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Aggregating estimates by convex optimization

Anatoli Juditsky and Arkadi Nemirovski

Abstract. We discuss the approach to estimate aggregation and adaptive estimation based upon
(nearly optimal) testing of convex hypotheses. We show that in the situation where the obser-
vations stem from simple observation schemes (Juditsky and Nemirovski, 2020) and where the
set of unknown signals is a finite union of convex and compact sets, the proposed approach
leads to aggregation and adaptation routines with nearly optimal performance. As an illustra-
tion, we consider application of the proposed estimates to the problem of recovery of unknown
signal known to belong to a union of ellitopes (Juditsky and Nemirovski, 2018 and 2020) in
Gaussian observation scheme. The proposed approach can be implemented efficiently when the
number of sets in the union is “not very large.” We conclude the paper with a small simulation
study illustrating practical performance of the proposed procedures in the problem of signal
estimation in the single-index model.

1. Introduction

We address the problem of data-driven selection of estimators from a given collection.
A simplified version of the problem considered in this paper is as follows.

Problem I. We are given in advanceN nonempty convex compact signal setsXj �Rn

and m � n sensing matrices Aj , 1 � j � N . Given access to M independent obser-
vations

!M D .!1; : : : ; !M / W !k D Ax C ��k; 1 � k �M; �k � N .0; Im/; (1)

we want to recover the signal x 2 Rn in the situation when it is known a priori that
x 2Xj andADAj for some (unknown!) j �N . Given reliability tolerance � 2 .0;1/,
we quantify the performance of a candidate estimate

yx.!M /WRmM ! Rn
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by its worst-case �-risk – the radius of the smallest ball, in a given seminorm1 k � k,
around yx which contains the signal x underlying observations with probability at least
1 � �, that is, by the quantity

Risk1;N�;M ŒyxjX� WD min
®
� W Prob!M�pM

j
¹kyx.!K/� xk > �º � � 8.j � N; x 2 Xj /

¯
;

where pj is the normal distribution N .Ajx; �
2Im/ and

pMj D

M‚ …„ ƒ
pj � � � � � pj :

We intend to estimate the signal by aggregating N selected in advance “preliminary”
estimates zxj , j D 1; : : : ;N , the j th of them associated with the j th observation model
in which x is known to belong to Xj and A D Aj . Specifically, we split M available
observations into “pilot sample” !1; : : : ; ! xK used to build points xj D zxj .!

xK/, and
use the remaining K DM � xK observations to “assemble” xj into the resulting esti-
mate yx of the signal.

A related problem is that of constructing an estimate which is adaptive – such that
its risk is “as close as possible” to the maximal risk of the j th estimate under the j th
observation model, 1 � j � N .

In this work, our focus is on the aggregation step, thus, for the most of the expo-
sition below, estimates xj D zxj , j D 1; : : : ; N , are regarded as known fixed points
in Rn. The above problem is closely related to another fundamental statistical prob-
lem, that of aggregation and, in particular, to “model selection” version of the problem
in which the objective is to select the “nearly k � k-closest” to x point among given
points x1; : : : ; xN . In the latter setting, xj are assumed to be arbitrary given points
in space, not obligatory estimates associated with specific observation models and
a priori bounds on the deviations of the true signal. Both problems have received
a lot of attention in the statistical literature. The adaptive estimation problem, in
its general form which is relevant for us, has been stated in O. Lepski’s pioneer-
ing works [31–34] (for the setting in which ¹Xj º is an injected family of sets), then
substantially generalized in [19–21, 35], giving rise to the celebrated Lepski’s and
Goldenshluger–Lepski’s adaptation schemes put to use in various contexts and by
various authors. A remarkable progress has also been achieved when solving the
aggregation problem, in particular, in the context of L2-estimation in the white noise

1Recall that a seminorm on Rn satisfies exactly the same requirements as a norm, with
positivity outside the origin replaced with nonnegativity. A standard example of a seminorm is
kxk D �.Bx/, where �.�/ is a norm on some Rm and B 2 Rm�n has a nontrivial kernel.
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model where exact oracle inequalities were derived for collections of arbitrary esti-
mators. Specifically, the notion of optimal rates of aggregation has been introduced
in [40], and aggregation procedures attaining the risk which approaches the risk of the
best point among xi with the smallest possible, in the minimax sense, remainder term
have been introduced (see also [1,6,14,29,39,42] and references therein). Aggregation
of estimators with respect to other loss functions has also been studied extensively.
The problem of aggregating estimates with the Kullback–Leibler divergence as a
loss function has been studied in [11, 41] in the problem of density estimation and
in [38] for generalized linear models. Aggregation with respect to L1-risk in the con-
text of density estimation has been studied in [15, 16, 37, 43]; that approach has been
extended to the regression setup in [23]. Finally, one of our principal motivations
comes from [17] where a general aggregation scheme which applies to wide variety
of the risk measures have been proposed. In this paper, we aim at extending adaptive
estimation and estimate aggregation framework in several directions. Specifically, we
propose adaptive estimation and aggregation routines for problems where indirect
observations are available under general convex constraints on unknown signal.2

The underlying idea. The underlying idea of the proposed routines is that of pair-
wise comparison of candidate estimates: to decide if estimate zxi is better or worse
than zxj , i ¤ j , we replace the relation “risk of zxi is less than risk of zxj ” with a
pair of convex hypotheses about x. To see how this reduction operates, consider the
situation of Problem I with N D 2, where we want to choose between just two esti-
mates zx1 and zx2, associated with models indexed by j 2 ¹1; 2º, assuming that �-risk
of zxj is bounded with rj under the j th model. For the sake of definiteness, assume
that r1 � r2, and that the realization of noise in the preliminary observation belongs
to the subset of the corresponding probability space of probability 1 � � such that
kzxj� � xk� rj� , where j� is the index of the “true” observation model, that is, x 2Xj�
and A D Aj� . In this case, if j� D 1, we have x 2 X1 with kx � zx1k � r1 with prob-
ability 1 � � and A D A1, i.e.,

x 2 B1 WD ¹x 2 X1; kx � zx1k � r1º;

so that A1x belongs to the convex and compact set Y1 D A1B1. When j� D 2, we
have

x 2 B2 WD ¹x 2 X2; kx � zx2k � r2º

2We should mention here a special status of the problem of adaptive estimation of general
linear functionals of unknown signal: in a separate line of research [9, 10] the minimax affine
estimator was used as a “work horse” to build the near-optimal estimator of a linear functional
over a finite union X of convex compact sets in the Gaussian observation scheme. A different
general construction for nearly minimax optimal estimation of linear functionals over union of
convex sets in simple observation schemes has been developed in [26].
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and A2x 2 Y2 D A2B2. Now, assuming that we do have x 2 Bj when the actual
model is the j th one, j D 1; 2, given observation !K , consider the problem of testing
“convex hypotheses”

H1WA1x 2 Y1 and H2WA2x 2 Y2:

As is well known (see, e.g., [7, 8, 13]), when Y1 and Y2 do not intersect, the optimal
test (that with the smallest maximal risk) deciding on H1 against H2 in the Gaussian
observation scheme is the likelihood ratio test of simple hypotheses

xH1WA1x D xy1 and xH2WA2x D xy2;

where
.xy1; xy2/ 2 Arg min

y12Y1;y22Y2

ky1 � y2k2:

Thus, assuming that two hypotheses can be separated with maximal risk � �, when
the first model is true, x 2B1 andH1 holds, the test will accept it (and rejectH2) with
probability 1 � �, implying that the 2�-risk of the estimate yx.!K/ D zx1 is bounded
with r1, and “symmetric” bound holds when the second model is true. On the other
hand, in the case the hypotheses cannot be separated .1� �/-reliably, selecting yxD zx1
results in the �-risk of yx bounded with r1 when the first model is true, and with
r1 C 2r2 C 2r12 where

r12 D min
°1
2
kx1 � x2k W x1 2 B1; x2 2 B2

±
in the case of the true second model. A simple calculation shows (cf. e.g., Theorem 5
in Section 6) that in the latter case the quantity r12 is upper-bounded by the maxi-
mal risk of estimation over X D X1 [X2. Note that if “separation” r12 is majorated
by r2, estimate yx is adaptive in the sense of [31] – when x 2 X1 the �-risk of yx is
bounded with r1, and when x 2 X2 its risk is bounded with r1 C 2r2 C 2r12 which is
the same as r2, up to a moderate absolute factor. On the other hand, if r12 � r2, the
corresponding bound is the best one can achieve under the circumstances. More gen-
erally, reducing the problem of risk minimization to that of pairwise testing of convex
hypotheses makes the problem amenable to the machinery of nearly-optimal testing
of convex hypotheses developed in [18].

The proposed approach shares its motivation with another construction of esti-
mates based on testing multiple hypotheses – the T -estimators developed in [2–4].
When applied to Problem I, the latter approach amounts to building a net of points ¹x�º,
� 2 T , in X and selecting the estimate by applying pairwise tests to small Euclid-
ean balls around images of x� , x� 0 in the observation space. Note that, typically,
T -estimators cannot be obtained in a computationally efficient fashion and are usu-
ally considered as a theoretical tool to explore the properties of statistical problems.
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Despite obvious similarities with T -estimates (e.g., great flexibility shared by the both
approaches), adaptive and aggregation estimates we discuss in this paper are of a dif-
ferent nature. Our approach can be seen as an “operational counterpart” to that of [2]
leading to adaptive estimates which are efficiently computable provided the data of the
problem – sets Xj and norm k � k – are computationally tractable, and N is moderate
(hundreds, perhaps, thousands). As the price to pay for generality of the proposed
constructions, our estimates and their risks (provably near-optimal, as we shall see,
under natural assumptions) are given by efficient computation rather than in a closed
analytic form.3 This is hardly a problem in application where efficient computation
usually is not inferior to a formula.

What is ahead. In what follows we discuss two adaptive estimates: a “generic” selec-
tion procedure in the situation where k � k is an arbitrary seminorm, and a special
aggregation routine for the problem setting in which k � k is a Euclidean seminorm.
Our principal contribution (cf., e.g., Theorem 1 and Corollary 1 of Section 3.2 in the
case of general seminorms), as applied to Problem I above, may be summarized as
follows.

Let a real � � 1, an integer xK � 1 and � 2 .0; 1=2/ be fixed. Assume that we are
given preliminary xK-observation estimates zxj .�/ along with reals rj such that

Risk¹j º
�; xK
Œzxj jXj � � rj� �RiskOpt¹j º

�; xK
ŒXj �; j D 1; : : : ; N;

where for a nonempty J � 1;N and a K-observation estimate yx.�/,

RiskJ

�;K Œyxj [j2J Xj �

D min
®
� W Prob!K�pK

j
¹kyx.!K/ � xk > �º � � 8.j 2 J; x 2 Xj /

¯
is the risk of estimate “on the union of models with indexes from J,” and

RiskOptJ�;K Œ[j2JXj � D inf
yx

RiskJ

�;K Œyxj [j2J Xj �

is the corresponding minimax risk.
Now, suppose that given M � O.1/ ln.N=�/

ln.1=�/
xK independent observations (1), we

utilize the first xK observations to build “preliminary” estimates xj D zxj .!
xK/, j D

1; : : : ;N , and then proceed with selection procedure of Section 3.2 usingK DM � xK
remaining observations to aggregate points xj into an adaptive estimate yx.a/.!M /.

3We believe that in our setting, allowing for arbitrary sensing matrices and general convex
parameter sets, closed form results are just impossible.
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Then yx.a/.!M / satisfies

Risk1;N2�;M Œyx
.a/
jX� � O.1/� RiskOpt1;N

�; xK
ŒX�:

In other words, modulo logarithmic in N increase in observation count and reliability
parameter � of the risk replaced with 2�, estimate yx.a/.!M / is minimax optimal onX
within factor O.1/� . Furthermore, the “overall” minimax risk RiskOpt1;N is nearly
upper-bounded by the maximum of pairwise minimax risks RiskOpt¹i;j º. Specifically,
with M as above,

RiskOpt1;N2�;M Œ[j�NXj � � O.1/max
i¤j

RiskOpt¹i;j º
�; xK

ŒXi [Xj �:

Finally, suppose that N models in Problem I are ordered, so that bounds ri for
partial risks of estimates zxj .!

xK/ satisfy

r1 � r2 � � � � � rN ;

and that minimax risks of estimation over “pairwise unions” RiskOpt¹i;j º
�; xK

ŒXi [ Xj �,
1 � i; j � N , are dominated by the pairwise maxima of the corresponding partial
risks, i.e.,

max
1�j�i

RiskOpt¹i;j º
�; xK

ŒXi [Xj � � O.1/RiskOpt¹iº
�; xK
ŒXi �; i D 1; : : : ; N:

Then we also have

Risk¹iº2�;M Œyx
.a/
jXi � � O.1/� RiskOpt¹iº

�; xK
ŒXi �; 8i D 1; : : : ; N;

i.e., estimate yx.a/ is (again, up to logarithmic in N increase in observation count
and reliability parameter � of the risk replaced with 2�) minimax adaptive, within
factor O.1/� , in the sense of [31, 32] over considered family of observation models.

Our results are not restricted to the Gaussian observation scheme(1) and deal with
simple observation schemes4 (o.s.’s), as defined in [18, 28]. Aside of Gaussian o.s.,
important examples of simple o.s. are

� Poisson o.s., where !k are independent across k identically distributed vectors
with independent across i � m entries Œ!k�i � Poisson.aTi x/, and

� Discrete o.s., where !k are independent across k realizations of discrete random
variable taking values 1; : : : ; m with probabilities affinely parametrized by x.

4Our results can be easily extended to the more general case of simple families – families of
distributions specified in terms of upper bounds on their moment-generating functions, see [28]
for details. Restricting the framework to the case of simple observation schemes is aimed at
streamlining the presentation.
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The presentation is organized in two parts. In the first part, we consider the problem
of adaptive and minimax estimation over the sets which are unions of convex sets – a
generalization of the setting of Problem I to the case of a simple o.s. We start by stating
the general estimation problem and provide an “operational summary” of results on
testing in simple observation schemes in Section 2. Section 3.2 deals with adaptation
in the case of a general seminorm k � k, and Section 3.3 with the special case of a
Euclidean seminorm. The second part of the paper deals with the problem of model
selection aggregation. Although closely related to the problem of adaptive estimation,
this problem calls for different notion of optimality with respect to which estimation
routines discussed in Section 3 may be heavily suboptimal. The second part begins
with a description of two “abstract” aggregation routines utilizing pairwise tests in
Section 4, which we specify for aggregation in simple o.s. in Section 5. We consider
next the application of these routines to signal recovery in the situation described in
Section 3.1. We conclude the paper (Section 6) detailing how the proposed approach
can be used to build nearly minimax estimates in the problem of signal recovery in
Gaussian o.s. when the signal set X is a union of ellitopes (cf. [25]); these results are
accompanied by a small simulation study illustrating numerical performance of the
proposed estimates in that problem.

Proofs of the results are postponed until the appendix.

2. Preliminaries: Testing convex hypotheses in simple observation
schemes

2.1. Simple observation schemes: Definitions

All developments to follow make use of the notion of a simple observation scheme,
see [28]. To make the presentation self-contained we start with explaining this notion
here. Formally, a simple observation scheme (o.s.) is a collection

�O D
�
.�;…/; ¹p�.�/ W � 2Mº;F

�
;

where

� .�;…/ is an observation space: � is a Polish (complete metric separable) space,
and … is a � -finite � -additive Borel reference measure on �, such that � is the
support of …;

� ¹p�.�/ W � 2Mº is a parametric family of probability densities, specifically, M is
a convex relatively open set in some RM , and for � 2M, p�.�/ is a probability
density, taken with respect to …, on �. We assume that the function p�.!/ is
positive and continuous in .�; !/ 2M ��;
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� F is a finite-dimensional linear subspace in the space of continuous functions
on �. We assume that F contains constants and all functions of the form

ln.p�.�/=p�.�//; �; � 2M;

and that the function

ˆ�O.�I�/ D ln
�Z

�

e�.!/p�.!/….d!/
�

(2)

is real-valued on F �M and is concave in � 2 M; note that this function is
automatically convex in � 2 F . From real-valuedness, convexity-concavity and
the fact that both F and M are convex and relatively open, it follows that ˆ is
continuous on F �M.

2.1.1. Examples of simple observation schemes. As shown in [28] (and can be
immediately verified), the following o.s.’s are simple:

(1) Gaussian o.s., where… is the Lebesgue measure on�DRd , MDRd , p�.!/
is the density of the Gaussian distribution N .�; Id / (mean �, unit covariance), and F

is the family of affine functions on Rd . Gaussian o.s. with � linearly parametrized by
signal x underlying observations is the standard observation model in signal process-
ing;

(2) Poisson o.s., where … is the counting measure on the nonnegative integer
d -dimensional lattice � D ZdC, M D RdCC D ¹� D Œ�1I : : : I �d � > 0º, p� is the
density, taken with respect to …, of random d -dimensional vector with independent
Poisson.�i / entries, i D 1; : : : ; d , and F is the family of all affine functions on �.
Poisson o.s. with � affinely parameterized by signal x underlying observation is the
standard observation model in Poisson imaging;

(3) Discrete o.s., where … is the counting measure on the finite set � D
¹1; 2; : : : ; dº, M is the set of positive d -dimensional probabilistic vectors � D
Œ�1I : : : I �d �, p�.!/ D �! , ! 2 �, is the density, taken with respect to …, of a
probability distribution � on �, and F D Rd is the space of all real-valued functions
on �;

(4) Direct product of simple o.s.’s. Given K simple o.s.’s

�O t D
�
.�t ;…t /; ¹pt;� W � 2Mrº;Ft

�
; t D 1; : : : ; K;

we can build from them a new (direct product) o.s. �O1 � : : : : � �OK with observa-
tion space �1 � � � � ��K , reference measure …1 � � � � �…K , family of probability
densities²

p�.!1; : : : ; !K/ D

KY
tD1

pt;�t .!t / W � D Œ�1I : : : I�K � 2M1 � � � � �MK

³
;
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and

F D

²
�.!1; : : : ; !K/ D

KX
tD1

�t .!t / W �t 2 Ft ; t � K

³
:

In other words, the direct product of o.s.’s �O t is the observation scheme in which
we observe collections !K D .!1; : : : ;!K/with independent across t components !t
yielded by o.s.’s �O t .

When all factors �O t , t D 1; : : : ; K, are identical to each other, we can reduce
the direct product �O1 � � � � � �OK to its “diagonal,” referred to as the Kth power
�OK , or stationary K-repeated version, of �O D �O1 D � � � D �OK . Just as in the
direct product case, the observation space and reference measure in �OK are

�K D � � � � � ��„ ƒ‚ …
K

and …K
D … � � � � �…„ ƒ‚ …

K

;

the family of densities is²
pK� .!

K/ D

KY
tD1

p�.!t / W � 2M

³
;

and the family F is ²
�.K/.!1; : : : ; !K/ D

KX
tD1

�.!t / W � 2 F

³
:

Informally, �OK is the observation scheme we arrive at when passing from a single
observation drawn from a distribution p�, � 2 M, to K independent observations
drawn from the same distribution p�.

It is immediately seen that the direct product of simple o.s.’s – the same as the
power of a simple o.s. – are themselves simple o.s.’s

2.2. Testing pairs of convex hypotheses in simple o.s.

What follows is a summary of results of [28], which are relevant to our current needs.
Assume that !K D .!1; : : : ; !K/ is a stationaryK-repeated observation in a sim-

ple o.s.
�O D

�
.�;…/; ¹p� W � 2Mº;F

�
;

so that !1; : : : ;!K are, independently of each other, drawn from a distribution p� with
some � 2M. Given !K , we want to decide on the hypotheses H1 and H2, with H�,
� D 1; 2, stating that !t � p� for some � 2 M�, where M� is a nonempty convex
compact subset of M. In the sequel, we refer to hypotheses of this type, parametrized
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by nonempty convex compact subsets of M, as to convex hypotheses in the simple
o.s. in question.

The principal “building block” of our subsequent constructions is a simple test5 T K

for this problem which is as follows:

� Given convex compact sets M�, � D 1; 2, we solve the optimization problem

Opt D max
�2M1;�2M2

ln
�Z

�

q
p�.!/p�.!/….d!/

Ÿ
DW%.�;�/

�
: (3)

It is shown in [18] that in the case of a simple o.s., problem (3) is a convex prob-
lem (convexity meaning that the objective to be maximized is a concave continuous
function of �; �) and an optimal solution exists.

Note that for basic simple o.s.’s, problem (3) reads

Opt D max
�2M1;�2M2

8̂̂<̂
:̂
�
1
8
k� � �k22; Gaussian o.s.;

�
1
2

Pd
iD1Œ
p
�i �

p
�i �

2; Poisson o.s.;

ln
�Pd

iD1

p
�i�i

�
; Discrete o.s.

(4)

� An optimal solution ��, �� to (3) induces detectors

��.!/ D
1

2
ln.p��.!/=p��.!//W�! R;

�.K/� .!K/ D

KX
tD1

��.!t /W� � � � � ��! R:
(5)

Given a stationary K-repeated observation !K , the test T K accepts hypothesis H1
and rejects hypothesisH2 whenever �.K/� .!K/ � 0, otherwise the test rejectsH1 and
accepts H2. The risk of T K – the maximal probability to reject a hypothesis when it
is true – does not exceed �K? ; where

�? D exp.Opt/:

In other words, whenever observation !K stems from a distribution p� with � 2
M1 [M2, we have

– the p�-probability to reject H1 when the hypothesis is true (i.e., when � 2 M1)
is at most �K? , and

5A test deciding on a pair of hypotheses is called simple, if given an observation, it always
accepts exactly one of the hypotheses and rejects the other one.
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– the p�-probability to reject H2 when the hypothesis is true (i.e., when � 2 M2)
is at most �K? .

The test T K possesses the following optimality properties:

(A) The associated detector �.K/� and the risk �K? form an optimal solution and
the optimal value in the optimization problem

min
�

max
�

max
�2M1

Z
�K

e��.!
K/pK� .!

K/…K.d!K/;

max
�2M2

Z
�K

e�.!
K/pK� .!

K/…K.d!K/

�
;�

�K D � � � � � ��„ ƒ‚ …
K

; pK� .!
K/ D

KY
tD1

p�.!t /

�
;

where the minimum is taken with respect to all Borel functions �.�/W�K ! R;

(B) Let � 2 .0; 1=2/, and suppose that there exists a test which, using a stationary
xK-repeated observation, decides on the hypotheses H1, H2 with risk � �. Then

�? � Œ2
p
�.1 � �/�1=

xK (6)

and the test T K with6

K D

�
2 ln.1=�/

ln
�
Œ4�.1 � �/��1

� xK�
decides on the hypothesesH1;H2 with risk� � as well. Note thatK D 2.1C o.1// xK
as � !C0.7

In what follows we augment the test T K to address the situation where one or
both hypotheses are empty. When one of the hypotheses is empty, T K , by convention,
accepts the nonempty hypothesis. When both hypotheses are empty, T K accepts, say,
the first of them. Because the true hypothesis cannot be empty, the risk of T K vanishes
in this case.

6Here dae stands for the “upper” integer part – the smallest integer greater or equal to a.
7It is worth mentioning that in the Gaussian o.s. test T K optimal – it is the test minimizing

the maximal risk of testing of H1 versus H2 among all tests; the corresponding optimal risk is
� D 1�ˆ

�
1
2
k�� � ��k2

p
K
�

whereˆ is the standard normal c.d.f. and Œ��I ��� is an optimal
solution to (3).
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2.3. Testing multiple hypotheses in simple o.s.

As shown in [18], near-optimal pairwise tests deciding on pairs of convex hypotheses
in simple o.s.’s outlined in Section 2.2 can be used as building blocks when construct-
ing near-optimal tests deciding on multiple convex hypotheses. In the sequel, we use
one of these constructions, namely, as follows.

Assume that we are given a simple o.s. �O D ..�; P /; ¹p� W � 2 Mº;F / and
two finite collections of nonempty convex compact subsets B1; : : : ; Bb (“blue sets”)
and R1; : : : ; Rr (“red sets”) of M. Our objective is, given a stationary K-repeated
observation !K stemming from a distribution p�, � 2M, to infer the color of �, that
is, to decide on the hypothesis

HB W� 2 B WD B1 [ � � � [ Bb

versus the alternative
HRW� 2 R WD R1 [ � � � [Rr :

To this end we act as follows:

(1) For every pair i; j with i � b and j � r , we solve the problem (4) with Bi
in the role of M1 and Rj in the role of M2; we denote Optij the associated optimal
values. The corresponding optimal solutions �ij and �ij give rise to the detectors

�ij .!/ D
1

2
ln
�
p�ij .!/=p�ij .!/

�
W�! R;

�
.K/
ij .!K/ D

KX
tD1

�ij .!t /W�
K
! R;

(7)

(cf. (5)) and risks

�ij D exp.Optij / D
Z
�

q
p�ij .!/p�ij .!/P.d!/: (8)

(2) We build the entrywise positive b � r matrix E.K/ D Œ�Kij �1�i�b; 1�j�r and
the symmetric entrywise nonnegative .b C r/ � .b C r/ matrix

EK D

"
E.K/

ŒE.K/�T

#
:

Let �K be the spectral norm of the matrix E.K/ (equivalently, spectral norm of EK),
and let eD ŒgIh�8 be the Perron–Frobenius eigenvector ofEK , so that e is a nontrivial

8We use “Matlab notation” ŒaI b� for vertical and Œa; b� for horizontal concatenation of
matrices a; b of appropriate dimensions.
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nonnegative vector such thatEKeD �Ke. Note that from entrywise positivity ofE.K/

it immediately follows that e > 0, so that the quantities

˛ij D ln.hj =gi /; 1 � i � b; 1 � j � r

are well defined. We set

 
.K/
ij .!K/ D �

.K/
ij .!K/ � ˛ij

D

KX
tD1

�ij .!t / � ˛ij W�
K
! R; 1 � i � b; 1 � j � r (9)

(3) Let now T K be the test, which given observation !K 2 �K with !t , t D
1; : : : ; K, drawn independently of each other from a distribution p�, claims that �
is blue (equivalently, � 2 B), if there exists i � b such that  ij .!K/ � 0 for all
j D 1; : : : ; r , and claims that � is red (equivalently, � 2 R) otherwise.

The main result about the just described “color inferring” test is as follows.

Proposition 1 ([18, Propositions 3.2]). Let the components !t of !K be drawn, inde-
pendently of each other, from distribution p�,�2B [R. Then the just defined test for
every !K assigns � with exactly one color, blue or red, depending on the observation.
Moreover,

� when � is blue (i.e., � 2 B), the test makes correct inference “� is blue” with
pK� -probability at least 1 � �K;

� similarly, when � is red (i.e., � 2 R), the test makes correct inference “� is red”
with pK� -probability at least 1 � �K .

Note that when "� WD maxi�r;j�b < 1, one has �K � "K�
p
br .

Now, suppose that xT is some color inferring test with maximal risk � � 2 .0; 1
2
/.

Obviously, xT gives rise to a straightforward test of hypothesesHBi W� 2Bi , i � b ver-
sus HRj W� 2 Rj , j � r with maximal risk bounded with �. This simple observation
implies the following corollary of Proposition 1 (cf. [18, Proposition 3.4]).

Proposition 2. In the just described situation, given � 2 .0; 1
2
/, assume that there

exists a test xT , based on xK-repeated observation ! xK � p xK� and deciding on blue
and red hypotheses, and such that xT never accepts more than one hypothesis and has
risk � �, meaning that whenever � 2 B (whenever � 2 R), Hb (resp., Hr ) will be
accepted with p xK� - probability � 1 � �. Then risk of detector-based test T K utilizing
K-repeated observation !K does not exceed " 2 .0; 1/ provided that9

K �

�
2 ln

�
maxŒb; r�"�1

�
ln
�
Œ4�.1 � �/��1

� xK�:
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3. Adaptive estimation by testing

3.1. Estimation over unions of convex sets in simple observation schemes:
Problem setting

Problem setup. In the sequel, we deal with the situation as follows. Given are

(1) a simple o.s. �O D ..�;…/; ¹p�.�/ W � 2Mº;F /,

(2) a collection of N � 2 convex compact sets Xj � Rn, giving rise to the set
X D

SN
jD1Xj ,

(3) affine mappings x 7! Aj .x/ such that Aj .Xj / �M, j D 1; : : : ; N ,

(4) a seminorm k � k on Rn,

(5) reliability tolerance � 2 .0; 1=2/.

Risks. Given a nonempty subset J D ¹j1 < � � � < jsº of ¹1; 2; : : : ; N º, set

Y �

N[
jD1

Xj

and " 2 .0; 1/. We define the "-risk of anM -observation estimate yx.!M /W�M ! Rn

on Y as

RiskJ

";M ŒyxjY �

D min
®
� W Prob!M�pM

Aj .x/
¹kyx.!M / � xk > �º � " 8

�
j 2 J; x 2 Y \Xj

�¯
;

and the associated minimax risk as

RiskOptJ";M ŒY � D inf
yx.�/

RiskJ

";M ŒyxjY �;

where the infimum is taken over all estimates utilizing M -repeated observation !M .

9The case of unique observation may be of interest when the considered o.s. is Gaussian.
The corresponding near-optimality result admits the following reformulation in this case: sup-
pose that in a Gaussian o.s. in nature there exists test xT deciding with risk � � on hypotheses
HB andHR using (unique) observation ! � N .�; N�2Id /. Then detector-based coloring infer-
ence T utilizing (unique) observation !, ! � N .�; �2Id / with

� �
�
qN .1 � �/=qN

�
1 � "

maxŒb;r�

��
x�

has its risk bounded with ". Here qN .p/ is the p-quantile of N .0; 1/:

Probs�N .0;1/¹s � qN .p/º D p; 0 � p � 1:
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We assume that, in addition to the above setup, we are given

(6) positive integers xK and K such that M D xK C K and N “preliminary” xK-
observation estimates zxi .�/W�

xK ! Rn, along with reals riDr
xK
i .�/, 1� i�N

– upper bounds for the partial �-risks of zxi .�/:

Risk¹iº
�; xK
Œzxi jXi � � r

xK
i .�/; 1 � i � N: (10)

Goal and strategy. Assume that we are given M independent across k observations

!k � pA`� .x�/
; 1 � k �M

(using the terminology of Section 2.1 – a stationary M -repeated observation !M D
.!1; : : : ; !M /), stemming from an unknown pair .`�; x�/ with 1 � `� � N and
x� 2 X`� . Our goal is to build an estimate yx of x� with the least possible risk. To
this end we intend to use collection ! xK D .!1; : : : ; ! xK/ of the first xK observations
to compute points

xi D zxi .!
xK/:

Our goal is to use the remaining – secondary – K observations

!K D .! xKC1; : : : ; ! xKCK/

to “aggregate” these points into an estimate yx of x� 2 X . We are going to achieve this
goal via techniques for convex hypothesis testing developed in [18, 28].

Notational conventions. We denote by O and U the sets of all ordered pairs .i; j /
(resp., unordered pairs ¹i; j º) with 1 � i; j � N and j ¤ i .

In the sequel we fix `� and x� 2 X`� and, in accordance with what was said
above, deal with repeated observations with i.i.d. components !k � pA`� .x�/

. We
denote by z� xK the set of all realizations of the “preliminary” (pilot) observation ! xK

such that
kx� � zx`�.!

xK/k � r`� WD r
xK
`�
: (11)

Due to (10) the pL
A`� .x�/

-probability of z� xK is at least 1 � �.

Note. From now on we fix a realization z! xK 2 z� xK of the preliminary observation ! xK ;
in what follows, !K is the secondary (post-pilot) K-repeated observation, !K D
.! xKC1; : : : ; ! xKCK/. For notational convenience, in the sequel, we suppress explicit
reference to z! xK when defining/denoting subsequent entities which in fact depend
on z! xK as parameter.
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3.2. Case of a general seminorm

3.2.1. Construction. The aggregation routine is as follows.

(1) For 1 � i ¤ j � N , we put

xi D zxi .z!
xK/;

Bi D Bi .z!
xK/ D

®
x 2 Xi W kx � xik � ri WD r

xK
i .�/

¯
;

ıij D ıij .z!
xK/ D 1

2
min

x2Bi ;y2Bj
kx � yk;

(12)

with the standard convention that minimum over an empty set isC1.
We specify hypotheses Hi D Hi .Bi .z!

xK// “the observations stem from a pair
.i; x/ with x 2 Bi .z!

xK/” (equivalently, Hi states that the distribution of independent
across k � K observations ! xKCk belongs to the set Mi D ¹Ai .x/W x 2 Biº). Note
that sets Mi DMi .z!

xK/ are convex and compact subsets of M.

Note. Everywhere in the sequel we assume without loss of generality that all hypothe-
sesHi , i D 1; : : : ;N; are nonempty (i.e., from the start, we reject all empty hypotheses
and update accordingly N and the indexes of remaining points xi and sets Xj .

Given a pair .i; j / 2 O, it may happen that there is a simple detector-based K-
observation test T¹i;j º as built in Section 2.2, which decides onHi versusHj with risk
bounded with �=.N � 1/; in such case, we say that pairs .i; j / and .j; i/ areK-good,
and say that these pairs areK-bad otherwise. We skip the prefix “K-” when the value
of K is clear from the context.

(2) Let, for i �N , Ji be the set of j �N , j ¤ i , such that the pair .i; j / is good;
note that j 2 Ji if and only if i 2 Jj . For all i � N and j 2 Ji we run tests T¹i;j º.
We call index i admissible if hypothesisHi was never rejected by corresponding tests
(i.e., all tests T¹i;j º (if any) with j 2 Ji accepted Hi ; in particular, i is admissible, if
no pair .i; j / with j ¤ i is good). We denote 	 D 	.!K/ the set of all admissible i ’s.

The output of the procedure – the aggregated estimate yx D yx.!K/ – is selected
as xyi where yiD yi.!K/ is the smallest of admissible i ’s when set 	 is not empty, and
selected as, say, x1 otherwise.

Note that the just described aggregation routine depends on how we order the
sets Xj .

We have the following straightforward bound for the error of yx.

Proposition 3. In the situation described in Section 3.1, let x�K be the set of all !K

satisfying the condition:

All tests T¹`�;j º in good pairs .`�; j /, as applied to observation !K , accept
the hypothesis H`� .
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Then .`�; x�/-probability10 of x�K is at least 1 � �, and for all !K 2 x�K the setS
i2	 Bi covers x�. Furthermore, for such !K one has

kx� � yx.!
K/k � kx� � x`�k C max

j2	�
`�

kxj � x`�k; 	�`� D ¹j 2 	; j < `�º (13)

(by convention, the maximum over an empty set is zero). Moreover,

max
j2	�

`�

kxj � x`�k � max
j2J�

`�

kxj � x`�k � r`� C max
j2J�

`�

.2ı`�j C rj /;

J�`� D ¹j < `� W .`�; j / is K-badº;
(14)

and

max
j2	�

`�

kxj � x`�k � max
j2	
kxj � x`�k � max

j2J`�

kxj � x`�k � max
.i;j /2 xJ

kxj � xik

� 2max
i

ri C 2 max
.i;j /2 xJ

ıij ; (15)

J`� D ¹j ¤ `� W .`�; j / is K-badº; xJ D ¹.i; j /2 O W .i; j / is K-badº:

3.2.2. Risk analysis. Given a pair .i; j / 2 O and " 2 .0; 1=2/ consider the quantity

rKij ."/ D
1
2

max
x2Xi ;y2Xj

®
kx � yk W %.Ai .x/;Aj .y// � "

1=K
¯
; (16)

where %.�; �/ is as defined in (3) (here, as before, the maximum over an empty set is 0,
by definition). In what follows, we refer to rKij ."/ as separation "-risk over Xi , Xj .

Theorem 1. In the situation described in Section 3.1, the just built adaptive esti-
mate yx.a/ (as function of pilot observation ! xK and independent (secondary) obser-
vation !K) satisfies

Risk¹iº
2�; xKCK

Œyx.a/jXi � � 2r
xK
i .�/Cmax

j<i

�
r
xK
j .�/C 2r

K
ij .�=.N � 1//

�
8i � N: (17)

Moreover, whenever K > x#�1 xK where

x# WD
ln.4�.1 � �//
2 ln.�=.N � 1//

� 1;

one has

Risk¹iº
2�; xKCK

Œyx.a/jXi �

� 2r
xK
i .�/Cmax

j<i

�
r
xK
j .�/C 2RiskOpt¹i;j º

�; xK
ŒXi [Xj �

�
8i � N: (18)

10From now on, for j � N and x 2 Xj “.j; x/-probability” of an event is its pK
Aj .x/

-
probability.
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In addition, in the special case where for every pair i; j there exists xij 2 Xi \ Xj
such that Ai .xij / D Aj .xij /, one has for all K � xK and i � N :

Risk¹iº
2�; xKCK

Œyx.a/jXi �� 2r
xK
i .�/Cmax

j<i

�
r
xK
j .�/C 2

x#�1RiskOpt¹i;j º
�; xK

ŒXi [Xj �
�
: (19)

Comments. Upper bounds (17)–(19) on the risk of the aggregated estimate include
two components: “partial risks” of estimation over Xi multiplied by moderate abso-
lute constants (like the term 2r

xK
i .�/Cmaxj<i r

xK
j .�/ in (17)), and “separation risks”

(the term maxj<i 2rKij .�=.N � 1// in (17)) stemming from the necessity to distinguish
.1 � �/-reliably between Xj ’s. These latter terms are responsible for the logarithmic
factor x#�1 in the boundK > x#�1 xK on the required sizeK of the observation sample.
Note that in the case of general mappings Aj and sets Xj such “inflation” of the nec-
essary sample size cannot be avoided.11 On the other hand, in some specific situations,
bounds (18) and (19) may be significantly improved. This is the case, for instance, in
the “classical” nonparametric estimation from direct observations (i.e., Aj D I ) with
“massive” sets Xj , so that “partial risks” r

xK
i .�/ of estimation over Xi dominate the

separation risks, making quantity 2r xKi .�/ C maxj<i r
xK
j .�/ the principal term in the

risk of the aggregated estimate.
Theorem 1 has the following straightforward corollary.

Corollary 1. Under the premise of Theorem 1, suppose that upper bounds r
xK
i .�/ on

partial risks of estimates zxi .!
xK/ are within factor � of the respective xK-observation

minimax risks, i.e.,

RiskOpt¹iº
�; xK
ŒXi � � r

xK
i .�/ � �RiskOpt¹iº

�; xK
ŒXi �:

Then the risk of estimate yx.a/ is within a moderate factor of the minimax xK-observ-
ation risk. For instance, whenever K � x#�1 xK, one has

Risk¹iº
2�; xKCK

Œyx.a/jXi � � .2C 3�/max
j�i

RiskOpt¹i;j º
�; xK

ŒXi [Xj � 8i � N; (20)

and

RiskOpt1;N
2�; xKCK

ŒX� � Risk1;N
2�; xKCK

Œyx.a/jX�

� Œ2C 3�� max
j;i�N

RiskOpt¹i;j º
�; xK

ŒXi [Xj �

� .2C 3�/RiskOpt1;N
�; xK
ŒX�: (21)

11One may think of, e.g., the situation where Xj are singletons, so that ri .�/ vanish and the
risk of the aggregated estimate is just the separation risk.
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In the case where for every pair i; j there exists xij 2 Xi \ Xj such that Ai .xij / D

Aj .xij /, one has for all K � xK and i � N :

Risk¹iº
2�; xKCK

Œyx.a/jXi � � .3� C 2x#
�1/ max

j�i�N
RiskOpt¹i;j º

�; xK
ŒXi [Xj �;

so that

Risk1;N
2�;2 xK

Œyx.a/jX� � max
i;j�N

.3� C 2x#�1/RiskOpt¹i;j º
�; xK

ŒXi [Xj �

� .3� C 2x#�1/RiskOpt1;N
�; xK
ŒX�: (22)

Discussion. Bounds (20), (21) imply that under the premise of the corollary, the min-
imax risk RiskOpt1;N

2�; xKCK
ŒX� of estimation over union X of sets Xi , i D 1; : : : ; ; N ,

is similar, modulo logarithmic factors, to the maximal “pairwise” minimax risk

max
j;i�N

RiskOpt¹i;j º
�; xK

ŒXi [Xj �

of estimation over pairwise unionsXi [Xj of sets. Furthermore, the upper bound (20)
on the maximal over Xi risk

Risk¹iº
2�; xKCK

Œyx.a/jXi �

of adaptive estimate yx.a/ is also similar, in the same sense, to the maximal risk

max
j�i

RiskOpt¹i;j º
�; xK

ŒXi [Xj �

of estimation over pairwise unions Xj [ Xi with j � i and depends on the selected
ordering of Xi ’s. In particular, when this order is chosen so that partial risks of esti-
mation over Xi satisfy

r
xK
1 .�/ � r

xK
2 .�/ � � � � � r

xK
N .�/

and pairwise separation risks are dominated by partial risks, i.e.,

rKij .�=.N � 1// � C r
xK
i .�/ 8.i; j; 1 � j < i � N/; (23)

one has
Risk¹iº

2�; xKCK
Œyx.a/jXi � � C

0r
xK
i .�/ 8i � N;

and estimate yx.a/ is adaptive in the sense of [31, 32]. On the other hand, when rela-
tions (23) do not hold, adaptation in the above sense is impossible which can be seen
already when N D 2. Similar comments are applicable to bound (22).
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3.3. Estimate aggregation: Case of a Euclidean seminorm

We continue to consider the situation described in Section 3.1. However, from now
on we assume that k � k is a Euclidean seminorm such that kxk D kBxk2, where
B 2 R��n is a given matrix. We build an adaptive estimate of the signal x� 2 X`�
underlying our observations: !k � pA`� .x�/

by aggregating preliminary estimates –
selecting the closest to x� point among xi D zx

xK
i .z!

xK/, 1 � i � N , where, same as
before, z! xK 2 z� xK is fixed. As we shall see in an instant, replacing general seminorm
with Euclidean one allows, after appropriate modification of the estimation procedure,
to improve the constant factors in risk bounds.

3.3.1. Construction. We are given the number K of observations and tolerance par-
ameters � 2 .0; 1/ and ı > 0; we put xN D 2N.N � 1/.

Preliminaries.
� Denote Wi D BXi , i D 1; : : : ; N , with W D BX . Assuming, for the sake of

simplicity, that all pointswi DBxi , i D 1; : : : ;N , are distinct, we associate with each
pair .i; j / 2 O the quantities

rij D
1

2
kwi � wj k2;

vectors  ij D .wj � wi /=kwj � wik2, wij D 1
2
.wi C wj /, and for ı > 0 consider

sets

W `�
ij D ¹v 2 W` W  

T
ij .v � wij / � 0º;

W `C
ij .ı/ D ¹v 2 W` W  

T
ij .v � wij / � ıº; ` D 1; : : : ; N:

Observe that W `�
ij is exactly the set of v 2 W` such that

kv � wik2 � kv � wj k2;

while W `C
j i .ı/ is the set of v 2 W` such that

kv � wj k
2
2 � kv � wik

2
2 � 2ıkwi � wj k2:

� Let us fix a quadruple .i; j I`; `0/, 1� i ¤ j �N and 1� `; `0 �N . We denote
H `�
ij (resp., H `0C

ij .ı/) the hypothesis stating that observation !K stems from .`; x/

with x 2 X` such that w D Bx 2 W `�
ij (resp., such that observation !K stems from

.`0; x/ with x 2 X`0 and w 2 W `0C
ij .ı/). We say that ı 2 .0; rij � is .i; j I `; `0/-good

if there exists a detector-based test T ``0

ij deciding on hypothesis H `�
ij versus H `0C

ij .ı/

with risk � " D �= xN . When good ı’s exist, we say that the quadruple .i; j I `; `0/
itself is ("-)good. It is obvious that if ı0 2 Œ0; rij � is good, so are all ı 2 Œı0; rij �. Note
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that goodness of ı can be checked efficiently, i.e., when .i; j I `; `0/ is good one can
efficiently find, e.g., by bisection, the value ı``

0

ij such that ı``
0

ij is good while ı``
0

ij � ı

is not. When ı D rij is not .i; j I `; `0/-good, we say that the corresponding quadruple
is bad and set ı``

0

ij D rij .

Aggregation procedure. The output of the procedure are two aggregated estimates yx
and zx.

(1) For each .i; j I `; `0/, 1 � i ¤ j � N and 1 � `; `0 � N , we act as follows:

� we reject the alternative H `0C
ij .rij / if the quadruple in question is bad;

� when .i; j I `; `0/ is good we apply to observation !K test T ``0

ij of hypothesisH `�
ij

against H ``0C
ij D H `0C

ij .ı``
0

ij /.

We say that pair .i I `/ is admissible if corresponding hypotheses H `�
ij were never

rejected by the above procedure. The result of this step is the set 	 D 	.!K/ of all
admissible pairs .i I `/.

(2) If 	.!K/ D ; we select the aggregated solution as one of xi , e.g., yx D x1;
when 	.!K/ contains pairs corresponding to a unique index yi D yi.!K/, we output
yx.!K/ D xyi as aggregated solution. Otherwise,

� we select yi D yi.!K/ as (e.g., the smallest) i -component corresponding to admis-
sible pairs .i I `/ with the smallest value of (the second index) ` and define the
estimate yx.!K/ D xyi .

� To build the estimate zx we find among wi corresponding to admissible i ’s (that is,
i -components of admissible pairs .i I `/) points wxi , wxj with the maximal length
kwxi �wxj k2 of the connecting segment and select as aggregated solution zx.!K/D
1
2
.xxi C xxj / (or choose any zx 2 Rn such that Bzx D wxi xj ).

Proposition 4. Suppose that observation !K stems from the pair .`�; x�/; x� 2 X`� .
Let i� be the index of one of the k � k-closest to x points among x1; : : : ; xN , and
let x�K be the set of realizations !K such that as applied to !K , all tests T `�`

i�j

and T ``�
j i�

accept the true, if any, of the hypotheses from the corresponding pair.12Then
the .`�; x�/-probability of x�K is at least 1 � �, and for all !K 2 x�K it holds that

kyx � x�k � kx� � xi�k C 2
yıi�.!

K/; (24)

where yı`�i� .!
K/ D maxj¤i�;`�`�;.i I`/2	.!K/ ı

``�
j i�

. Furthermore, one has

kzx � x�k
2
� kx� � xi�k

2
C 4zı

`�
i�
.!K/2 (25)

where zı`�i� .!
K/ D maxj¤i�;.j I`/2	.!K/ ı

``�
j i�

.
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In statistical literature, the bound (25) for prediction loss (in Problem I discussed
in the introduction, this corresponds to the seminorm kxk D kAxk2) is typically
obtained utilizing exponential weights (see, e.g., [1, 6, 29, 40]) or Q-aggregation [14,
30]. When risk of aggregation is measured by a Euclidean seminorm, using the aggre-
gation procedure described above this type of results can be painlessly extended to
aggregation problems with convex constraints on unknown signals and aggregation
from indirect observations.

3.3.2. Risk analysis.

Theorem 2. In the situation of this section, estimate yx.a/.! xKCK/ D yx.!K/ satisfies
for all i � N :

Risk¹iº
2�; xKCK

Œyx.a/jXi � � r
xK
i .�/C 2

�
max
j<i

rKij .�=
xN/C ı

�
: (26)

Furthermore, for zx.a/.! xKCK/ D zx.!K/, one has�
Risk¹iº

2�; xKCK
Œzx.a/jXi �

�2
� Œr

xK
i .�/�

2
C 4

�
max

j¤i;j�N
rKij .�=

xN/C ı
�2
8i � N (27)

(as before, quantities rKij ."/ are given by (16)).

Consequently, when K > x#�1 xK where

x# WD
ln
�
Œ4�.1 � �/�

�
2 ln.�= xN/

� 1;

one has

Risk¹iº
2�; xKCK

Œyx.a/jXi � � r
xK
i .�/C 2max

j<i
RiskOpt¹i;j º

�; xK
ŒXi [Xj �C ı 8i � N; (28)

and �
Risk¹iº

2�; xKCK
Œzx.a/jXi �

�2
� Œr

xK
i .�/�

2
C 4

�
max
j<i

RiskOpt¹i;j º
�; xK

ŒXi [Xj �C ı
�2
8i � N: (29)

In the case where for every pair i; j there exists xij 2 Xi \ Xj such that Ai .xij / D

Aj .xij /, one has for all K � xK and i � N :

Risk¹iº
2�; xKCK

Œyx.a/jXi � � r
xK
i .�/C 2

x#�1 max
j<i

RiskOpt¹i;j º
�; xK

ŒXi [Xj �C ı (30)

12In other words, as applied to !K , test T `�`
i�j

accepts H`��
i�j

(recall that H`��
i�j

is the “true
hypothesis” in this case), while test T ``�

ji�
rejectsH`�

ji�
and acceptsH``�C

ji�
ifw 2 W `C

ji�
.ı
``�
ji�

/.
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and �
Risk¹iº

2�; xKCK
Œzx.a/jXi �

�2
� Œr

xK
i .�/�

2
C 4

�
x#�1 max

j<i
RiskOpt¹i;j º

�; xK
ŒXi [Xj �C ı

�2
8i � N: (31)

Remark. When comparing the risk bounds of Theorems 1 and 2, we see that while
they are of the same structure, the constant factors in the bounds in the Euclidean
case are better than in the general one. For example, “partial risk” contributions – the
terms 2r xKi .�/C maxj<i r

xK
j .�/ – in the bound (17) become r

xK
i .�/ in its “Euclidean

counterpart” (26), which, informally speaking, means that the “price of aggregation”
is just additive in the Euclidean case.

4. “Generic” test-based aggregation

In the next two sections we consider the point aggregation problem; we refer to the
discussion at the beginning of Section 5 for comparison with the adaptive estimation
problem of Section 3.

4.1. Setup

We consider the situation as follows: we are given

� observation space „,

� a compact setX � Rn, with every x 2X associated with a family Px of probabil-
ity distributions on „; we refer to observations distributed according to P 2 Px

as to observations stemming from x,

� a seminorm k � k on Rn,

� N distinct points xi 2 Rn, i D 1; : : : ; N .

Given observation � � P stemming from unknown signal x 2 X , our objective is to
aggregate xi ’s – to find among xi ’s a point which is “as close to x as the closest to x
point among xi ’s.” Here closeness is measured by the seminorm k � k.

Note that as far as our goal is concerned, we lose nothing when assuming from
now on that kxi � xj k > 0 whenever i ¤ j .

Conventions.
� In the sequel we say that an event (a set in the space of observations) takes

place with x-probability at most (or at least) p for some x 2 X if this is the case for
probability with respect to any distribution from Px .
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� With a subset Y ofX we associate hypothesisH.Y / on the distribution of obser-
vation �; the hypothesis states that the observation stems from a signal x 2 Y . Given
Y 1; Y 2 � X , a test for the pair of hypotheses H.Y 1/; H.Y 2/ is a procedure which,
given on input an observation � , accepts exactly one of these two hypotheses (infor-
mally: claims that � is drawn from a distribution obeying the accepted hypothesis) and
rejects the other. We say that such a test has risk � ı, if “the probability to accept the
true hypothesis is at least 1� ı,” specifically, for �D 1;2, when the observation stems
from a signal x 2 Y �, the x-probability for the test to accept H.Y �/ is at least 1 � ı.
Note that we allow for Y1, or Y2, or both, to be empty; whenever this is the case, the
test which always accepts a nonempty hypothesis, if any, and accepts whichever of
the hypotheses when both Y1 and Y2 are empty, has zero risk.

� For .i; j / 2 O and ı � 0, we set

�i D min
x2X
kx � xik; 1 � i � N; (32)

and
rij D

1

2
kxi � xj k; Xij .ı/ D ¹z 2 X W kz � xik � rij � ıº: (33)

Note that rij D rj i .

4.2. Aggregation in general seminorm

4.2.1. The setup. The setup of the general aggregation scheme is given by

(1) “reliability tolerance” � 2 .0; 1/,

(2) a collection C of pairs ¹i; j º 2 U with each pair ¹i; j º 2 C associated with

� thresholds�ij D�j i2Œ0; rij �, giving rise to setsXij .�ij /,Xj i .�ij / and hypothe-
ses Hij D H.Xij .�ij //, Hj i D H.Xj i .�ij //, along with

� a test T¹i;j º deciding on the hypotheses Hij and Hj i with risk � �=.N � 1/.

When ¹i; j º 2 C , we say that i and j are comparable (same as “j is comparable to i”
and “i is comparable to j ”).

(3) For pairs ¹i;j º2U with incomparable to each other i and j , i.e., ¹i; j º2UnC ,
we set

�ij D �j i D max
�
0; rij �maxŒ�i ; �j �

�
:

4.2.2. Aggregation routine. Aggregation routine associated with the just described
setup is as follows

(1) Given observation � , for every pair .i; j / 2 O we “compare i to j ” according
to the following rule:
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� when i; j are comparable, we run the test T¹i;j º on observation � and claim that i
looses to j when the test accepts the hypothesis Hj i , and claim that j looses to i
otherwise

� when i; j are incomparable, i looses to j whenever �j � �i , otherwise j looses
to i .

(2) For i �N , we denote by 	i D 	i .�/ the set of indices j ¤ i such that i looses
to j , set

di .�/ D max
j2	i .�/

kxj � xik;

and define the aggregated estimate as yx.�/ D xyi.�/, where

yi D yi.�/ 2 Arg min
i

di .�/:

We have the following simple statement.

Proposition 5. Suppose that the observation stems from a signal x� 2 X , and let xi�
be one of the k � k-closest to x� points among x1; : : : ; xN . Let x„ be the set of realiza-
tions � satisfying the following condition:

For every j ¤ i� such that i� and j are comparable and x� 2 Xi�j .�i�j /,
test T¹i�;j º as applied to observation � accepts the hypothesis Hi�j .

Then the x�-probability of x„ is at least 1 � �, and for all � 2 x„, we have

kx� � yx.�/k � 3kxi� � x�k C 2
x�i�.�/; (34)

where

x�i�.�/ D

´
0 	i�.�/ D ;;

maxj2	i� .�/
�i�j 	i�.�/ ¤ ;:

Remarks. The above construction is inspired by the aggregation procedure of [17]
which itself generalizes the results on density estimation with `1-loss from [16,37,43];
it can also be seen as a refinement of the selection procedure of [28, Section 2.5.3].

The question of (near-)optimality of the accuracy bound (34) for the proposed
routine is more involved in the considered here general framework than in the direct
observation setting of [17]; we postpone the corresponding analysis till Section 5.2.
Note, however, that there are in fact two questions – that of optimality of the fac-
tor “3” in front of the minimal loss kxi� � xk which is related to problem geometry
(and is independent of the observation scheme), and that of the size of the additive
term x�. It appears that in the problem of aggregation of densities when k � k is the
`1-norm the factor 3 in front of the minimal error is (in a certain precise sense, cf. [5])
unimprovable even for problems with N D 2. On the other hand, when allowing for
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“improper aggregation,” i.e., when removing the limitation of the aggregated solution
to be one of given points [37] supplies a randomized algorithm which attains the fac-
tor 2whenN D 2, and factor 2 is, in a certain sense, unimprovable in the latter setting,
see [12]. However, known to us attempts to generalize this kind of result to the case
of N > 2 (cf. [5]) result in the inflation of the additive term which is too important in
the situation of small minimal loss we are mainly interested here. There is however a
situation where the factor 3 can be removed rather painlessly (at the price of a mod-
erate increase of x�) – this is the case of a Euclidean seminorm k � k, and this is the
situation we consider next.

4.3. Aggregation in a Euclidean seminorm

Now assume that k � k is a Euclidean seminorm: kxk D kBxk2 for a given matrix B .
For ı � 0 and .i; j / 2 O we define

Xij .ı/ D ¹z 2 X W kz � xj k � ı C kz � xikº: (35)

Aggregation procedures presented below are refined versions of the routine from [24].

4.3.1. The setup. The setup for the Euclidean aggregation is given by

(1) thresholds �ij , .i; j / 2 O, such that

�ij D �j i � 0;

(2) tests T¹i;j º, ¹i; j º 2U, with T¹i;j º testing the hypothesis Hij DH.Xij .�ij //

versus the alternative Hj i D H.Xj i .�j i // such that

� if both hypotheses Hij and Hj i are empty, T¹i;j º accepts both hypotheses;

� if exactly one of the hypotheses Hij , Hj i is empty, the test always accepts the
nonempty hypothesis and rejects the empty one;

� if hypotheses Hij and Hj i are nonempty (in this case, we refer to the pairs .i; j /
and .j; i/ as good) the test accepts exactly one of these hypotheses, and the risk
of the test does not exceed �= xN , xN D N.N � 1/=2.

4.3.2. Aggregation routine. Aggregation routine associated with the above setup is
as follows: given observation � , we run tests T¹i;j º, ¹i; j º 2U and for every 1� i �N ,
record the “score of i” – the number si .�/ of those j ¤ i , j � N for which the
test T¹i;j º rejects Hij . We put

yi.�/ 2 Arg min
1�i�N

si .�/

and define aggregated solution as yx.�/ D xyi.�/.
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Proposition 6. Suppose that the observation stems from a signal x� 2 X . Let x„ be
the set of realizations of � such that

as applied to observation � , each test T¹i;j º associated with a good pair .i; j /
does not reject the “true hypothesis,” if any (i.e., as applied to �, the test
accepts Hij when x� 2 Xij .�ij /, and accepts Hj i when x� 2 Xj i .�ij /).

Then the x�-probability of x„ is at least 1 � �, and for all � 2 x„, one has

kx� � yx.�/k � kxi� � x�k C 2
x�; (36)

where xi� is one of the k � k-closest to x� points among x1; : : : ;xN and x�Dmaxi¤j�ij .

Similarly to the results in Section 3, when comparing the performance bound (36)
for the “Euclidean” aggregation to its “general seminorm” counterpart (34), we obs-
erve a significant improvement of the constant factors in front of the “oracle loss”
kxi� � x�k, implying, informally, purely additive “price of aggregation.”

5. Test-based aggregation in simple observation schemes

5.1. Problem setting

In the sequel, we deal with the situation as follows. Given are

(1) simple o.s. �O D ..�;…/; ¹p�.�/ W � 2Mº;F /,

(2) a collection of J convex compact sets X� � Rn, giving rise to the set X D
[J�D1X� ,

(3) affine mappings x 7! A�.x/ such that A�.X�/ �M, � D 1; : : : ; J ,

(4) a seminorm k � k on Rn,

(5) N points xi 2 Rn, i D 1; : : : ; N .

Our objective is given a stationary repeated observation !K D .!1; : : : ; !K/ with

!k � pA�.x/; k D 1; 2; : : : ; K;

for some unknown pair .�;x/with � � J and x 2X� , to recover one of the k � k-closest
to x points among x1; : : : ; xN .

Our present setup is close to that of Section 3, up to one, but “game changing”
difference: now xi are just given points, and not pilot estimates of the underlying
our observations signal x� under models x� 2 X� , !k � pA�.x/. This implies, in
particular, that we have no information on how far could be x� from x� under the �th
observation model, meaning that aggregation techniques from Section 3 cannot be
applied in our present setting.
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Note that we are in the situation of Section 4.1, with

� �K in the role of observation space„, andK-repeated observation !K in the role
of observation � ,

� the signal set X D
SJ
�D1Xj � Rn,

� the family Px WD PK
x of probability distributions of observations stemming from

a signal x 2 X being comprised of all distributions with densities pK
A�.x/

.!K/

and � satisfying x 2 X� , the densities being taken with respect to the reference
measure …K .

Thus, by convention taken in Section 4.1, claim that an event takes place with x-
probability at most (or at least) p, x 2 X , means that this is the case for probability
with respect to any density pK

A�.x/
of observation !K with � satisfying x 2 X� .

We are about to achieve our goal of recovering one of the k � k-closest to x points
among x1; : : : ; xN via techniques developed in Section 4, and in what follows we use
terminology and notation from that section.

5.2. Aggregation in a general seminorm

Our current objective is to describe an implementation of the aggregation procedure
of Section 4.2 in the present setting.

5.2.1. Preliminaries. Given number K of observations and � 2 .0; 1/, in order to
build for .i; j / 2 O the quantities �ij and tests Ti;j º, as required by construction
from Section 4.2, we act as follows.

� Let us associate with ı � 0 and .i; j / 2 O sets Xij .ı/, Xj i .ı/ (see (33)) and
hypotheses

Hij Œı� D H.Xij .ı//; Hj i Œı� D H.Xj i .ı//:

� Let a pair .i; j / 2O be fixed. Given ı � 0 such thatXij .ı/¤; andXj i .ı/¤;,
or, which is the same, such that

0 � ı � xıij WD rij �maxŒ�i ; �j �; (37)

where �s are defined by (32), observe that Xij .ı/ is a finite union of convex compact
sets:

Xij .ı/ D

J[
�D1

®
X� \ ¹zW kz � xik � rij � ıº

¯
:

We specify collection Rij .ı/ D ¹R
s
ij .ı/ W 1 � s � J

ır
ij º of “red” nonempty convex

compact sets as the collection of all nonempty sets of the form

Rij�.ı/ D
®
A�.x/ W x 2 X� ; kx � xik � rij � ı

¯
; 1 � � � J:
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Similarly, we specify the collection Bij .ı/ D ¹B
s
ij .ı/ W 1 � s � J

ıb
ij º of “blue” non-

empty convex compact sets as the collection of all nonempty sets of the form

Bij�.ı/ D
®
A�.x/W x 2 X�; kx � xj k � rij � ı

¯
; 1 � � � J:

When applying to Rij .ı/ and Bij .ı/ the color inferring test from Section 2.3, depend-
ing on ı it may happen that the risk bound �K of the inference as defined in Section 2.3
satisfies �K � �=.N � 1/. Let us refer to ı as .i; j /-appropriate, if 0 � ı � xıij and
�K � �=.N � 1/.

� Given i; j and ı satisfying (37), we can check efficiently whether ı is .i; j /-
appropriate – to this end we should compute the spectral norm of a ŒJ ır

ij C J
ıb
ij � �

ŒJ ır
ij C J

ıb
ij � symmetric matrix filled with optimal values of J ır

ij J
ıb
ij explicit convex

optimization problems. Clearly, if ı is .i; j /-appropriate and ı0 2 Œı; xıij �, then ı0 is
.i; j /-appropriate along with ı.

� Let us call .i; j / appropriate, if xıij is nonnegative and .i; j /-appropriate. In this
case the infimum ıij of .i; j /-appropriate ı 2 Œ0; xıij � is well defined, and bisection
in ı allows to obtain rapidly .i; j /-appropriate upper bounds on ıij to whatever high
accuracy. The bottom line is that one can efficiently check whether the pair .i; j / 2 O

is appropriate, and whenever it is the case, the quantity

ıij 2
�
0; xıij D rij �maxŒ�i ; �j �

�
is efficiently computable, and whenever

�ij D �ij D zıij 2 Œ0; xıij �

with an .i; j /-appropriate zıij , we can point out K-observation test Tij which decides
on the hypotheses Hij .�ij /, Hj i .�j i / with risk � �=.N � 1/. Under the circum-
stances, the latter means that as applied to observation !K , test Tij accepts at most
one of the hypotheses Hij .�ij /, Hj i .�ij /, and whenever !k � pK

A�.x/
for � and x

such that x 2 X� , the probability for Tij to accept Hij .�ij / is at least 1 � �=.N � 1/
when

kx � xik � rij ��ij ;

and the probability for Tij to accept Hj i .�ij / is at least 1 � �=.N � 1/ when

kx � xj k � rij ��ij :

Note that for an appropriate pair .i; j /, the above zıij can be made arbitrarily close
to ıij .

� As is immediately seen, a pair .i; j / is appropriate if and only if the pair j; i
also is, and because xıij and ıij are symmetric in i; j , ı is .i; j /-appropriate if and only
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if ı is j; i-appropriate, which allows to restrict ourselves to zıij which are symmetric
in i; j as well. Consequently, appropriateness of a pair, appropriateness of a ı for this
pair, and the parameters xıij , ıij , zıij are attributes of unordered pair ¹i; j º rather than
of the ordered pair .i; j /. For appropriate ¹i; j º, let us set

xi D minŒi; j �; xj D maxŒi; j �; and T¹i;j º D Txi xj ;

so that T¹i;j º decides on Hij versus Hj i with risk � �=.N � 1/.

5.2.2. Aggregation routine. Consider the following procedure.

� We specify the set G of all appropriate pairs ¹i; j º 2 U along with the related
quantities zıij (the smaller the better) and tests T¹i;j º. Next, we declare a whatever sub-
set C of the set G to be the set of comparable pairs of indices as defined in Section 4.2,
and set

�ij D

´
zıij ¹i; j º 2 C ;

max
�
0I rij �maxŒ�i ; �j �

�
otherwise:

With the thresholds�ij just defined,K-repeated observation !K in the role of �, and
with C in the role of the set of comparable pairs and associated tests, we arrive at
the aggregation setup as described in Section 4.2, satisfying all the requirements from
that section.

� Given observation !K , we apply the aggregation procedure associated with the
above setup, resulting in the aggregated estimate yx.!K/.

Results of Propositions 5 and 1 imply the following property of the resulting esti-
mate.

Proposition 7. In the situation of this section, suppose that the just described routine
is applied to observation !K stemming from x� 2 X , so that !K � pK

A�.x�/
for some

� � J such that x� 2 X� . Let also i� be the index of one of the k � k-closest to x�
points among x1; : : : ; xN . Finally, let x� be the set of all !K satisfying the following
condition (cf. Proposition 5):

For every j ¤ i� such that i� and j are comparable and x� 2 Xi�j .�i�j /,
test T¹i�;j º as applied to observation !K accepts the hypothesis Hi�j .�i�j /.

Then the pK
A�.x�/

-probability of x� is at least 1 � �, and the aggregated solution
yx.!K/ satisfies

!K 2 x�) kx� � yx.!
K/k � 3kxi� � x�k C 2

x�i� ;

where

x�i� D

´
0 	i�.!

K/ D ;;

maxj2	i� .!
K/�i�j 	i�.!

K/ ¤ ;

(for notation, see the description of aggregation in Section 4.2).
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5.2.3. Characterizing performance.

Theorem 3. In the setting described in Section 5.1, assume that xi 2 X , 1 � i � N ,
and that for some positive integer xK, � 2 .0; 1=2/ and .; ı/ � 0 there exists inference
!
xK 7! xx.!

xK/ 2 Rn such that

Prob
! xK�p

xK
A�.x/

®
kx � xx.!

xK/k � kx � xi�k C ı
¯
� 1 � � 8.� � J; x 2 X�/;

where xi� is one of the k � k-closest to x point among x1; : : : ; xN . Now let

 0 > 

and let K satisfy the relation

K �

�
2 ln.J.N � 1/=�/
ln
�
Œ4�.1 � �/��1

� xK�: (38)

Then, with K-repeated observations !K , all pairs ¹i; j º with rij > ı are appropri-
ate, and specifying these pairs as comparable, the aggregation procedure described
in this section with properly selected zıij ensures that the resulting aggregated esti-
mate yx.!K/ satisfies

Prob!K�pK
A�.x/

®
kyx.!K/� xk> .3C 2 0/kx � xi�kC 2ı

¯
� � 8.� 2 J; x 2X�/:

(39)

5.3. Aggregation in a Euclidean seminorm

We now consider a special case of the situation described in Section 5.1, where k � k
is a Euclidean seminorm: kxk D kBxk2, where B 2 Rq�n is a given matrix. In this
case, the sets Xij .ı/ as defined in (35) are finite unions of convex compact sets, and
we can apply the “near-optimal” inferring color machinery to build the tests required
by aggregation scheme from Section 4.3.

We assume to be given the number of observationsK along with tolerance param-
eters � 2 .0; 1/ and a “negligibly small” ı > 0 (say, 10�100); we put xN D 1

2
N.N � 1/.

5.3.1. Preliminaries. Given a pair .i; j / 2 O and ı > 0, it may happen that one or
both of the sets Xij .ı/ and Xj i .ı/ as defined in (35) is/are empty, in which case we
qualify ı as .i; j /-good. Now let i; j; ı be such that both of the sets Xij .ı/ and Xj i .ı/

are nonempty. In this case, we build the collection Rij .ı/ D ¹R
s
ij .ı/ W 1 � s � J

ır
ij º

of nonempty convex compact “red” sets comprised of all nonempty sets of the form

Rij�.ı/ D
®
A�.x/ W x 2 X� ; kx � xik � kx � xj k � ı

¯
; 1 � � � J:
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Similarly, we build the collection Bij .ı/D¹B
s
ij .ı/ W 1� s�J

ıb
ij º of nonempty convex

compact “blue” sets comprised of all nonempty sets of the form

Bij�.ı/ D ¹A�.x/ W x 2 X� ; kx � xj k � kx � xik � ıº; 1 � � � J:

Applying to the collections Rij , Bij the K-observation color inferring procedure
from in Section 2.3, depending on ı it may happen that the resulting risk bound �K
satisfies �K � �= xN . In this case we say that ı is .i; j /-good, and that it is .i; j /-bad
otherwise.

Clearly, whenever ı is .i; j /-good, so is ı0 � ı. Similarly to the case of a general
seminorm, given .i; j / 2 O and ı > 0, we can check efficiently whether ı is or is
not .i; j /-good. Given .i; j / 2 O, large enough ı definitely are .i; j /-good, since
the corresponding sets Xij .ı/ are empty. Applying Bisection, we can rapidly find
the value �ij of ı such that �ij is .i; j /-good, and either �ij � ı, or �ij�ı is not
.i; j /-good.

As in the case of a general seminorm, it is immediately seen that ı is .i; j /-good if
and only if ı is .j; i/-good. As a result, we can select the above �ij to be symmetric:
�ij D �j i . Note that as a result, every pair ¹i; j º 2 U is assigned threshold �ij D
�j i which is .i; j /-good. Besides this, we can equip this pair with a K-observation
test T¹i;j º deciding on the hypotheses Hij .�ij / WD H.Xij .�ij // and Hj i .�ij / WD

H.Xj i .�ij //, specifically, the test is as follows:

� when both hypotheses are empty, the test accepts both hypotheses,

� when exactly one of the hypotheses is nonempty, the test accepts this nonempty
hypothesis and rejects the empty one,

� when both hypotheses are nonempty, T¹i;j º is the above color inferring test associ-
ated with (.i; j /-good!) �ij , so that it accepts exactly one of the hypotheses, and
its risk does not exceed �= xN .

5.3.2. Aggregation routine. Aggregation routine is the procedure from Section 4.3
as applied to the K-repeated observation !K in the role of � and the just defined
�ij D �ij , T¹i;j º; as we have seen, these entities meet all the requirements of the
setup of Section 4.3. Denoting by yi.!K/ 2 ¹1; : : : ; N º the output of our aggregation,
the observation being !K , and applying Proposition 6, we arrive at the following
result.

Proposition 8. In the situation of this section, suppose that the just described aggre-
gation routine is applied to observation !K stemming from x� 2 X . Then

Prob!K�P
®
kx� � xyi.!K/k � kxi� � x�k C 2

x�
¯
� 1 � � 8P 2 PK

x�
; (40)

where xi� is one of the closest to x� points among x1; : : : ; xN and, same as in Propo-
sition 6, x� D maxj¤i �ij .
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5.3.3. Characterizing performance.

Theorem 4. In the situation under consideration, assume that for some positive inte-
ger xK, � 2 .0; 1=2/ and real xı > 0, for every pair .i; j / 2 O there exists inference
!
xK 7! �ij .!

xK/ 2 ¹i; j º such that for every x� 2 X and P 2 P
xK
x�

one has

Prob
! xK�P

®
kx� � x�ij .! xK/

k < min
�
kx� � xik; kx� � xj k

�
C xı

¯
� 1 � �: (41)

Then, whenever

K �

�
2 ln.J xN=�/

ln
�
Œ4�.1 � �/��1

� xK�; (42)

the aggregated estimate xyi.!K/ yielded by the above aggregation procedure as applied
to K-repeated observation !K for every x� 2 X satisfies

Prob!K�P
®
kxyi.!K/ � x�k � kx� � xi�k C 2.

xı C ı/
¯
� � 8P 2 PK

x�
; (43)

xi� being one of the k � k-closest to x� point among x1; : : : ; xN .

Remark. In contrast to situation considered in Theorem 2 (cf. the remark in Sec-
tion 3.3.2), now the advantages of Euclidean aggregation as compared to the general
one are less straightforward. Under the premise of Theorem 4 they are evident – the
bound (43) improves over (39) provided ı � ı D xı. Note however, that premises of
Theorems 3 and 4 are different: Theorem 4 assumes the possibility to compare reli-
ably distances kx� � xik and kx� � xj k in all pairs, while Theorem 3 only requires
existence of an estimate xx.! xK/ of x� of accuracy which is within factor  of the
distance mini�N kx� � xik from x� to the closest to it point among x1; : : : ; xN .

5.4. Application: Adaptive estimation over unions of convex sets

It is clear that just developed aggregation routines may be applied to the problem of
adaptive estimation over unions of convex sets defined in Section 3.1. Our next objec-
tive is to discuss this application in more detail and derive corresponding accuracy
bounds. From now on, notation and entities such as reliability tolerance �, number xK
of pilot observations, pilot xK-observation estimates zxi .!

xK/, risks RiskJ

�;M ŒyxjY �, and

upper bounds rj D r
xK
j .�/ on Risk¹j º

�; xK
Œzxj jXj �, are as defined in that section.

5.4.1. Estimation over unions using point aggregation. The quantities J D N ,
X D [jXj and points xi D zxi .!

xK/ taken together with the mappings Aj .�/ and the
seminorm k � k form the data meeting the requirements of the setup of Section 5.1.
Given (post-pilot) K-repeated observation !K with !k � pAj�

.x�/, k D 1; : : : ; K,
with x� 2 Xj� , we can use the routines in Sections 5.2 and 5.3 to aggregate points xi
into an estimate yx of x�.
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Case of a general seminorm. Let us start with the aggregation procedure described
in Section 5.2. In our present setting its implementation is as follows. For .i; j / 2 O,
we set

rij D
1

2
kxi � xj k; Xij .ı/ D X \

®
z W kz � xik � rij � ı

¯
; (44)

and consider hypotheses Hij .ı/ and Hj i .ı/ stating, respectively, that observations
stem from a signal x 2 Xij .ı/ and x 2 Xj i .ı/. Same as before, we say that ı is .i; j /-
appropriate, if the risk of the K-observation test T¹i;j º, yielded by the machinery
from Section 2.3, deciding on Hij .ı/ versus Hj i .ı/ does not exceed �=.N � 1/. We
define parameters �ij and tests T¹i;j º as prescribed by the construction in Section 5.2
and utilize the resulting entities in the aggregation procedure from Section 4.2 thus
arriving at the aggregated estimate yx.a/.! xKCK/ D yx.!K/ of x�.

By Proposition 7, for all j� � N and x� 2 Xj� , aggregation yx.!K/ satisfies

Prob!K�pK
Aj�

.x�/

®
kx� � yx.!

K/k � 3kxi� � x�k C 2
x�i�

¯
� 1 � �; (45)

where xi� is one of the k � k-closest to x� points among x1; : : : ; xN , and x�i� �
maxj¤i� �i�j is defined in Proposition 7. Note that due to ! xK 2 z� xK , we also have

kx� � xj�k � rj� D r
xK
j�
.�/;

which combines with (45) and kx� � xi�k � kx� � xj�k to imply that the x�-probab-
ility for !K to satisfy

kx� � yx.!
K/k � 3rj� C 2x�i� � 3xrC 2x�; xr D max

i
ri ; x� D max

i�N

x�i ; (46)

is at least 1 � �.

Proposition 9. In the situation described in Section 3.1, suppose that we are given a
positive integer xK, tolerances � 2 .0; 1=2/ and � > 0, and K such that

K �

�
2 ln.N.N � 1/=�/
ln
�
Œ4�.1 � �/��1

� xK�: (47)

Then estimate yx.!K/ yielded by the procedure described above with properly selec-
ted �ij as applied to observation !K satisfies

Prob!K�pK
Aj�

.x�/

®
kyx.!K/ � x�k > 3max

i
r
xK
i .�/C 2RiskOpt1;N

�; xK
ŒX�C �

¯
� �:

In particular, when the upper bounds r
xK
i .�/ on the risks Risk¹iº

�; xK
Œzxi jXi � of estimates

zxi .!
xK/ are within factor � of the respective xK-observation minimax risks, i.e.,

RiskOpt¹iº
�; xK
ŒXi � � r

xK
i .�/ � � RiskOpt¹iº

�; xK
ŒXi �
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the risk
Risk1;N

2�; xKCK
Œyx.a/jX�

of the estimate yx.a/.! xKCK/D yx.!K/ (as function of pilot observation ! xK and inde-
pendent observation!K) is within a moderate factor from the minimax xK-observation
risk RiskOpt1;K

�; xK
ŒX�:

Risk1;N
2�; xKCK

Œyx.a/jX� � Œ2C 3��RiskOpt1;N
�; xK
ŒX�C �:

Case of a Euclidean seminorm. When k � k is a Euclidean seminorm, we can utilize
the aggregation procedure described in Section 5.3 to build the “two-stage” estimate

yx.a/.!
xKCK/ D yx.!K/:

Specifically, given � 2 .0; 1
2
/, “negligibly small” ı > 0, and ı � 0, consider the sets

Xij .ı/ D
®
z 2 X W kz � xj k � ı C kz � xik

¯
;

Xj i .ı/ D
®
z 2 X W kz � xik � ı C kz � xj k

¯
:

We apply the construction of Section 5.3 to compute for every .i; j / 2 O .i; j /-good
quantities �ij D �j i such that either �ij � ı, or �ij > ı and �ij�ı is not .i; j /-
good, and proceed as explained in that section, ending up with the aggregated estimate
yx.!K/. Invoking Proposition 8, we have

Prob!K�pK
Aj�

.x�/

®
kx� � yx.!

K/k � kxi� � x�k C 2
x�
¯
� 1 � �; x� D max

i;j
�ij ;

where xi� is one of the closest to x� points among x1; x2; : : : ; xN . We have the
following analog of Proposition 9 in this case.

Proposition 10. Let k � k be a Euclidean seminorm. In the situation described in
Section 3.1, suppose that we are given a positive integer xK, tolerances � 2 .0; 1=2/
and ~ > 0, and K satisfying

K �

�
2 ln.N 2.N � 1/=.2�//

ln
�
Œ4�.1 � �/��1

� xK

�
: (48)

Then estimate yx.!K/ yielded by the above procedure with properly selected parame-
ters as applied to observation !K satisfies

Prob!K�pK
Aj�

.x�/

®
kyx.!K/ � x�k > max

i
r
xK
i .�/C 4RiskOpt1;N

�; xK
ŒX�C ~

¯
� �:
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In particular, when the upper bounds r
xK
i .�/ on the partial risks Risk¹iº

�; xK
Œzxi jXi � of

xK-observation estimates zxi .�/ are within a factor � of the respective xK-observation
minimax risks, i.e.,

RiskOpt¹iº
�; xK
ŒXi � � r

xK
i .�/ � � RiskOpt¹iº

�; xK
ŒXi �;

the maximal risk Risk1;N
2�; xKCK

Œyx.a/jX� of aggregated estimate yx.a/.! xKCK/ WD yx.!K/
(considered as function of the pilot observation ! xK and independent observation !K)
is within a moderate factor from the minimax xK-observation risk RiskOpt1;N

�; xK
ŒX�:

Risk1;N
2�;KC xK

ŒyxjX� � Œ4C ��RiskOpt1;N
�; xK
ŒX�C ~:

6. Adaptive estimation over unions of ellitopes

6.1. Ellitopic setup

Ellitopes, as introduced in [25, 28], are symmetric with respect to the origin convex
and compact sets. In this section, we consider a special case of the estimation problem
described in Section 3.1 in which

(1) observation scheme is Gaussian, i.e., observations !k 2 Rm stemming from
.j; x/, x 2 Xj , are normal, !k � N .Aj .x/; Im/, where Aj .x/ are linear, rather than
affine, mappings: Aj .x/DAjx, whereAj 2Rm�n, j D 1; : : : ;N , are given matrices;

(2) sets Xj , j D 1; : : : ; N , are basic ellitopes:

Xj D
®
x 2 Rn W 9r 2 Rj W x

TRj�x � r� ; � � L
¯
; j D 1; : : : ; N I

(3) seminorm k � k is of the form kxk D �.Bx/ where B is a q � n matrix and
the unit ball B� of the conjugate to �.�/ norm ��.�/ is an ellitope

B� D
®
y 2 Rq W 9s 2 � W xTS�x � r� ; � � L

0
¯
:

Here

� Rj �RLC, j D 1; : : : ;N , and � � RL0C are computationally tractable convex com-
pact sets intersecting with int RLC which are monotone.13

� Rj� , 1 � j � N , 1 � � � L, are n � n matrices with Rj� � 0 and
P
� Rj� � 0;

S� are q � q matrices such that S� � 0 and
P
� S� � 0.

We refer to L and L0 as sizes of corresponding ellitopes.

13Here monotonicity of V � Rk
C

means that if 0 � v0 � v and v 2 V , then also v0 2 V .
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Particular choices of sets Xj and seminorm k � k encompass a variety of situations.

� When L D 1, Rj D Œ0; 1� and R.j /1 � 0, Xj is an ellipsoid.

� WhenL� 1, Rj D Œ0;1�
L,Xj is an intersection of ellipsoids and elliptic cylinders

centered at the origin, \
��L

¹z W zTRj�z � 1º:

� When U D Œu1; : : : ; uL� 2 Rn�L, rankŒU � D n, Rj D Œ0; 1�
L and Rj� D u�uT� ,

then Xj is a symmetric with respect to the origin polytope

¹z W kU T zk1 � 1º:

� When for p � 2, � D ¹s 2 RL0C W
P
� Œs�

p=2
� � 1º and, as in the previous example,

U D Œu1; : : : ; uL0 � 2 Rq�L0 , rankŒU � D q, and S� D u�uT� , B� is the set

¹y W kU T ykp � 1º

and the seminorm k � k is

kwk D kUBwkp=.p�1/:

The family of ellitopes admits simple and fully algorithmic “calculus” demonstrating
that this family is closed with respect to nearly all operations preserving convexity and
symmetry with respect to the origin (e.g., taking finite intersections, direct products,
linear images, and inverse images under linear embeddings; for details, see [28, Sec-
tion 4.6]).

We are about to show that in the present situation, estimates yielded by the approach
described in Section 3.2 are nearly optimal in the minimax sense.14 Moreover, in this
case we are able to provide “reasonably good” bounding of minimax risks of recovery
over pairwise unions Xi [Xj of ellitopes implying that tight bounds for the minimax
risk of estimation over X D [NiD1Xi can be efficiently computed.

6.2. Near-optimality of the aggregated estimate

Let xK and K be positive integers, and let us assume that in the situation described
in Section 6.1 we are given � 2 .0; 1=8/ and M D xK CK � 2 independent observa-
tions !k stemming from unknown pair .`�; x�/; x� 2 X`� , 1 � `� � N . To build an
M -observation estimate yx.a/.!M / of x�, we proceed as explained in Section 3.2:

14An analog of the results below in the special case where k � k is a Euclidean seminorm can
be obtained by applying construction of Section 3.3.
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� we split the observation sample into two observations: a xK-repeated observa-
tion .!1; : : : ; ! xK/ (preliminary observation) and !K D .! xKC1; : : : ; ! xKCK/ (sec-
ondary observation).

� Preliminary observation is averaged to build observation

y! D
1

xK

xKX
kD1

!k

which is then used to compute N polyhedral estimates zxi .b!/ following the recipe
in [27] and [28, Section 5.1.5].

� Finally, we apply the aggregation routine from Section 3.2 to assemble points
xi D zxi .b!/ into estimate yx.!K/ obtaining as a result the adaptive estimate

yx.a/.!M / D yx.!K/

of x�.

Recall (cf. [28, Proposition 5.10]) that polyhedral estimates zxi satisfy zxi .y!/ 2 Xi and

Risk¹iº�;1Œzxi jXi � � ri .�/ � C1 ln.LC L0/
p

lnŒm=��RiskOpt
¹iº

1=8;1ŒXi �; (49)

where bound ri .�/ for maximal risk of estimation under the i th observation model is
efficiently computable and RiskOpt

¹iº

�;1ŒXi � is the minimax �-risk of recovering x 2Xi
from single “averaged” observation y! stemming from i.i.d. !k � N .Ajx; Im/; From
now on, Ci stand for appropriate absolute constants.

Given .i; j / 2 O, positive integerK, and ı 2 .0; 1=2/ we (re-)define the notion of
ı-separation risk (cf. (16)) in the present situation according to

gKij .ı/ D
1

2
max

x2Xi ;y2Xj

°
kx � yk W kAi .x/ �Aj .y/k2 �

2
p
K
qN .1 � ı/

±
; (50)

where qN .p/ is the p-quantile of the standard normal distribution:

1
p
2�

Z qN .p/

�1

e�s
2=2 ds D p:

Note that (50) is feasible, and therefore solvable, due to 0 2 Xj and Aj .0/ D 0 for
all j .

For the sake of simplicity, from now on we restrict ourselves to the case

K � xK: (51)

The next statement provides a refined version of results of Section 3.2.2 in the present
setting.
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Theorem 5. In the situation of this section, assuming (51) and 0 < � < 1=16, the
just built estimate yx.a/ (as function of pilot observation ! xK and secondary observa-
tion !K) satisfies

Risk¹iº
2�; xKCK

Œyx.a/jXi � � 2ri .�/Cmax
j<i

�
rj .�/C 2g

K
ij ."/

�
8i � N; (52)

with " D �=.N � 1/. Moreover, setting

x# WD

p
KqN .1 � �/
p
xKqN .1 � "/

;

one has x# � 1 and

Risk¹iº
2�; xKCK

Œyx.a/jXi �

� 2ri .�/Cmax
j<i

�
rj .�/C 2x#

�1 RiskOpt¹i;j º
�; xK

ŒXi [Xj �
�
8i � N; (53)

whence, in particular,

Risk¹iº
2�;2 xK

Œyx.a/jXi �� max
1�j�i

h
3rj .�/C 2

qN .1 � "/

qN .1 � �/
RiskOpt¹i;j º

�; xK
ŒXi [Xj �

i
8i �N:

Besides this, one has

Risk¹iº
2�;2 xK

Œyx.a/jXi � � C2
�
ln .LC L0/

p
lnŒm=��C

p
lnŒN=��

�
� max
1�j�i

RiskOpt¹i;j º
1=16; xK

ŒXi [Xj � 8i � N;

so that

Risk1;N
2�;2 xK

Œyx.a/jX�

� C3
�
ln .LC L0/

p
lnŒm=��C

p
lnŒN=��

�
RiskOpt1;N

1=16; xK
ŒX�: (54)

6.3. Bounding the maximal risk of estimation

Our current objective is to provide efficient bounding for separation risks gKij ."/; taken
together with bounds rj .�/ for partial risks this would allow to bound the minimax
risk of estimation over X . Under the premise of Theorem 5, let .i; j /, 1 � i; j � N
and K � xK be fixed, let, as in (52), " D �=.N � 1/, and let ı D 2K�1=2qN .1 � "/.
Observe that

gKij ."/ D
1

2
max

x2Xi ;y2Xj

®
kx � yk W kAix � Ajyk2 � ı

¯
(55)
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D
1

2
max

x2Xi ;y2Xj

®
�.B.x � y// W kAix � Ajyk

2
2 � ı

2
¯

D
1

2
max
ŒxIyIu�

®
uTB.x � y/ W u 2 B�; x 2 Xi ; y 2 Xj ; kAix � Ajyk

2
2 � ı

2
¯
:

Because the direct product of ellitopes B� � Xi � Xj is an ellitope of the size not
exceeding L0 C 2L (cf. [28, Section 4.6]), when writing

uTB.x � y/ D ŒuIxIy�T xBŒuIxIy� and kAix � Ajyk
2
2 D ŒuIxIy�

TQij ŒuIxIy�

with

xB D

2664 0q�q
1
2
B �

1
2
B

1
2
BT 0n�n 0n�n

�
1
2
BT 0n�n 0n�n

3775 ; Qij D

2664 0q�q 0q�n 0q�n

0n�q ATi Ai �A
T
i Aj

0n�q �ATj Ai ATj Aj

3775 ;
we conclude that the quantity gKij ."/ is the maximum of a homogeneous quadratic
form over an ellitope of size at most

xD D L0 C 2LC 1:

Therefore, it can be upper-bounded by an efficiently computable quantity xgKij ."/within
factor 2 ln xD C 2

p

ln xD C 1 (see, e.g., [25, Proposition 3.3]) using semidefinite relax-
ation.

As a result, given a pair .i; j /, i ¤ j , we can upper-bound the 2�-minimax risk
RiskOpt¹i;j º

2�;2 xK
ŒXi [Xj � with efficiently computable quantity

xrij .�/ D 3maxŒri .�/; rj .�/�C 2xg
xK
ij ."/

such that

xrij .�/ � C6 lnŒ xD�
p

lnŒm=��

�max
�
RiskOpt¹iº

1=16; xK
ŒXi �;RiskOpt¹j º

1=16; xK
ŒXj �

�
C C7 lnŒ xD�g xKij ."/

� C8 lnŒ xD�
�p

lnŒm=��C
p

lnŒN=��
�

RiskOpt¹i;j º
1=16; xK

ŒXi [Xj �

(where we have used (65)). Similarly, 2�-minimax risk RiskOpt1;N
2�;2 xK

ŒX� of estimation
over X can be bounded with efficiently computable quantity

xr.�/ D max
i;j�N

�
3ri .�/C 2xg

xK
ij ."/

�
such that

xr.�/ � C9 max
i;j�N

�
lnŒ xD�

p
lnŒm=��RiskOpt¹iº

1=16; xK
ŒXi �C C10 lnŒ xD�g xKij ."/

�
� C11 lnŒ xD�

�p
lnŒm=��C

p
lnŒN=��

�
RiskOpt1;N

1=16; xK
ŒX�:
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6.4. Numerical illustration: Application to estimation in the single-index model

In this section, we apply the proposed adaptive estimate to a toy problem of estimation
in the simple single index model in which

� “Unknown signal” x is a vector of coefficients of one-dimensional spline s.t/ on
Œ�1; 1� split into 10 equal segments. In each segment, s is a quadratic polynomial, and
its derivative s0.t/ is continuous on the entire Œ�1; 1�, making the number of degrees
of freedom in the spline – dimension of the parameter vector x – equal to 12. Signal
vector x is restricted to have k � k2-norm not exceeding 1, thus, the signal set X is the
unit Euclidean ball in R12.

� We consider the situation in which all signal sets Xj , j D 1; : : : ; N D 64, are
equal to X , but there are N different encodings Aj .�/ D Aj 2 R1024�12 built as fol-
lows: for j D 1; : : : ; J D 64, we specify ej as unit vector in R2 at angle 2�.j � 1/=N
with the first basis vector. Specifying � as a set of 1024 points sampled from a uni-
form distribution on ¹u2R2 W kuk1 � 1º,Ajx is the restriction onto � of the function
fj;x.u/ D s.e

T
j u/.

Note: for u 2 � , eTj u can be outside of Œ�1; 1�, and when defining s.eTj u/, we
extend s from Œ�1; 1� onto the entire real axis in such a way that the extended function
is continuously differentiable and is affine to the left of �1 and to the right of 1.

� Observations Ajx are corrupted by white Gaussian noise � � N .0; �2I /.

� We deal with xK D K D 1 and split our actual observation into two independent
unbiased Gaussian observations – pilot z! and secondary ! – of variance 2�2 each.

It is worth mentioning that the considered situation differs from the “classical” set-
ting of the single index estimation problem: here our objective is neither to estimate
the index – unit vector e corresponding to the “orientation” in R2 of the univariate
function underlying observations, nor to estimate the bivariate regression function
fi;x.�/,15 but to recover vector x of spline coefficients of s.�/, the norm k � k being
the Euclidean norm. As such, the problem we consider is that of recovery from noisy
indirect observations, the latter being equivalent to estimating univariate function s.�/,
estimation error being measured in the L2-norm on Œ�1; 1�. We consider two imple-
mentations of the recovery procedure; in both implementations we utilize polyhedral
estimate of [27] to build pilot estimates zxi .z!/, i D 1; : : : ; N . The first recovery, we
denote it yx.I/, utilizes the aggregated estimate described in Sections 5.3, 5.4; yx.II/

is the adaptive estimate of Section 3.3; finally, estimate yx.III/ is the slightly modified

15For “state of art” adaptive estimates of regression function f in a general d -dimensional
single index model under L2.Œ�1; 1�d /-losses see, e.g., [22]; see also [36] for adaptation with
respect to pointwise and general Lp-risks.
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10-2

10-1

yx.I/ yx.II/ yx.III/ yx.I/ yx.II/ yx.III/ yx.I/ yx.II/ yx.III/

Figure 1. Error distribution of recoveries yx.I/, yx.II/, and yx.III/ for different values of noise
variance �2: from left to right, box plots for � D 0:1, � D 0:05, and � D 0:02.
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Figure 2. Typical graphs of the true function s.�/ (solid line) and its recoveries utilizing esti-
mate yx.I/ (dotted line), estimate yx.II/ (dash-dot line), and estimate yx.III/ (dashed line).

adaptive estimate of Section 3.2 in which, when the set 	.!/ of admissible esti-
mates contains more than 1 point, instead of selecting the admissible estimate with the
smallest index i , adaptive estimate yx is obtained by aggregating admissible points zxi ,
i 2 	.!/, as the optimal solution to the optimization problem

yx D arg min
u

max
i2	.!/

ku � zxik2:
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Figure 3. Admissible sets 	.!/ of recovery yx.III/ (blue dots), those of recovery yx.II/ (green
crosses), and selected yi ’s of recovery yx.I/ (solid red line).

To see how the error of recovery depends on the noise variance �2, for each value
of the variance we sample K D 100 realizations of the signal xk from the uniform
distribution on the unit sphere along with directions ek from the uniform distribution
on the unit circle. Results of these experiments are presented in Figure 1 (note the
logarithmic scale of the y-axis); the red bar over each box plot represents the upper
bound maxj r1j .�/ of partial �-risks of preliminary estimates zxj .z!/.

The reliability parameter of the recoveries being set to 95% (i.e., � D 0:05), upper
bounds r1i ."/ exceed 1 for � > 0:15. We present in Figure 2, for � D 0:1, typical
graphs of the true signal s.�/ and its recoveries.

Plot (a). Set 	.!/ of admissible estimates for recoveries yx.II/ and yx.III/ is a singleton
(in this case, kx� � yx.I/k2 D 0:0949, kx� � yx.II/k2 D 0:0616, and kx� � yx.III/k2 D
0:0710).

Plot (b). Cardinality j	.!/j D 3 of the set of admissible estimates for recovery yx.III/,
	.!/ is a singleton for recovery yx.II/ (in this case, kx� � yx.I/k2 D 0:0752,
kx� � yx

.II/k2 D 0:0846, and kx� � yx.III/k2 D 0:1508).

For � � 0:05 in all simulations the set 	.!/ of admissible estimates was a singleton
for all recoveries. Moreover, in these simulations, selected indices j of encodings Aj
were the same for three recoveries, corresponding to the closest to the “true direc-
tion e” element ej of the “grid of directions.” When � D 0:1, corresponding admis-
sible sets for recovery yx.I/ were singletons, with corresponding direction being the
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Figure 4. Bounding g1
ij
."/: solid line – upper bound xrg1

ij
."/ by semidefinite relaxation, dash-

dot line – lower bound by Monte-Carlo simulations.

closest to true e in 93=100 simulations (and second close in remaining 7=100); admis-
sible set for recovery yx.II/ was a singleton corresponding to the closest direction in
56=100 experiments, in the remaining 44=100 the admissible set contained two clos-
est to e directions. “Population” of admissible sets of recovery yx.III/ is represented in
Figure 3; admissible i ’s obtained in each simulation are “centered” with respect to the
“index” je D .N�=2�/C 1, where � is the angle between random vector e under-
lying the observation and the first basis vector of R2. For � D 0:1 we also present
in Figure 4 typical plot of the bound xrg1ij ."/, " D �=.N � 1/, i D 33, for separation
risk g1ij ."/ along with the lower bound computed by Monte-Carlo simulations.

A. Proofs

A.1. Proofs for Section 3

Proof of Proposition 3. The fact that the .`�; x�/-probability of x�K is at least 1� � is
readily given by the union bound and the fact that for good pairs .`�; j / the .`�; x�/-
probability for test T¹`�;j º to accept H`� is at least 1 � �=.N � 1/. Furthermore,
because the preliminary observation belongs to z� xK , we have

kx� � x`�k � r`� : (56)

Let now !K 2 x�K be fixed; then the set 	 D 	.!K/ is not empty because `� 2 	;
indeed, when !K 2 x�K “true” hypothesis H`� is never rejected. Consequently, if
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i 0 2 	 differs from `�, then .i 0; `�/ is bad, since otherwise i 0 2 J`� and the test T¹i 0;`�º
would reject the true hypothesis H`� (otherwise, i 0 2 	 would be impossible), which
contradicts !K 2 x�K . As a byproduct of the just made observation, 	�

`�
� J�

`�
. Now,

since we are in the case of `� 2 	, either yi D `�, or 	 3 yi < `�. In the first case, (13)
is evident, in the second yi 2 	�

`�
, and therefore (13) holds true as well. (13) is proved.

Next, the first inequality in (14) is trivially true due to already proved inclusion
	�
`�
� J�

`�
; the second inequality is evident from the definitions of ri ’s and ıij ’s (recall

that we have assumed all Bi to be nonempty). Finally, (15) is an immediate conse-
quence of inclusions 	�

`�
� 	n¹`�º � J`� �

xJ (the first and the third are evident, the
second has been proved) and the definition of r’s and ıij ’s.

Proof of Theorem 1. (1ı) Let " D �=.N � 1/. Consider a pair .i; j / 2 O, which is
bad. In this case, one has ıij � rKij ."/. Indeed, consider optimization problem

max
x2Bi ;y2Bj

%.Ai .x/;Aj .y//: (57)

Observe that problem (57) is solvable, and its optimal solution x0 2 Bi ; y0 2 Bj sat-
isfies

kx0 � y0k � 2ıij :

On the other hand, the optimal value x� of (57) is greater than "1=K because, otherwise,
the risk of aK-observation test T¹i;j º deciding on hypothesesHi andHj , as discussed
in Section 2.2, would be bounded by x�K D ", implying that pair .i; j / is good what
is not the case. We conclude that rKij ."/, as defined in (16), satisfies

rKij ."/ �
1

2
kx0 � y0k � ıij :

Combined with (56) and the bounds (13) and (14), the latter relation implies (17).

(2ı) To show (18) we need the following statement.

Lemma 1. Given .i; j / with 1 � j < i � N , let

x%�ij D RiskOpt¹i;j º
�; xK

ŒXi [Xj �

be the minimax xK-observation �-risk of estimation over Xi [ Xj . Suppose that " 2
.0; 1=2/ is such that

z# D
ln.4�.1 � �//
2 ln."/

� 1:

(i) Assume that K > z#�1 xK: Then

rKij ."/ � x%
�
ij :
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(ii) In addition, if Ai .xij / D Aj .xij / for some xij 2 Xi \Xj , one has

rKij ."/ �
z#�1x%�ij

whenever K � xK.

Proof. When problem (16) is infeasible, we have rKij ."/ D 0, and the claims in the
lemma are trivially true.

Now let (16) be feasible. Then the problem is solvable; let .xx; xy/, xx 2 Xi , xy 2 Xj ,
be an optimal solution. Suppose that

x%�ij <
1

2
kxx � xyk:

This would imply existence of a xK-observation estimate zx.�/ with maximal �-risk
over Xi [ Xj which is smaller than 1

2
kxx � xyk, meaning that there is a simple xK-

observation test deciding on hypothesis Hxx: “observation ! xK stems from .i; xx/”
against Hxy : “observation ! xK stems from .j; xy/” with risk bounded with �, namely,
the test which acceptsHxx whenever kzx � xxk� kzx � xyk and acceptsHxy otherwise. By
what we know about testing in simple observation schemes, this means that Hellinger
affinity %.Ai .xx/;Aj .xy// between the corresponding distributions of observations sat-
isfies (cf. (6))

%.Ai .xx/;Aj .xy// � Œ4�.1 � �/�
1=.2 xK/ < "1=K

contradicting the fact that, by construction of xx and xy, we have %.Ai .xx/;Aj .xy/ �

"1=K . Therefore, (i) is proved.
Next, to prove (ii). For # 2 Œ0; 1�, let

x.#/ D xij C #.xx � xij / and y.#/ D xij C #.xy � xij /I

observe that z�.#/ WD ln %.Ai .x.#//;Aj .y.#/// is a concave function of # with
z�.1/ � K�1 ln " and z�.0/ D 0. Thus, for any # < z# , we have

z�.#/ � #K�1 ln " > z#K�1 ln " �
1

2
K�1 lnŒ4�.1 � �/�:

As we already know, this means that there is noK-observation test capable of deciding
between hypotheses Hx.#/ and Hy.#/ with risk bounded with �, implying in its turn
that

x%�ij >
1

2
kx.#/ � y.#/k D

1

2
#kxx � xyk D #rKij ."/:

Setting "D �=.N � 1/ (which results in z# D x#) and substituting into (17) bounds
of Lemma 1, we arrive at (18) and (19).
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Proof of Proposition 4. (1ı) Observe first that the “true hypothesis”H `��
i�j

in quadru-
ple .i�; j I `�; `/ is never empty because w� D Bx� 2 W

`��
i�j

for all j ¤ i�. Fur-
thermore, whenever one of the hypotheses H `�

ij , H ``0C
ij is true in a good quadruple

.i; j I `; `0/, test T ``0

ij will accept it with probability at least 1� �= xN . Indeed, we have
assumed that this is the case if both hypotheses are nonempty; since a hypothesis,
when true, cannot be empty, the only other case to be considered is that of the other
hypothesis in the pair being empty. It remains to recall that in this case the test always
accepts the nonempty hypothesis. Thus, the .`�; x�/-probability of x�K is� 1� � due
to the union bound.

(2ı) From now on, let !K 2 x�K ; in this case we have .i�I`�/ 2 	.!K/, implying
that 	.!K/ ¤ ;; thus, if all pairs .i; `/ 2 	.!K/ share the same i -component yi D
yi.!K/, we clearly have yi.!K/D i�. Next, suppose that .i 0I `0/ 2 	.!K/ with i 0 ¤ i�.
Observe that for all j ¤ i�, one has

kx� � xj k � kx� � xi�k C kxi� � xj k � kx� � xi�k C 2rij :

We conclude that whenever quadruple .i 0; i�I `0; `�/ is bad one has

kx� � xi 0k � kx� � xi�k C 2ı
`0`�
i 0i�

:

Let us now fix a good quadruple .i 0; i�I `0; `�/. We have

0 �  Ti 0i�.w� � wi 0i�/ < ı
`0`�
i 0i�

;

where the first inequality is due to

kw� � wi 0k2 D kx� � xi 0k � kx� � xi�k D kw� � wi�k2;

while the second one is due to the fact that were it false, the hypothesis H `0C
i 0i�

.ı
`0`�
i 0i�

/

would be true, and thus H `0�
i 0i�

would be rejected by test T `0`�
i 0i�

(recall that !K 2 x�K),
which is not the case because .i 0I`0/ 2 	.!K/. Denoting by �i�i 0 the projection ofw�
onto the line passing through wi 0 and wi� , let �� D �.wi�/, �� D �.�i�i 0/, and � 0 D
�.wi 0/ be coordinates of wi� , �i�i 0 , and wi 0 on this line, the origin on the line being
the midpoint wi�i 0 of the segment Œwi� ; wi 0 �, its orientation given by  i 0i� . One has
�� D ri�i 0 , �

0 D �ri�i 0 , and ���ı
`0`�
i 0i�

, and so

kx� � xi 0k
2
� kx� � xi�k

2
D kw� � wi 0k

2
2 � kw� � wi�k

2
2

D k�i�i 0 � wi 0k
2
2 � k�i�i 0 � wi�k

2
2

D .�� C ri�i 0/
2
� .�� � ri�i 0/

2

D 4ri�i 0�� � 4ri�i 0ı
`0`�
i 0i�

:
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We conclude that

kx� � xi 0k � kx� � xi�k D
kx� � xi 0k

2 � kx� � xi�k
2

kx� � xi 0k C kx� � xi�k

�
kx� � xi 0k

2 � kx� � xi�k
2

2ri�i 0
� 2ı

`0`�
i 0i�

;

implying (24).

(3ı) Denote

R D
1

2
max

.i I`/;.j I`0/2	.!K/
kwi � wj k2;

and letwxi andwxj be the endpoints of a maximizing segment withwxi xj D
1
2
.wxi Cwxj /

being its midpoint and yx.!K/D 1
2
.xxi C xxj / being the aggregated solution yielded by

our algorithm. Without loss of generality, assume that kwxi � w�k2 � kwxj � w�k2,
implying that .w� �wxi xj /

T .wxj �wxi xj / � 0. We have kwxj �wi�k2 � 2R, whence, as
we have just established,

kwxj � w�k
2
2 � kwi� � w�k

2
2 � 2kwxj � wi�k2 max

`W.j I`/2	.!K/
ı
`0`�
j i�
� 4Rzı

`�
i�
.!K/:

On the other hand,

kwxj � w�k
2
2 � kwxi xj � w�k

2
2 D 2.wxi xj � w�/

T .wxj � wxi xj /C kwxj � wxi xj k
2
2

� kwxj � wxi xj k
2
2 D R

2;

and we conclude that

kzx.!K/ � x�k
2
D kwxi xj � w�k

2
2 � kwxj � w�k

2
2 �R

2

� kwi� � w�k
2
2 C 4R

zı
`�
i�
.!K/ �R2

� kwi� � wk
2
2 C 4

zı
`�
i�
.!K/2;

which is (25).

Proof of Theorem 2. (1ı) Suppose that quadruple .i; j I`; `0/ is bad. Let us verify that
in this case one has rij � rK

``0
."/, where (cf. (16), (26))

" D �= xN; rK``0."/ D
1

2
max

x2X`;y2X`0

®
kx � yk W %.A`.x/;A`0.y// � "

1=K
¯
: (58)

To this end, consider optimization problem

max
x2X`�

ij
;y2X

`0C
ij

.ı/

%.A`.x/;A`0.y//;

X`�ij D ¹x 2 X` W Bx 2 W
`�
ij º; X`

0C

ij .ı/ D ¹x 2 X`0 W Bx 2 W
`0C
ij .ı/º

(59)
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for ı D rij . Note that X`�ij and X`
0C

ij .rij / are nonempty (otherwise the corresponding
quadruple would be "-good) convex and compact sets. Thus, problem (59) is solvable,
and its optimal solution x0 2 X`�ij , y0 2 X`

0C

ij .ı/ satisfies

kx0 � y0k D kBx0 � By0k2 � ı D rij :

On the other hand, optimal value x� of (59) is greater than "1=K because, otherwise,
the risk of a K-observation test T ``0

ij deciding on hypothesis H `�
ij against H `0C

ij .rij /,
as built in Section 2.2, would be bounded by x�K D ", so the quadruple .i; j I `; `0/
would be "-good what is not the case. In other words, x0; y0 is a feasible solution to
the maximization problem in (58) with the value of the objective � rij , implying the
desired inequality rij � rK

``0
."/.

Next, assume that quadruple .i; j I `; `0/ is good and that ı``
0

ij > ı. In this case set
X`
0C

ij .ı``
0

ij � ı/ is not empty because ı D ı``
0

ij � ı would be "-good otherwise, and we
know it is not. Same as above, we conclude that in this case

ı``
0

ij � ı � rK``0."/;

implying that whether quadruple .i�; j I `�; `/ is good or bad, one has

ı
`�`
i�j
� rK`�`."/C ı;

so that

yı
`�
i�
.!K/ � max

`�`�
rK`�`."/C ı; (60a)

zı
`�
i�
.!K/ � max

`
rK`�`."/C ı: (60b)

(2ı) Now (60a) combined with bound (24) imply that whenever !K 2 x�K

kx� � yx.!
K/k � kx� � xi�k C 2

�
max
`�`�

rK`�`."/C ı
�
:

Recall that
kx� � xi�k � kx� � x`�k

by construction and

kx� � x`�k D kx� � zx`�.z!
xK/k � r

xK
`�
.�/

due to z! xK 2 z� xK . Utilizing the bound in (60b), we conclude that

kx� � zx.!
K/k2 � kx� � xi�k

2
C 4

�
max
`

rK`�`."/C ı
�2
:

Finally, the second part of the statement of the theorem (starting with “Consequently,
. . .”) is readily given by (26) and (27) combined with the result of Lemma 1 applied
with " D �= xN .
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A.2. Proofs for Sections 4 and 5

Proof of Proposition 5. (1ı) The fact that the x�-probability of x„ is at least 1 � � is
readily given by the union bound and the fact that when i; j are comparable and x� 2
Xij .�ij /, the x�-probability for Tij (when i < j ) or Tj i (when i > j ) to accept Hij
is at least 1 � �=.N � 1/.

(2ı) Let us fix � 2 x„ and set yx D yx.�/, yi Dyi.�/, �� D kx� � xi�k. We claim that
whenever i� loses to j ¤ i�, we have

�� � ri�j ��i�j : (61)

Indeed, let j ¤ i� be such that i� loses to j . If j is comparable to i�, we have x� 62
Xi�j .�i�j /. Indeed, otherwise the test T¹i�;j º would accept Hi�j due to � 2 x„ and j
would loose to i�, which is not the case. On the other hand, x� 62Xi�j .�i�j / is exactly
the same as

�� D kx� � xi�k > ri�j ��i�j :

Now, let j and i� be incomparable; in this case i� loosing to j means that �j � �i� ,
that is, �i�j D maxŒ0; ri�j � �i� �, implying that

ri�j ��i�j � �i� � ��

(the concluding � being given by �i� D minx02X kx0 � xi�k combined with �� D
kx� � xi�k and x 2 X ).

(3ı) Note that if yi D i� (34) clearly is true. Let now i� ¤ yi . Then, if i� loses to
no j , we would have di� D �1, and since every i ¤ i� loses to i�, di � 0 for all
i ¤ i�, resulting in yi D i� which is not the case. Let us assume that yi ¤ i� and that i�
loses to some j ’s; let also j� D j�.�/ 2 	i�.�/ be such that kxi� � xj�k D di�.�/.
There are two possibilities:

� i� loses to yi ; when it is the case, (61) says that �� � ri�yi ��i�yi , whence

kx� � xyik � kx� � xi�k C kxi� � xyik D �� C 2ri�yi

� �� C 2Œ�� C�i�yi � D 3�� C 2�i�yi ;

and (34) follows.

� yi loses to i�, implying that

kxyi � xi�k � dyi .�/ � di�.�/ D kxi� � xj�k:

Since i� loses to j�, we have �� � ri�j� ��i�j� due to (61), resulting in

kx� � xyik � kx� � xi�k C kxi� � xyik � kx� � xi�k C kxi� � xj�k

D �� C 2ri�j� � �� C 2Œ�� C�i�j� �;

and (34) follows.
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Proof of Proposition 6. The fact that x�-probability of x„ is at least 1 � � is obvious
(cf. the proof of Proposition 5). Now let us fix � 2 x„ and let yx D yx.�/, yi D yi.�/, and
�� D kx� � xi�k. Consider the following “coloring” of indices 1 � j � N :

� j is white if kx� � xj k � �� C x�;

� j is gray if �� C x� < kx� � xj k � �� C 2x�;

� j is black if kx� � xj k > �� C 2x�.

Let kw , kg , kb be the numbers of white, gray, and black indices, respectively. Recall-
ing that � 2 „, observe that:

� When j is gray or black, we have

kx� � xj k > �� C x� D kx� � xi�k C
x� � kx� � xi�k C�i�j ;

that is, x� 2Xi�j .�i�j /. It follows that as applied to observation � , the test T¹i�;j º of
hypotheses Hi�j and Hj i� accepts Hi�j , that is, si�.�/ � kw � 1.

� When index i is black and j is a white index, we have

kx� � xik > �� C 2x� � x�C kx� � xj k;

that is, x� 2 Xj i .�ij /. As a consequence, as applied to observation � , the test T¹i;j º
of hypotheses Hij and Hj i accepts the second hypothesis, implying that si .�/ � kw .

Taken together, the above observations say that when � 2 x„ stems from x�,
index yi.�/ is either white or gray, but definitely is not black, implying that

kyx � x�k � �� C 2x�:

Proof of Theorem 3. (1ı) Given a pair .i; j / 2 O such that rij D 1
2
kxi � xj k > ı, let

us set
Xij .�; ı/ D

®
z 2 X W kz � xik � �.rij � ı/„ ƒ‚ …

dij

¯
;

where 0 < � < .1C /�1. Under the premise of the theorem, for any such pair i; j ,
there exists a xK-observation test deciding with risk � � on a pair of hypotheses
xHij and xHj i stating, respectively, that ! xK stems from signal belonging to Xij .�; ı/

and Xj i .�; ı/, and both these sets are nonempty (recall that we are in the case where
xs 2 X , 1 � s � N ). The desired test T is as follows: given observation ! xK , we
compute xx.! xK/ and accept xHij when

kxx.!
xK/ � xik � kxx.!

xK/ � xj k;

and accept xHj i otherwise.
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Let us verify that the risk of this test is indeed at most �. Suppose, first, that xHij
takes place, so that ! xK � p xK

A�.x�/
for some � � J and x� 2 Xij .�.rij � ı//. Then,

if xi� is the closest to x� point among x1; : : : ; xN , we have

kx� � xi�k � kx� � xik � �.rij � ı/;

and so p xK
A�.x/

-probability of the event

E D
®
!
xK
W kxx.!

xK/ � xk � dij C ı
¯

is at least 1 � � due to the origin of xx.�/. But if E takes place, then

kxx.!
xK/ � xik � kxx.!

xK/ � x�k C kxi � x�k � . C 1/dij C ı < rij ;

so that
kxx.!

xK/ � xj k � kxi � xj k � kxx.!
xK/ � xik > rij :

We conclude that the p xK
A�.x�/

-probability for T not to accept xHij is � �. By “sym-
metric reasoning,” when xHj i holds true, so that

!K � p
xK

A�.x�/

for some � � J and x� 2 Xj i .�.rij � ı//, p
xK

A�.x�/
-probability to reject xHj i is at

most �.
Now, testing xHj i against xHij is equivalent to deciding between “red” setRij .�; ı/

and “blue” set Bij .�; ı/ in the space M of parameters of distribution p xK� of ! xK , each
set being a union of at most J convex and compact sets:

Rij .�; ı/ D

J[
�D1

Rij�.�; ı/;

Rij�.�; ı/ D
®
A�.x/ W x 2 X� ; kx � xik � �.rij � ı/

¯
;

Bij .�; ı/ D

J[
�D1

Bij�.�; ı/;

Bij�.�; ı/ D
®
A�.x/ W x 2 X� ; kx � xj k � �.rij � ı/

¯
; � D 1; : : : ; J:

From what we know about color inferring test in simple observation schemes, the fact
that the hypotheses xHij and xHj i can be decided upon via xK-repeated observation
!
xK � p

xK
A�.x/

with risk � 2 .0; 1=2/ implies (cf. Proposition 2) that when K satis-
fies (38), we have at our disposal test Tij utilizing K-repeated observation !K which
decides with maximal risk not exceeding �=.N � 1/ upon hypotheses Hij and Hj i
stating that !K stems from a signal x such that x 2 Xij .�.rij � ı// (for Hij ) and
x 2 Xj i .�.rij � ı/ (for Hj i ).
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(2ı) Now let us apply the aggregation procedure described in Section 5.2 to K-
repeated observations, with K satisfying (38). From what we have just seen, in this
case, all pairs .i; j / such that rij > ı are appropriate, and the quantity .1� �/rij C �ı
with � 2 D WD .0; .1C /�1/ is .i; j /-appropriate. Let us set

z� D .1C  0/�1 2 D; zdij D z�.rij � ı/; zıij D rij � zdij D .1 � z�/rij C z�ı;

so that �ij WD zıij is .i; j /-appropriate, as required in the construction we are imple-
menting. Let us define the set of comparable pairs to be exactly the set of pairs
¹i; j º 2 U with rij > ı and equip these pairs with the tests T¹i;j º D TminŒi;j �;maxŒi;j �.
For these pairs, the quantities �ij satisfy the relations

�ij D .1 � z�/rij C z�ı D
 0

1C  0
rij C

1

1C  0
ı: (62)

Note that for incomparable pairs .i; j / 2 O, we have

�ij D max
�
0; rij �maxŒ�i ; �j �

�
� rij � ı:

(3ı) Now let observation !K stem from signal x� 2 X , so that !K � pK
A�.x�/

for some � such that x� 2 X� , and let i� be the index of one of the k � k-closest to x�
points x1; : : : ; xN . Finally, let x� be the set of !K satisfying the condition

whenever j ¤ i� is such that ri�j > ı (i.e., i� and j are comparable) and

kx� � xi�k � ri�j ��i�j

(i.e., hypothesis Hi�j holds true), test T¹i�;j º as applied to observation !K

accepts Hi�j .

By Proposition 5, the pK
A�.x�/

-probability of x� is at least 1 � �, and

kx� � yx.!
K/k � 3kx� � xi�k C 2

x�i�.!
K/: (63)

Next, let !K 2 x�, and let j 2 	i�.!
K/. It may happen that i� and j are compa-

rable; in this case Hi�j cannot be true due to !K 2 x�, that is,

kx� � xi�k > ri�j ��i�j ;

and besides this, we have

�i�j �
 0

1C  0
ri�j C

1

1C  0
ı

due to (62), implying that ri�j � .1C 
0/kx� � xi�k C ı. Hence,

�i�j �
 0

1C  0
ri�j C

1

1C  0
ı �  0kx� � xi�k C ı:
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When i� and j are incomparable, we have�i�j D ri�j � ı. We see that when !K 2 x�
(what happens with pK

A�.x�/
-probability at least 1 � �), we have

x�i�.!
K/ �  0kx� � xi�k C ı:

This combines with (63) to imply that when !K 2 x�, we also have

kyx � xi�k � .3C 2
0/kx� � xi�k C 2ı:

Proof of Theorem 4. (1ı) Let x	 be the set of pairs ¹i; j º 2U such that both hypothe-
ses

Hij .xı/ D H.Xij .xı// and Hj i .xı/ D H.Xj i .xı//

are nonempty. Let ¹i; j º 2 x	 be fixed, and let us show that under the premise of
the theorem the simple test which, given ! xK , accepts Hij when �ij .!

xK/ D i , and
accepts Hj i otherwise has its risk bounded with �. Indeed, let Hij be true, that is, the
distribution P of observation ! xK satisfies P 2 P

xK
x for some x 2 Xij .xı/, so that

kx � xj k � kx � xik C xı;

whence
kx � xj k � minŒkx � xik; kx � xj k�C xı:

By (41), the P -probability of the event �ij D j , that is, the probability of the test in
question rejecting Hij , is � �. By “symmetric” reasoning, the P -probability to reject
Hj i .xı/ when the hypothesis is true, is � � as well.

Now recall that testing Hij .xı/ versus Hj i .xı/ via a xK-repeated observation is
equivalent to deciding via this observation on “red” setRij .xı/ versus “blue” setBij .xı/
in the space M of parameters of distribution p� of !k , and each set is a union of at
most J convex and compact sets:

Rij .xı/ D

J[
�D1

Rij�.xı/; Rij�.xı/ D
®
A�.x/W x 2 X� ; kx � xik � kx � xj k � xı/

¯
;

Bij .xı/ D

J[
�D1

Bij�.xı/; Bij�.xı/ D
®
A�.x/W x 2 X� ; kx � xj k � kx � xik � xı

¯
:

The fact that hypotheses Hij .xı/ and Hj i .xı/ can be decided upon via xK-repeated
observation with risk 0 � � < 1=2 implies, by Proposition 2, that whenever

K �

�
2 ln.J xN=�/

ln
�
Œ4�.1 � �/��1

� xK�;
then xı is .i; j /-good in the sense of Section 5.3.1.
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(2ı) Now let K satisfy (42) and ¹i; j º 2 	, that is, both Xij .xı/ and Xj i .xı/ are
nonempty. Recall that in this case in our aggregation procedure �ij is selected to be
.i; j /-good (that is, with K observations, the test yielded by the machinery from Sec-
tion 2.3 decides on the hypothesis Hij .�ij / versus the alternative Hj i .�ij / with risk
not exceeding �= xN ) and either �ij � ı, or �ij � ı is not .i; j /-good. By item .1ı/,
for our i , j , K, we have that ı D xı is .i; j /-good, so that the second option implies
that �ij � ı � xı and one always has �ij � xı C ı.

On the other hand, if i ¤ j and ¹i; j º 62 x	, at least one of the sets Xij .xı/, Xj i .xı/

is empty, implying that xı is .i; j /-good. Consequently, in our aggregation procedure,
the same as in the case of ¹i; j º 2 	, one has �ij � xı C ı. Thus,

�ij � xı C ı

for all i ¤ j , and (43) is given by Proposition 6.

Proof of Proposition 9. We start with the following observation.

Lemma 2. Under the premise of the proposition, let x%� D RiskOpt1;N
�; xK
ŒX� be the min-

imax risk of xK-observation estimation over X . Let alsoK satisfy (47) and ¹i; j º 2 U

be such that x%� < xıij (cf. (37)). Then any ı such that x%� < ı�xıij is .i; j /-appropriate.

Proof. Under the lemma’s premise, for any � > x%� there exists an estimate xxD xx.! xK/
such that for every x 2 X , the x-probability of the event kxx � xk � � is at least 1� �.
As a result, for any i ¤ j and ı > � there exists a xK-observation test deciding on
hypotheses Hij .ı/ and Hj i .ı/ with risk bounded with �, namely, test xT¹i;j º accept-
ing Hij .ı/ if kxx � xik � rij and accepting Hj i .ı/ otherwise. Indeed, assuming that
Hij .ı/ takes place, the distribution P xK of observation ! xK stems from some x 2 X
satisfying

kx � xik � rij � ı < rij � �;

so that when the event kxx � xk � � takes place (which happens with P xK-probability
� 1 � �), we have

kxx � xik � kxx � xk C kx � xik < rij ;

and test xT¹i;j º acceptsHij .ı/. Similarly, whenHj i .ı/ takes place, the distribution P xK

of ! xK stems from some x 2 X satisfying

kx � xj k � rij � ı < rij � �;

so that when the event kxx � xk � � takes place (which happens with P xK-probability
� 1 � �), we have

kxx � xj k � kxx � xk C kx � xj k < �C rij � � D rij ;

whence kxx � xik > 2rij � rij > rij , and xT¹i;j º accepts Hj i .ı/.
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Recalling that X is the union of at most N convex and compact sets, we conclude
that when K satisfies (47), the risk of the K-observation test deciding on Hij .ı/
versus Hj i .ı/ constructed in Section 5.2 does not exceed �=.N � 1/.

The claim of the proposition is readily given by combining the bound (46) with
the fact that by Lemma 2 the quantity x�, as is immediately seen, can be bounded by
a quantity arbitrarily close to x%�.

Proof of Proposition 10. The statement of the proposition is readily implied by the
following analog of Lemma 2.

Lemma 3. Given a positive integer xK and � 2 .0; 1=2/, let x%� D Risk1;N
�; xK
ŒX� be the

minimax �-risk of estimation over X , and let K satisfy (48). Then x� � 2x%� C ı.

Proof. Let zı > 2x%� and let .i; j / 2 O; let us show that zı is .i; j /-good (for the def-
inition of .i; j /-goodness, see Section 5.3). There is nothing to prove when at least
one of the sets Xij .zı/, Xj i .zı/ is empty. Assuming these sets nonempty, let � > x%�

be such that 2� < zı. Then there is an estimate xx.! xK/ such that for every x 2 X , the
x-probability of the event

kx � xx.!
xK/k � �

is� 1� �. We immediately convert this estimate into a xK-observation test deciding on
the hypothesis Hij D H.Xij .zı// versus the alternative Hj i D H.Xj i .zı//: given ! xK

and setting xx D xx.! xK/, this test accepts Hij (and rejects Hj i ) when kxx � xik �
kxx � xj k, and accepts Hj i (and rejects Hij ) otherwise. Observe that the risk of this
test is� �. Indeed, when Hij takes place, the distribution P xK of ! xK stems from some
x 2 Xij .zı/, that is, x 2 X and

kx � xik � kx � xj k � zı:

Therefore, when kx � xxk � � (the latter happens with P xK-probability � 1 � �), we
have

kxx � xik � kx � xxk C kx � xik � �C kx � xj k � zı

� �C kxx � xj k C kxx � xk � zı

� kxx � xj k C 2� � zı < kxx � xj k;

and the test accepts Hij . “Symmetric” reasoning shows that when Hj i takes place, the
test accepts Hj i and rejects Hij when kx � xxk � �, which happens with x-probability
� 1 � �, implying that the risk of the test is � �.

Because X is the union of N convex compact sets, existence of pairwise xK-
observation tests deciding with risk� � on all pairs Hij , Hj i of nonempty hypotheses
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with .i; j / 2 O implies, by the results of Section 2.3, that with K as in (48) zı indeed
is .i; j /-good for all .i; j / 2 O.

Now, for every .i; j / 2 O by construction the quantity �ij is .i; j /-good and is
either � ı, or is such that �ij � ı is not .i; j /-good. By the above, the second option
implies that �ij < zı C ı for all .i; j / 2 O, so that x� < zı C ı. The latter inequality
holds true whenever zı > 2x%�, and the conclusion of the lemma follows.

Proof of Theorem 5. (1ı) Let us verify that in a K-bad pair .i; j / ıij , as defined
in (12), satisfies

ıij � gKij ."/:

Indeed, consider optimization problem

min
x2Bi ;y2Bj

kAi .x/ �Aj .y/k2I (64)

observe that (64) is solvable, and its optimal solution x0 2 Bi ; y0 2 Bj satisfies

kx0 � y0k � 2ıij :

On the other hand, the optimal value of (57) is less than .2=
p
K/qN .1 � "/ because,

otherwise, the risk of K-observation test T¹i;j º deciding on hypotheses Hi and Hj ,
see (12), as yielded in Gaussian case by the machinery from Section 2.2, would be
bounded by ", implying that pair .i; j / is K-good what is not the case. We conclude
that gKij ."/, as defined in (50), satisfies

gKij ."/ �
1

2
kx0 � y0k � ıij I

along with the result of Proposition 3 (see (13) and (14)), this implies relation (52).

(2ı) Let us fix .i; j / 2 O. Let for � 2 .0; 1/,

x%�ij .�/ D RiskOpt¹i;j º
�; xK

ŒXi [Xj �I

let also .xx; xy/, xx 2 Xi , xy 2 Xj , be an optimal solution to (50) with ı D ". Note that
for # 2 Œ0; 1�, we have x.#/ D #xx 2 Xi and y.#/ D # xy 2 Xj , while

�.#/ D kAi .x.#// �Aj .y.#//k2

is a linear function of # with �.1/ � .2=
p
K/qN .1 � "/ and �.0/ D 0. Let now

z# D

p
KqN .1 � �/
p
xKqN .1 � "/

� 1I
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then for # < z# one has

�.#/ � #�.1/ <
2
p
xK
qN .1 � �/:

The latter relation means that there is no xK-observation test capable of deciding
between hypotheses Hx.#/W!k � N .Aix.#/; In/ and Hy.#/W!k � N .Ajy.#/; Im/

with risk bounded with � , implying in its turn that

x%�ij .�/ >
1

2
kx.#/ � y.#/k D

1

2
#kxx � xyk D #gKij ."/:

Applying the latter bound to � D � (recall that z# � 1 for � D � due to (51)), we obtain

gKij ."/ �
x#�1x%�ij .�/;

which combines with (52)) to imply (53).
The same bound as applied with � D 1=16 andK D xK (this again is possible due

to " � � < 1=16) implies that

g
xK
ij ."/ �

qN .1 � "/

qN .15=16/
x%�ij

� 1
16

�
� C4

p
lnŒN=��RiskOpt¹i;j º

1=16; xK
ŒXi [Xj �: (65)

(3ı) Thus, all we need to show the last statement of the theorem, is to bound the
quantity RiskOpt

¹j º

1=8; xK
ŒXj � – the minimax 1=8-risk of recovering x 2 Xj from the

single “averaged” observation

y! � N .Aj .x/; xK
�1Im/:

Common sense says that RiskOpt
¹j º

1=8; xK
ŒXj � is exactly the same as RiskOpt¹j º

1=8; xK
ŒXj �,

but we do not know why this would be the case.16 Instead, we are about to establish a
slightly weaker fact which is sufficient for our purposes.

Lemma 4. Suppose that for a positive integer M , Y � Rn, and � 2 .0; 1=4/,
Riskopt�;M ŒY � is the minimax over Y �-risk of estimation given an M -repeated
observation .!1; : : : ; !M /, !k � N .A.x/; Im/, x 2 Y . Then the minimax over Y
2�-risk Riskopt2�;M ŒY � of estimation given a single observation

x! D
1

M

MX
iD1

!k

satisfies
Riskopt2�;M ŒY � � 2Riskopt�;M ŒY �: (66)

16Recall that y! is sufficient statistics when estimating functions of the mean of the Gaussian
distribution – conditional distributions of ! xK given y! is Gaussian and does not depend on x.
Were the considered loss convex, the corresponding result would be readily given by the Rao–
Blackwell theorem.
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Proof. Note that !k , k D 1; : : : ;M can be represented as !k D �k C x!, where

�k � N
�
0;
M � 1

M
I
�

are independent of x!. This observation implies that if Riskopt
R

�;M ŒXj � is defined in
the same fashion as Riskopt�;M ŒXj � but with candidate estimates which may be ran-
domized then

Riskopt
R

�;M ŒXj � � Riskopt�;M ŒXj �:

We claim that
Riskopt2�;M ŒXj � � 2Riskopt

R

�;M ŒXj � (67)

what obviously implies the lemma. Indeed, let � > Riskopt
R

�;M , so that there exists a
deterministic function �.!; �/ taking values in Rn such that for every x 2 Y it holds
that

Prob.x!;�/�P
®
k�.x!; �/ � xk > �

¯
� �;

where P is the distribution of .x!; �/ with independent of each other

x! � N .A.x/;M�1Im/ and � � U;

U being the uniform distribution over Œ0; 1�. Let

x� D
®
x! 2 Rm W 9y 2 Y W Prob��U ¹�W k�.x!; �/ � yk � �º > 1=2

¯
:

For every x! 2 x�, we can specify  .x!/ 2 Y in such a way that

Prob��U
®
� W k�.x!; �/ �  .x!/k � �

¯
> 1=2;

and define  .x!/ once for every fixed point of Y when x! … x�. For x 2 Y , let also

z�Œx� D
®
x! 2 Rm W Prob��U ¹� W k�. N!; �/ � xk � �º > 1=2

¯
;

note that z�Œx� � x�. Let now z�cŒx� be the complement of z�Œx�; due to the origin �,
for every x 2 Y , we have

Probx!�N .A.x/;M�1Im/
z�cŒx� � 2�:

On the other hand, whenever x! 2 z�Œx�, both sets®
� W k�.x!; �/ � xk � �

¯
and

®
� W k�.x!; �/ �  .x!/k � �

¯
are subsets of Œ0; 1� of measure > 1=2 and thus intersect, implying that

kx �  .x!/k � 2�:
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We conclude that for every x 2 Y , the stemming from x probability of the event
k .x!/ � xk > 2� is at most 2� , that is,

RiskOpt2�;M ŒXj � � 2�:

Because � may be arbitrary > RiskOptR�;M ŒY �, (67) follows.

When combining (49) and (66) we conclude that because � � 1=16, one has

rj .�/ � C5 ln.LC L0/
p

ln.m=�/RiskOpt1=16;M ŒXj � 8j � N:

Taken together with (65) the latter bound implies the last statement of the theorem.

Funding. Research of the authors was supported by the Multidisciplinary Institute in
Artificial intelligence (MIAI) at Grenoble-Alpes (ANR-19-P3IA-0003).

References

[1] J.-Y. Audibert, Aggregated estimators and empirical complexity for least square regres-
sion. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 6, 685–736 Zbl 1052.62037
MR 2096215

[2] L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood
estimators. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006), no. 3, 273–325
Zbl 1333.62094 MR 2219712

[3] L. Birgé, Model selection for Poisson processes. In Asymptotics: particles, processes and
inverse problems, pp. 32–64, IMS Lecture Notes Monogr. Ser. 55, Inst. Math. Statist.,
Beachwood, OH, 2007 Zbl 1176.62082 MR 2459930

[4] L. Birgé, Robust tests for model selection. In From probability to statistics and back:
high-dimensional models and processes, pp. 47–64, Inst. Math. Stat. (IMS) Collect. 9,
Inst. Math. Statist., Beachwood, OH, 2013 Zbl 1327.62279 MR 3186748

[5] O. Bousquet, D. Kane, and S. Moran, The optimal approximation factor in density estima-
tion. 2019, arXiv:1902.05876

[6] F. Bunea, A. B. Tsybakov, and M. H. Wegkamp, Aggregation for Gaussian regression.
Ann. Statist. 35 (2007), no. 4, 1674–1697 Zbl 1209.62065 MR 2351101

[7] M. V. Burnashev, Minimax detection of an imperfectly known signal against a background
of Gaussian white noise. Theory Probab. Appl. 24 (1979), 107–119 Zbl 0433.60043
MR 522240

[8] M. V. Burnashev, Discrimination of hypotheses for Gaussian measures and a geometric
characterization of the Gaussian distribution. Math. Notes 32 (1982), 757–761
Zbl 0534.60006 MR 679247

[9] T. T. Cai and M. G. Low, Minimax estimation of linear functionals over nonconvex param-
eter spaces. Ann. Statist. 32 (2004), no. 2, 552–576 Zbl 1048.62054 MR 2060169

[10] T. T. Cai and M. G. Low, On adaptive estimation of linear functionals. Ann. Statist. 33
(2005), no. 5, 2311–2343 Zbl 1086.62031 MR 2211088

[11] O. Catoni, Statistical learning theory and stochastic optimization. Lecture Notes in Math.
1851, Springer, Berlin, 2004 Zbl 1076.93002 MR 2163920

https://zbmath.org/?q=an:1052.62037&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2096215
https://zbmath.org/?q=an:1333.62094&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2219712
https://zbmath.org/?q=an:1176.62082&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2459930
https://zbmath.org/?q=an:1327.62279&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3186748
https://arxiv.org/abs/1902.05876
https://zbmath.org/?q=an:1209.62065&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2351101
https://zbmath.org/?q=an:0433.60043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=522240
https://zbmath.org/?q=an:0534.60006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=679247
https://zbmath.org/?q=an:1048.62054&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2060169
https://zbmath.org/?q=an:1086.62031&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2211088
https://zbmath.org/?q=an:1076.93002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2163920


Aggregating estimates by convex optimization 115

[12] S. O. Chan, I. Diakonikolas, R. A. Servedio, and X. Sun, Near-optimal density estimation
in near-linear time using variable-width histograms. In Advances in Neural Information
Processing Systems 27, pp. 1844–1852, Curran Associates, Inc., 2014

[13] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Ann. Math. Statistics 23 (1952), 493–507 Zbl 0048.11804
MR 57518

[14] D. Dai, P. Rigollet, and T. Zhang, Deviation optimal learning using greedyQ-aggregation.
Ann. Statist. 40 (2012), no. 3, 1878–1905 Zbl 1257.62037 MR 3015047

[15] L. Devroye and G. Lugosi, A universally acceptable smoothing factor for kernel density
estimates. Ann. Statist. 24 (1996), no. 6, 2499–2512 Zbl 0867.62024 MR 1425963

[16] L. Devroye and G. Lugosi, Combinatorial methods in density estimation. Springer Ser.
Statist., Springer, New York, 2001 Zbl 0964.62025 MR 1843146

[17] A. Goldenshluger, A universal procedure for aggregating estimators. Ann. Statist. 37
(2009), no. 1, 542–568 Zbl 1155.62018 MR 2488362

[18] A. Goldenshluger, A. Juditsky, and A. Nemirovski, Hypothesis testing by convex opti-
mization. Electron. J. Stat. 9 (2015), no. 2, 1645–1712 Zbl 1327.62287 MR 3379005

[19] A. Goldenshluger and O. Lepski, Universal pointwise selection rule in multivariate func-
tion estimation. Bernoulli 14 (2008), no. 4, 1150–1190 Zbl 1168.62323 MR 2543590

[20] A. Goldenshluger and O. Lepski, Structural adaptation via Lp-norm oracle inequalities.
Probab. Theory Related Fields 143 (2009), no. 1-2, 41–71 Zbl 1149.62020
MR 2449122

[21] A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: oracle
inequalities and adaptive minimax optimality. Ann. Statist. 39 (2011), no. 3, 1608–1632
Zbl 1234.62035 MR 2850214

[22] G. K. Golubev, Asymptotic minimax estimation of regression in the additive model. Probl.
Inf. Transm. 28 (1992), 101–112 Zbl 0789.62011 MR 1178413

[23] N. Hengartner and M. Wegkamp, Estimation and selection procedures in regression: an
L1 approach. Canad. J. Statist. 29 (2001), no. 4, 621–632 Zbl 0994.62030
MR 1888509

[24] A. Juditsky and A. Nemirovski, Hypothesis testing via affine detectors. Electron. J. Stat.
10 (2016), no. 2, 2204–2242 Zbl 1345.62077 MR 3528713

[25] A. Juditsky and A. Nemirovski, Near-optimality of linear recovery in Gaussian observa-
tion scheme under k � k2

2
-loss. Ann. Statist. 46 (2018), no. 4, 1603–1629

Zbl 1403.62047 MR 3819111
[26] A. Juditsky and A. Nemirovski, Near-optimal recovery of linear and N -convex functions

on unions of convex sets. Inf. Inference 9 (2020), no. 2, 423–453 Zbl 1471.62299
MR 4108974

[27] A. Juditsky and A. Nemirovski, On polyhedral estimation of signals via indirect observa-
tions. Electron. J. Stat. 14 (2020), no. 1, 458–502 Zbl 1436.62718 MR 4055097

[28] A. Juditsky and A. Nemirovski, Statistical inference via convex optimization. Princeton
Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2020 Zbl 1433.62006
MR 4264425

[29] A. Juditsky, P. Rigollet, and A. B. Tsybakov, Learning by mirror averaging. Ann. Statist.
36 (2008), no. 5, 2183–2206 Zbl 1274.62288 MR 2458184

https://zbmath.org/?q=an:0048.11804&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=57518
https://zbmath.org/?q=an:1257.62037&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3015047
https://zbmath.org/?q=an:0867.62024&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1425963
https://zbmath.org/?q=an:0964.62025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1843146
https://zbmath.org/?q=an:1155.62018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2488362
https://zbmath.org/?q=an:1327.62287&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3379005
https://zbmath.org/?q=an:1168.62323&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2543590
https://zbmath.org/?q=an:1149.62020&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2449122
https://zbmath.org/?q=an:1234.62035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2850214
https://zbmath.org/?q=an:0789.62011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1178413
https://zbmath.org/?q=an:0994.62030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1888509
https://zbmath.org/?q=an:1345.62077&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3528713
https://zbmath.org/?q=an:1403.62047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3819111
https://zbmath.org/?q=an:1471.62299&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4108974
https://zbmath.org/?q=an:1436.62718&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4055097
https://zbmath.org/?q=an:1433.62006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4264425
https://zbmath.org/?q=an:1274.62288&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2458184


A. Juditsky and A. Nemirovski 116

[30] G. Lecué and P. Rigollet, Optimal learning with Q-aggregation. Ann. Statist. 42 (2014),
no. 1, 211–224 Zbl 1286.68255 MR 3178462

[31] O. Lepskii, A problem of adaptive estimation in Gaussian white noise. Theory Probab.
Appl. 35 (1990), no. 3, 454–466 Zbl 0745.62083 MR 1091202

[32] O. Lepskii, Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally
adaptive estimates. Theory Probab. Appl. 36 (1991), 682–697 Zbl 0776.62039
MR 1147167

[33] O. Lepskii, Asymptotically minimax adaptive estimation. II. Schemes without optimal
adaptation. Adaptive estimates. Theory Probab. Appl. 37 (1992), no. 3, 433–468
Zbl 0787.62087 MR 1214353

[34] O. Lepskii, On problems of adaptive estimation in white Gaussian noise. In Topics in non-
parametric estimation, pp. 87–106, Adv. Soviet Math. 12, Amer. Math. Soc., Providence,
RI, 1992 Zbl 0783.62061 MR 1191692

[35] O. Lepskii, Adaptive estimation over anisotropic functional classes via oracle approach.
Ann. Statist. 43 (2015), no. 3, 1178–1242 Zbl 1328.62213 MR 3346701

[36] O. Lepskii and N. Serdyukova, Adaptive estimation under single-index constraint in a
regression model. Ann. Statist. 42 (2014), no. 1, 1–28 Zbl 1302.62077 MR 3161459

[37] S. Mahalanabis and D. Stefankovic, Density estimation in linear time. In COLT 2008 – The
21st Annual Conference in Learning Theory (Helsinki, 2008), pp. 503–512, Omnipress,
2008

[38] P. Rigollet, Kullback–Leibler aggregation and misspecified generalized linear models.
Ann. Statist. 40 (2012), no. 2, 639–665 Zbl 1274.62298 MR 2933661

[39] P. Rigollet and A. B. Tsybakov, Linear and convex aggregation of density estimators.
Math. Methods Statist. 16 (2007), no. 3, 260–280 Zbl 1231.62057 MR 2356821

[40] A. B. Tsybakov, Optimal rates of aggregation. In Learning theory and kernel machines
(Washington, DC, 2003), pp. 303–313, Lect. Notes Comput. Sci. 2777, Springer, Berlin,
2003 Zbl 1208.62073

[41] Y. Yang, Mixing strategies for density estimation. Ann. Statist. 28 (2000), no. 1, 75–87
Zbl 1106.62322 MR 1762904

[42] Y. Yang, Aggregating regression procedures to improve performance. Bernoulli 10 (2004),
no. 1, 25–47 Zbl 1040.62030 MR 2044592

[43] Y. G. Yatracos, Rates of convergence of minimum distance estimators and Kolmogorov’s
entropy. Ann. Statist. 13 (1985), no. 2, 768–774 Zbl 0576.62057 MR 790571

Received 16 July 2021; revised 21 February 2022.

Anatoli Juditsky
Laboratoire Jean Kuntzmann, Université Grenoble-Alpes, 700 Avenue Centrale,
38401 Domaine Universitaire de Saint-Martin-d’Hères, France;
anatoli.juditsky@univ-grenoble-alpes.fr

Arkadi Nemirovski
H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, 755 Ferst Drive NW, Atlanta, GA 30332, USA;
arkadi.nemirovski@isye.gatech.edu

https://zbmath.org/?q=an:1286.68255&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3178462
https://zbmath.org/?q=an:0745.62083&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1091202
https://zbmath.org/?q=an:0776.62039&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1147167
https://zbmath.org/?q=an:0787.62087&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1214353
https://zbmath.org/?q=an:0783.62061&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1191692
https://zbmath.org/?q=an:1328.62213&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3346701
https://zbmath.org/?q=an:1302.62077&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3161459
https://zbmath.org/?q=an:1274.62298&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2933661
https://zbmath.org/?q=an:1231.62057&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2356821
https://zbmath.org/?q=an:1208.62073&format=complete
https://zbmath.org/?q=an:1106.62322&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1762904
https://zbmath.org/?q=an:1040.62030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2044592
https://zbmath.org/?q=an:0576.62057&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=790571
mailto:anatoli.juditsky@univ-grenoble-alpes.fr
mailto:arkadi.nemirovski@isye.gatech.edu

	1. Introduction
	2. Preliminaries: Testing convex hypotheses in simple observation schemes
	2.1. Simple observation schemes: Definitions
	2.1.1 Examples of simple observation schemes

	2.2. Testing pairs of convex hypotheses in simple o.s.
	2.3. Testing multiple hypotheses in simple o.s.

	3. Adaptive estimation by testing
	3.1. Estimation over unions of convex sets in simple observation schemes: Problem setting
	3.2. Case of a general seminorm
	3.2.1 Construction
	3.2.2 Risk analysis

	3.3. Estimate aggregation: Case of a Euclidean seminorm
	3.3.1 Construction
	3.3.2 Risk analysis


	4. ``Generic'' test-based aggregation
	4.1. Setup
	4.2. Aggregation in general seminorm
	4.2.1 The setup
	4.2.2 Aggregation routine

	4.3. Aggregation in a Euclidean seminorm
	4.3.1 The setup
	4.3.2 Aggregation routine


	5. Test-based aggregation in simple observation schemes
	5.1. Problem setting
	5.2. Aggregation in a general seminorm
	5.2.1 Preliminaries
	5.2.2 Aggregation routine
	5.2.3 Characterizing performance

	5.3. Aggregation in a Euclidean seminorm
	5.3.1 Preliminaries
	5.3.2 Aggregation routine
	5.3.3 Characterizing performance

	5.4. Application: Adaptive estimation over unions of convex sets
	5.4.1 Estimation over unions using point aggregation


	6. Adaptive estimation over unions of ellitopes
	6.1. Ellitopic setup
	6.2. Near-optimality of the aggregated estimate
	6.3. Bounding the maximal risk of estimation
	6.4. Numerical illustration: Application to estimation in the single-index model

	A. Proofs
	A.1. Proofs for Section 3
	A.2. Proofs for Sections 4 and 5

	References

