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AdaBoost and robust one-bit compressed sensing
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Abstract. This paper studies binary classification in robust one-bit compressed sensing with
adversarial errors. It is assumed that the model is overparametrized and that the parameter
of interest is effectively sparse. AdaBoost is considered, and, through its relation to the max
`1-margin-classifier, prediction error bounds are derived. The developed theory is general and
allows for heavy-tailed feature distributions, requiring only a weak moment assumption and an
anti-concentration condition. Improved convergence rates are shown when the features satisfy
a small deviation lower bound. In particular, the results provide an explanation why interpol-
ating adversarial noise can be harmless for classification problems. Simulations illustrate the
presented theory.

1. Introduction

Classification is a fundamental statistical problem in data science, with applications
ranging from genomics to character recognition. AdaBoost, proposed by Freund and
Schapire [24] and further developed in [53], is a popular and successful algorithm
from the machine learning literature to tackle such classifications problems. It is based
on building an additive model with coefficients žT composed of simple classifiers
such as regression trees and then using the binary classification rule sgn.h žT ; �i/. At
each iteration another simple classifier is added to the model, minimizing a weighted
loss-function. Alternatively, AdaBoost can be viewed as a variant of mirror-gradient-
descent for the exponential loss [9,25]. Empirically, it often achieves the best general-
ization performance when it is overparametrized and runs long after the training error
equals zero [21].

However, a theoretical understanding of the generalization properties of Ada-
Boost, that explains this behaviour, is still missing. Early theoretical results on the
generalization error of AdaBoost and other classification algorithms were based on
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margin-theory [33,52] and entropy bounds. In high-dimensional situations, where the
dimension of the features and number of base classifiers is larger than the number of
observations n, these become meaningless. Another approach to explain the success
of AdaBoost and other boosting algorithms is based on regularization through early
stopping [11, 31, 39, 64]. However, by their nature these bounds can not explain gen-
eralization performance when the number of iterations grows large and the empirical
training error equals zero. In the population setting [10] showed that the generaliza-
tion risk of AdaBoost converges to the Bayes risk, but this does also not indicate any
performance guarantees for finite data.

A more thorough understanding has developed through the lens of optimisation.
Already in [24] it was shown that each iteration of AdaBoost decreases the training
error. Moreover, in [9, 25], a close connection to the exponential loss was pointed out
and studied. Building on these results, [48, 50, 64] discovered that overparametrized
AdaBoost, when run long enough with vanishing learning rate � (see Algorithm 1),
has `1-margin converging to the maximal `1-margin. In particular, this means that
given training data .Xi ; yi /niD1, where the yi are binary and the Xi are p-dimensional
feature vectors, and where žT denotes the output of AdaBoost with the canonical
basis as simple classifiers, learning rate � and run-time T , we have

min
1�i�n

hyiXi ; žT i

k žT k1

T!1
�!0
����! max

ˇ¤0
min
1�i�n

hyiXi ; ˇi

kˇk1
DW ; (1)

provided that  is positive. The above holds universally for boosting algorithms that
are derived from exponential type loss functions and various possible adaptive step-
sizes. For these, general non-asymptotic bounds have been developed in [44, 55].

Any vector y̌ that maximizes the right-hand side in (1) is proportional to an output
of

y̌ 2 arg min
®
kˇk1 subject to min

1�i�n
yi hXi ; ˇi � 1

¯
: (2)

From the representation (2), it can be seen that, if y̌ is well-defined, then y̌ interpol-
ates the data in the sense that hXi ; y̌i and yi have matching signs for all i . Similarly,
neural networks and random forests are typically massively overparametrized and
trained until they interpolate the data. Empirically, it has been shown that this can
lead to smaller test errors compared to algorithms with a smaller number of paramet-
ers [7,59]. Statistical learning theory based on empirical risk minimization techniques
and entropy bounds can not explain these empirical findings and a mathematical
understanding of this phenomenon has only began to form in recent years. The pre-
valent explanation so far is that, similar as in (1), these algorithms approximate max
margin solutions [30,54,55]. As in (2), an algorithm that maximizes a margin is equi-
valent to a minimum-norm interpolator. It is then argued that this leads to implicit
regularization and hence a good fit.
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The study of minimum-norm interpolating algorithms has mainly been investig-
ated in three settings so far. The first line of research has focused on a random matrix
regime where the number of data points and parameters are proportional. Here precise
asymptotic results can be obtained, see for instance [18, 43] for max `2-margin inter-
polation, [38] for max `1-margin interpolation and consequently AdaBoost, [40] for
2-layer-neural networks in regression and [28] for minimum-`2-norm linear regres-
sion. However, these results do not exploit possible low-dimensional structure such as
sparsity and they also require a large enough, constant, noise-level, leading to incon-
sistent estimators.

Another line of work has focused on non-asymptotic results in an Euclidean set-
ting with features that have a covariance matrix with decaying eigenvalues, see [45]
for classification with support-vector machines (SVM) and [6, 16] for linear regres-
sion. These results rely crucially on Euclidean geometry, which gives explicit formu-
las for the estimators under consideration, and also do not lead to improved conver-
gence rates in the presence of low-dimensional intrinsic structure.

A third line of work originates in the compressed sensing literature. Here low-
dimensional intrinsic structure and often small noise levels, including adversarial
noise, are studied. Small noise might be a realistic assumption for many classification
data sets from the machine learning literature. On data sets such as CIFAR-10 [22] or
MNIST [57] state of the art algorithms achieve test errors smaller than 0:5%, implying
that the proportion of flipped labels in the full data set is also small. On the theoret-
ical side, pioneering work by Wojtaszczyk [58] has shown that minimum-`1-norm
interpolation, introduced by [15] as basis pursuit, is robust to small, adversarial errors
in sparse linear regression. This has recently been extended to other minimum-norm
solutions in linear regression [17], phase-retrieval [34] and heavy-tailed features in
sparse linear regression [35]. Moreover, ideas from compressed sensing and interpol-
ation were recently combined in [37] to construct non-parametric prediction bands.

Sparsity enables to model the possibility that only few variables are sufficient
to predict well and allows for easier model interpretation. In binary classification, a
sparse model with adversarial errors can be described by having access to a data set
Dn D .Xi ; yi /

n
iD1, where the features .Xi /’s are i.i.d. random vectors in Rp distrib-

uted as X and X D .x1; : : : ; xp/ where xj
i:i:d:Ï � for some distribution �. For s > 0,

we are given an effectively s-sparse ˇ� 2 �p�1, i.e. a vector ˇ� such that kˇ�k2 D 1
and kˇ�k1 �

p
s. Finally, for a set O � Œn�, we have

yi D

´
sgn

�
hXi ; ˇ

�i
�

i … O;

� sgn
�
hXi ; ˇ

�i
�
i 2 O:

(3)

The set O contains the indices of the data that is labelled incorrectly. We do not impose
any modelling assumptions on O. O may be random, deterministic or adversarially
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depend on all features .Xi /niD1, but we impose that the proportion of flipped labels
is small such that jOj D o.n/. In the applied mathematics literature, this model is
called robust one-bit compressed sensing and in learning theory agnostic learning of
(sparse) half-spaces.

As far as we know, there are no theoretical results for estimators that necessarily
interpolate in the model (3) when O ¤ ;. In the noiseless case where O D ; and for
standard Gaussian measurements, the authors of [46] have proposed and investigated
an interpolating estimator, similarly defined as (2) with the minimum replaced by an
average and an additional matching sign constraint. In particular, they showed that
this estimator is able to consistently estimate the direction of ˇ�.

Subsequent work where the model (3) and variants of it were considered, has
focused on regularized estimators in order to adapt to noise or to generalize the
required assumptions. First results for the model (3) and a computable algorithm were
obtained by [47], where a convex program was proposed and investigated. If ˇ� is
exactly s-sparse, i.e. it has at most s non-zero entries, the attainable convergence rates
can be improved and faster performance guarantees were obtained in [3, 29, 63]. Fur-
ther works investigated non-Gaussian measurements [1], active learning [3, 60, 62],
overcomplete dictionaries [5], and random shifts of hXi ; ˇ�i, called dithering, [20,
32].

In this paper, we consider the performance of AdaBoost in the overparametrized
regime with small and adversarial noise. We additionally assume that ˇ� is effectively
s-sparse. We leverage the relation in (1) between AdaBoost and the max `1-margin
estimator (2) to analyze AdaBoost (as described below in Algorithm 1). In particular,
we show that when p& n and the feature vectors fulfil a weak moment assumption and
an anti-concentration assumption, then with high probability AdaBoost has vanishing
prediction error, provided .s C jOj/ logc.p/ D o.n/ for some constant c > 0 and
sufficiently many iterations T D O.n/ of AdaBoost are performed. Moreover, when
the features are Gaussian or Student-t (with at least c log.p/ degrees of freedom)
distributed, we obtain prediction and Euclidean estimation error bounds that scale as�

.s C jOj/ logc.p/
n

�1=3
; (4)

which is among the best available convergence guarantees in the one-bit compressed
sensing literature so far.

These results are, as far as we know, the first non-asymptotic guarantee for over-
parametrized and data interpolating AdaBoost in a sparse and noisy setting. We illus-
trate our theory with Laplace, uniform, Gaussian and Student-t (with at least c log.p/
degrees of freedom) distributed features. Moreover, our main result also explains why
interpolating data can perform well in the presence of adversarial noise, providing an
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explanation to the question raised in [61]. Numerical experiments complement our
theoretical results.

Compared to [38], we consider a completely different regime. In their setting,
sparsity can not be assumed and the noise level can neither be adversarial nor small.
Hence, in [38] consistent estimation of the direction of ˇ� is impossible and the res-
ulting generalization error is close to 1=2 when p is large compared to n.

Notation

The Euclidean norm is denoted by k � k2 and induced by the inner product h� ; �i, whilst
k � k1 denotes the `1-norm and k � k1 the `1-norm for both vectors and matrices. Bp1
and Bp2 denote the unit `1-ball and `2-ball in Rp , respectively. In addition, we write
�p�1 for the p-dimensional unit sphere. By c, we denote a generic, strictly positive
constant, that may change value from line to line. Moreover, for two sequences an; bn
we write an . bn if an � cbn 8 n. Similarly, an & bn if bn . an and an� bn if an . bn
and bn . an. When an assumption reads ‘Suppose an . bn’ this means that we assume
that for a small enough constant c > 0 we have an � cbn 8 n. By Œp� we denote the
enumeration ¹1; : : : ; pº, by ¹ej ºj2Œp� the set of canonical basis vectors in Rp , and
by Xi the i -th column of the matrix X D ŒX1; : : : ; Xn� of feature vectors. We denote
the sign function, sgn.x/ D 1.x > 0/ � 1.x < 0/. Throughout this article, we use
bold letters to denote random matrices, upper case letters for random vectors and
lower case letters for random variables. For example, we write XD .Xi /i2Œn� 2 Rp�n

and Xi D .xi;1; : : : ; xi;p/ 2 Rp .

2. Main results

2.1. Model and assumptions

We consider a binary classification model, which allows for adversarial flips. In par-
ticular, we assume that we have access to a data set .yi ; Xi /i2Œn�. The Xi ’s are i.i.d.
random vectors in Rp distributed as X and X D .x1; : : : ; xp/, where xj

i:i:d:Ï � for
some distribution � that is symmetric and has zero mean and finite variance. Without
loss of generality, we may assume that the variance is one, as both the considered loss
functions and the observed data are scaling invariant. The yi ’s are generated via

yi D

´
sgn

�
hXi ; ˇ

�i
�

i … O;

� sgn
�
hXi ; ˇ

�i
�
i 2 O:

(5)

The set O � Œn� is the set of the indices of the mislabelled data. We assume that the
fraction of flipped labels is asymptotically vanishing, jOj D o.n/, but that O may be
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picked by an adversary and depend on the data. In particular, this includes parametric
noise models such as logistic regression or additive Gaussian noise inside the sign-
function above, as long as the variance of the noise decays to zero as n goes to infinity.
We assume that ˇ� 2 �p�1 is effectively s-sparse, that is kˇ�k1 �

p
s.

For stating our results we will treat all other parameters that do not depend on
p; n; s and jOj as fixed constants. Moreover, we always assume tacitly that p � cn,
for a large enough constant c > 0:

We measure the accuracy of recovery by the prediction error

d. ž; ˇ�/ WD P
�
sgn

�
hXnC1; ži

�
¤ sgn

�
hXnC1; ˇ

�
i
�
j .yi ; Xi /i2Œn�

�
; (6)

where XnC1 is an independent copy of X . This is the quantity which is used empir-
ically to measure the quality of classifiers such as neural networks on standard image
benchmark data sets [22, 57].

We now formulate the three main assumptions used throughout this article. They
describe the tail-behaviour and behaviour around zero of the features. For the tail-
behaviour, the only assumption we make is a weak moment assumption of order
log.p/.

Definition 2.1. A centred, scalar random variable x fulfils the weak moment assump-
tion (of order log.p/) with parameter � � 1=2 if�

Ejxjq
�1=q . q� 8 1 � q � max.1; log.p//:

For a matrix X or a vector X , we say that they satisfy the weak moment assumption
if their entries satisfy the weak moment assumption.

This assumption is weaker than commonly assumed sub-Gaussian or sub-exp-
onential tail behaviour and allows for feature distributions with heavy-tails such as
the Student-t -distribution with c log.p/ degrees of freedom. Under the weak moment
assumption we can control the `1 norm of X D .x1; : : : ; xp/ composed of i.i.d. ran-
dom variables satisfying the weak moment assumption with polynomial deviation (see
Proposition B.1). Assuming sub-Gaussianity of the xj ’s does not lead to improvement
of the convergence rates in our main results except for logarithmic factors. This is dif-
ferent to the theory developed in [20] where the exponent in the obtained convergence
results depends on whether the features are sub-Gaussian or heavy-tailed.

The next two assumptions measure the behaviour of the feature distribution around
zero.

Definition 2.2. A random vector X 2 Rp fulfils an anti-concentration assumption
with parameter ˛ 2 .0; 1� if

sup
ˇ2�p�1

P
�
jhX;ˇij � "

�
. "˛ 8 p�1 � " � 1: (7)
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We say that a matrix X 2 Rp�n satisfies the anti-concentration assumption with ˛ 2
.0; 1� if each column of X satisfies (7).

Assuming that X satisfies an anti-concentration assumption will be a necessity for
our results, as it ensures that for fixed vector ˇ, the scalar jhXi ; ˇij is not too close
to zero for too many indices i 2 Œn�. This in turn would lead to a tiny `1-margin and
many discontinuities of sgn.hXi ; ˇi/ at ˇ, rendering it impossible to prove uniform
results.

Similar anti-concentration assumptions were previously introduced in the learning
theory literature in the non-sparse setting, see e.g. [4, 19, 23], and were shown to be
satisfied by isotropic log-concave distributions [4] via an uniform upper bound for the
density of hˇ;Xi.

The next assumption is an optional counterpart to Definition 2.2 and leads to
improved convergence rates if it is satisfied.

Definition 2.3. A random vector X 2 Rp fulfils a small deviation assumption with
parameter � > 0 if

inf
ˇ2�p�1

P
�
jhX;ˇij � "

�
& "� 8 p�1 � " � 1: (8)

We say that a matrix X 2 Rp�n satisfies the small deviation assumption with para-
meter � > 0 if each column of X satisfies (8).

In [19] a stronger small-deviation assumption was formulated, assuming an uni-
form lower bound on the density of two-dimensional projections of X . This property
is satisfied by isotropic log-concave distributions [4] and implies (8) with � D 1.

2.2. Main results

2.2.1. AdaBoost, max `1-margin and a bound in terms of the margin. AdaBoost,
proposed by Freund and Schapire [24], is an algorithm where an additive model for
an unnormalized version of ˇ� is built by iteratively adding weak classifiers to the
model. To facilitate our analysis, we assume that the featuresXi ’s are i.i.d. distributed
and that the weak classifiers can be identified with the standard basis vectors in Rp .
We consider AdaBoost as described in Algorithm 1. The main difference to the ori-
ginal proposal by [24] consists of the choice of the step-size ˛t , which is obtained by
minimizing a quadratic upper bound for the loss-function at each step [55].

Alternative to the interpretation by Freund and Schapire [24], AdaBoost can be
viewed as a form of mirror gradient descent on the exponential loss-function [9, 25].
It is thus natural to expect that it converges to the infimum of the loss-function and
eventually interpolates the labels if possible. In fact, a stronger statement holds: As
described in (1), AdaBoost with infinitesimally small learning rate and a growing
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Algorithm 1: AdaBoost for binary classification
Input: Binary data .yi /i2Œn�, features X D .Xi /i2Œn�, run-time T , learning

rate �
Output: Vector žT 2 Rp

1 Initialize ž0;i D 0 and rescale features X D X=kXk1
2 For t D 1; : : : T repeat

� Update weights wt;i D
exp.�yi hXi ; žt�1i/Pn

jD1 exp.�yj hXj ; žt�1i/
, i D 1; : : : ; n

� Select coordinate vt D arg maxv2¹ej ºpjD1 j
Pn
iD1wt;iyi hXi ; vij

� Compute adaptive step size ˛t D
Pn
iD1wt;iyi hXi ; vt i

� Update žt D žt�1 C �˛tvt

3 Return žT

number of iterations T converges to a solution that maximizes the `1-margin [48, 55,
64].

This holds even non-asymptotically [55] for many variants of AdaBoost and in-
cludes both the exponential and logistic loss-function as well as various choices of
adaptive step sizes ˛t , for instance logarithmic as originally proposed by [24], line
search [53, 64] or quadratic as in Algorithm 1.

To present non-asymptotic results and to ensure that our theory can potentially
be applied to other variants of AdaBoost, we introduce the following definition of an
approximation of the largest `1-margin: We say that ž 2 Rp provides an approxima-
tion of the max `1-margin if

min
1�i�n

yi hXi ; ži

k žk1

�
1

2
max
ˇ¤0

min
1�i�n

yi hXi ; ˇi

kˇk1
DW



2
: (9)

The quantity  is called the max `1-margin. Moreover, the factor 1=2 can be substi-
tuted by any other positive constant smaller than one.

The following theorem gives a bound for the prediction error for any ž that
provides an approximation of the max `1-margin. The bound itself depends on the
max `1-margin  . If the features fulfil an additional small deviation assumption, we
obtain improved convergence rates.

Theorem 2.1. Assume p & n and that X D .Xi /i2Œn� has i.i.d. zero mean and unit
variance entries and satisfies the weak moment assumption with � � 1=2 and the anti-
concentration assumption with ˛ 2 .0; 1�. Let ž be an approximation of the margin
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and suppose that ž satisfies with probability at least 1 � t that  � 0. Define

� D

�
log2�C1.p/ log.n/

20n

�1=.2C˛/
;

and assume that � . 1. Moreover, assume that jOj . �˛n: Then with probability at
least 1 � cp�1 � t we have that

d. ž; ˇ�/ . �˛:

Moreover, if X satisfies a small deviation assumption with � > 0 and jOj. �˛.1C
2
�
/n;

then, with probability at least 1 � cp�1 � t , we have that

d. ž; ˇ�/ . �˛.1C
2
�
/:

The proof of Theorem 2.1 involves two main arguments: a bound for the ratio
k žk1=k žk2 in terms of the max `1-margin and a sparse hyperplane tessellation result
that adapts a proof technique introduced by [20]. For the bound on the ratio we argue
by contradiction and show that with high probability no ˇ can simultaneously approx-
imate the margin and have small Euclidean norm. If the small deviation assumption
is satisfied we obtain an improved bound on the ratio by using a more involved
discretization argument via Maurey’s empirical method [12, 13, 51]. For the sparse
hyperplane tessellation result, we argue similarly as [20], but use again Maurey’s
empirical method instead of their net argument. Compared to a discretization argu-
ment via nets (as in [20, 47]) this has the advantage that we are able to deal with
features that only fulfil the weak moment assumption, while still retaining the same
rate (up to logarithmic factors) as in the sub-Gaussian case. By contrast, the obtained
convergence rates in [20] depend on whether the features are sub-Gaussian or not.

The following lemma shows that AdaBoost, as described in Algorithm 1, provides
an approximation of the max `1-margin, when it is run long enough. The proof is a
simple adaptation of results by [55] to our setting.

Lemma 2.1. Consider the AdaBoost Algorithm 1 and suppose that p & n and that
X D .Xi /i2Œn� satisfies the weak moment assumption with � � 1=2. Suppose that
 > 0, that the learning rate � satisfies � � 1=6 and that

T & log2�C1.np/=.�22/:

Then, the output of Algorithm 1 provides an approximation of the max `1-margin with
probability at least 1 � p�1.

Hence, both for algorithmic (Lemma 2.1) as well as recovery guarantees (The-
orem 2.1), it is necessary to obtain a lower bound on the max `1-margin  .
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2.2.2. A bound for the max `1-margin. In this section, we obtain a lower on the
max `1-margin  , holding with large probability.

Theorem 2.2. Assume that p & n and that X D .Xi /i2Œn� has i.i.d. symmetric, zero
mean and unit variance entries and satisfies the weak moment assumption with � �
1=2 and the anti-concentration assumption with ˛ 2 .0; 1�. Then, with probability at
least 1 � cn�1, we have that

 &
�

n

log.ep=n/

�
s C

log1C2� .n/jOj
log.ep=n/

C log1C2� .n/
�˛=2��1=.2C˛/

: (10)

Crucial for the proof of Theorem 2.2 is the fact that, defining

y̌ 2 arg min¹kˇk1 subject to yi hXi ; ˇi � 1; i D 1; : : : ; nº; (11)

we have the relation  D 1=k y̌k1 (see Lemma 4.1). Hence, to obtain a lower bound
for  it suffices to obtain an upper bound for k y̌k1, which we accomplish by explicitly
constructing a ˇ that fulfils the constraints in (11). In particular, we use the `1-quotient
property [35,58] to find a perturbation of ˇ� that has sufficiently small `1-norm while
still fulfilling the constraint yi hXi ; ˇi � 1 for all i 2 Œn�.

The dependence in (10) on the log.n/-factor can be improved in certain situations,
e.g. when O D ; or s & log.n/, leading to a slightly sharper bound.

The following proposition shows that even in an idealized setting with no noise
and isotropic Gaussian features, where ˛ D 1 (see Corollary 2.3), the lower bound on
the margin in Theorem 2.2 is, in general, tight (up to logarithmic factors).

Proposition 2.1. Suppose p & n, O D ; and that the entries of X are i.i.d. N .0; 1/

distributed. Then, for any ˇ� 2 �p�1 which satisfies kˇ�k1 . 1=
p
s, we have that

E .
�

log.p/
n

1
p
s

�1=3
: (12)

2.2.3. Rates for AdaBoost. Combining Theorems 2.1 and 2.2 with Lemma 2.1, we
obtain the following corollary that shows convergence rates for AdaBoost.

Corollary 2.1. Grant the assumptions of Theorem 2.2 and assume that for some large
enough constant �1 D �1.˛; �/ the AdaBoost Algorithm 1 is run for

T &
�
n
�
s C jOj

�˛=2�2=.2C˛/ log�1.p/��2

iterations with learning rate � � 1=6. Then, with probability at least 1 � cn�1, the
output žT of AdaBoost Algorithm 1 satisfies

d. žT ; ˇ
�/ .

�
.s C jOj/ log�2.p/

n

�˛=.2C˛/2
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for some constant �2D �2.˛; �/. Moreover, if X satisfies a small deviation assumption
with � > 0, then

d. žT ; ˇ
�/ .

�
.s C jOj/ log�2.p/

n

�˛.1C 2
�
/=.2C˛/2

with probability at least 1 � cn�1.

As for consistency .s C jOj/ log�2.p/ D o.n/ is required, it is ensured that in
this relevant regime AdaBoost is an approximation of the max `1-margin if we run
AdaBoost for T � n log.p/�1=��2 iterations. Hence, by contrast to other algorithms
such as gradient descent (e.g. [8, Section 9.3.1]) where often a logarithmic number of
iterations in n suffices, we require in the worst case an approximately linear number
of iterations in n to ensure consistency of AdaBoost.

2.2.4. Examples. We now illustrate our developed theory for some specific feature
distributions. First, for the density of the xij ’s being continuous, bounded and unim-
odal, we are able to show that the anti-concentration condition holds with parameter
˛ D 1=2.

Corollary 2.2. Assume that X D .Xi /i2Œn� has i.i.d. symmetric, zero mean and unit
variance entries and satisfies the weak moment assumption with � � 1=2. Assume that
the xij ’s have density f that is continuous, bounded by a constant, and unimodal, i.e.
f .a"/ � f ."/ 8 a 2 .0; 1/; " 2 R. Then X satisfies the anti-concentration condi-
tion with parameter ˛ D 1=2. In particular, this includes features that are distributed
according to the uniform, Gaussian, Student-t with d & log.p/, d 2 N; degrees of
freedom distributions (with �D 1=2) and the Laplace distribution (with �D 1). Hence,
when p & n and AdaBoost is for some constant �1 D �1.�/ run for at least

T &
�
n
�
s C jOj

�1=4�4=5 log.p/�1��2

iterations, then with probability at least 1 � cn�1, we have that

d. žT ; ˇ
�/ .

�
.s C jOj/ log�2.p/

n

�2=25
for some constant �2 D �2.�/.

When the features are Gaussian or Student-t with at least c log.p/ degrees of free-
dom distributed, we are able to improve upon this and show that the anti-concentration
and small deviation conditions are both fulfilled with parameters ˛D�D1. Moreover,
for these distributions the prediction and Euclidean estimation error are closely related
such that we are also able to obtain error bounds in this distance.
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Corollary 2.3. Assume that the entries of X D .Xi /i2Œn� are i.i.d. N .0; 1/ orp
.d � 2/=dtd distributed for log.p/ . d , d 2 N, p & 1. Then X satisfies the anti-

concentration and small deviation assumptions with ˛ D � D 1 and the weak moment
assumption with � D 1=2. In particular, when p & n, and after at least

T &
�
n
�
s C jOj

�1=2�2=3 log.p/�1��2

iterations of AdaBoost, we have with probability at least 1 � cn�1 that

d. žT ; ˇ
�/ .

�
.s C jOj/ log�2.p/

n

�1=3
for some constant �2. Moreover, on the same event, we have that ž

T

k žT k2

� ˇ�

2

.
�
.s C jOj/ log�2.p/

n

�1=3
: (13)

We now compare the convergence guarantees for AdaBoost with Gaussian or
Student-t distributed features with the state of the literature, where mostly Gaussian
features and Euclidean estimation error were considered. When O D ; the perform-
ance guarantee in (13) is better than existing bounds for regularized algorithms [47,
63] and match, up to logarithmic factors, the best available bounds that can be obtained
by combining the tessellation result in Proposition 4.2 with Plan and Vershynin’s [46]
linear programming estimator. A straightforward adaptation of the proofs from [20]
for the tessellation to our setting, would lead to an exponent of 1=4 in (13) in case
of the Student-t distribution with at least c log.p/ degrees of freedom. We achieve
improved rates by replacing the net discretization from [20] with a more involved
Maurey argument.

For Gaussian features and in the presence of adversarial errors, the convergence
rate obtained in (13) improves over the rate for the regularized estimator by [47]
if .jOj=n/4D o.s=n/ and otherwise their algorithm achieves faster convergence rates,
in both cases up to logarithmic factors. If ˇ� is exactly s-sparse, i.e. at most s entries
of ˇ� are non-zero, then the rate in (13) is sub-optimal in the dependence on s log.p/=n
and jOj=n and faster rates were obtained for a (non-interpolating) regularized estim-
ator in [3] for strongly log-concave features.

2.3. Simulations

In this subsection, we provide simulations for various feature distributions to illustrate
our theoretical results qualitatively. Alongside Theorem 2.1, we show the empirical
prediction error as a function of the sample size n and the number of corrupted
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labels jOj. Moreover, to accompany Theorem 2.2, we plot the margin as a function
of n.

As illustrated in Corollary 2.2, the developed theory applies to various distribu-
tions of the entries of the features Xij , such as continuous, bounded and unimodal
distributions. To highlight the universality of our theory, simulations were performed
for the standard normal distribution N .0; 1/, the Student-t distribution with log.p/
degrees of freedom, the uniform distribution with unit variance , and the Laplace dis-
tribution with zero location and unit scale parameter.

The ground truth ˇ� was generated randomly, with an s-sparse Rademacher prior.
That is, s out of the possible p entries are chosen at random, and set to ˙1=

p
s with

equal probability. The remaining entries are set to zero, making ˇ� s-sparse, with
kˇ�k2 D 1. The indices for the set of corruptions O was chosen uniformly at random,
such that a predetermined number of labels is corrupted. The sparsity was chosen
as s D 5. As Theorem 2.1 assumes p & n, we let p D 10n. AdaBoost was executed
as described in Algorithm 1, using step size � D 0:2. The number of steps performed
was T D .n

p
s C jOj/2=3 log.p/=�2 steps, imitating the setting in Corollary 2.3. The

simulations are averaged over twenty iterations.
The two plots in Figure 1 show the noisy case, while noise is absent in the two

plots in Figure 2. For the max `1-margin estimator the prediction error for all simu-
lated features appears to behave identically. By contrast, the `1-margin differs widely
across the features by a multiplicative constant, but shows the same asymptotic beha-
viour.

As stated in Lemma 2.1, we see that the margin of AdaBoost is close to the max
`1-margin and that the performance of AdaBoost is similar to the performance of the
max `1-margin classifier. The proximity of AdaBoost to its limit appears to depend
on the distribution of the features. In particular, the simulations suggest that heavier
tails lead to slower convergence. This is reasonable, considering that AdaBoost res-
cales the features with their `1-norm, see Algorithm 1. This is particularly visible
when comparing the uniform distribution, for which the max `1-margin estimator and
AdaBoost seem to behave almost identically, to the Student-t distribution, for which
the margin is close to zero for some n.

3. Conclusion

In this paper, we have shown that AdaBoost, as described in Algorithm 1, achieves
consistent recovery in the presence of small, adversarial errors, despite being over-
parametrized and interpolating the observations. Our results hold under weak assump-
tions on the tail behaviour and the behaviour around zero of the feature distribution.
In addition, for Gaussian features the derived convergence rates in Corollary 2.3 are
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Figure 1. On the left, we plot the prediction error for jOj D 40 corruptions, against the number
of samples n, for various features. On the right, we show for n D 500 how the prediction error
changes as the number of randomly flipped labels jOj decreases. The solid lines represent the
max `1-margin estimators y̌ (2). The dash-dotted lines are instances of AdaBoost žT , as defined
in Algorithm 1.
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Figure 2. On the left, we consider the same setting as in Figure 1, however in the case of
noiseless data jOj D 0. On the right, we plot for noiseless data the margins  of the max `1-
margin estimators, as defined in (1), as well as the `1-margins of AdaBoost žT .

comparable to convergence rates of state-of-the-art regularized estimators [47]. This is
a first step for the understanding of overparametrized and interpolating AdaBoost and
other interpolating algorithms and shows why such algorithms can generalize well in
high-dimensional and noisy situations, despite interpolating the data.

However, in the presence of well-behaved noise, as in logistic regression, our
bounds are suboptimal and require that the fraction of mislabelled data points decays
to zero. By contrast, regularized estimators [47] are able to achieve faster conver-
gence rates in such settings and do not require that the fraction of mislabelled data is
asymptotically vanishing to achieve consistency.

Many open question do remain. The convergence rate for Gaussian features in
Corollary 2.3 is among the best available results if ˇ� is allowed to be genuinely
effectively sparse. However, it is not clear whether the exponent in (13) is optimal,
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and further research about information theoretic lower bounds is needed. When ˇ�

is exactly sparse, the convergence rate in (13) is sub-optimal and better results for
log-concave features have been obtained by [3] for a regularized estimator. Moreover,
for noiseless data and exact sparse ˇ� our simulations suggest that AdaBoost attains
a faster rate than in the noisy case. It thus remains as an interesting further research
question how to show that AdaBoost attains faster convergence rates for noiseless data
and when ˇ� is exactly s-sparse.

Finally, our results rely heavily on the anti-concentration assumption in Defini-
tion 2.2, which is not fulfilled for Rademacher features. Assuming additionally

kˇ�k1 D o.1/;

the authors of [1] obtained convergence rates for the regularized estimator proposed
in [47]. It is straightforward to adapt our lower bound on the max `1-margin in The-
orem 2.2 to such a setting. However, by contrast, it is not clear how to modify the
uniform tessellation result used in the proof of Theorem 2.1 and consequently show
convergence rates for AdaBoost without anti-concentration.

4. Proofs

4.1. Proof of Theorem 2.1

Proof. Let ž be an approximation of the max `1-margin. Defining x̌ WD 2 ž=.0k žk1/,
we have on an event of probability at least 1 � t that

min
i2Œn�

yi hXi ; x̌i � 1;

and x̌ 2 rnB
p
1 for rn D 2=0. It follows that k žk1=k žk2 D k x̌k1=k x̌k2, which we

bound by applying the following proposition, which we prove in Section 4.3.

Proposition 4.1. Assume p & n and that X D .Xi /i2Œn� has i.i.d. zero mean and unit
variance entries and satisfies the weak moment assumption with � � 1=2. Let rn > 0
be such that

rn .
s

n

log2�C1.p/ log.n/
:

Then with probability at least 1 � cp�1, for any ˇ 2 Rp such that kˇk1 � rn and
mini2Œn� yi hXi ; ˇi � 1, we have that

kˇk1

kˇk2
. rn:
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Moreover, assume that X fulfils a small deviation assumption with parameter � > 0.
Then with probability at least 1 � cp�1, for any ˇ 2 Rp such that kˇk1 � rn and
mini2Œn� yi hXi ; ˇi � 1, we have that

kˇk1

kˇk2
.
rn

�n
;

where

�n �

�
n

log2�C1.p/ log.n/r2n

�1=�
:

Having obtained a bound for the ratio k žk1=k žk2, we next use a sparse hyper-
plane tessellation result for the pseudo-metric d , arguing by contradiction. The proof
of Proposition 4.2 is presented in Section 4.4. Since d is scaling invariant, i.e.

d.ˇ; ž/ D d
�
ˇ; ž=k žk2

�
;

it suffices to consider only elements on the unit sphere.

Proposition 4.2. Assume p & n and that X D .Xi /i2Œn� has i.i.d. zero mean and unit
variance entries and satisfies the weak moment assumption with � � 1=2 and the
anti-concentration assumption with ˛ 2 .0; 1�. For a > 0, define

� D c

�
a2

log2�C1.p/ log.n/
n

�1=.2C˛/
; (14)

and assume � � 1=2. Define

B.a; �/ D ¹ˇ 2 Rp W d.ˇ; ˇ�/ � c�˛º:

Then with probability at least 1 � cp�1, we have uniformly for ˇ 2 aBp1 \ �p�1 \

B.a; �/ that
1

n

nX
iD1

1
�
sgn

�
hXi ; ˇi

�
¤ sgn

�
hXi ; ˇ

�
i
��

& �˛:

Now we apply Proposition 4.2 with a � rn. Since jOj . �˛ by assumption, we
obtain

1

n

nX
iD1

1
�
sgn

�
hXi ; ž=k žk2i

�
¤ sgn

�
hXi ; ˇ

�
i
��
D
jOj

n
. �˛;

and hence, adjusting constants, we have on an event of probability at least 1 � t �
cp�1 that ž=k žk2 … B.a; �/, and hence on the same event d. ž; ˇ�/ . �˛ .

When X satisfies the small deviation assumption with parameter � > 0, we apply
Proposition 4.2 with a � rn=�n. Since jOj . �˛.1C

2
�
/ by assumption, we conclude

the proof using the same reasoning.
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4.2. Upper and lower bounds for the max `1-margin

4.2.1. Proof of Theorem 2.2. We start this section with the following lemma. A
proof is given in [38].

Lemma 4.1 ([38, Proposition A.2]). Suppose that

 WD max
ˇ¤0

min
1�i�n

yi hXi ; ˇi

kˇk1
> 0:

Then, we have that �1 D k y̌k1, where

y̌ 2 arg min
ˇ2Rp

¹kˇk1 subject to yi hXi ; ˇi � 1º: (15)

Hence, in order to lower bound  it suffices to upper bound k y̌k1, which is accom-
plished in the following proposition.

Proposition 4.3. Assume p & n and that X D .Xi /i2Œn� has i.i.d. symmetric, zero
mean and unit variance entries and satisfies the weak moment assumption with � �
1=2 and the anti-concentration assumption with ˛ 2 .0; 1�. Then with probability at
least 1 � cn�2, we have that

k y̌k1 .
�

n

log.ep=n/

�
s C

log1C2� .n/jOj
log.ep=n/

C log1C2� .n/
�˛=2�1=.2C˛/

: (16)

Proof. We prove Proposition 4.3 by explicitly constructing a ˇ that fulfils the con-
straints in (15). For " > 0, we define a lifting function f"WR! R, where

f".x/ WD

8̂̂<̂
:̂
x � " if 0 � x � ";

x C " if � " � x < 0;

0 otherwise:

For i 2 Œn�, we denote

zi D

´
f".hXi ; ˇ

�i/ i … O;

2hXi ; ˇ
�i � f".hXi ; ˇ

�i/ i 2 O;

and Z D .z1; : : : ; zn/T . Finally, we define

y� 2 arg min
ˇ2Rp

kˇk1 subject to hXi ; ˇi D zi ; i D 1; : : : ; n: (17)
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By definition of y�, if i 2 O, we have the decomposition

hXi ; ˇ
�
� y�i D �hXi ; ˇ

�
i C f"

�
hXi ; ˇ

�
i
�

D

8̂̂<̂
:̂
�hXi ; ˇ

�i if jhXi ; ˇi�j � ";

�" if 0 � hXi ; ˇ�i � ";

" if � " � hXi ; ˇ�i < 0:

A similar decomposition with each equation above multiplied with �1 holds if i … O.
Hence, we have that sgn.hXi ; ˇ� � y�i/ D yi and jhXi ; ˇ� � y�ij � " for i D 1; : : : ; n.
It follows that

k y̌k1 �
kˇ� � y�k1

"
�

p
s

"
C
ky�k1

"
:

We now apply Proposition B.1 and obtain, with probability at least 1 � 2 exp.�2n/,
that

ky�k1 .
kZk2p

log.ep=n/
C kZk1:

By Lemma B.1, we have with probability at least 1 � n�2 that

kZk1 . "Cmax
i2O
jhXi ; ˇ

�
ij � "Cmax

i2Œn�
jhXi ; ˇ

�
ij . "C log1=2C� .n/:

It is left to bound kZk2. By the triangle inequality, we have that

kZk2 � 2

sX
i2O

jhXi ; ˇ
�
ij
2
C

p
nX
iD1

f"
�
hXi ; ˇ

�
i
�2
: (18)

By Lemma B.1, we have with probability at least 1 � n�2 thatX
i2O

jhXi ; ˇ
�
ij
2
� jOjmax

i2Œn�
jhXi ; ˇ

�
ij
2 . jOj log1C2� .n/:

We next bound the second term on the right-hand side in (18). Indeed, we have that

1

n

nX
iD1

f"
�
hXi ; ˇ

�
i
�2
D
1

n

nX
iD1

�
jhXi ; ˇ

�
ij � "

�21
�
jhXi ; ˇ

�
ij � "

�
�
"2

n

nX
iD1

1
�
jhXi ; ˇ

�
ij � "

�
: (19)

Let p" D P .jhX1; ˇ�ij � "/. By Hoeffding’s inequality ([26, Theorem 3.1.2]), we
have with probability at least 1 � exp.�2n"2˛/ that

1

n

nX
iD1

f"
�
hXi ; ˇ

�
i
�2
�
"2

n

nX
iD1

1
�
jhXi ; ˇ

�
ij � "

�
� "2.p" C "

˛/ . "2C˛;
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where the last inequality holds by the anti-concentration assumption and for p�1 �
" � 1. Hence, summarizing, we have with probability at least 1 � e�2n"

2˛
� n�2 �

2 exp.�2n/ that

ky�k1 .
log1=2C� .n/jOj1=2 C n1=2"1C˛=2p

log.ep=n/
C "C log.n/1=2C� :

Choosing

" �

�
s log.ep=n/

n
C
jOj log.n/1C2�

n

�1=.2C˛/
concludes the proof.

4.2.2. Proof of Proposition 2.1.

Proof. By the dual formulation of the margin (see Appendix A), we have that

 D inf
wW wi�0 8 i2Œn�;kwk1D1

 nX
iD1

wiyiXi


1
: (20)

Hence, for proving an upper bound it suffices to find an appropriate weighting w.
For �n a sequence to be defined and ��1n taking integer values, we define

wi D

´
�n i is among indices of ��1n smallest entries of .jhXi ; ˇ�ij/niD1;

0 otherwise:

We use this choice of w to upper bound  . We denote the projector onto the space
spanned by ˇ� by P , P WD ˇ�.ˇ�/T , and define its orthogonal complement P? WD
Ip � P . We have that nX

iD1

wiyiXi


1
�

 nX
iD1

wiyiPXi


1
C

 nX
iD1

wiyiP
?Xi


1
: (21)

We treat the two terms separately. For the first term, we have by [27, Theorems 5
and 7] that

E
 nX
iD1

wiyiPXi


1
D E

 nX
iD1

wi jhXi ; ˇ
�
ijˇ�


1
D kˇ�k1E

nX
iD1

wi jhXi ; ˇ
�
ij

. kˇ�k1
��1nX
kD1

�nk log.k C 1/
n

.
kˇ�k1.�

�1
n C 1/ log.p/
n

:

We next bound the second term on the right-hand side in (21). Observe that

yi D sgn
�
hXi ; ˇ

�
i
�
D sgn

�
hPXi ; ˇ

�
i
�
;
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and hence yi is independent of P?Xi . Likewise, w is a function of .PXi /i and not
.P?Xi /i , and hence w and P?Xi are independent for each i . We conclude that�X

i

wiyiP
?Xi

�
j

Ï N
�
0; kwk22hej ; P

?ej i
�
:

Hence, using a standard Chernoff-bound, we obtain

E
X
i

wiyiPXi


1

.
q

log.p/kwk22 D
p

log.p/�n:

Hence, we obtain

E � E
 nX
iD1

wiyiXi


1

.
kˇ�k1 log.p/

n�n
C
p

log.p/�n:

The final result is obtained by choosing

��1n D

��
n

kˇ�k1 log.p/

�2=3�
:

4.3. Proof Proposition 4.1

4.3.1. Proof of the first part of Proposition 4.1. In this subsection, we present a res-
ult holding only under the weak moment assumption. We will see in the next section
how to improve this result when assuming a small deviation assumption.

Proposition 4.4. Assume that X D .Xi /i2Œn� has i.i.d. zero mean and unit variance
entries and satisfies the weak moment assumption with � � 1=2. Suppose that rn > 0
satisfies

rn .
r

n

log.p/
:

Then, with probability at least

1 � np�2 � 2 exp
�
�

cn

r2n log2� .p/

�
;

for any ˇ 2 Rp such that kˇk1 � rn and mini2Œn� yi hXi ; ˇi � 1, we have that

kˇk2 � 1=2:

Proof. For rn > 0, let ˇ 2 Rp such that kˇk1 � rn and mini2Œn� yi hXi ; ˇi � 1. Thus,
we have

1

n

nX
iD1

jhXi ; ˇij � 1: (22)
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We proceed by contradiction. Assume that kˇk2 � 1=2. In this case, we show that
equation (22) is not satisfied with large probability, concluding the proof by contra-
diction.

For i 2 Œn�, using Hölder’s inequality, we have that

jhXi ; ˇij � kXik1kˇk1 � rnkXik1 . rn log� .p/;

where the last inequality follows from Lemma B.1 and holds with probability at least
1 � p�2. Thus, with probability at least 1 � n=p2 we have, for all i 2 Œn�, that

jhXi ; ˇij . rn log� .p/:

Hence, conditioning on this event and using the bounded differences inequality ([26,
Theorem 3.3.14]), we obtain with probability at least

1 � 2 exp
�
�

cn

r2n log2� .p/

�
� n=p2

that

sup
ˇ2rnB

p
1
\.1=2/B

p
2

1

n

nX
iD1

jhXi ; ˇij � sup
ˇ2rnB

p
1
\.1=2/B

p
2

EjhX1; ˇij

C E sup
ˇ2rnB

p
1
\.1=2/B

p
2

1

n

nX
iD1

jhXi ; ˇij � EjhXi ; ˇij C
1

4
:

By Jensen’s inequality and the fact that X is isotropic with unit variance, we obtain
that

sup
ˇ2rnB

p
1
\.1=2/B

p
2

EjhX1; ˇij � 1=2:

Moreover, we have that

E sup
ˇ2rnB

p
1
\.1=2/B

p
2

1

n

nX
iD1

jhXi ; ˇij � EjhXi ; ˇij � E sup
ˇ2rnB

p
1
\.1=2/B

p
2

4

n

nX
iD1

�i hXi ; ˇi

. rn

r
log.p/
n

;

where .�i /niD1 are i.i.d. Rademacher random variables independent from .Xi /
n
iD1.

We used in the first line the symmetrization and contraction principles ([26, Theor-
ems 3.1.21 and 3.2.1]), and Proposition B.2 in the second line to bound the Rade-
macher complexity.

The condition on rn shows that

sup
ˇ2rnB

p
1
\.1=2/B

p
2

1

n

nX
iD1

jhXi ; ˇij < 1;

and the contradiction is established.
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4.3.2. Proof of the second part of Proposition 4.1: Small deviation assumption.
In this subsection, we show how to prove the second part of Proposition 4.1 under the
small deviation assumption (Definition 2.3).

Proposition 4.5. Assume p & n and that X D .Xi /i2Œn� has i.i.d. zero mean and unit
variance entries and satisfies the weak moment assumption with � � 1=2. Moreover,
assume that X fulfils a small deviation assumption (Definition 2.3) with constant
� > 0. Let rn � 1, define

�n D c

�
n

log2�C1.p/ log.n/r2n

�1=�
;

and suppose that �n & 1. Then, with probability at least 1� p�1 for any ˇ 2 Rp such
that kˇk1 � rn and mini2Œn� yi hXi ; ˇi � 1, we have that

kˇk1=kˇk2 . rn=�n:

Proof of Proposition 4.5. Let ¹ej º
p
jD1 be the set of standard unit vectors in Rp and

D WD ¹˙ej º [ ¹0º � Rp be the set of vectors with all entries equal to zero possibly
except just one, where the value is then˙1. For m 2 N, we define Maurey’s set

Zm WD

²
z D

1

m

mX
kD1

zk; zk 2 D 8 k

³
:

Take
m D c log2� .p/ log.n/r2n ;

and define the event
Emax WD

®
kXk1 � c log� .p/

¯
;

and observe that by Lemma B.1, the event Emax occurs with probability at least
1 � p�1 as p & n. Then, by Lemma 4.2, for all ˇ 2 rnB

p
1 such that kˇk2 . �n,

there exists a vector zˇ 2 rnZm such that on Emax, we have

max
1�i�n

jhXi ; ˇi � hXi ; zˇ ij . log� .p/rn

r
log.2n/
m

�
1

2

as well as kˇ � zˇk2 � 1=2 for m defined previously. Thus, by assumption on �n, we
also have

kzˇk2 . �n C 1=2 . �n:

In other words, on Emax we have that®
zˇ W kˇk1 � rn; kˇk2 � c�n

¯
� rnZm \

®
ˇ W kˇk2 � c�n

¯
DW Zm.rn; �n/:



AdaBoost and robust one-bit compressed sensing 139

We invoke that°
sup

ˇ2rnB
p
1
\¹ˇ Wkˇk2.�nº

min
1�i�n

jhXi ; ˇij � 1
±
\ Emax

�

°
max

z2Zm.rn;�n/
min
1�i�n

jhXi ; zij �
1

2

±
:

For all z 2Zm.rn; �n/ and i 2 Œn�, by the small deviation assumption (Definition 2.3),
we have

P
�
jhXi ; zij �

1

2

�
� P

�
jhXi ; zij

kzk2
�
c

�n

�
& ���n :

Hence,

P
�
jhXi ; zij �

1

2

�
�
�
1 � c���n

�
� exp

�
�c���n

�
;

and thus we obtain

P
�

min
1�i�n

jhXi ; zij �
1

2

�
� exp

�
�cn���n

�
:

Since
jZm.rn; �n/j � jZmj � .2p C 1/

m;

we obtain by a union bound that

P
�

max
z2Zm.rn;�n/

min
1�i�n

jhXi ; zij �
1

2

�
� exp

�
m log.2p C 1/ � cn���n

�
:

We conclude that

P
�

sup
ˇ2rnB

p
1
\¹ˇ Wkˇk2�c�nº

min
1�i�n

jhXi ; ˇij � 1
�

� exp
�
m log.2p C 1/ � cn���n

�
C P .Ecmax/

� exp
�
�cn���n

�
C p�1

from our choice of m and applying Lemma B.1.

4.4. Tessellation: Proof of Proposition 4.2

Proof. For a > 0 and � defined in equation (14), let ˇ 2 aBp1 \ �p�1 \B.a; �/. By
Lemma 4.2, there exists zˇ in Zm such that

max
i2Œn�
jhXi ; ˇ � zˇ ijlEmax . a log� .p/

r
log.n/
m
� � and kˇ � zˇk2 .

1
p
m
;
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where Emax WD ¹kXk1 � c log� .p/º and for m D ca2 log2� .p/ log.n/=�2. We note
that by Lemma B.1, Emax occurs with probability at least 1 � np�2. In particular, we
have

1=2 � 1 � � � kzˇk2 � 1C � � 3=2

for � small enough. Let zˇ 2Zm. By Bernstein’s inequality ([26, Theorem 3.1.7]) and
the anti-concentration assumption, we have that

nX
iD1

1
®
jhXi ; zˇ ij � �

¯
� n

�
P
�
jhX1; zˇ ij � �

�
C �˛

�
� n

�
P

�ˇ̌̌D
X1;

zˇ

kzˇk2

Eˇ̌̌
� 2�

�
C �˛

�
� n

�
sup

ˇ2�p�1
P
�
hX1; ˇij � 2�

�
C �˛

�
. n�˛

with probability at least 1 � exp.�cn�˛/. Now, define

J WD
®
i 2 Œn� W min

zˇ2Zm
jhXi ; zˇ ij � �

¯
:

Using an bound over Zm and that jZmj � .2pC 1/m, we obtain that with probability
at least

1 � 2 exp
�
m log.2p C 1/ � cn�˛

�
� 1 � 2 exp

�
�cn�˛

�
;

uniformly for zˇ 2 Zm, we have

jJC j . �˛n:

For i 2 J and working on the event Emax, we have that

jhXi ; zˇ ij � � and jhXi ; ˇ � zˇ ij < �;

and hence hXi ; ˇi and hXi ; zˇ i have matching signs.
Hence, for ˇ 2 aBp1 \ �p�1 \B.a; �/ and working on the event Emax, we have

nX
iD1

1
®
sgn

�
hXi ; ˇi

�
¤ sgn

�
hXi ; ˇ

�
i
�¯

�

X
i2J

1
®
sgn

�
hXi ; ˇi

�
¤ sgn

�
hXi ; ˇ

�
i
�¯

D

X
i2J

1
®
sgn

�
hXi ; zˇ i

�
¤ sgn

�
hXi ; ˇ

�
i
�¯

�

nX
iD1

�
1
®
sgn

�
hXi ; zˇ i

�
¤ sgn

�
hXi ; ˇ

�
i
�¯
� c�˛

�
:
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Applying Bernstein’s inequality ([26, Theorem 3.1.7]), we have that

nX
iD1

1
�
sgn

�
hXi ; zˇ i

�
¤ sgn

�
hXi ; ˇ

�
i
��
�
�
d.zˇ ; ˇ

�/ � c�˛
�
n

with probability at least 1 � exp.�cn�˛/. We next lower bound d.zˇ ; ˇ�/. Indeed,
arguing as above, we have that

d.zˇ ; ˇ
�/ D P

�
sgn

�
hX; zˇ i

�
¤ sgn

�
hX;ˇ�i

�
j.yi ; Xi /

n
iD1

�
� P

�
sgn

�
hX; zˇ i

�
¤ sgn

�
hX;ˇ�i

�
; jhX; zˇ ij � �; jhX; zˇ � ˇij < �j.yi ; Xi /

n
iD1

�
D P

�
sgn

�
hX;ˇi

�
¤ sgn

�
hX;ˇ�i

�
; jhX; zˇ ij � �; jhX; zˇ � ˇij < �j.yi ; Xi /

n
iD1

�
� d.ˇ; ˇ�/ � P

�
jhX; zˇ ij � �j.yi ; Xi /

n
iD1

�
� P

�
jhX; zˇ � ˇij � �j.yi ; Xi /

n
iD1

�
:

By the anti-concentration assumption (Definition 2.2), we have that

P
�
jhX; zˇ ij � �j.yi ; Xi /

n
iD1

�
. �˛:

Moreover, by our choice of m and Lemma B.1, we have that

P
�
jhX; zˇ � ˇij > �j.yi ; Xi /

n
iD1

�
. n�2 . �˛:

Hence, and since d.ˇ; ˇ�/ & �˛ , we obtain when the constant in the definition of
B.a; �/ is large enough that

d.zˇ ; ˇ
�/ & �˛:

Hence, taking another union bound over Zm and Emax and for the constant in the
definition of B.a; �/ large enough, we obtain with probability at least

1 � 2 exp
�
m log.2p C 1/ � c�˛n

�
� np�2 � 1 � 2 exp

�
�c�˛n

�
� np�2;

uniformly for ˇ 2 aBp1 \ �p�1 \B.a; �/ that

nX
iD1

1
�
sgn

�
hXi ; ˇi

�
¤ sgn

�
hXi ; ˇ

�
i
��

& �˛n;

which concludes the proof.

4.5. Rest of the proofs

4.5.1. Lemma 4.2. The following lemma applies Maurey’s empirical method [12,
13] to construct a set Zm that approximates the Bp1 -ball well.
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Lemma 4.2 (Maurey’s lemma). Let ¹ej º
p
jD1 be the set of standard unit vectors in Rp

and D WD ¹˙ej º [ ¹0º �Rp be the set of vectors with all entries equal to zero except
at most one, where the value is then˙1. For m 2 N, define Maurey’s set

Zm WD

²
z D

1

m

mX
kD1

zk; zk 2 D 8 k

³
:

Then, we have that Zm � B
p
1 and that jZmj � .2p C 1/m. Moreover, for every

ˇ 2 B
p
1 , there exists a vector zˇ 2 Zm such that for Emax WD ¹kXk1 � c log� .p/º,

we have that

max
1�i�n

jhXi ; ˇi � hXi ; zˇ ijlEmax . log� .p/

r
log.n/
m

and kˇ � zˇk2 .
1
p
m
:

Proof. For z 2 D , either kzk1 D 1 or z � 0. Thus, for xz WD
Pm
kD1 zk=m 2 Zm, we

have

kxzk1 �

mX
kD1

kzkk1=m � 1:

It is moreover clear that jD j D .2p C 1/. Therefore, jZmj � .2p C 1/m.
We now turn to the main part of the lemma. Let ˇ 2 Bp1 . Define a random vector

Z 2 D by

P
�
Z D sign. ǰ /ej

�
D j ǰ j for ǰ ¤ 0, j D 1; : : : ; p;

and
P
�
Z D 0

�
D 1 � kˇk1:

Then
EZ D ˇ; Ekˇ �Zk22 D kˇk1 � kˇk

2
2 � kˇk1 � 1:

Let Z1; : : : ;Zm be independent copies of Z and define xZ WD
Pm
kD1Zk=m. Then we

get

Ekˇ � xZk22 �
1

m
:

Let �1; : : : ; �m be a Rademacher sequence independent of (X; .Z1; : : : ; Zm//. Then
we have by the symmetrization inequality ([26, Theorem 3.1.21]) that

E
h

max
1�i�n

jhXi ; ˇi � hXi ; xZij j X
i
�
2

m
E

�
max
1�i�n

j

mX
kD1

�khXi ; xZkij j X

�
:

Further, for i D 1; : : : ; n, we have that
mX
kD1

hXi ; Zki
2
� mkXik

2
1 � mkXk

2
1:
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Thus, we obtain

E

�
max
1�i�n

ˇ̌̌ mX
kD1

�khXi ; Zki
ˇ̌̌
j X; Z1; : : : ; Zm

�
�
p
2 log.2n/

p
mkXk1:

Hence, and since
Emax D

®
kXk1 � c log� .p/

¯
;

we obtain that

E
h

max
1�i�n

jhXi ; ˇi � hXi ; xZijlEmax

i
. log� .p/

r
log.n/
m

:

Invoking Jensen’s inequality and Ekˇ � xZk22 � 1=m, we have that

Ekˇ � xZk2 . 1=
p
m:

Hence, we obtain that

E
h

max
1�i�n

jhXi ;ˇi � hXi ; xZijlEmax C log� .p/ log1=2.n/kˇ� xZk2
i

. log� .p/

r
log.n/
m

;

and hence there exists at least one zˇ 2 Zm with the desired properties.

4.5.2. Proof of Lemma 2.1.

Proof. The proof follows closely the arguments in [55]. First, note that rescaling XD

X=kXk1 does not change the approximating properties of žT for the max `1-margin.
Indeed, if žT fulfils

min
1�i�n

yi hXi=kXk1; žT i

k žT k1

�
1

2
max
ˇ¤0

min
1�i�n

yi hXi=kXk1; ˇi

kˇk1
DW R D =kXk1;

then, by linearity, žT also fulfils

min
1�i�n

yi hXi ; žT i

k žT k1

�
1

2
max
ˇ¤0

min
1�i�n

yi hXi ; ˇi

kˇk1
D :

Henceforth, we work with the rescaled data X=kXk1, which, in slight abuse of nota-
tion, we also denote by X. Note, that by definition kXk1 � 1. Define the exponential
loss

`.ˇ/ WD
1

n

nX
iD1

exp
�
�yi hXi ; ˇi

�
:
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Note that

r`.ˇ/ D �
1

n

nX
iD1

yiXi exp
�
�yi hXi ; ˇi

�
;

r
2`.ˇ/ D

1

n

nX
iD1

XiX
T
i exp

�
�yi hXi ; ˇi

�
:

Hence, we have that
�hr`. žt /; vt i D ˛t`. žt /:

Moreover, note that j˛t j �
P
wt;i jhXi ; vt ij � 1. By second order Taylor expansion,

we obtain that

`. žtC1/ � `. žt /C �˛t hr`. žt /; vt i C
1

2
sup
r2Œ0;1�

hr
2`. žt C r�˛tvt /vt ; vt i:

We next bound the Hessian above. Indeed, we have for any r that

hr
2`. žt C r�˛tvt /vt ; vt i D

1

n

nX
iD1

hXi ; vt i
2�2˛2t exp

�
�yi hXi ; žt C r�˛tvt i

�
� �2˛2t exp.r j˛t j�/`. žt / � �2˛2t e

�`. žt /:

Hence, we can further bound

`. žtC1/ � `. žt /C �˛t hr`. žt /; vt i C
�2˛2t e

�

2
`. žt /

� `. žt /
�
1 � �˛2t C

3�2˛2t
2

�
� `. žt / exp

�
��
�
˛2t �

3�˛2t
2

��
;

and hence we obtain

`. žT / � exp
�
��

TX
tD1

�
˛2t �

3�˛2t
2

��
:

Moreover, we have that

k žT k1 D

 TX
tD1

�˛tvt


1
� �

TX
tD1

j˛t j:

In addition, we note that by the dual formulation of the margin (see Appendix A) and
definition of vt and ˛t , we have that

j˛t j D
Xwt;iyiXi


1
� inf
wWwi�0 8 i;kwk1D1

XwiyiXi

1
D R:
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Hence, by Markov’s inequality and since 3�=2 < 1, we obtain for any positive x that
nX
iD1

1
¹yi hXi ;

ž
T i�k

ž
T k1xº

�

nX
iD1

exp
�
k žT k1x � yi hXi ; žT i

�
D n`. žT / exp

�
k žT k1x

�
� exp

�
log.n/ � �

TX
tD1

j˛t j
�
j˛t j � x �

3�j˛t j

2

��
� exp

�
log.n/ � �

TX
tD1

j˛t j
�
R � x �

3�R

2

��
:

Hence, choosing x D 1
2
R and using that � � 1=6 and that with probability at least

1 � np�2, we have by Lemma B.1 that

T >
2 log.n/
3�22R

D
2 log.n/kXk21

3�22
;

we obtain
nX
iD1

1
¹yi hXi ;

ž
T i�k

ž
T k1xº

�

nX
iD1

exp
�
k žT k1x � yi hXi ; žT i

�
� exp

�
log.n/ � 3T�22R=2

�
< e0 D 1:

Since
Pn
iD1 1

¹yi hXi ;
ž
T i�k

ž
T k1

1
2Rº

can only take values in ¹0; 1; : : : ; nº this implies
that

nX
iD1

1
¹yi hXi ;

ž
T i�k

ž
T k1

1
2Rº

D 0;

and hence the result follows.

4.5.3. Proof of Corollary 2.3.

Proof. For Gaussian distributed features it is clear that the weak moment assumption
with �D 1=2 is satisfied. Moreover, since for ˇ 2 �p�1 we have that hX;ˇiÏ N .0;1/,
for any 0 < " � 1, we then have

sup
ˇ2�p�1

P
�
jhX;ˇij � "

�
D

Z "

�"

1
p
2�
e�x

2=2 dx � ";

and hence both the anti-concentration and small deviation assumptions are fulfilled
with ˛ D � D 1. Finally, to show (13), note that by Grothendieck’s identity ([56,
Lemma 3.6.6]) and as the geodesic distance on the sphere is lower bounded by the
Euclidean distance, we have that

d.ˇ�; žT / D
arccos

�
hˇ�; žT =k žT k2i

�
�

�

ˇ� � ž
T

k žT k2


2

:
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For the Student-t -distribution with at least 32 log.p/ degrees of freedom, Lemma 4.3
below proves that the weak moment assumption, the anti-concentration, and small
deviation assumptions with ˛ D � D 1 are satisfied. Moreover, Lemma 4.4 below
shows that in this case we can also lower bound

d. žT ; ˇ
�/ &

ˇ� � ž
T

k žT k2


2

:

Lemma 4.3. Suppose that X D .xj /
p
jD1 with xj

i:i:d:Ï
p
.d � 2/=dtd for d 2 N, d �

32 log.p/ and p & 1. Then for any 0 � " � 1, we have

inf
ˇ2�p�1

P
�
jhX;ˇij � "

�
& ":

Moreover, under the same assumptions, we have that

sup
ˇ2�p�1

P
�
jhX;ˇij � "

�
. "C p�1:

Finally, for 2q C 1 � d and p & 1, we have that�
Ejx1j

q
�1=q .

p
q:

Proof. Since xj Ï
p
.d � 2/=dtd , we have that

xj D

p
..d � 2/=d/zjq

�2
d;j
=d

;

where z denotes a standard Gaussian random variable and �2
d;j

a chi-squared random
variable with d degrees of freedom that is independent of z. For ˇ 2 �p�1, we have
conditionally on the �2

d;j
-variables that

hX;ˇi j
�
�2d;j

�p
jD1

Ï N

�
0;
d � 2

d

nX
iD1

ˇ2i d

�2
d;j

�
:

Hence, conditioning on the event where �2
d;j
� d=2 for all j 2 Œp�, and using inde-

pendence of z and the �2
d;j

-variables and that kˇk2 � 1, we obtain that

P
�
jhX;ˇij � "

�
� P

�
jzj � "

p
d=.2.d � 2//

�
P
�

min
j2Œp�

�2d;j � d=2
�

& "P
�

min
j2Œp�

�2d;j � d=2
�
:
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It is left to lower bound the probability involving the minimum. By applying a lower
tail bound for chi-square random variables ([36, Lemma 1]) and a union bound, we
obtain

P
�

min
j2Œp�

�2d;j < d=2
�
� pP

�
�2d;1 < d=2

�
� pe�d=16 � p�1 �

1

2
;

using the conditions on d and p.
For the upper bound we argue similarly. We have

P
�
jhX;ˇij � "

�
� P

�
max
j2Œp�

�2d;j � 2d
�
C P

�
jZj � "

p
2d=.d � 2/

�
. P

�
max
j2Œp�

�2d;j � 2d
�
C ":

Applying an upper tail bound for chi-square random variables ([36, Lemma 1]), we
obtain

P
�
max
j2Œp�

�2d;j > 2d
�
� pP

�
�2d;1 > 2d

�
� pe�d=16 � p�1;

thus proving the claimed result.
Finally, for the claimed moment bound, integration by parts, and for � denoting

the Gamma function, give

Ejx1j
q
D
dq=2�..q C 1/=2/�..d � q/=2/

�1=2�.d=2/
:

We now only consider the case where q is uneven, as the other case follows along
the same lines. Indeed, since d & q, applying Gautschi’s inequality and using that
�.z/ � zz�1=2 for z � 1, we have that

dq=2�..q C 1/=2/�..d � q/=2/

�.d=2/

D
dq=2�..q C 1/=2/�..d � q/=2/

..d � 2/=2 � � � � � .d � q � 1/=2/�..d � q C 1/=2/

.
c.q�1/=2dq=2�..q C 1/=2/�..d � q/=2/

d .q�1/=2�..d � q C 1/=2/

.
.cd/q=2�..q C 1/=2/

dq=2
. .cq/q=2:

Taking the q-th root concludes the proof.

Lemma 4.4. Suppose that X D .x1; : : : ; xp/ with xj
i:i:d:Ï

p
.d � 2/=d td for d &

log.p/ and p & 1. Then for any ˇ; ž 2 �p�1 , we have

P
�
sgn

�
hX;ˇi

�
¤ sgn

�
hX; ži

��
& kˇ � žk2:
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Proof. Since xj Ï
p
.d � 2/=dtd , we have that

xj D

p
.d � 2/=d zjq
�2
d;j
=d

;

where z denotes a standard Gaussian random variable and �2
d;j

a chi-squared random
variable with d degrees of freedom that is independent of z. Denote

ˇ� D
�
ǰ

q
d=�2

d;j

�
j2Œp�

and note that on the event ¹d=2 � �2
d;j
� 2d 8 1 � j � pº, we havep

1=2 � kˇ�k2 �
p
2:

Then, conditioning on the �2
d;j

-variables and using Grothendieck’s identity ([56, Lem-
ma 3.6.6]), we have

P
�
sgn

�
hX;ˇi

�
¤ sgn

�
hX; ži

��
D

E arccos
�
hˇ�=kˇ�k2; ž�=k ž�k2i

�
�

� E

 ˇ�

kˇ�k2
�

ž
�

k ž�k2


2

:

Using that ˇ and ž have unit norm, we further bound

E

 ˇ�

kˇ�k2
�

ž
�

k ž�k2


2

& E
��
kˇ�k ž�k2 � ž�kˇ�k2k2

�
1.d=2 � �2d;j � 2d 8 1 � j � p/

�
D E

"p
pX
jD1

�
ǰ k
ž
�k2 �

ž
j kˇ�k2

�2
�2
d;j
=d

1.d=2 � �2d;j � 2d 8 1 � j � p/

#
& E

��
kˇk ž�k2 � žkˇ�k2k2

�
1.d=2 � �2d;j � 2d 8 1 � j � p/

�
� min
a;b2Œ1=2;2�

q
a2 C b2 � 2abhˇ; žiP .d=2 � �2d;j � 2d 8 1 � j � p/:

By [36, Lemma 1], a union bound, and by our assumption on d and p, we have that

P .d=2 � �2d;j � 2d 8 1 � j � p/ � .1 � 2pe
�d=16/ � 1=2:

Hence, it is left to lower bound the quadratic equation

min
a;b2Œ1=2;1�

�
a2 C b2 � 2abhˇ; ži

�
:
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If h ž; ˇi � 0, it is clear that the minimum is attained at a D b D 1=2. Conversely, if
h ž; ˇi > 0, we have

min
a;b2Œ1=2;1�

�
a2 C b2 � 2abhˇ; ži

�
� min
a2R;b2Œ1=2;1�

�
a2 C b2 � 2abhˇ; ži

�
D min
b2Œ1=2;1�

b2
�
1 � hˇ; ži2

�
&
�
1 � hˇ; ži

�
:

since 0 < h ž; ˇi � 1. Hence, summarizing, we have that

min
a;b2Œ1=2;2�

q
a2 C b2 � 2abhˇ; ži &

q�
2 � 2hˇ; ži

�
D kˇ � žk2;

thus concluding the proof.

4.5.4. Proof of Corollary 2.2.

Proof. The proof of Corollary 2.2 follows mainly from Lemma 4.5 below, which
shows that the anti-concentration condition is satisfied for unimodal features with
bounded density, and by noting that the weak moment assumption is satisfied for
Laplace distributed features with � D 1, for Student-t with at least 2 log.p/ C 1
degrees of freedom by Lemma 4.3 with � D 1=2, and for uniform and Gaussian fea-
tures with � D 1=2 as they are sub-Gaussian.

Lemma 4.5. Suppose that X D .x1; : : : ; xp/ consists of i.i.d. symmetric and unit
variance scalar random variables with density f . Suppose that kf k1 . 1 and that f
is unimodal, i.e. f .aw/� f .w/ for any 0� a� 1 and anyw 2R. Then, for 0� "� 1,
we have that

sup
ˇ2�p�1

P
�
jhX;ˇij � "

�
. "1=2Ejx1j

3:

Proof. We consider two cases. If kˇk1 � "1=2, then by the Berry–Essen theorem
(e.g. [14, Theorem 3.6]), we have

P
�
jhX;ˇij � "

�
. "C

pX
jD1

j ǰ j
3Ejx1j

3 . "C "1=2Ejx1j
3 (23)

. "1=2Ejx1j
3: (24)

If kˇk1 � "1=2, we argue as follows. Assume, without loss of generality, that jˇ1j �
"1=2. We note that since x1 is unimodal that ˇ1x1 is unimodal, too. Then, since ˇ1x1
is unimodal (see e.g. [2, Theorem 1]), we obtain that

P
�
jhX;ˇij � "

�
D P

�
jˇ1x1 C

pX
jD2

xj ǰ j � "

�
� P

�
jˇ1x1j � "

�
� P

�
jx1j � "

1=2
�

. "1=2 � "1=2Ejx1j
3;

as Ejx1j3 � .Ejx1j2/3=2 D 1 by Jensen’s inequality.
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A. Dual formulation of the max `1-margin

We use Lagrangian duality to derive the dual version of the max `1-margin. Recall
that

 D max
ˇ¤0

min
1�i�n

yi hXi ; ˇi

kˇk1
D

1

k y̌k
;

where we used Lemma 4.1, recalling that

y̌ 2 arg min
ˇ2Rp

kˇk1 subject to yi hXi ; ˇi � 1: (25)

For every � 2 Rn, define the Lagrangian LWRp �Rn 7! R as

L.ˇ; �/ D kˇk1 C

nX
iD1

�i
�
1 � yi hˇ;Xi i

�
:

The dual problem of (25) is defined as

sup
�2Rn

C

inf
ˇ2Rp

L.ˇ; �/: (26)

We have that

inf
ˇ2Rp

L.ˇ; �/ D inf
ˇ2Rp

²
kˇk1 C

nX
iD1

�i
�
1 � yi hˇ;Xi i

�³
D

nX
iD1

�i � sup
ˇ2Rp

²D
ˇ;

nX
iD1

�iyiXi

E
� kˇk1

³
:

For any function f WRp 7! R, the conjugate f � is defined as

f �.y/ D sup
x2Rp

®
hx; yi � f .x/

¯
: (27)

In particular (see [8, Example 3.26]), when f .ˇ/ D kˇk1, we have that

f �.y/ D

´
0 if y 2 B1;

1 otherwise;
(28)

where B1 is the unit ball with respect k � k1. From (27) and (28), the dual prob-
lem (26) can be rewritten as

sup
�2Rn

C

nX
iD1

�i subject to
 nX
iD1

yi�iXi


1
� 1:
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Since the Xi are linearly independent with probability 1 and p > n, the Moore–
Penrose inverse of X D ŒX1; : : : ; Xn� exists, and hence there exists some ˇ in Rp

such that yi hXi ; ˇi D 1 for i D 1; : : : ; n. Hence, Slater’s condition is satisfied and
consequently there is no duality gap. It follows that

 D
1

k y̌k1

D inf
wWwi�0 8 i2Œn�;kwk1D1

 nX
iD1

wiyiXi


1
:

B. Extra lemmas

B.1. Lemma B.1

Lemma B.1. Let X D .x1; : : : ; xp/
T be a random vector where the xj ’s are i.i.d.

random variables that satisfy the weak moment assumption with � � 1=2. Then, with
probability at least 1 � p�2, we have that

kXk1 . log� .p/: (29)

Moreover, let X1; : : : ; Xn, n � p, be n i.i.d. copies of X and ˇ 2 �p�1. Then, with
probability at least 1 � n�2, we have additionally

max
i2Œn�
jhXi ; ˇ

�
ij . log1=2C� .n/:

Proof. We have that�
E
�
max
j2Œp�

jxj j
�q�1=q

� p1=q
�
Ejx1j

q
�1=q . p1=qq� :

Hence, by Markov’s inequality, we have

P
�
kXk1 > t

�
� elog.p/CcqC�q log.q/�q log.t/:

Choosing q D log.p/ and t � log� .p/ concludes the proof of the first claim.
For the second claim we argue as follows. By Rio’s version of the Marcinkiewicz–

Zygmund inequality ([49, Theorem 2.1]), we have that�
E max
i2Œn�
jhXi ; ˇij

q
�1=q
� n1=q

�
EjhX;ˇijq

�1=q
� n1=qq1=2

� pX
jD1

j ǰ j
2
�
Ejxj j

q
�2=q�1=2

. n1=qq1=2C� :

Arguing as before with q D log.n/ concludes the proof.
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B.2. Proposition B.1

Proposition B.1 ([35, Theorem 5]). Let X1; : : : ; Xn be i.i.d. random vectors distrib-
uted as X D .x1; : : : ; xp/T , where the xj ’s are i.i.d. symmetric, zero mean and unit
variance random variables that satisfy the weak moment assumption. ForZ 2Rn and
X D ŒX1; � � �Xn�, define

y� WD arg min
ˇ2Rp

kˇk1 such that XTˇ D Z:

Assume that p & n. Then, with probability at least 1 � 2 exp.�2n/, we have that

ky�k1 .
kZk2p

log.ep=n/
C kZk1:

B.3. Rademacher complexity under weak moment assumption

Proposition B.2. Assume that X D .Xi /i2Œn� has i.i.d. zero mean and unit variance
entries and satisfies the weak moment assumption with � � 1=2. For a 2 N, we have
that

E sup
ˇ2aB

p
1
\B

p
2

1

n

nX
iD1

�i hXi ; ˇi . a

r
log.p/
n

:

The proof of Proposition B.2 uses the following bound for sums of order statistics
and will be presented below.

Lemma B.2. Assume that X D .x1; : : : ; xp/
T has i.i.d. symmetric, zero mean and

unit variance entries that satisfy the weak moment assumption with � � 1=2. Then,
for all 1 � k � p, we have

E

� kX
iD1

.x�i /
2

�1=2
. log� .p/

p
k;

where .x�i /
p
i is a monotone non-increasing rearrangement of .jxi j/

p
iD1.

Proof. The proof is a small adaptation from [41, Lemma 6.5], where � D 1=2 is
assumed. Fix 1 � j � p, 1 � q � log.p/ and t > 0. By the weak moment assumption
for some c1 > 0, we have

P
�
x�j � t

�
�

�
p

j

�
P j
�
jx1j � t

�
�

�
p

j

��
Ejx1jq

tq

�j
�

�
p

j

��
cqq�

tq

�j
:

Since
�
p
j

�
� exp.j log.p//, taking q D log.p/, we get

P
�
x�j � t

�
�

�
c log� .p/

t

�j log.p/

:
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Hence, integrating out the tails and using Jensen’s inequality it follows that

E

� kX
iD1

�
.x�i /

2
��1=2

�

�
E

kX
iD1

.x�i /
2

�1=2
. log� .p/

p
k:

Proof of Proposition B.2. From [42, Equation 3.1], we have that

E sup
ˇ2aB

p
1
\B

p
2

1

n

nX
iD1

�i hXi ; ˇi � 2E sup
ˇ2B

p
0
.a2/\B

p
2

1

n

nX
iD1

�i hXi ; ˇi

D
2
p
n

E sup
ˇ2B

p
0
.a2/\B

p
2

hW;ˇi;

where Bp0 .a
2/ D ¹ˇ 2 Rp W kˇk0 � a2º and W D n�1=2

Pn
iD1 �iXi , and it follows

that

E sup
ˇ2aB

p
1
\B

p
2

1

n

nX
iD1

�i hXi ; ˇi �
2
p
n

E

� a2X
iD1

.W �i /
2

�1=2
: (30)

The .Wi /’s are centred random variables. For 1 � q � log.p/, using the Khintchine–
Kahane inequality ([26, Proposition 3.2.8]) and Jensen’s inequality, we have

�
EjWj j

q
�1=q
D

�
E
ˇ̌̌ 1
p
n

nX
iD1

�iXi;j

ˇ̌̌q�1=q
.
p
qE

�
1

n

nX
iD1

X2i;j

�1=2
�
p
q
�
EX21;1

�1=2
�
p
q:

Thus, applying Lemma B.2 with � D 1=2 to bound (30), we have that

E sup
ˇ2aB

p
1
\B

p
2

1

n

nX
iD1

�i hXi ; ˇi . a

r
log.p/
n

;

concluding the proof.
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