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Randomly initialized EM algorithm for two-component
Gaussian mixture achieves near optimality inO.

p
n/ iterations

Yihong Wu and Harrison H. Zhou

Abstract. We analyze the classical EM algorithm for parameter estimation in the symmetric
two-component Gaussian mixtures in d dimensions. We show that, even in the absence of any
separation between components, provided that the sample size satisfies n D �.d log4 d/, the
randomly initialized EM algorithm converges to an estimate in at most O.

p
n/ iterations with

high probability, which is at mostO..d=n/1=4 logn/ in Euclidean distance from the true param-
eter and within logarithmic factors of the minimax rate of .d=n/1=4. Both the nonparametric
statistical rate and the sublinear convergence rate are direct consequences of the zero Fisher
information in the worst case. Refined pointwise guarantees beyond worst-case analysis and
convergence to the MLE are also shown under mild conditions.

This improves the previous result of Balakrishnan, Wainwright, and Yu (2017), which
requires strong conditions on both the separation of the components and the quality of the
initialization, and that of Daskalakis, Tzamos, and Zampetakis (2017), which requires sample
splitting and restarting the EM iteration.

1. Introduction

The Expectation-Maximization (EM) algorithm [8] is a powerful heuristic aiming at
approximating the maximal likelihood estimator (MLE) in the presence of latent vari-
ables. The general setting can be described as follows: Let .X;Y / be random variables
distributed according to some parametrized joint distribution with density p��.x; y/.
Observing Y (but not the latent X ), the goal is to estimate the true parameter ��. Let

p� .y/ D

Z
p� .x; y/ dx

denote the marginal density of Y . Given Y D y, the MLE for �� is

y�MLE 2 arg max
�

logp� .y/; (1)
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which is frequently expensive to compute due to the nonconvexity of the likelihood
and the computational cost of the marginalization. To this end, the EM algorithm
was proposed as an iterative algorithm to approximate the MLE. Given the current
estimate �t , the next estimate �tC1 is obtained by executing the following two steps:

� “E step”: compute

Q.� j�t / ,
Z
p�t .xjy/ logp� .x; y/ dx: (2)

� “M step”: update
�tC1 D arg max

�
Q.� j�t /: (3)

The algorithm then proceeds by iterating these two steps and generates a sequence of
estimators ¹�t W t � 0º. The interpretation of this methodology is that (3) is equivalent
to maximizing the following lower bound of the log-likelihood:Z

p�t .xjy/ log
p� .x; y/

p�t .xjy/
dx D logp� .y/ �D

�
p�t .�jy/kp� .�jy/

�
;

where D.�k�/ denote the Kullback–Leibler (KL) divergence. Consequently,

logp� .y/ � logp�t .y/ � Q.� j�t / �Q.�t j�t /

for any � , and hence the likelihood along the EM trajectory ¹�tº is nondecreasing.

1.1. Gaussian mixture model

We consider the symmetric two-component Gaussian mixture (2-GM) model in d
dimensions:

P� D
1

2
N.��; Id /C

1

2
N.�; Id /; (4)

which corresponds to two equally weighted clusters centered at ˙� , respectively.
Recall that cosh.x/D exCe�x

2
, sinh.x/D ex�e�x

2
, and tanh.x/D sinh.x/

cosh.x/ . The density
function of P� is

p� .y/ ,
1

2

�
'.y � �/C '.y C �/

�
D exp.�kyk2=2/'.�/ coshhy; �i; (5)

where ' denotes the standard normal density in Rd , k � k denotes the Euclidean norm.
Let �� 2Rd denote the ground truth. Given i.i.d. samples Y D .Y1; : : : ;Yn/

i.i.d.
� P�� ,

the goal is to estimate �� up to a global sign flip, under the following loss function:

`.y�; �/ , min
®
ky� � �k; ky� C �k

¯
:
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Here the latent variables .X1; : : : ;Xn/ correspond to the labels of each sample, which
are i.i.d. and equally likely to be˙1 (Rademacher). Then, we have

Yi D Xi�� CZi ; (6)

where Zi
i.i.d.
� N.0; Id / and are independent of Xi ’s. Since

p� .x; y/ / e
� 12

Pn
iD1 kyi�xi�k

2

/ e�
1
2

Pn
iD1 k�k

2�hxiyi ;�i;

the M-step in (3) simplifies to

�tC1 D arg min
�

nX
iD1

X
xi2¹˙º

kyi � xi�k
2p�t .xi jy/

D arg min
�

²
nk�k2 � 2

�
�;

nX
iD1

yiE�t ŒXi jYi D yi �

�³
D
1

n

nX
iD1

yiE�t ŒXi jYi D yi �;

where the conditional mean is given by

E� ŒX jY D y� D tanhh�; yi: (7)

Thus, specialized to the symmetric 2-GM model, the EM algorithm takes the follow-
ing form:

�tC1 D fn.�t /; (8)

where

fn.�/ , EnŒY tanhh�; Y i� ,
1

n

nX
iD1

Yi tanhh�; Yi i: (9)

In the case of infinite sample size (n!1), (9) reduces to the following

f .�/ , EŒY tanhh�; Y i�; Y � P�� : (10)

We refer to (9) and (10) as the sample version and the population version of the EM
map, respectively.

In the special case of symmetric Gaussian mixture,1 EM algorithm can also be
interpreted as maximizing the likelihood by means of gradient ascent with constant
step size. Indeed, denote the average n-sample log likelihood by

`n.�/ ,
1

n

nX
iD1

logp� .Yi / D EnŒlogp� .Y /� (11)

1In fact, this holds for any Gaussian mixture distribution, where the center of each compo-
nent has the same Euclidean norm.
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and its population version by

`.�/ , EŒlogp� .Y /�; Y � P�� : (12)

Since r`n.�/ D EnŒr� logp� .Y /� D �� C EnŒY tanhh�; Y i�; the EM iteration (8)
can be written as in the following gradient ascent form (with step size equal to one)

�tC1 D �t Cr`n.�t /: (13)

Recently there has been a sequence of work on the performance of the EM algo-
rithm [1, 6, 19, 42], in particular, on the global convergence of the population version.
For finite sample size, either strong conditions on the initializations and the separa-
tion need to be assumed, or certain variants of the algorithm (such as sample splitting
or restart) need to be executed. Despite these progress, the performance guarantee
of the classical EM algorithm remains not fully understood, especially with random
initializations, which are widely adopted in practice. The main focus of this paper is
to provide a better understanding of the statistical and computational guarantees for
the randomly initialized EM algorithm in high dimensions, thereby assessing the opti-
mality of the EM estimate and the number of iterations needed to reach the statistical
optimum. To this end, we consider the symmetric 2-GM model, which has been well-
studied in the literature as a prototypical example for both parameter estimation and
clustering [1, 6, 21, 24, 26, 42].

1.2. Main results

We focus on the regime of bounded k��k. This is the most interesting case for param-
eter estimation, wherein consistent clustering is impossible but accurate estimation
of �� is nevertheless possible. In fact, for the purpose of parameter estimation, it is
not necessary to impose any separation between the two clusters, since the parame-
ter �� is perfectly identifiable even when �� D 0 is allowed, in which case the data are
simply generated from a single standard Gaussian component.

Formally, throughout the paper we assume that

k��k � r (14)

for some constant r .

Theorem 1. There exist constants C;C0 depending only on r , such that the following
holds. Assume that n � Cd log3 d . Initialize the EM iteration (8) with

�0 D C0

�d
n

logn
�1=4

�0;
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where �0 is drawn uniformly at random from the unit sphere Sd�1. For any k��k � r ,
with probability 1 � on.1/,

`.�t ; ��/ � C
�d
n

�1=4
logn (15)

for all t � C
p
n.

Theorem 1 provides a statistical and computational guarantee for the EM algo-
rithm for all ��, with the worst case occurring for �� close to zero. In fact, if k��k D
O..d=n/1=4/, the 2-GM model is statistically indistinguishable from the standard nor-
mal model. The following result is a refined version of Theorem 1 under the modest
assumption that �� is slightly bounded away from zero, which also shows the conver-
gence to the MLE:

Theorem 2. In the setting of Theorem 1, assume in addition that

k��k � C
�d
n

�1=4
logn:

Then, with probability at least 1 � on.1/,

`.�t ; ��/ �
C

k��k

r
d logn
n

(16)

holds for all t � C log.n/=k��k2 and, furthermore, limt!1 �t exists and coincides
with y�MLE, the unique (up to a global sign change) global maximizer of the likeli-
hood (11) and `.�t ; y�MLE/ D o.1=n/ for all t � C log.n/=k��k2.

The statistical optimality of the EM estimate can be seen by comparing Theo-
rems 1 and 2 with the following minimax results (which are consequences of Theo-
rem 10 in Appendix B): For any r & 1 and n & d , we have

inf
y�

sup
k��k�r

E�� Œ`.y�; ��/� �
�d
n

�1=4
; (17)

where the infimum is taken over all estimators y� measurable with respect to Y1; : : : ;Yn
i.i.d.
� P�� . Furthermore, for any fixed k��k D s . 1 and n & d , we have

inf
y�

sup
k��kDs

E�� Œ`.y�; ��/� � min
²
s;
1

s

r
d

n

³
: (18)

Comparing (17) with (15), we conclude that the performance of the EM algorithm
is within logarithmic factors2 of the minimax rate, which can be attained in at most

2In the one-dimensional case, it is possible to show that the EM algorithm attains the mini-
max rate (17) without logarithmic factors; see Corollary 1 in Section 2.
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O.
p
n/ iterations in the worst case. In addition, (18) shows that the transition from

the worst-case rate .d=n/1=4 to the parametric rate 1
k��k

p
d=n occurs when k��k

exceeds .d=n/1=4, in which case the more refined guarantee (16) demonstrates the
near-optimality of the EM algorithm and its adaptivity to k��k.

We pause to clarify that the main objective of this paper is not to exhibit nearly
minimax optimal methods, as other procedures (e.g., spectral method; cf. Appendix B)
are known to achieve the minimax rate (17) without the extraneous logarithmic fac-
tors, but rather to show the popular EM algorithm with a single random initialization
achieves near optimality and, furthermore, approaches the MLE (see Theorem 9).
Compared to spectral methods, the statistical advantages of the EM algorithm are
inherited from the MLE, including the asymptotic efficiency, which holds for exam-
ple when the dimension is fixed and the center �� is bounded away from zero (cf. [35,
Theorem 5.39], for example).

We conclude this subsection with a remark interpreting the results of the preceding
theorems:

Remark 1 (Statistical and computational consequences of flat likelihood). In The-
orem 1, the statistical estimation rate O..d=n/1=4/ which is slower than the typical
parametric rate. Furthermore, the convergence rate is in fact O.1=

p
t / which is much

slower than the typical linear convergence rate that is exponential in t . Both guaran-
tees are tight in the worst case which occurs when k��k D O..d=n/1=4/, and both
phenomena are due to the zero curvature of log likelihood function. To explain this,
let us consider the simple setting of one dimension and �� D 0.

Vanishing Fisher information and nonparametric rate. When �� D 0, a simple
Taylor expansion shows that the population likelihood (12) satisfies

`n.�/ D `n.0/ �
1

4
�4 CO.�6/ when � ! 0;

corresponding to the flat maxima at � D 0 as shown in Figure 1a. In particular, the
Fisher information is zero, resulting in an estimation rate slower than the typical
rate

p
d=n for parametric models. Furthermore, for �� ¤ 0, the Fisher informa-

tion behaves as ‚.�2� / (cf. Remark 2). Therefore (16) shows that the EM algorithm
achieves the local minimax rate within logarithmic factors.

Noncontraction and sublinear convergence rate. In typical analysis of iterative
methods, linear convergence rate is a direct consequence of contractive mapping the-
orem. This however fails for the case of �� D 0. Indeed, using (13) we obtain that the
population EM map f .�/ satisfies

f .�/ D � � �3 CO.�5/ with f 0.0/ D 1:
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�`.�/

�

(a) Flat minimum of the negative log likelihood.

�

f .�/

(b) Nonlinear contraction off .�/ and the
resulting sublinear rate of convergence.

Figure 1. Population version of the negative log likelihood and the EM map for �� D 0.

Thus, the EM iteration roughly behaves as �tC1 � �t � �
3
t . Despite this nonstrict

contraction, the iteration nevertheless converges monotonically to the unique fixed
point at zero (see Figure 1b); however, the resulting convergence rate is O.1=

p
t /

(cf. Lemma 22 in Appendix A). This gives theoretical quantification of the slow con-
vergence rate of EM algorithm for poorly separated Gaussian mixtures, which has
been widely observed in practice [20, 28].

1.3. Related work

Since the original paper [8], the EM algorithm has been widely used in Gaussian
mixture models [28, 43]. As can be seen from its gradient ascent interpretation (13),
a limiting point of the EM iteration is only guaranteed to be a critical point of the
likelihood function rather than the global MLE. Various techniques for choosing the
initialization has been proposed (cf. the survey [20] and the references therein); how-
ever, in practice random initializations are often preferred due to its simplicity over
more costly approaches such as spectral methods [2]. Furthermore, it is well-known
in practice [20, 28] that the convergence of the EM iteration can be very slow when
the components are not well separated, agreeing with the theoretical findings in The-
orem 1 and Theorem 2.

Recently there is a renewed interest on the EM algorithm in high dimensions from
both statistical and optimization perspectives. General conditions (such as strong con-
cavity and smoothness) are given in [1] to guarantee the local convergence of the EM
algorithm as well as its statistical performance. Particularized to the 2-GM model (4),
the result [1, Corollary 2] shows that if k��k exceeds some large constant and the ini-
tialization satisfies k�0 � ��k � 1

4
k��k, then with probability 1 � ı the EM iteration
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converges exponentially fast to a neighborhood at �� of radius
p
Cd=n log.1=ı/ for

some constant C depending on k��k. There are two major distinctions between [1]
and the current paper: First, the requirement on the initialization in [1] is very strong,
which implies that �0 has a nontrivial angle with �� and clearly cannot be afforded
by random initializations. Second, to bound the deviation between the sample EM
trajectory and its population counterpart, [1] proved that

sup
k�k�C

kfn.�/ � f .�/k D zO

�r
d

n

�
with high probability, where zO.�/ hides logarithmic factors. Such a concentration
inequality in terms of absolute deviation is too weak to yield the sharp rates in Theo-
rem 1 and 2 even in one dimension. Instead, in order to obtain the optimal statistical
and computational guarantees, it is crucial to bound the relative deviation and show
that with high probability,

sup
k�k�C

kfn.�/ � f .�/k

k�k
D zO

�r
d

n

�
(19)

i.e., fn � f is zO.
p
d=n/-Lipschitz at zero, the reason being that when the iterates are

close to zero, the finite-sample deviation is proportionally small as well. In addition, in
Section 6 we show that the EM iterations converge to the MLE under mild conditions.

The global convergence of the population EM iterates has been analyzed in [6,42].
The following deterministic result was shown: Provided that the initial value �0 is not
orthogonal to ��, the population version of the EM iteration, that is, the sequence (8)
with fn replaced by f , converges to the global maximizer of the population log like-
lihood ` in (12), namely, �� (resp., ���) if h�0; ��i > 0 (resp., < 0). If h�0; ��i D 0,
then the population EM iteration converges to 0, the unique saddle point of `. For
the sample EM, [42, Theorem 7] showed that when the dimension and �� are fixed,
the difference of the sample and population EM iteration vanishes in the double limit
of t !1 followed by n!1; neither finite-sample nor finite-iteration guarantees
are provided. As for high dimensions, a variant of the EM algorithm using sampling
splitting is analyzed in [6] consisting of two steps: First, run EM with a random and
sufficiently small initialization for‚.log.d/=k��k2/ iterations. Next, renormalize the
resulting estimate so that its norm is a large constant, and continue to run EM for
another‚.1=k��k2 log.1="// iterations. The final output achieves a loss of "with high
probability provided that each iteration operates on a fresh batch of z‚.d="2k��k4/
samples. The use of sampling splitting conveniently ensures independence among
iterations and circumvents the major difficulty of analyzing the entire trajectory; how-
ever, for the desired accuracy of " D O.1=k��k

p
d=n/, the total number of samples

is z‚.n=k��k2/, which far exceeds n when k��k is small.
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Based on the population results in [42], the paper [25] shows that if k��k is at least
a constant, the landscape of the log likelihood `n is close to that of the population ver-
sion (in terms of the critical points and the Hessian). Specifically, [25, Theorem 8]
showed the following: There exist constants C; C 0 depending on k��k and ı, such
that if n � Cd log d , then with probability 1 � ı, `n has two local maxima in the
ball B.0; C 0/, which are within Euclidean distance C

p
d log.n/=n of ˙��. As a

corollary of the empirical landscape analysis, with appropriately chosen parameters
and initialized from any point in B.0;C 0/, standard trust-region method (cf. [5, Algo-
rithm 6.1.1], for example) is guaranteed to converge to a local maximizer of `n. It
should be noted that trust-region method is a second-order method using the Hes-
sian information, which is more expensive than first-order methods such as gradient
descent including the EM algorithm (8). Furthermore, the number of iterations needed
to reach the statistical optimum is unclear.

On the technical side, the main difficulty of analyzing a sample-driven iterative
scheme, such as (8), is the dependency between the iterates ¹�tº and the data, since
each iteration takes one pass over the same set of samples. Of course, one can conduct
a uniform analysis by taking a supremum over the realization of �t ; however, since
the supremum is over a d -dimensional space, the resulting bound is too crude to char-
acterize the growth of the “signal” h��; �t i, which is very close to zero initially (that
is, OP .1=

p
d/, due to random initialization). It is for this reason that the analysis is

significantly more challenging than those using sample splitting such as [1, 6], which
sidesteps the difficulty of dependency. Furthermore, such trajectory analysis, which
tracks the signal growth from random initializations, does not follow from landscape
analysis.

In this vein, the most related to the current paper is the recent seminal work [4]
on analyzing gradient descent for nonconvex phase retrieval with random initializa-
tions, where the goal is to recover a d -dimensional signal x� from noiseless quadratic
measurements hai ; x�i2 with i.i.d. Gaussian ai . To overcome the aforementioned
difficulties due to dependency, the main idea of [4] is two-fold: In addition to the com-
monly used “leave-one-sample-out” method that analyzes the auxiliary iteration when
one measurement is replaced by an independent copy, [4] introduced a “leave-one-
coordinate-out” auxiliary iteration where a single coordinate of each measurement
vector is replenished with a random sign. This is possible thanks to the rotational
symmetry of the Gaussian measurement vectors, which allows one to assume, with-
out loss of generality, that the ground truth is proportional to a coordinate vector. By
comparing the auxiliary dynamics to the original one, one can effectively decouple
the data and the iterates. The idea of leave-one-coordinate-out turns out to be crucial
in our analysis of randomly initialized EM, where we introduce an auxiliary sequence
with a randomized label but otherwise identical to the original sequence; on the other
hand, we are able to conduct the analysis without resorting to the leave-one-sample-
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out method. Compared to [4] which relies on the strong convexity of the population
objective function and the resulting contraction of the iteration, for the EM algorithm
since we do not assume �� is bounded away from zero, none of these applies which
creates additional challenges for the analysis.

Finally, we note that the very recent and independent work [10,11] obtained a tight
analysis of the performance of EM algorithm when the true model is a single Gaussian
and the postulated model is an over-specified Gaussian mixture. In particular, guaran-
tees similar to Theorem 1 are shown for the special case of ��D0, and both balanced
and unbalanced mixture model are considered as well as the more general location-
scale mixtures. More recently, for two-component mixture in high dimensions with
known (possibly unequal) weights and nonzero centers, the recent work [38] charac-
terizes the statistical optimality and provides computational guarantee for the corre-
sponding EM algorithm, in which case the EM algorithm enjoys improved statistical
accuracy and faster convergence, thanks to the nonvanishing Fisher information in the
unbalanced case.

1.4. Notation

Throughout the paper, c; C; C0; C1; : : : ; C 0; C 00 denote constants whose values vary
from place to place and only depend on an upper bound on k��k, and the notations .;
&;� are within these constant factors. Since we assume that k��k � r for some
absolute constant r , these constant factors are absolute as well.

Let L.X/ denote the distribution (law) of a random variable X . The generic nota-
tion EnŒ�� denotes the empirical average over n i.i.d. samples, namely,

EnŒf .X/� ,
1

n

nX
iD1

f .Xi /;

where Xi ’s are i.i.d. copies of X . We say a random variable X is s-subgaussian
(resp., s-subexponential) if

kXk 2 , inf¹t > 0 W EeX
2=t2
� 2º �

p
s

(resp., kXk 1 , inf¹t > 0 W EejX j=t � 2º � s).
Let kxk denotes the Euclidean norm of a vector x. Let B.x;R/ denote the ball of

radiusR centered at x and B.0;R/ is abbreviated as B.R/. For any matrixM , kMkop

and kMkF denote its operator (spectral) norm and Frobenius norm, respectively.
Standard asymptotic notation is adopted in the paper: For two sequences ¹anº

and ¹bnº of positive numbers, we write

an D O.bn/ if an � Cbn
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for an absolute constant C and for all n;

an D �.bn/ if bn D O.an/I

an D ‚.bn/ if an D O.bn/ and an D �.bn/I

an D o.bn/ or bn D !.an/ if an=bn ! 0 as n!1:

In addition, we denote

an D zO.bn/ if an D O
�
bn.logn/O.1/

�
;

and z‚.�/ is similarly defined.

1.5. Organization

The rest of the paper is organized as follows. Section 2 gives the statistical and com-
putational guarantees for EM algorithm in one dimension, showing the achievability
of the optimal average risk up to constant factors. Section 3 states and proves the rela-
tive concentration result (19) for the sample EM map. Section 4 presents the analysis
of the EM algorithm in d dimensions and give near-optimal statistical and computa-
tional guarantees assuming a modest condition on the initialization. In Section 5 we
show that starting from a single random initialization, such a condition is fulfilled in at
most O.log.n/=k��k2/ iterations with high probability. Section 6 proves the conver-
gence of the EM iteration to the MLE. Discussions and open problems are presented
in Section 7. Proofs for Sections 2–6 are given in Sections 8–12, respectively.

In particular, the main result Theorem 2 previously announced in Section 1.2 fol-
lows from Theorem 7 in conjunction with Theorem 8 (on random initialization) and
Theorem 9 (on convergence to MLE), while Theorem 1 follows from combining The-
orems 2 and 6.

Complementing the performance guarantee on the EM algorithm, Theorem 10 in
Appendix B determines the minimax rates for the 2-GM model in any dimension,
which may be of independent interest. Auxiliary results are given in Appendix A.

2. EM iteration in one dimension

In this section we present the analysis for the one-dimension case. This turns out to be
significantly simpler than the d -dimensional case and we are able to obtain a tighter
result; nevertheless, several proof ingredients, both statistical and computational, will
re-appear in the analysis for d dimensions later in Section 4. To bound the relative
deviation between the sample and population EM trajectories, we use the concentra-
tion inequality for empirical distributions under the Wasserstein distance. Although



Y. Wu and H. H. Zhou 154

perhaps not crucial, this method simplifies the analysis and yields the optimal rate of
the average risk without unnecessary log factors in one dimension.

2.1. Concentration via Wasserstein distance

Recall the 1-Wasserstein distance between probability distributions � and � [37]:

W1.�; �/ D inf EjX � Y j;

where the infimum is over all couplings of � and �, i.e., joint law L.X; Y / such that
L.X/ D � and L.Y / D �.

To relate the Wasserstein distance to the EM map, we start with the following
simple observation:

Lemma 1. For any x; y 2 R,

sup
�2R

jx tanh.x�/ � y tanh.y�/j
j� j

D jx2 � y2j:

Proof. Without loss of generality, assume that x � y � 0. Then, by symmetry,

sup
�2R

jx tanh.x�/ � y tanh.y�/j
j� j

D sup
��0

jx tanh.x�/ � y tanh.y�/j
�

D sup
��0

x tanh.x�/ � y tanh.y�/
�

: (20)

A straightforward calculation gives

@

@�

@

@x

�
x tanh.x�/

�

�
D

1

�2 cosh2.�x/

�
�x �

1

2
sinh.2�x/� 2.�x/2 tanh.�x/

�
� 0;

where the inequality follows from sinh.t/ � t and tanh.t/ � 0 for t � 0. Therefore,

� 7!
@

@x

�
x tanh.x�/

�

�
is decreasing on RC, which implies that the supremum on the right-hand side of (20)
is attained at � D 0.

By coupling, an immediate corollary to Lemma 1 is the following:

Lemma 2. For any random variables X and Y ,

sup
�2R

jEŒY tanh.�Y /� � EŒX tanh.�X/�j
j� j

� W1.L.X
2/;L.Y 2//:
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As mentioned earlier in Section 1.3, it is crucial to establish the relative deviation
in the sense of (19) for the sample EM trajectory. Let �n D fn � f , where fn and f
are the sample and population EM map defined in (9) and (10). As a consequence of
Lemma 2, we have, for all � 2 R,

j�n.�/j � j� jW1.�; �n/; (21)

where � DL.Y 2/ and �n is the empirical distribution of the squared samples Y 21 ; : : : ;
Y 2n . In other words, �n is W1.�; �n/-Lipschitz at zero. To bound the Lipschitz con-
stant, since EŒexp.Y 2/� � C.r/, applying the concentration inequality in [12, Theo-
rems 1 and 2] (with d D p D 1, ˛ D 2=3, " D 1=3 and  D 1), we have

EŒW1.�; �n/� �
c0
p
n

(22)

and

P ŒW1.�; �n/ � x� � c1
�
exp

�
�c2nx

2
�
1¹x�1º

C exp
�
�c2.nx/

1=3
�
1¹x�1º C exp

�
�c2.nx/

2=3
��
; x > 0 (23)

where c0; c1; c2 depend only on r . Therefore, for any 1 . a . n1=10,

P
h
W1.�; �n/ �

a
p
n

i
� exp

�
��.a2/

�
:

2.2. Finite-sample analysis

The population EM map defined in (10) satisfies the following properties:

Lemma 3. For any �� � 0,

1. � 7! f .�/ is an increasing odd and bounded function on R, with

�.1C ��/ � �EjY j D f .�1/ � f .�/ � f .1/ D EjY j � 1C ��:

2. � 7! f .�/ is concave on RC and convex on R�.

3. f .0/ D 0, f 0.0/ D 1C ��2, f 00.0/ D 0, and f 0.��/ � exp.���2=2/.

4. Define

q.�/ ,
f .�/

�
: (24)

Then, q is decreasing on RC. Furthermore, for � � 0,

q0.�/ D �E

�
Y sinh.2�Y / � 2�Y 2

2�2 cosh2.�Y /

�
� �

2�

3
E

�
Y 4

cosh2.�Y /

�
: (25)
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The sample-based EM iterates are given by (8), that is,

�tC1 D fn.�t /:

Here the samples Y1; : : : ;Yn are i.i.d. drawn fromP�� D
1
2
N.���;1/C

1
2
N.��;1/. By

the global assumption (30), we have 0� �� � r . Without loss of generality, we assume
that �0 > 0 for otherwise we can apply the same analysis to the sequence ¹��tº.
By (21), �n D fn � f is n-Lipschitz at zero, where

n , W1.�; �n/

is a random variable. Define the high-probability event

E D ¹n � cº; (26)

where c is a small constant depending only on r that satisfies c < 1
4

. By (23), we
have P ŒE� � 1 � exp.��.n1=3//.

Define the following auxiliary iterations:´
�+
tC1 D f .�

+
t /C n�

+
t ;

�-
tC1 D f .�

-
t / � n�

-
t ;

�+
0 D �

-
0 D �0: (27)

By Lemma 3, q is decreasing and maps RC onto .0; 1C �2� �. Define

�+ , q�1.1 � n/; (28)

�- ,

´
q�1.1C n/ j��j �

p
n;

0 j��j <
p
n:

(29)

We will show that on the high-probability event (26), the EM iterates ¹�tº is sand-
wiched between the two auxiliary iterates ¹�+

t º and ¹�-
t º (see Figure 2). This is made

precise by the following theorem, which gives the estimation error bound and finite-
iteration guarantees for the EM algorithm in one dimension:

Theorem 3 (Statistical and computational guarantees for one-dimensional EM).
Assume that

0 � �� � r (30)

for some constant r . Assume that

0 < �0 � r0:
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�- �� �
+

Figure 2. Perturbed EM trajectory and fixed points. The blue solid curve is the population EM
map f .�/ and the two dashed curves correspond to its perturbation f .�/˙ n� in (27).

Then, there exist constants �1; : : : ; �4 depending on r only, and a constant n0 D
n0.r; r0/, such that for all n � n0, in the event (26), the following hold:

1. For all t � 0,
0 � �-

t � �t � �
+
t � �1: (31)

2. The inequality

`.�t ; ��/ � �2 min
²
n

��
;
p
n

³
; (32)

holds for all t � T D T .�0; ��; n/, where

T D

´
�3=n; �� � �4

p
n;

�3=�
2
� log.1=�0n/; �� � �4

p
n;

(33)

and n D W1.�; �n/.

A corollary of Theorem 3 is the following guarantee on the average risk:

Corollary 1. There exist constants c1; c2 depending only on r , such that

EŒ`.�t ; ��/� � c1 min
²

1

��
p
n
;
1

n1=4

³
; (34)

holds for all

t � c2 min
²
p
n;
1

�2�

³
log

n

�0
: (35)

Remark 2. The rate in (34) is optimal in the following sense: the second term n�1=4

matches the minimax lower bound in Appendix B, while the first term corresponds to
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the local minimax rate since the Fisher information behaves as ‚.�2�/ for small ��.3

Indeed, we will show in Section 6 that the EM iteration converges to the MLE which
is asymptotically efficient.

In the special case of �� D 0, results similar to Theorem 3 have been shown in [11,
Theorem 3]. Furthermore, [11, Theorem 4] provided a matching lower bound showing
that any limiting point of the EM iteration is �.n�1=4/ with constant probability.

Computationally, suppose we initialize with �0 D 1. Then, regardless of the value
of ��, we have the worst-case computational guarantee: With high probability, the
EM algorithm achieves the optimal rate (34) in at most O.

p
n log n/ iterations. The

number of needed iterations can be pre-determined on the basis of n and �0, without
knowing ��.

3. Concentration of the EM trajectory: relative error bound

Recall that �nDfn � f denotes the difference between the sample and the popula-
tion EM maps. In one dimension, we have shown that the random function�nWR!R

is OP .1=
p
n/-Lipschitz at zero by means of the Wasserstein distance between the

empirical distribution and the population. The goal of this section is to extend this
result to d dimensions, by showing with high probability that �nW Rd ! Rd is
O.
p
d log.n/=n/-Lipschitz at zero with respect to the Euclidean distance on a ball

of radius R D ‚.
p
d/.4 Since with high probability the EM map fn takes values

within this radius, this result allows us to control the fluctuation of the EM trajectory
with respect to its population counterpart proportionally to the distance to the origin.
This relative error bound given next is crucial for obtaining the optimal statistical and
computational guarantees.

Theorem 4. Assume that k��k � r and

n � Cd log d

for some universal constant C . There exist universal constants c0; C0, such that with
probability at least 1 � exp.�c0d logn/, the following hold:

3Indeed, by Taylor expansion and the dominated convergence theorem, we have

I.�/ D E�
h�@ logp� .Y /

@�

�2i
D E�

��
Y tanh.�Y / � �

�2�
D �2

�
E�
�
.Y 2 � 1/2

�
C o.1/

�
D .2C o.1//�2 as � ! 0:

4It is also possible to show that �n is O.
q
d log3.n/=n/-Lipschitz at zero on the entire

space Rd .
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1. For all � 2 Rd , fn.�/ 2 B.R/, where R D 10.
p
d C r/.

2. The function �n is L-Lipschitz at zero on B.R/, where

L D C0.1C r/
p
d=n logn:

The proof is given in Section 9. We note that it is straightforward to extend the
argument in one dimension (cf. (21)–(22)) to bound the Lipschitz constant of �n
by the Wasserstein (in fact, W2) distance between the empirical distribution and the
population. Nevertheless, it is well-known that the Wasserstein distance suffers from
the curse of dimensionality; for example, the W1 distance behaves as OP .n�1=d /
(cf. [12, 33], for example). This effect is due to the high complexity of Lipschitz
functions in d dimensions. In contrast, the EM map (9) depends on the d -dimensional
randomness only through its linear projections, and the fact that the sliced Wasserstein
distance (i.e., maximal W1-distance between one-dimensional projections) behaves
as zOP .

p
d=n/ suggests that it is possible to obtain a similar guarantee for the EM

algorithm.

4. Analysis in d dimensions

In this section we analyze the EM algorithm in high dimensions. By using proper-
ties of the population EM iteration in Section 4.1 and the relative deviation bound
in Section 3, in Section 4.2 we prove optimal statistical and computational guaran-
tees for the sample EM iteration, assuming a modest condition on the initialization
which is much weaker than those in [1]. Although not necessarily satisfied by random
initialization, later in Section 5 we show that randomly initialized EM iteration will
eventually fulfill such a condition with high probability.

4.1. Properties of the population EM map

Consider the population version of the EM iterates, driven by the population EM
map (10):

� tC1 D f .� t /; �0 D �0:

We use bold face to delineate it from the finite-sample iteration (8). Let ��D ��=k��k.
Let

�0 D ˛0�� C ˇ0�0;

where �0 ? �� and k�0k D 1, so that span.�0; ��/ D span.��; �0/. The next lemma
shows that the population EM iterates cannot escape the two-dimensional subspace
spanned by �� and �0:
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Lemma 4. For each t � 1,
� t 2 span.��; �0/: (36)

Furthermore, let
� t D ˛t�� C ˇ t� t ;

where � t ? �� and k� tk D 1. Then, ¹.˛t ;ˇ t /º satisfies the recursion

˛tC1 D F.˛t ;ˇ t /; (37)

ˇ tC1 D G.˛t ;ˇ t /; (38)

where

F.˛; ˇ/ , E
�
V tanh.˛V C ˇW /

�
; (39)

G.˛; ˇ/ , E
�
W tanh.˛V C ˇW /

�
; (40)

with W � N.0; 1/ and V � 1
2
N.�k��k; 1/C

1
2
N.k��k; 1/ being independent.

Proof. It suffices to show (36), which was proved in [42]. To give some intuitions,
we provide a simple argument below by induction on t . Clearly, (36) holds for t D 0.
Next, fix any u 2 span.��; �0/?. By the induction hypothesis, u ? � t . Therefore,

hu;� tC1i D E
�
hu; Y i tanh

�
hY;� t i

��
D E

�
hu;Zi tanh

�
h��;� t iX C hZ;� t i

��
D 0

since hu; Zi; h� t ; Zi and X are mutually independent. This proves that (36) holds
for t C 1.

Next, we analyze the convergence of .˛t ;ˇ t /. Without loss of generality (other-
wise we can negate �� and �), we assume that

˛0 � 0; ˇ0 � 0:

Therefore, � t! �� is equivalent to ˛t!k��k and ˇ t! 0. The convergence is easily
justified by the following lemma:

Lemma 5 (Properties of F and G). For any ˛ and ˇ � 0, we have

1. ˛ 7! F.˛; ˇ/ is increasing, odd, concave (resp., convex) on RC (resp., R�),
with F.0; ˇ/ D 0, F.˙k��k; 0/ D ˙k��k.

2. F.˛; ˇ/ � 0 for any ˛ � 0.

3. ˇ 7! G.˛; ˇ/ is increasing and concave, with G.˛; 0/ D 0.

4. ˛ 7! G.˛;ˇ/ is even, decreasing on RC; ˇ 7! F.˛;ˇ/ is decreasing for ˛ � 0
and increasing for ˛ � 0.
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5. Boundedness:

jF.˛; ˇ/j � k��k C
p
2=�; 0 � G.˛; ˇ/ �

p
2=�:

6. The following holds:

G.˛; ˇ/ � G.0; ˇ/ D EŒW tanh.ˇW /�:

7. The following hold:

f .˛/ � F.˛; ˇ/ � f .˛/ �
�
1C k��k

2
�
˛ˇ2; ˛ � 0; (41)

f .˛/ � F.˛; ˇ/ � f .˛/ �
�
1C k��k

2
�
˛ˇ2; ˛ � 0; (42)

where
f .˛/ , F.˛; 0/ D EŒV tanh.˛V /� (43)

coincides with the one-dimensional EM map defined in (10) with �� replaced
by k��k.

8. The following holds:

G.˛; ˇ/ � ˇ

�
1 �

˛2 C ˇ2

2C 4.˛2 C ˇ2/

�
: (44)

From Lemma 5 it is clear that in the population case, the only fixed points are the
desired .˙k��k; 0/ and undesired .0; 0/. As long as the initial value is not orthogonal
to the ground truth (i.e., ˛0¤ 0), � t converges to˙��; this has been previously shown
in [6,42]. In fact, the orthogonal component ˇ t converges to 0 monotonically regard-
less of the signal component ˛t . Furthermore, if we start out with ˛0 > 0, then ˛t > 0
remains true for all t , and when ˇ t gets sufficiently close to 0, ˛t converges to k��k
following the one-dimensional EM dynamics (cf. (43)). However, a major distinction
between the one-dimensional and d -dimensional case is that ˛t need not converge
monotonically even in the infinite-sample setting. In fact, if the initial value has little
overlap with the ground truth (as is the case for random initialization in high dimen-
sions), ˇ t is large initially which causes ˛t to decrease and � t to move closer to the
undesired fixed point at zero (see Figure 3a). Therefore, in the finite-sample setting,
we need to assume conditions on the initialization (namely lower bound on j˛t j) in
order to avoid being trapped near zero – we will return to this point in the finite-sample
analysis in the next subsection. This is in stark contrast to the one-dimensional case:
even with finite samples, for any nonzero initialization, the EM iteration eventually
converges to a neighborhood of the ground truth with optimal accuracy (cf. Theo-
rem 3).
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˛t

ˇt

(a) Nonmonotone convergence of ˛t (˛0 D
0:1, ˇ0 D 0:7).

˛t

ˇt

(b) Monotone convergence of ˛t (˛0 D
ˇ0 D 0:1).

Figure 3. Convergence of .˛t ;ˇt / in the population dynamics in d dimensions with k��k D
0:35 for 60 iterations.

4.2. Finite-sample analysis

We now analyze the n-sample EM iteration (8), that is,

�tC1 D fn.�t /:

Write
�t D ˛t�� C ˇt�t ;

where �t ? �� D ��
k��k

, k�tk D 1 and ˇt � 0. Thus, k�tk D
p
˛2t C ˇ

2
t .

Recall that �n D fn � f denotes the difference between the sample and popula-
tion EM maps. In view of Theorem 4, with probability at least 1 � exp.�c0d log n/,
the following event holds:

sup
�2Rd

kfn.�/k � R;

k�n.�/k � !k�k; 8� 2 B.R/;

(45)

where R D 10.r C
p
d/, and

! ,
r
C!
d

n
logn (46)

and C! is a constant that only depends on r . We assume that n is sufficiently large so
that ! is at most an absolute constant.

Recall from Lemma 4 that f .�/ 2 span.��; �/ for any � 2 Rd . Furthermore,

f .�t / D F.˛t ; ˇt /�� CG.˛t ; ˇt /�t ;
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where F and G are defined in (39)–(40). Therefore,

˛tC1 D h�tC1; ��i D F.˛t ; ˇt /C h�n.�t /; ��i:

In view of (45), we have

jh�n.�t /; ��ij � k�n.�t /k � !
�
j˛t j C ˇt

�
:

Hence,

˛tC1 � F.˛t ; ˇt /C !
�
j˛t j C ˇt

�
(47)

˛tC1 � F.˛t ; ˇt / � !
�
j˛t j C ˇt

�
(48)

On the other hand, we have

.I � ���
>
� /�tC1 D G.˛t ; ˇt /�t C .I � ���

>
� /�n.�t /:

Taking norms on both sides, we have

ˇtC1 � G.˛t ; ˇt /C !
�
j˛t j C ˇt

�
: (49)

The equations (47)–(48) and (49) should be viewed as the finite-sample perturbation
of the population dynamics (37) and (38), respectively.

We will show that the orthogonal component ˇt unconditionally converges to
O.
p
!/ D O..d log.n/=n/1=4/; however, for finite sample size we cannot expect ˇt

to converge to zero. To analyze ˛t , let us assume that ˇt have converged to this lim-
iting value (in fact, by initializing near zero, we can ensure ˇt D O.

p
!/ for all t ).

Following the sandwich analysis in one dimension, we can define the auxiliary itera-
tions similarly to (27) to give´

˛+
tC1 D F.˛

+
t ; ˇt /C !˛

+
t C !

3=2;

˛-
tC1 D F.˛

-
t ; ˇt / � !˛

-
t � !

3=2;
˛+
0 D ˛

-
0 D ˛0; (50)

and show that the upper bound sequence ¹˛+
t º converges to ˛+ which is within the

optimal rate of the desired k��k. However, due to the additional intercept, the lower
bound sequence ¹˛-

t º have two possible fixed points (see Figure 4): the “good” fixed
point ˛- that is within the optimal rate of k��k, and the “bad” fixed point ˛ı that is
close to zero (in fact, ˛ı D O.

p
!/).

Consequently, if the iteration starts from the left of the bad fixed points, i.e.,
˛0 < ˛

ı, which is what happens when the initialization is nearly orthogonal to ��,
the lower bound sequence ˛-

t may be stuck at near zero and fail to converge to the
desired neighborhood of k��k. Thus to rule this out it requires more refined argument
than the above sandwich analysis, which is carried out in the next section. For this
section we focus on proving the performance guarantee assuming a mild assumption
on the initialization. Specifically, we establish the following claims:
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˛ı ˛- k��k ˛+

Figure 4. Perturbed EM trajectory for ˛t and fixed points.

Orthogonal direction. We show that regardless of the initialization, ¹ˇtº uncondi-
tionally converges to the near-optimal rateO.

p
!/. In particular, if we start from near

zero (and we will), we can ensure that the entire sequence ¹ˇtº is O.
p
!/ for all t .

Signal direction. We show that:

� For small ��, i.e., k��k D O.
p
!/, ¹j˛t jº unconditionally converges to O.

p
!/,

and hence so does k�t � ��k.

� For large ��, i.e., k��k D �.
p
!/, provided that the initialization satisfies

jh�0; ��ij &
1

k��k2

r
d

n
logn;

the signal part ¹˛tº converges to

k��k CO

�
1

k��k

r
d

n
logn

�
:

The condition on the initialization improves that of [1], which requires that

jh�0; ��ij � �.1/ and k��k D �.1/:

Note that if �0 is drawn uniformly from the unit sphere, we have

jh�0; ��ij D ‚P

�
1
p
d

�
:

Thus, in the special case of k��k being a constant, the above condition is fulfilled
when n D z�.d2/. Nevertheless, in Section 5 we will prove the refined result that as
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long as n D z�.d/, starting from a single random initialization, the EM iterates will
eventually satisfy the above condition with high probability.

In the rest of the paper, we always assume that the initialization lies in a bounded
ball. To simplify the presentation, assume that

k�0k � 1: (51)

The following theorems are the main result of this section. We note that results similar
to Theorems 5–6 have been shown in [11, Theorem 3] in the special case of �� D 0.
The following result shows the unconditional convergence of ˇt to zero within the
minimax rate regardless of the ground truth or the initialization. An improved error
bound is given later in Theorem 7 for large k��k.

Theorem 5 (Unconditional convergence of ˇt ). There exist constants �0; �1; �2 dep-
ending only on r , such that in the event (45), the following hold:

1. For all t � 0,
ˇtC1 � ˇt .1C !/C !j˛t j (52)

and

ˇtC1 � ˇt .1C !/ �
ˇ3t

2C 8�2
Cmin

²
!2.2C 8�2/

2ˇt
; !�

³
; (53)

where � D 2C 2r .

2. Consequently, regardless of �0,

lim sup
t!1

ˇt � �1

�d
n

logn
�1=4

: (54)

3. Furthermore, if ! � �0 and

k�0k � �2

�d
n

logn
�1=4

; (55)

then for all t � 0,

ˇt � �2

�d
n

logn
�1=4

: (56)

Theorem 6 (Small k��k: unconditional convergence of ˛t ). There exist absolute con-
stants K;L � 1, such that in the event (45), the following holds: Let s0 be such that
K
p
! � s0 � 1. Assume that k��k � s0.

1. Regardless of �0,
lim sup
t!1

j˛t j � 2s0; (57)

and hence

lim sup
t!1

`.�t ; ��/ � 3s0 C �1

�d
n

logn
�1=4

: (58)
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2. Furthermore, if the initializer �0 satisfies (55), then

j˛t j � Ls0; (59)

`.�t ; ��/ � 2Ls0 (60)

hold for all t � 0.

Theorem 7 (Large k��k: conditional convergence of ˛t ). There exist constants �0; : : : ;
�4 depending only on r , such that in the event (45), the following holds: Assume that
k��k � �0

p
!. Let �0 2 Sd�1 satisfy

jh�0; ��ij �
�2

k��k2

r
d

n
logn: (61)

Set

�0 D c
�d
n

logn
�1=4

�0; (62)

where c � �2 and �2 is from Theorem 5. Then, for all t � �4 log.n/=k��k2,ˇ̌
˛t � k��k

ˇ̌
� �1

1

k��k

r
d logn
n

(63)

and

`.�t ; ��/ � �3
1

k��k

r
d logn
n

: (64)

Remark 3. We can take s0 D �0
p
! in Theorem 6, so that Theorems 6 and 7 gives

the near-optimal rate of O..d=n log n/1=4/ for the case of small and large k��k,
respectively. Later in the refined analysis in Section 5 we will take s0 slightly larger
than
p
!; cf. (65).

Theorems 5–7 are proved in Section 10.1. Here we give a sketch of the proof of
Theorem 7. The analysis consists of three phases:

Phase I: ˛t .
p
!. By using the condition (61) on the initialization, we show that in

this phase ˛t increases geometrically according to

˛tC1 �
�
1C�

�
k��k

2
��
˛t :

Phase II: ˛t &
p
!. Now that ˛t has escaped the undesired fixed point near zero

(cf. Figure 4), one can apply the “sandwich bound” (50) to show that ˛t follows a
perturbed one-dimensional EM evolution

˛tC1 D f .˛t /CO.!˛t /;

where f is defined (43) and coincides with the one-dimensional EM map (10) with ��
replaced by k��k.



Randomly initialized EM algorithm 167

Phase III: ˛t � k��k. Recall that Theorem 5 ensures that ˇt converges to the worst-
case rateO.

p
!/. Now that ˛t has reached a constant fraction of the desired limit k��k,

we can obtain improved estimate ˇt.!=k��k, leading to the optimal k��k-dependent
bound (64).

5. Refined analysis for random initialization: the initial phase

In this section we analyze the EM iterates starting from a single random initialization.
Since Theorems 5 and 6 have covered the case of small k��k, we only consider the
case where k��k � .d=n/1=4. We provide a refined analysis of Phase I in the proof
of Theorem 7: if the initial direction is uniformly chosen at random, then with high
probability, the iterates will satisfy ˛t D �.

p
!/ for sufficiently large constant C in

at mostO.1=k��k2 logn/ iterations and hence the analysis in the subsequent Phase II
and III applies. This was previously shown in Theorem 7 under the stronger assump-
tion (61) which need not be fulfilled by random initializations.

Recall that �� D 1
k��k

�� denotes the true direction and

˛t D h�t ; ��i; ˇt D k.I � ���
>
� /�tk:

Without loss of generality, we assume the following:

1. Thanks to the rotational invariance of the Gaussian distribution, we can assume
that the true center is aligned with a coordinate vector, i.e., �� D k��ke1, so
that

˛t D �t;1; ˇt D k�t;?k D k.�t;2; : : : ; �t;d /k:

2. The initialization satisfies ˛0 > 0. Otherwise, we can apply the same analysis
to ¹��tº, which has the same law as ¹�tº.

Furthermore, we assume that the ground truth satisfies

r � k��k �
�C?d
n

�1=4
logn (65)

for some absolute constant C?. Otherwise, applying Theorem 6 (with s0 being the
right-hand side of (65)) shows that regardless of the initialization, we achieve the near
optimal rate for all t � 0:

k�t � ��k D O
��d
n

�1=4
logn

�
: (66)

Define
T1 , min¹t 2 N W ˛t > C�

p
!º;

where C� is some constant depending only on r (cf. (99)) and ! D
p
C! d=n logn

as defined in (46). The main result of this section is the following:
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Theorem 8. Assume that �� satisfies (65). There exist constantsC0;C1;C2 depending
only on r , such that the following holds: Let

�0 D C0

�d
n

logn
�1=4

�0; (67)

where �0 is drawn uniformly at random from the unit sphere Sd�1. Assume that

n � C1d log4 d: (68)

Then, with probability at least 1 � C2 log logn
p

logn
,

T1 � T? ,
CT .log d C log logn/

k��k2
; (69)

where CT is some universal constant.

Theorem 8 shows that after t � T1, the iteration enters Phase II and the statistical
guarantee in Theorem 7 applies to all subsequent iterations; in particular, the opti-
mal estimation error is achieved in anotherO.log.n/=k��k2/DO.

p
n=d/ iterations,

proving Theorem 2 previously announced in Section 1.2. Finally, since the case of
k��k D O..d=n/1=4 log n/ is covered by (66), the worst-case result in Theorem 1
follows.

5.1. Proof of Theorem 8

In this subsection we provide the main argument for proving Theorem 8, with key
lemmas proved in Section 11.1. Suppose, for the sake of contradiction, that ˛t �

p
!

for all t � T?. Then, in view of (56), we conclude that for all t � T?,

k�tk � 2C1

�d
n

logn
�1=4

(70)

for some constant C1. In particular, �t belongs to the unit ball in view of the assump-
tion (68).

We now introduce an auxiliary sequence of iterates ¹z�tº, which is main apparatus
for analyzing the initial growth of the signal. Since the law of Yi;1 is symmetric,
without loss of generality, we view the i th sample as Yi D .biYi;1; Yi;2; : : : ; Yi;d /,
where bi ’s are independent Rademacher variables, and the sample-based EM iterates
is

�tC1 D fn.�t /;

where

fn.�/ D En
�
Y tanhh�; Y i

�
D
1

n

nX
iD1

Yi tanhh�; Yi i:
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In comparison, the auxiliary iteration is based on the modified samples . zY1; : : : ; zYn/,
where zYi D .zbiYi;1; Yi;2; : : : ; Yi;d /, the zbi ’s are independent Rademacher variables,
and ¹zbi ; bi ; Yiº are mutually independent. Define the auxiliary iterates

z�tC1 D zfn.z�t /;

where

zfn.�/ , En
�
zY tanhh�; zY i

�
D
1

n

nX
iD1

zYi tanhh�; zYi i:

Both the main and the auxiliary sequence starts from the same random initialization:

z�0 D �0;

as specified by (67). The angle of a random initialization satisfies the following:

Lemma 6 (Random initialization). There exists an absolute constant C0, such that
for any a 2 .0; 1/,

P

�
jh�0; e1ij <

a
p
d

�
� C0a

r
log

1

a
:

Proof. Note that h�0; e1i is equal in distribution toZ1=kZk, whereZD .Z1; : : : ;Zd /
is standard normal. Therefore,

P

�
jh�0; e1ij <

a
p
d

�
� P

�
kZk �

p
Cd

�
C P

�
jZ1j <

p
Ca
�
:

Take C D 2C 3 log.1=a/. By Lemma 20,

P
�
kZk �

p
Cd

�
� ad � a and P

�
jZ1j <

p
Ca
�
�
p
2C=�a:

In the following, we conduct the analysis in the event:

˛0 �
1p

d logn
k�0k; (71)

which holds with probability at least 1�O.log.log.n//=
p

logn/, in view of Lemma 6.
The key argument is to show that the signal component ˛t grows exponentially

according to
˛tC1 � ˛t

�
1C k��k

2
� o

�
k��k

2
��
: (72)

More precisely, we prove a quantitative version of (72) (cf. (76) below).
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Lemma 7. With probability at least 1 �O.n�1=2 log n/, for all t D 0; 1; : : : ; T?, we
have

k�t � z�tk � ˛t

s
Kd log2 n

n
t; (73)

ˇt

˛t
�
p
d lognC !t; (74)

and

˛t �
1p

Kd logn
k�tk; (75)

˛tC1 � ˛t

�
1C k��k

2
�

s
Kd log2 n

n

�
; (76)

where K is a constant depending only on r .

The proof of Lemma 7 is by induction on t , relying on the following results that
relate the actual iterations to the auxiliary ones.

Lemma 8. For each t � 0, with probability at least 1 �O.n�1/, we have

˛tC1 � ˛t

�
1C k��k

2
�

r
C logn
n

� Ck�tk
2

�
�

r
C logn
n
k�tk �

r
Cd logn

n
k�t � z�tk; (77)

where C is some constant depending only on r .

Lemma 9. For each t � 0, with probability at least 1 �O.n�1/, we have

kz�tC1 � �tC1k �

�
1C k��k

2
C

r
Cd logn

n

�
kz�t � �tk

C

r
Cd logn

n
˛t C

r
C logn
n
k�tk; (78)

where C is some constant depending only on r .

Now we complete the proof of Theorem 8. Suppose, for the sake of contradiction,
T1 > T?, so that ˛t �

p
! for all t � T?. Since (76) holds for all t � T?, in view of

the assumption (65), we have that

˛tC1 � ˛t
�
1C c0k��k

2
�

holds for some constant c0. Since

˛0 � k�0k
1p

d logn
D

C0
p
C!

p
!p

d logn
;
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when

t � T? D
CT .log d C log logn/

k��k2

for sufficiently large constant CT , we have ˛t >
p
! D .C! d=n log n/1=4, which is

the necessary contradiction.

6. Approaching the MLE

Despite being a heuristic of solving the maximum likelihood, in this section we show
that the EM iteration converges to the MLE under minimal conditions. Define the
MLE as any global maximizer of the likelihood function, i.e.,

y�MLE 2 arg max
�2Rn

`n.�/; (79)

where the log likelihood `n is given in (11). Note that from first principles it is unclear
whether there exists a unique global maximizer (up to a global sign change). Further-
more, our previous analysis only shows that with high probability, the EM iterates
are within the optimal rate of the true mean �� after a certain number of iterations.
Indeed, for k��k � .Cd=n/1=4 log n, Theorem 7 and Theorem 8 together imply that,
with probability 1 � o.1/,

`.�t ; ��/ �

�
Cd logn

n

�1=4
for all t � T , C log.n/=k��k2, for some constant C . This, however, has no direct
bearing on the convergence of the sequence �t , since it does not rule out the possibility
that �t oscillates within the optimal rate of ��. Next we will address both questions
by showing that the MLE is unique and coincides with the limit of the EM iteration.

Theorem 9. Assume that n � C1d log4 d and .C2 d=n/1=4 logn � k��k � r , where
C1; C2 are constants depending only on r . With probability at least 1 � 2n�1, for
all t � 1,

k�TCt � y�MLEk � e
�ctk��k

2

k�T � y�MLEk; (80)

for some absolute constant c, where y�MLE is the maximizer that satisfies

k�T � y�MLEk D `.�T ; y�MLE/:

In particular, limt!1 �t exists and coincides with y�MLE, the unique (up to a global
sign change) global maximizer of (79).
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Next we prove Theorem 9. Note that y�MLE is a critical point, i.e., r`n.y�MLE/D0.
Recall from (13) that the EM iteration corresponds to gradient ascent of the log likeli-
hood `n with step size one. Applying the Taylor expansion of r`n at y�MLE, from (13)
we get

�tC1 � y�MLE D �t � y�MLE Cr`n.�t /

D
�
I Cr2`n.�t /

�
.�t � y�MLE/; (81)

where �t D ˛�t C .1� ˛/y�MLE for some ˛ 2 Œ0; 1�. The key lemma is then as follows:

Lemma 10. Under the setting of Theorem 9, denote ı , c.d=n/1=4 log n for some
constant c depending only on r . With probability at least 1� 2n�1, for all � such that
`.�; ��/ � ı, we have

0 � I Cr2`n.�/ � e
�ck��k

2

I:

We now apply Lemma 10 to show the convergence of �t to y�MLE. To do so, we
need some crude guarantee on the MLE. We provide such an analysis in Appendix C.
In particular, by (165) therein, with probability at least 1 � exp.�cd log2 n/,

`.y�MLE; ��/ �
�
C
d logn
n

�1=4
for some constants c; C . Since k��k > 2ı for all sufficiently large n, in the event that

`.y�MLE; ��/ � ı and `.�T ; ��/ � ı;

�T and y�MLE must both belong to exactly one of the two balls B.��; ı/ and B.���; ı/.
Without loss of generality, we can assume the former. Taking norms on both sides
of (81) and applying Lemma 10, we have

k�TC1 � y�MLEk � e
�ck��k

2

k�T � y�MLEk;

and hence (80) follows, which, in particular, implies the convergence of ¹�tº and the
uniqueness of y�MLE.

7. Discussions and open problems

We conclude this paper by discussing some technical aspects of the results and related
or open problems:
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Small initialization. In this paper, we showed that the EM algorithm achieves the
near-optimal rate and converges to the MLE when the direction of the initializa-
tion �0 is uniform on the sphere and �0 is sufficiently close to zero, specifically,
k�0k D ‚..d=n logn/1=4/ (cf. Theorem 8). Computationally speaking, using a small
initialization does not compromise the needed number of iterations as the signal grows
rapidly according to (76) in the initial Phase I. Technically speaking, the main reason
for using a small initialization in the proof is to ensure the orthogonal component ˇt
stays within the near-optimal rate throughout the entire trajectory, as shown in Theo-
rem 5. An added bonus is that the signal component ˛t converges monotonically; as
demonstrated in Figure 3, this can fail for large initialization. We conjecture that the
same result applies to k�0k D ‚.1/. Proving such a result entails a refined analysis of
the initial phase since ˛t initially decays due to ˇt being as large as a constant (see
Figure 3a).

Extensions. In this paper we considered the simple symmetric 2-GM model. It is
of great interest to understand the performance or limitations of EM algorithms in
more general Gaussian mixture models, e.g., multiple components, unknown covari-
ance matrix, asymmetric and unknown weights, and, more generally, location-scale
mixtures. The optimal and adaptive rates of location mixtures in one dimension were
obtained in [16] and shown to be achieved by the generalized method of moments [40].
It remains open whether the corresponding EM algorithm achieves competitive per-
formance. One immediate hurdle is the existence of bad fixed points, which can exist
for population EM for 3-GM even in one dimension [19].

Beyond Gaussian mixture models, statistical problems with missing data, and
other latent variable models such as mixture of regression and alignment problems in
cryo-EM [31] are major avenues where EM algorithm are applied. Promising results
have been obtained recently in [1, 22], although finite-sample finite-iteration guaran-
tees and analysis for random initializations are still lacking.

The present paper concerns analyzing EM algorithm for the purpose of parame-
ter estimation. For the related problem of classification, that is, recovering the labels
of each sample with small error rate, we refer to the recent work on Lloyd’s algo-
rithm [24] and optimal rates [26]. It remains open to understand the performance of
EM algorithm for clustering and whether it achieves the optimal rates.

8. Proofs in Section 2

8.1. Proofs of Theorem 3 and Corollary 1

Proof of Theorem 3. Step 1. We show that

�t � �
+
t (82)
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by induction on t . The base case of t D 0 is clearly true. Assume that (82) holds for t .
Then,

�tC1 D f .�t /C�n.�t /

� f .�t /C n�t

� f .�+
t /C n�

+
t D �

+
tC1;

where we used the fact that � 7! f .�/C n� is increasing on RC.

Step 2. We show that �+
t � C1 for all t for some constant C1. This simply follows

from the fact that f is bounded. By Lemma 3 and the assumption �� � r ,

�+
tC1 D f .�

+
t /C n�

+
t � 1C r C n�

+
t ;

where n � c � 1
2

in the event (26). Setting C1 D 2.1C r/ and letting n � 4C 20 , the
proof follows from induction on t .

Step 3. We show that
�t � �

-
t � 0; (83)

by induction on t . The base case of t D 0 is clearly true. Assume that (83) holds for t .
Then,

�tC1 � f .�t / � n�t

� f .�-
t / � n�

-
t D �

-
tC1;

where we used the factC1��t��-
t as shown in the previous step and � 7!f .�/ � n�

is increasing on Œ0; C1�. To see this, note that f .�/ is concave on RC. Therefore,
f 0.�/ � f 0.C1/ � n, which holds in the event (26) provided that c � f 0.C1/.
Finally, �-

tC1 � 0 follows again from monotonicity and �-
t � 0. This completes the

proof of (31).

Step 4. Next we prove the convergence of ¹�+
t º to �+. Recall q.�/D f .�/=� from

Lemma 3, which is a decreasing function on RC. By definition, we have

q.�+/ D 1 � n: (84)

Furthermore, we have, crucially,

f .�/C n� ? � if � 7 �+:

Therefore,
j�+
tC1 � �

+
j < j�+

t � �
+
j;
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and hence �+
t ! �+ as t!1. Similarly, if �2� � n, then we have �-

t ! �-; if �2� <n,
then �- D 0 by definition and we have lim inf �-

t � �
-.

Step 5. We show (32). Recall that q.�/ D f .�/=� from Lemma 3. If �2� � n, by
the definitions (28)–(29), we have

q.�+/ D 1 � n;

q.�-/ D 1C n;

q.��/ D 1:

If �2� � n, then �- D 0 by definition. In both cases, since q is decreasing on RC by
Lemma 3, we have

�-
� �� � �

+:

Furthermore, since �� 2 Œ0; r�, by (25), for all � 2 Œ0; C1�,

q0.�/ � �
2�

3
E

�
Y 4

cosh2.�Y /

�
� �C4�; (85)

where C4 is a constant that depends on r (recall C1 D 2.r C 1/).
Let "+ D �+ � ��. Then,

�n D q.�� C "
+/ � q.��/ D

Z ��C"
+

��

q0.�/ d�

(85)
� �

C4

2

�
.�� C "

+/2 � �2�
�
D �

C4

2
.2��"

+
C "+2/:

Hence,

0 � "+
� min

²
n

C4��
;

s
2n

C4

³
� C3 min

°n
��
;
p
n

±
: (86)

Similarly, let "- D �� � �
-. Then, 0 � "- � ��. Furthermore, if �2� � n, we have

n D q.�� � "
-/ � q.��/ D

Z ��

���"-
�q0.�/ d�

(85)
�
C4

2

�
�2� � .�� � "

-/2
�
D
C4

2
.2�� � "

-/"-
�
C4

2
��"

-:

Hence,

0 � "-
� min

²
��;

2n

C4��

³
� C5 min

°n
��
;
p
n

±
: (87)

If �2�<n, since "-���, then (87) holds automatically. Thus, combining (86) and (87)
yields

�� � " � �
-
� lim inf

t!1
�t � lim sup

t!1
�t � �

+
� �� C "; (88)

where " , C6 min¹n=��;
p
nº.
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Step 6. Finally, we provide a finite-iteration version of (88). In view of the sand-
wich inequality (31), it suffices to determine the convergence rate of ¹�+

t º and ¹�-
t º.

We consider two cases separately.

Case I: �2
� � 2n. Let "+

t D �
+
t � �

+. If "+
t � 0, then we have

0 � �t � �
+
t � �

+
� �� C " . n�1=4;

which is already within the optimal rate of convergence. So it suffices to consider
"+
t � 0, i.e., �+

t converging to �+ from above. Then,

"+
tC1 D �

+
t

�
q.�+

t /C n
�
� �+

(84)
D "+

t C �
+
t

�
q.�+

t / � q.�
+/
�

(85)
� "+

t � C6."
+
t C �

+/
�
�+"+

t C ."
+
t /
2
�

� "+
t � C6

�
.�+/2"+

t C ."
+
t /
3
�

(89)

� "+
t � C

0
6."

+
t /
3;

where C 06 D min¹C6; 1=r20 º. Next we apply Lemma 22 with h.x/ D C 06x
3 to the

sequence ¹"+
t º, which satisfies h.x/ < x for all x 2 .0; "C0 /, since "C0 � �0 � r0. We

have

G.x/ D

Z r0

x

1

h.�/
d� D C7

�
1

x2
�
1

r20

�
;

and we conclude that

"+
t �

1q
t=C7 C 1=r

2
0

�

r
C7

t
:

Thus, for all t � C7=n, we have "+
t �
p
n and hence j�+

t � ��j .
p
n.

Case II: �2
� � 2n. Let "+

t D �
+
t � �

+. First assume "+
t � 0, in which case "+

t converges
to zero from above. Since �� & pn, we have �- � �+ � ��. Continuing from (89),
we conclude that

"CtC1 � .1 � C8�
2
�/"

+
t :

Therefore, for all sufficiently large n, as soon as t � C 08 log.n/=�2� , we have

�t � �� � "
+
t �

1

��
p
n
:

Similarly, if "+
t � 0, we have "+

tC1 � "
+
t .1 � C8�

2
�/, which converges to zero from

below.
Next we analyze the convergence rate of ¹�-

t º. Let "-
t D �

- � �-
t . We only consider

the case of "-
t � 0 as the other case is entirely analogous. Since f .�/� n� > � if and

only if � < �-, we have �-
t ! �- from below and "-

t is a decreasing positive sequence.
Let c0 D 1=.200

p
3C r4/. Consider two cases:
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Case II.1: �-
t � c0��. Entirely analogous to (89), we have

"-
tC1 D "

-
t � �

-
t

�
q.�-

t / � q.�
-/
�

� "-
t � C6.�

-/2"-
t

� "-
t .1 � C9�

2
� /:

Since "�0 D �
- � �0 � �� � r , for all sufficiently large n, as soon as

t � C 09
log.1=n/

�2�
;

we have �t � �� � �"-
t � �n=�

�.

Case II.2: 0< �-
t � c0��. Recall from Lemma 3 that f .0/D f 00.0/D 0 and f 0.0/D

1C �2� . Furthermore, f 000.�/ D EŒY 4 tanh000.�Y /�. Since j tanh000 j � 2, for all � , we
have

jf 000.�/j � 2EŒY 4� � 16.3C r4/: (90)

Therefore, the Taylor expansion of f at zero yields

�-
tC1 D f .�

-
t / � n�

-
t �

�
1C �2� � n �

16.3C r4/

6
c20�

2
�

�
�-
t �

�
1C

�2�
4

�
�-
t ;

where the last inequality is by the choice of c0. Therefore, in at mostC11=�2� log.��=�0/
iterations, we have �-

t � c0�� which enters the previous Case II.1.
In summary, for all t � C12=�2� log.��=�0n/, we have j�t � ��j . n=�

�.

Proof of Corollary 1. An inspection of the proof of Theorem 3 shows that the guaran-
tees in (32) and (33) apply if n � W1.�n; �/ is replaced by any upper bound thereof,
which we choose to be max¹n; 1=

p
nº. Then, in the eventE defined in (26), we have

`.�t ; ��/ � �2 min
²

max¹n; 1=
p
nº

��
;

s
max

²
n;

1
p
n

³³
holds for all t satisfying (35). Taking expectation and using (22) and Jensen’s inequal-
ity, we have

E
�
`.�t ; ��/1E

�
� �2.1C c0/min

²
1

��
p
n
;
1

n1=4

³
;

where the high-probability event E is in (26). Finally, by definition of the EM map,
we have j�t j � kfnk1 � EnjY j, and hence j`.�t ; ��/j � r C EnjY j. Therefore, by
the Cauchy–Schwarz inequality, we have

E
�
`.�t ; ��/1Ec

�
�
p

P ŒEc�
q

E
��
r C EnjY j

�2� (23)
� C exp.�cn1=3/

for some constants c; C depending on r . Combining the previous two displays yields
the desired (34).
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8.2. Proof of Lemma 3

Proof. We consider each part in turn.

1. By definition,

f 0.�/ D E
�
Y 2 tanh0.�Y /

�
D E

�
Y 2

cosh2.�Y /

�
� 0;

f 00.�/ D E
�
Y 3 tanh00.�Y /

�
D �2E

�
Y 3 tanh.�Y /
cosh2.�Y /

�
:

2. Clearly f 00.�/ is negative (resp., positive) when � is positive (resp., negative).

3. f .0/ D f 00.0/ D 0 by definition, f 0.0/ D EŒY 2� and

f 0.��/ D E

�
Y 2

cosh2.��Y /

�
D E

�
Z2

cosh.��Z/

�
exp.���2=2/; Z � N.0; 1/;

� EŒZ2� exp.���2=2/ D exp.���2=2/;

where the second equality follows from a change of measure from Y to Z; compare
with Lemma 26.

4. The monotonicity of q simply follows from the concavity of f on RC and
f .0/ D 0. By the symmetry of the distribution of Y , we have

q0.�/ D �E

�
Y sinh.2�Y / � 2�Y 2

2�2 cosh2.�Y /

ˇ̌̌
Y � 0

�
� �

2�

3
E

�
Y 4

cosh2.�Y /

ˇ̌̌
Y � 0

�
;

where we used the fact that sinh.x/ � x C x3=6 for x � 0; (b) follows from cosh � 1
and Jensen’s inequality.

9. Proofs in Section 3

Proof of Theorem 4. First of all, by definition, we have

kfn.�/k D kEn
�
Y tanhh�; Y i

�
k � En

�
kY k

�
�

q
En
�
kY k2

�
:

Define the event
E2 D

®
En
�
kY k2

�
� 2k��k

2
C 10d

¯
:

Since EnŒkY k2� � 2k��k2 C 2EnŒkZk2�, where nEnŒkZk2� � �2nd , and by the �2

tail bound (154) in Appendix A, we have

P ŒE2� � 1 � exp.�nd/:
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Next, we show that with probability at least 1 � exp.�c0d logn/,

k�n.�/k � C0k�k.1C r/

r
d

n
logn

for all � 2 B.R/.
Let Y; Y1; : : : ; Yn

i.i.d.
� P�� . Let C � Sd�1 be an "-covering of Sd�1 in Euclidean

distance, where " � 1=2 is to be specified later. It is well known (see [36]) that C can
be chosen so that

jC j �
�
1C

2

"

�d
�

�3
"

�d
:

Furthermore, for any y 2 Rd , we have

kyk �
1

1 � "
max
u2C
hu; yi;

and hence

k�n.�/k � 2max
u2C

E
�
hu; Y i tanhh�; Y i

�
� En

�
hu; Y i tanhh�; Y i

�
:

For each � 2 R, there exists v 2 C such that kk�kv � �k � "k�k. For any u 2 C ,
using Cauchy–Schwarz and the fact that tanh is 1-Lipschitz, we haveˇ̌

E
�
hu; Y i tanh

�
h�; Y i

��
� E

�
hu; Y i tanh

�
k�khv; Y i

��ˇ̌
� E

�
jhu; Y ijjh� � k�kv; Y ij

�
� E

�
kY k2

�
kukk� � k�kvk � "k�kE

�
kY k2

�
:

Similarly,ˇ̌
En
�
hu; Y i tanh

�
h�; Y i

��
� En

�
hu; Y i tanh

�
k�khv; Y i

��ˇ̌
� "En

�
kY k2

�
k�k:

Therefore,

k�n.�/k � 2 max
u;v2C

ˇ̌
E
�
hu; Y i tanh

�
k�khv; Y i

��
� En

�
hu; Y i tanh

�
k�khv; Y i

��ˇ̌
C "k�k

�
E
�
kY k2

�
C En

�
kY k2

��
;

and hence

sup
0<k�k�R

k�n.�/k

k�k

� 2 max
u;v2C

sup
0<a�R

1

a

ˇ̌
E
�
hu; Y i tanh

�
ahv; Y i

��
� En

�
hu; Y i tanh

�
ahv; Y i

��ˇ̌
›

,F.u;v;a/

C "
�
E
�
kY k2

�
CEn

�
kY k2

��
;

where EŒkY k2� D d C k��k2 � d C r2.
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We consider two cases separately:

Case I: 0 < a � ". Since j tanh0 j � 1 and j tanh00 j � 1 everywhere, we haveˇ̌̌1
a

E
�
hu; Y i tanh

�
ahv; Y i

��
�E

�
hu; Y ihv; Y i

�ˇ̌̌
� "E

�
jhu; Y ijhv; Y i2

�
� "E

�
kY k3

�
;

and similarly,ˇ̌̌1
a

En
�
hu; Y i tanh

�
ahv; Y i

��
� En

�
hu; Y ihv; Y i

�ˇ̌̌
� "En

�
kY k3

�
:

Therefore,

sup
0<a�"

F.u; v; a/ �
ˇ̌
E
�
hu; Y ihv; Y i

�
� En

�
hu; Y ihv; Y i/

�ˇ̌
C "

�
E
�
kY k3

�
C En

�
kY k3

��
:

For any u; v 2 C , note that

hu; Y ihv; Y i D hu; ��ihv; ��i C hXZ; hu; ��iv C hv; ��iui C hu;Zihv;Zi:

Since k��k � r by assumption and khu;Zihv;Zik 1 � khu;Zik 2khv;Zik 2 D 1
(cf. [36, Lemma 2.7.7]), we conclude that hu; Y ihv; Y i is C2.r C 1/-subexponential.
By Bernstein’s inequality (cf. [36, Theorem 2.8.1]), for any b such that bd logn � n,

P

�ˇ̌
E
�
hu; Y ihv; Y i

�
� En

�
hu; Y ihv; Y i

�ˇ̌
� .1C r/

r
bd logn

n

�
� exp.�cbd logn/;

where c is some absolute constant. Furthermore,

E
�
kY k3

�
� C4

�
r C
p
d
�3 and En

�
kY k3

�
� max
i2Œn�
kYik

3:

Since n � d log d , P ŒkYik �
p
n � � exp.�cn/. Therefore, by the union bound,

En
�
kY k3

�
� n3=2

with probability at least 1 � exp.�c0n/.

Case II: " � a � R. Let R be an "2-net for the interval Œ"; R�, so that for any a 2
Œ"; R�, there exists a0 2 R such that ja � a0j � "2. Then,ˇ̌̌1
a

E
�
hu; Y i tanh

�
ahv; Y i

��
�
1

a0
E
�
hu; Y i tanh

�
a0hv; Y i

��ˇ̌̌
� 2
ja � a0j

a
E
�
jhu; Y ihv; Y ij

�
� 2"E

�
kY k2

�
:
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Therefore,

sup
"�a�R

F.u; v; a/ � max
a2R

F.u; v; a/C 2"
�
E
�
kY k2

�
C En

�
kY k2

��
:

For any u; v 2 C and a 2 R,ˇ̌̌̌
hu; Y i tanh

�
ahv; Y i

�
a

ˇ̌̌̌
� jhu; Y ijjhv; Y ij:

Therefore, j.hu; Y i tanh.ahv; Y i//=aj is C2.1C r/-subexponential. Again by Bern-
stein’s inequality, we have

P

�
jF.u; v; a/j � .1C r/

r
bd logn

n

�
� exp.�cbd logn/:

Set " D n�4 so that jC j � .3n4/d and jRj � Rn4. Applying the union bound to
both cases and choosing a sufficiently large constant b completes the proof.

10. Proofs in Section 4

10.1. Proofs of Theorems 5–7

Throughout this section denote for brevity s , k��k.

Proof of Theorem 5. We first show that the sequence ¹˛t ;ˇtº is bounded. By assump-
tion, ! � 1

2
and k�0k � 1 by (51). Using the bounded property of the F and G maps

in Lemma 5 and induction on t , we have

j˛t j � �; 0 � ˇt � �; (91)

where � D 2.k��k C
p
2=�/ � 2r C 2.

Combining (44) and (49), we have

ˇtC1 � ˇt

�
1 �

˛2t C ˇ
2
t

2C 4.˛2t C ˇ
2
t /

�
C !

�
j˛t j C ˇt

�
from which (52) follows. To show (53), note that, in view of (91), we have

ˇtC1 � ˇt

�
1 �

˛2t C ˇ
2
t

2C 8�2

�
C !

�
j˛t j C ˇt

�
(92)

� ˇt .1C !/ �
ˇ3t

2C 8�2
C sup
0�˛��

�
!˛ �

˛2ˇt

2C 8�2

�
� ˇt .1C !/ �

ˇ3t
2C 8�2

Cmin
²
!2.2C 8�2/

4ˇt
; !�

³
:
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Let C1 D 2C 8�2. Let ˇ be any limiting point of the sequence ¹ˇtº. Taking limits on
both sides we have

ˇ3

C1
� !ˇ C

!2C1

4ˇ
� 2

�
!ˇ _

!2C1

4ˇ

�
;

which implies that either ˇ �
p
2C1! or ˇ � .!2C 21 =2/

1=4. So we conclude (54).
Finally, we prove (56). We show by induction that there exists some constant a

depending only on r , such that ˇt � a
p
! for all t � 0. The base case is the assump-

tion (55). Next, fix some constant b to be specified and consider two cases:

Case I: ˇt � b!. From (53), we get

ˇtC1 � ˇt .1C !/ �
ˇ3t
C1
C !� � !.b C ! C �/ � a

p
!;

provided that
p
! � a=.b C ! C �/.

Case II: b! � ˇt � a
p
!. Again from (53), we get ˇtC1 � h.ˇt /, where

h.ˇ/ , ˇ.1C !/ �
ˇ3

C1
C
!2C1

2ˇ
:

Note that

d

dˇ
h.ˇ/ D 1C ! �

3ˇ2

C1
�
!2C1

2ˇ2
� 1 �

C1

3b2
C !

�
1 �

3a2

C1

�
� 0;

provided that C1=3b2 � 1
2

and !.1 � .3a2=C1// � �12 . Therefore,

ˇtC1 � sup
b!�ˇ�a

p
!

h.ˇ/ � h.a
p
!/ D a

p
! C !3=2

�
a �

a3

C1
C
C1

2a

�
� a
p
!;

provided that a3=C1 � 2a and a3=C1 �C1=a. Finally, choosing aD 2C1 and bDC1,
then the above conditions hold simultaneously as long as ! � c0 D c0.r/ for some
small constant c0.

Proof of Theorem 6. It suffices to show (57) which, together with (54), implies (58).
Combining (47) with (41) and (48) with (42), we have

˛tC1 � f .˛t /C �j˛t jˇ
2
t C !

�
j˛t j C ˇt

�
; (93)

˛tC1 � f .˛t / � �j˛t jˇ
2
t � !

�
j˛t j C ˇt

�
(94)

with � D 1C s2. Since k��k D s � s0 � 1, we have � � 2. Furthermore, in this case
the constant �2 in (56) is also absolute. Let ˛ be any limiting point of ¹˛tº. We show
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that j˛j � 2s0. Assume for the sake of contradiction that ˛ � 2s0. Sending t !1
in (93) and in view of (56), we have

˛ � f .˛/C C3.˛! C !
3=2/; (95)

for some absolute constantC3. Let q.˛/D f .˛/=˛ be defined in (24) with �� replaced
by s. As shown in Lemma 3, q is a decreasing function on RC with q.s/D 1. Dividing
both sides of (95) by ˛ leads to

1 � q.˛/C C3

�
! C

!3=2

˛

�
� q.2s0/C

3C3

2
!;

where the last inequality holds because of the assumption s0 �
p
!. Furthermore, for

all ˛ 2 Œ0; 2�, we have q0.˛/ � �C4˛ for some absolute constant C4. Thus,

q.2s0/ � 1 D

Z 2s0

s

q0.˛/d˛ � �C4.4s
2
0 � s

2/ � �3C4s
2:

Therefore, we reach the desired contradiction that

q.2s0/C
3C3

2
! � 1 � C4s

2
C
3C3

2
! < 1;

provided that s2 � .3C3=2C4/!. The proof is completed by taking

K D max
²
1;

s
3C3

2C4

³
:

For the other direction, if ˛ < �2s0, then the above proof applies to (94) with ˛
replaced by �˛ and in view of the fact that f .�˛/ D �f .˛/. This completes the
proof of (57).

Finally, we show the second part for small initialization satisfying (55). We prove
(59) by induction on t . The base case of t D 0 follows from

˛0 � k�0k � �2

�d logn
n

�1=4
� LK

p
! � Ls0;

provided that L � �2=KC
1=4
! , where both �2 and C! in (46) are absolute constants

since k��k � 1 by assumption. Next, using (93) and the argument that leads to (95),
we have

˛tC1 � f .˛t /C C3.˛t! C !
3=2/:

By the monotonicity of f , it suffices to show that

f .Ls0/C C3.Ls0! C !
3=2/ � Ls0:
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To this end, recalling from (85) and the fact that q.0/ D f 0.0/ D 1C s2 � 1C s20 ,
we have q.˛/ � 1C s20 � C4˛

2=2, where C4 is absolute since k��k � 1. Thus,

f .˛/ D ˛q.˛/ � ˛.1C s20/ � C4˛
3=2:

Therefore, using the assumption that s0 � K
p
!, we have

f .Ls0/C C3.Ls0! C !
3=2/ D Ls0 C s0

�
L � C4L

3=2C C3.L=K
2
C 1=K3/

�
� Ls0;

provided thatL exceeds some large absolute constant. This completes the proof of (59),
which implies (60) in view of (56) provided that L � �2.

Proof of Theorem 7. By assumption, s � C0
p
!. Without loss of generality, we can

assume that ˛0 � 0 (otherwise we the same argument applies with ˛t replaced by�˛t
and s by�s). By design, ˛t is close to zero at t D 0. The argument entails proving that
initially ˛t increases geometrically approximately as ˛tC1 D .1C�.s2//˛t , until ˛t
exceeds �.

p
!/. After this point, the sandwich bound (93)–(94) behave as the linear

perturbation of the one-dimensional EM iteration in (27), and consequently the one-
dimensional analysis in Theorem 3 applies, yielding both error bound and speed of
convergence.

By the assumption (62),

k�0k D c
�d
n

logn
�1=4
� c0
p
!

for some small constant c0 proportional to c. Since c � �2, (56) in Theorem 5 ensures
that ˇt � �2.d=n logn/1=4 for all t � 0. Then, (93)–(94) imply the following

˛tC1 � f .˛t /C C5.˛t! C !
3=2/; (96)

˛tC1 � f .˛t / � C5.˛t! C !
3=2/: (97)

Let C� be a constant to be specified. Consider the following phases:

Phase I: ˛t � C�

p
!. We will show that throughout Phase I, for some sufficiently

large constant C4,

˛t �
C4

s2
!3=2: (98)

In view of the choice of the initialization (62), the assumption (62) ensures that (98)
holds for the base case of t D 0, where C4 is proportional to �2=c and can be made
sufficiently large. Assume (98) holds at time t . By Lemma 3 and using (90), the Taylor
expansion of f at 0 gives f .˛t / � .1C s2/˛t � C6˛3t . So (97) implies

˛tC1 � .1C s
2/˛t � C6˛

3
t � C5.˛t! C !

3=2/ � .1C s2=4/˛t
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where, since s � C0
p
! and .C4=s2/!3=2 � ˛t � C�

p
! by assumption, the last

inequality holds provided that

C0 �
C�
p
4C6

; C0 �
p
4C5; C4 � 4C5: (99)

Therefore, (98) holds at time t C 1. Furthermore, ˛t grows exponentially and in T1 D
O.1=s2 log.s=!// D O.log.n/=s2/ iterations enters the next phase.

Phase II: ˛t � C�

p
!. Then, (96)–(97) imply

˛tC1 � f .˛t /C C
0
5!˛t ; (100)

˛tC1 � f .˛t / � C
0
t!˛t ; (101)

where C 05 D C5.1 C .1=C�//. Comparing (100)–(101) with (27), by replacing n
with !, �� with s D k��k, and the initial value �0 by ˛T1 � C�

p
!, we see that

Theorem 3 applies to the convergence of ¹˛t W t � T1º. In particular, (32) and (33)
yield

j˛t � sj � C7 min
°!
s
;
p
!
±
; (102)

for all t � T1 � T2 , C8=s
2 log.ns=

p
!/DO.1=s2 logn/. This completes the proof

of (63).

Phase III: improved estimate on ˇt . Since s � C0
p
! by assumption, from (102),

we conclude that for all t � T1 C T2, we have ˛t 2 Œs=2; 2s�. Recall that the prior
unconditional analysis in Theorem 5 treats ˛t as zero (which is the worst case) and
shows that ˇtDO.

p
!/. Now that ˛tD‚.s/, we will use the ˛-dependent bound (44)

to upgrade the error bound to ˇtDO.!=s/. Continuing from (92), for all t�T1 C T2,
we have

ˇtC1 � ˇt

�
1 �

˛2t C ˇ
2
t

2C 8�2

�
C !

�
j˛t j C ˇt

�
.a/
� ˇt

�
1 �

s2

4.2C 8�2/

�
C !.2s C ˇt /

.b/
� ˇt .1 � C9s

2/C 2!s;

where (a) follows from s=2� ˛t � 2s and (b) follows from the assumption s �C0
p
!

for sufficiently large C0, where C9 is a constant depending only on � (hence on r).
Thus, ˇt � 4!=s for all t � .T1 C T2/ � T3 , C10=s

2 log.s=!/ D O.1=s2 log n/.
This completes the proof of (64).
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10.2. Proof of Lemma 5

Proof. Let sDk��k. LetW Dh�;Zi andU Dh�;Zi, which are independent standard
normals. Then,

h�; Y i D ˛k��kX C ˛U C ˇW D ˛V C ˇW;

where V � 1
2
N.�s; 1/C 1

2
N.s; 1/ is independent of W .

1. The function ˛ 7! EŒV tanh.˛V C ˇW /� is because of the symmetry of the
distribution of W . Furthermore,

@F

@˛
D E

�
V 2

cosh2.˛V C ˇW /

�
� 0;

@2F

@˛2
D E

�
V 3 tanh00.˛V C ˇW /

�
D E

�
Z3 tanh00.˛Z C ˇZ/ cosh.sZ/

�
e�s

2=2;

where the last equality follows from a change of measure (Lemma 26) with Z �
N.0; 1/ independent of W . Consider ˛ � 0. By symmetry,

E
�
Z3 cosh.sZ/ j ˛Z C ˇW D y

�
is an odd function which is nonnegative if and only if y � 0.

Since tanh00 D �2 tanh sech2, we have

E
�
Z3 cosh.sZ/ j ˛Z C ˇW

�
tanh00.˛Z C ˇW / � 0

almost surely. Therefore, ˛ 7! F.˛; ˇ/ is concave on RC, and convex on R� by
symmetry.

2. This is simply because F.�; ˇ/ is an odd function and increasing on RC.

3. Entirely analogously,

@G

@ˇ
D E

�
W 2

cosh2.˛V C ˇW /

�
� 0;

@2G

@ˇ2
D �2E

�
W 3 tanh.˛V C ˇW /

cosh2.˛V C ˇW /

�
� 0:

4. For ˛ � 0,

@F

@ˇ
D
@G

@˛
D E

�
W V tanh0.˛V C ˇW /

�
D ˇE

�
V tanh00.˛V C ˇW /

�
(103)

D �2ˇE

�
V tanh.˛V C ˇW /
cosh2.˛V C ˇW /

�
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D �2ˇE

�
E
�
V j ˛V C ˇW

�
tanh.˛V C ˇW /

cosh2.˛V C ˇW /“
�0

�
� 0; (104)

where (103) follows from Stein’s lemma, and (104) follows from the fact that, in view
of Lemma 23 and the symmetry of the distribution of V ,

yV .y/ , E
�
V j ˛V C ˇW D y

�
is an odd and increasing function such that yV .y/ ? 0 when y ? 0.

The case for ˛ � 0 follows from the fact that

G.�˛; ˇ/ D G.˛; ˇ/ and F.�˛; ˇ/ D �F.˛; ˇ/:

5. We have

jF.˛; ˇ/j D
ˇ̌
E
�
V tanh.˛V C ˇW /

�ˇ̌
� E

�
jV j
�
� k��k C EjU j;

and similarly, jG.˛; ˇ/j � EŒjW j�.

6. By the third property, ˛ 7! G.˛; ˇ/ is maximized at ˛ D 0.

7. We only prove (41) for ˛ � 0; (42) follows from the fact that F.�˛; ˇ/ D
�F.˛; ˇ/. The left inequality follows from (104). To show the right inequality, note
that since EŒV j ˛V C ˇW � tanh.˛V C ˇW / � 0 almost surely, using the fact that
cosh.x/ � 1 and tanh.x/ 7 x for x ? 0, we have

E

�
EŒV j ˛V C ˇW � tanh.˛V C ˇW /

cosh2.˛V C ˇW /

�
� E

�
EŒV j ˛V C ˇW �.˛V C ˇW /

�
D E

�
V.˛V C ˇW /

�
D ˛EŒV 2� D ˛

�
1C k��k

2
�
:

Consequently,
@F

@ˇ
� �2ˇ˛

�
1C k��k

2
�
:

Integrating over ˇ yields the right inequality in (41).

8. By symmetry, without loss of generality we assume ˛ � 0. By Stein’s identity,

G.˛; ˇ/ D E
�
W tanh.˛V C ˇW /

�
D ˇE

�
tanh0.˛V C ˇW /

�
:

Recall that V D sX C U , where X is Rademacher and U � N.0; 1/. Let

T D ˛.sX C U/C ˇW D ˛sX C .˛U C ˇW /:

Then,
G.˛; ˇ/

ˇ
D E

�
1

cosh2.T /

�
:
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Since EŒX j T D t � D tanh..˛s=.˛2 C ˇ2//t/, we have

@

@s

�
G.˛; ˇ/

ˇ

�
D ˛E

�
X tanh00.T /

�
D �2˛E

�
X tanh.T /
cosh2.T /

�
D �2˛E

�
tanh..˛s=˛2 C ˇ2/T / tanh.˛T /

cosh2.T /‘
�0

�
� 0:

Therefore, G.˛; ˇ/=ˇ is decreasing in s, and it suffices to consider s D 0. Next we
show for any � � 0 and Z � N.0; 1/,

E

�
1

cosh2.�Z/

�
� 1 �

�2

2.1C 2�2/
; (105)

which applied to �2 D ˛2 C ˇ2 implies the desired result.
Using the inequality cosh.x/� 1C x2=2, and hence cosh2.x/� 1C x2, we have5

E

�
1

cosh2.�Z/

�
� E

�
1

1C �2Z2

�
D
x̂ .1=�/

�'.1=�/
: (106)

Using Lemma 24, we have

E

�
1

cosh2.�Z/

�
� 1 �

2�2

.
p
1C 2�2 C 1/2

� 1 �
�2

2.1C 2�2/
:

This proves (105) and the desired (44).

11. Proofs in Section 5

11.1. Proof of Lemmas 7, 8 and 9

We start by defining a few typical events which will be used subsequently for several
times.

5The last inequality in (106) is due to the following integral representation of Mill’s ratio
[15, 3.466.1]:

E
h 1

t2 CZ2

i
D
x̂ .t/

t'.t/
:

To see this, let f .t/ D EŒt=.t2 C Z2/�. By Stein’s identity, one can verify that f satisfies the
differential equation f 0.t/ D tf .t/ � 1. Thus, g.t/ D f .t/'.t/ satisfies g0.t/ D �'.t/, which
implies that g.t/ D x̂ .t/ since g.1/ D 0.
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Lemma 11. Define

H2 D

²
1

n

nX
iD1

Y 2i;1 � 1C k��k
2
�

r
� logn
n

³
; (107)

H4 D

²
1

n

nX
iD1

Y 4i;1 � �

³
; (108)

H3 D

² nX
iD1

kYik
3
� �d3=2

³
; (109)

H1 D
®
max
i2Œn�
jYi;1j �

p
� logn

¯
: (110)

Then, there exists some � D �.k��k/ such that P ŒHi � � 1 � n�1 for i D 2; 3; 4;1.

Next we provide the supporting lemmas:

Lemma 12 (Smoothness of the sample-EM map). Let fn be defined in (9). Then, fn is
k†nkop-Lipschitz continuous on Rd , where†n , EnŒY Y >� is the sample covariance
matrix. In particular, with probability at least 1 � e�C

0d logn,

k†nkop � 1C k��k
2
C

r
Cd

n
;

where the constants C;C 0 depend only on r .

Lemma 13. Assume that n � d . Let Y? D ŒY1;?; : : : ; Y1;?�. Then,

P
�
kY?kop � 4

p
n
�
� e�n: (111)

Furthermore, there exists some constant C depending only on r , such that with prob-
ability at least 1 � 4n�1,

1

n

nX
iD1

Y 2i;1jhYi;?; �ij
2
� Ck�k2;

for all � 2 Rd�1.

Lemma 14. Let b D .b1; : : : ; bn/ consist of independent Rademacher random vari-
ables and let x D .x1; : : : ; xn/ be independent of b. Then, for any a; s > 0,

P

�
1

n

ˇ̌̌̌ nX
iD1

xibi

ˇ̌̌̌
�

r
as

n

�
� 2 exp.�s=8/C P

�
1

n

nX
iD1

x2i � a

�
: (112)

Furthermore, given a finite collection ¹x� W � 2 ‚º independent of b,

P

�
sup
�2‚

1

n

ˇ̌̌̌ nX
iD1

x�i bi

ˇ̌̌̌
�

r
as

n

�
� 2 exp.�s=8/j‚j C P

�
1

n
sup
�2‚

nX
iD1

.x�i /
2
� a

�
: (113)
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Lemma 15. Assume that n � Cd for some absolute constant C . Let qWR! R be a
function with bounded first two derivatives, such that

max
®
kq0k1; kq

00
k1

¯
� L0; (114)

for some constant L0. Define a (random) function DWRd ! R by

D.�/ ,
1

n

nX
iD1

Yi;1biq
�
h�; Yi i

�
;

where ¹biº are independent Rademacher variables and independent of ¹Yiº. LetR>0.
Then, there exists a constant L1 depending only on L0, r and R, such that with prob-
ability at least 1 � 10n�1, D is

p
L1d log.n/=n-Lipschitz on the ball

B.R/ D ¹� 2 Rd W k�k � Rº:

Lemma 16. For � D .�1; �?/ 2 Rd , define

M.�/ ,
1

n

nX
iD1

biYi;?Yi;1Q
�
�1Yi;1; h�?; Yi;?i

�
;

where QWR2 ! R satisfies max¹kQk1; k@xQk1; k@yQk1º � L0 for some con-
stants L0. Let R > 0. Then, there exist constants L1 depending only on L0, r and R,
such that with probability at least 1 � 10n�1,

sup
k�k�R

kM.�/k �

r
L1d logn

n
:

We now prove the main lemmas:

Proof of Lemma 7. By the definition in (69), we have T? D O.
p
n log n/. By the

union bound, with probability at least 1�O.T?n�1/ D 1�O.n�1=2 logn/, (77) and
(78) hold for all t � T?. On this event, we proceed by induction on t .

For the base case of t D 0, (73) is trivially true, and (74)–(75) hold by virtue of
the random initialization in the event (71).

Next, assume that (73) and (74) hold at time t . Recall from (46) that

! �

r
d logn
n

:

In particular, thanks to the assumption (65) and (68), we have

T?

s
d log2 n
n

.

s
d log2 n.log d C log logn/2

nk��k4
. 1: (115)
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Thus, (73) implies that
k�t � z�tk � C3˛t : (116)

By (115), (74) implies that

˛t �
1p

d lognC C2
ˇt ;

which further implies the desired (75), since k�tk2 D ˛2t C ˇ
2
t .

To show that (74) holds at time t C 1, by (77) in Lemma 8, we have

˛tC1 � ˛t

�
1C k��k

2
�

r
C logn
n

� Ck�tk
2

�
�

r
C logn
n
k�tk �

r
Cd logn

n
k�t � z�tk

� ˛t

�
1C k��k

2
� C4

s
d log2 n
n

�
; (117)

where the last step follows from (70), (75), and (116). This proves (76). Combined
with (52), we have

ˇtC1

˛tC1
�
ˇt

˛t

1C !

1C k��k2 � C4
p
d log3.n/=n

C
!

1C k��k2 � C4
p
d log3.n/=n

�
ˇt

˛t
C !;

where the last step follows from the assumption (65) with the constant C? chosen to
be sufficiently large. Thus, the ratio ˇt=˛t grows at most linearly and satisfies

ˇt

˛t
�
ˇ0

˛0
C !t �

p
d lognC !t;

in the event (71). This is the desired (74).
It remains to show (73) holds at time t C 1. To this end, write abstractly

k�t � z�tk � ˛tKt : (118)

We will show that

Kt � C5

²�
1C

s
C5d log2 n

n

�t
� 1

³
; (119)

which, in view of (115), implies the desired

Kt � C
0
5

s
d log2 n
n

t

for all t � T?.
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Next we apply the induction hypothesis to (78) in Lemma 9:

kz�tC1 � �tC1k

�

�
1C k��k

2
C

r
Cd logn

n

�
kz�t � �tk C

r
Cd logn

n
˛t C

r
C logn
n
k�tk

.a/
� ˛t

²
Kt

�
1C k��k

2
C

r
Cd logn

n

�
C

r
Cd logn

n

³
C

r
C logn
n
k�tk

.b/
� ˛t

²
Kt

�
1C k��k

2
C

r
Cd logn

n

�
C

s
C6d log2 n

n

³
.c/
� ˛tC1

Kt
�
1C k��k

2 C
p
Cd log.n/=n

�
C

p
C6d log2.n/=n

1C k��k2 � C4
p
d log2.n/=n

;

where (a) follows from (118); (b) follows from (75); and (c) follows from (117). This
means that Kt satisfies

KtC1 �
Kt
�
1C k��k

2 C
p
Cd log.n/=n

�
C

p
C6d log2.n/=n

1C k��k2 � C4
p
d log2.n/=n

Since K0 D 0, in view of the assumption (65), applying Lemma 21 shows that Kt
satisfies (119). Thus, we obtain the desired (73) at time t C 1.

Proof of Lemma 8. First of all, in view of (91) and (45), with probability at least
1 � 2 exp.�2c0d logn/, both the main and the auxiliary sequences are bounded, i.e.,

sup
t�0

k�tk � 4.r C 1/; sup
t�0

kz�tk � 4.r C 1/: (120)

Write

fn.�t / D En
�
Y Y >

�
�t C En

�
Y
�
tanhh�t ; Y i � h�t ; Y i

��
:

Then,
˛tC1 D En

�
Y1hY; �t i

�
š

R1

� En
�
Y1
�
hY; �t i � tanhh�t ; Y i

��
�

R2

:

We first show that with probability at least 1 �O.n�1/,

R1 �

�
1C k��k

2
�

r
C logn
n

�
˛t �

r
C logn
n
k�t;?k �

r
Cd logn

n
kz�t � �tk

(121)
and

jR2j � C˛tk�tk
2
C

r
C logn
n
k�t;?k C

r
Cd logn

n
k�t � z�tk: (122)

Then, the desired result (77) follows from (121) and (122).
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For the linear term R1, we have

R1 D En
�
Y1hY; �t i

�
D
1

n

nX
iD1

biYi1
�
˛tbiYi1 C hYi?; �t;?i

�
D

�
1

n

nX
iD1

Y 2i1

�
˛t C

1

n

nX
iD1

biYi1hYi?; �t;?i: (123)

Here, the first term (signal) satisfies

1

n

nX
iD1

Y 2i1 � 1C k��k
2
�O

�r
logn
n

�
;

in view of (107). For the second term, we cannot afford to take union bound over the
d -dimensional sphere. Instead, we resort to the auxiliary iterates ¹z�tº. Write

1

n

nX
iD1

biYi1hYi?; �t;?i D
1

n

nX
iD1

biYi1hYi?; z�t;?i C
1

n

nX
iD1

biYi1hYi?; �t;? � z�t;?i:

(124)
Using the independence between .z�t ; ¹Yi;1º/ and ¹biº, for some constants C; C 0, we
have

P

�ˇ̌̌̌
1

n

nX
iD1

biYi1hYi?; z�t;?i

ˇ̌̌̌
�

r
C logn
n
kz�t;?k

�
.a/
� 2n�1 C P

�
1

n

nX
iD1

Y 2i1hYi?;
z�t;?i

2
� C 0kz�t;?k

2

�
.b/
� 6n�1; (125)

where (a) follows from Lemma 14 and (b) follows from Lemma 13. Furthermore, in
the event (120), applying Lemma 15 to q being the identity function, we conclude
that, with probability at least 1 �O.n�1/,ˇ̌̌̌

1

n

nX
iD1

biYi1hYi?; �t;? � z�t;?i

ˇ̌̌̌
�

r
Cd logn

n
k�t � z�tk: (126)

Combining (123)–(126) and using the triangle inequality yields (121).
For the nonlinear term R2, define

g.x/ , x � tanh.x/;
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T .x; y/ ,
1

2

�
g.y C x/C g.y � x/

�
;

H.x; y/ ,
1

2

�
g.y C x/ � g.y � x/

�
:

Then, for any x; y and any b 2 ¹˙1º, we have

g.y C bx/ D T .x; y/C bH.x; y/: (127)

Furthermore, we have the following lemma:

Lemma 17. For any x; y 2 R,

0 � y � T .x; y/ � x2y2 C y4 (128)

and
jH.x; y/j � jxj: (129)

Then,

R2 D En
�
Y1g

�
hY; �t i

��
D
1

n

nX
iD1

biYi;1g
�
hYi ; �t i

�
D
1

n

nX
iD1

biYi;1g
�
bi˛tYi;1 C hYi;?; �t;?i

�
.a/
D
1

n

nX
iD1

Yi;1g
�
˛tYi;1 C bi hYi;?; �t;?i

�
.b/
D

1

n

nX
iD1

T
�
hYi;?; �t;?i; ˛tYi;1

�
Yi;1

‘
R3

C
1

n

nX
iD1

H
�
hYi;?; �t;?i; ˛tYi;1

�
Yi;1bi

’
R4

;

where (a) is due to g.˙x/ D ˙g.x/ and (b) follows from (127). Next we show (122)
by proving that, with probability at least 1 �O.n�1/,

jR3j � C˛tk�tk
2; (130)

jR4j �

r
C logn
n
k�t;?k C

r
Cd logn

n
k�t � z�tk: (131)

To prove (130), let us recall that ˛t > 0 by assumption. Then, with probability at least
1 �O.n�1/,

0
.a/
� R3 D

1

n

nX
iD1

T
�
hYi;?; �t;?i; ˛tYi;1

�
Yi;1
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.b/
� ˛t

�
1

n

nX
iD1

Y 2i;1hYi;?; �t;?i
2

�
C ˛3t

�
1

n

nX
iD1

Y 4i;1

�
.c/
� C˛tk�t;?k

2
C C˛3t

.d/
D C˛tk�tk

2;

where (a) and (b) follow from (128) in Lemma 17; (c) follows from Lemma 13 and
(108); and (d) is due to k�t;?k2 C j�t;1j2 D k�tk2. This completes the proof of (130).

To show (131), we again use the auxiliary iterates ¹z�tº. For any � D .�1; �?/2Rd ,
define

�.�/ ,
1

n

nX
iD1

H
�
hYi;?; �?i; �1Yi;1

�
Yi;1bi :

Then,
R4 D �.�t / D �.z�t /C �.�t / � �.z�t /; (132)

Define
� 0t , .��t;1; �t;?/; z� 0t , .�z�t;1; z�t;?/; (133)

which satisfies k�t � z�tk D k� 0t � z�
0
tk. Then,

�.�t / � �.z�t / D
1

2n

nX
iD1

Yi;1bi
®
g
�
hz�t ; Yi i

�
� g

�
h�t ; Yi i

�¯
�
1

2n

nX
iD1

Yi;1bi
®
g
�
hz� 0t ; Yi i

�
� g

�
h� 0t ; Yi i

�¯
:

In the event (120), applying Lemma 15 to q D g whose first two derivatives are
bounded by absolute constants, we conclude that, with probability at least 1�O.n�1/,

j�.�t / � �.z�t /j �

r
Cd logn

n

�
k�t � z�tk C k�

0
t �
z� 0tk
�

D 2

r
Cd logn

n
k�t � z�tk: (134)

To bound �.z�t /, let zxi , H.hYi;?; z�t;?i; z̨tYi;1/Yi;1, which are independent of ¹biº.
Then,

P

�
j�.z�t /j �

r
Cs

n
kz�t;?k

�
D P

�
1

n

ˇ̌̌̌ nX
iD1

zxibi

ˇ̌̌̌
�

r
Cs

n
kz�t;?k

�
.a/
� 2 exp.�s=8/C P

�
1

n

nX
iD1

zx2i � Ck
z�t;?k

2

�
.b/
� 2 exp.�s=8/C P

�
1

n

nX
iD1

Y 2i;1hYi;?;
z�t;?i

2
� Ckz�t;?k

2

�
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.c/
� 2 exp.�s=8/C n�3;

where (a) follows from Lemma 14; (b) is due to (129) in Lemma 17; and (c) is due to
Lemma 13. Setting s D 8 logn yields, with probability at least 1 �O.n�1/,

j�.z�t /j �

r
C logn
n
kz�t;?k �

r
C logn
n

�
k�t;?k C k�t � z�tk

�
: (135)

Combining (132) with (134) and (135) completes the proof of (131), and hence the
lemma.

Proof of Lemma 9. Write

z�tC1 � �tC1 D fn.z�t / � fn.�t /›
,E1

C zfn.z�t / � fn.z�t /›
,E2

:

For the first term, applying Lemma 12 yields that, with probability at least 1 �
exp.�C 0d logn/,

kE1k D kfn.z�t / � fn.�t /k �

�
1C k��k

2
C

r
Cd

n

�
kz�t � �tk: (136)

Next we proceed to the second term. A trivial yet useful lemma is the following:

Lemma 18. Assume that bi ; zbi 2 ¹˙1º. Then,

1

n

nX
iD1

h.yi C zbixi / � h.yi C bixi / D
1

n

nX
iD1

.zbi � bi /B.xi ; yi /;

where B.x; y/ , .h.y C x/ � h.y � x//=2.

Proof. This simply follows from the fact that whenever b D ˙1, we can write

h.x C by/ D s C bı;

where

s ,
h.x C y/C h.x � y/

2
and ı D

h.x C y/ � h.x � y/

2
:

Next we bound E2 D .E2;1;E2;?/. To bound the orthogonal component E2;?, note
that zYi;? D Yi;?. To apply Lemma 18 with h D tanh, we define

B.x; y/ ,
tanh.y C x/ � tanh.y � x/

2
;

Q.x; y/ ,
B.x; y/

x
; (137)
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withQ.0;y/ understood as limx!0Q.x;y/D sech2.y/. The functionQ satisfies the
following smoothness property:

Lemma 19. Then, for all x; y 2 R, we have

jQ.x; y/j � 1; j@xQ.x; y/j � 1=3; j@yQ.x; y/j � 1:

In view of (127), we have

E2;? D
1

n

nX
iD1

Yi;? tanhhz�t ; zYi i �
1

n

nX
iD1

Yi;? tanhhz�t ; Yi i

D
1

n

nX
iD1

Yi;?
�
tanh

�
hz�t;?; Yi;?i C zbi z�t;1Yi;1

�
�tanh

�
hz�t;?; Yi;?i C bi z�t;1Yi;1

��
D
1

n

nX
iD1

.zbi � bi /Yi;?B
�
z�t;1Yi;1; hz�t;?; Yi;?i

�
D z�t;1

²
1

n

nX
iD1

.zbi � bi /Yi;1Yi;?Q
�
z�t;1Yi;1; hz�t;?; Yi;?i

�³
;

where the penultimate step follows from applying Lemma 18 to h D tanh. To apply
Lemma 16, first note that the function Q defined in (137) fulfills the bounded deriva-
tive condition thanks to Lemma 19. Thus with probability at least 1�O.n�1/, it holds
that 1n nX

iD1

.zbi � bi /Yi;?Yi;1Q
�
z�t;1Yi;1; hz�t;?; Yi;?i

� �rCd logn
n

;

and hence

kE2;?k � jz�t;1j

r
Cd logn

n
�
�
˛t C kz�t � �tk

�rCd logn
n

: (138)

To bound the first coordinate of E2, let zxi D z�t;1Yi;1, zyi D hz�t;?; Yi;?i and simi-
larly, xi D �t;1Yi;1, yi D h�t;?; Yi;?i. Then,

E2;1 D
1

n

nX
iD1

biYi;1 tanh.zyi C bi zxi / � zbiYi;1 tanh.zyi C zbi zxi /

D
1

n

nX
iD1

Yi;1
®
tanh.zxi C bi zyi / � tanh.zxi C zbi zyi /

¯
D
1

n

nX
iD1

.zbi � bi /Yi;1B.zyi ; zxi /
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D
1

n

nX
iD1

zbiYi;1B.yi ; xi /

�
E3

�
1

n

nX
iD1

biYi;1B.zyi ; zxi /

�
E4

C
1

n

nX
iD1

zbiYi;1
®
B.zyi ; zxi / � B.yi ; xi /

¯
“

E5

:

The first two terms can be dealt with using the same technology: For E3, we have

P

�
jE3j � 4k�t;?k

r
s

n

�
.a/
� 2 exp.�s=8/C P

�
1

n

nX
iD1

B.yi ; xi /
2
� 16k�t;?k

2

�
.b/
D 2 exp.�s=8/C P

�
1

n

nX
iD1

h�t;?; Yi;?i
2
� 16k�t;?k

2

�
.c/
� 2 exp.�s=8/C exp.�n/;

where (a) follows from Lemma 14; (b) follows from the fact that

jB.y; x/j D
j tanh.x C y/ � tanh.x � y/j

2
� jyj;

since tanh is 1-Lipschitz; and (c) follows from (111) in Lemma 14. Choosing s D
8 logn yields

jE3j � k�tk

r
C logn
n

(139)

with probability at least 1 �O.n�1/.
Entirely analogously, we have

P

�
jE4j � 4kz�t;?k

r
s

n

�
� 2 exp.�s=8/C exp.�n/:

Choosing s D 8 logn yields

jE4j �
�
k�tk C kz�t � �tk

�rC logn
n

(140)

with probability at least 1 �O.n�1/.
To bound E5, recall from (133) the notations

� 0t D .��t;1; �t;?/ and z� 0t D .�
z�t;1; z�t;?/;
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which satisfy k� 0t � z�
0
tk D k�t �

z�tk. Then, we have

E5 D
1

2n

nX
iD1

zbiYi;1
�
tanhh�t ; Yi i � tanhhz�t ; Yi i

�
C

1

2n

nX
iD1

zbiYi;1
�
tanhh� 0t ; Yi i � tanhhz� 0t ; Yi i

�
: (141)

By Lemma 15 (applied to q D tanh), the first term satisfies, with probability at least
1 �O.n�1/,ˇ̌̌̌

1

2n

nX
iD1

zbiYi;1
�
tanhh�t ; Yi i � tanhhz�t ; Yi i

�ˇ̌̌̌
�

r
C1d logn

n
k�t � z�tk: (142)

Entirely analogously, the second term (and hence jE5j itself) in (141) satisfies the
same bound since

k� 0t �
z� 0tk D k�t �

z�tk:

Finally, since

kz�tC1 � �tC1k � kE1k C kE2;?k C jE3j C jE4j C jE5j;

the desired (78) follows from combining (121), (136), (138)–(142).

11.2. Proof of supporting lemmas

Proof of Lemma 11. Note that 1
n

Pn
iD1 Y

2
i;1 is equal in distribution to

1C k��k
2
C
�2n
n
� 1CN

�
0;
4k��k

2

n

�
:

Then, (107) follows from the �2-distribution tail bound (155) and the Gaussian tail
bound. Next, since Yi;1

i.i.d.
�

1
2
N.�k��k; 1/C

1
2
N.k��k; 1/ have finite moments, (108)

follows from the Chebyshev inequality. Also, since kYik � kZik C k��k, where
kZik � �d , (109) follows similarly from the Chebyshev inequality. Finally, (110)
follows simply from the union bound.

Proof of Lemma 12. The Jacobian of fn is the following:

Jn.�/ , En
�
Y Y >sech2

�
h�; Y i

��
; (143)

which is a (random) PSD matrix. Since 0 � sech � 1, for any u, we have

0 � u>Jn.�/u D En
�
hu; Y i2sech2

�
h�; Y i

��
� En

�
hu; Y i2

�
� u>Jn.0/u D u

>†nu:
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Thus, Jn.�/ � †n for any � . For � 2 Œ0; 1�, define a� , .1 � �/a0 C �a1. Then,

fn.a1/ � fn.a0/ D
1

n

nX
iD1

Yi

Z 1

0

d� sech2
�
ha� ; Yi i

�
hYi ; a1 � a0i

D

²Z 1

0

d�Jn.a� /

³
.a1 � a0/:

Therefore,

kfn.a1/ � fn.a0/k �
Z 1

0

d�Jn.a� /


op
ka1 � a0k

� sup
�

kJn.�/kopka1 � a0k

� k†nkopka1 � a0k:

Finally,
k†nkop � k†kop C k†n �†kkop;

where k†kop D 1C k��k
2. Furthermore, since the entries of Yi are independent and

subgaussian with parameter depending only on k��k � r , by concentration of the
sample covariance matrix (cf. [36, Exercise 4.7.3]), we have

k†n �†kop �

r
Cd logn

n

with probability at least 1 � exp.�C 0d logn/ for some constants C and C 0.

Proof of Lemma 13. Note that Y? is a .d � 1/ � n matrix with i.i.d. N.0; 1/ entries.
By the Davidson–Szarek bound [7, Theorem II.7],

P
�
kY?kop �

p
nC
p
d � 1C t

�
� e�t

2=2;

which implies (111) since n � d .
To prove the second claim, it suffices to bound the operator norm of

1

n

nX
iD1

Y 2i;1Yi;?Y
>
i;?:

We first condition on Yi;1’s, which are independent of Yi;?’s. Take U to be a 1
2

-net of
Sd�2 and jUj � 5d . Then,1

n

nX
iD1

Y 2i;1Yi;?Y
>
i;?


op
� 2max

u2U

1

n

nX
iD1

Y 2i;1hYi;?; ui
2:
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Abbreviate ai D Y 2i;1 and a D .a1; : : : ; an/. By [23, Lemma 1],

P

�ˇ̌̌1
n

nX
iD1

ai
�
hYi;?; ui

2
� 1

�ˇ̌̌
�
2kak2

p
t C kak1t

n

ˇ̌̌
a

�
� exp.�t /:

Furthermore,
nX
iD1

ai D

nX
iD1

Y 2i;1;

nX
iD1

a2i D

nX
iD1

Y 4i;1;

and
kak1 D max

i2Œn�
jYi;1j

2;

which are controlled by the high-probability eventsH2;H4;H1 in Lemma 11, respec-
tively. Choosing t D d log n in the above display and taking the union bound over
u 2 U, we have, with probability at least 1 � 3n�1 � 5dn�d ,1

n

nX
iD1

Y 2i;1Yi;?Y
>
i;?


op
� 2

�
1C k��k

2
�
C C

�r
d logn
n
C
d logn
n

�
;

where C only depends on k��k. The proof is complete in view of the assumption that
n � d log d .

Proof of Lemma 14. Note that each bi is Rademacher and hence 4-subgaussian. Thus
conditioned on any realization of x, hx; bi is 4kxk2-subgaussian, and hence

P
�
jhx; bij �

p
skxk j x

�
� 2 exp.�s=8/

for any t . The desired (112) then follows from

P
�
jhx; bij �

p
as
�
� P

�
jhx; bij �

p
skxk

�
C P

�
kxk �

p
a
�
:

Finally, (113) follows analogously from the union bound.

Proof of Lemma 15. By dilating q, we can assume without loss of generality thatRD1.
Recall the global assumption k��k� r . Throughout the proof, unless stated to be abso-
lute, all constants depend only on r and L0. The Lipschitz constant of D on the unit
ball B.1/ is given by

L D sup
�2B.1/

krD.�/k:

It remains to bound L from above with high probability, i.e.,

sup
�2B.1/

krD.�/k �

r
L2d logn

n
(144)
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for some constant L2. Furthermore, the Hessian of D is given by

r
2D.�/ D

1

n

nX
iD1

biYi;1YiY
>
i q
00
�
h�; Yi i

�
:

Since jq00j � L0, we have

sup
�2B.1/

kr
2D.�/kop � L0 max

i2Œn�
jYi;1jkYik

2:

In view of (110),
max
i2Œn�
jYi;1j �

p
� logn

with probability at least 1 � n�2. Furthermore,

kYik
2
� 2k��k

2
C 2kZik

2:

By Lemma 20, for each i ,

P
�
kZik

2
� d C 2

p
dx C 2x

�
� exp.�x/:

Since n=d is at least some absolute constant by assumption,

P
�
kZik

2
� C2d logn

�
� n�2

for some absolute constant C2. Therefore, with probability at least 1 � 2n�1,

sup
�2B.1/

kr
2D.�/kop � L2d.logn/3=2 (145)

for some constantL2, i.e., � 7!rD.�/ isL2d.logn/3=2-Lipschitz. Let‚ be a 1=dn2-
net of the unit ball B.1/, with cardinality [36, Corollary 4.2.13]

j‚j � .1C 2dn2/d � .1C 2n3/d : (146)

Then, in the event of (145),

sup
�2B.1/

krD.�/k � max
�2‚
krD.�/k C

L2.logn/3=2

n2
: (147)

Note that

rD.�/ D
1

n

nX
iD1

biYi;1Yiq
0
�
h�; Yi i

�
:

Let U be a 1
2

-net of Sd�1 with cardinality at most

jUj � 5d : (148)
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Then,
krD.�/k � 2max

u2U
hu;rD.�/i;

where

hu;rD.�/i D
1

n

nX
iD1

biYi;1hYi ; uiq
0
�
h�; Yi i

�
:

Since jq0j � L0, hYi ; uiq0.h�; Yi i/ is C0-subgaussian, hence biYi;1hYi ; uiq0.h�; Yi i/
is C1-subexponential, for some C0; C1 depending on L0 and k��k. By Bernstein’s
inequality,

jhu;rD.�/ij � C2

r
d logn
n

with probability at least 1� exp.�20d logn/. By taking the union bound over u 2U

and � 2 ‚, the proof is completed in view of (146)–(148).

Proof of Lemma 16. The proof is almost identical to that of Lemma 15, so we only
mention the part that is different. Without loss of generality, assume that R D 1. First
note that the Lipschitz constant of M WRd ! Rd�1 (with respect to the Euclidean
norm) is bounded by

Lip.M/ � L0
1

n

nX
iD1

kYi;?kjYi;1j
�
kYi;?k C jYi;1j

�
:

Similar to the argument that leads to (147), we conclude that with probability at least
1 � n�1 Lip.M/ � L2d logn for some constant L2.

Next let ‚ be a 1=dn-net of the unit ball in Rd and let U be a 1
2

-net of the unit
sphere in Rd�1. It suffices to bound maxu2U;�2‚hu;M.�/i. The rest of the proof is
identical to that of Lemma 15.

Proof of Lemma 17. Note that y 7! T .x; y/ is an odd function and T .x; y/ � 0 for
y � 0. For the upper bound, note that

@yT .x; y/jyD0 D tanh2.x/

and

@3yT .x; y/ D 3
�
sech.x C y/4 C sech.x � y/4

�
� 2

�
sech.x C y/2 C sech.x � y/2

�
:

Since sup0�r�1.3r
4 � 2r2/ D 1, we have

@3yT .x; y/ � 2

for all x;y. Thus, (128) follows from the Taylor expansion of T .x;y/ at y D 0 and the
fact that tanh.x/2 � x2. Finally, (129) follows from the 1-Lipschitz continuity of g,
since g0.z/ D 1 � sech2.z/.
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Proof of Lemma 19. Recall that

Q.x; y/ D
1

2x

�
tanh.y C x/ � tanh.y � x/

�
:

Then,
jQ.x; y/j � 1 and j@yQ.x; y/j � 1;

and follow from the 1-Lipschitz continuity of tanh and tanh0, respectively. Finally, by
Taylor’s theorem, we have

tanh.y C x/ � tanh.y � x/ D 2x tanh0.y/

C x

Z 1

0

dz.1 � z/¹tanh00.y C xz/C tanh00.y � xz/º:

Therefore,

@xQ.x; y/ D
1

2

@

@x

Z 1

0

dz.1 � z/¹tanh00.y C xz/C tanh00.y � xz/º

D
1

2

Z 1

0

dz z.1 � z/¹tanh000.y C xz/ � tanh000.y � xz/º:

Since j tanh000 j � 2, we have

j@xQ.x; y/j � 2

Z 1

0

dz z.1 � z/ D
1

3
:

12. Proofs in Section 6

Proof of Lemma 10. Since `.�; ��/ � ı, without loss of generality, we can assume
that k� � ��k � ı. Note that r2`n.�/ D �I C Jn.�/, where Jn.�/ is the Jacobian
of fn given in (143). Then,

I Cr2`n.�/ D Jn.�/ D En
�
Y Y >sech2h�; Y i

�
;

which is PSD with probability one. Therefore, it remains to bound the maximum
eigenvalue of Jn from above uniformly in a neighborhood of ��. We do so in two
steps.

Step 1: Population version. By assumption, k��k � 100ı for sufficiently large n,
and hence h�; ��i � 0. Consider the expectation of Jn:

J.�/ , E
�
Jn.�/

�
D E

�
Y Y >sech2h�; Y i

�
;
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which is a PSD matrix. We show that

sup
k����k�ı

sup
kukD1

u>J.�/u � e�ck��k
2

: (149)

Consider two cases:

Case 1: u ? � . In this case, jhu; ��ij D jhu; �� � �ij � k� � ��k � ı. By the inde-
pendence of hu;Zi and h�;Zi, we have

u>J.�/u D E
�
hu; Y i2sech2h�; Y i

�
D E

�
hu; Y i2

�
E
�
sech2h�; Y i

�
: (150)

Here, EŒhu; Y i2� D hu; ��i2 C 1 � 1C ı2. Furthermore, let � , �=k�k. Then,

U , h�; Y i �
1

2
N.�s; 1/C

1

2
N.s; 1/;

where s D h�; ��i satisfies js � k�kj D jh�; �� � �ij � ı, and hence s � k��k � 2ı.
By a change of measure (Lemma 26), we have

E
�
sech2h�; Y i

�
D E

�
sech2

�
k�kU

��
D E

�
cosh.sW /sech2

�
k�kW

��
e�s

2=2; W � N.0; 1/;

� F
�
s; k�k

�
e�k��k

2=4; W � N.0; 1/: (151)

Next put
F.a; b/ , E

�
cosh.aW /sech2.bW /

�
; a; b � 0:

A straightforward calculation shows that

@F.a; b/

@b
� 0 and

@F.a; b/

@a
� 0;

i.e., F.a; b/ is increasing in a and decreasing in b. Write b D k�k. Since js � bj � ı,
we have

F.s; b/ � F.b C ı; b/

D E
�
cosh.ıW /sech.bW /

�
Ÿ

.I/

C E
�
sinh.ıW / sinh.bW /sech2.bW /

�
’

.II/

:

The first term satisfies .I/ � EŒcosh.ıW /� D eı
2=2. For the second term, using the

fact that tanh.x/ � x when x � 0, we get the following bound that is, crucially, pro-
portional to k��k:

.II/ � b E
�
W sinh.ıW /

�
D bıeı

2=2
� 2k��kıe

ı2=2:
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Combining the above with (151) and (150), we get

u>J.�/u � .1C ı2/
�
1C 2k��kı

�
eı
2=2�k��k

2=4

� e3ı
2=2C2k��kı�k��k

2=4
� e�k��k

2=16:

Case 2: u == � . Without loss of generality, assume uD �. Entirely analogously to the
previous case, we have

u>J.�/u � E
�
W 2 cosh.sW /sech2

�
k�kW

��
e�k��k

2=4;

and

E
�
W 2 cosh.sW /sech2

�
k�kW

��
� E

�
W 2 cosh

��
k�k C ı

�
W
�
sech2

�
k�kW

��
D E

�
W 2 cosh.ıW /sech.bW /

�
C E

�
W 2 sinh.ıW / sinh.bW /sech2.bW /

�
� E

�
W 2 cosh.ıW /

�
C bE

�
W 3 sinh.ıW /

�
D .1C ı2/eı

2=2
C k�kı.3C ı2/eı

2=2:

Therefore, u>J.�/u � e�k��k
2=50.

Finally, we combine the two cases. For an arbitrary unit vector u, let uD cos��C
sin�v for some v ? �. Then, hv; Y i and h�; Y i are independent, and hence

u>J.�/u D cos2 �E
�
h�; Y i2sech2h�; Y i

�
C sin2 �E

�
hv; Y i2sech2h�; Y i

�
C 2 cos� sin�E

�
hv; Y ih�; Y isech2h�; Y i

�
D cos2 �E

�
h�; Y i2sech2h�; Y i

�
C sin2 �E

�
hv; Y i2sech2h�; Y i

�
� e�k��k

2=50;

where the second equality follows from

E
�
hv; Y ih�; Y isech2h�; Y i

�
D E

�
hv; Y i

�
E
�
h�; Y isech2h�; Y i

�
D 0

thanks to independence. This yields the desired (149).

Step 2: Concentration. We show that with probability at least 1 � 2n�1,

sup
k����k�ı

kJn.�/ � J.�/kop �

r
C0d logn

n
: (152)

Since sech2 is 1-Lipschitz, we have

kJn.�/ � Jn.�
0/kop � kEn

�
Y Y >jsech2h�; Y i � sech2h� 0; Y ij

�
kop

� k� � � 0k � kEn
�
Y Y > � kY k

�
kop

� k� � � 0k � En
�
kY k3

�
:
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Therefore, in the eventH3 in (109), which has probability at least 1� n�4, � 7! Jn.�/

is C4d3=2-Lipschitz with respect to the `2-norm and the k�kop-norm, where C4 is a
constant depending only on r . Let E be an "-net of B.��; ı/ with

" D
ı

p
d3n

and jEj �
�
1C 2

ı

"

�d
� exp.C5d logn/:

Let U be a 1
2

-net of Sd�1 with cardinality at most jUj � 5d . Then,

sup
k����k�ı

kJn.�/ � J.�/kop � 2 sup
�2E

sup
u2U

u>
�
Jn.�/ � J.�/

�
uC

2C4
p
n
: (153)

Fix u 2 U and � 2 E , put

U D hu; Y i2sech2h�; Y i and Ui D hu; Yi i
2sech2h�; Yi i:

Note that hu;Y i2 is subexponential with khu;Y i2k 1 � C1 D C1.r/. By the moment
characterization of subexponentiality (cf. [36, Proposition 2.7.1]), since jsechj � 1,
we conclude that

kU k 1 � C2 D C2.r/:

By Bernstein’s inequality (cf. [36, Theorem 2.8.1]),

P

�
ju>

�
Jn.�/ � J.�/

�
uj �

t
p
n

�
D P

�
jEnŒU � � EŒU �j �

t
p
n

�
� 2 exp

�
�cmin

²
t2

kU k2 1

;
t
p
n

kU k 1

³�
for some absolute constant c. Choosing t D

p
C3d lognwith C3 D C3.r/ sufficiently

large, and in view of the assumption that n D �.d logn/, we conclude that

P

�
ju>.Jn.�/ � J.�//uj �

t
p
n

�
� 2 exp.�2C5d logn/:

The proof of (152) is completed by applying the union bound over � 2 E and u 2 U

in (153).
Finally, since k��k2 D �.

p
d log.n/=n/, combining (152) with (149) yields the

lemma.

A. Auxiliary results

Lemma 20 ([23, Lemma 1]). For any x � 0,

P
�
�2n � 2nC 3x

�
� P

�
�2n � n � 2

p
nx C 2x

�
� exp.�x/; (154)

P
�
�2n � n � 2

p
nx
�
� exp.�x/: (155)



Y. Wu and H. H. Zhou 208

Lemma 21. Let "; ı > 0. Assume that the sequence ¹Ktº satisfiesK0D 0 andKtC1 �
.1C "/Kt C ı. Then, for all t � 0,

Kt �
ı

"
¹.1C "/t � 1º:

Proof. This follows simply from induction on t .

The following lemma is useful for analyzing the rate of convergence:

Lemma 22 ([27, Appendix A]). Let

xtC1 � xt � h.xt /; x0 > 0;

where hWRC ! RC is a continuous increasing function with h.0/ D 0 and h.x/ < x
for all x 2 .0; x0/. Then, ¹xtº �RC is a monotonically decreasing sequence converg-
ing to the unique fixed point at zero as n!1. Furthermore,

xt � G
�1.t/; t � 1;

where GW Œ0; 1�! RC by G.x/ D
R x0
x

1
h.�/

d� .

The proof of Lemma 3 and Lemma 5 on the properties of the population EM map
relies on the following auxiliary results.

Lemma 23. Let Y D ˛V C ˇW , where ˛;ˇ � 0 andW � N.0; 1/. Also let yV .y/D
EŒV j Y D y�. Then,

1. yV is an increasing function.

2. If V has a symmetric distribution in the sense that V law
D �V , then yV is an odd

function.

Proof. By scaling, it suffices to consider ˛ D ˇ D 1. The first item follows from the
well-known fact that d

dy
yV .y/D Var.V j Y D y/� 0 (see, e.g., [39, eq. (131)]), while

the second is due to the fact that W has a symmetric distribution.

We also need the following bound on the Mill’s ratio due to Ito and McKean [30,
Exercise 1, p. 851]:

Lemma 24. Let '.x/, 1=
p
2� exp.�x2=2/ denote the standard normal density and

x̂ .x/ D
R1
x
'.t/ dt the normal tail probability. Then,

x̂ .x/

'.x/
�

2
p
2C x2 C x

:

We will invoke Stein’s lemma repeatedly, which is included below for complete-
ness.
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Lemma 25. Let W � N.0; 1/ and f be a differentiable function such that

E
�
jf 0.W /j

�
<1:

Then,
E
�
Wf .W /

�
D E

�
f 0.W /

�
:

The following useful result is simply a change of measure from the symmetric
2-GM to the standard normal:

Lemma 26. Let V � Ps D 1
2
N.�s; 1/ C 1

2
N.s; 1/ as in (4) and let Z � N.0; 1/.

Then,
E
�
f .V /

�
D E

�
f .Z/ cosh.sZ/

�
e�s

2=2:

Proof. This follows from ps.z/='.z/ D cosh.sz/e�s
2=2.

B. Minimax rates

Theorem 10. For any d � 2 and n 2 N and s � 0,

inf
y�

sup
k��kDs

E��
�
`.y�; ��/

�
� min

²
1

s

�
d

n
C

r
d

n

�
C

r
d

n
; s

³
: (156)

Furthermore, for any d; n 2 N and r � 0,

inf
y�

sup
k��k�r

E��
�
`.y�; ��/

�
� min

²�d
n

�1=4
C

r
d

n
; r

³
: (157)

Before proving Theorem 10, we note that the rate in (156) behaves as

inf
y�

sup
k��kDs

E��
�
`.y�; ��/

�
�

˚
s; s �

�d
n

�1=4
;

1

s

r
d

n
;
�d
n

�1=4
� s � 1;r

d

n
; s � 1

(158)

for d � n and

inf
y�

sup
k��kDs

E��
�
`.y�; ��/

�
�

‚
s; s �

r
d

n
;r

d

n
; s �

r
d

n

(159)

for d � n. The latter case coincides with the `2-rate of the Gaussian location model.
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Upper bound. As before, denote sDk��k and ��D��=s. Let ",max¹
p
d=n;d=nº.

Since the trivial estimator y� D 0 achieves `.y�; ��/ D s, it remains to show the upper
bound C0

p
" under the assumption that k��k � C1

p
", for some universal constants

C0; C1. Let y� and y� denote the top eigenvalue and the associated eigenvector (of
unit norm) of the sample covariance matrix y† , EnŒY Y >�. Let † D EŒY Y >� D

Id C ���
>
� . Consider the estimator:

y� D ys y�; ys D

q
.y� � 1/C; (160)

where .x/C,max¹0; xº for any x2R. To analyze its loss, recall that Y DX�� CZ,
where X is Rademacher and independent of Z � N.0; Id /. Since

EnŒY Y
>� D ���

>
� C EnŒZZ

>�C ��
�
EnŒXZ�

�>
C
�
EnŒXZ�

�
�>� ;

we have
y† �†

law
D �C

1
p
n

�
��w

>
C w�>�

�
;

where w � N.0; Id / and � , EnŒZZ>� � Id . Consequently,

ky† �†kop � k�kop C
2
p
n
kwkk��k:

By Davis–Kahan’s perturbation bound, we have

`.y�; ��/ � 4
ky† �†kop

s2
:

Furthermore, by Weyl’s inequality, jy� � 1 � s2j � ky† �†kop, and thus

jys � sj D
j.y� � 1/2C � s

2j

.y� � 1/C C s
�
jy� � 1 � s2j

s
�
ky† �†kop

s
:

Applying the triangle inequality and combining the last two displays, we obtain

`.y�; ��/ � jys � sj C s`.y�; ��/ � 5
ky† �†kop

s
:

Finally, since EŒk�kop��C" (see [36, Theorem 4.7.1]) for some universal constantC
and EŒkwk� �

p
d , taking expectation on both sides, we have

E`.y�; ��/ � 5
Eky† �†kop

s
� C 0

�
"

s
C

r
d

n

�
for some universal constant C 0. This proves the upper bound part of (156), and, upon
taking the supremum over s � r , that of (157) (since the estimator (160) does not
depend on k��k).
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Lower bound. Recall that

P� D
1

2
N.��; Id /C

1

2
N.�; Id /I

in particular, P0 D N.0; Id /. Then, straightforward calculation shows that the �2-
divergence is

�2
�
P�kP0

�
D cosh

�
k�k2

�
� 1:

Since D.P kQ/ � log.1C �2.P kQ//, the KL divergence is upper bounded by

D
�
P�kP0

�
� log cosh

�
k�k2

�
:

Note that log cosh.x/�min¹x;x2º for x � 0. Applying Le Cam’s method (two-point
argument) to �� D 0 versus �� D ", with " D c0 min¹r; n�1=4º for some sufficiently
small constant c0, we obtain the desired lower bound in (157) for d D 1.

Next we consider d � 2. It suffices to prove the lower bound part of (156), which
yields that of (157) by taking the supremum over s � r . Furthermore, since the rate
for the Gaussian location model (which is s ^

p
d=n) constitutes a lower bound for

the Gaussian mixture model, this proves (159) as well as the last case of (158). So
next we focus on 2 � d � n and s � 1.

Let c0 be some small absolute constant. Let v1; : : : ; vM be a c0-net for the unit
sphere Sd�2 \Rd�1C , such that

(a) kvik D 1;

(b) `.vi ; vj / D kvi � vj k � c0 for any i ¤ j ; and

(c) M � exp.C0d/ for some absolute constant C0.

Now define u0; : : : ;uM 2Rd by u0De1DŒ1;0; : : : ; 0� and uiDŒ1�"2; "vi � for i2 ŒM �,
where "D c1min¹1; .1=s2/

p
d=nº for some small constant c1. Then, `.ui ; uj /� c0"

for any distinct i; j 2 ŒM � and `.ui ; u0/ � 2c0" for any i 2 ŒM �. Finally, let �i D sui
for i D 0; : : : ;M . By the key result, Lemma 27 below, the KL radius of ¹P�i W i 2 ŒM �º

is at most
max
i2ŒM�

D
�
P�i kP�0

�
� C1s

4"2

for some absolute constant C1. Applying Fano’s method [44] yields a lower bound
that is a constant factor of "s � min¹s; .1=s/

p
d=nº.

It remains to prove the following result on the local behavior of KL divergence in
the 2-GM model.

Lemma 27. Let 0 � s � 1. Then, there exists a universal constant C , such that for
any d � 1 and u; v 2 Sd�1,

D
�
PsukPsv

�
� C`.u; v/2s4: (161)
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Remark 4. The result (161) can be interpreted in two ways. First, by the local expan-
sion of the KL divergence, we have

D
�
P� 0kP�

�
D O

�
k� � � 0k2I.�/

�
;

where I.�/ is the Fisher information at � , which, in the 2-GM model, behaves as k�k2

for small � (see Remark 2); however, this intuition does not directly lead to the desired
dimension-free bound. Additionally, (161) can be “anticipated” by drawing analogy
to the covariance model: Suppose the latent variable in the mixture model is standard
normal instead of Rademacher. Then,

D
�
PsukPsv

�
D D

�
N.0; I C s2uu>/kN.0; I C s2vv>/

�
D

s4

2.1C s2/
kuu> � vv>k2F � s

4`.u; v/2;

where the second identity is from [3, eq. (52)].

Proof of Lemma 27. First of all, by symmetry, it suffices to show

D
�
PsukPsv

�
� Cku � vk2s4: (162)

Next, let ı D ku � vk 2 Œ0;
p
2�. By the rotational invariance of the normal distri-

bution, we can and shall assume v D e1 and u satisfies ju1 � 1j � ı and ku?k � ı,
where u? D .u2; : : : ; ud /. Let Q D QY1;:::;Yd D Psv and P D PY1;:::;Yd D Psv .
Then, Q D Ps ˝N.0; Id�1/ is a product distribution, while P is not, since under P ,
Y1; : : : ; Yd are dependent through the common label; this is where the majority of the
technical difficulty of this proof comes from. Next we use the chain rule to evaluate
the KL divergence:

D
�
PY1;:::;Yd kQY1;:::;Yd

�
D D

�
PY1kQY1

�
š

.I/

C E
�
D
�
PY?jY1kN.0; Id�1/

��
 

.II/

;

where we used the fact that Y? is standard normal and independent of Y1 under Q,
and the expectation in (II) is taken over PY1 . In what follows we show that both terms
are O.s4ı2/.

Bounding (I). Let u1D sC ", where j"j � sı. Then, .I/DD.PsC"kPs/. Recall p� .y/
given in (5) denotes the density function of P� . In one dimension, we have p� .y/ D
e��

2=2'.y/ cosh.�y/. Then,

.I/ � �2
�
PsC"kPs

�
.a/
� es

2=2

Z
'.y/

�
e�.sC"/

2=2 cosh..s C "/y/ � e�s
2=2 cosh.sy/

�2
.b/
D es

2=2
�
cosh.s2/ � 2 cosh.s.s C "//C cosh..s C "/2/

� .c/
� C1s

2"2 � C1s
4ı2;
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where (a) is due to cosh � 1; (b) follows from the facts thatZ
dy'.y/ cosh.sy/ D es

2=2;

Z
dy'.y/ cosh.sy/2 D es

2

cosh.s2/;

2 cosh.a/ cosh.b/ D cosh.aC b/C cosh.a � b/I

and (c) is by Taylor expansion since 0� j"j �
p
2s �

p
2, where C1 is some universal

constant.

Bounding (II). Let Y D .Y1; Y?/ and Y? D .Y2; : : : ; Yd /. Under P , we can write
YiDRi CZi , whereRiDsui �B ,B is Rademacher and independent ofZi

i.i.d.
� N.0;1/.

Therefore, PY?jY1 D PR?jY1 � N.0; Id�1/ is a Gaussian location mixture (convolu-
tion). Recall the Ingster–Suslina identity [18]: for any distribution � on Rd ,

�2
�
� �N.0; Id /kN.0; Id /

�
D E

�
exp

�
hX; zXi

��
� 1;

where X; zX i.i.d.
� �. Then, we have

.II/ � E
�
�2
�
PY?jY1kN.0; Id�1/

��
D E

�
exp

�
hR?; zR?i

��
� 1;

where zR? is an independent copy of R? conditioned on Y1. Note that kR?k �
sku?k� sı almost surely. Then, jhR?; zR?ij � .sı/2 � 2. Therefore, by Taylor expan-
sion, we have

E
�
exp

�
hR?; zR?i

��
� 1 � E

�
hR?; zR?i

�
C C2.sı/

4;

where C2 is some universal constant. By linearity, we have

E
�
hR?; zR?i

�
D

dX
iD2

EŒRi zRi � D
dX
iD2

E
�
EŒRi jY1�EŒ zRi jY1�

�
.a/
D

dX
iD2

E
�
EŒRi jY1�

2
� .b/
D s2

dX
iD2

u2i E
�
EŒBjY1�

2
�

.c/
D s2ı2E

�
tanh.u1Y1/2

� .d/
� 4s4.1C 4s2/ı2 � 40s4ı2;

where (a) is because of zRi is a conditional independent copy of Ri ; (b) is due to
Ri D suiB; (c) is by ku?k D ı and the conditional mean is given by (7); and (d) is
by j tanh.x/j � jxj and ju1j � s.1C ı/ � 2s.

Finally, combining (I) and (II) completes the proof of (162).
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C. Analysis of MLE

In this appendix we provide a crude statistical guarantee for the MLE that is needed
for proving the convergence of EM to the MLE in Section 6. Existing analysis of
MLE typically relies on bounding the Hellinger bracketing entropy of the class of
distributions (see, e.g., [34]). Such program has been carried out for the Gaussian
mixture model for both the parametric and nonparametric MLE [13, 14, 17, 29, 45];
however, we found it difficult to bound the bracketing entropy accurately in high
dimensions. Instead, we opt for a standard argument involving only the usual metric
entropy. To state a general result, let P D ¹p� W � 2‚º be a parametric family of den-
sities. Let Yi

i.i.d.
� p�� . The MLE is defined as any global maximizer of the likelihood:

y�MLE 2 arg max
�2‚

`n.�/; `n.�/ , En
�
logp� .Y /

�
D
1

n

nX
iD1

logp� .Yi /: (163)

The following result is standard:

Theorem 11. Abbreviate H.�; � 0/ , H.p� ; p� 0/. Denote by N .P ; H; "/ the "-cov-
ering number of P (without bracketing) with respect to the Hellinger distance. Then,

P
�
H.y�MLE; ��/ > "

�
� N

�
P ;H;

� "2
8L

�1=s�
exp.�n"2=4/C P

�
Lips.`n/ > L

�
;

where Lips.`n/ is the s-Lipschitz constant of the (random) function � 7! `n.�/ on ‚
with respect to the Hellinger distance for some s > 0, i.e.,

Lips.`n/ D sup
�;� 02‚

j`n.�/ � `n.�
0/j

H.�; � 0/s
:

Next we apply Theorem 11 in some high-dimensional parametric models:

Gaussian location model. Consider PGLM D ¹N.�; Id / W k�k � rº, where r is a
constant and d � n. Then,

H.�; � 0/2 D 2 � 2e�k���
0k2=8:

Thus, on‚D ¹k�k � rº, we haveH.�;� 0/�k� � � 0k. By the usual covering number
bound for the Euclidean space, we have

N .PGLM;H; ı/ �
�C
ı

�Cd
:

Furthermore, the log-likelihood process is given by

`n.�/ D constant �
1

2
En
�
.Y � �/2

�
;
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with r`n.�/ D EnŒY � ��. Thus, with high probability,

sup
�2‚

kr`n.�/k � C D C.r/:

Thus, for s D 1, we have Lip1.`n/ � C with high probability. Applying Theorem 11
with s D 1, L D C and " D

p
Cd log.n/=n, we get

H.y�MLE; ��/ �

r
Cd logn

n

with high probability.

Symmetric 2-GM. Consider P2-GMD¹
1
2
N.��;Id /C

1
2
N.�;Id / W k�k� rº, where r

is a constant and d � n; this is the setting of the current paper. On‚D¹k�k � rº, we
have

H.�; � 0/2 � k��> � � 0� 0>k2F;

which follows from the moment tensor characterization of Hellinger for Gaussian mix-
tures in [9, Theorem 4.1]. Furthermore, since `.�; � 0/2.k��> � � 0� 0>kF .`.�; � 0/,6

we have
`.�; � 0/2 . H.�; � 0/ . `.�; � 0/: (164)

By the covering number bound for rank-one matrices (or one-dimensional subspaces;
see [32]), we have N .P2-GM; H; ı/ � .C=ı/

Cd . The analogous result also holds for
general Gaussian mixtures; cf. [9, Lemma 4.5]. Next, recall the relation (13) between
EM algorithm and the gradient descent, we have

r`n.�/ D �� C En
�
Y tanhh�; Y i

�
:

By Theorem 4, with high probability,

sup
�2‚

kr`n.�/k � C
p
d:

6For the lower bound, assume that k�k � k� 0k. Then,

k��> � � 0� 0>kF�k��
>
� � 0� 0>kop �

1

k�k2
�>.��> � � 0� 0>/� D k�k2 �

1

k�k2
jh�; � 0ij2

�k�k2 � jh�; � 0ij �
1

2

�
k�k2 C k� 0k2 � 2jh�; � 0ij

�
D
1

2
`.�; � 0/2:

For the upper bound, assuming that k�k; k� 0k � r , we have

k��> � � 0� 0>k2F � 2kk�.� � �
0/>k2F C 2k.� � �

0/� 0>k2F D 4r
2
k� � � 0k2:

Replacing � 0 with �� 0 yields k��> � � 0� 0>kF � 2r`.�; �
0/.
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Thus, in view of (164), we have Lip1=2.`n/ � C
p
d with high probability. Finally,

applying Theorem 11 with s D 1=2, L D C
p
d , and " D

p
Cd log.n/=n, we get,

with high probability,

H.y�MLE; ��/ �

r
Cd logn

n
;

and consequently, in view of (164),

`.y�MLE; ��/ �

�
Cd logn

n

�1=4
: (165)

Proof of Theorem 11. Rewrite (163) as

y�MLE 2 arg max
�2‚

Ln.�/;

where Ln.�/ , EnŒlog.p�=p��/.Y /� is the log-likelihood ratio process. Note that®
H.y�MLE; ��/ > "

¯
D
®

sup
H.�;��/>"

Ln.�/ > sup
H.�;��/�"

Ln.�/
¯
�
®

sup
H.�;��/�"

Ln.�/ > 0
¯
;

where we used the fact that Ln.��/ D 0. Let ‚0 be the minimal ı-covering of ‚ in
Hellinger distance, where 0 < ı < "=2 is to be specified. Let S" D ¹� WH.�; ��/ � "º
and z‚"D‚0 \ S". Then, for any � 2 S", there exist z� 2 z‚" such that bothH.�; z�/� ı
and H.z�; ��/ � "=2 and hold. Furthermore, j‚"j � j‚0j � N .P ;H; ı/.

In the event that Lips.`n/�L, since Lips.`n/D Lips.Ln/, by the .s;L/-Lipschitz
continuity of Ln, we have

sup
H.�;��/�"

Ln.�/ � sup
H.�;��/�";�2‚0

Ln.�/C Lı
s:

To complete the proof, applying the union bound yields

P
�
H.y�MLE; ��/ > ";Lips.`n/ � L

�
D P

�
sup
�2S"

Ln.�/ > 0;Lips.`n/ � L
�

D P
�

sup
�2‚"

Ln.�/ � �Lı
s
�

.a/
� N .P ;H; ı/ exp

�
�
n

2

�"2
4
� Lıs

��
.b/
D N

�
P ;H; ."2=.2L//1=s

�
exp

�
�
"2n

16

�
;

where (a) follows from the following well-known result, and in (b) we chose ıs D
"2=.8L/.
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Lemma 28. Let Yi be i.i.d. with density p. Then, for any density q,

P

�
1

n

nX
iD1

log
q

p
.Yi / � �ı

�
� exp

�
�
H 2.P;Q/ � ı

2
n

�
:

Proof. By Chernoff bound, we have

P

�
1

n

nX
iD1

log
q

p
.Yi / � �ı

�
D P

�
exp

�
1

2

nX
iD1

log
q

p
.Yi /

�
� exp.�ın=2/

�
�

�Z
p
pq

�n
exp.ın=2/

� exp
�
�H 2.P;Q/n=2C ın=2

�
;

where the last step uses

H 2.P;Q/ D 2 � 2

Z
p
pq and 1 � x � exp.�x/ for x > 0:

This completes the proof of Theorem 11.
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