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Sharp local minimax rates for goodness-of-fit testing in
multivariate binomial and Poisson families and in multinomials

Julien Chhor and Alexandra Carpentier

Abstract. We consider the identity testing problem – or goodness-of-fit testing problem –
in multivariate binomial families, multivariate Poisson families and multinomial distributions.
Given a known distribution p and n i.i.d. samples drawn from an unknown distribution q, we
investigate how large � > 0 should be to distinguish, with high probability, the case p D q

from the case d.p; q/ � �, where d denotes a specific distance over probability distributions.
We answer this question in the case of a family of different distances: d.p; q/ D kp � qkt for
t 2 Œ1; 2�, where k � kt is the entrywise `t norm. Besides being locally minimax-optimal – i.e.
characterizing the detection threshold in dependence of the known matrix p – our tests have
simple expressions and are easily implementable.

1. Introduction

We consider the problem of identity testing or goodness-of-fit testing in multivariate
binomial families, multivariate Poisson families and multinomial distributions. At a
high level, this problem aims at testing whether or not the data distribution matches
a given known distribution. Throughout the paper, we will state the results in the
multivariate binomial setting, and will establish the link with multivariate Poisson
families and multinomials later on. The problem can be stated as follows: given n
i.i.d. realizations of an unknown multivariate Binomial family (see Section 2) with
unknown distribution q, and given a known distribution p, we want to test

H0Wp D q vs. H1W d.p; q/ � �;

for a given distance d and separation radius �.
The difficulty of this testing problem is characterized by the minimal separation

radius � needed to ensure the existence of a test that is uniformly consistent under both
the null and the alternative hypothesis, i.e. a test whose worst-case error is smaller than
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a given � > 0, and to identify such a test. See Section 2 for a precise definition of the
setting.

In this paper, we will mostly focus on the following goals:

� We focus on the case where the distance d is the `t distance, namely, if p D
.p1; : : : ; pN / and q D .q1; : : : ; qN /, then

d.p; q/ D

� NX
iD1

jqi � pi j
t

�1=t
for any t 2 Œ1; 2�. Typically, the case t D 2 and t D 1 (total variation distance for
discrete distributions) are considered, and we interpolate between these two extreme
cases.

� Our main objective will be to develop tests – as well as matching lower bounds –
for this identity testing problem that are locally optimal in that the minimax separation
distance � should depend tightly on p. Indeed, it is clear that some p will be “easier”
to test than others. Consider, for example, the following two extreme cases in the case
of discrete (multinomial) distributions over ¹1; : : : ; N º:

(i) the very “easy” case where p is a Dirac distribution on one of the coordinates,
which implies a very low noise, and

(ii) the very “difficult” case where all entries of p are equal to 1=N , which max-
imizes the noise.

It is clear that the minimax local separation distance should differ between these two
cases and be much smaller in case (i) than in case (ii). We aim at studying the minimax
local separation distance for any p, and characterize tightly its shape depending on p.

The existing literature about hypothesis testing [46] is profuse: the goodness-of-fit
problem has been thoroughly studied, especially in the case of signal detection in the
Gaussian setting, notably by Ingster (see [40]) and has given rise to a vast literature. In
parallel to the study of hypothesis testing, there exists a broad literature on the related
problem of property testing with seminal papers such as [36, 49].

The identity testing problem in multinomials – i.e. probability distributions over a
finite set – has been widely studied in the literature. We refer the reader to [8,18,19] for
excellent surveys. When observing n i.i.d. data with unknown discrete distribution q
and when fixing a distribution p, the aim is to derive the minimal separation distance �
so that a uniformly consistent test exists for testing H0WpD q vs. H1.�/Wd.p;q/� �.
Note that this problem is also often considered in the dual setting of sample complex-
ity, where the goal is to find the minimal number of samples n such that a consistent
test exists for a given separation � > 0. One distinguishes between global results
which are obtained for the worst case of the distribution p, and local results, where
the minimax separation distance is required to depend precisely on any given p.



Local goodness-of-fit testing in discrete models 3

For global results, see e.g. [38] (in Russian), [29, 34, 39, 47], and also in the related
two-sample testing problem – where both p; q are unknown and observed through
samples – see e.g. [11,21]. In the present paper, we focus on local results. In the case
of the `1 distance, important contributions to local testing have been established in
e.g. [28, 53]. Note that these papers provide results in terms of sample complexity,
and more recently, the paper [9] has re-considered this problem in terms of minimax
separation distance – focusing also on the case of smooth densities. Another quite
related work is [14], investigating the rate of goodness-of-fit testing in the multinomial
case, in the `1 and `2 distances, under privacy constraints. Regarding the related two
sample testing problem, see [4, 15, 28, 41]. This multinomial framework proves very
useful for a wide range of applications, which include Ising models [26], Bayesian
networks [20] or even quantum mechanics [7].

The papers [9,53] are the most related to our present results, due to the equivalence
between the multivariate binomial and Poisson distribution settings and the multino-
mial setting after a Poissonization trick; see Section 3.1 for more details on why our
setting encompasses those settings. We postpone a precise discussion between our
result and this stream of literature to the core of the paper1, since it is technical. As
high-level comments, we restrict to remarking this stream of literature only considers
separation in total variation distance, namely the `1 distance for discrete distributions.

Note that goodness-of-fit testing for inhomogeneous Erdös–Rényi random graphs
(see the definition e.g. in [32]), is a direct an important corollary of our result about
multivariate binomial local testing. This result is therefore interesting as only little
literature exists about identity testing in random graphs - and to the best of our knowl-
edge, no literature exists about local identity testing in the sense described above
(see for example [25] for global testing in inhomogeneous random graphs). In recent
machine learning and statistical applications, the increasing use of networks has made
large random graphs a decisive field of interest. To name a few topics, let us mention
community detection, especially in the stochastic block model ([1, 2, 6, 27, 54]), in
social networks ([12, 56]), as well as network modeling ([5, 44]), or network dynam-
ics ([13]). The papers [32] and [33] propose an analysis of the two sample case,
under sparsity: Given two populations of mutually independent random graphs, each
population being drawn respectively from the distributions P and Q, they perform
the minimax hypothesis testing H0W P D Q vs. H1W d.P; Q/ � � for a variety of
distances d , and identify optimal tests over the classes of sparse graphs that they
consider. The paper [48] identifies a computationally efficient algorithm for testing
the separability of two hypotheses. Testing between a stochastic block model ver-
sus an Erdös–Rényi model has been studied in [30] and [43]. Phase transitions are

1We compare with this stream of literature under our upper and lower bounds in Sections 3,
and also in the discussion in Section 4.
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also known for detecting strongly connected groups or high dimensional geometry
in large random graphs ([17]). The paper [51] tests random dot-product graphs in
the two sample setting with low-rank adjacency matrices. The paper [31] examines
a more general case in which the graphs are not necessarily defined on the same set
of vertices. To summarize, only few papers address the construction of efficient tests
in random graphs – although this would be valuable in various areas such as social
networks [45], brain or ‘omics’ networks [35, 37], testing chemicals [50] or ecology
and evolution [24]. Moreover, and to the best of our knowledge, no paper considers
the local version of the testing problem, i.e. focuses on obtaining separation distances
that depend on the null hypothesis.

The paper is organized as follows: In Section 2, we describe the setting by defining
the multivariate binomial model and the minimax framework. In Section 3, state our
main theorem, which gives an explicit expression of the minimax separation radius as
a function of p and n. In Section 3.1, we establish the equivalence between the bino-
mial, the Poisson and the multinomial settings. In Section 4, we discuss our results,
by comparing them with the state of the art, especially with the multinomial setting.
In Section 5, we describe our lower bound construction. In Section 6, we describe
our tests and state theoretical results guaranteeing their optimality. We finally pro-
vide additional comments on our results in Section 7. All proofs are deferred to the
appendix.

2. Problem statement

2.1. Setting

We first introduce the Binomial setting. In Section 3.1, we will introduce two other
very related settings (the multinomial and the Poisson settings) and prove that the
associated minimax rates can be deduced from the Binomial case.

Let N 2 N, N � 2 and define PN D Œ0; 1�N . Let q D .q1; : : : ; qN / 2 PN be
an unknown vector of Bernoulli parameters. Assume that we observe X1; : : : ; Xn
i.i.d. such that each Xi can be written as Xi D .Xi .1/; : : : ; Xi .N // where all of the
entriesXi .1/; : : : ;Xi .N / are mutually independent andXi .j /� Ber.qj /. We slightly
abuse notation and write X1; : : : ; Xn

i.i.d.
� q when X1; : : : ; Xn are generated with this

distribution. Assume that n is even: nD 2k, for k 2 N. This assumption can be made
without loss of generality and makes the analysis of the upper bound more convenient
by allowing for sample splitting. We denote the total variation distance between two
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probability measures by dTV and for any p 2 RN and for t > 0, we define

kpkt D

� NX
jD1

jpj j
t

�1=t
:

This quantity defines a norm whenever t � 1.

2.2. Minimax testing problem

We now define the testing problem considered in the paper. Let � 2 .0; 1/ be a fixed
constant and let t 2 Œ1; 2�. We are given a known vector p 2 PN and we suppose that
the data is generated from an unknown vector q: X1; : : : ; Xn

i.i.d.
� q. We are interested

in the following testing problem:

H
p
0 W q D p vs. H

�;p;t
1 W q 2 PN ; kp � qkt � �: (1)

This problem is called “goodness-of-fit testing problem”. When no ambiguity arises,
we write H0 and H1 to denote the null and alternative hypotheses.

A test  is a measurable function of the observations X1; : : : ; Xn, taking only the
values 0 or 1. We measure the quality of any test  by its maximum risk, defined as

R. / WD R�;p;t;n. /

D Pp. D 1/C sup
q s.t. kp�qkt��

Pq. D 0/; (2)

where R. / is the sum of the type-I and the type-II errors.
The minimax risk is the risk of the best possible test, if any:

R� WD R��;p;t;n D inf
 test

R. /

D inf
 test

�
Pp. D 1/C sup

QWkp�qkt��

Pq. D 0/
�
:

Note thatR� WDR��;p;t;n depends on the choice of the norm indexed by t , the vector p,
the separation radius �, and the sample size n. Since all quantities depend on p, we say
that the testing problem is local – around p – as opposed to classical approaches in the
minimax testing literature, where one generally only considers a family of vectors p
and focuses only on the worst case results over this family, see e.g. [31].

In the following, we fix an absolute constant � 2 .0; 1/ and we are interested in
finding the smallest ��p;t;n such that R�

��p;t;n;p;t;n
� �:

��p;t;n.�/ D inf¹� > 0 W R��;p;t;n � �º: (3)

We call ��p;t;n.�/ the �-minimax separation radius. Whenever no ambiguity arises, we
drop the indexation in n; p; t; � and write simply ��; R�� ; R�. / – but these variables
remain important, as will appear later on.
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The aim of the paper is to give the explicit expression of ��p;t;n up to constant
factors depending only on � and to construct optimal tests, for any p 2 PN and all
t 2 Œ1; 2�.

Additional notation. Let � > 0. For f and g two real-valued functions defined, we
say that f .� g (resp. f &� g) if there exists a constant c� > 0 (resp. C� > 0) depend-
ing only on �, such that c�g � f (resp. f � C�g). We write f �� g if g .� f and
f .� g. Whenever the constants are absolute, we drop the index � and just write .,
&,�. We respectively denote by x _ y and x ^ y the maximum and minimum of the
two real values x and y.

3. Results

Without loss of generality, assume that max1�j�N pj � 1
2

. Otherwise, if for some j 2
¹1; : : : ;N º, pj > 1

2
, replace pj by 1�pj and replace accordinglyXi .j / by 1�Xi .j /

for all i D 1; : : : ; n D 2k. Without loss of generality, assume that all entries of the
known vector p are sorted in decreasing order:

p D .p1 � p2 � � � � � pN /:

For any index 1 � u � N , we define the vectors´
p�u D .p1; : : : ; pu; 0; : : : ; 0/;

p>u D .0; : : : ; 0; puC1; : : : ; pN /:

Let � > 0. In what follows, we write

r D
2t

4 � t
and b D

4 � 2t

4 � t
: (4)

For p, we also define

I D min
²
J W

X
i>J

p2i �
cI

n2

³
; (5)

where cI is a small enough constant depending only on �. We will prove the following
theorem.

Theorem 1. For all t 2 Œ1; 2�, the following bound holds, up to a constant depending
only on � and t :

�� ��;t

s

p�I

r
n

C



p>I

.2�t/=t1

n.2t�2/=t
C
1

n
;

where we recall that I D I.n; p; t/.

The lower bounds and the minimax test are given in Section 5 and Section 6.
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3.1. Equivalence between the Binomial, the multinomial and the Poisson setting

We now move to the multinomial and Poisson settings. In the following propositions,
we state that the multinomial and the multivariate Binomial model are equivalent
to the multivariate Poisson setting after using the Poissonization trick, and that the
results from the binomial setting can be transferred to the other two settings. The
Poissonization trick consists in drawing zn � Poi.n/ observations instead of n, either
from the multinomial or from the multivariate binomial model. The resulting data is
exactly distributed as a multivariate Poisson family.

Proposition 1 (Poissonization trick for multinomials). Let n� 2 and assume that p;q
are probability vectors, i.e. such thatX

i

pi D
X
i

qi D 1:

Let zn � Poi.n/. Conditional on zn, let Z1; : : : ; Zzn
i.i.d.
�M.q/. We build the histogram

sufficient statistic by defining, for all j D 1; : : : ; N ,

Hj D

znX
iD1

1¹Zi D j º:

Then for all j , Hj � Poi.nqj / and H1; : : : ;HN are mutually independent.

Proposition 2 (Poissonization trick for binomial families). Let n� 2 and zn� Poi.n/.
Conditionally on zn, let X1; : : : ; Xzn

i.i.d.
�
NN
jD1 Ber.pj /. Then

znX
iD1

Xi �

NO
jD1

Poi.npj /:

These two propositions are classical and follow from basic properties of the Pois-
son, multinomial, and Binomial distributions. We rewrite them here only to provide
some context on the following equivalences.

Without loss of generality, assume that p1 � � � � � pN . We consider the following
settings:

Binomial case. This is the setting considered above. We define

P .Bin/
D ¹Ber.p/ I p 2 RNC º;

where by convention,

Ber.p/ WD
NO
jD1

Ber.pj /:
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We fix p 2 P .Bin/ and suppose we observe X1; : : : ; Xn
i.i.d.
� Ber.q/ for q 2 P .Bin/

unknown. We consider the binomial testing problem:

H
.Bin/
0 W q D p vs. H

.Bin/
1 W

´
q 2 P .Bin/;

kq � pkt � �:

Poisson case. We define

P .Poi/
D ¹Poi.p/ I p 2 RNC º;

where by convention,

Poi.p/ WD
NO
jD1

Poi.pj /:

We fix p 2 P .Poi/ and suppose we observe Y1; : : : ; Yn
i.i.d.
� Poi.q/ for q 2 P .Poi/ un-

known. We consider the Poisson testing problem:

H
.Poi/
0 W q D p vs. H

.Poi/
1 W

´
q 2 P .Poi/;

kq � pkt � �:

Multinomial case. We define

P .Mult/
D

²
M.p/ j p 2 RNC ;

NX
jD1

pj D 1

³
;

where M.p/ denotes the multinomial distribution over ¹1; : : : ;N º. We fix p 2P .Mult/

and suppose we observe Z1; : : : ; Zn
i.i.d.
�M.q/ for q 2 P .Mult/ unknown. We consider

the multinomial testing problem:

H
.Mult/
0 W q D p vs. H

.Mult/
1 W

´
q 2 P .Mult/;

kq � pkM;t � �;

where for x D .x1; : : : ; xN /:

kxkM;t D

� NX
jD2

jxj j
t

�1=t
is the multinomial norm, defined without taking the first coordinate into account.
Indeed, because of the shape constraint

P
pj D 1, the first coordinate does not bring

any information and can be deduced from the N � 1 coordinates.
For these three testing problems, we define respectively

��Bin.n; p; t; �/; ��Poi.n; p; t; �/; ��Mult.n; p; t; �/
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for the minimax separation distances in the sense of equation (3), for each of the
testing problems.

We state the following statement regarding the equivalence between all models.

Lemma 1 (Equivalence between the Binomial and Poisson settings). Let t 2 Œ1; 2�.
There exist two absolute constants cBP, CBP > 0 depending on � such that 8p 2
Œ0; 1�N , 8n � 2� > 0, we have

cBP�
�
Bin.n; p; t; �/ � �

�
Poi.n; p/ � CBP �

�
Bin.n; p; t; �/:

Lemma 2 (Equivalence between multinomial and Poisson settings). Let t 2 Œ1; 2�. It
holds that 8p 2 Œ0; 1�N ; 8n � 2 � > 0, if

PN
iD1 pi D 1, we have

��Mult.n; p; t; �/ .� ��Poi.n; p
�max/ .� ��Mult.n; p; t; �/;

where p�max WD .p2; : : : ; pN /.

This entails the following corollary regarding the minimax rates of testing in the
multinomial model:

Corollary 1. Let t 2 Œ1; 2�. The minimax separation radii in the Poisson and multi-
nomial cases are respectively given by

��Poi.n; p; t; �/ ��

r
kp�Ikr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n
for p 2 P .Poi/;

��Mult.n; p; t; �/ ��

s
kp�max
�I kr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n
for p 2 P .Mult/;

where we recall that I D I.n; p; t/.

Note that the upper bounds in the Poisson model are obtained using our tests
on the Poisson vector, and the upper bounds in the multinomial model are obtained
using our tests on the last N � 1 coordinates of the estimates of probabilities of each
categories.

4. Discussion

In this entire section, we mostly discuss the multinomial setting – whose rates are
given in Corollary 1 – which is the most studied setting in the literature. To alleviate
notations, we will write ��.n; p/ for the minimax separation distance in the multino-
mial model, dropping the dependence on �.
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4.1. Locality of the results

In the present paper, we derive sharp local minimax rates of testing in the bino-
mial, Poisson and multinomial settings. The locality property is a major aspect of the
results: for each fixed p we identify the detection threshold associated to p, where p
is allowed to be any distribution in the class. For related local results in the case of
the `1 or `2 norm, see e.g. [9, 14, 28, 53]. This approach is less standard than the
usual global approach, which consists in finding the largest detection threshold in the
class, i.e. for the worst case of p; see e.g. [38] (in Russian), [29,34,39,47]. Yet, local
results can substantially improve global results: for instance, in the multinomial case
and for the `2 norm, the global separation radius for an N -dimensional multinomial
is classically N�1=4=

p
n, and is reached in the case where p is uniform distribution.

However, if p D .1; 0; : : : ; 0/ is a Dirac multinomial, then from our results the rate of
testing in `2 norm is 1

n
, hence much faster than the global rate. Even for fixed N , one

can actually find a sequence of null distributions p.n/ whose associated separation
distance ��Mult.n; p

.n/; 2; �/ reaches any rate 1=n˛ for any 1=2 � ˛ � 1. This conse-
quently improves the global rate even for less extreme discrete distributions than Dirac
multinomials. To give an example, consider an exponentially decreasing multinomial
distribution

p.n/ D
� c

n.2˛�1/j

�N
jD1

for the renormalizing constant

c D n2˛�1
1 � 1=n2˛�1

1 � 1=n.2˛�1/N
� n2˛�1:

Then, evaluating the local rate in `2 (allowing us to consider the whole set of coeffi-
cients as the bulk, see Section 7.1 below), we get

��Mult.n; p
.n/; 2; �/ ��

r
kp�maxk2

n
C
1

n
��

1

n˛
:

4.2. Comparison with existing literature in the multinomial case

Our results are quite related to those of [53], which examines the multinomial test-
ing problem for the `1 distance and in terms of sample complexity. More precisely,
for a fixed N -dimensional multinomial distribution p, and for a fixed separation �,
this work investigates the smallest number n�.p; �/ of samples X1; : : : ; Xn

i.i.d.
�M.p/

needed to ensure that the multinomial testing problem introduced in Section 3.1 has
a minimax risk less than 2=3, for a fixed separation distance � > 0. Formally this is
defined as

n�.p; �/ D min
®
n 2 N W R��;p;t;n � 2=3

¯
;
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whereR��;p;t;n denotes here the minimax risk for the multinomial problem2. Note that
the quantities n� and �� are dual, for � D 2=3.

The authors of [53] prove the following bounds to characterize the optimal sample
complexity n�.p; "/ when given a fixed " > 0:

1

"
C
kp�max
�" k2=3

"
. n�.p; "/ .

1

"
C
kp�max
�"=16

k2=3

"
:

In the above bound, p D .p1; : : : ; pN /, where

p1 � � � � � pN � 0 and
NX
iD1

pi D 1:

For " > 0, let J be the smallest index such that
P
i>J pi � ". The notation p�max

�"

denotes .p2; : : : ; pJ /.

We generalize the result in several respects:

� We consider the whole range of `t distances for t in the segment Œ1; 2� and char-
acterize the local rates of testing in each case,

� We generalize the multinomial case to the graph case (binomial case) and to the
Poisson setting, through the Poissonization trick.

In Appendix D, we justify that the upper and lower bounds from [53], when trans-
lated in terms of separation radius as in [9] actually match in the multinomial case,
although claimed otherwise by the authors of [9] themselves. It was therefore unclear
in the literature so far that matching upper and lower bounds on the critical radius
were actually known in the case t D 1. All of these cases involve the following ideas.
The distribution can be split into bulk (set of large coefficients, with a subgaussian
phenomenon) and tail (set of small coefficients, with a subpoissonian phenomenon).
To the best of our knowledge, the way we define the tail is new. It allows us to estab-
lish a clear cut-off between these two optimal sets, fundamentally differing through
the behavior of the second order moment of p.

The present paper can be linked with [16], which considers instance optimal
identity testing. Specifically, [16] obtains a different characterization of the sample
complexity for the case t D 1, in terms of a fundamental quantity in the theory of
interpolation of Banach spaces, known as Peetre’s K-functional. This functional is
defined for all u > 0 as

�p.u/ D inf
p0Cp00Dp

kp0k1 C ukp
00
k2:

2See equation (2) for the definition of this quantity in the graph problem.
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This paper proves that for fixed " 2 .0; 1/, any test for testing identity to p needs
at least C��1p .1 � 2"/ samples in order to have a risk less than �, where C > 0 is
a constant depending only on �. In Section 6.3, especially equation (14), this paper
discusses the non-tightness of [53]. Note that their bound is not optimal either, but is
incomparable to [53]. This paper also provides a testing algorithm considering sepa-
rately tail and heavy elements of the distribution, as well as a lower bound that uses
interpolation theory to divide the problem into two types of elements – the `1 contri-
bution (heavy elements) and the `2 ones (uniform-like).

Building on this work, [3, Appendix D] provides a general reduction scheme
showing how to perform instance-optimal one-sample testing, given a “regular” (non-
instance optimal) one-sample testing algorithm (even only for uniformity testing).
This applies in particular to local privacy, or testing under communication constraints,
or even without constraints at all.

5. Lower bounds

We recall the definitions of r and b in equation (4). In what follows, indexA is defined
as

A D Ap;t;n.�/ WD max

´
a � I W pb=2a �

cA
p
n
�P

i�I p
r
i

�1=4
µ
; (6)

where cA > 0 is a small enough constant depending only on �. We adopt the conven-
tion that max;D�1 and that p��1 D; and p>�1 D p. We start by presenting the
lower bound part of Theorem 1. We divide the analysis into two parts: a lower bound
for the large coefficients of p (bulk) and a lower bound for the small coefficients of p
(tail). The bulk will be defined as the set p�A and the tail as p>A.

5.1. Lower bound for the bulk

To prove the lower bound, we identify a radius � such that, if the `t distance between
H0 and H1 is less than �, then any test has risk at least �. Therefore, by definition
of ��, � is necessarily a lower bound on ��.

Proposition 3. Let t 2 Œ1; 2�. There exists a constant c0� > 0 depending only on �, as
well as a distribution q such that for any test  , we have

k.q � p/�Akt � c
0
�

�
kp�Ak

r=t
r

p
nkp�Ik

r=4
r

C
1

n

�
;

and
Pp. D 1/C Pq. D 0/ � �:
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This implies that

� D
kp�A j

r=t
r

p
nkp�Ik

r=4
r

C
1

n

is a lower bound on the minimax separation radius ��.
Note that the lower bound in 1

n
is trivial since changing any entry of p by 1

n
is not

detectable with high probability. Now let us examine the first part of the rate. To prove
this lower bound, we use Le Cam’s two points method by defining a prior distribution
over a discrete subset of PN satisfying H1. More precisely, for all .ı1; : : : ; ıA/ 2
¹˙1ºA, we define the distribution qı such that

.qı/j D

´
pj C ıi
j if j � A;

pj otherwise,
(7)

where, for some small enough constant c
 > 0 depending only on �:


i D
c
 p

2=.4�t/
i

p
n
�P

i�I p
r
i

�1=4 : (8)

The mixture
xPbulk D

1

2A

X
ı2¹˙1ºA

q˝n
ı

defines a probability distribution over the set of observations X1; : : : ; Xn, such that,
conditional on ı 2 ¹˙1ºA, the observations are i.i.d. with probability distribution qı .

The core of the proof is to prove that observations X1; : : : ; Xn drawn from this
mixture distribution xPbulk are so difficult to distinguish from observations X 01; : : : ; X

0
n

drawn from Pp , that the risk of any test is necessarily larger than �. This brings us to
the conclusion of our proposition since any distribution qı is separated away from p

by an `t distance equal to � AX
iD1


 ti

�1=t
�
kp�Ak

r=t
r

p
nkp�Ik

r=4
r

:

Therefore,
kp�Ak

r=t
r

p
nkp�Ik

r=4
r

is necessarily a lower bound on the separation radius �� This lower bound is an exten-
sion to the case where t 2 Œ1; 2� of the lower bound in [53] which is given for the case
t D 1, up to some issues that are discussed in details in Section 4.2.
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5.1.1. Lower bound for the tail. We now derive a lower bound for the tail p>A,
containing the smallest coefficients of p. The tail lower bound involves very different
phenomena compared to the above bulk lower bound. The reason is that the definition
of A implies that on the tail, with high probability, no same coordinate is observed
twice or more among the n data.

Proposition 4. Let t 2 Œ1; 2�, and consider any test  . There exists a constant c0� > 0
depending only on � and a distribution Q such that

k.q � p/>Akt � c
0
�

kp>Ik
.2�t/=t
1

n.2t�2/=t
;

and
Pp. D 1/C Pq. D 0/ � �:

To prove this lower bound, we once more use Le Cam’s two points method with a
sparse prior distribution. Define the smallest index U > I such that

n2pU kP�U k1 � cu < 1;

where cu > 0 is a small constant defined in the appendix. We define

x� D
cu

n2kp�U k1
and �i D

pi

x�
:

Index U has no further meaning than to guarantee that for all i � U , we have
�i 2 Œ0; 1�. In particular, �i is a Bernoulli parameter. Now, we define the following
prior on q. For any i < U , we set qi D pi . Otherwise, for i � U , we set bi � Ber.�i /
mutually independent, and

qb.i/ D bi x�; (9)

We now consider the mixture of the probability distributions qb:

xPtail D
X

b2¹0;1º¹UC1;:::;Nº

�Y
j>U

�
bj
j .1 � �j /

1�bj

�
q˝n
b
:

As above, we prove that the data X1; : : : ; Xn drawn from this mixture xPtail is difficult
to distinguish from the data X 01; : : : ; X

0
n drawn from Pp . Moreover, we show that

with high probability, the `t distance between xPtail and p, is larger, up to an absolute
constant than

kp�U k
.2�t/=t
1

n2.t�1/=t
:

Finally, to conclude the proof, we show in Lemma 8 that

kp�U k
.2�t/=t
1

n2.t�1/=t
C
1

n
��
kp>Ik

.2�t/=t
1

n2.t�1/=t
C
1

n
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in words, that we can replace U by I . This lower bound departs significantly from the
one in [53] in the case t D 1, which is significantly simpler than for t > 1 for the tail
coefficients.

5.1.2. Combination of both lower bounds. By combining Propositions 3 and 4, we
obtain the following theorem.

Theorem 2. Let t 2 Œ1; 2�, and consider any test  . There exists a constant c0� > 0
depending only on � and a distribution q such that

kq � pkt � c
0
�

�r
kp�Ikr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n

�
;

and
Pp. D 1/C Pq. D 0/ � �:

This theorem implies that

�� &�

r
kp�Ikr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n
;

which is a lower bound on the separation radius ��, up to a positive constant depend-
ing only on �.

Note that when combining Propositions 3 and 4, we do not get exactly the expres-
sion in Theorem 2. We actually obtain:

We therefore need to show that this expression is equivalent to that in Theorem 2.
This is done by using Lemma 9, which states that we can replace

kp�Ak
r=t
r

p
nkp�Ik

r=4
r

by

r
kp�Ikr

n

without changing the rate, i.e.

kp�Ak
r=t
r

p
nkp�Ik

r=4
r

C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n
��

r
kp�Ikr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n
:

Remark on index A. As explained in (7), the optimal prior is of the form pi ˙ 
i

where 
i is proportional to p2=.4�t/i , according to equation (8). Since 2=.4 � t / � 1,
we can have 
i > pi if pi is too small, so that it is impossible to set the optimal prior
pi ˙ 
i , since pi � 
i has to be a Bernoulli parameter. The index A is just the last
index ensuring pA � 
A so that our lower bound construction is well-defined.
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Remark on index I . Index I defines the largest set of coefficients p>I such that
under H0, with high probability, no coordinate j > I is observed twice or more. This
is exactly the interpretation of the relationX

j>I

n2p2j � cI

for a small constant cI . As shown in Lemma 13, it is important that the definition of A
also implies that X

j>A

n2p2j � cI C c
4
A;

which leads us to tune the constants cI and cA such that this sum is small. There-
fore, on the actual tail .p>A/, no same coordinate will be observed twice with high
probability under H0. This is the reason why the phenomena involved are different
on the bulk and on the tail. On the bulk, many coordinates are observed at least twice,
which allows us to build an estimator based on the dispersion of the data around its
mean, namely the renormalized �2 estimator which is a modified estimator of the vari-
ance. Like in the classical Gaussian signal detection setting, the optimal procedure for
detecting whether or not the data is drawn from p is to estimate the dispersion of the
data.

On the tail, however, each coordinate is observed at most once under H0, so that
the dispersion of the data cannot be estimated. On this set, we rather design a prior
distribution which mimics the behavior of the null distribution, while being as sep-
arated from p as possible. More precisely, we impose that with high probability, no
coordinate is observed twice, and such that coordinate-wise, the expected number
of observations is equal to that under the null hypothesis p. This prior is therefore
designed such that its first order moment is equal to that under the null and its second
order moment is unobserved with high probability. Under both of these constraints,
we maximize the `t distance between the null hypothesis p and the possible distribu-
tions composing the prior. When t > 1, the result of this process is a prior that needs to
be relatively sparse - which is significantly more involved than the case t D 1 treated
in [53].

Remark on the lower bounds. The bulk lower bound is close to that of [53]. The
tail lower bound relies on a sparse prior that is an existing technique (for example,
in sparse testing, see [10, 23, 42]) and is very different from the construction in [53].
Handling the indices I; A and U require careful manipulations that we believe are
new techniques.
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6. Upper bounds

Recalling that n D 2k, we use sample splitting to define

S D

kX
iD1

Xi and S 0 D

nX
iDkC1

Xi :

We also write
b D

4 � 2t

4 � t
:

6.1. Test for the bulk

We now introduce the following test statistic on the bulk coefficients, i.e. the coeffi-
cients with index smaller than A:

Tbulk D
X
i�A

1

pbi

�
Si

k
� pi

��
S 0i
k
� pi

�
; (10)

which is a weighted �2 statistic. We now define the test

 bulk D 1
°
Tbulk >

c�

n
kp�Ak

r=2
r

±
;

where c� D 4=
p
� is a large enough constant, depending only on �. We prove the

following proposition regarding this statistic and the bulk of the vector p.

Proposition 5. There exists c0� > 0, such that the following holds:

� Type-I error is bounded:

Pp. bulk D 1/ � �=2:

� Type-II error is bounded: for any q, such that

kq�Akt � c
0
�

�r
kp�Ikr

n
C
1

n

�
;

it holds that
Pq. bulk D 0/ � �=2:

For t D 1, we get r D 2
3

, which is the norm identified in [53]. However, our setting
is slightly different for three reasons. First, we consider multivariate binomial fami-
lies rather than multinomials. Second, we consider separation distance for a fixed n
instead of sample complexity. Third, our result holds for any t 2 Œ1; 2�. However, in
Section 3.1, we prove that multivariate binomial and multinomial settings are related
and that the rates can be transferred from our setting to the multinomial case.
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Note that our cut-off is defined differently from that in [53]. In [53], the cut-off I 0

is the smallest index such that, for a fixed ", we haveX
i>I 0

pi � ":

This definition therefore only involves the first order moment of the null distribution.
In our setting, conversely, we define index I using the second order moment of the
null distribution, as the smallest index such thatX

i>I

p2i �
cI

n2
:

The above result also generalizes the bound identified in [53], by characterizing
the testing rate for all t 2 Œ1; 2� and sheds light on a duality between the `t and `r
norms when r D 2t=.4 � t /.

6.2. Test for the tail coefficients

The tail test is a combination of two tests. We define the histogram of the data which
is a sufficient statistic:

8j > A; Nj WD

nX
iD1

1¹Xi D j º:

We first define the test  2, which rejects H0 whenever one tail coordinate is
observed twice:

 2 D 1
®
9j > A W Nj � 2

¯
: (11)

We also define a statistic counting the number of observations on the tail, and the
associated test, recalling that c� D 4=

p
�:

T1 D
X
i>A

Ni

n
� pi ;  1 D 1

²
jT1j > c�

rP
i>A pi

n

³
: (12)

We prove the following proposition regarding this statistic.

Proposition 6. There exists c0� > 0, such that the following holds.

� Type-I error is bounded:

Pp. 1 _  2 D 1/ � �=2:

� Type-II error is bounded: for any q such that

kq>Akt � c
0
�

�
kp>Ak

.2�t/=t
1

n.2t�2/=t
C
1

n

�
;
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it holds that
Pq. 1 _  2 D 0/ � �=2:

Recall that the tail is defined such that, with high probability under H0, no same
coordinate is observed at least twice. We therefore combine two tests: The test  2
rejects H0 if one of the coordinates is observed at least twice, while the test  1
rejects H0 if the total mass of observed coordinates differs substantially from its
expectation under the null. Proposition 6 proves that this combination of tests reaches
the optimal rate.

In [53], the tail test only involves the first order moment, which is sufficient in the
case of the `1 norm. Moreover, in the proof of Proposition 6, it becomes clear that for
t D 1 we only need the test  1 and for t D 2 we only need the test  2. However, in
the case of the `t for t 2 .1; 2/, the combination of both  1 and  2 is necessary.

6.3. Aggregated test

We now combine the above results to define the aggregated test. We define our test as

 D  bulk _  1 _  2:

This is the test rejecting the null whenever one of the three tests does. Denote by

x� D

r
kp�Ikr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n
:

The following theorem states that this test reaches the rate x�, which is the min-
imax rate �� given in Theorem 1. In other words, it guarantees that, whenever the
two hypotheses are x�-separated in `t distance, this test has type-I and type-II errors
upper bounded by �=2, ensuring that its risk is less than �. Since the minimax sepa-
ration radius �� is the smallest radius ensuring the existence of a test satisfying this
condition, we can conclude that �� . x�.

Theorem 3. There exists c0� > 0, such that the following holds.

� The type-I error is bounded:

Pp. D 1/ � �=2:

� The type-II error is bounded: for any q such that

kp � qkt � c
0
�

�r
kp�Ikr

n
C
kp>Ik

.2�t/=t
1

n.2t�2/=t
C
1

n

�
;

it holds that
Pq. D 0/ � �=2:
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6.4. Remarks on the tests

In the bulk tests, we propose test statistics based on sample splitting, whose variance
is easier to express. However, those tests could be defined slightly differently without
sample splitting, allowing also for the analysis of the case n D 1. Denoting by H the
histogram of the data, we could define

zTBulk D
X
j�A

1

pbj

��
Hj

n
� pj

�2
�Hj

�
and the associated test

z bulk D 1
°
zTbulk >

c�

n
kp�Ak

r=2
r

±
:

This test attains the same upper bound in terms of separation distance – up to multi-
plicative constants depending on � – as the bulk test we define in equation (10), and
is therefore also optimal in the bulk regime.

To understand the interpolation between the extreme cases t D 1 and t D 2, an
important remark is that the tail tests  1 and  2 do not capture the same signals.
Under the alternative hypothesis, the test  1 checks that the total mass of the tail
coefficients kq>Ak1 is not to far away from kp>Ak1. As to test  2, on the tail, that is,
on a set for which

NX
j>A

n2p2j � 1;

it is actually equivalent to using a test for the second order moment. In other words,
the test  2 is equivalent to z 2 D 1¹jT2j >

c�
n
kp>Ak2º for a small constant c� , where

T2 D
X
i>A

�
Si

k
� pi

��
S 0i
k
� pi

�
:

Therefore, the test  2 checks that the second order moment of the tail of distribu-
tion q>A is not too different from that of p>A, in other words, that it does not contain
much greater coefficients than the corresponding values of p>A.

7. Further remarks on the results

7.1. Influence of the `t norm

In this paper, we consider the separation distance in all `t norms for t 2 Œ1; 2�. The
choice of t influences the minimax separation distance. The effect of the Lt separa-
tion distance for t 2 Œ1; 2� has also been investigated in the paper [22] in the case of
goodness-of-fit testing for Hölder continuous densities.



Local goodness-of-fit testing in discrete models 21

In the extreme case t D 2, the minimax separation distance reduces to

�� ��

r
kp�Ik2

n
C
1

n
;

which can be further simplified as

�� ��

r
kpk2

n
C
1

n
:

Indeed, by definition of I , we have kp>Ik2 .� 1
n

. This case has already been solved
in [21]. In this case, as discussed earlier, a simple �2 test would suffice for reaching
this separation distance, and p would only appear in the definition of the threshold of
this test. Here we therefore do not need to combine a bulk with a tail test. A single �2

test, applied on both the bulk and the tail (i.e. setting A D N ), would suffice.
We now consider the opposite extreme case t D 1. In this case

�� ��

r
kp�Ik2=3

n
C kp>Ak1 C

1

n
:

In the minimax separation distance, the contribution of the Bulk coefficients involves
the `2=3 quasi-norm, as in [53]. In terms of test statistic, this is reflected by the fact
that the optimal Bulk test is based on a re-weighted �2 test statistic whose weights
depend on p. For each entry j , the optimal weight is larger when pj is small: indeed,
for small pj , coordinate j has smaller variance. This re-weighting differs from the
extreme case t D 2, since, compared to the `2 norm, the `1 norm lays more empha-
sis on smaller entries of the perturbation p � q. As to the tail coefficients, however,
the big picture is simpler as the minimax rate with respect to the tail coefficients
is kp>Ak1, which is very large. This rate implies in particular that only the total mass
of the perturbations of the tail coefficients matters. We therefore do not need to use
the test  2, which is tailored to detect extreme values of the perturbations, and can
only restrict to using  1 when it comes to the tail coefficients.

Between the two extreme cases, that is, for t 2 .1; 2/, we have an interpolation
between the two extreme scenarios. When it comes to the bulk, we need to re-weight
the test statistics by weights that increase with pi for entry i as in the case t D 1.
But the larger t , the milder the reweighting – as the `t norm puts more weight on
large coefficients – until it vanishes for t D 2. As for the tail, both tests  1 and  2
are required in this intermediate regime. Indeed, we need to control both the mass
of the tail perturbations like for t D 1, but also their extreme values like for t D 2.
Note that [55] had already considered the global problem of `t testing for discrete
distributions and identified (non-matching) upper and lower bounds.

For t > 2, the underlying phenomenon is fundamentally different. In this case,
the `t norm emphasizes so much the large deviations that re-weighted �2 tests – that
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are related to re-weighted second order moment estimation – seem to be sub-optimal
for testing. We leave the case t > 2 as an open problem.

In the minimax separation distance in `t norm, the bulk part
p
kp�Ikr=n involves

a duality between the norms `t and `r for r D 2t=.4 � t /, as was also the case for
t D 1 in [53]. This phenomenon comes from a combination of Hölder’s inequality and
information theory. Define 
 D .
1; : : : ; 
A/ 2 Œ0; 1�A, and define the random vector

q D .p1 C ı1
1; : : : ; pA C ıA
A/

for ıi
i.i.d.
� Rad.1

2
/ like in (7), except that this time, we do not impose that .
i /i is

defined as in (8). Introduce

� WD

²
.
1; : : : ; 
A/ 2 Œ0; 1�

A
W

AX
iD1


4i
p2i
�
C


n2
I pi � 
i 2 Œ0; 1�; pi C 
i 2 Œ0; 1�

³
;

where C
 is a small enough constant depending only on �. Then by Lemma 4 in the
appendix, whenever 
 2 � , the n samples3 generated from the random vector q have
a probability distribution indistinguishable from the null hypothesis p. The largest

 2 � , when measured in `t , therefore provides a lower bound on the minimax sepa-
ration radius. It is found by solving

max

2�

AX
iD1


 ti ;

which can be done using Hölder’s inequality

AX
iD1


 ti D

AX
iD1

�

4i
p2i

�t=4
p
t=2
i �

Hölder

� AX
iD1


4i
p2i

�t=4� AX
iD1

pri

�.4�t/=4
�

�
C


n2

�t=4
kpk1=2tr ;

where we have used Hölder’s inequality with a D 4=t and b D 4=.4 � t /. Setting 
�

the vector on the frontier of � reaching the equality case in Hölder’s inequality, for
fixed n, we obtain k
�kt / kpk

1=2
r .

As to the contribution of the tail, we refer the reader to the remarks below Propo-
sition 4.

7.2. Asymptotics as n!1

Consider now p as being a fixed multinomial distribution, or a fixed vector of Poisson
parameters. Then by the definitions of A and I , there exists an integer n0 such that

3Although the proof is written for graph samples, it is argued in Section 3.1 that it can be
transposed to the multinomial or the Poisson settings.
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for all n � n0, we have I D A D N . In words, we eventually no longer need to
split the distribution into bulk and tail and we can define the bulk as the whole set of
coefficients. For n large enough (n � n0), the local minimax rate therefore rewrites

��.p; n/ �
n!1

´p
kp�maxkr=nC

1
n

in the multinomial case;p
kpkr=nC

1
n

in the binomial or Poisson case:

On the other hand the fast rate 1
n

asymptotically dominates if p is close to a Dirac
multinomial distribution in the multinomial setting, or if e.g. p D 0 in the binomial
and Poisson setting.

A. Lower bound

Let p 2 PN . For P1 WD P1.�/ a particular collection of elements of PN satisfy-
ing H1;�, we denote by U.P1/ the uniform distribution over P1.

Let G D .¹0; 1ºN /n be the set of all possible observations .X1; : : : ; Xn/, where
Xi D .Xi .1/; : : : ;Xi .N //. The following lemma gives a way to derive a lower bound
on �� by giving a sufficient condition, for a fixed �, that R�.�/ � �.

Lemma 3. If
1

jG j

X
X2G

.Eq�U.P1/Pq.X//
2

Pp.X/
� 1C 4.1 � �/2;

then R�.�/ � �.

Proof of Lemma 3. We have that

R�.�/ � inf
 test

Pp. D 1/C sup
q2P1

Pq. D 0/ (all elements of P1 satisfy H1)

� inf
 test

Pp. D 1/C Eq�U.P1/Pq. D 0/

(the supremum is greater than the integral)

D 1C inf
 test

Pp. D 1/ � Eq�U.P1/Pq. D 1/

D 1 � sup
 test
jPp. D 1/ � Eq�U.P1/Pq. D 1/j

D 1 � dTV .Pp;Eq�U.P1/Pq/

� 1 �
1

2

q
�2.Eq�U.P1/PqjjPp/;
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where the definition of the �2 divergence can be found in [52], as well as the proof
for the inequality dTV � 1

2

p
�2. Therefore,

R�.�/ � 1 �
1

2

q
�2.Eq�U.P1/PqjjPp/

D 1 �
1

2

p
1

jG j

X
X2G

.Eq�U.P1/Pq.X//
2

Pp.X/
� 1:

Therefore, to have R�.�/ � � it suffices that

1

jG j

X
X2G

.Eq�U.P1/Pq.X//
2

Pp.X/
� 1C 4.1 � �/2:

For all i D 1; : : : ;N; let 
i 2 Œ0; pi � and let 
 D .
i /i . We now apply the previous
lemma with

P1 D ¹p C .ıi
i /i�N j ı 2 ¹˙1º
N
º:

Lemma 4. There exists a sufficiently small absolute constant c4 such that, if

NX
iD1


4i
p2i
�
c4

n2
;

then for all � � k
kt , we have R�.�/ � �.

Proof. We will use Lemma 3 with p and P1 defined as above.

� We first compute Pq.X/ for some realization X 2 G . Let

S D

nX
iD1

Xi 2 ¹0; : : : ; nº
N

and write S D .s1; : : : ; sN /. We have that

Pp.X/ D
NY
iD1

p
si
i .1 � pi /

n�si :

� We now compute Eq�U.P1/Pq.X/: for any .ıi /i 2 ¹˙1ºN , we define

qı D p C .ıi
i /1�i�N :

Then we have

Pqı .X/ D
NY
iD1

.pi C ıi
i /
si .1 � pi � ıi
i /

n�si :
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Therefore, we have

1

jG j

X
X2G

.Eq�U.P1/Pq.X//
2

Pp.X/

D
1

jG j

X
X2G

X
ı;ı0

NY
iD1

.pi C ıi
i /
si .1 � pi � ıi
i /

n�si

p
si
i .1 � pi /

n�si

� .pi C ı
0
i
i /

si .1 � pi � ı
0
i
i /

n�si

D
1

jG j

X
ı;ı0

NY
iD1

nX
lD0

 
n

l

!�
pi C .ıi C ı

0
i /
i C

ıiı
0
i

2
i

pi

�l
�

�
1 � pi � .ıi C ı

0
i /
i C

ıiı
0
i

2
i

1 � pi

�n�l
D

1

jG j

X
ı;ı0

NY
iD1

�
1C

ıiı
0
i

2
i

pi .1 � pi /

�n
D

NY
iD1

�
1

4

X
ıi ;ı
0
i
2¹˙1º

�
1C

ıiı
0
i

2
i

pi .1 � pi /

�n�

D

NY
iD1

�
1

2

�
1C


2i
pi .1 � pi /

�n
C
1

2

�
1 �


2i
pi .1 � pi /

�n�
�

NY
iD1

�
1

2
exp

�
n
2i

pi .1 � pi /

�
C
1

2
exp

�
�n
2i

pi .1 � pi /

��
D

NY
iD1

cosh
�

n
2i
pi .1 � pi /

�
� exp

� NX
iD1

n2
4i
2p2i .1 � pi /

2

�
:

Note that

exp
� NX
iD1

n2
4i
2p2i .1 � pi /

2

�
� 1C 4.1 � �/2

,

NX
iD1


4i
p2i .1 � pi /

2
�
2c4A
n2

(

NX
iD1


4i
p2i
�

c4A
2n2

; (13)

where c4A WD log.1C 4.1� �/2/ and since 8 i , we have pi � 1
2

. The result follows by
Lemma 3.

This means the following: let 
 WD .
i /i satisfying (13) and let �D k
kt . Then all
points pC .ıi
i /1�i�jG j are located at a distance � from p in terms of `t norm, so that
the corresponding adjacency matrices are at a distance � from each other in `t norm.
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Moreover, we proved that for the uniform prior on this set of points P1, we have
R�.�/ � �, which yields �� � �.

We now prove the lower bound by combining Lemmas 5–10.

Lemma 5. It holds that

��t &� �1 WD
kp�Ak

r=t
r

p
nkp�Ik

r=4
r

:

Proof of Lemma 5. For a small enough constant cA depending only on �, we define
the quantity

a D
cA

p
n
�P

i�I p
r
i

�1=4 : (14)

For all ı 2 ¹˙1ºA, let qı D ..qı/i /iD1;:::;N such that

� 8i � A, .qı/i D pi C aıip
2=.4�t/
i , where a is defined in (14);

� 8i > A, .qı/i D pi .

Let P1 D ¹qı j ı 2 ¹˙1º
Aº. We set a uniform prior on P1. With the notation of

Lemma 4, we just set 
i D ap
2=.4�t/
i if i � A and 0 otherwise. In terms of k�kt norm,

any distribution where this prior puts mass is separated from p with a distance � such
that

� D a


�p2=.4�t/i

�
iD1;:::;A




t

D
cA

p
n
�P

i�I p
r
i

�1=4�X
i�A

pri

�1=t
��

kp�Ak
r=t
r

p
nkp�Ik

r=4
r

D �1:

According to Lemma 4, taking c4A � c4 this prior gives a minimax risk greater
than � since X

i�A


4i
p2i
� a4

X
i�A

p
.8=.4�t//�2
i D

c4A
n2
�
c4

n2
:

Lemma 6. Assume that kp>Ik1 � 1
n

. Then it holds that

��t &� �2 WD
kp�Ik

.2�t/=t
1

n.2t�2/=t
:

Proof of Lemma 6. We divide the proof in two steps. In the first step, we prove that
the prior concentrates with high probability on a zone located at

kp�U k
.2�t/=t
1

n.2t�2/=t
C
1

n
;

up to a multiplicative constant. In the second step, we prove that the prior is indistin-
guishable from the null hypothesis p, by proving that the total variation between p
and this prior is small.
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First step. We prove that the prior concentrates with high probability on a zone
located at

kp�U k
.2�t/=t
1

n.2t�2/=t
C
1

n
;

up to a multiplicative constant. By assumption we have kp>Ik1 � 1
n

.
Let U be the smallest index greater than or equal to A such that

n2pU kp�U k1 � cu;

where cu D
�
10
^
1
2
.1 � �/2.

Let
x� D

cu

n2kp�U k1
and �i D

pi

x�
:

We set the following sparse prior: for all i < U , we set qi D pi and for all i � U ,
we draw bi � B.�i / mutually independent, and we define qi D bi x� . We write q D
.qi /i for the corresponding distribution parameter and Q for the prior distribution.

Before showing that the data distribution coming from this prior – namely Eq�QPq
– is close enough to P� in total variation, we first prove that q � Q is such that
kq � pkt is with high probability larger – up to a positive multiplicative constant that
depends only on u – than �2. We have

Eq�Q

�
kp � qktt

�
D E.bi /i�˝B.�i /

�X
i�U

jbi x� � pi j
t

�
D x� tE.bi /i�˝B.�i /

�X
i�U

jbi � �i j
t

�
D x� t

X
i�U

�i .1 � �i /
t
C .1 � �i /�

t
i

� 4�1x� t
X
i�U

�i C �
t
i � 4

�1
x� t
X
i�U

�i ;

since 8i � U , it holds that �i � cu � 1
2

, and

Vq�Q

�
kp � qktt

�
D x�2t

X
i�U

Vbi�B.�i /jbi � �i j
t

D x�2t
X
i�U

�i .1 � �i /
�
.1 � �i /

t
� � ti

�2
� x�2t

X
i�U

�i :

We now show that�
Eq�Q

�
kp � qktt

��2
� Vq�Q

�
kp � qktt

�
:

This is equivalent to proving
P
i�U �i � 1, or equivalently, n2kp�U k21 � cu.
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By Lemma 8, we are necessarily in the case kp�U k1 � 1
3
kp>Ik1. Indeed, suppose

that kp�U k1 < 1
3
kp>Ik1, then by Lemma 8, we would have

kp>Ik1 � kp�U k1 C

p
cI

n
�
1

3
kp>Ik1 C

p
cI

n
;

hence kp>Ik1 � 3
2

p
cI
n

, which is excluded because we assume kp>Ik1 � 1
n

.
Therefore,

kp�U k
2
1n
2
�
1

9
� cu:

We conclude using Chebyshev’s inequality. Therefore, this prior is indeed separated
away from the null distribution by a distance greater than x�

P
i�U �i up to a constant,

or equivalently, greater than
kp�U k

.2�t/=t
1

n2.t�1/=t
:

Second step. We now show that this prior is indistinguishable from p, i.e. has a Bayes
risk strictly greater than �. We denote by xPtail D Eq�QŒPq�, the prior distribution used
to lower bound the minimax risk. We always have

R� � 1 � dTV
�
Pp; xPtail

�
:

Moreover, we recall that for any realization X D .X1; : : : ; Xn/, we write

S D

nX
iD1

Xi :

We have

dTV
�
Pp; xPtail

�
D
1

2

X
X2G

jPp.X/ � xPtail.X/j

D
1

2

X
X2G W 8i�U; si�1

jPp.X/ � xPtail.X/j C
1

2

X
X2G W 9i�U; s:t: si�2

jPp.X/ � xPtail.X/j:

This allows us to split the total variation into two terms: The first one will be the
principal term, while the second one will be negligible. We first prove the negligibility
of the second term.

Since s is a sufficient statistic, we haveX
X2G W 9i�U; s:t: si�2

jPp.X/ � xPtail.X/j

�
�
Pp.9i � U I si � 2/C xPtail.9i � U I si � 2/

�
�

jG jX
iDU

�
1 � Pp.si D 0/ � Pp.si D 1/C 1 � xPtail.si D 0/ � xPtail.si D 1/

�
:
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Let us fix i 2 ¹U; : : : ; N º. We will use the following inequalities which hold for
all n 2 N, x 2 Œ0; 1�:

.1 � x/n � 1 � nx; .1 � x/n � 1 � nx C
n

4
x2; .1 � x/n � 1 � nx C

n2

2
x2:

First term in the sum:
PN

iDU Œ1� Pp.si D 0/� Pp.si D 1/�. We recall that by the
definition of U , since U > I , it holds that 8i � U , npi � cI , so that for any i � U ,
we have

1 � Pp.si D 0/ � Pp.si D 1/ D 1 � .1 � pi /
n
� npi .1 � pi /

n�1

� 1 �
h
1 � npi C

n

4
p2i

i
� npi

�
1 � .n � 1/pi

�
� n2p2i :

Summing over all i D U; : : : ; N yields that

NX
iDU

�
1 � Pp.si D 0/ � Pp.si D 1/

�
� cI :

Second term in the sum:
PN

iDU Œ1 �
xPtail.si D 0/ � xPtail.si D 1/�. We recall that

by the definition of U , since U > I , it holds that 8i � U , npi � cI , so that for any
i � U , we have

1 � xPtail.si D 0/ � xPtail.si D 1/

D 1 �
�
1 � �i C �i .1 � x�/

n
�
� �inx�.1 � x�/

n�1

D �i � �i .1 � x�/
n
� �inx�.1 � x�/

n�1

� �i � �i .1 � nx�/ � �inx�.1 � .n � 1/x�/

D n.n � 1/�i x�
2
D n.n � 1/pi x� � n

2cu
pi

n2kp�U k1
D cu

pi

kp�U k1
:

Summing over all i D U; : : : ; N yields that

NX
iDU

�
1 � xPtail.si D 0/ � xPtail.si D 1/

�
� cu

kp�U k1

kp�U k1
D cu:

Therefore,

dTV
�
Pp; xPtail

�
D

1

2

X
X2G W 8i�U; si�1

jPp.X/ � xPtail.X/j

“
principal term

CcI C cu: (15)
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Now, we can upper bound the total variation by the �2 divergence on the high
probability event that we only observe 0 or 1 for each coordinate i �U corresponding
to the principal term. Since s is a sufficient statistic, we haveX

X2G W8i�U;si�1

jPp.X/ � xPtail.X/j

�

p X
X2G W 8i�U; si�1

�
Pp.X/ � xPtail.X/

�2
Pp.X/

s X
X2G W 8i�U; si�1

Pp.X/

�
�1

�

p X
X2G W 8i�U; si�1

xPtail.X/
2

Pp.X/
� 1C 2cu

D

p
NY
iDU

� 1X
jD0

xPtail.si D j /
2

Pp.si D j /

�
� 1C 2cu: (16)

Computation of
P1

kD0
xPtail.si D k/

2=P .si D k/. We have

1X
kD0

xPtail.si D k/
2

Pp.si D k/
D

�
1 � �i C �i .1 � x�/

n
�2

.1 � pi /n
C

�
�inx�.1 � x�/

n�1
�2

npi .1 � pi /n�1
:

The first term becomes�
1 � �i C �i .1 � x�/

n
�2

.1 � pi /n
�

�
1 � �i C �i

�
1 � nx� C .n2=2/x�2

��2
1 � npi

D 1 � npi C n
2pi x� C

�
.n2=2/pi x�

�2
1 � npi

� 1 � npi C n
2pi x� C

n4p2i x�
2

4.1 � cI /

� 1 � npi C n
2pi x� C

c2u
4.1 � cI /

:

The second term becomes�
�inx�.1 � x�/

n�1
�2

npi .1 � pi /n�1
D npi

.1 � x�/2n�2

.1 � pi /n�1
� npi since x� � pi :

We can now sum the two terms as follows:

1X
kD0

xPtail.si D k/
2

Pp.si D k/
D 1C n2pi x� C

c2u
4.1 � cI /

:
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So that

NY
iDU

� 1X
kD0

xPtail.si D k/
2

Pp.si D k/

�
D

NY
kDU

�
1C n2pi x� C

c2u
4.1 � cI /

�
� exp

�
cu C

c2u
1 � cI

�
� exp

3

2
cu � 1C 3cu since

3

2
cu � 1:

Now, using (15) and (16), we have

dTV
�
Pp; xPtail

�
�
1

2

p
5cu C cI C cu � 1 � �

by the definition of cu, cI . This concludes the proof.

Lemma 7. Assume that kp�Ik1 � 1
n

. Then it holds that

��t & �3 WD
1

n
:

Proof of Lemma 7. We introduce q such that q1 D p1 C .1 � �/=n and qj D pj for
all j � 2. We then have

R� � inf
 test

Pp. D 1/C Pq. D 0/ D 1 � dTV .Pp;Pq/

D 1 � n dTV

�O
i<j

B.pi /;
O
i<j

B.qi /

�
D 1 � n dTV

�
B.p1/; B.q1/

�
D 1 � n jp1 � q1j D 1 � n

1 � �

n
D �:

This concludes the proof.

Lemma 8. It holds that

kp�U k1 C
1

n
� kp>Ik1 C

1

n
:

Moreover, we either have kp�U k1 � 1
3
kp>Ik1 or kp>Ik1 � kp�U k1 C

p
cI=n.

Proof of lemma 8. If

kp�U k1 �
1

3
kp>Ik1;

then the result is clear. Now, suppose

kp�U k1 <
1

3
kp>Ik1:
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We have kp�U k1 < 1
2
kPI!U k, where PI!U D .pIC1; : : : ; pU�1/. We then have

p2U�1 C
cI

2n2
� p2U�1 C

1

2

U�1X
iDIC1

p2i � pU�1

�
pU�1 C

1

2

U�1X
iDIC1

pi

�
> pU�1

�
pU�1 C

X
i�U

pi

�
� pU�1

X
i�U�1

pi

D pU�1kP�U�1k1 >
cu

n2

by the definition of U . Therefore,

p2U�1 >
2cu � cI

2n2
) 8I < i < U; p2i >

cI

2n2
since cu � cI :

Moreover,

cI

n2
�

X
I<i<U

p2i > .I � U � 1/p
2
U�1 > .I � U � 1/

cI

2n2
:

So that
I � U � 1 < 2; i.e. I � U � 1 � 1:

Thus,

kp>Ik1 � kPI!U k1 C kp�U k1

� .I � U � 1/pIC1 C kp�U k1

�

p
cI

n
C kp�U k1 . kp�U k1 C

1

n
:

Hence the result.

Lemma 9. Let �1 and �2 be defined as in Lemmas 5 and 6. We have

�1 C �2 �

r
kp�Ikr

n
C �2:

Proof of Lemma 9. Clearly,

�1 C �2 �

r
kp�Ikr

n
C �2:

To prove

�1 C �2 &�

r
kp�Ikr

n
C �2;

there are two cases:
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(i) If A D I , then the result is clear.

(ii) Otherwise, I > A. Note that by setting p0i WD npi for all i D 1; : : : ; N , the
result to be shown can be rewritten as

kp0
�Ak

r=t
r

kp0
�Ik

r=4
r

C kp0�Ik
2�t
1 �

q
kp0
�Ikr C kp

0
�Ik

2�t
1 : (17)

By definition of A and I , we have

p02�rI

�X
i�I

p0i

�2�r
D

�X
i�I

p0Ip
0
i

�2�r
�

�X
i�I

p02i

�2�r
&� 1

and
p02bI

X
i�I

p0ri � p
02b
AC1

X
i�I

p0ri � c
4
A � 1 by definition of A:

Hence, by noticing that 2b D 2 � r , we have�X
i�I

p0i

�2�r
&�

X
i�I

p0ri ;

which yields

kp0�Ik
2�t
1 �

q
kp0
�Ikr �

kp0
�Ak

r=t
r

kp0
�Ik

r=4
r

by raising to the power 1
2r

. This condition yields the result of the lemma, by replac-
ing p0 by np.

Lemma 10. It holds that

kp>Ik1 C
1

n
� kp>Ak1 C

1

n
:

Proof of Lemma 10. If A D I , then the result is clear. Now, suppose that A < I . By
the definition of A, we have

c4A
n2

> p2bAC1

X
i�I

pri �

IX
iDAC1

p2i � pI

IX
iDAC1

pi )
c4A

n2
PI
iDAC1 pi

� pI :

Moreover, if I < N , then

cI

n2
�

X
i>I

p2i � pIC1
X
i>I

pi ) pIC1 �
cI

n2
P
i>I pi

:
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So that X
i>I

pi �
cI

c4A

IX
iDAC1

pi ;

and consequently kp>Ik1 & kp>Ak1 if we impose moreover that c4A & cI , which can
be done without loss of generality.

Now if I D N , we have kp>Ik1 D 0 and pN >
p
cI
n

and

p2bAC1 <
c4A

n2
PN
iD1 p

r
i

)

NX
jDAC1

p2bAC1p
r
j �

c4A
n2

)

NX
jDAC1

p2j �
c4A
n2

) pN kp>Ak1 �
c4A
n2

)

p
cI

n
kp>Ak1 �

c4A
n2
;

and hence kp>Ak1 . 1
n

, so that kp>Ak1 C 1
n
� kp>Ik1 C

1
n
�

1
n

.

B. Upper bound

Define � D q � p. In the following, c > 0 denotes an absolute constant, depending
only on �. We call

� D

r
kp�Ikr

n
C
kp�Ak

.2�t/=t
1

n.2�2t/=t
C
1

n
;

and we prove �� .� �.
We start with the three following lemmas which control the expectation and vari-

ance of the statistics Tbulk, T1, T2. We recall that k D n
2

.

Lemma 11 (Bounds on expectation and variance of Tbulk). Let Tbulk be defined as in
equation (10). The expectation and variance of Tbulk satisfy

EŒTbulk� D
X
i�A

�2i

pbi
; V ŒTbulk� �

X
i�A

1

p2bi

�
q2i
k2
C
2

k
qi�

2
i

�
:

Lemma 12 (Bounds on expectation and variance of T1). Let T1 be defined as in
equation (12). The expectation and variance of T1 satisfy

EŒT1� D
X
i>A

qi � pi ; V ŒT1� �
X
i>A

qi

n
:
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We then study the null and alternative hypotheses in the following subsection,
bounding the probability of error of the test  .

B.1. Under the null hypothesis H0

We start by assuming that p D q. We recall that c� D
4p
�

.

Test  bulk. Moreover, for the bulk, since p D q, we have by Lemma 11 that

EŒTbulk� D 0 and V ŒTbulk� D
X
i�A

pri
n2
:

Therefore, by Chebyshev’s inequality,

P

 
Tbulk > c�

pX
i�A

pri
n2

!
�
�

16
;

so that
P . bulk D 1/ �

�

16
: (18)

Test  1. Since p D q, we have by Lemma 12 that

E.T1/ D 0 and V .T1/ �

rP
i>A pi

n
:

By the same argument,  1’s type-I error is upper bounded as

Pp
�
 1 D 1

�
D Pp

 
T1 > c�

rP
i>A pi

n

!
�
1

c2�
D

�

16
;

so that by definition of  1, we have

Pp
�
 1 D 1

�
�
�

16
: (19)

Test  2. By Lemmas 13 and 14, we have

P . 2 D 1/ � cI C c
4
A �

�

16
; (20)

by choosing the constants cI and cA depending only on � sufficiently small.

Conclusion. Putting together equations (19), (18) and (20), we get that the type-I
error of  D  bulk _  1 _  2 is upper bounded as

P
�
 D 1

�
�

X
i2¹bulk;1;2º

P
�
 i D 1

�
�
3�

16
< �=2:
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B.2. Under the alternative hypothesis H1.�/

Suppose that for some constant xc� >0, we have k�kt � 2xc��. By the triangle inequal-
ity, there are two cases:

(i) Either k��Akt � xc��, or

(ii) k�>Akt � xc��.

Proposition 7 (Study in case (i)). There exists a large enough constant xc .bulk/
� > 0

such that if k��Akt � xc
.bulk/
� �, then

P . bulk D 1/ � 1 � �=6:

Proposition 8 (Study in case (ii)). If k�>Akt � c�, then

P . 1 _  2 D 1/ � 1 �
2�

3
:

Proof of Proposition 7. Suppose k��Akt � c� for some constant c. We show that if c
is large enough, then the test  Bulk will detect it. To do so, we compute a constant c0

depending on c such that if k��Akt � c�, then V .TBulk/ � c
0 E.TBulk/

2 and such that
limc!C1 c

0 D 0.
By definition of �, we have in particular that

k��Akt � c

r
kp�Ikr

n
_
c

n
;

and hence
1

n2
�
1

c4
k��Ak

4
t

kp�Ik2r
^
k��Ak

2
t

c2
(21)

Using Lemma 11 we split V ŒTbulk� into four terms as follows:

V ŒTbulk� �
X
i�A

1

p2bi

�
.pi C�i /

2

n2
C
2

n
.pi C�i /�

2
i

�
�

2

n2

X
i�A

pri

™
1

C
2

n2

X
i�A

�2i

p2biš
2

C
2

n

X
i�A

p1�2bi �2i

›
3

C
2

n

X
i�A

�3i

p2bi™
4

:

Now we show that each of the four terms is less than EŒTbulk�
2, up to a constant.
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Term 1 . By Hölder’s inequality, we have

X
i�A

�ti �

"X
i�A

�
�ti

p
bt=2
i

�2=t#t=2"X
i�A

�
p
bt=2
i

�2=.2�t/#.2�t/=2
D

�X
i�A

�2i

pbi

�t=2�X
i�A

pri

�1�t=2
:

Hence,

k��Akt �

�X
i�A

�2i

pbi

�1=2�X
i�A

pri

�.2�t/=2t
: (22)

Moreover, we have
1

n2
�
k��Ak

4
t

c4kp�Ik2r
;

so that term 1 becomes

2

n2

X
i�A

pri � 2
X
i�A

pri

�X
i�A

�ti

�4=t
1

c4
�P

i�I p
r
i

�2=r
�
2

c4

�X
i�A

pri

�1�2=r�X
i�A

�2i

pbi

�2�X
i�A

pri

�.4�2t/=t
(by (22))

D
2

c4

�X
i�A

�2i

pbi

�2
D

2

c4
EŒTbulk�

2: (23)

Term 2 . By definition of index A, we have

pbA �
c2A�P

j�I p
r
j

�1=2
n
DW zc

1�P
j�I p

r
j

�1=2
n
:

Using this condition, term 2 becomesX
i�A

1

p2bi

�2i
n2
�
1

n2
1

pbA

X
i�A

�2i

pbi
� zc �1

1

n

�X
j�I

prj

�1=2�X
i�A

�2i

pbi

�
: (24)

Moreover, since r
kp�Ikr

n
� � �

1

c
k��Akt ;



J. Chhor and A. Carpentier 38

and using (22), we have

1

n

�X
j�I

prj

�1=2
D

1

nb

 r
kp�Ikr

n

!r
�

1

nbcr

�X
i�A

�2i

pbi

�r=2�X
i�A

pri

�b=2
�
1

c2

X
i�A

�2i

pbi
: (25)

In the last inequality, we used the fact proved in case number 1 that

1

nb

�X
i�A

pri

�b=2
.

1

c2b
EŒTbulk�

b

and the relation r
2
C b D 1.

Plugging in (24) yields that the second term 2 is bounded by EŒTbulk�
2.

Term 3 . This term becomes

1

n

X
i�A

p1�2bi �2i �
k��Ak

2
t

c2
�P

i�I p
r
i

�1=r X
i�A

p1�2bi �2i

�
1

c2

�X
i�A

�2i

pbi

��X
i�A

pri

�.4�2t/=2t�1=rX
i�A

p1�2bi �2i (using (22))

�
1

c2

�X
i�A

�2i

pbi

��X
i�A

pri

��1=2�X
i�A

p
.2=3/.1�2b/
i �

4=3
i

�3=2
(since k�k1 � k�k2=3):

Moreover, by Hölder’s inequality with 1
3=2
C

1
3
D 1, we have

X
i�A

p
.2=3/.1�2b/
i �

4=3
i �

 X
i�A

�
p
.2=3/.1�2b/
i �

4=3
i

p
.2=3/t=.4�t/
i

�3=2!2=3�X
i�A

�
p
.2=3/t=.4�t/
i

�3�1=3
�

�X
i�A

�2i

pbi

�2=3�X
i�A

pri

�1=3
:

So that �X
i�A

p
.2=3/.1�2b/
i �

4=3
i

�3=2
�

�X
i�A

�2i

pbi

��X
i�A

pri

�1=2
;

i.e. �X
i�I

pri

��1=2�X
i�A

p
.2=3/.1�2b/
i �

4=3
i

�3=2
�

�X
i�A

�2i

pbi

�
:
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This yields that the third term satisfies:

1

n

X
i�A

p1�2bi �2i �
1

c2

�X
i�A

�2i

pbi

�2
D

1

c2
EŒTbulk�

2:

Term 4 . The fourth term becomes

1

n





� j�i j
p
2b=3
i

�
i�A





3
3

�
1

n





� j�i j
p
2b=3
i

�
i�A





3
2

D
1

n

�X
i�A

�2i

p
4b=3
i

�3=2
�

1

n1=2

�X
i�A

�2i

pbi

�3=2�X
i�I

pri

�1=4
;

where in the last step we have used the fact that

p
b=3
i �

1�P
i�I p

r
i

�1=6
n1=3

:

Then using (24), we have

1
p
n

�X
i�I

pri

�1=4
.
�X
i�A

�2i

pbi

�1=2
:

So the term 4 is upper-bounded by 1
c2

EŒTbulk�
2.

Conclusion. By Chebyshev’s inequality, the type-II error of  Bulk is bounded as

P . Bulk D 0/ D P
�
TBulk �

c�

n
kp�Ak

r=2
r

�
D P

�
E.TBulk/ � TBulk � E.TBulk/ �

c�

n
kp�Ak

r=2
r

�
� P

�
jE.TBulk/ � TBulkj � E.TBulk/ �

c�

n
kp�Ak

r=2
r

�
�

V .TBulk/�
E.TBulk/ �

c�
n
kp�Ak

r=2
r

�2 (by Chebyshev’s inequality)

�
c0E.TBulk/

2�
E.TBulk/ �

c�
n
kp�Ak

r=2
r

�2 :
Moreover, using (23), for c large enough, we have that

E.TBulk/ �
c

n
kp�Ak

r=2
r � 2

c�

n
kp�Ak

r=2
r ;

so that the denominator is well-defined. Finally, since limc!C1 c
0 D 0, the type-II

error of this test goes to 0 as c goes to infinity, so for c large enough, the type-II error
is upper-bounded by �=6.
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We now move to the proof of Proposition 8.

Proof of Proposition 8. We will need the following two lemmas.

Lemma 13. It holds by definition of A that kp>Ak22 �
CA
n2

for CA D c4A C cI .

Proof of Lemma 13. If A D I , then the result is clear by definition of I . Otherwise,
by definition of A, we have

p2bAC1

X
i�I

pri <
c4A
n2
) p2bAC1

IX
iDAC1

pri <
c4A
n2

)

IX
iDAC1

p2i <
c4A
n2
)

X
i>A

p2i <
c4A C cI

n2
:

Lemma 14. For fixed j > A, the probability that coordinate j is observed at least
twice is upper-bounded by n2p2j .

Proof of Lemma 14. The probability that coordinate j is observed at least twice is

1 � .1 � pj /
n
� npj .1 � pj /

n�1
� 1 � .1 � npj / � npj

�
1 � .n � 1/pj

�
� n2p2j :

UnderH0. We upper bound the type-I error of tests 1 and 2. For 2: by Lemma 13,
we have

P . 2 D 1/ �
X
j>A

n2p2j � CA �
�

4
:

As to the test  1: we have

P . 1 D 1/ D P

�
jT1j > c�

rP
i>A pi

n

�
�
�

4

by Chebyshev’s inequality. By union bound, the type-I error of 1_ 2 is less than �=2.

UnderH1. If k�>Akt � c�, we now show that either  1 or  2 will detect it.

Note. From now until the end of the proof, we drop the index “ > A” and write only
e.g. kpk2, k�k2 instead of kp>Ak2, k�>Ak2.

By Hölder’s inequality, we have

k�k
2.t�1/
2 k�k2�t1 � k�ktt � C

�
kpk2�t1

n2t�2
C
1

nt

�
D C

1

n2t�2

�
kpk2�t1 C

1

n2�t

�
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for C D C1C2, where

C1 D

��
20

�
.c� C 1/C 1

��2�t
; C2 D

�
1

4

�
log.4=�/2 _ 9=100

�
C cI

�.t�1/=2
;

so that one of the following two relations must hold:

k�k
2.t�1/
2 � C2

1

n2t�2
or k�k2�t1 � C1

�
kpk2�t1 C

1

n2�t

�
:

First case: k�k2.t�1/

2
� C2=n

2t�2. Then k�k2 � C
1=2.t�1/
2 =n, so that

kqk2 � C
1=.t�1/
2 =n � kpk2 �

1

n

�
C
1=.t�1/
2 � cI

�
:

The test  2 accepts if, and only if, all coordinates are observed at most once. This
probability corresponds to

q.8j > A; Nj D 0 or Nj D 1/ D
Y
j>A

�
.1 � qj /

n
C nqj .1 � qj /

n�1
�

D

Y
j>A

.1 � qj /
n�1

�
1C .n � 1/qj

�
D

Y
j>A

.1 � qj /
n0.1C n0qj /; writing n0 D n � 1:

Let I�D ¹j >A W nqj � 1
2
º and ICD ¹j >A W nqj > 1

2
º. Recall that for x 2 .0;1=2�,

it holds that log.1C x/ � x � x2=3. Then, for j 2 I�, we have

.1 � qj /
n0.1C n0qj / D exp

®
n0 log.1 � qj /C log.1C n0qj /

¯
� exp

²
�n0qj C n

0qj �
n02q2j

3

³
D exp

�
�
n02q2j

3

�
:

Now, for j 2 IC, we have

n0 log.1 � qj /C log.1C n0qj / � �n0qj C log.1C n0qj / � �
1

10
n0qj

using the inequality �0:9x C log.1C x/ � 0 true for all x � 1
2

. Therefore, we have
upper bounded the type-II error of  2 by

q. D 0/ � exp
�
�
1

3

X
j2I�

n02q2j �
1

10

X
j2IC

n0qj

�
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� exp
�
�
1

3

X
j2I�

n02q2j �
1

10

�X
j2IC

n02q2j

�1=2�
D exp

�
�
1

3
.S � SC/ �

1

10
.SC/

1=2

�
for

S D
X
j>A

n02q2j and SC D
X
j2IC

n02q2j :

Now, SC 7! �S3 C
1
3
SC �

p
SC=10 is convex over Œ0; S� so its maximum is

reached on the boundaries of the domain and is therefore equal to�
�

p
S

10

�
_ �

S

3
D �

p
S

10

for S � 9=100. Now, since

kqk22 �
C
2=.t�1/
2

n2
� 4

C
2=.t�1/
2

n02
;

we have S D n02kqk22 � log.4=�/2 _ 9=100 , which ensures q. 2 D 0/ � �=4.

Second case: k�k2�t
1
� C1.kpk

2�t
1
C 1=n2�t/. Then

k�k1 � C
1=.2�t/
1

�
kpk1 _

1

n

�
�
C
1=.2�t/
1

2

�
kpk1 C

1

n

�
:

We will need the following lemma.

Lemma 15. If
P
j>A�j � 3

P
j>A pj , then j

P
j>A�j j �

1
2
k�k1.

Proof. Define JC D ¹j > A W qj � pj º and J� D ¹qj < pj º. Define also

s D

P
j>A�jP
j>A pj

; sC D

P
j2JC

�jP
j>A pj

; s� D �

P
j2J�

�jP
j>A pj

:

Then by assumption sC � s� D s � 3. Moreover,

s� D

P
j2J�

pj � qjP
j>A pj

� 1:

Thus, sC � 3 � 3s�, so that 2.sC � s�/ � sC C s�, which yields the result.

Note that by definition of the second case, we have for some constant C that

Ckpk1 � k�k1 � kqk1 C kpk1;
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hence that kqk1 � .C � 1/kpk1, and therefore taking C � 5 ensures that the assump-
tion of Lemma 15 are met.

We can now upper bound the type-II error of  1:

q. 1 D 0/ D q

�ˇ̌̌X
j>A

Nj

n
� pj

ˇ̌̌
� c�

r
kpk1

n

�
� q

�ˇ̌̌X
j>A

qj � pj

ˇ̌̌
�

ˇ̌̌X
j>A

Nj

n
� qj

ˇ̌̌
� c�

r
kpk1

n

�
(by the triangular inequality)

� q

�
1

2
kq � pk1 � c�

r
kpk1

n
�

ˇ̌̌X
j>A

Nj

n
� qj

ˇ̌̌�
(by Lemma 15)

�

1
n

P
j>A qj�

1
2
kq � pk1 � c�

p
kpk1=n

�2 (by Chebyshev’s inequality)

�
kqk1=n�

1
2
kqk1 �

1
2
kpk1 � c�

p
kpk1=n

�2 (by triangular inequality)

�
kqk1=n�

1
2
kqk1 �

1
2
kpk1 � c�

�
kpk1 C 1=n

��2 (using
p
xy � x C y)

�
kqk1=n�

1
2
kqk1 � .c� C 1/

�
kpk1 C 1=n

��2 :
Now set z D .c� C 1/.kpk1 C 1=n/. The function

f W x 7!
x

n.x=2 � z/2

is decreasing. Moreover, for x � 20z=�, we have

f .x/ �
20z=�

n.10z=� � z/2
D

20�

nz.10 � �/2
�
nz�1

20�

81
� �=4;

which proves that, whenever

kqk1 �
20

�
.c� C 1/

�
kpk1 C 1=n

�
;

we have q. 1 D 0/ � �=4. This condition is guaranteed when

k�k1 �

�
20

�
.c� C 1/C 1

��
kpk1 C 1=n

�
D C

1=.2�t/
1

�
kpk1 C 1=n

�
:
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Proof of Lemma 11.

Expectation. We have that

EŒTbulk� D
X
i�A

1

pbi

�
E

�
Si

k
� pi

�
E

�
S 0i
k
� pi

��
D

X
i�A

1

pbi
.pi � qi /

2:

Variance. We have that

V .Tbulk/ D
X
i�A

1

p2bi

�
E

��
Si

k
� pi

�2�S 0i
k
� pi

�2�
�E

��
Si

k
� pi

��
S 0i
k
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��2�
D

X
i�A

1

p2bi

�
E

��
Si

k
� pi

�2�2
� .pi � qi /

4

�
;

since the .Si ; S 0i /i are independent. And so by a bias-variance decomposition, and
since Si ; S 0i � B.k; qi /, we obtain

V .Tbulk/ D
X
i�A

1

p2bi

��
V

�
Si

k

�
C E

��
Si

k
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��2�2
� .pi � qi /

4

�
D

X
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1

p2bi

��
qi .1 � qi /

k
C .pi � qi /

2

�2
� .pi � qi /

4

�
D

X
i�A

1

p2bi

�
q2i .1 � qi /

2

k2
C
2

k
qi .1 � qi /.pi � qi /

2

�
�

X
i�A

1

p2bi

�
q2i
k2
C
2

k
qi .pi � qi /

2

�
:

Proof of Lemma 12. We therefore have

EŒT1� D E

�X
i>A

Si C S
0
i

n
� pi

�
D

X
i>A

qi � pi ;

and

V ŒT1� D V

�X
i>A

Si C S
0
i

n

�
D

X
i>A

V ŒSi �C V ŒS 0i �

n2
(by independence of .Si ; S 0i /i )

D

X
i>A

qi .1 � qi /

n
�

X
i>A

qi

n
;

which completes the proof.
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C. Equivalence between the Binomial, Poisson and multinomial
settings

We now prove that the rates for goodness-of-fit testing in the Binomial, Poisson and
multinomial cases are equivalent.

Proof of Lemma 1. We first prove ��Poi.n; p/ � CBP �
�
Bin.n; p/. Let n � 2, and let

Y1; : : : ; Yn
i.i.d.
� Poi.q/. We consider a random function � such that for any Poisson

family Y1; : : : ; Yn
i.i.d.
� Poi.q/, we have´

�.Y1; : : : ; Yn/ D .X1; : : : ; Xzn/
i.i.d.
� Ber.q/; where zn � Poi.n/ ?? .Yi /i ;Pzn

iD1Xi D
Pn
iD1 Yi :

In words, � is a function which takes n Poisson random variables (or equivalently one
Poisson random variable Poi.nq/) and decomposes them into zn � Poi.n/ Bernoulli
i.i.d. random variables whose sum is

Pn
iD1 Yi .

Let zn � Poi.n/ be the random length of �.Y1; : : : ; Yn/. We can choose a small
constant c D c.�/ such that the event

A1 WD ¹zn � cnº

has probability larger than 1� �=4. Moreover, form � cn we can define the function

�.x1; : : : ; xm/ D .x1; : : : ; xbcnc/:

Let  Bin be the test associated to the binomial testing problem

H0W q D p vs. H1W kp � qkt � �Bin

�
cn; p;

�

2

�
:

In particular, R. Bin/ � �=2. Now, we define the test

 D

´
 Bin ı � ı � if A1;

0 otherwise

and we show that, when associated to the Poissonian testing problem

H0W q D p vs. H1W kp � qkt � �

with � D �Bin.cn; p;
�
2
/, it has a risk less than �. We first analyze its type-I error:

PH0
�
 .Y n1 / D 1

�
� PH0

�
A1 \  .Y

n
1 / D 1

�
C PH0. xA1/

� PH0
�
 .Y n1 / D 1jA1

�
C
�

4

� PH0
�
 Bin.X1; : : : ; Xbcnc/ D 1jA1

�
C
�

4

D P
X
bcnc
1
�Ber.p/

N
bcnc

�
 Bin.X1; : : : ; Xbcnc/ D 1

�
C
�

4
:
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For the type-II error, the same steps show that for any vector q:

Pq
�
 .Y n1 / D 0

�
� P

X
bcnc
1
�Ber.q/

N
bcnc

�
 Bin.X1; : : : ; Xbcnc/ D 0

�
C
�

4
:

We can now compute the risk of  when � D �Bin.cn; p;
�
2
/:

R. / D PH0
�
 .Y n1 / D 1

�
C sup
kp�qkt��

Pq
�
 .Y n1 / D 0

�
�
�

2
C P

X
bcnc
1
�Ber.p/

N
bcnc

�
 Bin.X1; : : : ; Xbcnc/ D 1

�
C sup
kp�qkt��

P
X
bcnc
1
�Ber.q/

N
bcnc

�
 Bin.X1; : : : ; Xbcnc/ D 0

�
D
�

2
CR. Bin/

D
�

2
C
�

2
D �:

This proves ��Poi.n; p/ � �
�
Bin.cn; p;

�
2
/ � ��Bin.n; p; �/.

We now show ��Poi.n; p/ � cBP �
�
Bin.n; p/. Let X1; : : : ; Xn � Ber.q/ i.i.d. For

some small constant xc > 0, let zn � Poi.bxcnc/. We choose xc > 0 such that

A2 D ¹zn � nº (26)

has probability larger than 1 � �
4

. Consider the extended sequence of multivariate
Bernoulli random variables . zXi /i such that´

zXi D Xi if i � n;
zXi � Ber.q/ otherwise;

and such that . zXi /i are mutually independent. Let Y D
Pzn
iD1Xi � Poi.bxcncq/. The

sum is a sufficient statistic of the parameter q for Poisson random variables so we can
define a function

x�.Y / D .Y1; : : : ; Ybxcnc/

such that Yi
i.i.d
� Poi.q/ and

Pbxcnc
iD1 Yi D

Pzn
iD1Xi . Moreover, for m � n, we set

x�.y1; : : : ; yn; m/ D .y1; : : : ; ym/:

On A2, we do not even need to extend the sequence of observations. We call  Poi the
test associated to the Poisson testing problem:

H0W q D p vs. H1W kp � qkt � �Poi

�
bxcnc; p;

�

2

�
:
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We define the randomized test

x D

´
 Poi ı x� ı x�.Y / if A2;

0 otherwise:
(27)

We show that this test has a risk less than �. For the type-I error:
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�
x .Y / D 1

�
� PH0

�
A2 \ x .Y / D 1

�
C PH0. xA2/

� PH0
�
x .Y / D 1 jA2

�
C
�

4

� PH0
�
 Poi.Y1; : : : ; Ybxcnc/ D 1jA2

�
C
�

4

D P
Y
bxcnc
1
�Poi.p/

N
bxcnc

�
 Poi.Y1; : : : ; Ybxcnc/ D 1

�
C
�

4
:

For the type-II error, the same steps show that for any vector q:

Pq
�
x .Y / D 0

�
� P

Y
bxcnc
1
�Poi.q/

N
bxcnc

�
 Poi.Y1; : : : ; Ybxcnc/ D 0

�
C
�

4
:

We can now compute the risk of x when � D �Poi.xcn; p;
�
2
/:

R. / D PH0
�
x .Y / D 1

�
C sup
kp�qkt��

Pq
�
 .Y / D 0

�
�
�

2
C P

Y
bxcnc
1
�Poi.p/

N
bxcnc

�
 Poi.Y1; : : : ; Ybxcnc/ D 1

�
C sup
kp�qkt��

P
Y
bxcnc
1
�Poi.q/

N
bxcnc

�
 Poi.Y1; : : : ; Ybxcnc/ D 0

�
D
�

2
CR. Poi/

D
�

2
C
�

2
D �:

This proves ��Bin.n; p/ � �
�
Poi.xcn; p;

�
2
/ � ��Poi.n; p; �/.

Proof of Lemma 2. We first prove that ��Mult.n; p/ . ��Poi.n; p
�max/ when

P
pi D 1

by following the same steps as for proving �Bin . �Poi: we draw zn � Poi.xcn/ and
Z1; : : : ; Zzn

i.i.d.
�M.q/. Then the histogram is a sufficient statistic of Z1; : : : ; Zzn for q.

It is defined as 0B@N1:::
Nd

1CA WD
0BB@
Pzn
iD1 1¹Zi D 1º

:::Pzn
iD1 1¹Zi D dº

1CCA � Poi.nq/;
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where we recall that for any vector v D .v1; : : : ; v`/ with nonnegative entries, we
denote by Poi.v/ the distribution˝`jD1 Poi.vj /. On A2, defined in (26), we have0B@N2:::

Nd

1CA � Poi.n.q2; : : : ; qd //;

so we can just apply the exact same steps to prove that, if q D p then the test x 
from (27) has type-I error less than �

2
and if kq � pkM;t � �Poi.xcn; p;

�
2
/, its type-II

error is less than �
2

.
We now prove the converse bound: ��Poi.n; p

�max; �/ .� ��Mult.n; p; �/. Note that
the constants denoted by C and depending on �, are allowed to vary from line to line.
Let p D .p1; : : : ; pd / be a probability vector and q D .q2; : : : ; qN / and assume that
we observe

.X2; : : : XN / �

NO
jD2

Poi.nqj / D Poi.nq/:

We consider the testing problem

H0W q D p
�max vs. H1W kq � p

�max
kt � �: (28)

We exhibit a test  and a constant C > 0 such that if � � C��Mult.n;p; �/, then its risk
for problem (29) is at most �. For anym 2N�, let m be a test such that, if Y1; : : : ; Ym
are multinomial observations drawn with discrete distribution q0 D .q01; : : : ; q

0
d
/ such

that
P
j q
0
j D 1, then its risk for the following testing problem is at most �:

H0W q
0
D p vs. H1W kq

0
� pkM;t � �

�
Mult.p;m; �/: (29)

Now, draw X1 � Poi.np1/ independently on .X2; : : : ; XN /, so that .X1; : : : ; XN / �
Poi.nxq/, where xq D .p1; q2; : : : ; qd /. For some large enough constants C;C 0 depend-
ing only on �, let also

 0.X1; X2; : : : ; XN / D 1

²ˇ̌̌̌ NX
jD1

Xj � n

ˇ̌̌̌
� C
p
n

³
;

where ´
P
�
jPoi.n/ � nj � C

p
n
�
�

�
100
;

P
�
jPoi.�/ � nj < C

p
n
�
�

�
100
; whenever j� � nj � C 0

p
n:

We define the randomized test  such that, conditional on m WD
PN
jD1Xj :

 .X2; : : : ; XN / j m D  0.X1; : : : ; XN / _  m.X1; : : : ; XN /:
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First, if jkxqk � 1j > C 0=
p
n, then with probability at least 1 � �=100,  0 will detect

it. From now on, assume that jkxqk � 1j � C 0=
p
n. We now prove that for some large

enough constant C;C 0, if kxq � pkM;t � C�
�
Mult.p; n; �/, then


 xq

kxqk1
� p





M;t
� C 0��Mult.p; n; �/:

Indeed, 


 xq
kxqk1

� p





M;t
� kxq � pkM;t �




 xq
kxqk1

� xq





M;t

� C��Mult.p; n; �/ � kqkt

ˇ̌̌1 � kxqk1
kxqk1

ˇ̌̌
� C��Mult.p; n; �/ �

�
kpkM;t C kp � qkM;t

� C 0
p
n

� C��Mult.p; n; �/ � kpkM;t

C 0
p
n
:

Now, since kpk1 � 1 and r D 2t=.4 � t / � t , we have k � kr � k � kt so that

� for some small enough c > 0,

C 0
p
n
kp�AkM;t �

C
p
n

p
kp�maxkr � c�

�
Mult.p; n; �/

provided that n is greater than a suitable constant depending on �.

� By Hölder’s inequality, we get

C 0
p
n
kp>Ak

t
M;t �

C 0
p
n
kp>Ak

2�t
1 kp>Ak

.t�1/
2

�
C 0
p
n
kp>Ak

2�t
1 �

� 1
n2

�.t�1/
� c��Mult.p; n; �/:

Therefore, we get 


 xq
kxqk1

� p





M;t
� C��Mult.p; n; �/: (30)

Now, choose n larger than a suitable constant depending only on � such that

P
�

Poi.n/ �
n

2

�
� 1 �

�

100
:

Conditional on m D
PN
jD1Xj , the observations .X1; : : : ; XN / follow a multinomial

distribution M.m; xq=kxqk1/. Hence, with probability at least 1� �=2, the test  m will
conclude in favor of H1 in view of (30) whenever m � n

2
, since

��Mult.p; n; �/ � C�
�
Mult

�
p;
n

2
;
�

2

�
:

We now prove that the risk of  for problem (29) is at most �.
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On the other hand, if xq D xp, then with probability � 1 � �=100:

 0.X1; : : : ; XN / D 0;

and wheneverm�n=2, we have m.X1; : : : ;XN /D0with probability at least 1 � �=4
by definition of  m, since

��Mult.p; n; �/ � C�
�
Mult

�
p;
n

2
;
�

4

�
:

To conclude, we can explicitly bound from above the risk of test  as

Pp. D 1/C sup
kp�qkM;t�C�

�.p;n;�/

. D 0/

� 2P
�
m <

n

2

�
C Pp

�
 D 1jm �

n

2

�
C sup
kp�qkM;t�C�

�.p;n;�/

Pq
�
 D 0jm �

n

2

�
�
2�

100
C
�

4
C

�

100
C �=2 � �;

which proves that ��Poi . ��Mult.

D. Tightness of Balakrishnan and Wasserman (2019) in the
multinomial case

For fixed n and for two absolute constants C; c > 0, define "C as the largest quantity
satisfying

"C � C

s
kp�max
�"C=16

k2=3

n
C
C

n

and "� as the smallest quantity satisfying

"� � c

s
kp�max
�"�
k2=3

n
C
c

n
:

By [9], the critical radius �� satisfies "� . �� . "C.

(1) First case: If "C � 16"�, then the bounds match.

(2) Second case: Otherwise,

"C � C

s
kp�max
�"C=16

k2=3

n
C
C

n
� C

s
kp�max
�"�
k2=3

n
C
C

n
�
C

c
"�;

so that the bounds also match.
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