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Tensor denoising with trend filtering

Francesco Ortelli and Sara van de Geer

Abstract. We extend the notion of trend filtering to tensors by considering the kth-order Vitali
variation – a discretized version of the integral of the absolute value of the kth-order total
derivative. We prove adaptive `0-rates and not-so-slow `1-rates for tensor denoising with trend
filtering.

For k D ¹1; 2; 3; 4º we prove that the d -dimensional margin of a d -dimensional tensor can
be estimated at the `0-rate n�1, up to logarithmic terms, if the underlying tensor is a product
of .k � 1/th-order polynomials on a constant number of hyperrectangles. For general k we
prove the `1-rate of estimation n�

H.d/C2k�1
2H.d/C2k�1 , up to logarithmic terms, where H.d/ is the d th

harmonic number.
Thanks to an ANOVA-type of decomposition we can apply these results to the lower dimen-

sional margins of the tensor to prove bounds for denoising the whole tensor. Our tools are
interpolating tensors to bound the effective sparsity for `0-rates, mesh grids for `1-rates and, in
the background, the projection arguments by Dalalyan, Hebiri, and Lederer (2017).

1. Introduction

Let f 0 2 Rn1�����nd be a d -dimensional tensor with n D n1 � : : : �nd entries. We
want to prove error bounds for tensor denoising, which is the task of recovering f 0

from its noisy version Y D f 0 C ", where " has i.i.d. Gaussian entries with mean 0
and variance �2.

We show that we can estimate the underlying tensor f 0 in an adaptive manner
with a regularized least-squares signal approximator. As regularizer we propose the
Vitali variation of the .k � 1/th-order total differences of the candidate estimator
for k � 1. We call this regularizer the “kth-order Vitali total variation”. We use the
abbreviation TV for “total variation”. This approach extends the idea of “trend filter-
ing” [12, 28] to tensors.

We expose the notion of TV regularization, review the literature on adaptive results
for TV regularization, explain the concept of adaptation for structured problems, intro-
duce an ANOVA-type of decomposition of a tensor, outline our contributions and
finally present the organization of the paper.
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1.1. TV regularization

A regularized (least-squares) signal approximator is an estimator yf defined as

yf WD arg min
f2Rn1�����nd

®
kY � fk22=nC 2� pen.f/

¯
;

where k�k22 denotes the sum of the squared entries of its argument, � > 0 is a tuning
parameter and pen.f/ is a regularization penalty.

When pen.f/ D kDfk1 for a linear operator D and for k�k1 denoting the sum of
the absolute values of the entries of its argument, the regularized signal approximator
is called “`1-analysis estimator” or simply “analysis estimator” [5]. If the linear oper-
ator D is a difference operator, then pen.f/ D kDfk1 is usually called TV of f and
the estimator yf is called TV regularized estimator. Different choices of the difference
operator D are possible, resulting in different notions of TV.

For a continuous image defined on .x1; : : : ; xd / 2 Œ0; 1�d , one can choose D as
a discretized version of either the total kth-order derivative operator

Qd
iD1 @

k=.@xi /
k

or of the sum of kth-order partial derivative operators
Pd
iD1 @

k=.@xi /
k .

1.2. Literature review: adaptive results for TV regularization

For d D 1 partial and total derivatives coincide. With D being the first order dif-
ference matrix, the TV regularized estimator is also known under the name “fused
Lasso” [8, 27]. Adaptivity of the fused Lasso has been proved by Dalalyan et al. [4],
Lin et al. [13], Ortelli and van de Geer [16], and Guntuboyina et al. [10].

The “edge Lasso” extends the fused lasso to graphs and is studied by Sharpnack
et al. [24], and Hütter and Rigollet [11]. Ortelli and van de Geer [16, 18] prove adap-
tivity of the edge Lasso on tree graphs and cycle graphs, respectively.

The idea of the fused Lasso can also be extended to the penalization of higher-
order differences. This extension is called “trend filtering” [12, 25, 28]. Adaptivity of
trend filtering is established in [10, 19]. Wang et al. [32] consider trend filtering on
graphs, Sadhanala et al. [20,22] in higher-dimensional situations and [21] for additive
models.

Here, we consider the case of D being a discretization of
Qd
iD1 @

k=.@xi /
k . We

call the corresponding notion of TV “kth-order Vitali TV”. In the literature, signal
approximators regularized with the Vitali TV are studied by Mammen and van de
Geer [14], Ortelli and van de Geer [17], and Fang et al. [6]. Ortelli and van de
Geer [17] prove adaptivity for d D 2 and k D 1. Fang et al. [6] show adaptivity
for d D 2 and k D 1 using as regularizer the Hardy–Krause variation, which is the
sum of the Vitali TV of a matrix and of its margins. In this paper we will prove adap-
tivity of tensor denoising with kth-order Vitali TV regularization for k 2 ¹1; 2; 3; 4º
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and general dimension d � 1. The results obtained for k 2 ¹1; 2; 3; 4º and d D 1

in [19] and for k D 1 and d D 2 in [17] will then be retrieved as special cases.
For k D 1, signal approximators regularized with D being a discretization of the

partial derivative operator
Pd
iD1 @

k=.@xi /
k are studied by Hütter and Rigollet [11],

and Sadhanala et al. [22] for general d . For d D 2, Chatterjee and Goswami [3] show
the fast rate n�3=4 for estimating axis-aligned rectangles. Sadhanala et al. [22], and
Sadhanala et al. [20] call the estimator for general k Kronecker trend filtering.

1.3. Adaptation for structured problems

The analysis estimator yf can be recast in a constructive formulation as “synthesis
estimator”. One can find dictionary tensors ¹�j 2 Rn1�����nd ºj2Œp�, such that

yf D

pX
jD1

y̌
j�j ; where y̌ WD arg min

b2Rp

°
kY �

pX
jD1

bj�j k
2
2=nC 2�

X
j 62U

jbj j
±
;

and U � ¹1; : : : ; pº is a set of indices, cf. [5]. The Lasso estimator [1, 26, 29] is
an instance of synthesis estimator. The dictionary ¹�j ºj2Œp� and the set of unpenal-
ized coefficients U � Œp� depend on D. We can see that D imposes structure on the
estimator: it determines the dictionary with which the estimator is constructed. For
instance, in the case of the 1st-order Vitali TV, the dictionary ¹�j ºj2Œp� consists of
tensors being constant on hyperrectangles. Therefore, the estimator yf is constant on
few hyperrectangular pieces.

Our goal is to prove adaptation of the estimator yf to the underlying signal f 0,
when kDfk1 is the kth-order Vitali TV.

Adaptation is a consequence of a high-probability upper bound on the mean squar-
ed error (MSE) in the form of the oracle inequality

k yf � f 0k22=n � kg � f
0
k
2
2=nC rem.D; g; S/; (1.1)

where g 2 Rn1�����nd is an arbitrary tensor, S is an arbitrary set of indices of Dg and
rem.D; g; S/ is a remainder term. A result of the form of (1.1) establishes the adapta-
tion of the estimator yf , provided that the remainder term rem.D; g D f 0; S D S0/
converges to zero, where S0 is the set of the indices of the nonzero coefficients
of Df 0. The cardinality s0 WD jS0j of S0 is called the “sparsity” of f 0 with respect
to D.

We can optimize the upper bound in (1.1) over g and S . However, the optimizers
g� and S� will depend on f 0 – which is unobserved. Hence the name “oracle” for
the pair .g�.f 0/; S�.f 0// and the name “oracle inequality” for results as (1.1).
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Such a result is considered to be adaptive, since different underlying true ten-
sors f 0 will possibly give place to different oracles .g�.f 0/;S�.f 0// and to different
values for the upper bound.

Results as (1.1) are only useful if it can be proved that rem.D; f 0; S0/ converges
to zero. Typically

rem.D; f 0; S0/ D O
�
�2�2D.S

0/
�
;

where �2D.S
0/ is called “effective sparsity” and depends both on D and S0. Proving

adaptivity therefore translates into proving a bound for the effective sparsity: a task
which depends on the structure imposed by D. To bound the effective sparsity for
tensor denoising with trend filtering we use an interpolating tensor, in analogy to the
interpolating vector and the interpolating matrix by Ortelli and van de Geer [17, 19].

Adaptive results as (1.1) are a consequence of a careful choice of �. The general
theory for the Lasso [1, 29] suggests the choice � � �0 �

p
log.n/=n, where �0

is called the “universal choice”. The universal choice ensures that all the noise is
overruled. However, Dalalyan et al. [4] show that also the smaller choice � � z
�0
is possible, where z
 > 0 is a scaling factor which accounts for the correlation in the
dictionary ¹�j ºj2Œp� induced by D. The projection arguments by Dalalyan et al. [4]
in the background of our results allow us to choose the tuning parameter of smaller
order than the universal choice �0.

Projection arguments have been discussed in the literature. We do not report
them here but refer instead to Theorem 3 in [4], Lemma B2 and Lemma C2 in [18],
Lemma 13 in [17], and to [31].

1.4. ANOVA decomposition

In the continuous case, the “nullspace” of the kth-order derivative operator along one
coordinate is made of constant, linear, . . ., .k � 1/th-order monomial functions. The
nullspace of the total derivative operator in d -dimensions is made of d -dimensional
functions which are linear, . . ., .k � 1/th-order monomial along at least one coordi-
nate. In the discrete case when n1� � � � � nd the linear space spanned by such tensors
is n1�1=d -dimensional.

We will decompose a tensor f 2 Rn1�����nd into a sum of mutually orthogonal
tensors. Each of these mutually orthogonal tensors will be constant or linear or . . . or
.k � 1/th-order monomial along a set of l coordinates, for l 2 Œ0 W d�. This construction
will be carried out for all possible sets of coordinates in Œd �. Tensors being constant
or linear or . . . or .k � 1/th-order monomial along d � l coordinates will be called
l-dimensional margins.

We will adaptively estimate l-dimensional margins with l-dimensional Vitali TV
regularized estimators, for l 2 Œd �. The 0-dimensional margins will be estimated by
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ordinary least squares at a rate n�1. By estimating all the margins adaptively we will
be able to prove adaptivity of the denoising of the whole tensor via Vitali TV regular-
ization.

1.5. Contributions

Previously, we have derived tools like interpolating vectors and matching derivatives
to prove adaptivity for trend filtering (d D 1 and k 2 ¹1; 2; 3; 4º, see [19]). In [17] we
have come up with tools to extend our results for adaptation of the fused Lasso (d D 1
and k D 1) to the two-dimensional case of image denoising (d D 2 and k D 1). Here,
we show in the first place how to combine and extend the tools from image denoising
and one-dimensional trend filtering to handle trend filtering for k 2 ¹1; 2; 3; 4º and
for general dimension d . Establishing adaptivity requires a so-called “bound on the
antiprojections”. We prove a formula giving the bounds on the antiprojections for
general k and d . We then propose an ANOVA decomposition to ensure that all the
margins of a d -dimensional tensor can be estimated adaptively.

Lastly, we prove slow rates for tensor denoising with trend filtering. We extend
the idea of mesh grid by Ortelli and van de Geer [17] to general d and general k. We
then prove a bound on the antiprojections with the help of the mesh grid holding for
all d and all k.

The integration of the arguments by Ortelli and van de Geer [19] with the ones
by Ortelli and van de Geer [17], the general bounds on the antiprojections and the
ANOVA decomposition allow us to present general risk bounds for tensor denoising
with trend filtering.

1.6. Organization of the paper

In Section 2 we expose the required notation, the model and define the trend filtering
estimator for the d -dimensional margin.

In Section 3 we list our contributions and give a preview of the results: adaptive
`0-rates and not-so-slow `1-rates.

In Section 4 we derive the synthesis form of the trend filtering estimator for the
d -dimensional margin.

Proving the main result on adaptivity for tensor denoising with trend filtering is
the topic of Section 5.

In Section 6 we apply a general result on slow `1-rates for analysis estimators to
tensor denoising with trend filtering.

In Section 7 we show the ANOVA decomposition of a tensor and define the esti-
mators for lower-dimensional margins.
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In Section 8 we apply the results on adaptivity and on not-so-slow slow `1-rates
to the estimators for the lower-dimensional margins defined in Section 7. This will
establish rates for the estimation of the whole tensor.

Section 9 concludes the paper.

2. Model, notation and estimator

We consider the model
Y D f 0 C ";

where Y;f 0; "2Rn1�����nd are d -dimensional tensors and " has i.i.d. N .0;�2/ entries
with known variance � 2 .0;1/. For the case of unknown variance we refer to [18],
who show how to estimate f 0 and � at the same time.

The goal is to estimate f 0 given its noisy observations Y . We consider a signal
approximator regularized with the Vitali TV.

2.1. Signals supported on d-dimensional tensors

For two integers i � j we define

Œi W j � WD ¹i; : : : ; j º:

Moreover, if i D 1 we write Œj � WD Œ1 W j �.
Let f 2 Rn1�����nd be a d -dimensional tensor with n WD n1 � : : : �nd entries. For

indices .j1; : : : ; jd / 2 Œn1� � � � � � Œnd � we refer to the corresponding entry of f
by fj1;:::;jd

using indices or by f .j1; : : : ; jd / using arguments.
For .j 01; : : : ; j

0
d
/; .j 001 ; : : : ; j

00
d
/ 2 Œn1� � � � � � Œnd � we use the notation

j 00
1
;:::;j 00

dX
j 0

1
;:::;j 0

d

fj1;:::;jd
WD

j 00
dX

jdDj
0
d

� � �

j 00
1X

j1Dj
0
1

fj1;:::;jd
:

Similarly, we write

¹fj1;:::;jd
º
j 00

1
;:::;j 00

d

j 0
1
;:::;j 0

d

WD ¹fj1;:::;jd
º
.j 00

1
;:::;j 00

d
/

.j1;:::;jd /D.j
0
1
;:::;j 0

d
/
:

By kf k2 WD .
Pn1;:::;nd

1;:::;1 f 2j1;:::;jd
/1=2 we denote the Frobenius norm of f . More-

over, we define kf k1 WD
Pn1;:::;nd

1;:::;1 jfj1;:::;jd
j as the sum of the absolute values of the

entries of f .
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2.1.1. Tensors with product structure. We now let f 2 Rn1�����nd be a d -dimen-
sional tensor with n WD n1 � : : : �nd entries. Define the set of indices I of the entries
of f as I WD Œn1� � � � � � Œnd �.

We say that f has product structure if there are vectors ¹fj ºj2Œd� such that

f .j1; : : : ; jd / D f1.j1/ � : : : �fd .jd /; 8.j1; : : : ; jd / 2 I:

We then write f D f1 � � � � � fd .
Let f and g be tensors with product structure. We consider the entry-wise multi-

plication .f ˇ g/j1;:::;jd
D fj1;:::;jd

gj1;:::;jd
; .j1; : : : ; jd / 2 I . It holds that

.f ˇ g/j1;:::;jd
D

dY
lD1

fl.jl/gl.jl/; 8.j1; : : : ; jd / 2 I:

2.1.2. Orthogonality between tensors. The operation
Pn1;:::;nd

1;:::;1 .f ˇ g/j1;:::;jd
is

the equivalent of the scalar product for tensors. We say that the tensors f and g are
orthogonal if

n1;:::;ndX
1;:::;1

.f ˇ g/j1;:::;jd
D 0:

If f and g have product structure and fi and gi are orthogonal to each other for at
least one coordinate i 2 Œd �, then f and g are orthogonal too.

2.1.3. Linear subspaces and orthogonal projections. Let W be a linear subspace
of Rn1�����nd and let W? be its orthogonal complement. We denote by

IWRn1�����nd 7! Rn1�����nd

the identity operator, i.e., If D f . By PW we denote the orthogonal projection opera-
tor onto W and by AW WD I� PW D PW? the corresponding orthogonal antiprojection
operator. For a tensor f 2 Rn1�����nd we write fW WD PW and fW? WD f � fW .

For a linear operator �, let N .�/ denote its nullspace.

2.2. Estimator

Let k be an integer in ¹1; : : : ;mini2Œd� ni � 1º. Let Dk
i be the kth-order difference

operator along the i th coordinate, defined as

.Dk
i f /.j1; : : : ; ji ; : : : ; jd / WD n

k�1
i

kX
lD0

.�1/l
�
k

l

�
f .j1; : : : ; ji � l; : : : ; jd /;

for

.j1; : : : ;ji�1;ji ;jiC1; : : : ;jd /2 Œn1�� � � � � Œni�1�� ŒkC 1 Wni �� ŒniC1�� � � � � Œnd �:
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Definition 2.1 (Total kth-order difference operator). The total kth-order difference
operator Dk is defined as

Dk
WD

dY
iD1

Dk
i :

The total kth-order difference operator Dk can be seen as a discretized version
of
Qd
iD1 @

k=.@xi /
k . It is important to note that the definition ofDk implicitly includes

a factor nk�1 that stems from the discretization.
The Vitali TV of a tensor f 2 Rn1�����nd is defined as the sum of the absolute

values of its total kth-order differences.

Definition 2.2 (kth-order Vitali TV). The kth-order Vitali TV TVk.f / of a d -dimen-
sional tensor f 2 Rn1�����nd is defined as

TVk.f / WD kDkf k1:

The kth-order Vitali TV has the canonical scaling TVk.f / D O.1/ due to the
normalization by the factor nk�1 in the definition of Dk . We refer to [23] for more
about canonical scalings.

We define the nullspace Nk of Dk as

Nk WD ¹f 2 Rn1�����nd W Dkf D 0º

and its orthogonal complement as N ?
k

. We call fN?
k

the d -dimensional margin of a
tensor f 2 Rn1�����nd .

Definition 2.3 (kth-order Vitali trend filtering estimator). The kth-order Vitali trend
filtering estimator yfN?

k
for the d -dimensional margin f 0

N?
k

is defined as

yfN?
k
WD arg min

f2Rn1�����nd

®
k.Y � f/N?

k
k
2
2=nC 2�TVk.f/

¯
;

where � > 0 is a tuning parameter.

2.3. Active sets

Let S � Œ3 W n1 � 1� � � � � � Œ3 W nd � 1� be a subset of the indices of Dkf for
some tensor f 2 Rn1�����nd . We write s WD jS j and S D ¹t1; : : : ; tsº, where tm D
.t1;m; : : : ; td;m/. We call ¹tmºsmD1 the jump locations.

Moreover, we define

aS WD ¹aj1;:::;jd
; .j1; : : : ; jd / 2 Sº and a�S WD ¹aj1;:::;jd

; .j1; : : : ; jd / … Sº:
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We will use the same notation aS for the tensor which shares its entries with a for
.j1; : : : ; jd / 2 S and has all its other entries equal to zero. Similarly, we will also
denote by a�S a tensor that shares its entries with a for .j1; : : : ; jd / 62 S and has its
other entries equal to zero.

3. Contributions

We make the following contributions:

� We extend the idea of trend filtering to d -dimensional settings via the Vitali vari-
ation and total discrete derivatives.

� We prove adaptive `0-rates for tensor denoising with trend filtering for k2¹1;2;3;4º;
see Theorem 3.1, a simplified version of Theorem 5.2. The rates for d D 1 and
k 2 ¹1; 2; 3; 4º, and for d D 2 and k D 1 are known. The rates for the other cases
are new contributions. We also expose some sufficient conditions to find adaptive
bounds for general k. For each given k one can check by computer whether the
conditions hold but the problem of showing that they hold for general k remains
open.

� We prove slow `1-rates for tensor denoising with trend filtering, which turn out to
be “not-so-slow”, see Theorem 3.2. Here too, the rates for d D 2 and k � 2 and
for d � 3 are new contributions. It is still an open problem whether these rates
correspond for d � 2 to minimax rates (modulo log terms).

� We extend the idea of ANOVA decomposition from 1st-order differences to kth-
order differences in d dimensions. By means of this ANOVA decomposition we
can apply the results for the d -dimensional margin to lower dimensional margins.
We obtain rates for the estimation of the whole tensor by trend filtering.

� Our results allow to recover previous results for trend filtering and image denois-
ing [17, 19] as special cases.

3.1. Preview of the results

We consider tensors in Rn1�����nd such that n1 D � � � D nd .
Let

�0.t/ WD �

r
2 log.2n/C 2t

n
; t > 0:

We call �0.t/ the “universal choice” of the tuning parameter. The universal choice
� D �0.t/ guarantees that all the noise is overruled. However, our results also allow
for a smaller choice than the universal choice, due to the projection arguments by
Dalalyan et al. [4] in the background.
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Theorem 3.1 (Adaptivity of Vitali trend filtering, simplified). Fix k 2 ¹1; 2; 3; 4º. Let
g 2 Rn

1=d�����n1=d
be arbitrary. Let S � �i2Œd�Œk C 2 W n1=d � 1� be an arbitrary set

of size s WD jS j defining a regular grid of cardinality s1=d � � � � � s1=d parallel to the
coordinate axes. For a large enough constant C > 0 only dependent on k, choose

� � C d3=2
�0.log.2n//
s.2k�1/=2d

:

Then, with probability at least 1 � 1=n, it holds that

k. yf � f 0/N?
k
k
2
2=n � kg � f

0

N?
k

k
2
2=nC 4�k.D

kg/�Sk1 CO

�
�2
s2k log.n=s/

n

�
:

Proof. See Section 5.7 for the proof of the more general Theorem 5.2.

Some examples of the exponent of s in the rate of Theorem 3.1 for d 2 ¹1; 2; 3º
and k 2 ¹1; 2; 3; 4º are exposed in Table 1.

k D 1 k D 2 k D 3 k D 4

d D 1 1 1 1 1

d D 2 3/2 5/2 7/2 9/2

d D 3 5/3 3 13/3 17/3

d general 2 � 1=d 4 � 3=d 6 � 5=d 8 � 7=d

Table 1. Some examples of the exponent of s in the rate of Theorem 3.1 for the choice � �
s�.2k�1/=2d�0.log.2n//.

If in Theorem 3.1 we set g D f 0
N?

k

and choose the tuning parameter

� � s�
2k�1

2d �0.log.2n//

depending on the (typically unknown) true active set S0, we obtain the rate

O

�
s
2k�..2k�1/=d/
0 log.n=s/ logn

n

�
:

If in Theorem 3.1 we set gDf 0
N?

k

and we choose the tuning parameter ���0.log.2n//
in a completely data-driven way not depending on the (typically unknown) true active
set S0, we obtain the rate

O

�
s2k0 log.n=s/ logn

n

�
:
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We now fix k 2 Œ1 W mini2Œd� ni � 1�. For d 2 N define the d th harmonic num-
ber H.d/ as H.d/ WD

Pd
iD1 1=i .

Theorem 3.2 (Not-so-slow `1-rate for trend filtering). Let g 2 Rn
1=d�����n1=d

be an
arbitrary tensor.

Dependence of � on g allowed. Choose

� � n�
H.d/C2k�1

2H.d/C2k�1 log
H.d/

2H.d/C2k�1 .n/kDkgk
� 2k�1

2H.d/C2k�1

1 :

Then with probability at least 1 �‚.1=n/ it holds that

k. yf � f 0/N?
k
k
2
2=n � kg � f

0

N?
k

k
2
2=n

CO
�
n�

H.d/C2k�1
2H.d/C2k�1 log

H.d/
2H.d/C2k�1 .n/kDkgk

2H.d/
2H.d/C2k�1

1

�
:

Dependence of � on g not allowed. Choose

� � n�
H.d/C2k�1

2H.d/C2k�1 log
H.d/

2H.d/C2k�1 .n/:

Then with probability at least 1 �‚.1=n/ it holds that

k. yf � f 0/N?k
2
2=n � kg � f

0

N?
k

k
2
2=n

CO
�
n�

H.d/C2k�1
2H.d/C2k�1 log

H.d/
2H.d/C2k�1 .n/

�
1C kDkgk1

��
:

Proof. See Section 6.3.

Some examples of the exponent of n in the rate of Theorem 3.2 for d 2 ¹1; 2; 3º
and k 2 ¹1; 2; 3º are exposed in Table 2.

k D 1 k D 2 k D 3 k general

d D 1 �2=3 �4=5 �6=7 �2k=.2k C 1/

d D 2 �5=8 �3=4 �13=16 �.4k C 1/=.4k C 4/

d D 3 �17=28 �29=40 �41=52 �.12k C 5/=.12k C 16/

Table 2. Some examples of the exponent of n in the rate of Theorem 3.2.

We call the rates of Theorem 3.2 “not-so-slow” because they turn out to be faster
than the slow rate n�1=2 for a Lasso problem where no specific structure is imposed.
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3.2. Comparison with the literature

We compare Vitali trend filtering (VTF) with two other approaches for extending
trend filtering to higher dimensions: graph trend filtering (GTF) by Wang et al. [32]
and Kronecker trend filtering (KTF) by Sadhanala et al. [22]. GTF is studied in [22]
for grid graphs of general dimension, while KTF is further studied in [20], who show
a phase transition for minimax rates achieved by KTF (see Table 2.1 therein).

While the VTF penalty kDkfk1 involves a discretization of total derivatives of
order k, the KTF penalty

Pd
iD1kD

k
i fk1 involves a discretization of partial derivatives

of order k. The GTF penalty coincides with the KTF penalty for k D 1 but differs at
the boundaries for k � 2, as explained in [22]. It can be observed that the analysis
operators of the VTF penalty and of the KTF penalty have different properties.

First, when n1 � � � � � nd it holds that

dim
�
¹f W kDkf k1º D 0

�
D n1�1=d ;

while

dim
�°
f W

dX
iD1

kDk
i f k1

±
D 0

�
D kd :

The nullspace of the KTF penalty can be estimated by least squares at the rate n�1

while the least squares rate for the nullspace of the VTF penalty would be n�1=d . This
motivates the penalized estimators we propose in Section 7 for the margins.

Second, the analysis operator involved in the VTF penalty is of full rank, while
the one for the KTF penalty is not. The estimates produced by VTF are thus products
of polynomials of order at most k � 1 on hyperrectangular pieces as shown in Sec-
tion 4. The estimates produced by KTF are also products of polynomials of order at
most k � 1, but on pieces that do not need to be hyperrectangular.

VTF on one side, and KTF and GTF on the other side are not directly compara-
ble unless d D 1. However, the estimates produced by VTF can be compared with
the estimates produced by other methods: the multivariate adaptive regression splines
(MARS) by Friedman [7], the dyadic classification and regression trees (dyadic CART)
and the optimal regression trees (ORT) proposed by Chatterjee and Goswami [2].
In particular, Chatterjee and Goswami [2] show that ORT achieves the rate z0=n
for d D 2 and z.dC1/=30 =n for d � 3 for estimating tensors that are products of mono-
mials on any hyperrectangular partition of the tensor into z0 pieces. The degree of
the monomials is constrained to sum up at most to k on the pieces of the partition.
Note that Chatterjee and Goswami [2] do not consider an ANOVA type of decompo-
sition of the tensor into margins, so that z0 has in general a different meaning than s0
and can be large if compared to the sparsity of the different margins considered here.
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Moreover, Chatterjee and Goswami [2] also show that the dyadic CART can attain the
same fast and slow rates as the optimally tuned trend filtering estimator for d D 1.

Trend filtering (d D 1 and k � 1) has previously been studied by Guntuboy-
ina et al. [10], yet with other proof techniques than the ones by Ortelli and van de
Geer [19], which we extend here. VTF for d D 2 and k D 1 has been studied by [17].
An analogous estimator, yet in constrained form and considering the Hardy–Krause
variation, has been studied by Fang et al. [6]. For the estimator constrained with the
Hardy–Krause variation, Fang et al. [6] prove the same slow rate n�2=3 as for the
one-dimensional situation and the fast rate n�1 for estimating images with only one
rectangular piece. For f 2 Rn1�n2 the Hardy–Krause variation is

TV2.f /C TV1.f .1; �//C TV1.f .�; 1//C jf .1; 1/j

and differs from our approach in the treatment of the lower-dimensional margins.
Even if the model classes of the ORT estimator by Chatterjee and Goswami [2]

and of the estimator constrained with the Hardy–Krause variation by Fang et al. [6]
differ from our model class, it is an interesting question whether VTF can attain the
fast rate s=n and dimension-independent slow rates for estimating the d -dimensional
margin of a tensor.

3.3. Optimality

To answer the question whether our rates are optimal or not, we refer to two publica-
tions. For fast rates involving the effective sparsity we refer to [30]. For slow rates we
refer to [31].

3.3.1. Fast rates. The paper by van de Geer [30] shows a lower bound on the mean
squared error of the Lasso in the noisy case scaling as �2�2. It also shows that the
bound on the effective sparsity for d D 1 and k D 1 is tight in the noiseless case.
The result can be easily extended to show that also the bound on the effective spar-
sity for general d and k 2 ¹1; 2; 3; 4º is tight in the noiseless case up to constants,
see Appendix E. We therefore conjecture that the only way to improve on the error
bound would be by enabling a smaller choice of the tuning parameter �. This could
be achieved if we were able to find a smaller estimate for the inverse scaling factor z
 .

3.3.2. Slow rates. The paper by van de Geer and Hinz [31] shows that the theory
used to prove slow rates in this paper is optimal, up to logarithmic terms. In particular,
it shows that bounds on the entropy of a class of functions imply tight bounds on the
inverse scaling factor z
 up to log terms.

Since entropy bounds on the class of functions we consider are not known, our
estimate of the inverse scaling factor z
 may not be tight and therefore the rate could
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be improved. To provide bounds on the class of functions of bounded Vitali vari-
ation is a future research question in the field of approximation theory. This could
help us answer the question whether the optimal rate for the estimation of the d -
dimensional margin of a tensor depends on d or not. For a standard Hölder class with
smoothness k the minimax rate would be n�2k=.2kCd/, while for the Hölder class with
smoothness dk the minimax rate would be n�2k=.2kC1/ for all d � 1. The rate pro-
vided by Theorem 3.2 lies in between these two rates. Intuitively, requiring bounded
kth-order Vitali variation of the d -dimensional margin is a weaker constraint than the
requirement of the Hölder class with smoothness dk, since only derivatives of order k
are needed in all directions. However, since the class of functions with bounded Vitali
total variation is not a standard class it is not yet clear which minimax rate to expect.

The approach we present here penalizes differences of the same order along all
coordinates and can thus be seen as an isotropic approach. However, one could adapt
the framework we present to penalize differences of possibly different orders along
different coordinates in an anisotropic approach. This would allow to handle more
general smoothness classes too.

4. Synthesis form

According to Definition 2.3, the trend filtering estimator is an analysis estimator. In
this section we want to rewrite it in a constructive form, that is, in synthesis form.
We show that the trend filtering estimator can be constructed as a linear combina-
tion of tensors with product structure, where the factors are truncated monomials of
order k � 1. We call the collection of such tensors the “dictionary”.

We first define the dictionary and then show that it is the right dictionary to con-
struct the trend filtering estimator.

We start with the one-dimensional case. We then obtain the d -dimensional dic-
tionary from the one-dimensional dictionary by constructing tensors with product
structure.

4.1. Dictionary for d D 1

Let �1j WD ¹1¹j 0�j ººj 02Œn�; j 2 Œn�. The vectors ¹�1j ºj2Œn� are linearly independent and
piecewise constant.

For 2 � k � n � 1, define recursively

�kj WD

(
�
j
j ; j 2 Œk � 1�;P
l�j �

k�1
l

=n; j 2 Œk W n�:

We call the collection ˆk D ¹�kj ºj2Œn� the “original” dictionary.
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The dictionary ˆk is a collection of n linearly independent discrete (truncated)
monomials: the first k are monomials of order 0; 1; : : : ; k � 1, while the last n� k are
truncated monomials of order k � 1.

We now define a partially orthonormalized version of the dictionaryˆk , k2 Œn�1�.

Definition 4.1 (Partially orthonormalized dictionary in one dimension). The (par-
tially orthonormalized) dictionary ẑ k D ¹z�kj ºj2Œn� is defined as

z�kj WD

˚
p
nA
¹�l

l
;l2Œj�1�º�

j
j =kA¹�l

l
;l2Œj�1�º�

j
j k2; j 2 Œk�;

A
¹�l

l
;l2Œk�º�

k
j ; j 2 Œk C 1 W n�:

For k 2 Œn � 1�, ẑ k D ¹z�kj ºj2Œn� is again a collection of n linearly independent
vectors, where z�k1 ; : : : ; z�

k
k
; ¹z�kj ºj2ŒkC1Wn� are mutually orthogonal. Moreover,

kz�kj k
2
2 D n; j 2 Œk�:

Lemma 4.2 (Relation between dictionary and difference operator). Fix k 2 Œn � 1�.
It holds that

Dk�kj D D
k z�kj D

(
0; j 2 Œk�;

1¹j º; j 2 Œk C 1 W n�:

Proof. See Appendix B.1.

As a consequence of Lemma 4.2, ¹z�jj ºj2Œk� is an orthogonal basis for Nk . More-
over, ¹z�kj ºj2ŒkC1Wn� span N ?

k
.

By Lemma 4.2 combined with Lemma 2.2 in [15] about the Moore–Penrose pseu-
doinverse we obtain for the pseudoinverse .Dk/C that .Dk/C D ¹z�kj ºj2ŒkC1Wn�.

With the dictionary ẑ k and some coefficients ¹ ǰ ºnjDkC1 we can write a vector
fN?

k
2 N ?

k
as fN?

k
D .Dk/Cˇ. Then ˇ D DkfN?

k
.

For d D 1, we therefore obtain the following synthesis form of the estimator yfN?
k

:

yfN?
k
D

nX
jDkC1

z�kj
y̌
j ;

where

y̌ D arg min
b2Rn�k

°
kYN?

k
�

nX
jDkC1

bj z�
k
j k

2
2=nC 2�kbk1

±
:
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4.2. Dictionary for general d

Hereafter we fix k 2 Œ1 W minl2Œd� nl � 1�.

Definition 4.3 (Partially orthonormalized dictionary in d -dimensions). The dictio-
nary ¹z�kj1;:::;jd

2 Rn1�����nd º
n1;:::;nd

1;:::;1 is defined as

z�kj1;:::;jd
D z�kj1

� � � � � z�kjd
; .j1; : : : ; jd / 2 I:

The dictionary ¹z�kj1;:::;jd
º
n1;:::;nd

1;:::;1 is a collection of d -dimensional tensors with
product structure. By Lemma 4.2 and the product structure,

N ?k D span
�
¹z�kj1;:::;jd

º
n1;:::;nd

kC1;:::;kC1

�
:

For a tensor of coefficients ¹ ǰ1;:::;jd
º
n1;:::;nd

kC1;:::;kC1
, write

fN?
k
D

n1;:::;ndX
kC1;:::;kC1

ǰ1;:::;jd
z�kj1;:::;jd

:

Because of the product structure of z�kj1;:::;jd
it holds that

DkfN?
k
D

n1;:::;ndX
kC1;:::;kC1

ǰ1;:::;jd

�
1¹j1º

� � � � � 1¹jd º

�
D ˇ:

From the fact that any candidate estimator has to belong to the space spanned by YN?
k

,
it follows that

yfN?
k
D

n1;:::;ndX
kC1;:::;kC1

y̌
j1;:::;jd

z�kj1;:::;jd
;

where

y̌ D arg min
b2R.n1�k/�����.nd�k/

°
kYN?

k
�

n1;:::;ndX
kC1;:::;kC1

bj1;:::;jd
z�kj1;:::;jd

k
2
2=nC 2�kbk1

±
:

The synthesis form of the estimator yfN?
k

is useful in two ways. Firstly, to determine
the structure of the estimator by specifying the dictionary used to construct it. In our
case, yfN?

k
is a linear combination of d -dimensional products of .k � 1/th-order poly-

nomials. Secondly, the dictionary facilitates the approximation of some orthogonal
projections in the proof of adaptive `0-rates and not-so-slow `1-rates.
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5. Adaptivity

In this section we first expose some notation for our main result. After having exposed
our main result, Theorem 5.2, we work out explicit expressions for the bound on the
antiprojections zv, the inverse scaling factor z
 and the noise weights v. Finally, we
show a bound on the effective sparsity via a suitable interpolating tensor. In Sec-
tion 5.7 we put the pieces together to prove Theorem 5.2.

Fix k 2 Œ1 W mini2Œd� ni � 1� and an active set S � �i2Œd�Œk C 2 W ni � k�.
To every jump location in S , we associate a hyperrectangle of kd additional jump

locations to obtain the enlarged active set zS , defined as

zS WD

s[
mD1

�
�i2Œd�Œti;m W ti;m C k � 1�

�
:

Definition 5.1 (Hyperrectangular tessellation). We call ¹RmºsmD1 a hyperrectangular
tessellation of �i2Œd�Œk C 1 W ni � if it satisfies the following conditions:

� each Rm � �i2Œd�Œk C 1 W ni � is a hyperrectangle for m 2 Œs�;

� [smD1Rm D �i2Œd�Œk C 1 W ni �;

� for all m and m0 ¤ m, the hyperrectangles Rm and Rm0 possibly share boundary
points but not interior points;

� for all m, the points �i2Œd�Œti;m W ti;m C k � 1� are interior points of Rm.

For a hyperrectangular tessellation ¹RmºsmD1 we denote the vertices of the hyper-
rectangle Rm by .tz1

1;m; : : : ; t
zd

d;m
/; .z1; : : : ; zd / 2 ¹�;Cº

d for m 2 Œs�.
Moreover, we define the distances of the jump locations from the vertices of their

respective hyperrectangle and the respective set of indices as

d�i;m WD .ti;m � t
�
i;m/; R�i;m WD Œt

�
i;m W ti;m�;

d0i;m WD k; R0i;m WD Œti;m W ti;m C k � 1�;

dCi;m WD .t
C

i;m � ti;m � k C 1/; RCi;m WD Œti;m C k � 1 W t
C

i;m�;

for i 2 Œd � and m 2 Œs�. Each hyperrectangle Rm of the hyperrectangular tessellation
¹Rmºm2Œs� can be partitioned into 3d hyperrectangles. Define, for all .z1; : : : ; zd / 2
¹�; 0;Cºd ,

Rz1���zd
m WD R

z1

1;m � � � � �R
zd

d;m
; m 2 Œs�:

For m 2 Œs�, let

d z1���zd
m WD d

z1

1;m � : : : � d
zd

d;m
; ¹z1; : : : ; zd º 2 ¹�;Cº

d :
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d
C;�
m

d
�;�
m d

�;C
m

d
C;C
m

.tC1;m; t
�
2;m/

.tC1;m; t
C
2;m/

.t�1;m; t
C
2;m/.t�1;m; t

�
2;m/

.t1;m; t
�
2;m/

.t1;m C k � 1; t
�
2;m/

.t�1;m; t2;m/ .tC1;m; t2;m C k � 1/

dC1;m

d�1;m

d�2;m dC2;m

Figure 1. A rectangle of the tessellation ¹Rmº
s
mD1

for d D 2 and k D 4.

We define the maximal distance from an (enlarged) jump location to the boundary
of the corresponding rectangular region along the coordinate i 2 Œd � as

di;max.S/ WD max
m2Œ1Ws�

max¹d�i;m; d
C

i;mº:

For d D 2 and k D 4, a rectangle of the tessellation is depicted in Figure 1.

5.1. Main result

We present our main result, that shows that Vitali trend filtering leads to an adaptive
estimation of the d -dimensional margin f 0

N?
k

of f 0.

Theorem 5.2 (Adaptivity of Vitali trend filtering). Fix k2¹1;2;3;4º and choose x; t >0.
Let g 2 Rn1�����nd be arbitrary. Let S be an arbitrary subset of size s WD jS j of
�i2Œd�ŒkC 1C .kC 2/k W ni � kC 1� .kC 2/k�. For a large enough constantC > 0
that only depends on k, choose

� � C d

p
dX
iD1

�
di;max.S/

ni

�2k�1
�0.t/:



Tensor denoising with trend filtering 105

Then, with probability at least 1 � e�x � e�t , it holds that

k. yf � f 0/N?
k
k
2
2=n � kg � f

0

N?
k

k
2
2=nC 4�k.D

kg/�Sk1 C
2�2

n

�p
x C
p
ks
�2

CO

�
�2
� dX
iD1

log
�
edi;max.S/

�� sX
mD1

X
z2¹�;Cºd

�
n

d zm

�2k�1�
:

In particular, the constraint on C is

C �
k.2k�1/=2

a0
with a0 D

†
1; k D 1;

8
p
2=7 � 1:62; k D 2;

144
p
3=76 � 3:28; k D 3;

10:10; k D 4;

as mini2Œd� minm2Œs� min¹d�i;m; d
C

i;mº ! 1.

Proof. See Section 5.7.

By choosing x � t � logn in Theorem 5.2 and by constraining the active set S to
be a regular grid we retrieve Theorem 3.1. In that case, since S is a regular grid, we
can choose � � s�.2k�1/=2d�0.log.2n// and the oracle inequality has the rate

O

�
s2k�..2k�1/=d/

n
log.n=s/ logn

�
:

Remark 5.3 (The role of the hyperrectangular tessellation). Given an active set S ,
the choice of a hyperrectangular tessellation in Theorem 5.2 can be seen as arbitrary.

Remark 5.4 (Minimum length condition). In opposition to results for d D 1 by
Guntuboyina et al. [9], Theorem 5.2 does not explicitly require a minimum length
condition on the active set S . For d D 1, we can interpret the minimum length con-
dition as a condition saying that d�1;1 � d

C
1;1 � � � � � d

�
s;1 � d

C
s;1. If S approximately

satisfies a minimum length condition, then the estimation error has a faster rate than
if S does not satisfy the minimum length condition.

Theorem 5.2 is an oracle inequality and S can be interpreted as a free parameter. If
the true active set S0 of f 0 does not satisfy some kind of minimum length condition,
then the upper bound of Theorem 5.2 still holds for a choice of S which could give
place to a faster rate for the estimation error by being closer to satisfying the minimum
length condition at the price of allowing for an approximation error of f 0.

Note that also the lower bound on the choice of the tuning parameter � depends on
the structure of the active set S and is smaller when the elements of S approximately
satisfy a minimum length condition.
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5.2. Some definitions

We introduce some quantities on which Theorem 5.2 relies: the bound on the antipro-
jections zv, the inverse scaling factor z
 , the noise weights v, a sign configuration q and
the effective sparsity �2

Dk .
Let zS be the enlarged active set induced by some active set S . Let P zS be the

orthogonal projection operator on span.¹z�kj1;:::;jd
º.j1;:::;jd /2 zS

/.

Definition 5.5 (Bound on the antiprojections). A bound on the antiprojections is a
tensor zv 2 R.n1�k/�����.nd�k/ such that

zvj1;:::;jd
� k.I � P zS /z�

k
j1;:::;jd

k2=
p
n; 8.j1; : : : ; jd / 2 �i2Œd�Œk C 1 W ni �:

Let zv be a bound on the antiprojections.

Definition 5.6 (Inverse scaling factor). The inverse scaling factor z
 2 R is defined
as z
 WD kzv

�zSk1.

Let zv be a bound on the antiprojections and Q
 the corresponding inverse scaling
factor.

Definition 5.7 (Noise weights). The noise weights v 2R.n1�k/�����.nd�k/ are defined
as v � zv=z
 2 Œ0; 1�.n1�k/�����.nd�k/.

We can now introduce the effective sparsity. The effective sparsity depends on a
so-called “sign configuration”, that is, on the sign pattern associated with the jump
locations.

Definition 5.8 (Sign configuration). Let q 2 Œ�1; 1�.n1�k/�����.nd�k/ be such that

qj1;:::;jd
2

‚
¹�1;C1º; .j1; : : : ; jd / D tm 2 S;

¹qtmº; .j1; : : : ; jd / 2 �i2Œd�Œti;m W ti;m C k � 1�; m 2 Œs�;

Œ�1; 1�; .j1; : : : ; jd / … zS:

We call qS 2 ¹�1; 0; 1º.n1�k/�����.nd�k/ a sign configuration.

The basic definition of effective sparsity depends on the sign configuration asso-
ciated with S . One can however remove this dependence by defining the effective
sparsity as the maximum over all sign configurations.
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Definition 5.9 (Effective sparsity). Let an active set S , a sign configuration qS and
noise weights v be given. The effective sparsity �2

Dk .S; v�S ; qS / 2 R is defined as

�Dk .S; v�S ; qS /

WD max
° sX
mD1

.qS /tm.D
kf /tm � k.1 � v/�S ˇ .D

kf /�Sk1 W kf k
2
2=n D 1

±
:

Moreover, we write

�2
Dk .S; v�S / WD max

qS

�2
Dk .S; v�S ; qS /:

By the adaptive bound of Theorem 2.2 in [19] (see also Theorem 2.1 in [18] and
Theorem 16 in [17] modified with an enlarged active set), we know that bounding the
effective sparsity is a sufficient condition for proving adaptation of yfN?

k
.

5.3. Effective sparsity via interpolating tensors

To bound the effective sparsity we extend the technique by Ortelli and van de Geer [19]
involving interpolating vectors to interpolating tensors, i.e., tensors that interpolate the
signs of the jumps.

Definition 5.10 (Interpolating tensor). Let qS 2 ¹�1; 0; 1º.n1�k/�����.nd�k/ be a sign
configuration and v 2 Œ0; 1�.n1�k/�����.nd�k/ be a tensor of noise weights. The tensor
w.qS / 2 R.n1�k/�����.nd�k/ is called an interpolating tensor for the sign configura-
tion qS and the weights v if it has the following properties:

� wj1;:::;jd
.qS / D .qS /tm , 8.j1; : : : ; jd / 2 �i2Œd�Œti;m W ti;m C k � 1�, 8m 2 Œs�,

� jwj1;:::;jd
.qS /j � 1 � vj1;:::;jd

; 8.j1; : : : ; jd / 2
�
�i2Œd�Œk W ni �

�
n zS .

With the help of an interpolating tensor we can bound the effective sparsity, as the
following lemma shows ([19, Lemma 2.4] in tensor form).

Lemma 5.11 (Bounding the effective sparsity with an interpolating tensor). We have

�2
Dk .S; v�S ; qS / � n min

w.qS /
k.Dk/0w.qS /k

2
2;

where the minimum is over all interpolating tensors w.qS / for the sign configura-
tion qS .
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Proof. It holds that

sX
mD1

.qS /tm.D
kf /tm � k.1 � v/�S ˇ .D

kf /�Sk1

�

sX
mD1

.qS /tm.D
kf /tm � kw.qS /�S ˇ .D

kf /�Sk1

�

n1;:::;ndX
2;:::;2

w.qS /j1;:::;jd
.Dkf /j1;:::;jd

D

n1;:::;ndX
1;:::;1

..Dk/0w.qS //j1;:::;jd
fj1;:::;jd

�
p
nk.Dk/0w.qS /k2kf k2=

p
n:

5.4. Requirements on an interpolating tensor

Theorem 5.2 follows by a bound on the effective sparsity obtained by Lemma 5.11
with the help of an interpolating tensor. In the definition of an interpolating tensor
(cf. Definition 5.10), there is a constraint posed by the noise weights v.

Therefore, we now calculate in Section 5.5 a bound on the antiprojections zv to
derive an appropriate inverse scaling factor z
 and noise weights v. In this way we will
make explicit the constraints that the interpolating tensor has to satisfy in the specific
case of tensor denoising with trend filtering.

After that, we will show in Section 5.6 an explicit form for the interpolating tensor
for k 2 ¹1; 2; 3; 4º and derive the corresponding bound on the effective sparsity.

That bound on the effective sparsity combined with the fact that the interpolating
tensor used indeed is an interpolating tensor for trend filtering will allow us to derive
Theorem 5.2 from Theorem A.1.

5.5. Antiprojections, inverse scaling factor and noise weights

We start by finding a bound on the antiprojections zv.
Define, for m 2 Œs� and i 2 Œd �,

zv2i;m.ji / D

˚�
ti;m � ji

ni

�2k�1
; ji 2 R

�
i;m D Œt

�
i;m W ti;m�;

0; ji 2 R
0
i;m D Œti;m W ti;m C k � 1�;�

ji � ti;m � k C 1

ni

�2k�1
; ji 2 R

C

i;m D Œti;m C k � 1 W t
C

i;m�:
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Moreover, for .j1; : : : ; jd / 2 Rm we define

zvj1;:::;jd
WD

p
dX
iD1

zv2i;m.ji / :

Lemma 5.12 (A valid bound on the antiprojections). For all .j1; : : : ; jd / 2 Rm and
for all m 2 Œs� it holds that

kA zS z�
k
j1;:::;jd

k
2
2=n � zv

2
j1;:::;jd

;

i.e., the tensor zv 2 R.n1�k/�����.nd�k/ is a valid bound on the antiprojections.

Proof. See Appendix C.1.

Define, for m 2 Œs� and i 2 Œd �,

v2i;m.ji / D

˚�
ti;m � ji

d�i;m

�2k�1
; ji 2 R

�
i;m D Œt

�
i;m W ti;m�;

0; ji 2 R
0
i;m D Œti;m W ti;m C k � 1�;�

ji � ti;m � k C 1

dCi;m

�2k�1
; ji 2 R

C

i;m D Œti;m C k � 1 W t
C

i;m�:

For a constant C D C.k/ � 1, we define for .j1; : : : ; jd / 2 Rm and m 2 Œs�

vj1;:::;jd
WD

1

d

dX
iD1

vi;m.ji /

C
(5.1)

and

z
 D Cd

p
dX
iD1

�
di;max.S/

ni

�2k�1
:

Lemma 5.13 (Valid noise weights). For all m 2 Œs� and for all .j1; : : : ; jd / 2 Rm it
holds that

zvj1;:::;jd
� vj1;:::;jd

z
;

i.e., the tensor v 2 R.n1�k/�����.nd�k/ in equation (5.1) defines valid noise weights.

Proof. See Appendix C.2.

The constantC � 1 in equation (5.1) can be chosen arbitrarily. Choosing a largerC
makes the noise weights smaller. As a result, the requirements imposed on the inter-
polating tensor by the noise weights become weaker.
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5.6. Bound on the effective sparsity for trend filtering

We now define an interpolating tensor w D w.qS / for any sign configuration qS .
For .j1; : : : ; jd / 2 Rm; m 2 Œs� and the same constant C D C.k/ > 0 as in the

definition of the noise weights in equation (5.1), define the tensor

wj1;:::;jd
.qS / WD

1

d

dX
iD1

dY
lD1

wl;i;m.jl/; (5.2)

where,

wl;i;m.jl/ D qtm ; jl 2 R
0
l;m; l ¤ i;

wl;i;m.jl/ 2 Œ0; qtm �; jl 2 R
�
l;m [R

C

l;m
; l ¤ i;

wi;i;m.ji / D qtm ; ji 2 R
0
i;m; l D i;

jwi;i;m.ji /j � 1 � vi;m.ji /=C; ji 2 R
�
l;m [R

C

l;m
; l D i:

What differentiates the case l D i is thatwi;i;m has to satisfy the requirements imposed
by the noise weights. For l ¤ i the only constraint imposed is that jwl;i;mj � 1. The
tensor w is a sum of terms with product structure if constrained to the set of indices
of a hyperrectangle Rm.

We define w�
l;i;m
WD ¹wl;i;m.jl/ºjl2R

�
i;m

and wC
l;i;m
WD ¹wl;i;m.jl/ºjl2R

C

i;m

.

Lemma 5.14 (A valid interpolating tensor). For any given sign configuration qS , the
tensor w D w.qS / defined in equation (5.2) is a valid interpolating tensor.

Proof. See Appendix C.3.

5.6.1. Matching derivatives. We now want to find the explicit form of an appro-
priate interpolating tensor w, to apply in Lemma 5.11. We first consider continuous
versions !.x/, respectively w.x/, of the vectors w�i;i;m and wCi;i;m, respectively w�

l;i;m

and wC
l;i;m

for l ¤ i , on a mock interval x 2 Œ0; 1�. We then set

w�i;i;m.ji / WD !

�
ti;m � ji

d�i;m

�
; ji 2 R

�
i;m;

wCi;i;m.ji / WD !

�
ji � ti;m � k C 1

dCi;m

�
; ji 2 R

C

i;m;

w�l;i;m.jl/ WD w
�
tl;m � jl

d�
l;m

�
; jl 2 R

�
l;m;

wC
l;i;m

.jl/ WD w
�
jl � tl;m � k C 1

dC
l;m

�
; jl 2 R

C

l;m
;

for i 2 Œd �, l ¤ i , m 2 Œs�.
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We aim to find a form of ! and w giving place to continuous functions with
k � 1 continuous derivatives and piecewise constant kth derivative. Moreover, these
functions have to be interpolating between the jump location (x D 0) and the bor-
der (x D 1). We guarantee that they interpolate the signs of the jumps by restricting
to polynomials with

!.0/ D 1; !.1/ D 0;

w.0/ D 1; w.1/ D 0; w.x/ D 1 � w.1 � x/; x 2 Œ0; 1�:

The discretized version of these polynomials will vanish at the boundaries of the
hyperrectangles while it will have the value 1 at the indices belonging to the enlarged
active set zS , guaranteeing the interpolation of the signs of the jump locations. More-
over, we will have to choose the constant C > 0 in equation (5.1) such that the noise
weights are made small enough for the interpolating polynomial to satisfy the condi-
tions of Lemma 5.14.

To obtain interpolating polynomials ! and w, we split the interval Œ0; 1� into an
adequate number of subintervals. We then choose ! and w to be made of polynomial
pieces of order at most k. The exception is the first subinterval Œ0; x1�, x1 2 .0; 1�
for !, where we choose !.x/ D 1 � a0x.2k�1/=2. We then find the explicit values of
the coefficients of the polynomials by derivative matching, as in [19]. More details on
derivative matching are given in the Appendix C.4.

To guarantee that ! and w can give place to interpolating tensors, one has to
check that derivative matching renders a piecewise polynomial which is monotone.
Monotonicity combined with the constraints !.0/ D w.0/ D 1 and !.1/ D w.1/ D 0
ensures that j!.x/j � 1 and jw.x/j � 1.

Monotone interpolating polynomials ! and w and a large enough C in the tuning
parameter are sufficient conditions for a valid interpolating tensor. In particular, given
that ! is monotone, we require that

C � k
2k�1

2 =a0 as min
i2Œd�

min
m2Œs�

min¹d�i;m; d
C

i;mº ! 1: (5.3)

Note that for the construction of w, we do not have any constraint given by the antipro-
jections zv, the noise weights v and the inverse scaling factor z
 . Therefore, we can take
the dependence on xk instead of x.2k�1/=2. This saves a logarithmic term, not visible
in Lemma 5.15, which only contains the logarithmic terms stemming from !. Indeed,
as Lemma C.1 in Appendix C.5 shows, partial integration of a kth-order polynomial
does not incur in log terms, while partial integration of x.2k�1/=2 does so. We have
to choose the worse dependence on x.2k�1/=2 for ! though, because ! has to respect
the constraints posed by the noise weights.
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5.6.2. A bound on the effective sparsity. We now show a bound on the effective
sparsity, using a “candidate” interpolating tensor generated from the discretizations
of ! and w, whose construction has been exposed above. We call it “candidate” inter-
polating tensor because we have not yet shown that ! and w are monotone. For the
moment we assume that matching derivatives renders monotone ! and w. We check
the monotonicity for k 2 ¹1; 2; 3; 4º in the next section.

To make the notation and the computation steps lighter, we neglect the constants
and use the order notation O instead.

Since the sign configuration qS is typically unknown, we focus on finding an
upper bound on the effective sparsity that does not depend on the sign configura-
tion qS . Thus, the bound also accommodates for the worst-case sign configuration.

Lemma 5.15 (Effective sparsity for trend filtering). Take the interpolating vector w
as defined in equation (5.2). Choose the vectors w�i;i;m and wCi;i;m, respectively w�

l;i;m

and wC
l;i;m

for l ¤ i , to be discretized versions of !.x/ and w.x/ as in Section 5.6.1.
Assume that !.x/ and w.x/ obtained by derivative matching are monotone.

For such an interpolating vector w, it holds that

�2D.S; v�S / D O

�� dX
iD1

log.edi;max.S//

� sX
mD1

X
z2¹�;Cºd

�
n

d zm

�2k�1�
:

Proof. See Appendix C.6.

From Lemma C.1 and the matching of discrete derivatives, it follows that, if !
and w are monotone and C is chosen large enough

�2D.S; v�S / D O

�� dX
iD1

log.edi;max.S//

� sX
mD1

X
z2¹�;Cºd

�
n

d zm

�2k�1�
:

If the active set S defines a regular grid we therefore have a bound on the effective
sparsity of order

�2D.S; v�S / D O
�
s2k log.n=s/

�
:

It only remains to check the monotonicity of ! and w. We will do this for k 2
¹1;2;3;4º. One can check monotonicity for higher values of k by solving (for instance
at the computer) the appropriate system of equations and, say, graphically visualizing
the result. We check monotonicity analytically for k 2 ¹1; 2; 3º and computationally
for k D 4.
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5.6.3. Interpolating tensor for k D 1. For k D 1

!.x/ D 1 �
p
x; x 2 Œ0; 1�;

w.x/ D 1 � x; x 2 Œ0; 1�:

Both ! and w are monotone.

5.6.4. Interpolating tensor for k D 2. For k D 2

!.x/ D

(
1 � 8

p
2
7
x3=2; x 2 Œ0; 1=2�;

12
7
.1 � x/2; x 2 Œ1=2; 1�;

w.x/ D

(
1 � 8

3
x2; x 2 Œ0; 1=4�;

4
3

�
1
2
� x

�
C

1
2
; x 2 Œ1=4; 1=2�:

Both ! and w are monotone.

5.6.5. Interpolating tensor for k D 3. For k D 3

!.x/ D

‚
1 � 144

p
3

76
x5=2; x 2 Œ0; 1=3�;

585
76
x3 � 45

4
x2 C 255

76
x C 145

228
; x 2 Œ1=3; 2=3�;

315
76
.1 � x/3; x 2 Œ2=3; 1�;

w.x/ D

(
1 � 16

3
x3; x 2 Œ0; 1=4�;

�
16
3

�
1
2
� x

�3
C 2

�
1
2
� x

�
C

1
2
; x 2 Œ1=4; 1=2�:

Both ! and w are monotone.

5.6.6. Interpolating tensor for k D 4. For k D 4

!.x/ D

†
1 � 7:29x7=2; x 2 Œ0; 1=4�;

27:39x4 � 35:36x3 C 12:26x2 � 2:01x C 1:12; x 2 Œ1=4; 1=2�;

�29:51x4 C 78:43x3 � 73:08x2 C 26:44x � 2:43; x 2 Œ1=2; 3=4�;

10:10.1 � x/4; x 2 Œ3=4; 1�;

w.x/ D

‚
1 � 16:2x4; x 2 Œ0; 1=6�;

27x4 � 28:8x3 C 7:2x2 � 0:8x C 1:03; x 2 Œ1=6; 1=3�;

�7:2
�
1
2
� x

�3
C 2:2

�
1
2
� x

�
C

1
2
; x 2 Œ1=3; 1=2�:

Both ! and w are monotone.
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5.7. Proof of Theorem 5.2

Theorem 5.2 follows by combining Theorem A.1 with a bound on the effective spar-
sity.

Lemma 5.15 uses Lemma 5.11 to give a bound on the effective sparsity holding
for all sign configurations. This bound is based on a specific form of the interpolating
tensor, obtained by derivative matching as explained in Section 5.6.1. The interpolat-
ing tensor obtained by derivative matching is valid if the monotonicity of ! and w is
guaranteed. In Sections 5.6.3–5.6.6 we check that the interpolating tensors obtained
by derivative matching for k D ¹1; 2; 3; 4º satisfy the monotonicity requirement.

An interpolating vector also has to satisfy a constraint posed by the noise weights v
and by the constant C . Lemma 5.12 gives a valid bound on the antiprojections. If we
choose

z
 D Cd

p
dX
iD1

�
di;max.S/

ni

�2k�1
the noise weights given in equation (5.1) are valid noise weights, according to Lem-
ma 5.13. By Lemma 5.14, an interpolating tensor of the form given in equation (5.2)
is a valid interpolating tensor. The tensor obtained by the discretization of the result
of derivative matching has such a form (as minm2Œs� mini2Œd� min¹d�i;m; d

C

i;mº ! 1).
According to equation (5.3) in Section 5.6.1 one has to choose

C � k
2k�1

2 =a0 as min
i2Œd�

min
m2Œs�

min¹d�i;m; d
C

i;mº ! 1:

The values of a0 are given in Sections 5.6.3–5.6.6.
Theorem 2.2 in [19], upon which Theorem A.1 is based, uses a bound on the

increments of empirical process ¹"0f;f 2Rnº, where " has i.i.d. entries. Theorem A.1
involves in the background an empirical process, whose increments are given by° n1;:::;ndX

1;:::;1

."N?
k
ˇ f /j1;:::;jd

; f 2 Rn1�����nd

±
:

Note that the entries of "N?
k
D PN?

k
" are correlated. However, by the idempotence of

orthogonal projections, we can work with uncorrelated errors and instead restrict to
tensors fN?

k
2 N ?

k
. Indeed

n1;:::;ndX
1;:::;1

."N?
k
ˇ f /j1;:::;jd

D

n1;:::;ndX
1;:::;1

."ˇ fN?
k
/j1;:::;jd

:

This allows us to take over the arguments of Theorem 2.2 in [19].
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Remark 5.16 (The influence of the dimensionality). If we choose � � z
�0.t/, the
rate of the oracle inequality is

z
2
sX

mD1

X
z2¹�;Cºd

.n=d zm/
2k�1=n;

up to logarithmic factors. For simplicity, let S define a regular grid. Then the (hyper-)
volume of one of the s hyperrectangles of the tessellation scales as d zm � n=s. Hence,
the scaling

sX
mD1

X
z2¹�;Cºd

.n=d zm/
2k�1

� s2k :

However, z
 , the maximal length of an antiprojection, scales as z
 � .s�1=d /.2k�1/=2,
where s�1=d � di;max=ni is proportional to the side length of a hyperrectangle of the
tessellation. The influence of the dimensionality in the exponent of s is a consequence
of the different scaling of volume and side length of a hyperrectangle in d -dimensions.
The (hyper-)volume scales as s�1, while the side length scales as s�1=d . The reason
for this discrepancy is that we are not able to find an upper bound for the noise weights
proportional the volume of the hyperrectangles, i.e., to the product of side lengths. The
bound we obtain involves rather the sum of side lengths.

6. Not-so-slow `1-rates

Theorem 3.2 about not-so-slow rates for trend filtering is based on Theorem A.2,
where the choice of the active set S is arbitrary. The criterion guiding choice of S
is to get an “as small as possible” value of the inverse scaling factor z
 . Recall that
the inverse scaling factor z
 is the maximal length of the antiprojection of a dictionary
atom z�kj1;:::;jd

onto the set of dictionary atoms indexed by the active set S , that is

z
 � max
.j1;:::;jd /2Œn1������Œnd �

kAS z�kj1;:::;jd
k2=
p
n:

The active set S could be chosen as a regular grid parallel to the coordinate axes.
However, we will show that we can shorten the maximal length of the antiprojections
by choosing an active set defining a so-called “mesh grid”, whose construction we
illustrate hereafter.

6.1. Mesh grids

Let ı 2 N. For a coordinate i 2 Œd �, we define the set of indices Zi .l/ such that

Zi .l/ D ¹ı
d=l equispaced indices in Œni �º; l 2 Œd �
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and

Zi .1/ � Zi .2/ � : : : � Zi .d/:

If, for any l 2 Œd �, ni is not a multiple of ı
d
l , we relax the requirement on the indices

to be approximately equispaced, i.e., the distance between all the indices has to be
asymptotically of the same order. For i 2 Œd �, we also define

zZi .l/ D

k�1[
hD0

¹Zi .l/C hº; l 2 Œd �:

Let now .l1; : : : ; ld / 2 Œd �
d be a tuple of indices. We define the set

� WD ¹.l1; : : : ; ld / 2 Œd �
d
W j¹i 2 Œd � W li � zºj � z; 8z 2 Œd �º:

Definition 6.1 (Mesh grid). A mesh grid S is defined as

S WD
[

.l1;:::;ld /2�

�
�i2Œd�Zi .li /

�
:

Figure 2a illustrates a mesh grid for d D 2.
We now want to enlarge a mesh grid S to allow us to handle kth-order trend

filtering for k > 1.

Definition 6.2 (Enlarged mesh grid). An enlarged mesh grid zS is defined as

zS WD
[

.l1;:::;ld /2�

�
�i2Œd�

zZi .li /
�
:

Figure 2b illustrates an enlarged mesh grid for d D 2 and k D 2.
Let s WD jS j and zs WD j zS j. It holds that

s � zs �

dY
iD1

ı
d
i � ıdH.d/;

where H.d/ D
Pd
iD1 1=i is the d th harmonic number. Therefore, ı � s

1
dH.d/ .

6.2. The inverse scaling factor when zS is an enlarged mesh grid

We will now show that we can find a smaller bound on the inverse scaling factor if we
choose zS to be an enlarged mesh grid rather than an enlarged regular grid.
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(a) (b)

Figure 2. (a) Mesh grid for d D 2; (b) Enlarged mesh grid for d D 2 and k D 2.

Lemma 6.3 (Inverse scaling factor when zS is an enlarged mesh grid). Let n1�� � ��nd
and zS be an enlarged mesh grid. It holds that

z
. zS/ D O
�
s�

2k�1
2H.d/

�
:

Proof. See Appendix D.1.

6.3. Proof of Theorem 3.2

Theorem 3.2 follows from Theorem A.2. Theorem A.2 is allowed to have correlated
errors for the same reasons as Theorem A.1 is, see the proof of Theorem 5.2 in Sec-
tion 5.7.

In Theorem A.2 we set x � t � log n. We can then choose the free parame-
ters S and g 2 Rn1�����nd independently of each other. If we allow � to depend on g,
we choose S to trade off the terms z
�0.log n/kDkgk1 � z
 log1=2.n/kDkgk1=n

1=2

and s=n. Typically, we require S to have a regular structure and we obtain z
 D
O.s�h/, for some h D h.d; k/ 2 R. The trade off is achieved with

s � n
1

2.1Ch/ log
1

2.1Ch/ .n/kDkf k
1

1Ch

1

and gives the rate

n�1C
1

2.1Ch/ log
1

2.1Ch/ .n/kDkgk
1

1Ch

1 :
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Otherwise, we choose S to trade off z
�0.log n/ � z
 log1=2.n/=n1=2 and s=n.
If z
 D O.s�h/, the trade off is achieved with

s � n
1

2.1Ch/ log
1

2.1Ch/ .n/

and gives the rate

n�1C
1

2.1Ch/ log
1

2.1Ch/ .n/
�
1C kDkgk1

�
:

We choose the active set to be an enlarged mesh grid zS . Then, by Lemma 6.3, we
can choose z
 D O.s�.2k�1/=2H.d/

�
and the claim follows.

Remark 6.4 (Mesh grids vs. regular grids). If we choose a regular grid as active set,
according to Lemma 5.13 we obtain z
 � s�.2k�1/=2d and a slow rate

n�
dC2k�1

2dC2k�1 log
d

2dC2k�1 .n/;

which is slower than the rate obtained with an active set defining a mesh grid. Indeed,
for all d � 1 it holds that H.d/ � d .

In both cases, the slow rate for fixed k goes to n�1=2 log1=2.n/ as d !1. If d is
fixed, the slow rate goes to n�1 as k !1.

7. Denoising lower-dimensional margins

In the previous sections we have shown how to estimate f 0
N?

k

by trend filtering and
have established fast adaptive `0-rates and not-so-slow `1-rates. There is still an open
question: how to estimate f 0

Nk
?

If n1 � � � � � nd , the dimension of Nk is of order n1�1=d . Estimating f 0
Nk

by least
squares would result in a rate of order n�1=d and therefore be limiting for d � 2.

The approach we take is to decompose Nk into lower dimensional mutually orthog-
onal linear spaces, the so-called marginal linear spaces, to which we can apply a lower
dimensional version of trend filtering.

Let P Œd � denote the power set of Œd � WD ¹1; : : : ;dº. We consider sets of coordinate
indices M � Œd �.

The intuition behind the decomposition into margins is to partition the set of tensor
indices into 2d subsets as�

Œ1 W k� [ Œk C 1 W n1�
�
� � � � �

�
Œ1 W k� [ Œk C 1 W nd �

�
:

For M 2 P Œd � define the set of indices

I kM D �i2M Œk C 1 W ni ��i 62M Œ1 W k�:
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We moreover define the linear spaces

M.M/ D span
®
z�kk1;:::;kd

; .k1; : : : ; kd / 2 I
k
M

¯
; M 2 P Œd �:

Note that in one dimension, ¹z�kj ºj2Œk� and ¹z�kj ºj2ŒkC1Wn� are orthogonal to each
other. Moreover, M4M 0 ¤ ;, for M ¤ M 0 2 P Œd �. Because of the product struc-
ture of the dictionary atoms spanning M this means that any M.M/ and M.M 0/ are
mutually orthogonal, for M ¤M 0.

The mutually orthogonal marginal linear subspaces ¹M.M/ºM2P Œd� partition
Rn1�����nd . The dimension of M.M/ is given by

kd�jM j
Y
i2M

.ni � k/:

By the multi-binomial theorem it holds that

dY
iD1

ni D
X

M2P Œd�

kd�jM j
Y
i2M

.ni � k/

for k 2 Œ0 W minl2Œd� nl � 1�. This means thatX
M2P Œd�

dim.M.M// D n

and because ¹M.M/ºM2P Œd� are mutually orthogonal it follows that they also parti-
tion Rn1�����nd .

We can further partition any M.M/ into kd�jM j mutually orthogonal subspaces
M.M; h/, h 2 Œ1 W k�d�jM j.

The partition results by defining the set of indices

I kM;h WD
�
�i2M Œk C 1 W ni �

�
�
�
�i 62M ¹hiº

�
and the linear subspaces

M.M; h/ WD span
®
z�kk1;:::;kd

; .k1; : : : ; kd / 2 I
k
M;h

¯
:

Again, ¹M.M;h/ºh2Œk�d�jM j;M2P Œd� are mutually orthogonal and partition Rn1�����nd.

Definition 7.1 (ANOVA decomposition). The decomposition of a tensor f as

f D
X

M2P Œd�

X
h2Œ1Wk�d�jM j

fM.M;h/

is called ANOVA decomposition.
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By orthogonality we have that

kf k22 D
X

M2P Œd�

X
h2Œ1Wk�d�jM j

kfM.M;h/k
2
2:

7.1. Margins as lower dimensional objects

Our aim is to apply a lower dimensional version of trend filtering to estimate f 0
M.M;h/

,
forM ¤ ;. ForM D ; it holds that jI kMD;j D k

d DO.1/. We will therefore estimate
f 0

M.;;h/
by the least squares estimate YM.;;h/ at the parametric rate n�1.

To apply a lower dimensional version of trend filtering to estimate f 0
M.M;h/

we
first need to reinterpret fM.M;h/ as a jM j-dimensional tensor. We then need to justify
why we can apply Theorems A.1 and A.2 which require i.i.d. errors and are at the
core of the adaptive rates by Theorem 5.2 and the not-so-slow rates by Theorem 3.2.

By writing

fM.M;h/ D
xfM.M;h/ �

�
�i 62M

z�khi

�
; xfM.M;h/ 2 R�i2Mni ;

we can interpret fM.M;h/ as a jM j-dimensional object.
Similarly, we can write

YM.M;h/ D
xYM.M;h/ �

�
�i 62M

z�khi

�
; xYM.M;h/ 2 R�i2Mni :

Let nM WD
Q
i2M ni . Because of the (partial) product structure of fM.M;h/ and

since kz�k
hi
k22 D ni , hi 2 Œk� (cf. Definition 4.1), it holds that

kfM.M;h/k
2
2=n D k

xfM.M;h/k
2
2=nM :

Thanks to the above equation and to the ANOVA decomposition we can add up
the rates of estimation of the margins to estimate the whole tensor.

7.2. The estimator for the lower-dimensional margins

For M 2 P Œd � n ; define
Dk
M WD n

k�1
M

Y
i2M

Dk
i :

To estimate the whole tensor, we consider the estimator

yf D
X

M2P Œd�

X
h2Œk�d�jM j

yfM.M;h/;

where
yfM.M;h/ D

yxfM.M;h/ �
�
�i 62M

z�khi

�
; yxfM.M;h/ 2 R�i2Mni :
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We define
yfM.;;h/ WD

xY;;h �
�
�i2Œd�

z�khi

�
; 8h 2 Œk�d

and

yxfM.M;h/ WD arg min
xfM.M;h/2R�i2M ni

®
k xYM.M;h/ �

xfM.M;h/k
2
2=nM C 2�M;hkD

k
M
xfM.M;h/k1

¯
;

where ¹�M;h > 0; h 2 Œk�d�jM j;M 2 P Œd � n ;º are positive tuning parameters.
We call kDk

M
xfM.M;h/k1 the kth-order jM j-dimensional Vitali total variation and

yxfM.M;h/ the jM j-dimensional trend filtering estimator.

Remark 7.2 (We can apply Theorems A.1 and A.2). For xf 2 R�i2Mni it holds that

x"M.M;h/ ˇ
xf D x"M.M;h/ ˇ

xfM.M;h/

D

� X
M 0�M;h0

M
Dh

�
x"M.M 0;h0/ �

�
�i2MnM 0

z�khi

���
ˇ xfM.M;h/:

The nM entries of the tensorX
M 0�M;h0

M
Dh

�
x"M.M 0;h0/ �

�
�i2MnM 0

z�khi

��
are the coefficients of the projection of " onto the linear space spanned by .�i 62M z�khi

/�

.�i2MRni / and as such have i.i.d. N .0; �2nM=n/-distributed entries. We can there-
fore apply Theorems A.1 and A.2 with noise variance �2nM=n.

Remark 7.3 (Synthesis form for the estimator of lower dimensional margins). The
synthesis form of the estimator for the margins can be obtained in a similar way as for
the d -dimensional margin (cf. Section 4).

8. Denoising the whole tensor

We now put together the results from Sections 5 and 6 with the ANOVA decomposi-
tion given in Section 7 to show rates for the estimation of the whole tensor.

In practice, when estimating different margins of the same tensor, one can tune
the estimator for some margins to achieve slow rates and tune the estimator for other
margins to achieve fast rates.

Consider an arbitrary partition of the set of margins

¹M.M; h/ºh2Œ1Wk�d�jM j;M2P Œd�n;
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into two sets L0 and L1. Then, by tuning the estimators for the margins in L0 to
achieve the fast rates and the estimators for the margins in L1 to achieve the slow
rates, we implicitly target tensors belonging to the class®

f 2 Rn1;:::;nd W kDk
M
xfM.M;h/k0 � sM;h for M.M; h/ 2 L0;

kDk
M
xfM.M;h/k1 � CM;h for M.M; h/ 2 L1

¯
;

where, for M.M; h/ 2 L0, sM;h are integers and, for M.M; h/ 2 L1, CM;h > 0 are
constants.

Fix now k 2 ¹1; 2; 3; 4º and some L0 and L1. We restrict to tensors n1 � � � � �
nd � n

1=d .
For M.M; h/ 2 L0, we denote by SM;h a subset of I k

M;h
satisfying the conditions

for a hyperrectangular tessellation suitable for derivative matching. By d zm.SM;h/ we
denote an analogue of the quantity d zm appearing in Theorem 5.2, but defined on a
hyperrectangular tessellation of I k

M;h
generated by the enlarged version zSM;h of the

active set SM;h.
For M.M; h/ 2 L0, Let CM;h > 0 be constants of order O.1/.

Theorem 8.1 (Estimating a whole tensor by Vitali trend filtering). Let g 2Rn1�����nd

be arbitrary. For M.M; h/ 2 L0 choose

�M;h D �

 pX
i2M

�
di;max.SM;h/

ni

�2k�1
�0.logn/

!
:

Dependence of �M;h, M.M;h/ 2 L1 on g allowed. For M.M; h/ 2 L1 choose

�M;h � n
�

H.jM j/C2k�1
2H.jM j/C2k�1 log

H.jM j/
2H.jM j/C2k�1 .n/kDk

M
xfM.M;h/k

� 2k�1
2H.jM j/C2k�1

1 :

Then with probability at least 1 �‚.1=n/ it holds that

k yf � f 0k22=n � kg � f
0
k
2
2=nCO

� X
M.M;h/2L0

�M;hk.D
k
M xgM.M;h//�SM;h

k1

�

CO

� X
M.M;h/2L0

�2M;h

�X
i2M

log.edi;max.SM;h//

� sM;hX
mD1

X
z2¹�;CºjM j

�
nM

d zm.SM;h/

�2k�1�
CO

� X
M.M;h/2L1

n
�

H.jM j/C2k�1
2H.jM j/C2k�1 log

H.jM j/
2H.jM j/C2k�1 .n/kDk

M xgM.M;h/k

2H.jM j/
2H.jM j/C2k�1

1

�
:

Dependence of �M;h, M.M;h/ 2L1 on g not allowed. For M.M;h/ 2L1 choose

�M;h � n
�

H.jM j/C2k�1
2H.jM j/C2k�1 log

H.jM j/
2H.jM j/C2k�1 .n/:
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Then with probability at least 1 �‚.1=n/ it holds that

k yf � f 0k22=n � kg � f
0
k
2
2=nCO

� X
M.M;h/2L0

�M;hk.D
k
M xgM.M;h//�SM;h

k1

�

CO

� X
M.M;h/2L0

�2M;h

�X
i2M

log.edi;max.SM;h//

� sM;hX
mD1

X
z2¹�;CºjM j

�
nM

d zm.SM;h/

�2k�1�
CO

� X
M.M;h/2L1

n
�

H.jM j/C2k�1
2H.jM j/C2k�1 log

H.jM j/
2H.jM j/C2k�1 .n/

�
1C kDk

M xgM.M;h/k1

��
:

Proof of Theorem 8.1. The result follows by the ANOVA decomposition. In total there
are .k C 1/d margins. As a consequence of the union bound, the result for the esti-
mation of the whole tensor is attained with probability at least 1� e�t � e�x if in the
application of Theorems 5.2 and A.2 one chooses xCd log.kC1/ and tCd log.kC1/
instead of x and t for some x; t > 0. We choose x � t � logn.

The bounds for the margins belonging to L0 follow directly from Theorem 5.2.
The bounds for the margins belonging to L1 follow from the application of The-

orem A.2 to yxfM.M;h/ with x C d log.k C 1/ and t C d log.k C 1/. Let zSM;h be an
enlarged mesh grid. We have to trade off with respect to zsM;h � sM;h the terms

nM�
2

n

sM;h

nM
�

1

s
2k�1

H.jM j/„ ƒ‚ …
�z


�

r
nM

n

s
logn
nM„ ƒ‚ …

��0.logn/

kDk
M xgM.M;h/k1

or

nM�
2

n

sM;h

nM
�

1

s
2k�1

H.jM j/„ ƒ‚ …
�z


�

r
nM

n

s
logn
nM„ ƒ‚ …

��0.logn/

:

We therefore obtain the rates

O
�
n
�

H.jM j/C2k�1
2H.jM j/C2k�1 log

H.jM j/
2H.jM j/C2k�1 .n/kDk

M xgM.M;h/k

2H.jM j/
2H.jM j/C2k�1

1

�
or

O
�
n
�

H.jM j/C2k�1
2H.jM j/C2k�1 log

H.jM j/
2H.jM j/C2k�1 .n/.1C kDk

M xgM.M;h/k1/
�
:

Remark 8.2 (The choice of k). If L0 D ; then one can choose k � 1. As soon
as L0 ¤ ;, then one has to restrict to k 2 ¹1; 2; 3; 4º. On the opposite side, when
L0 D ;, then one can drop the restriction n1 � � � � � nd � n1=d .
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The O.2d / estimators we propose to estimate the margins are orthogonal to each
other. Summing up these orthogonal estimators leads to a single optimization problem
with O.2d / tuning parameters. Can we reduce the number of the tuning parameters
by choosing the same tuning parameter for estimating multiple margins? The answer
depends on whether we consider slow or fast rates.

In general, the optimal choice of the tuning parameter depends on the inverse
scaling factor z
 . The bounds we provide for z
 depend on the active set SM;h.

To obtain not-so-slow rates we choose SM;h to be a mesh grid and we obtain an
estimate of the inverse scaling factor z
 that depends on the dimension jM j of the mar-
gin considered. Therefore we could penalize all the margins of the same dimension
with the same tuning parameter and choose O.d/ tuning parameters instead of O.2d /.
Furthermore, if it were possible to refine the estimate of the inverse scaling factor z

such that it does not depend on the dimension jM j anymore, we would only need to
choose one tuning parameter.

To obtain fast rates, we allow for more general active sets SM;h, such that the
dependence of z
 on SM;h is more intricate. The optimal tuning might be different for
every one of the O.2d / orthogonal estimators. If we aim for optimal tuning, then we
need to choose O.2d / tuning parameters. However, if one is fine with the suboptimal
tuning which does not depend on SM;h, one could use only one tuning parameter.

9. Conclusion

We have shown that imposing structure to denoise d -dimensional tensors leads to an
adaptive reconstruction. The structure is imposed via penalties on the l-dimensional
kth-order Vitali TV of the l-dimensional margins of the tensor, for l 2 Œd �. If the
tensor is a product of polynomials on a constant number of hyperrectangles of any
dimension l � d , then the MSE is bounded as

k yf � f 0k22=n D O.log2 n=n/;

with high probability. The true tensor f 0 can therefore be reconstructed at an almost
parametric rate. The key aspects of our results are: the reformulation of the analysis
estimator in synthesis form, the interpolating tensor to bound the effective sparsity
and the ANOVA decomposition of a d -dimensional tensor. In the background of all
our results there are the projection arguments by Dalalyan et al. [4] to bound the
random part of the problem, which are fundamental to prove the adaptivity of yf to
the underlying unobserved f 0.

Note that we only prove fast rates for Vitali trend filtering of order k 2 ¹1; 2; 3; 4º.
We are not able to prove that the approach we use to find an interpolating tensor for
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k 2 ¹1; 2; 3; 4º gives a suitable interpolating tensor for general k. Thus, although for
each given finite k we can check by computer whether our construction gives a valid
interpolating tensor, the problem remains open for general k.

Possible extensions of the Vitali trend filtering would be on one side to penalize
total differences with different orders of differentiation along different coordinates –
some sort of anisotropic version of the isotropic Vitali variation considered here – and
on the other side to penalize the Vitali variation of different orders at the same time.

A. Oracle inequalities with fast and slow rates

In this section we report an oracle inequality with fast rates and one with slow rates.
These oracle inequalities correspond to the adaptive and to the non-adaptive bound of
Theorem 2.2 in [19], see also Theorems 2.1 and 2.2 in [18] and Theorems 16 and 17
in [17] adapted to have an enlarged active set.

Theorem A.1 (Oracle inequality with fast rates). Let g 2 Rn1�����nd and S � �i2Œd�
Œk C 2 W ni � k� be arbitrary. For x; t > 0, choose � � z
�0.t/. Then, with probability
at least 1 � e�x � e�t , it holds that

k. yf � f 0/N?
k
k
2
2=n � kg � f

0
N?

k
k
2
2=nC 4�k.D

kg/�Sk1

C

�
�

r
2x

n
C �

r
ks

n
C ��Dk .S; v�S ; qS /

�2
;

where qS D sign..Dkg/S /.

Theorem A.2 (Oracle inequality with slow rates). Let g 2Rn1�����nd and S ��i2Œd�
Œk C 2 W ni � k� be arbitrary. For x; t > 0, choose � � z
�0.t/. Then, with probability
at least 1 � e�x � e�t , it holds that

k. yf � f 0/N?
k
k
2
2=n � kg � f

0

N?
k

k
2
2=nC 4�kD

kgk1 C

�
�

r
2x

n
C �

r
zs

n

�2
:

B. Proofs of Section 4

B.1. Proof of Lemma 4.2

We prove Lemma 4.2 by induction.

Anchor: k D 1. Note that �11 D z�
1
1 and �1j � z�

1
j D ˛�

1
1 for some ˛ 2 R. Therefore,

D1�11 D D
1 z�11 D 0 and D1.�1j �

z�1j / D 0. It follows that

D1 z�1j D D
1�1j D 1¹j 0�j º � 1¹j 0�j�1º D 1¹j º; j 2 Œ2 W n�:
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Step: k � 1 implies k. For j 2 Œk � 1� it holds that

Dk�kj D D
k z�kj D D

k�k�1j D Dk z�k�1j D 0;

since by assumption Dk�1�k�1j D Dk�1 z�k�1j D 0 for j 2 Œk � 1�. Moreover,

Dk�kj D D
k

�X
l�j

�k�1l

�
=n D D1

�X
l�j

Dk�1�k�1l

�

D D1
¹1¹j 0�j ººj 02ŒkWn� D

(
0; j D k;

1¹j º; j 2 Œk C 1 W n�:

It also holds that
�kj �

z�kj D
X
l2Œk�

˛l�
l
l ; j 2 Œk W n�

for some ¹˛l 2 Rºl2Œk�, and therefore Dk�kj D D
k z�kj ; j 2 Œk W n�.

C. Proofs of Section 5

C.1. Proof of Lemma 5.12

To bound the antiprojections we can use the dictionary ˆk instead of ẑ k . Indeed, by
Lemma 28 in [17], it holds that

kA
¹z�k

t ;t2
zSº
z�kj k

2
2 � kA¹�k

t ;t2
zSº�

k
j k

2
2; j 2 Œk C 1 W n�:

Bound on the antiprojections for d D 1. We first prove that, for m D2 Œs�,

kA zS z�
k
j k

2
2=n �

˚�
tm � j

n

�2k�1
; j 2 R�m D Œt

�
m W tm�;

0; j 2 R0m D Œtm W tm C k � 1�;�
j � tm � k C 1

n

�2k�1
; j 2 RCm D Œtm C k � 1 W t

C
m �:

We then extend the reasoning to general dimension d .
For anym 2 Œs�, we fix j 2 R�m and approximate �kj by �ktm ; : : : ; �

k
tmCk�1

. By the
definition of ˆk we have that

�kj .j
0/ D n�kC1.j 0 � j C 1/k�11¹j 0�j º; j

0
2 Œn�:
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Moreover, note that for k0 2 ¹0; 1; : : : ; k � 1º

k0X
lD0

.�1/l
�
k0

l

�
�ktmCl D n

�k0�k�k
0

tm

D n�kC1
®
.j 0 � tm C 1/

k�k0�11¹j 0�tmº j̄ 02Œn�: (C.1)

We now decompose �kj into a linear combination of �ktm ; : : : ; �
k
tmCk�1

and a remain-
der. The linear combination will approximate the projection of �kj onto ¹�kj ; j 2 zSº,
while the remainder will be an upper bound for the antiprojections.

For all j 0 2 Œn� it holds that

�kj .j
0/ D n�kC1.j 0 � j C 1/k�1.1¹j�j 0�tm�1º C 1¹j 0�tmº/:

By the binomial theorem

.j 0 � tm C 1C tm � j /
k�11¹j 0�tmº

D

k�1X
lD0

�
k � 1

l

�
.tm � j /

k�l�1.j 0 � tm C 1/
l1¹j 0�tmº

D

k�1X
lD0

�
k � 1

l

�
.tm � j /

k�l�1nl�lC1tm
:

By equation (C.1) we know that ¹�lC1tm
ºl2Œ0Wk�1� 2 span

�
¹�k
tmCl
ºl2Œ0Wk�1�

�
.

Therefore, for j 2 R�m,

kA zS z�
k
j k

2
2 � n

�2kC2

tm�1X
j 0Dj

.j 0 � j C 1/2k�2

� n�2kC2
Z tm�j

0

.j 0/2k�2 dj 0 �
.tm � j /

2k�1

.2k � 1/n2k�2
� n

�
tm � j

n

�2k�1
:

Note that the construction of the partially orthonormalized dictionary ẑ k can of
course also be made starting from the collection of functions ¹1¹j�j 0ººj2Œn�; j 0 2 Œn�
instead of ¹1¹j�j 0ººj2Œn�; j 0 2 Œn�, cf. Definition 4.1. The resulting dictionaries ẑ k

coincide, up to permutation of the column indices. As a consequence, the calcula-
tion we showed to approximate kA zS z�

k
j k

2
2 for j 2 R�m can be carried out with the

dictionary ẑ k based on ¹1¹j�j 0ººj2Œn�; j 0 2 Œn� to obtain the approximation

kA zS z�
k
j k

2
2 � n

�
j � tm � k C 1

n

�2k�1
; j 2 RCm:

This consideration also applies in higher-dimensional situations.
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Bound on the antiprojections for general dimension d . By the same reasons as
above, we consider without loss of generality .k1; : : : ; kd / 2 R

�;:::;�
m . We decompose

�k
k1;:::;kd

as follows

�kk1;:::;kd
.j1; : : : ; jd / D n

�kC1

dY
iD1

�
ai .ji /C bi .ji /

�
;

for ji 2 Œni �, i 2 Œd �, where

ai D ai .ji / D .ji � ki C 1/
k�11¹ki�ji�ti;m�1º;

bi D bi .ji / D .ji � ki C 1/
k�11¹ji�ti;mº

;

ci D ci .ji / D .ji � ki C 1/
k�11¹ji�ki º

� ai C bi :

Note that ai ; bi depend on ti;m, while ci does not. Moreover, for all .l1; : : : ; ld / 2
Œ0; k � 1�d it holds that �i2Œd�¹ti;mCli º 2 zS . Thus, we approximate

kA zS z�
k
k1;:::;kd

k
2
2 � n

�2kC2

n1;:::;ndX
1;:::;1

� dY
iD1

.ai C bi / �

dY
iD1

bi

�2
;

since by equation (C.1) the contributions of
Qd
iD1 bi are spanned by �kS . Note thatQd

iD1.ai C bi / �
Qd
iD1 bi is nonzero on�

�i2Œd�Œki W ni �
�
n
�
�i2Œd�Œti;m W ni �

�
� [i2Œd�

�
Œki W ti;m � 1� �

�
�l¤i Œ1 W nl �

��
:

Moreover, on Œki W ti;m � 1� � .�l¤i Œ1 W nl �/, it holds that

dY
iD1

.ai C bi / �

dY
iD1

bi � ai
Y
l¤i

cl :

Therefore,

kA zS z�
k
k1;:::;kd

k
2
2 � n

�2kC2

dX
iD1

n1;:::;ndX
1;:::;1

�
a2i .j1/

Y
l¤i

c2l .jl/

�
:

As in the one-dimensional case,

n�2kC2i

niX
jiD1

a2i .ji / � ni

�
ti � ki

ni

�2k�1
and n�2kC2i

niX
jiD1

c2i .ji / � ni :

It follows that

kA zS z�
k
k1;:::;kd

k
2
2 � n

dX
iD1

�
ti � ki

ni

�2k�1
:
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Note that as soon as ji 2 R0i;m for some coordinate i 2 Œd �, then ai .ji / D 0 and
the i th coordinate does not contribute to the antiprojections. The bounds for all other
hyperrectangles Rzm; z 2 ¹�; 0;Cº

d follow by analogous calculations. �

C.2. Proof of Lemma 5.13

For any m 2 Œs� and for any .j1; : : : ; jd / 2 Rm it holds that
p

dX
iD1

zv2i;m.ji / �

dX
iD1

zvi;m.ji / �

dX
iD1

vi;m.ji /

�max¹d�i;m; d
C

i;mº

ni

� 2k�1
2

�

dX
iD1

vi;m.ji /

p
dX
lD1

�max¹d�
l;m
; dC
l;m
º

nl

�2k�1
� vj1;:::;jd

z
:

C.3. Proof of Lemma 5.14

Fix i 2 Œd � andm 2 Œs�. Say qtm D 1. Since wi;l;m 2 Œ0; 1�, l ¤ i , for any ji 2 R�i;m [
R0i;m [R

C

i;m it holds that

dY
lD1

wi;l;m.jl/ �

�
1 �

vi;m.ji /

C

�Y
l¤i

wi;l;m.jl/ �

�
1 �

vi;m.ji /

C

�
:

Moreover, for any .j1; : : : ; jd / 2 Rm it holds that

wj1;:::;jd
D
1

d

dX
iD1

dY
lD1

wi;l;m.jl/

�
1

d

dX
iD1

�
1 �

vi;m.ji /

C

�
D 1 �

dX
iD1

vi;m.ji /

dC
D 1 � vj1;:::;jd

:

Analogous expressions hold if qtm D �1. The claim follows by noting that the condi-
tions of the definition of interpolating tensor (Definition 5.10) are satisfied for w.

C.4. Matching derivatives

To obtain continuous vectors with k � 1 continuous derivatives and piecewise constant
kth derivative, we split Œ0; 1� intoN! , resp.Nw, intervals of equal length, whereNw D

k C 1 if k is odd and Nw D k C 2 if k is even and N! D k. We denote these intervals
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by ¹Œxl�1; xl �º
N¹!;wº
lD1

with x0 D 0 and xN¹!;wº D 1. We choose

!.x/ D

†
1 � a0x

2k�1
2 ; x 2 Œx0; x1�;

bl;kx
k C bl;k�1x

k�1 C : : :C bl;1x C bl;0; x 2 Œxl�1; xl �;

l 2 Œ2 W k � 1�;

c0.1 � x/
k; x 2 Œxk�1; xk�:

We moreover choose

w.x/ D

†
1 � a0xk; x 2 Œx0; x1�;

bl;kxk C bl;k�1xk�1 C : : :C bl;1x C bl;0; x 2 Œxl�1; xl �;

l 2 Œ2 W Nw=2 � 1�;

aL.1=2 � x/L C : : :C a1.1=2 � x/C 1=2; x 2 ŒxNw=2�1; xNw=2C1�;

where L D k � 1 if k is even and L D k if k is odd.
We choose both the coefficients

.a0; aL; : : : ; a1; ¹bl;k; : : : ; bl;0ºl ; c0/ and .a0; aL; : : : ; a1; ¹bl;k; : : : ; bl;0ºl/

by derivative matching. We require the k � 1 derivatives of the different pieces of the
interpolating polynomials to match at the junctions between the intervals. This gives
place to piecewise constant kth derivatives with the exception of the interval Œx0; x1�,
where !.k/.x/ � �1=

p
x.

Matching derivatives for ! means solving a system of k.k � 1/ equations and
k.k � 1/ unknowns. Matching derivatives for w means solving a system of k.k=2/
equations and k.k=2/ unknowns when k is even, and k.k � 1/=2 equations and
k.k � 1/=2 unknowns when k is odd. We therefore do not need to do any derivative
matching for k D 1, where we just take !.x/ D 1 �

p
x and w.x/ D 1 � x.

As an alternative to discretizing a continuous version of the interpolating polyno-
mials, one can also proceed by matching discrete differences. The two approaches are
equivalent when mini2Œd�minm2Œs�min¹d�i;m; d

C

i;mº !1 as n!1. Discrete deriva-
tive matching requires that the counterpart of each interval Œxl�1 W xl � contains at least
k points. We therefore require that

min¹d�i;m; d
C

i;mº � .k C 2/k; 8i 2 Œd �; 8m 2 Œs�:

We refer to [19] for details on discrete derivative matching.

C.5. Partial integration

Some consequences of the fact that both the resulting! and w have piecewise constant
kth derivatives with the exception of the interval Œ0; x1� where !.k/.x/� �1=

p
x are



Tensor denoising with trend filtering 131

shown in the next lemma, which is useful to compute the bound on the effective
sparsity in Lemma 5.15.

Lemma C.1 (Discrete differences of some polynomials). Let for some d 2N, d �2k,

qj WD .j=d/
2k�1

2 ; j D 0; : : : ; d:

Then
n�2kC2kDkqk22 D O

�
log.ed/=d2k�1

�
:

Let for some d 2 N, d � 2k,

pj WD .j=d/k; j D 0; : : : ; d:

Then
n�2kC2kDkpk22 D O

�
1=d2k�1

�
:

Proof. We have for j � k

n�2kC2.Dkq/j D
kX
lD0

�
k

l

�
.�1/l

�
j � l

d

� 2k�1
2

D

�
j

d

� 2k�1
2
� kX
lD0

�
k

l

�
.�1/l

�
1 �

l

j

� 2k�1
2
�
:

We do a .k � 1/-term Taylor expansion of x 7! .1 � x/
2k�1

2 around x D 0:

.1 � x/
2k�1

2 D

k�1X
iD0

aix
i
C rem.x/;

where a0 D 1, a1 D�2k�12 ; : : : ; ak�1 are the coefficients of the Taylor expansion and
where the remainder rem.x/ satisfies

sup
0�x�1=2

j rem.x/j D O
�
jxjk

�
:

Thus,

kX
lD0

�
k

l

�
.�1/l

�
1 �

l

j

� 2k�1
2

D

kX
lD0

�
k

l

�
.�1/l

� k�1X
iD0

ai

�
l

j

�i
C rem

�
l

j

��
;

where
kX
lD0

�
k

l

�
.�1/l

k�1X
iD0

ai

�
l

j

�i
D 0
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since ° k�1X
iD0

ai

�
l

j

�i±k
lD0

is a polynomial of degree k � 1 and hence its kth-order differences are zero. It follows
that for j � k,

ˇ̌̌ kX
lD0

�
k

l

�
.�1/l

�
1 �

l

j

� 2k�1
2 ˇ̌̌
�

kX
lD0

�
k

l

�ˇ̌̌
rem

�
l

j

�ˇ̌̌
D O

�
1

j k

�
:

Then for j � k,
n�2kC2.Dkq/j D O

�
1=
�
j

1
2d

2k�1
2

��
:

So,
n�2kC2kDkqk22 D O �

�
log.ed/=d2k�1

�
:

For p the same arguments follow. We obtain that .Dkp/j D O.1=dk/, and so

n�2kC2kDkpk22 D O
�
1=d2k�1

�
:

C.6. Proof of Lemma 5.15

We prove a bound on the effective sparsity holding for every sign configuration. We
eliminate the dependence on the sign configuration by decoupling partial integration
on the whole interpolating tensor (k.Dk/0wk22) into taking kth-order differences on
the hyperrectangles ¹RmºsmD1(kDkw.Rm/k

2
2, wherew.Rm/D¹wj1;:::;jd

º.j1;:::;jd /2Rm

denotes the restriction of the interpolating tensor w to the set of indices Rm).
To do this, we define the boundaries B.Rm/ of a rectangle Rm as

B.Rm/ WD Rm n �i2Œd�Œt
�
i;m C k W t

C

i;m � k�:

It holds that

n�2kC2k.Dk/0wk22 D O

� sX
mD1

�
n�2kC2kDkw.Rm/k

2
2 C kw.B.Rm//k

2
2

��
:

By the definition of the interpolating tensor w it holds that

n�2kC2kDkw.Rm/k
2
2 D O

�
n�2kC2

dX
iD1

kDk
�l2Œd�wl;i;mk

2
2

�
D O

�
n�2kC2

dX
iD1

dY
lD1

kDkwl;i;mk
2
2

�
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D O

� dX
iD1

dY
lD1

�
n�2kC2
l

kDkw�l;i;mk
2
2 C

tl;m�1X
jlDtl;m�k

�
1 � w�l;i;m.jl/

�2
C n�2kC2

l
kDkwC

l;i;m
k
2
2 C

tl;mC2k�1X
jlDtl;mCk

�
1 � wC

l;i;m
.jl/

�2��
;

where the sums stem from the differences involving the constant part of w on R0
l;m

.
Because of the form chosen for ! and w, it holds that

tl;m�1X
jlDtl;m�k

�
1 � w�l;i;m.jl/

�2
D

(
O
�
!2.1=d�i;m/

�
O
�
w2.1=d�

l;m
/
�

D

(
O
�
1=.d�i;m/

2k�1
�
; l D i;

O
�
1=.d�

l;m
/2k
�
; l ¤ i:

A similar bound holds for
Ptl;mC2k�1

jlDtl;mCk
.1 � wC

l;i;m
.jl//

2. By Lemma C.1 it holds that

n�2kC2
l

kDkw�l;i;mk
2
2 D

(
O
�

log.ed�i;m/=.d
�
i;m/

2k�1
�
; l D i;

O
�
1=.d�

l;m
/2k�1

�
; l ¤ i:

A similar bound holds for n�2kC2
l

kDkwC
l;i;m
k22.

We now just have to upper bound the contributions of the boundaries B.Rm/.
For k D 1, w.B.Rm//D 0, for allm 2 Œs� and the boundaries do not contribute to the
effective sparsity. For k � 2 it holds that

X
B.Rm/

w2j1;:::;jd
D O

� dX
iD1

X
B.Rm/

dY
lD1

w2l;i;m.jl/

�
D O

� dX
iD1

X
z2¹�;Cºd

1

.d zm/
2k�1

�
since all the contributions on the boundaries have the same dependence on k and we
can approximate the volume of the boundaries by the sum of the volume of the 2d

fractions ¹Rzmºz2¹�;Cºd of the hyperrectangle.
It therefore holds that

n�2kC2k.Dk/0wk22 D O

�� dX
iD1

log.edi;max.S//

� sX
mD1

X
z2¹�;Cºd

1

.d zm/
2k�1

�
and the claim follows.
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D. Proofs of Section 6

D.1. Proof of Lemma 6.3

Setting. To calculate the inverse scaling factor when the active set is an enlarged
mesh grid zS , we decompose a dictionary atom – which is a product of sums – into
a sum of products. Some of the components will be spanned by the dictionary atoms
indexed by the mesh grid. The remaining components will contribute to the antipro-
jection.

By [17, Lemma 28] we can look at the dictionary atoms �kj1;:::;jd
instead of z�kj1;:::;jd

;
see also the proof of Lemma 5.12 in Appendix C.1.

We therefore consider

�kj1;:::;jd
D �kj1

� � � � � �kjd
;

where for i 2 Œd �,
�kji
D n�kC1i .j � ji C 1/

kC11¹j�ji º
:

Projection of the mesh grid on single coordinates. Now choose zi;l 2 Zi .l/ such
that ji � zi;1 � � � � � zi;d�1 � zi;d . By the definition of the mesh grid we can choose
zi;l 2 Zi .l/ such that

jji � zi;1j D O
�
ni=s

1
H.d/

�
;

jzi;l � zi;l�1j D O
�
ni=s

1
lH.d/

�
; l 2 Œ2 W d�;

jzi;d j � ni :

The decomposition. We now decompose the factors into sums:

�kji
D

dX
lD0

ui;l ;

where, for j 2 Œni �,

ui;0 WD 1¹j2Œji Wzi;1�1�ºn
�kC1
i .j � ji C 1/

k�1;

ui;l WD 1¹j2Œzi;l Wzi;lC1�1�ºn
�kC1
i .j � ji C 1/

k�1; l 2 Œ1 W d � 1�;

ui;d WD 1¹j2Œzi;d Wni �ºn
�kC1
i .j � ji C 1/

k�1:

Note that ¹ui;lºdlD0 are mutually orthogonal.
Thanks to the decomposition of the factors, the following decomposition of the

dictionary atom �kj1;:::;jd
holds:

�kj1;:::;jd
D

X
.l1;:::;ld /2Œ0Wd�

d

dY
iD1

ui;li ;
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where ¹
Qd
iD1 ui;li º.l1;:::;ld /2Œ0Wd�d are mutually orthogonal. We therefore obtain a decom-

position of a product of sums into a sum of products.

Partitioning the decomposition. We now partition ¹.l1; : : : ; ld / 2 Œ0 W d�d º into two
subsets: † and †c . Define

† WD
®
.l1; : : : ; ld / 2 Œ0 W d�

d
W j¹i 2 Œd � W li � zºj � z;8z 2 Œ0 W d�

¯
:

This means that † contains tuples .l1; : : : ; ld / having at most d entries with value at
most d and at most d � 1 entries with value at most d � 1 and . . . and at most 1 entry
with value at most 1 and no entry with value 0.

Connecting the decomposition with the enlarged mesh grid. We now want to
show that, for any .l1; : : : ; ld / 2 †,

Qd
iD1 ui;li can be obtained as a linear combi-

nation of ¹�kj1;:::;jd
º.j1;:::;jd /2 zS

. These components will approximate the projection of
any �kj1;:::;jd

onto the linear span of ¹�kj1;:::;jd
º.j1;:::;jd /2 zS

.
For li 2 Œ1 W d � 1� it holds that

ui;li .j / D 1¹zi;li
�j ºn

�kC1
i .j � ji C 1/

k�1
� 1¹zi;liC1�j ºn

�kC1
i .j � ji C 1/

k�1:

In analogy to the proof of Lemma 5.12 (use the binomial theorem and equation (C.1))
it holds that

ui;li 2 span
�
¹�kzi;li

Chº
k�1
hD0 [ ¹�

k
zi;liC1Ch

º
k�1
hD0

�
:

For li 2 Œd � it holds that ui;d 2 span
�
¹�k
zi;li
Ch
ºk�1
hD0

�
.

We need a claim. We now claim that

.l1; : : : ; ld / 2 † H) .l 01; : : : ; l
0
d / 2 †;

where l 0i � li ;8i 2 Œd � by proving that

.l1; : : : ; ld / 2 † H) .l1; : : : ; ld�1; ld C 1/ 2 †;

where without loss of generality we choose the index ld and assume that ld � d � 1.
As a consequence it will follow that, for any .l1; : : : ; ld / 2 †,

Qd
iD1 ui;li can be

obtained as a linear combination of ¹�kj1;:::;jd
º.j1;:::;jd /2 zS

.
We now prove the claim: assume that .l1; : : : ; ld / 2 †, i.e.,

j¹i 2 Œd � W li � zºj � z; 8z 2 Œ0 W d�:

Take .l 01; : : : ; l
0
d
/ as l 0i D li ; i 2 Œd � 1� and l 0

d
D ld C 1. Then

j¹i 2 Œd � W l 0i � zºj D j¹i 2 Œd � 1� W li � zºj C 1¹z�ldC1º

� z � 1¹z�ld º C 1¹z�ldC1º � z:

Therefore, .l 01; : : : ; l
0
d
/ 2 † and the claim is proved.
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Approximating the antiprojections. Thanks to the above claim and to the mutual
orthogonality of the elements of ¹

Qd
iD1 ui;li º.l1;:::;ld /2Œ0Wd�d , we can approximate as

follows:

kA zS�
k
j1;:::;jd

k
2
2=n �

X
.l1;:::;ld / 62†




 dY
iD1

ui;li




2
2
=n D

X
.l1;:::;ld /62†

dY
iD1

kui;li k
2
2=ni :

Now we use the following property:

kui;li k
2
2=ni D O

�
s
� 2k�1

.liC1/H.d/
�
:

The larger li , the larger the contribution of kui;li k
2
2=ni .

It therefore only remains to find the order of the largest contribution(s) indexed
by †c . A tuple of indices in †c giving the contribution highest in order is

.d � 1; : : : ; d � 1/:

It holds that

kAS�kj1;:::;jd
k
2
2=n D O

� dY
iD1

kui;li k
2
2=ni

�
D O

�
s�

2k�1
H.d/

�
:

Since the upper bound does not depend on .j1; : : : ; jd / we read directly that

z
 D O
�
s�

2k�1
2H.d/

�
:

E. The bound on the effective sparsity by Lemma 5.15 is tight (in the
noiseless case, up to constants)

We show that the bound on the effective sparsity by Lemma 5.15 is tight in the
noiseless case, up to constants, by providing lower bounds on the noiseless effec-
tive sparsity. The noiseless effective sparsity is the effective sparsity as defined in
Definition 5.9, but with v�S D 0.

It holds that

�2
Dk .S; 0/ �

�
k.Df /Sk1 � k.Df /�Sk1

�2
kf k22=n

; 8f 2 Rn1�����nd :

To prove a lower bound on �2
Dk .S; 0/ we therefore need to choose an appropriate

f 2 Rn1�����nd .
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E.1. Lower bounds in one dimension

Let S D ¹t1; : : : ; tsº. For k 2 ¹1; 2; 3; 4º assume a tessellation of Œk C 1 W n� with
tCm D t�mC1, m 2 Œs � 1� and dCm D d�mC1, m 2 Œs � 1�, where d�m D tm � t

�
m and

dCm D t
C
m � tm for m 2 Œs�. Note that t�1 D k C 1. Assume that

d�1 C k D d
C
1 D � � � D d

�
s D d

C
s DW d and d > k:

E.1.1. A piecewise constant function, k D 1. Define

K1 WD
1

2

sX
mD1

�
n

d�m
C

n

dCm

�
:

Lemma E.1. For kD 1 and d D 1, the bound on the effective sparsity by Lemma 5.15
is tight in the noiseless case up to a constant, i.e., it holds that

�2
D1.S; 0/ � K1:

Proof of Lemma E.1. Consider the vector f � 2 Rn given by

f �j D

‚
�.1m/

n

d�m
; j 2 Œtm � d W tm�; m 2 Œs�

.�1/mC1
n

dCm
; j 2 Œtm C 1 W tm C d�; m 2 Œs�:

It holds that k.Df �/�Sk1 D 0 and k.Df �/Sk1 D 2K1. Moreover,

kf �k22=n D .d
�
1 C 1/

n

.d�1 /
2
C

s�1X
mD1

.dCm C d
�
mC1/

n

.d�m/
2
C

n

.dCs /
� 4K1:

Therefore, �2
D1.S; 0/ � K1.

E.1.2. A piecewise linear function, k D 2. For k � 1 we need to choose f � with
continuous 0; 1; : : : ; k � 2 derivatives. In the case k D 2, f � needs to be a discretiza-
tion of a continuous function.

Define

K2 WD
3

29

sX
mD1

��
n

d�m

�3
C

�
n

dCm

�3�
:

Lemma E.2. For kD 2 and d D 1, the bound on the effective sparsity by Lemma 5.15
is tight in the noiseless case up to a constant, i.e., it holds that

�2
D2.S; 0/ � K2:
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Proof of Lemma E.2. Consider the vector f � 2 Rn given by

f �j D .�1/
m n

2

d3
jtm � j j; j 2 Œtm � d W tm C d�; m 2 Œs�:

It holds that k.Df �/�Sk1 D 0 and k.Df �/Sk1 � 26K2=3. Indeed, for d > k it
holds that .d C k/�x � 2�xd�x , x 2 N. Moreover,

kf �k22=n �
n3

d6
2s
.d C 1/3

3
� 212K2=3

2:

Therefore, �2
D2.S; 0/ � K2.

E.1.3. A piecewise constant function, k D 3. In the case k D 3, f � needs to be a
discretization of a continuous function with continuous first derivative.

Define

K3 WD
5

213

sX
mD1

��
n

d�m

�5
C

�
n

dCm

�5�
:

Lemma E.3. For kD 3 and d D 1, the bound on the effective sparsity by Lemma 5.15
is tight in the noiseless case up to a constant, i.e., it holds that

�2
D3.S; 0/ � K3:

Proof of Lemma E.3. Consider the vector f � 2 Rn given by

f �j D

˚
�
n3

d5
.j 2 � d2/; j 2 R�1 [ Œ1 W 3�;

.�1/mC1
n3

d5

�
.tCm � j /

2
� d2

�
; j 2 RCm; m 2 Œ1 W s�;

.�1/m
n3

d5

�
.t�m � j /

2
� d2

�
; j 2 R�m; m 2 Œ2 W s�:

It holds that k.Df �/�Sk1 D 0 and k.Df �/Sk1 � 29

5
K3. Moreover,

kf �k22=n �
n5

d10
2s
.d C 1/5

5
�
218

52
K3:

Therefore, �2
D3.S; 0/ � K3.

E.1.4. A piecewise cubic function, k D 4. In the case k D 4, f � needs to be a
discretization of a continuous function with continuous first and second derivative.

Define

K4 WD
32

21272

sX
mD1

��
n

d�m

�7
C

�
n

dCm

�7�
:
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Lemma E.4. For kD 4 and d D 1, the bound on the effective sparsity by Lemma 5.15
is tight in the noiseless case up to a constant, i.e., it holds that

�2
D4.S; 0/ � K4:

Proof of Lemma E.4. Consider the vector f � 2 Rn given by

f �j D

�
.�1/m

n4

d7
.j � tm � d=2/.j � tm C d/

2; j 2 Œtm � d W tm�; m 2 Œs�;

.�1/m
n4

d7
.j � tm C d=2/.j � tm � d/

2; j 2 Œtm W tm C d�;m 2 Œs�:

It holds that k.Df �/�Sk1 D 0 and k.Df �/Sk1 � 2672

3
K4. Moreover,

kf �k22=n �
21274

32
K4:

Therefore, �2
D4.S; 0/ � K4.

E.2. Lower bounds in higher dimensions

We consider the case d � 1. For k 2 ¹1; 2; 3; 4º define for each coordinate i 2 Œd � the
active set Si WD ¹t1;i ; : : : ; ts1;iº and the bounds Kk;i as in Lemmas E.1–E.4 and their
proofs.

Let S WD S1 � � � � � Sd . Assume a tessellation of Œk C 1 W n1� � � � � � Œk C 1 W nd �
being a product of one-dimensional tessellations with tCm;i D t�mC1;i , m 2 Œsi � 1�,
i 2 Œd � and dCm;i D d

�
mC1;i ,m 2 Œsi � 1�, i 2 Œd �, where d�m;i D tm;i � t

�
m;i and dCm;i D

tCm;i � tm;i for m 2 Œsi �, i 2 Œd �. Note that t�1;i D k C 1, i 2 Œd �.

Lemma E.5. For k 2 ¹1; 2; 3; 4º and d � 1, the bound on the effective sparsity by
Lemma 5.15 is tight in the noiseless case up to a constant, i.e., it holds that

�2
Dk .S; 0/ �

dY
iD1

Kk;i :

Proof of Lemma E.5. For i 2 Œd �, define the vectors f �i 2 Rni as in the proofs of
Lemmas E.1–E.4. Define f � WD f �1 � � � � � f

�
d

.
Because of the product structure of f �, by the proofs of Lemmas E.1–E.4 it holds

that

kDkf �k1 D

dY
iD1

kDk
i f
�
i k1 D

dY
iD1

k.Dk
i f
�
i /Si
k1 D k.D

kf �/Sk1 �

dY
iD1

Kk;i
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and

kf �k22=n D

dY
iD1

kf �i k
2
2=ni �

dY
iD1

Kk;i :
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