vertices
and relaxation time trel, for all x 2 V ,�3

4

�2 t2
2m
� ExJt �

�5
4

�2 t2
2m

; (3.5)

and
ExJ2t .

t2

m2

�
t2 C ntrel

5=3
�
: (3.6)

Here and throughout the paper, for two functions f; g, the notation f .n/ . g.n/

means that there exists an absolute constant C > 0 such that f .n/ � Cg.n/ for all
n � 1.

Before proving Propositions 1 and 2, let us state three useful results. The following
bound on Green’s function was established by [18].

Lemma 3 ([18, Lemma 2]). LetX be a lrw onG. For all x2V , for all 1� t� 36m2

d
,

gt .x; x/ �
6 deg.x/

p
t

d
�

By [18, Proposition 1], we have

trel �
12mn

d
� (3.7)

In particular, the bound of Lemma 3 is valid up to trel. The following powerful result
on the sum of return probabilities was established by Lyons and Oveis Gharan [17].
Lemma 4 ([17]). For a lazy random walk X on G, for all t � 0,X

u2V

P t .u; u/ � 1C
13n

.t C 1/1=3
�

Finally, we also need the following lemma.
Lemma 5. For any f 2 RX , if P is reversible, irreducible and has non-negative
spectrum, then

C1X
sD0

.s C 1/
�
hf; P sf i� � hf; 1i2�

�
�

trel

.1 � 1= e/2

trel�1X
sD0

�
hf; P sf i� � hf; 1i2�

�
:
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Proof of Lemma 5. Partitioning N in blocks of length trel, we may write

C1X
sD0

.sC1/
�
hf; P sf i��hf; 1i2�

�
D

C1X
kD0

trel�1X
sD0

.trelkCsC1/
�
hf; P trelkCsf i��hf; 1i2�

�
:

The terms in the above sums can be written in the form:

hf; P rf i� � hf; 1i2� D
nX
jD2

�rj hf;‰j i
2
�

where �1 D 1 > �2 � �2 � � � � � �n � 0 are the eigenvalues of P and .‰1 D 1;
‰2; : : : ; ‰n/ is an orthonormal basis of eigenvectors for the inner product h � ; � i� .
By definition of trel, we have �trelkj � e�k for all j � 2. Therefore,

hf; P trelkCsf i� � hf; 1i2� � e�k
�
hf; P sf i� � hf; 1i2�

�
:

Summing the bounds, we obtain

C1X
sD0

.s C 1/
�
hf; P sf i� � hf; 1i2�

�
�

C1X
kD0

trel�1X
sD0

.trelk C s C 1/ e�k
�
hf; P sf i� � hf; 1i2�

�
�

C1X
kD0

trel.k C 1/ e�k
trel�1X
sD0

�
hf; P sf i� � hf; 1i2�

�
�

trel

.1 � 1= e/2

trel�1X
sD0

�
hf; P sf i� � hf; 1i2�

�
:

Proof of Proposition 1. By (3.2), we have

ExIt D

t�1X
i;jD0

P iCj .x; x/

deg.x/
D
t2

m
C

1

2m

t�1X
i;jD0

�
P iCj .x; x/

�.x/
� 1

�
:

All summands in the right-hand side are non-negative (this can be seen, for instance,
by the spectral decomposition

P r.x; x/ D �.x/C

nX
jD2

�rj‰j .x/
2�.x/
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and by non-negativity of the eigenvalues). Moreover, by Lemma 5 applied to the
function f D If�Dxg

�.x/
,

t�1X
i;jD0

�
P iCj .x; x/

�.x/
� 1

�
�

C1X
sD0

.s C 1/

�
P s.x; x/

�.x/
� 1

�

�
trel

.1 � 1= e/2

trel�1X
sD0

�
P s.x; x/

�.x/
� 1

�
(3.8)

�
trel

.1 � 1= e/2
gtrel.x; x/

�.x/
�

Resorting to Lemma 3, we obtain

ExIt �
t2

2m
C

6trel
3=2

.1 � 1= e/2d
�
t2

2m
C
16trel

3=2

d
;

concluding the proof of the first moment bounds. Moving on to the second moment,
we have

ExI2t D
X
u;v

1

deg.u/ deg.v/

� t�1X
i;kD0

Px.Xi D u;Xk D v/

�2
�

X
u;v

1

deg.u/ deg.v/
�
gt .x; u/gt .u; v/C gt .x; v/gt .v; u/

�2
� 4

X
u;v

gt .x; u/
2gt .u; v/

2

deg.u/ deg.v/

D 4
X
u

gt .x; u/
2

deg.u/
EuIt � 4

�
max
u2V

EuIt
�
ExIt ;

and (3.4) follows from the upper-bound in (3.3).

Proof of Proposition 2. The bounds on the expectation of Jt are straightforward.
Indeed

ExJt D
X
y;z

P tunif .x; y/P tunif .x; z/Ey;zIt ;

so that, by definition of tunif and the fact that
P
y;z �.y/�.z/Ey;zIt D t

2=2m,

�3
4

�2 t2
2m
� ExJt �

�5
4

�2 t2
2m
�
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Moving on to (3.6), again by definition of tunif , we have

ExJ2t .
X
y;z

�.y/�.z/Ey;zI
2
t

.
X
y;z

X
u;v

�.y/�.z/

deg.u/ deg.v/

X
i;j;k;`

Py.Xi D u;Xk D v/Pz.Yj D u; Y` D v/

.
X
u;v

1

deg.u/ deg.v/

�X
y

�.y/
X
i;k

Py.Xi D u;Xk D v/
�2

.
X
u;v

1

deg.u/ deg.v/

�X
y

�.y/gt .y; u/gt .u; v/
�2
:

Using that
P
y �.y/gt .y; u/ D

P
y �.u/gt .u; y/ D t�.u/, we have

ExJ2t .
t2

m2

X
u;v

deg.u/
deg.v/

gt .u; v/
2
D

t2

m2

t�1X
i;jD0

X
u

P iCj .u; u/ ;

where the last equality comes from reversibility. Now, by Inequality (3.8),

t�1X
i;jD0

X
u

P iCj .u; u/ D t2 C
X
u

�.u/

t�1X
i;jD0

�
P iCj .u; u/

�.u/
� 1

�

� t2 C
trel

.1 � 1= e/2

trel�1X
sD0

�X
u

P s.u; u/ � 1
�
:

Finally, resorting to Lemma 4, we obtain

ExJ2t .
t2

m2

�
t2 C ntrel

5=3
�
;

concluding the proof of Proposition 2.

Remark 1. Proposition 1 entails bounds on Ex;yIt . Indeed, for x ¤ y, we may use
the bound ˇ̌̌̌

P t .x; y/

�.y/
� 1

ˇ̌̌̌
�

s
P t .x; x/

�.x/
� 1

s
P t .y; y/

�.y/
� 1 ;

which follows, for instance, from the Cauchy–Schwarz inequality in the spectral de-
composition P t .x; y/ D �.y/.1C

Pn
jD2 �

t
j‰j .x/‰j .y//. This entailsˇ̌̌

Ex;yIt �
t2

2m

ˇ̌̌
�

r
Ex;xIt �

t2

2m

r
Ey;yIt �

t2

2m
:
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Moreover, one may check easily that maxx;y Ex;yI2t � maxx I2t . From those
bounds, one may derive the following new bound on the first intersection time: for
t & trel

3=4
p
m=d , by the second-moment method, Px;y.It > 0/ � 1=8. Since this

holds uniformly in x and y, one may perform independent experiments to conclude
that

max
x;y

Ex;y�I . trel
3=4
p
m=d :

4. Estimating the number of vertices on regular graphs

4.1. A simple estimator for the number of vertices. Specifying to regular graphs
with degree d � 1 and considering the unweighted number of intersections It ,
Proposition 1 entails

t2

n
� ExIt �

t2

n
C 16trel

3=2 ;

and

ExI
2
t .

� t2
n
C trel

3=2
�2
:

This suggests the following simple estimator for the number of vertices in a regular
graph: consider 2K independent lazy random walks X .1/; Y .1/; : : : ; X .K/; Y .K/ all
started at the same vertex x 2 V . For each k between 1 andK, let I .k/t be the number
of intersections of X .k/ and Y .k/ between 0 and t � 1, and define

ynt D
t2

1
K

PK
kD1 I

.k/
t

� (4.1)

For t � 2
p
6trel

3=4
p
n, we have t

2

n
� ExIt �

5t2

3n
and VarxIt . t4=n2. Hence,

by Chebyshev’s inequality

Px

�ˇ̌̌
ynt

n
� 1

ˇ̌̌
>
1

2

�
� Px

�ˇ̌̌ 1
K

KX
kD1

I
.k/
t � ExIt

ˇ̌̌
>
t2

3n

�
D O

� 1
K

�
:

4.2. Lower bounds for regular graphs. The case of the cycle on n vertices gives
an example where the bound trel3=4

p
n is tight. Indeed, in this case, trel � n2, and

thus trel3=4
p
n � n2. And any procedure based on random walks requires at least

order n2 steps to distinguish between a cycle of size n and a cycle of size 2n.
This section is devoted to a stronger version of tightness. Namely, we exhibit

graphs achieving the bound trel3=4
p
n for any n, and for any relaxation time trel.
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Proposition 6. There exist absolute constants ı;ƒ > 0 such that the following holds.
For all integers n � ƒ and t.n/ with ƒ � t.n/ � ƒn2, for all map estWS ! R,
there exists a 3-regular graph G D .V;E/ such that:
� jV j 2 Œn; 14n�;
� trel � t.n/;
� for more than 9=10th of the vertices x 2 V , for all t; K � 1with tK � ıt.n/3=4

p
n,

Px

�ˇ̌̌
ynt

n
� 1

ˇ̌̌
>
1

2

�
�
1

4
;

where ynt D est
�
ˆ
�
X.1/t ; : : : ;X.K/t

��
.

Before proving Proposition 6, we first establish the following lemma.
Lemma 7. For k � 2 even, let Gk be a uniform random 3-regular graph on k
vertices. Then:
(1) The probability that Gk is connected tends to 1 as k !1;
(2) The relaxation time trel.Gk/ tends to .1 � 2

p
2=3/�1 in probability;

(3) For k large enough, for all x 2 V.Gk/, letting .Xs/s�0 be the concatenation
of independent rws of length t � 1 on Gk started at x (i.e. .Xs/s�0 D
.X.1/t ;X.2/t ; : : : /), we have, as soon as s �

p
k=20,

Px.Gs is a tree/ �
93

95
;

where Gs is the subgraph induced by the edges visited by .X0; : : : ; Xs�1/.

Proof of Lemma 7. The first item is a well-known fact, valid for random graphs with
given degrees, as soon as the minimum degree is larger or equal to 3. The second
item is by Friedman’s theorem [9], which states that a random d -regular graph is
with high probability weakly Ramanujan, i.e. its relaxation time is asymptotic to
.1 � 2

p
d � 1=d/�1. Now, to establish the third item, we use a common method

to generate a uniform 3-regular random graph, known as the configuration model
(see [5]). One initially considers k isolated vertices, each vertex v being endowed
with 3 half-edges .v; 1/, .v; 2/, .v; 3/. A random matching on half-edges is then
chosen uniformly, and each pair of matched half-edges is interpreted as an edge
between the corresponding vertices. The probability that this creates a simple graph
tends to e�2 (see for instance [11]), and, conditionally on being simple, the graph is
uniformly distributed over simple 3-regular graphs. One nice feature of this model is
that it allows to generate sequentially and simultaneously the graph and the random
walks, as follows. Initially, all half-edges are unpaired and X0 D x. Then, at each
step s � 1,
� either s is a multiple of t and we set Xs D x (hereby starting a new walk),
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� or s is not a multiple of t and we then choose with probability 1=3 a half-edge
.Xs�1;�/ attached to Xs�1. If .Xs�1;�/ has already been paired to some half-
edge .v;�/, we let Xs D v. Otherwise, we choose uniformly at random an
unpaired half-edge .u;�/, match .Xs�1;�/ and .u;�/, and let Xs D u.

Observe that the edges spanned by .Xs/ form a tree up to the first time s when
.Xs�1;�/ is unpaired but is then matched to a half-edge attached to a visited vertex
(creating a cycle in the induced graph). The probability that this event first occurs at
time s is smaller than 3s

3k�3s
(by time s � 1, we have exposed at most 3s half-edges).

Hence, the (annealed) probability that this event occurs before time s is smaller
than 3s2

3k�3s
. For s D

p
k=20, this probability is smaller than 1=380. For k large

enough, the probability for the configuration model to yield a simple graph is larger
than 1=8, hence, on Gk , we have Px .Gs is a tree / � 1 � 8=380 D 93=95.

Lemma 7 entails the following: there exists k0 � 1 such that for all even k � k0,
there exist connected 3-regular graphs Ek and E4k on k and 4k vertices respectively,
satisfying

max
˚
trel.Ek/; trel.E4k/

	
� 18 ; (4.2)

and, for more than 9=10th of the pairs of vertices .x; y/ 2 V.Ek/�V.E4k/, there is a
coupling of .Xs/ and .Ys/, where .Xs/ (resp. .Ys/) is the concatenation of independent
rws of length t on Ek (resp. E4k) started at x (resp. y) such that, if s �

p
k=20,

Px;y
�
ˆ.X s0/ D ˆ.Y

s
0 /
�
�
3

4
� (4.3)

Indeed, on uniform 3-regular random graphs Gk and G4k , the two processes .Xs/
and .Ys/ can be successfully coupled up to the first time s when Gs is not a tree. By
Lemma 7, this has probability less than 2=95 for s �

p
k=20. Letting Px;y denote the

(quenched) probability associated with the coupled random walks on Gk and G4k ,
by Markov’s inequality (applied twice),

P

�ˇ̌̌n
.x; y/; Px;y

�
ˆ.X s0/ D ˆ.Y

s
0 /
�
<
3

4

oˇ̌̌
>
1

10
.k � 4k/

�
�
80

95
�

Hence we can find graphs Ek and E4k satisfying (4.3).

Proof of Proposition 6. For some constant ƒ > 0 to be specified later, let n � ƒ

and ƒ � t.n/ � ƒn2, and define

` D 4

�
1

4

r
t.n/
ƒ

�
C 1 and k D

�
2n

3` � 1

�
:

Now let Gk;` and G4k;` be constructed as follows:
(1) take two 3-regular graphs Ek and E4k satisfying (4.3) (by our assumptions on n

and t.n/, the constant ƒ can be chosen large enough so that k � k0);
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(2) in each graph, in place of each edge, put a path of length `.;

(3) to make those graphs 3-regular, add edges between pairs of interior vertices at
distance 2 on the same path (this is possible because ` � 1 is a multiple of 4).

See Figure 1.

Figure 1. The graph Gk;` (k D 8, ` D 5). The blue star-shaped vertices are the original vertices
of Ek .

Note that, using ` � nC 1,

n � jV.Gk;`/j D
k

2
.3` � 1/ �

7n

2
;

and similarly 4n � jV.G4k;m/j � 14n. Moreover, choosingƒ large enough, we have

max
˚
trel.Gk;`/; trel.Gk;`/

	
�
ƒ

4
`2 :

This can be seen by conductance arguments (the bottleneck ratio of Ek is bounded
away from 0 by expansion, entailing that the one of Gk;` is up to constant factors
larger than 1=`, and by Cheeger’s inequality, the relaxtion time is smaller than `2 up
to constant factors). By definition of ` and the fact that ƒ � t.n/,

max
˚
trel.Gk;`/; trel.G4k;`/

	
�
ƒ

4

�r
t.n/
ƒ
C 1

�2
�
ƒ

4

�
2

r
t.n/
ƒ

�2
� t.n/ :

Combining Equation (4.3) and the `2-slow down induced by paths, we obtain that
for 9=10 of the starting points .x; y/ 2 V.Gk;`/ � V.G4k;`/, there is a coupling of
random walks such that, letting

At D
˚
ˆ
�
X.1/t ; : : : ;X.K/t

�
D ˆ

�
Y.1/t ; : : : ;Y.K/t

�	
;
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we have
Px;y .At / �

3

4
; with Kt D ı`2

p
k ; (4.4)

for some ı > 0 small enough. Let estWS ! N be an estimator and let ynt .X/ D
est
�
ˆ.X.1/t ; : : : ;X.K/t /

�
and ynt .Y / D est

�
ˆ.Y.1/t ; : : : ;Y.K/t /

�
. Define

BXt D
n1
2
�
ynt .X/

n
�
3

2

o
and BYt D

n1
2
�
ynt .Y /

4n
�
3

2

o
:

Assume that it holds simultaneously thatPx
�
BXt

�
� 3=4 andPy

�
BYt

�
� 3=4. Then,

by (4.4),

Px;y
�
BXt

ˇ̌
At
�
D

Px;y.BXt \ At /
Px;y.At /

� 1 �
1 � Px.BXt /

Px;y.At /
�
2

3
;

and similarly, Px;y.BYt
ˇ̌
At / � 2

3
, so that Px;y.BXt \ B

Y
t

ˇ̌
At / � 1

3
. However,

on the event At , the events BXt and BYt can not occur simultaneously, implying a
contradiction. We either have Px

�ˇ̌
ynt .X/
n
�1
ˇ̌
> 1

2

�
�

1
4
or Py

�ˇ̌
ynt .Y /
4n
�1
ˇ̌
> 1

2

�
�

1
4
.

The proof is then concluded by noticing that

`2
p
k & t.n/3=4

p
n :

5. Computing parameters of general graphs

5.1. A simple estimator for the number of edges. In the non-regular case, Prop-
osition 1 suggests the following simple estimator for the number of edges, namely:

ymt D
t2

2
K

PK
kD1 I

.k/
t

; (5.1)

where fI.k/t gKkD1 are independent copies of It , the weighted number of intersections
between to independent random walks started at some x 2 V . For t �
4
p
3trel

3=4
p
m=d , we have t2

2m
� ExIt �

5t2

6m
and VarxIt . t4=m2. Hence,

by Chebyshev’s inequality

Px

�ˇ̌̌
ymt

m
� 1

ˇ̌̌
>
1

2

�
D Px

�ˇ̌̌ 1
K

KX
kD1

I
.k/
t � ExIt

ˇ̌̌
>
t2

6m

�
D O

� 1
K

�
:

Alternatively, considering the other estimator

zmt D
t2

2
K

PK
kD1 J

.k/
t

; (5.2)
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where fJ.k/t gKkD1 are independent copies of Jt , we obtain, by Proposition 2, that for
t & trel

5=6
p
n,

Px

�ˇ̌̌
zmt

m
� 1

ˇ̌̌
>
1

2

�
D O

� 1
K

�
:

Since intersections are counted from the uniform mixing time, the total time
complexity of zmt to reach error probability " is O."�1.tunif C trel5=6

p
n //.

5.2. Lower bounds for general graphs. The bound trel5=6
p
n is achieved on a graph

known as the barbell, formed by two cliques of size n joined by a path of length n.
Indeed, the relaxation time of this graph has order n3, so that trel5=6

p
n � n3, and

any procedure based on random walks needs time n3 to correctly estimate n, since
this is the time needed by a random walk to go from one clique to the other.

As in Section 4.2, we now exhibit graphs achieving the bound trel5=6
p
n for any n

and any relaxation time trel. For two integers k; q � 1, consider the graph constructed
as follows:
(1) Take a 3-regular graph Ek on k vertices, satisfying the properties of Lemma 7;
(2) Replace each node of Ek by a clique of size q;
(3) Replace each edge of Ek by a path of length q.
See Figure 2.

Kq

Kq

Kq

Kq

Kq Kq

Kq

Kq

Figure 2.

Such a graph has a number of vertices n of order kq and relaxation time trel of
order q3. Parameters k and q may then be tuned so as to obtained (almost) any
possible n and trel. Now, to estimate correctly the number of edges, one needs to get
the correct order for k. By Lemma 7, a random walk on Ek needs order

p
k steps to

make a cycle and thus be able to distinguish Ek from an infinite 3-regular tree. Since
adding cliques and paths of size q slows down the random walk by a factor of q3 (the
time to go from one clique to an other in the modified graph), the estimation of the
number of edges on such a graph requires at least order q3

p
k � trel

5=6
p
n steps.
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5.3. Estimating the number of vertices on general graphs. We first note that
estimating the number of vertices might take much more time than estimating the
number of edges. More precisely, we show that order trel5=6

p
n steps may not be

enough to estimate n. Indeed, consider the graph formed by a clique of size ` with
path of length q attached to each vertex of the clique, with q � ` (see Figure 3).

K`

Figure 3.

The number n of vertices is of order `q, and, as q � `, the number m of edges
if of order `2. Moreover, the relaxation time is of order q2 (this can be seen by a
coupling argument). Estimating m is relatively easy: starting from the end of one
path, the walk has to traverse it to reach the clique, which takes time q2, and then
to wait for a collision in the clique, which, by the birthday paradox, takes time

p
`.

Estimating n however takes more time: starting from the clique, the walk has to
visit a positive fraction of at least one of the paths, and this takes time `q. As soon
as q � `3=7, we have `q �

p
`q13=6 � trel

5=6
p
n.

Estimating n might thus require more time. However, once a good estimate for
the number of edges is known, it is quite easy to deduce an estimate for the number
of vertices. Indeed, what remains to estimate is just the mean degree. Consider
the function f W x 2 V 7! f .x/ D 1

deg.x/ , and note that E�f D
n
2m

. Applying
[16, Proposition 12.19] to the function f , we know that for r � tmix."=2/ and
t � 16Var�f

".E�f /2
trel, for all x 2 V ,

Px

�ˇ̌̌1
t

t�1X
sD0

f .XrCs/ � E�f
ˇ̌̌
>

E�f

2

�
� " :

Observing that Var�f � E�f 2 D .2m/�1
P
u deg.u/�1 and that tmix."=2/ .

log.1="/tunif , the mean degree can be estimated with error probability less than " in
time of order

log.1="/tunif C
trelm

"n2

X
u2V

deg.u/�1 . "�1tunif
m

n
�

Note that this is optimal by the previous example of Figure 3, forwhich `q � tunifm=n.
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Altogether, the number of vertices of a connected graph can be estimated by random
walks in time

"�1
��
trel
3=4
p
m=d

�
^
�
trel
5=6
p
n
�
C tunif

m

n

�
:

6. No self-stopping algorithms in general

In this section, we show that one can not hope for a general sublinear self-stopping
algorithm, even when restricting to graphs with polylog mixing time.

Let C be the class of graphs G such that tunif.G/ � .lognG/3.
Consider the following process on a graph, called random walk with restarts: at

each time step t � 0, based on ˆ.X0; : : : ; Xt /, the process decides whether it wants
to make a random walk step from Xt , or to reset back to the starting point x. A
self-stopping algorithm is based on the profile of a random walk with restarts, up
to some stopping time � . More precisely, it relies on a function stopWS ! f0; 1g.
Defining

� D inf
˚
t � 0; stop.ˆ.X t0// D 1

	
;

where X t0 D .X0; : : : ; Xt / is the trajectory of a random walk with restarts up to
time t , then the self-stopping algorithm defined by stop and est returns the value
est.ˆ.X �0 //.
Proposition 8. There exists ı > 0, such that, for all functions stop and est, there is
an infinite sequence of graphs G 2 C and x 2 V.G/ such that

PGx

�
f� � ınGg [

�ˇ̌̌est.ˆ.X �0 //
nG

� 1
ˇ̌̌
>
1

2

��
�
1

4
;

where X is a rw with restarts and � D infft � 0; stop.ˆ.X �0 // D 1g.

Proof of Proposition 8. Consider a 3-regular expander G on n vertices and a
graph G? obtained from G as follows: let G.1/; : : : ; G.2n/ be 2n identical copies
of G. For all i 2 f1; : : : ; 2ng, choose three distinct vertices .ui ; vi ; wi / uniformly
at random in V.G.i//. Now let F be some other 3-regular expander on 2n vertices,
labelled from 1 to 2n. For all 1 � i � 2n, if i has neighbors j < k < ` in F , put
an edge between ui and uj , between vi and vk , between wi and w`. Let G? be the
resulting graph (on jV.G?/j D n2n vertices). Note that, as F is an expander, and as
the random walk on G? needs order n steps to go from some ui to either vi or wi ,
we have tunif.G?/ . n log.2n/, so that bothG andG? belong to the class C . It is not
hard to check that one can find y 2 V.G.1// and ı > 0, such that

PG
?

y

� ın\
sD0

˚
Ys 62 fu1; v1; w1g

	�
�
2

3
�
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Therefore, there exist starting points .x; y/ 2 V.G/�V.G?/, and a coupling .X; Y /
of random walks with restarts at x and y (for the same restarting rule) such that

Px;y.At / �
2

3
; with At D

˚
ˆ.X t0/ D ˆ.Y

t
0 /
	
and t D ın : (6.1)

Let estWS!N be an estimator and stopWS!f0; 1g. For .Z;H/2f.X;G/; .Y;G?/g,
define

BZH D
˚
�Z < ıjV.H/j

	
\

�ˇ̌̌̌
est.ˆ.Z�Z0 //

jV.H/j
� 1

ˇ̌̌̌
�
1

2

�
;

where �ZD inffs � 0; stop.ˆ.Zs0// D 1g. Assume thatwe both havePx.BXG /�3=4
and Py.BYG?/ � 3=4. Then, by (6.1),

Px;y
�
BXG

ˇ̌
At
�
D

Px;y.BXG \ At /
Px;y.At /

� 1 �
1 � Px.BXG /

Px;y.At /
�
5

8
;

and similarly, Px;y.BYG?
ˇ̌
At / � 5

8
, so that Px;y.BXG \B

Y
G?

ˇ̌
At / � 1

4
. However, on

the event At , we have˚
�X < ıjV.G/j

	
\
˚
�Y < ıjV.G?/j

	
D
˚
�X < ın

	
\
˚
�Y D �X

	
;

so that est.ˆ.X �X0 // D est.ˆ.Y �Y0 // and the events BXG and BYG? can not occur
simultaneously, implying a contradiction.

7. A self-stopping algorithm for the number of edges

Let G D .V;E/ be a finite connected graph and let � be an upper-bound on the
relaxation time trel.

Algorithm 1. For q D 0; 1; : : : , iterate the following procedure until stopped:
� let ym D 2q be the current guess for the number of edges and let t D tq D �3=4

p
2 ym.

� let R D Rq D d8 log.4="/C 16 log.q C 1/e and repeat the following experiment
R times.

– let X .1/; Y .1/; : : : ; X .K/; Y .K/ be 2K independent lrw started from x (for a
fixed integer K � 1 to be specified later) and define

Qt D
1

K

KX
`D1

I
.`/
t ; where I

.`/
t D

t�1X
i;jD0

1

deg.X .`/i /
I
fX
.`/

i
DY

.`/

j
g
:

– If Qt � 18�
3=2, call the experiment a success.
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� If the number of successes is larger thanR=2, then stop and estimatem by ym D 2q;
otherwise, go from q to q C 1.

Proposition 9. Algorithm 1 satisfies the two following properties:
(1) The probability that the algorithm stops at a value of q such that 2q < m

or 2q > 38m is smaller than ".
(2) The expected running time of the algorithm is O.

p
m�3=4 log logm/.

Proof of Proposition 9. (1) By Equation (3.3) in Proposition 1 and since d � 1, it
always holds that

�3=2 ym

m
� ExQt �

�3=2 ym

m
C 16�3=2 : (7.1)

Assume that q is such that ym D 2q < m. Then the expectation of Qt is smaller
than 17�3=2. By Chebyshev’s inequality,

Px
�
Qt � 18�

3=2
�
� Px

�
Qt � ExQt � �

3=2
�

.
VarxIt

K�3
:

Now by Equation (3.4) and since t < �3=4
p
2m, we have VarxIt . �3. Hence, we

may choose K large enough such that Px.Qt � 20�
3=2/ � 1=4. Using Hoeffding’s

inequality, the probability that there are more than R=2 successes at this step is
smaller than exp.�R=8/ D "

4
.q C 1/�2. Taking a union bound, the probability for

the algorithm to stop at a value of q such that 2q < m is smaller than "=2.
Let now q be such that ym D 2q > 19m. By Equation (7.1), the expectation of Qt

is larger than 19�3=2. Hence

Px
�
Qt < 18�

3=2
�
� Px

�
Qt <

18

19
ExQt

�
.

VarxIt

K.ExIt /2
:

Again, Equation (3.4) entails that the constant K may be chosen such that the above
probability is smaller than 1=4. And by Hoeffding’s inequality, the probability that
there are less than R=2 successes is smaller than exp.�R=8/ � "=4. Clearly, the
probability to stop at a step q with 2q > 38m is smaller than the probability not to
have stopped at q? D inffq � 0; 2q > 19mg, which is smaller than "=4.

(2) By the above, for all q > q?, the probability that the algorithm stops at step q is
smaller than ."=4/q�q? . Now the running time up to step q is smaller, up to constant
factors, than

Pq
iD0Ri ti . Rqtq , so that the expected running time is smaller, up to

constant factors, than

Rq? tq? C
X
q>q?

� "
4

�q�q?
Rqtq D O

�p
m�3=4 log logm

�
:

Remark 2. If the graph is d -regular of if the minimum degree d is known,
Proposition 1 allows to design an algorithm which estimates m (or rather n in the
case of regular graphs) in expected time O.

p
m=d�3=4 log log.m=d//.
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8. Algorithms for the mixing time

The number of intersections may also be used to estimate the mixing time from a
given vertex x 2 V . Assume that the number of edges m in G D .V;E/ is known.
Let

dx.t/ D

pX
y

�.y/

�
Px.Xt D y/

�.y/
� 1

�2
be the `2.�/-distance between Px.Xt 2 � /=�. � / and 1. Our goal now is to estimate

tx.ı/ D inf
˚
t � 0; dx.t/

2
� ı

	
; 0 < ı < 1 :

Before describing a self-stopping algorithm to estimate tx.ı/, we prove the following
useful lemma.
Lemma 10. Let X; Y;Z be three independent random walks started at x and let
L
.X;Y /
t D I

.X;Y /
2t � I

.X;Y /
t be the weighted number of intersections of X and Y

between t and 2t . Define L
.X;Z/
t similarly. For all t � 0,

ExL
.X;Y /
t D

2t�1X
i;jDt

dx
�
iCj
2

�2
C 1

2m
; (8.1)

VarxL
.X;Y /
t . ExL

.X;Y /
t max

u
EuIt ; (8.2)

and
Covx

�
L
.X;Y /
t ;L

.X;Z/
t

�
.
�
ExL

.X;Y /
t

�3=2qmax
u

EuIt : (8.3)

Proof of Lemma 10. By reversibility, dx.t/2 D Px.X2tDx/
�.x/

� 1, and

ExL
.X;Y /
t D

1

deg.x/

2t�1X
i;jDt

Px.XiCj D x/ D
2t�1X
i;jDt

dx
�
iCj
2

�2
C 1

2m
�

Moving on to (8.2), defining gt!2t .x; u/ D g2t .x; u/ � gt .x; u/, one easily checks
that

ExL
.X;Y /
t D

X
u

gt!2t .x; u/
2

deg.u/
;

and that

Ex
��

L
.X;Y /
t

�2� .
X
u;v

gt!2t .x; u/
2gt .u; v/

2

deg.u/ deg.v/
D

X
u

gt!2t .x; u/
2

deg.u/
EuIt ;

which implies
Ex
��

L
.X;Y /
t

�2� . ExL
.X;Y /
t max

u
EuIt :
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Finally, to establish (8.3), observe that

Ex
�
L
.X;Y /
t L

.X;Z/
t

�
.
X
u;v

gt!2t .x; u/
2gt .u; v/gt!2t .x; v/

deg.u/ deg.v/
;

and that, by the Cauchy–Schwarz inequality,

Ex
�
L
.X;Y /
t L

.X;Z/
t

�
�
�
ExL

.X;Y /
t

�3=2qmax
u

EuIt :

Algorithm 2. For q D 0; 1; : : : , iterate the following procedure until stopped:
� Let t D tq D 2q be the current guess for the mixing time tx.ı/ and let
K D Kq D dCı

�2d
p
mt�1=4ee, for a constant C > 0 to be specified later.

� LetR D Rq D d8 log.4="/C 16 log.qC 1/e and repeat the following experiment
R times.

– Let X .1/; : : : ; X .K/ be K independent lrw started from x and define

Lt D
1�
K
2

� X
1�`<k�K

L
.`;k/
t ; where L

.`;k/
t D

2t�1X
i;jDt

1

deg.X .`/i /
I
fX
.`/

i
DX

.k/

j
g
:

– If Lt �
�
1C ı

2

�
t2

2m
, call the experiment a success.

� If the number of successes is larger than R=2, then stop and estimate tx.ı/ by
t D 2q; otherwise, go from q to q C 1.

Proposition 11. Algorithm 2 satisfies the two following properties:
(1) The probability that the algorithm stops at a value of q such that 2q < tx.ı/=2

or 2q > 2tx.ı=4/ is smaller than ".
(2) The expected running time of the algorithm isO.ı�2

p
mtx.ı=4/

3=4 log log tx.ı=4//.

Proof of Proposition 11. (1) Assume that q is such that t D 2q < tx.ı/=2. By
Equation (8.1), the expectation of Lt is larger than .1 C ı/ t

2

2m
. By Chebyshev’s

inequality,

Px
�
Lt �

�
1C

ı

2

� t2
2m

�
.

VarxLt

ı2.ExLt /2
: (8.4)

Since for all `; `0; k; k0 pairwise distinct, Covx
�
L
.`;k/
t ;L

.`0;k0/
t

�
D 0, we have

VarxLt .
VarxL

.X;Y /
t

K2
C

Covx
�
L
.X;Y /
t ;L

.X;Z/
t

�
K

;

so that, by Lemma 10 and using that ExLt � t
2=2m, we get

VarxLt

ı2.ExLt /2
. � C

p
� ;
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where
� D

maxu EuIt

C 2d
p
m=t1=4e2.t2=m/

:

Now, if t � 36m2

d
, then applying Lemma 3 directly in (3.2) yields maxu EuIt . t3=2.

On the other hand, if t > 36m2

d
, then by (3.7), t & trel

3=4
p
m=d , which by

Proposition 1 yields maxu EuIt . t2=m. Hence, in both cases, we have � . 1=C 2,
and the constant C can be made large enough so that the right-hand side in (8.4) is
smaller than 1=4. Using Hoeffding’s inequality, the probability that there are more
than R=2 successes is then smaller than exp .�R=8/ D "

4
.qC 1/�2. Taking a union

bound, we obtain that the probability for the algorithm to return an estimate smaller
than tx.ı/=2 is smaller than "=2.

Now let q be such that t D 2q > tx.ı=4/. Then ExLt � .1C ı=4/
t2

2m
and by

Chebyshev’s inequality

Px
�
Lt >

�
1C

ı

2

� t2
2m

�
.

VarxLt

ı2.t2=m/2
:

By the same arguments as above, the constant C can be chosen large enough so that
the above probability is smaller than 1=4. By Hoeffding’s inequality, the probability
that there are less than R=2 successes is smaller than exp .�R=8/ "

4
. Clearly, the

probability to stop at a value q such that 2q > 2tx.ı=4/ is smaller than the probability
not to have stopped at q? D inffq � 0; 2q > tx.ı=4/g, which is smaller than "=4.

(2) By the above, for all q > q?, the probability that the algorithm stops at step q
is smaller than ."=4/q�q? . Moreover, the running time up to step q is smaller, up
to constant factors, than

Pq
iD0RiKi ti . ı�2

p
m.tq/

3=4 log.q C 1/. Altogether, the
expected running time is less, up to constant factor, than

p
m

ı2
.tq?/

3=4 log.q? C 1/C
X
q>q?

.1=4/q�q
?

p
m

ı2
.tq/

3=4 log.q C 1/ ;

which is O
�
ı�2
p
mtx.ı=4/

3=4 log log tx.ı=4/
�
.

Remark 3. If the graph is d -regular of if the minimum degree d is known,
Proposition 1 actually allows to design an algorithmwhich estimates tx.ı/ in expected
time O.ı�2

p
m=dtx.ı=4/

3=4 log log tx.ı=4//.
We assume, for simplicity, that the true value of m is known. However, our

estimation scheme can easily be extended to the casewhere only a good approximation
ofm is available. Combining Proposition 9 and 11 then entails the following corollary.
Corollary 12. An upper-bound � on the uniform mixing time can be used to precisely
estimate both the number of edges and the mixing time from x, via a self-stopping
algorithm with time complexity O.

p
m�3=4 log logm/.
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