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Distribution-free robust linear regression

Jaouad Mourtada, Tomas Vaškevičius, and Nikita Zhivotovskiy

Abstract. We study random design linear regression with no assumptions on the distribution
of the covariates and with a heavy-tailed response variable. In this distribution-free regression
setting, we show that boundedness of the conditional second moment of the response given
the covariates is a necessary and sufficient condition for achieving non-trivial guarantees. As a
starting point, we prove an optimal version of the classical in-expectation bound for the trun-
cated least squares estimator due to Györfi, Kohler, Krzyżak, and Walk. However, we show
that this procedure fails with constant probability for some distributions despite its optimal
in-expectation performance. Then, combining the ideas of truncated least squares, median-of-
means procedures, and aggregation theory, we construct a non-linear estimator achieving excess
risk of order d=n with the optimal sub-exponential tail. While existing approaches to linear
regression for heavy-tailed distributions focus on proper estimators that return linear functions,
we highlight that the improperness of our procedure is necessary for attaining non-trivial guar-
antees in the distribution-free setting.

1. Introduction

In the random design regression problem, one has access to n input-output pairs
.Xi ; Yi / 2 Rd � R sampled i.i.d. from some unknown distribution P . We call any
function gWRd!R a predictor and measure its quality via the expected mean squared
error R.g/ D E.g.X/ � Y /2, also called risk. Based on the observed sample Sn D
.Xi ; Yi /

n
iD1, we aim to construct a predictor yg whose risk R.yg/ is small. Since the

risk is relative to the problem difficulty, it is customary to compare it with the best
possible risk achievable via some reference class of functions of interest, in this work
taken to be the set of all linear functions Flin D ¹hw; �i W w 2 Rd º. Henceforth, we
focus on the random variable E.yg/, called the excess risk, defined as

E.yg/ D R.yg/ � inf
g2Flin

R.g/: (1.1)
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We assume without loss of generality that the infimum in the above equation is attained
by some linear function hw�; �i, wherew� 2Rd . Also, we remark that the randomness
of the excess risk (1.1) comes from the fact that yg depends on the random sample Sn.
In this paper, we study non-asymptotic bounds on E.yg/ (both in-expectation and high-
probability) for appropriate choices of yg to be specified later.

Among the most widely studied statistical estimators yg are variants of linear least
squares algorithm that return a linear predictor yg 2 Flin minimizing a suitably regu-
larized empirical risk functional

Rn.g/ D
1

n

nX
iD1

.g.Xi / � Yi /
2:

Estimators based on empirical risk minimization (ERM) are known to achieve the
optimal d=n excess risk rate in expectation under well-behaved covariates X and
assuming that the noise random variable � D Y � hw�; Xi is independent of X (see,
for example, [9, 11, 60]). The work of Oliveira [63] highlights that the usual sub-
Gaussian assumption on the distribution of X can be significantly relaxed in the
context of linear regression. For example, an L4–L2 norm equivalence of the form�

E hX;wi4
�1=4 6 �

�
E hX;wi2

�1=2
; for all w 2 Rd ; (1.2)

for some constant � > 0 is sufficient to achieve the d=n excess risk rate under addi-
tional assumptions on the noise. Indeed, [63] shows that under (1.2), we have a
high-probability control over the lower tail of the sample covariance matrix, used in
the analysis of linear least squares. This moment equivalence assumption and its vari-
ations have become standard tools in the recent literature on robust linear regression
(see, for example, [14,17,34,38,43,48,65]). However, as several authors have recently
pointed out, the kurtosis constant � satisfying the inequality (1.2) may introduce
implicit dependence on the dimension d leading to suboptimal bounds [14, 43, 63].
In particular, Saumard [68] shows that the slightly weaker small-ball condition fails
to hold (with a dimension-free constant) for dictionaries comprised of many classical
basis functions of interest, such as histograms and wavelets, leading to bounds that
scale incorrectly with the dimension d . In fact, in some cases this behavior is inherent
to empirical risk minimization, which has recently been shown by the second and the
third authors of this paper [76] to incur suboptimal excess risk rates even in a favor-
able setup where both X and Y are almost surely bounded. Thus, a natural question
emerges, of how much further can the assumption (1.2) be relaxed and, consequently,
what would be a corresponding minimal assumption on the distribution of response
variable Y ? It is not clear a priori whether non-trivial excess risk guarantees are pos-
sible at all without imposing any assumptions on X .
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To better understand our goals, we now turn to a recent body of work initiated
by Catoni [13] concerning the design and analysis of statistical estimators robust
to heavy-tailed distributions. The ERM strategy is known to fail in this setting due
to its sensitivity to the large fluctuations and the presence of atypical samples aris-
ing from heavy-tailed distributions. Thus, different techniques and procedures are
required to handle such distributions. Following [48] we call the excess risk E.yg/

the accuracy of an estimator yg; the confidence of yg for an error rate of " is equal
to P.E.yg/ 6 "/. Robust statistical learning aims to design procedures exhibiting opti-
mal accuracy/confidence trade-off under minimal distributional assumptions. In the
context of linear regression, the optimal trade-off is usually achieved via the bounds
on E.yg/ of order .d C log.1=ı//=n that hold with probability at least 1� ı; in particu-
lar, such bounds match the performance of ERM for sub-Gaussian distributions. Using
either the PAC-Bayesian truncations [14] or the median-of-means tournaments [48],
it has been shown that the optimal accuracy/confidence trade-off can be achieved
under theL4–L2 moment equivalence assumption (1.2) together with some additional
assumptions on the noise variable � D Y � hw�; Xi. We remark that the existing pro-
cedures for heavy-tailed linear regression focus on outputting a predictor that belongs
to the class Flin. However, as we shall shortly explain, any such proper procedure
fails in our distribution-free setting. We can now formulate the question studied in
this paper.

Is it possible to predict as well as the best linear predictor in Flin without any
assumptions on the distribution of the covariates X , while maintaining the
optimal accuracy/confidence trade-off? If so, what is the minimal assumption
on the response variable Y allowing this?

Independently of the literature on robustness to heavy-tails, two existing results
provide non-asymptotic excess risk guarantees without any assumptions on X , albeit
only in expectation. We remark that both of these results rely on improper statisti-
cal estimators, meaning that they both output predictors outside of the class Flin. Of
course, once all the assumptions on X are dropped, the conditional distribution of Y
given X consisting of a probability kernel .PY jXDx/x2Rd needs to be restricted. We
now state the only assumption considered in our work; note that it is satisfied when Y
is bounded, but also allows this variable to possess heavy tails (including infinite
.2C "/th moment for " > 0).

Assumption 1. The conditional distribution of Y given X satisfies, for some m > 0,

sup
x2Rd

EŒY 2jX D x� 6 m2:
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The first result not involving any explicit restrictions on the distribution of X is
a classical bound for the truncated linear least squares estimator ygm due to Györfi,
Kohler, Krzyżak, and Walk [29, Theorem 11.3] (we defer the exact definition to Sec-
tion 3). Under Assumption 1, their result states that

ER.ygm/ � inf
g2Flin

R.g/ 6 c
m2d.lognC 1/

n
C 7

�
inf

f 2Flin
R.f / �R.freg/

�
: (1.3)

Here the expectation is taken with respect to the random sample Sn, c > 0 is an
absolute constant and freg is the regression function given by freg.x/ D EŒY jX D x�.
The bound (1.3) is a standard benchmark for several communities. Applications of
this result are known in mathematical finance [83], optimal control [8] and vari-
ance reduction [27, 28]; there are known improvements of this result under different
assumptions [19, 20].

The second bound does not depend on the distribution of X and is due to Forster
and Warmuth [25]; this estimator originates in the online learning literature and is
obtained via a modification of the renowned non-linear Vovk–Azoury–Warmuth fore-
caster [6,78]. The Forster–Warmuth estimator, denoted by ygFW, satisfies the following
expected excess risk bound

ER.ygFW/ � inf
g2Flin

R.g/ 6
2kY k2L1d

n
: (1.4)

Of course, the assumption kY kL1 6 m is stronger than Assumption 1. However, an
inspection of the proof in [25] shows that Assumption 1 suffices to obtain the above
in-expectation performance of this algorithm with kY k2L1 replaced by m2.

We are now ready to present informal statements of our main findings. In our first
result, we prove that the term 7.inff 2Flin R.f / � R.freg// as well as the excess log n
factor appearing in the bound (1.3) for the truncated linear least squares estimator can
be removed.

Theorem A (Informal). Suppose that Assumption 1 holds and let ygm denote the trun-
cated least squares estimator of Györfi, Kohler, Krzyżak, and Walk. Then, we have

ER.ygm/ � inf
g2Flin

R.g/ 6
8m2d

n
:

Moreover, Assumption 1 ensures the same guarantee for the Forster–Warmuth esti-
mator ygFW.

One may notice that even though the bound of Theorem A scales as d=n, the
usual dependence on the variance of the noise variable as is in, for example, [9] is
replaced by the dependence on m2. It can be shown (see Proposition 2) that if only
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Assumption 1 holds, then the dependence on m2 is unavoidable in general even if
the problem is noise-free so that the variance of the noise is equal to zero. Moreover,
if we only impose Assumption 1, then any statistical estimator that selects predic-
tors from Flin (such an estimator is called proper) is bound to fail. This fact can be
established using the recent result of Shamir [69, Theorem 3], and it remains true
even when d D 1 and the response variable Y is bounded almost surely. This obser-
vation separates our setup from the existing literature where only proper estimators
are studied for convex classes such as Flin even in the heavy-tailed scenarios (see, for
example, [14, 48, 53, 54]).

The bounds of Theorem A certify that the expected excess risk goes down to
zero under Assumption 1. However, as discussed above, we aim to provide high-
probability upper bounds on the excess risk with logarithmic dependence on the
confidence level ı. It is not unreasonable to expect that the in-expectation guarantees
of either ygm or ygFW transfer to analogous high-probability bounds, at least when-
ever Y is bounded almost surely. Our second result shows that this is, unfortunately,
not the case. Indeed, both algorithms fail to achieve high probability upper bounds in
a strong sense: they both fail with constant probability. It is possible, since neither ygm
nor ygFW belong to the linear class Flin, and the random variableR.yg/� infg2Flin R.g/

can take negative values. Consequently, Markov’s inequality cannot be applied to
obtain deviation inequalities as m2d=n � 1=ı for a given confidence level ı.

Theorem B (Informal). Let yg denote either ygm or ygFW. There exist universal con-
stants p 2 .0; 1/; c > 0 such that the following holds. For any d > 1 and m > 0,
there exists a distribution P satisfying kY kL1.P / 6 m such that, with probability at
least p,

R.yg/ � inf
g2Flin

R.g/ > c m2:

The above theorem brings forth the question of whether achieving high-probability
guarantees in our distribution-free setting is possible. Indeed, all known high-probab-
ility guarantees on linear aggregation problems impose some restrictions on X . We
show that there is, in fact, a procedure that achieves an optimal excess risk bound (up
to a logarithmic factor) with a sub-exponential tail. The following theorem is the main
positive result of our paper.

Theorem C (Informal). Suppose that Assumption 1 holds. There exists an absolute
constant c > 0 such that the following holds. For any confidence level ı 2 .0; 1/, there
exists an improper estimator yg (depending on ı and m) such that

P
�
R.yg/ � inf

g2Flin
R.g/ 6 c

m2.d log.n=d/C log.1=ı//
n

�
> 1 � ı:
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The above theorem demonstrates that robust learning of linear classes is possible
with no restrictions on the distribution of X and under weak assumptions on the con-
ditional distributions of the response variable Y that allow for modelling heavy tails
settings. Moreover, we show in Section 6 that Assumption 1 is necessary to obtain
any non-trivial guarantee in our setup. The estimator of Theorem C naturally lever-
ages the ideas of the analysis of truncated linear functions [29, Chapter 11], skeleton
estimators [21, Section 28.3], [66], the deviation optimal model selection aggregation
procedures [2, 42, 53], min-max estimators [5, 41], and the median-of-means tourna-
ments [48]. An extended discussion is deferred to Section 5.

1.1. Summary of contributions and structure of the paper

� In Section 2, we discuss known results on distribution-free learning of linear
classes.

� In Section 3, we show that the classical bound of Györfi, Kohler, Krzyżak, and
Walk [29, Theorem 11.3] for the truncated linear least squares estimator can be
improved to achieve the optimal m2d=n bound in expectation.

� In Section 4, we establish that the truncated least squares and Forster–Warmuth
estimators are both deviation-suboptimal. In particular, we construct a distribution
with almost surely bounded response variable Y , under which both estimators
incur an excess risk of order m2 with constant probability.

� Section 5 is split into three parts. In Section 5.1, we consider a simplified setting
with a known covariance structure. Combining Tsybakov’s projection estima-
tor [70] with the robust mean estimator of Lugosi and Mendelson [45], we pro-
vide an estimator attaining the optimal rate d=n with the optimal dependence on
the confidence parameter. In Section 5.2, we drop the simplifying assumption of
known covariance structure and present our main positive result – a distribution-
free deviation-optimal estimator robust to heavy-tailed responses. In Section 5.3,
we discuss possible extensions of this result. In particular, we show that an adapta-
tion of our linear regression procedure yields an estimator with deviation-optimal
rates for heavy-tailed model selection aggregation under Assumption 1.

� Section 6 is devoted to establishing the necessity of Assumption 1. We show,
in particular, that if EŒY 2jX� is unbounded, no estimator can achieve non-trivial
excess risk guarantees. In addition, we establish that the dependence onm2 in our
upper bounds is unavoidable.

� Section 7 contains deferred proofs of lemmas appearing in the previous sections.
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1.2. Related work

Analysis of least squares estimators. The most standard approach to regression
problems is the least squares principle, where one selects the predictor achieving the
best fit to data within some predefined class of functions. A large body of work is
devoted to analyzing and obtaining guarantees on its performance, in its most clas-
sical form, relying on the fact that the empirical risk provides a good approximation
of its population counterpart. This is typically established when the underlying distri-
bution is sufficiently well-behaved (for instance, bounded or light-tailed), using tools
from empirical process theory. For this point of view to statistical learning, we refer
to the standard textbooks [40, 50, 73, 79]. It should be noted that statistical analysis
of linear regression has also been treated via a complementary approach of stochastic
approximation; see, for instance, the works [24, 30, 80] and references therein.

A recent line of research has established that empirical minimization can per-
form well under significantly weaker assumptions. Our starting point is the work
of Oliveira [63], where in the context of linear regression the usual sub-Gaussian
assumption on X is replaced by a significantly weaker L4–L2 moment equivalence
assumption (1.2). In particular, such an assumption does not even require the exis-
tence of any moments of X higher than the fourth. Variations of this assumption have
become the standard tool in the recent literature on linear regression [14,17,34,38,43,
48,60,65]. The seminal work of Mendelson [52] introduced a more general condition,
called the small-ball assumption. In most of the aforementioned papers, the analysis
is performed for empirical risk minimization, which usually does not lead to the opti-
mal accuracy/confidence trade-off. The papers [4, 5] provide the optimal confidence
for ERM, albeit under stronger moment equivalence assumptions than that of (1.2).
The L4–L2 moment equivalence is also important in the robust covariance estimation
problem [14, 57, 64].

It has been recently observed that the absolute constants involved in the moment
equivalence and the small-ball assumptions can behave badly in some cases. First,
Saumard [68] shows that the small-ball condition is unsuitable for some important
classes leading to suboptimal performance of ERM. Further, the work [14] (see also
the discussion in [63] and [43]) discusses that the kurtosis constant � in the moment
assumptions similar to (1.2) can depend on the dimension and affect the bounds neg-
atively. The recent paper [76] shows this suboptimal behavior in the context of linear
regression, even in a favorable setup where both X and Y are bounded. There is
a growing interest in further relaxing these assumptions and refining the underlying
methods [15,18,54–56,60,68]. In particular, the works [15,56] replace moment equiv-
alence assumptions by the bounds on the Lp moments for p > 4. This is closer to the
setting we are aiming for in this paper.
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Robustness to heavy-tailed distributions. In a broad sense, robustness encompasses
the study and design of statistical estimation procedures exhibiting certain stability
properties under the existence of “outlier” points in the observed sample. For a clas-
sical perspective on robustness, originating from the work of Tukey [71] and building
on the ideas of contaminated models, influence functions and breakdown points, we
refer to the standard books [31, 35, 67].

In contrast to the classical perspective, our work falls within the recent body of
work initiated by Catoni [13], where the term robustness is to be understood specifi-
cally as robustness to heavy-tailed distributions (rather than, for example, adversarial
contamination of the sample). The starting point of this direction is the question
of mean estimation, where informally, one aims to construct statistical estimators
performing as well as the sample mean does for Gaussian samples, all while mak-
ing as weak distributional assumptions as possible. Several ways of constructing
such estimators (called sub-Gaussian estimators) have been proposed in the litera-
ture. The most widespread approach is based on the median-of-means estimators,
which appear first independently in [1, 36, 62] and were further developed in the
works of [22,46,47,58]. Other techniques include the Catoni’s estimator and its exten-
sions [13,15] or the trimmed means [49]. We refer to the survey [45] for further details
and references. For a complementary survey focusing on the computational aspects
see [23].

The central ideas behind the robust mean estimation found their applications in
many related problems such as regression [10, 18, 18, 34, 41, 48, 54, 59], covariance
estimation [14, 57, 64] and clustering [10, 39]. In the context of linear regression, the
first works showing the optimal accuracy/confidence trade-off under weak assump-
tions are attributed to Audibert and Catoni [4,5] and were further extended in [14,15];
these papers are based on PAC-Bayesian truncations.

Distribution-free linear regression. Distribution-free non-asymptotic excess risk
bounds take their roots in the PAC-learning framework [72, 75], where historically
the binary loss is studied the most. Because of its boundedness, excess risk bounds in
such setups can be obtained without any assumptions on the distribution of .X; Y /.
In the context of non-parametric regression with the squared loss, only asymptotic
consistency results are possible under truly minimal assumptions on the underlying
distribution (see the book [29]). In fact, the standard notions of universal consis-
tency [29, Section 1.6 and Chapter 10] involve only the assumption EY 2 <1 and
no assumptions on the distribution of X . The distribution-free nature of this notion is
one of our motivations. A notable non-asymptotic result in this direction is [29, The-
orem 11.3], where an inexact oracle inequality (1.3) is proved without any explicit
assumptions on the distribution of X .
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Another direction originates from the online learning literature (see [16] for back-
ground on this topic). For instance, when both X and Y are bounded, the renowned
Vovk–Azoury–Warmuth forecaster [6, 78] can be used to provide excess risk bounds
of order d=n in our setup even when the aforementioned moment equivalence con-
stants behave badly with respect to the dimension. This observation has been recently
explored in [76]. For linear regression, the Forster–Warmuth algorithm [25], which
is in turn a modification of the Vovk–Azoury–Warmuth forecaster, leads to the only
known exact oracle inequality without imposing any assumptions on X .

1.3. Notation

We now set the notation. We let P D P.X;Y / be the joint distribution on Rd �R (with
d > 1) of a random pair .X;Y /. The joint distributionP itself can be decomposed into
two components, namely the marginal distribution PX of X (a distribution on Rd ),
as well as the conditional distribution of Y given X , consisting of a (measurable)
probability kernel .PY jXDx/x2Rd , where for x 2 Rd , PY jXDx is a distribution on R.

For a real random variable Z and p > 1, we denote kZkLp
D EŒjZjp�1=p , while

for a measurable function f WRd ! R, we set

kf kLp
D kf kLp.PX / D kf .X/kLp

:

The risk of a measurable function f WRd ! R is by definition

R.f / D E.f .X/ � Y /2 D kf .X/ � Y k2L2
:

It is known that the risk is minimized by the regression function freg given by

freg.x/ D EŒY jX D x� D
Z

R
yPY jXDx.dy/:

Absolute constants are denoted by c; c1; : : : and may change from line to line.
For a real square matrix A, let Tr.A/ denote its trace, kAkop its operator norm, AT

its transpose and A� its Moore–Penrose inverse. In what follows, h� ; �i denotes the
canonical inner product in Rd and k�k stands for the Euclidean norm. For any two
functions (or random variables) f;g the symbol f . g (or g & f ) means that there is
an absolute constant c such that f 6 cg on the entire domain. For a pair of symmetric
matrices A;B , the symbol A 4 B means that B � A is positive semi-definite.

We consider the class Flin D ¹hw; �i W w 2 Rd º of linear functions. Throughout,
our assumptions will imply that R.0/ D EY 2 is finite (regardless of PX ); hence, so
is the minimal risk in Flin, namely inff 2Flin R.f / is finite. In this case, for f 2 Flin

given by f .x/ D hw; xi its risk R.f / is finite if and only if khw;XikL2
< C1, and

the set of such w 2 Rd is a subspace of Rd , which coincides with Rd itself if and
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only if EkXk2 <C1. When the latter condition holds, one can define the covariance
of X as

Cov.X/ D E.X � EX/.X � EX/T

and the Gram matrix of X as † D EXXT; the minimizers f of the risk in Flin are
then the functions hw; �i, where w are solutions of the equation †w D EŒYX�. The
last quantity is well-defined since

EjY jkXk 6 kY kL2
E
�
kXk2

�1=2
:

Given the observed sample Sn D .Xi ; Yi /niD1, the aim is to construct a predictor
(usually called an estimator) yg such that its risk R.yg/ is small. A learning procedure
is a measurable function mapping a sample in .Rd � R/n to a measurable function
Rd ! R. In what follows, we avoid measurability issues and use a standard conven-
tion that all events appearing in the probabilistic statements are measurable. Given
a sample Sn D .Xi ; Yi /

n
iD1, we usually write yg for the function yg.Sn/. Finally, we

remark that since the sample Sn is random, the function yg D yg.Sn/ is also random
and so is R.yg/.

2. Distribution-free linear regression: known results

In this section, we set the context for the rest of this work, by reviewing relevant
existing results on distribution-free linear prediction, and framing them in our setting
(through minor modifications). We remark that the bounds we are about to discuss
hold in expectation, whereas we will also be concerned with high-probability guaran-
tees. As will be seen in Section 4, the distinction between the two is not innocuous,
as existing procedures achieving distribution-free expected excess risk bounds do not
possess matching guarantees in deviation.

Limitations of proper estimators. Recall that in the context of our work, a learn-
ing procedure is called proper if it always returns an element of the class Flin (that
is, a linear function); otherwise, it is called improper or non-linear. The importance
of considering improper estimators stems from a fundamental limitation of proper
procedures in our distribution-free setting. Specifically, it follows from the work of
Shamir [69, Theorem 3] that for any proper estimator ygproper, there exists a distribu-
tion of .X; Y / with the response variable Y almost surely bounded by m, for which

ER.ygproper/ � inf
g2Flin

R.g/ & m2: (2.1)

Thus, even when the response is bounded, no proper learning procedure can improve
(up to universal constants) over the risk trivially achieved by the zero function, without
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some restrictions on the distribution of covariates. As discussed in the introduction,
this negative result already rules out many procedures introduced and analyzed in the
statistical learning and robust estimation literature, including empirical risk minimiza-
tion and refinements thereof.

Learning with known covariance structure. We now discuss a simplified setting, in
which guarantees can be obtained quite directly. Specifically, assume that the covari-
ance structure of the distribution PX , namely, the map w 7! Ehw; Xi2 (which can
take infinite values), is known. As noted in Section 1.3, we can restrict our attention
to the linear subspace where the above map takes finite values. Thus, we may assume
without loss of generality that the covariance matrix † D EXXT exists. In addition,
up to restricting to the orthogonal of the nullspace ¹w 2 Rd W †w D 0º, we may
assume in what follows that the covariance matrix † is invertible. Hence, the unique
minimizer of the riskR.f / in Flin is given by f � D hw�; �i, wherew� D†�1EŒYX�.
In addition, the excess risk of any linear function f D hw; �i is given by the following
identity:

R.f / � inf
g2Flin

R.g/ D k†1=2.w � w�/k2: (2.2)

The key simplification provided by the knowledge of † is that random-design
linear regression reduces to multivariate mean estimation. To see this, consider the
change of variables � D †1=2w and notice that the excess risk (2.2) is then equal
to k� � ��k2, where ��DEU forUDY †�1=2X . Using†, an i.i.d. sample .Xi ;Yi /niD1
can be turned into an i.i.d. sample .Ui /niD1, with Ui D Yi†�1=2Xi distributed as U .
One can thus estimate EU by the sample mean 1

n

Pn
iD1 Ui . This leads to the projec-

tion estimator for our original problem, defined as

ygproj.x/ D h yw; xi; where yw D †�1 �
1

n

nX
iD1

YiXi : (2.3)

Under Assumption 1, we have

EUU T
D E

�
EŒY 2jX�†�1=2XXT†�1=2

�
4 m2Id ;

and in particular Tr.Cov.U //6m2d and kCov.U /kop6m2. Applying the first inequal-
ity to the empirical mean estimator of �� D EU leads to the following guarantee for
the projection estimator, which corresponds up to minor changes in assumptions1 to

1Specifically, [70] assumes that the noise Y � freg.X/ is independent of X , but the same
proof applies when replacing this assumption by the conditional moment bound of Assump-
tion 1.
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the result of Tsybakov [70, Theorem 4]:

ER.ygproj/ � inf
g2Flin

R.g/ 6
m2d

n
: (2.4)

It is worth noting that there is no contradiction between the lower bound (2.1) and
the above upper bound. Indeed, the projection estimator, while proper, relies on the
a priori knowledge of†, which is unavailable in the typical statistical learning setting.
This implies in particular that the knowledge of † is sufficient to avoid the previous
failure of proper procedures. In this work, the simplified setting with known covari-
ance serves as a benchmark that we aim to match in the general case, where nothing
is known a priori about the distribution of X .

Upper bounds in expectation via non-linear predictors. As mentioned in the intro-
duction, and with the exception of the aforementioned known covariance setting, there
are two known results stating non-trivial in-expectation guarantees without restric-
tions on the distribution of X . These guarantees are achieved, respectively, by the
truncated linear least squares estimator ygm and the Forster–Warmuth estimator ygFW,
which we now define formally.

First, consider the linear least squares estimator

ygerm D arg min
g2Flin

yR.g/ D h ywerm; �i;

where

ywerm D

� nX
iD1

XiX
T
i

��� nX
iD1

YiXi

�
D y†�n �

1

n

nX
iD1

YiXi ; (2.5)

with y†n D 1
n

Pn
iD1XiX

T
i . Given a threshold m > 0, the truncated least squares esti-

mator ygm returns the prediction of the linear function h ywerm; �i, truncated to Œ�m;m�.
That is,

ygm.x/ D max
�
�m;min

�
m; h ywerm; xi

��
: (2.6)

We now turn to the Forster–Warmuth estimator. Given the sample Sn D .Xi ; Yi /niD1,
define the leverage score of a point x 2 Rd by hn.x/ D h.nb†n C xxT/�x; xi. The
Forster–Warmuth estimator is then defined by reweighing predictions of h ywerm; �i by
a function of the statistical leverage of the input point x:

ygFW.x/ D
�
1 � hn.x/

�2
� h ywerm; xi: (2.7)

Recall the guarantees on the risk of these procedures, stated in the introduction.
Specifically, under Assumption 1, the truncated least squares estimator satisfies the
oracle inequality (1.3), while the Forster–Warmuth estimator achieves the excess risk
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bound (1.4). Note that both procedures are improper, as they introduce non-linearities
in the prediction function, either through truncation or through the leverage correction.

As discussed in the recent works [60, 76], the risk of the least squares procedure
is large when leverage scores are uneven and correlate with the noise. While this
configuration is ruled out under distributional assumptions such as moment equiv-
alences, it can actually occur even under boundedness constraints, leading to poor
performance [76]. Both non-linearities partially mitigate the shortcomings of the least
squares estimator, by adjusting its predictions at high-leverage points, which are the
most unstable and lead to large errors. These corrections allow these procedures to
achieve in-expectation bounds, even for unfavorable distributions on which ordinary
least squares fail.

3. An improved bound for truncated least squares

As discussed at the end of Section 2, the non-linearities introduced by the truncated
least squares and Forster–Warmuth estimators aim to mitigate the instability of ERM
predictions at high-leverage points. The more sophisticated Forster–Warmuth proce-
dure (which relies on an explicit leverage correction), however, leads to a better excess
risk guarantee. Indeed, the risk guarantee of ygm takes the form of an inexact ora-
cle inequality, suffering from the approximation error term inff 2Flin R.f / � R.freg/.
This type of guarantee only ensures that the procedure approaches the performance
of the best linear function in the nearly well-specified case, where the true regression
function is almost linear. While reasonable in low-dimensional nonparametric estima-
tion [29] (with appropriate linear spaces), such an assumption is generally restrictive
in high-dimensional problems and is not satisfied in our setting. Unfortunately, the
proof technique employed in [29] can only yield inexact oracle inequalities, and
hence, no straightforward modification to their argument can match guarantees of ygFW

given by (1.4).
A natural question remains of whether the gap between the existing in-expectation

performance guarantees given by (1.3) and (1.4) is intrinsic to the estimators ygm
and ygFW, or whether it is a byproduct of suboptimal analysis of the performance of
the simpler procedure ygm. In the theorem below, we show that truncated least squares
estimator indeed matches the statistical performance of the Forster–Warmuth algo-
rithm. Our proof is based on a leave-one-out argument akin to the one used to prove
the upper bound (1.4) in [25, Section 3]. We remark that leave-one-out arguments
have a long history; see the references [75, Chapter 6] and [33].
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Theorem 1. Suppose that Assumption 1 holds and let ygm denote the truncated least
squares estimator (2.6). Then, we have

ER.ygm/ � inf
f 2Flin

R.f / 6
8m2d

nC 1
: (3.1)

Proof. To simplify the presentation, we introduce additional notation. Let SnC1 D
.Xi ; Yi /

nC1
iD1 denote an i.i.d. sample of size n C 1. For any j 2 ¹1; : : : ; n C 1º, let

S
.j /
nC1 D .Xi ; Yi /

nC1
iD1;i¤j

be the dataset obtained by removing the j th sample. On the
sample SnC1 (respectively , S .j /nC1), we define the minimal norm empirical risk mini-
mizer zg (respectively , zg.j /) and its truncated variant zgm (respectively , zg.j /m ).

Since SnC1 is an i.i.d. sample, for every j 2 ¹1; : : : ; nC 1º, S .j /nC1 has the same
distribution as Sn D S

.nC1/
nC1 (so that zg.j /m has the same distribution as ygm D zg

.nC1/
m ),

and is independent ofZj D .Xj ; Yj /. This implies that the expected excess risk of ygm
can be bounded as follows:

E E.ygm/ D ESnC1

�
zg.nC1/m .XnC1/ � YnC1

�2
� inf
g2Flin

EZnC1

�
g.XnC1/ � YnC1

�2
(3.2)

D ESnC1

�
1

nC 1

nC1X
jD1

�
zg.j /m .Xj / � Yj

�2�
� inf
g2Flin

ESnC1

�
1

nC 1

nC1X
jD1

�
g.Xj / � Yj

�2�
(3.3)

6 ESnC1

�
1

nC 1

nC1X
jD1

�
zg.j /m .Xj / � Yj

�2
�
�
zg.Xj / � Yj

�2�
; (3.4)

where the last line follows from the definition of zg. Now, define the leverage hj of the
point Xj among X1; : : : ; XnC1 by

hj D

�� nC1X
iD1

XiX
T
i

��
Xj ; Xj

�
2 Œ0; 1�: (3.5)

An explicit computation – postponed to the end of the proof – shows that for every j ,

zg.Xj / D .1 � hj / zg
.j /.Xj /C hjYj : (3.6)

Plugging (3.6) into the bound (3.4), we obtain

E E.ygm/ 6 E
�

1

nC 1

nC1X
jD1

�
zg.j /m .Xj / � Yj

�2
� .1 � hj /

2
�
zg.j /.Xj / � Yj

�2�
: (3.7)
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By Assumption 1 and Jensen’s inequality we have supx2Rd jfreg.x/j 6 m. It follows
that �

zg.j /m .Xj / � freg.Xj /
�2 6

�
zg.j /.Xj / � freg.Xj /

�2
;

so that

E
�
.1 � hj /

2
�
zg.j /.Xj / � Yj

�2 ˇ̌
S
.j /
nC1; Xj

�
(3.8)

D .1 � hj /
2
��
zg.j /.Xj / � freg.Xj /

�2
C E

�
.freg.Xj / � Yj /

2
jS
.j /
nC1; Xj

��
(3.9)

> E
�
.1 � hj /

2
�
zg.j /m .Xj / � Yj

�2 ˇ̌
S
.j /
nC1; Xj

�
: (3.10)

Plugging the above in the upper bound (3.7), we proceed as follows

E E.ygm/ 6 E
�

1

nC 1

nC1X
jD1

�
zg.j /m .Xj / � Yj

�2
� .1 � hj /

2
�
zg.j /m .Xj / � Yj

�2� (3.11)

6 E
�

1

nC 1

nC1X
jD1

2hj
�
zg.j /m .Xj / � Yj

�2� (3.12)

6 8m2E
�

1

nC 1

nC1X
jD1

hj

�
6 8

m2d

nC 1
; (3.13)

where the penultimate step follows from Jensen’s inequality combined with Assump-
tion 1 and the last step follows from the bound

nC1X
jD1

hj D Tr
�� nC1X

iD1

XiX
T
i

��� nC1X
iD1

XiX
T
i

��
6 d:

We now conclude by showing the identity (3.6). First, define

z† D

nC1X
iD1

XiX
T
i ;
z†.j / D z† �XjX

T
j ; b D

nC1X
iD1

YiXi ; and b.j / D b � YjXj ;

so that

zg.Xj / D hz†
�b;Xj i; zg.j /.Xj / D h

�
z†.j /

��
b.j /; Xj i; and hj D hz†

�Xj ; Xj i:

Note that (3.6) is an identity, and up to restricting to the linear span of .X1; : : : ;XnC1/
we may assume that z† is invertible. In addition, if Xj does not belong to the linear
span of .Xi /nC1iD1;i¤j

, namely, if z†.j / is singular, then it can be shown that hj D 1

and zg.Xj / D Yj (since zg minimizes the empirical risk on SnC1, and g.Xj / can be
set freely without affecting the other predictions), so that (3.6) holds. Therefore, we
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may assume that z†.j / is invertible. Using the definition and the Sherman–Morrison
formula, as hj 2 Œ0; 1/, we obtain

zg.j /.Xj / D

��
z†�1 C

z†�1XjX
T
j
z†�1

1 � hj

�
.b � YjXj /; Xj

�
(3.14)

D zg.Xj /C
hj

1 � hj
zg.Xj / � hjYj �

h2j

1 � hj
Yj (3.15)

D
1

1 � hj
zg.Xj / �

hj

1 � hj
Yj I (3.16)

rearranging the last equality yields (3.6), concluding the proof.

4. Failure of previous estimators with constant probability

As discussed in Section 2, Assumption 1 suffices to ensure that the Forster–Warmuth
estimator [25] achieves an expected excess risk bound of order m2d=n irrespective
of the distribution of X . Our results established in Section 3 demonstrate the same
conclusion for the truncated least squares estimator of [29, Theorem 11.3]. In addition
to the guarantees in expectation, high-probability or tail bounds are desirable, as they
provide a control on the probability of failure of the estimator. The following theorem
shows that in fact, none of the two procedures satisfy meaningful high-probability
guarantees, in a rather strong sense.

Theorem 2. Fix the dimension d D 1. There exist absolute constants c > 0 and
n0 > 2 such that the following holds. For any n> n0, there is a distribution P DP.n/
of .X; Y / with kY kL1 6 m, such that if yg is either the truncated least squares esti-
mator (2.6) or the Forster–Warmuth estimator (2.7), computed on an i.i.d. sample Sn,
then

P
�
R.yg/ � inf

g2Flin
R.g/ > c m2

�
> c: (4.1)

Note that under Assumption 1, the trivial, identically 0 function has risk at most
EY 26m2. Theorem 2 states that, with constant probability, the truncated least squares
and the Forster–Warmuth estimators incur a constant excess risk of the same order.
At first sight, this property may seem incompatible with expected excess risk bounds
of order d=n. However, one should keep in mind that the estimators in question are
improper (returning predictors outside of the class Flin), so that the excess risk may
well take negative values; the expected excess risk remains small due to the fact that
positive and negative values essentially compensate in expectation, regardless of the
distribution.
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A related phenomenon was observed in the context of model selection-type aggre-
gation by Audibert [2], who showed that the (improper) progressive mixture rule [12,
82], known to achieve fast rates in expectation, exhibits slow rates in deviation. In our
context the failure in deviation is even more severe, as the excess risk is of constant
order, rather than exhibiting slow rates.

Proof. For any n > n0, let P D P.n/ be the distribution of .X; Y / satisfying

.X; Y / D

(
.1;m/ with probability 1 � 1

n
I

.
p
n; 0/ with probability 1

n
:

(4.2)

By homogeneity, we may assume that m D 1. For any w 2 R, set gw.x/ D w � x. We
have

R.gw/ D
�
1 �

1

n

�
.w � 1/2 C

1

n
.w
p
n/2 D

�
1 �

1

n

�
.w � 1/2 C w2:

It follows that the risk of the best linear predictor is equal to

inf
w2R

R.gw/ D
1 � 1=n

2 � 1=n
6
1

2
: (4.3)

In addition, letK DKn denote the number of indices i D 1; : : : ; n such thatXi D
p
n.

The empirical risk writes

yRn.gw/ D
�
1 �

K

n

�
.w � 1/2 CKw2;

and so

ywerm D arg min
w2R

yRn.gw/ D
1 �K=n

K C 1 �K=n
:

In particular, 0 6 ywerm 6 1=.K C 1/. Now, note that if yg denotes either the truncated
least squares (2.6) or the Forster–Warmuth estimator (2.7), then

yg.1/ 6 ywerm � 1 6 1=.K C 1/ 6 1;

and thus, denoting the sample .Xi ; Yi /niD1 by Sn, we have

R.yg/ > E
�
.yg.X/ � Y /21.X D 1/ jSn

�
>
�
1 �

1

n

�
�

� K

K C 1

�2
: (4.4)

Thus, under the event En D ¹Kn > 4º, it follows from (4.3) and (4.4) that for n > 16,

R.yg/� inf
g2Flin

R.g/ >
�
1�

1

n

�
�

� K

K C 1

�2
�
1

2
D

�
1�

1

16

�
�
16

25
�
1

2
D

1

10
: (4.5)
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Finally, sinceKn follows the binomial distribution Bin.n; 1=n/, the probability P.En/
is positive for n > 16 > 4. Further, since Kn converges in distribution to the Poisson
distribution Poi.1/ as n ! 1, P.En/ ! P. zK > 4/ > 0 with zK � Poi.1/, so that
setting p0 D infn>16 P.En/, we have p0 > 0. This concludes the proof with c D
min.p0; 1=10/ and n0 D 16.

5. An optimal robust estimator in the high-probability regime

In this section we present our main positive result. We show that there is an estimator
achieving an optimal accuracy and sub-exponential tails for the linear class Flin under
Assumption 1. We first consider a simplified setup where the covariance structure
of X is known.

5.1. Warm-up: known covariance structure

Following the discussion on the learning model with known covariance structure in
Section 2, we assume in this section that † D EXXT exists, is invertible and also
known. Recall the definition of Tsybakov’s projection estimator ygproj (2.3). Since this
estimator always returns a linear predictor, its excess risk is non-negative and we may
apply Markov’s inequality to show that for any ı 2 .0; 1/, it holds that

P
�
R.ygproj/ � inf

g2Flin
R.g/ 6

m2d

n
�
1

ı

�
> 1 � ı:

An argument similar to the one used in [13, Proposition 6.2] can be used to show that
this bound is essentially the best we can hope for the projection estimator, even when
jY j 6 m almost surely.

Fortunately, there is a way to modify this estimator and obtain a guarantee with
sub-exponential tails. The result of Lugosi and Mendelson [47, Theorem 1] shows for
any ı 2 .0; 1/, there exists an estimator y�ı W .Rd /n ! R such that, for any sequence
U1; : : : ; Un of i.i.d. random vectors in Rd with mean � and covariance matrix z† D
Cov.U /, y�ı D y�ı.U1; : : : ; Un/ satisfies

P
�
ky�ı � �k

2 6 c
Tr.z†/C kz†kop log.1=ı/

n

�
> 1 � ı; (5.1)

where c > 0 is an absolute constant. Now, introduce the robust projection estimator

zw D †�1=2 � y�ı
�
Y1†

�1=2X1; : : : ; Yn†
�1=2Xn

�
; (5.2)

and consider the following result.
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Proposition 1. There is an absolute constant c > 0 such that the following is true.
Suppose that Assumption 1 holds. Then, the robust projection estimator yg D h zw; �i
(which is a proper estimator) defined in (5.2) satisfies

P
�
R.yg/ � inf

g2Flin
R.g/ 6 c

m2.d C log.1=ı//
n

�
> 1 � ı: (5.3)

Proof. We have shown in Section 2, that under Assumption 1,

Cov.Y †�1=2X/ 4 m2Id :

Combining the deviation bound (5.1) and the definition (5.2) with the identity (2.2),
we finish the proof.

The above result serves as a benchmark result for the performance that we aim to
establish in the more realistic setting where the covariance matrix† is unknown. This
is achieved in the next section.

5.2. Deviation-optimal robust estimator

The theorem below is the main positive result of our paper. It demonstrates that
Assumption 1 is a sufficient condition for the existence of linear regression estima-
tors satisfying an excess risk deviation inequality with logarithmic dependence on the
confidence parameter. In Section 6, we show that Assumption 1 is also necessary.

Theorem 3. There is an absolute constant c>0 such that the following holds. Assume
that n > d . Suppose that Assumption 1 holds and fix any ı 2 .0; 1/. Then, there exists
an estimator yg depending on ı and m such that the following holds:

P
�
R.yg/ � inf

g2Flin
R.g/ 6 c

m2.d log.n=d/C log.1=ı//
n

�
> 1 � ı:

Moreover, the above bound also holds if the class Flin is replaced by an arbitrary
VC-subgraph class F of dimension d .

Before presenting our estimator, we briefly comment on the above theorem. First,
in contrast to existing work on robust linear regression, our estimator yg is improper,
even though the underlying linear class is convex. Second, unlike our previous results
presented in this paper, the bound of Theorem 3 is not specific to the linear class. In
particular, our proof extends without changes to the family of VC-subgraph classes
(see [26, Definition 3.6.8]). Some recent results in the robust statistics literature apply
to more general classes of functions, including non-parametric classes (see, for exam-
ple, [18, 48, 54]). However, as discussed in Section 1.2, such results are only known



J. Mourtada, T. Vaškevičius, and N. Zhivotovskiy 272

to be valid under additional assumptions on PX . Extending our results for more gen-
eral classes presents some challenges; we discuss them in more detail in Section 5.3.
Finally, we note that our estimator depends on the value of m. This assumption
simplifies the analysis and is standard in similar contexts (see, for example, [29, The-
orem 11.3] and [56]).

We now introduce some additional notation needed to define our estimator. For
any " > 0 and any class of real-valued functions G let G" denote the smallest "-net
of G with respect to the empirical L1 distance

1

n

nX
iD1

jf .Xi / � g.Xi /j:

We only consider "-nets that are subsets of G . For the standard definition of an "-net
we refer to [77, Section 4.2]. Assume that we have a sample S D .Xi ; Yi /3niD1 of
size 3n and denote

S1 D .Xi ; Yi /
n
iD1; S2 D .Xi ; Yi /

2n
iDnC1; and S3 D .Xi ; Yi /

3n
iD2nC1:

Fix any 1 6 k 6 n, and assume without loss of generality that n=k is integer. Split
the set ¹1; : : : ; nº into k blocks I1; : : : ; Ik of equal size such that

Ij D ¹1C .j � 1/.n=k/; : : : ; j.n=k/º:

Fix any function `WRd �R! R, any sample S 0 of size n, and denote the i th element
of S 0 by Zi D .Xi ; Yi /. The median-of-means estimator (see also [45, Section 2.1],
[62]) is defined as follows:

MOMk
S 0.`/ D Median

�
k

n

X
i2I1

`.Zi /; : : : ;
k

n

X
i2Ik

`.Zi /

�
:

Finally, for any predictor f WRd!R, denote the associated loss function by f̀ .Zi /D

.f .Xi / � Yi /
2. We are now ready to present our estimator.

The estimator of Theorem 3.

1. Split the sample S of size 3n into three equal parts S1; S2 and S3 as defined
above. Use the value m to construct the truncated class

xF D
®
fm W f 2 Flin

¯
; (5.4)

where recall that fm denotes the truncation of a function f (see (2.6)).

2. Fix " D md
n

. Using the first sample S1, construct an "-net of xF with respect to
the empirical L1 distance and denote it by xF".
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3. Let c1; c2 > 0 be some specifically chosen absolute constants. Fix the number
of blocks

k D dc1d.log.n=d/C log.1=ı//e

and set

˛ D c2

r
m2.d log.n=d/C log.1=ı//

n
:

If k > n, then set yg D 0. Otherwise, using the second sample S2 define a ran-
dom subset of xF" as follows:

yF D

²
f 2 xF" W 8g 2 xF";

MOMk
S2
. f̀ � `g/ 6 ˛

p
1

n

X
Xi2S2

.f .Xi / � g.Xi //
2
C ˛2

³
:

4. Define the set yFC consisting of all the mid-points of yF , that is,

yFC D . yF C yF /=2:

Using the third sample S3, define our estimator yg as

yg D arg min
g2 yFC

max
f 2 yFC

MOMk
S3
.`g � f̀ /:

5. Return yg.

Our estimator involves a combination of several seemingly disconnected ideas
in the literature. The truncation step is inspired by the analysis in [29, Chapter 11],
with the difference that we use the truncation as a preliminary step, rather than as a
post-processing of the ERM prediction (see Theorem 1). The second step replaces the
original class by an empirical L1 "-net of the truncated class. In many situations, such
a construction leads to suboptimal results. However, since we work with a particular
parametric class, this step does not affect the resulting performance. The use of the
"-net xF" is needed for technical reasons; we explain the technical aspects in detail in
Section 5.3. Our third step is inspired by the median-of-means tournaments introduced
in [48]. The main difference with the latter work is that our truncated class is now non-
convex, and to obtain the correct rates of convergence, we need to adapt the arguments
used in the model selection aggregation literature. This motivates our fourth step that
can be seen as an adaptation of the star algorithm [2] and the two-step aggregation
procedure developed in [42, 53] to our specific heavy-tailed setting combined with
the idea of min-max formulation of robust estimators [5, 41]. We remark that the
idea of combining model selection aggregation techniques with the median-of-means
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tournaments has also recently appeared in [54], but under different assumptions. As
we mentioned, the key distinction therein is that the suggested learning procedure
collapses to a proper estimator for convex classes of functions, such as Flin considered
in our work; as discussed in Section 2, for such procedures some restrictions on the
distribution of covariates are required to obtain performance bounds.

The rest of this section is devoted to proving Theorem 3. First, the truncation at the
level m can only make the risk smaller whenever Assumption 1 is satisfied. Indeed,
this follows from the identity

R.g/ D E.g.X/ � freg.X//
2
C E.freg.X/ � Y /

2;

and the fact that freg is absolutely bounded bym. Therefore, we may focus on bound-
ing

R.yg/ � inf
g2 xF

R.g/:

We will now state and comment on some technical lemmas that will be used in our
proof. The proofs of the below lemmas are deferred to Section 7.

Next, we provide a uniform deviation bound on the L1 distances between the
elements of xF .

Lemma 1. Assume that n > d . There is a constant c > 0 such that simultaneously
for all f; g 2 xF , with probability at least 1 � ı, it holds that

Ejf .X/ � g.X/j 6
2

n

nX
iD1

jf .Xi / � g.Xi /j C c

�
md log.n=d/Cm log.3=ı/

n

�
:

To simplify the statements of the lemmas to follow, for any finite class G and for
any confidence parameter ı 2 .0; 1/ define:

˛.G ; ı/ D 32

r
m2.log.2jG j/C log.4=ı//

n
; (5.5)

where the sample size n and the value m (of Assumption 1) will always be clear
from the context. The next technical lemma provides basic concentration properties
of the median-of-means estimators, the proof of which follows from a combination of
uniform Bernstein’s inequality and a median-of-means deviation inequality for mean
estimation [45, Theorem 2].

Lemma 2. Suppose that Assumption 1 holds and let Sn D .Xi ; Yi /
n
iD1 denote an

i.i.d. sample. Let G be any finite class of functions whose absolute value is bounded
by m. Fix any ı 2 .0; 1/, let k D d8 log.2jG j2=ı/e and let ˛ denote any upper bound



Distribution-free robust linear regression 275

on ˛.G ; ı/ defined in (5.5). Then, with probability at least 1� ı, the following inequal-
ities hold simultaneously for any f; g 2 G :ˇ̌

R.f / �R.g/ �MOMk
Sn
. f̀ � `g/

ˇ̌
6 ˛

p
E.f .X/ � g.X//2; (5.6)

ˇ̌
R.f / �R.g/ �MOMk

Sn
. f̀ � `g/

ˇ̌
6
p
2˛

p
1

n

nX
iD1

.f .Xi / � g.Xi //
2
C ˛2;

(5.7)

1

n

nX
iD1

.f .Xi / � g.Xi //
2 6 2E.f .X/ � g.X//2 C ˛2: (5.8)

For any class G , define its L2 diameter by:

D.G / D sup
f;g2G

p
E.f .X/ � g.X//2:

As a corollary of the above lemma, we are able to derive some basic properties of the
random set yF . In particular, we show that with high probability the set yF contains the
population risk minimizer over the "-net xF". At the same time, we establish a uniform
Bernstein-type bound on the excess risk of the elements of bF , with the role of the
variance term played by D. yF /.

Lemma 3. Suppose that Assumption 1 holds and let Sn D .Xi ; Yi /niD1 denote an i.i.d.
sample. Let G be any finite class of functions whose absolute value is bounded by m.
Fix any ı 2 .0; 1/, k D d8 log.2jG j2=ı/e and let ˛ denote any upper bound on ˛.G ; ı/
defined in (5.5). Define the random subset of G :

yG D

²
f 2 G W for every g 2 G ;

MOMk
Sn
. f̀ � `g/ 6

p
2˛

p
1

n

nX
iD1

.f .Xi / � g.Xi //
2
C ˛2

³
;

(5.9)

Then, the following two conditions hold simultaneously, with probability at least 1 � ı:

1. The function g� D arg ming2G R.g/ belongs to the class yG .

2. For any f; g 2 yG , we have R.f / �R.g�/ 6 4˛D.bG /C 5˛2.

Finally, we prove an excess risk bound for the min-max estimator in terms of
the L2 diameter of the set over which the estimator is computed. The intuitive impli-
cations of the following lemma are the following. First, if D. yF / is of order 1=

p
n,

the lemma below immediately yields the fast rate of convergence for our estimator yg.
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If, on the other hand, the diameter of D is much larger than 1=
p
n, then we can exploit

the curvature of the quadratic loss and the gain in the approximation error (due to con-
sidering the larger class yFC instead of yF ) to prove the desired rate of convergence.

Lemma 4. Suppose that Assumption 1 holds and let Sn D .Xi ; Yi /
n
iD1 denote an

i.i.d. sample. Let G be any finite class of functions whose absolute value is bounded
by m. Fix any ı 2 .0; 1/, let k D d8 log.2jG j2=ı/e and let ˛ denote any upper bound
on ˛.G ; ı/ defined in (5.5). Let yg be any estimator satisfying

yg 2 arg min
g2G

max
f 2G

MOMk
Sn
.`g � f̀ /:

Let g� 2 arg ming2G R.g/. Then, with probability at least 1 � ı, it holds that

R.yg/ 6 R.g�/C 2˛D.G /: (5.10)

We are now ready to prove Theorem 3.

Proof of Theorem 3. Our proof is split into two parts. First, we approximate the trun-
cated linear class xF with a finite class, namely, an empirical L1 "-net constructed
using the first third of the dataset denoted by S1. Then, conditionally on S1, we show
that our estimator yg achieves the optimal rate of model selection aggregation over the
finite class xF", in spite of the lack of assumptions on the covariates and the presence of
heavy-tailed labels. Finally, we note that if the number of median-of-means blocks k
is equal to 0 (i.e., n . d.log.n=d/C log.1=ı//), then we may output the 0 function
which satisfies the desired bound for such sample sizes. Thus, in what follows we
assume that n & d.log.n=d/C log.1=ı//.

The approximation step. Recall that xF" is an empiricalL1 "-net of the truncated lin-
ear class xF constructed using the sample S1. Let f � D arg minf 2 xF R.f / and let f �"
be any element of xF" minimizing the empirical L1 distance to f �, that is, we have

1

n

X
Xi2S1

jf �.Xi / � f
�
" .Xi /j 6 ": (5.11)

Let E1 denote the event of Lemma 1 applied with respect to the sample S1 (that con-
tains n points) with the choice of the confidence parameter set to ı=3 (thus, P.E1/ >
1 � ı=3). It follows that on the event E1 we have

R.f �" / �R.f
�/

D 2EY.f �.X/ � f �" .X//C E.f �" .X/
2
� f �.X/2/

6 2E.EŒY jX�.f �.X/ � f �" .X///C 2mEjf �" .X/ � f
�.X/j

.since jf �" .X/C f
�.X/j 6 2m/
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6 2E.
p

EŒY 2jX�jf �.X/ � f �" .X/j/C 2mEjf �" .X/ � f
�.X/j

.by Jensen’s inequality/

6 4mEjf �" .X/ � f
�.X/j .by Assumption 1/

6 8m"C 4mc1

�
md log.n=d/Cm log.9=ı/

n

�
.by (5.11) and Lemma 1/

6 12c1

�
m2d log.n=d/Cm2 log.9=ı/

n

�
.by the definition of "/;

where c1 is an absolute constant. Observe that on the event E1, any estimator yg satis-
fies

R.yg/ �R.f �/ 6 R.yg/ � min
f 2 xF"

R.f /CR.f �" / �R.f
�/

6 R.yg/ � min
f 2 xF"

R.f /C 12c1

�
m2d log.n=d/Cm2 log.9=ı/

n

�
:

From this point onward, we work on the event E1. It thus remains to prove that with
probability 1 � 2ı=3, the estimator yg computed using the remaining 2n points split
into samples S2 and S3 satisfies

R.yg/ � min
f 2 xF"

R.f / .
m2d log.n=d/Cm2 log.1=ı/

n
: (5.12)

Since xF" is a finite class of functions, we now turn to the aggregation part of this
proof.

The aggregation step. By theL2 covering number bound stated in [29, Theorems 9.4
and 9.5], which also holds for the empirical L1 distances, we have (see the proof of
Lemma 1)

log j xF"j . d log
me

"
. d log.n=d/:

Note that j yFCj and j yF j are simultaneously upper bounded by j xF"j2. For an arbitrary
finite class G , recall the definition of ˛.G ; ı/ stated in (5.5). It follows that there exists
some absolute constant c2 > 0 such that x̨ defined below satisfies

max
�
˛. yF ; ı=3/; ˛. yFC; ı=3/

�
6 x̨ D c2

r
m2d log.n=d/Cm2 log.1=ı/

n
: (5.13)

Thus, x̨ defined above will be used in the applications of Lemmas 2, 3 and 4 to follow.
Let E2 be the event of Lemma 3 applied for the set yF with confidence parame-

ter ı=3. In particular, on the event E2 we have

arg min
f 2 xF"

R.f / 2 yF ;
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and for any f 2 yF it holds that

R.f / 6 min
f 2 xF"

R.f /C 4x̨D. yF /C 5x̨2: (5.14)

Conditionally on the sample S2, let the set yF defined in the third step of our
algorithm be fixed. Denote g� D arg min

g2 yFC
R.f /, where recall that

yFC D . yF C yF /=2:

Observe that the L2 diameters of yF and yFC are equal, that is D. yFC/ D D. yF /.
Let E3 be the event of Lemma 4 applied to the third part of our sample S3 and the
finite class yFC with the confidence parameter set to ı=3. Thus, on E3 our estimator yg
satisfies:

R.yg/ 6 R.g�/C 2x̨D. yF /: (5.15)

Now choose any g; h 2 yF such that
p

E.g.X/ � h.X//2 > D. yF /=2 (such a choice
always exists by definition of the diameter). Since .gC h/=2 2 yFC, the parallelogram
identity yields

R.g�/ 6 R..g C h/=2/ (5.16)

D
1

2
R.g/C

1

2
R.h/ �

1

4
E.g.X/ � h.X//2 (5.17)

6
1

2
R.g/C

1

2
R.h/ �

1

16
D. yF /2: (5.18)

On the event E2, applying (5.14) for the functions g and h we obtain

1

2
R.g/C

1

2
R.h/ 6 min

f 2 xF"

R.f /C 4x̨D. yF /C 5x̨2:

Combining the above with equations (5.15) and (5.18) we have

R.yg/ � min
f 2 xF"

R.f / 6 6x̨D. yF /C 5x̨2 �
1

16
D. yF /2 6 149x̨2; (5.19)

where the last step follows by maximizing the quadratic equation with respect to D. yF /.
Plugging in the definition of x̨ (see (5.13)) we obtain the desired inequality (5.12). The
proof is complete by taking the union bound over the events E1, E2 and E3 defined
above.
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5.3. Some extensions of Theorem 3

We begin by noting that Theorem 3 holds not only for linear classes, but more gener-
ally, for VC-subgraph classes (without any changes to our argument presented in the
previous section). Indeed, the structure of the underlying function class only enters
our proof though the control on the empirical covering numbers of its truncated ele-
ments; sharp bounds for such covering numbers are available in [29, Theorem 9.4]. As
a special case, our analysis covers finite classes and hence, provides new results for the
problem of model selection aggregation, where a learner is tasked with constructing a
predictor as good as the best one in a given finite class (also called dictionary) of func-
tions [61, 70]. It is arguably the most straightforward problem manifesting statistical
separation between proper and improper learning algorithms (see, for instance, [12,
37]). Procedures based on exponential weighting were shown to attain optimal rates
in expectation [3,12,81,82], yet they were later shown to be deviation suboptimal [2],
in close similarity to our results presented in Section 4.

We can now formulate the following result, which from the statistical point of
view, generalizes the best known results for the problem of model selection aggrega-
tion [2, 42].

Theorem 4. There is an absolute constant c > 0 such that the following holds. Grant
Assumption 1, fix any ı 2 .0;1/ and let F be a finite class of possibly unbounded func-
tions. Then, there exists an estimator yg depending on ı and m such that the following
holds:

P
�
R.yg/ � min

g2F
R.g/ 6 c

m2.log jF j C log.1=ı//
n

�
> 1 � ı:

Proof. The aggregation algorithm is the same as the estimator of Theorem 3 with
only two differences. First, we skip the step with "-net discretization of the truncated
class xF . The second difference is that the number of blocks in median-of-means esti-
mators is of order log.jF j=ı/ and similarly, the parameter ˛ is redefined to be of
order r

m2.log jF j C log.1=ı//
n

:

The proof follows via the “aggregation step” part of the proof of Theorem 3.

Concerning aggregation with a heavy-tailed response variable, the above result
can be compared with the bounds of Audibert [3] and Juditsky, Rigollet and Tsy-
bakov [37]. Assuming that the functions in F are absolutely bounded by 1, and that
EjY js 6 ms for some s > 2;ms > 0, they prove an in-expectation bound on

ER. zf / � min
f 2F

R.f /
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for some estimator zf with the rate of convergence slower than 1=n. In contrast, in
Theorem 4 we do not assume the boundedness of F , but require that the conditional
second moment of Y is bounded. As a result, we provide a deviation bound with
the 1=n rate of convergence and logarithmic dependence on the confidence param-
eter ı. We emphasize again that due to the necessity of improperness for optimal
model selection aggregation, in-expectation results are not easily transferable to devi-
ation bounds; the in-expectation guarantees of [3, 37] are in fact obtained for variants
of the progressive mixture or mirror averaging rule, which is shown by Audibert [2] to
exhibit suboptimal deviations. Finally, an argument of Section 6 shows the necessity
of Assumption 1 in our distribution-free setting for model selection aggregation.

Further extensions of Theorem 3, particularly, going beyond VC-subgraph classes
present technical challenges. First, obtaining distribution-free empirical covering num-
ber guarantees for truncations of general classes (as done for xF in our case) might be a
non-trivial task. Second, it is well-known (see the discussion in [66]) that even when
only bounded functions are considered, replacing the original function class by its
empirical "-net (as done via the function class xF" in our algorithm) usually renders
the recovery of the correct excess risk rates impossible. This in turn leads to the final
and the most technical problem: if xF is not replaced by xF", there are no known ways
to obtain an analog of the concentration Lemma 2, while only imposing Assumption 1.

To expand on the last point, an analog of Lemma 2 for general classes can be
approached via the analysis of suprema of localized quadratic and multiplier processes
(see [54] for related arguments); specifically, the supremum of the localized process

E sup
h2Hr

� nX
iD1

"iYih.Xi /

�
is difficult to control for general classes under our assumptions (here Hr denotes
localized subsets of the class xF � xF , see the proof of Lemma 1 for more details).
However, even if the response variable Y is independent of X , the standard in this
context application of the multiplier inequality [74, Lemma 2.9.1] introduces the
dependence on the moment

kY k2;1 D

Z 1
0

q
P
�
jY j > t

�
dt

in the resulting bounds, instead of the desired moment EY 2, as we obtain in Lemma 2
for finite classes. It is known that the dependence on the k � k2;1 norm is unavoidable
in some cases [44]. More importantly, we refer to the recent work [32] discussing that
the multiplier inequality can lead to suboptimal rates (see [32, Section 2.3.1] for more
details).
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6. Statistical lower bounds and the necessity of Assumption 1

The statistical guarantees obtained in the previous sections hold under no assumptions
on the distribution of X and under Assumption 1 on the conditional distribution of Y
given X . In this section, we show that Assumption 1 is necessary to obtain non-trivial
guarantees on the excess risk without restrictions on PX and that our risk bounds are
unimprovable, in a precise sense.

Proposition 2. Fix any n > 1, ı 2 .e�n; 1/ and any measurable function f WR! R
satisfying f .0/ D 0 and supx2R f .x/

2 > 1. Then, there exists a distribution PX of X
such that for any estimator yg (possibly improper and PX -dependent), setting Y D
freg.X/ (where freg 2 ¹f;�f º/ the following three conditions hold:

� there exists w� 2 R such that R.gw�/ D 0;

� EŒY 2� 6 1;

� denoting kfregk1 D supx2R jfreg.x/j D kf k1 2 Œ1;C1� we have

P
�
R.yg/ > min

�
kfregk

2
1 � log.1=ı/
4n

; 1

��
> ı: (6.1)

Before providing the proof, let us comment on the implications of this lower
bound. First, note that if the conditional second moment bound EŒY 2jX� 6 1 of
Assumption 1 is relaxed to the weaker unconditional bound EY 2 6 1, then (taking
ı D 0:9, and any f such that kf k1 >

p
n) the worst-case excess risk of any esti-

mator yg is lower-bounded by an absolute constant c with probability 0:9, matching
up to constants the risk of at most 1 trivially achieved by the identically zero func-
tion. Second, without Assumption 1 our upper bounds cannot be improved even in
the “realizable” case where the linear class Flin contains a perfect predictor (that is,
when R.g/D 0 for some g 2 Flin), and in particular Var.Y jX/D 0 almost surely. As
a result, the quantity

sup
x2Rd

EŒY 2jX D x�

in our assumption cannot be replaced by

sup
x2Rd

Var.Y jX D x/:

Finally, when Y D freg.X/, then the worst-case dependence on freg can be no better
than kfregk

2
1, as shown in the last part of the above proposition. The dependence

onm2 in our upper bounds is thus unavoidable, recalling thatm2 6 kfregk
2
1 whenever

Y D freg.X/.
We point out that the same argument as in Proposition 2 shows that a dependence

on supx2Rd EŒY 2jXDx� is unavoidable for any conditional distribution .PY jXDx/x2Rd
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(possibly known up to its sign), beyond the case Y D freg.X/. We considered the lat-
ter special case for simplicity, and because it allows to simultaneously impose that
R.gw�/D 0 for some w� 2 Rd . We also remark that Proposition 2 is stated in dimen-
sion d D 1 for simplicity. The same lower bound construction can be used for general
dimension d (assuming, for example, that f is continuous, and imposing jfregj6 jf j),
allowing one to replace the log.1=ı/ term by d C log.1=ı/.

Proof. Let p 2 .0; 1/ be such that .1 � p/n D ı; using that

1 � e�u > .1 � e�1/u > u=2

for u D log.1=ı/=n 2 Œ0; 1�, we have

p D 1 � ı1=n >
log.1=ı/
2n

: (6.2)

Let x0 2 R n ¹0º be such that jf .x0/j is larger than min.kf k1=
p
2; 1=
p
p/ and let

p0 D min.p; 1=f .x0/2/. Fix the distribution of the covariates PX as follows:

X D

(
0 with probability 1 � p0;

x0 with probability p0:

Up to replacing f by �f , assume that f .x0/ > 0. For " 2 ¹�1; 1º, let P" denote
the joint distribution of the random pair .X; "f .X// (where the marginal distribution
of X is given by PX defined above), and let R" denote the risk functional associated
to the distribution P". Note that P" satisfies the first condition of the proposition with
w� D "f .x0/=x0. Also, the second condition holds since EY 2 D p0f .x0/2 6 1.

We now turn to proving the third condition of this proposition. Let yg be an arbi-
trary procedure, possibly improper and depending on PX . Let S0D

�
.0;0/; : : : ; .0; 0/

�
denote a sample of n points equal to .0;0/. Since the quadratic loss function is convex,
we may assume without loss of generality that yg is a deterministic procedure and let
gWR! R denote the output of yg on the sample S0, that is, g D yg.S0/. By symmetry
of the problem, assume that g.x0/ 6 0 and fix the distribution P of .X; Y / to P1
(if g.x0/ > 0, we may fix P D P�1 instead). Consider the event

E D ¹X1 D � � � D Xn D 0º

and note that P.E/ D .1� p0/2 > .1� p/n D ı. Since f .0/ D 0, on the event E the
observed sample is S0, so that by (6.2) we have

R.yg/ > E
�
.g.X/ � Y /21.X D x0/

�
D p0 � .g.x0/ � f .x0//

2 > p0 f .x0/
2
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D min
�
p f .x0/

2; 1
�

> min
�
pkf k21
2

; 1

�
> min

�
kfregk

2
1 � log.1=ı/
4n

; 1

�
; (6.3)

which completes our proof.

7. Deferred proofs

This section contains the proof of lemmas appearing in Section 5. Note that rescal-
ing the response Y by 1=m affects the excess risk by a multiplicative factor 1=m2.
Thus, without loss of generality, in all the proofs of this section we may assume that
Assumption 1 holds with m D 1.

7.1. Proof of Lemma 1

The proof of this lemma is based on a combination of the classical localization via
empirical Rademacher complexities argument of [7] and the covering number bounds
for truncated VC-subgraph classes due to [29].

First, define the star-hull of j xF � xF j D ¹jf � gj W f;g 2 xF º by H , and for r > 0,
define its localized subsets by Hr :

H D
®
ˇjf � gj W ˇ 2 Œ0; 1�; f; g 2 xF

¯
; Hr D

°
h 2 H W

1

n

nX
iD1

jh.Xi /j
2 6 4r

±
:

(7.1)
Let y n.r/W Œ0;1/ ! R denote any sub-root function with unique positive fixed-
point yr� (that is, a positive solution to the equation y n.yr�/Dyr� (see [7, Definition 3.1,
Lemma 3.2]). Suppose that y n satisfies the following inequality for any r > yr�:

1

n
E"1;:::;"n

sup
h2Hr

� nX
iD1

"ih.Xi /

�
C

log.3=ı/
n

. y n.r/; (7.2)

where "1; : : : ; "n is a sequence of i.i.d. Rademacher random variables. Notice that for
any r > 0 and any h 2 Hr we have supx jh.x/j 6 2 and Eh.X/2 6 4Eh.X/. Hence,
by the first part of [7, Theorem 4.1], with probability at least 1 � ı, the following
holds simultaneously for all f; g 2 xF :

Ejf .X/ � g.X/j 6
2

n

nX
iD1

jf .Xi / � g.Xi /j C c

�
yr� C

log.3=ı/
n

�
; (7.3)

where c > 0 is some universal constant.
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In the rest of the proof we show that a suitable value of yr� can be obtained by
upper bounding the empirical Rademacher complexity terms via Dudley’s entropy
integral. To do so, we first need to obtain an upper bound on the covering numbers of
the class H with respect to the empirical L2 distance, defined between any h; h0 2H

by p
1

n

nX
iD1

.h.Xi / � h
0.Xi //

2:

In what follows, for any class G and any 
 > 0, an empirical L2 
 -net of G will
be denoted by N.G ; 
/ � G . Thus, the covering number of G with respect to the
empirical L2 distance at scale 
 is at most jN.G ; 
/j.

Since H is a star-hull of the class j xF � xF j, it follows from [51, Lemma 4.5] that
for any 
 > 0 we have

jN.H ; 
/j 6
ˇ̌
N. xF � xF ; 
=2/

ˇ̌
�
4



: (7.4)

Further, noting that the Minkowski sum of 
=4 covers of xF forms a 
=2 cover of
xF � xF it follows that

jN. xF � xF ; 
=2/j 6 jN. xF ; 
=4/j2: (7.5)

Let xFC D ¹x 7! max.0; f .X// W f 2 xF º and xF� D ¹x 7! min.0; f .X// W f 2 xF º.
By the same argument, it holds that

jN. xF ; 
=4/j 6 jN. xFC; 
=8/j � jN. xF�; 
=8/j: (7.6)

Finally, plugging in the upper bounds on the covering numbers of xFC and xF� due
to [29, Theorems 9.4 and 9.5]2, the chain of inequalities (7.4)–(7.6) yields

log jN.H ; 
/j . d log.e=
/: (7.7)

Plugging in the above inequality into Dudley’s entropy integral [26, Theorem 3.5.1]
upper bound on Rademacher complexities, we obtain

1

n
E"1;:::;"n

sup
h2Hr

� nX
iD1

"ih.Xi /

�
.

1
p
n

Z 2
p
r

0

p
d log.e=
/d


.
r
d

n

p
r log.e=r/

�
1¹r>d=nº C 1¹r<d=nº

�
.
r
dr log.n=d/

n
C
d
p

log.n=d/
n

: (7.8)

2See also the proof of [29, Theorem 11.3] where the same bound on covering numbers is
used.
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In particular, the inequality (7.2) is satisfied by the choice:

y n.r/ D c

 r
dr log.n=d/

n
C
d
p

log.n=d/C log.3=ı/
n

!
: (7.9)

Solving the fixed-point equation y n.yr�/ D yr� yields

yr� .
d log.n=d/C log.1=ı/

n
:

The claim follows by the localization theorem stated in (7.3).

7.2. Proof of Lemma 2

Fix any f;g 2G and recall that E. f̀ � `g/DR.f /�R.g/. By the standard bound [45,
Theorem 2], for any ı0 2 .0; 1/, the choice k.ı0/ D d8 log.1=ı0/e guarantees that with
probability at least 1 � ı0 we have

jR.f / �R.g/ �MOMk.ı0/
Sn

. f̀ � `g/j 6
r
32Var. f̀ � `g/ log.1=ı0/

n
: (7.10)

To upper bound the variance term, first notice that

f̀ .X; Y / � `g.X; Y / D 2Y.g.X/ � f .X//C f .X/
2
� g.X/2: (7.11)

Combining the above identity with the inequality .aC b/2 6 2a2 C 2b2 for any a; b,
Assumption 1 (with m D 1) and the boundedness of f; g, we obtain

Var. f̀ � `g/ 6 8EY 2.g.X/ � f .X//2 C 2E.f .X/2 � g.X/2/2 (7.12)

6 8E.g.X/ � f .X//2

C 2E.f .X/ � g.X//2.f .X/C g.X//2 (7.13)

6 16E.g.X/ � f .X//2: (7.14)

Since the class G is finite, taking ı0 D ı=.2jG j2/ the upper bound (7.10) extend uni-
formly to all pairs f; g 2 G , with probability at least 1 � ı=2. In particular, for any
f; g 2 G it holds that

jR.f / �R.g/ �MOMk.ı0/
Sn

. f̀ � `g/j

6
r
512E.g.X/ � f .X//2 � .2 log.jG j/C log.2=ı//

n
(7.15)

6 ˛
p

E.g.X/ � f .X//2: (7.16)

This completes the proof of the first inequality.
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We will now simultaneously prove the second and the third inequalities appearing
in the statement of this lemma. Note thatmD 1 ensures that for any f;g 2 G we have

.f .X/ � g.X//2 6 4 and E.f .X/ � g.X//4 6 4E.f .X/ � g.X//2:

Hence, for any ı00 2 .0; 1/ and any f; g 2 G , Bernstein’s inequality ensures that with
probability at least 1 � 2ı00 it holds simultaneously that

E.f .X/ � g.X//2 6
2

n

nX
iD1

.f .X/ � g.X//2 C
12 log.1=ı00/

n
; (7.17)

1

n

nX
iD1

.f .Xi / � g.Xi //
2 6 2E.f .X/ � g.X//2 C

12 log.1=ı00/
n

: (7.18)

Setting ı00 D ı=.4jG j2/ the above inequalities extend uniformly to all pairs f; g 2 G

with probability at least 1 � ı=2. Noting that 12 log.1=ı00/
n

6 ˛2, the inequality (7.18)
completes the proof of the third inequality of this lemma. Finally, the second inequal-
ity appearing in the statement of this lemma is implied (on the event of the first
and third inequalities) by plugging in (7.17) into (7.16) together with the inequality
p
aC b 6

p
aC
p
b valid for any a;b > 0. The proof of this lemma is thus complete.

7.3. Proof of Lemma 3

Let E denote the event of Lemma 2 (thus, P.E/ > 1� ı). By the definition of g�, for
any g 2 G we haveR.g�/�R.g/6 0. Hence, on the eventE it holds simultaneously
for all g 2 G that

MOMk
Sn
.`g� � `g/ 6 R.g�/ �R.g/

C jR.g�/ �R.g/ �MOMk
Sn
.`g� � `g/j (7.19)

6
p
2˛

p
1

n

nX
iD1

.g�.Xi / � g.Xi //
2
C ˛2: (7.20)

In particular, on the event E the function g� 2 yG , which completes the first part of the
proof.

We now turn to proving the second part of this lemma. Since g� 2 bG , by the
definition of yG , for any g 2 yG we have

MOMk
Sn
.`g � `g�/ 6

p
2˛

p
1

n

nX
iD1

.g.Xi / � g
�.Xi //

2
C ˛2: (7.21)
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Hence, on the event E, by the third inequality of Lemma 2, for any g 2 yG it holds that

R.g/ �R.g�/ 6 jR.g/ �R.g�/ �MOMk
Sn
.`g � `g�/j CMOMk

Sn
.`g � `g�/

6 2
p
2˛

p
1

n

nX
iD1

.g.Xi / � g
�.Xi //

2
C 2˛2

6 4˛
p

E.g.X/ � g�.X//2 C 5˛2:

By the definition of the L2 diameter of the class yG and by the fact that g�; g 2 yG ,
it follows that

p
E.g.X/ � g�.X//2 6 D. yG / and hence our proof is complete.

7.4. Proof of Lemma 4

First observe that

R.yg/ D R.g�/C
�
R.yg/ �R.g�/ �MOMk

Sn
.`yg � `g�/

�
CMOMk

Sn
.`yg � `g�/

(7.22)

6 R.g�/C sup
g2G

jR.g/ �R.g�/ �MOMk
Sn
.`g � `g�/j CMOMk

Sn
.`yg � `g�/

(7.23)

6 R.g�/C ˛D.G /CMOMk
Sn
.`yg � `g�/; (7.24)

where the last line follows via an application of Lemma 2. Further, notice that by the
definition of yg we have

MOMk
Sn
.`yg � `g�/ 6 max

g2 yG

MOMk
Sn
.`yg � `g/ 6 max

g2 yG

MOMk
Sn
.`g� � `g/:

At the same time, on the event of Lemma 2, for all g 2 G we have

MOMk
Sn
.`g� � `g/ 6 R.g�/ �R.g/C ˛D.G / 6 ˛D.G /:

Combining the above inequality with (7.24) concludes our proof.

Acknowledgments. We would like to thank Manfred Warmuth for several useful
discussions.

Funding. T. V. is supported by the EPSRC and MRC through the OxWaSP CDT
programme (EP/L016710/1). N. Z. is funded in part by ETH Foundations of Data
Science (ETH-FDS).
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