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Deep learning architectures for nonlinear operator functions
and nonlinear inverse problems

Maarten V. de Hoop, Matti Lassas, and Christopher A. Wong

Abstract. We develop a theoretical analysis for special neural network architectures, termed
operator recurrent neural networks, for approximating nonlinear functions whose inputs are
linear operators. Such functions commonly arise in solution algorithms for inverse boundary
value problems. Traditional neural networks treat input data as vectors, and thus they do not
effectively capture the multiplicative structure associated with the linear operators that corre-
spond to the data in such inverse problems. We therefore introduce a new family that resembles
a standard neural network architecture, but where the input data acts multiplicatively on vec-
tors. Motivated by compact operators appearing in boundary control and the analysis of inverse
boundary value problems for the wave equation, we promote structure and sparsity in selected
weight matrices in the network. After describing this architecture, we study its representation
properties as well as its approximation properties. We furthermore show that an explicit regular-
ization can be introduced that can be derived from the mathematical analysis of the mentioned
inverse problems, and which leads to certain guarantees on the generalization properties. We
observe that the sparsity of the weight matrices improves the generalization estimates. Lastly,
we discuss how operator recurrent networks can be viewed as a deep learning analogue to deter-
ministic algorithms such as boundary control for reconstructing the unknown wave speed in the
acoustic wave equation from boundary measurements.

1. Introduction

In standard deep learning, the input data are represented by vectors, and each layer of
a deep neural network applies an affine transformation (a matrix-vector product plus a
shift) composed with nonlinear activation functions. However, for functions for which
the input data are linear operators, vectorizing the input destroys the underlying oper-
ator structure. Functions whose inputs are linear operators, which we term nonlinear
operator functions, are present in a broad class of nonlinear inverse problems for par-
tial differential equations (PDE). That is, the possible reconstructions associated with
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such problems involve nonlinear, nonlocal functions between spaces of data opera-
tors and function spaces of “images”. Optimality of reconstruction algorithms can be
studied with statistical decision theory; however, machine learning offers data-driven
approaches that make such studies computationally feasible.

1.1. Nonlinear operator functions, inverse problems and reconstruction

We focus our attention on nonlinear operator functions, meaning nonlinear functions
whose input consists of linear operators, and whose structure consists of a holomor-
phic function of an operator composed with a very regular function. This type of
function structure is found in a variety of existing solution procedures for nonlinear
inverse problems arising from hyperbolic PDEs. The model problem is reconstruction
of, or “imaging” the unknown speed c D c.x/ of waves inside a body, based on from
boundary measurements. In this problem, the body is probed by multiple boundary
sources, h, generating waves; the waves that come back are measured at the bound-
ary. The boundary measurements corresponding to an operator Xc W h 7! Xc.h/, and
the inverse problem of determining c from Xc is highly nonlinear. This inverse prob-
lem has been extensively studied, e.g., in [5, 13, 14, 45, 46, 53, 61, 75, 83, 86, 89] and
the stability of the solution with data containing errors is considered in [4, 5, 15]. The
inverse problems for the wave equation with given boundary measurements Xc corre-
sponds to the case when we observe the complete wave patterns on the boundary. This
inverse problem is closely related to the inverse travel time problem where only the
first arrival times of the waves are observed, see [22, 54, 76, 84, 85, 89]. Even though
the underlying physical system, for example, the wave equation, is a linear equation,
the inverse problem of finding the coefficient function of this equation is a nonlinear
problem. In general, we consider Xc as data given to us and denote it by X D Xc .

Established uniqueness proofs, based on boundary control [17, 28, 48] and scat-
tering control [23, 24], for the above mentioned inverse problems lead to solution
procedures that are recursive in the data operator, X . These procedures can be viewed
as applying an operator-valued series expansion in terms of X followed by some ele-
mentary operations such as taking inner products and divisions. Typically, one starts
with a boundary source h0, measures the wave X.h0/ at the boundary and computes
a new source h1 using both h0 and X.h0/. The process is iterated to thus produce a
sequence of sources that converge to an optimal source, called a control, which can
effectively determine information about the interior. However, the convergence is typi-
cally very slow while the intrinsic stability of the inverse problem is poor. Therefore, a
natural question is whether the procedures can be replaced by learned procedures that
are adapted to the data, taking advantage of working on a low-dimensional manifold
of linear operators. The iterative nature of the procedures suggests the introduction of
recurrent neural networks (RNNs). Mathematical properties of the inverse problems
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can be used to reduce the number of weights to be learned. Notably, a crucial feature
of boundary control is that each iteration involves linear operators that smooth source
signals by a finite order, meaning that such operators are compact operators. The
compactness is used in a crucial way in the solution of the inverse problem. More-
over, when the data operator and operators appearing in the boundary or scattering
control based procedures are discretized and approximated by finite n � n matrices,
one obtains good approximations using sparse and low-rank matrices.

The main goal of this paper is to develop a mathematical framework for super-
vised learning to solve nonlinear inverse problems, whose underlying structure is
that of nonlinear operator functions. Based on the structure of known, constructive
uniqueness proofs, we introduce general operator recurrent neural networks that take
data in as a linear operator. We further introduce an explicit regularization scheme for
training such networks based on compactness, sparsity and rank properties of certain
operators embedded in the network. The result is a principled network architecture
for which crucial analytic features can be controlled tightly. This stands in contrast to
more traditional applications of deep neural networks, such as computer vision and
speech recognition, in which little mathematical information about the behavior of
the underlying “function” is known. To highlight the potential of deep learning in the
context of inverse problems, we prove that our type of network, the weights of which
are obtained via training with simulated data, solves the inverse problems at least as
well as the classical, partial-differential-equation based reconstruction procedures. We
analyze the approximation and detailed expressivity properties of our operator recur-
rent neural networks, and provide generalization estimates and rates with increasing
training sets to the best possible network. The universal approximation theorems
only guarantee a small approximation error for a sufficiently large network, but do
not consider the optimization (training) and generalization errors, which are equally
important [43]. From the viewpoint of studying inverse problem, the deep learning
framework provides a novel integration of analysis and statistics. In this framework,
the architecture is derived from the analysis as a domain adaptive ingredient, while
statistical decision theory is used to define what is meant by an “optimal” solution
method involving regularization with a finite set of training “data”.

Formally, we consider inverse problems of the form X D F.z/, where F is a
direct operator acting on real-valued vectors z generating linear operators X , and are
concerned with determining z given X . The vector z models a real-valued function
that is digitized in m points whereas the functions on which X acts are digitized with
n points. Thus, we view z as a vector in Rm and X as a matrix in Rn�n with m > n.
We will assume uniqueness. In the digitized framework, we let z 2 Bm.�0/ and

X D F.Bm.�0// � Bn�n.�1/I
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here, Bm.�0/ denotes a ball with radius �0 in Rm equipped with the standard Euclid-
ean norm and Bn�n.�1/ a ball with radius �1 in Rn�n equipped with the operator
norm of linear operators Rn ! Rn; that is,

kXkRn�n D max
kvkRn�1

kXvkRn :

When the map F is injective and one is given (or measures) the matrix X as data, and
this data does not contain errors, one can consider a map H that is the left inverse
of F on Ran.F / D X D F.Bm.�0// � Rn�n, that is, one consider the sequence

Bm.�0/
F
�! X

H
�! Rm; H.F.z// D z for z 2 Bm.�0/:

However, one has to deal with two challenges: Computing the mapH may be difficult
and the data X D F.z/ may contain errors.

We consider a strategy that is rooted in the analysis of inverse problems, when the
reconstruction is obtained in two steps. In the first step, one constructs an intermediate
quantity, y 2 Rn, from X , which is typically relatively unstable; this construction
may have to be repeated for a variable parameter which, upon discretization, yields
.y1; : : : ; yT /. From .y1; : : : ; yT / one then obtains z, typically in a stable manner. To
formalize this, we assume that there are functions

f D .f 1; : : : ; f T /WRn�n ! .Rn/T ; where f t WRn�n ! Rn; (1)

and

gW .Rn/T ! Rm (2)

having the property that g ı f WRn�n ! Rm is an extension of the inverse map H
of F defined on X, that is, we consider the sequence

Bm.�0/
F
�! Rn�n

f
�! .Rn/T

g
�! Rm; (3)

g.f .F.z// D z for z 2 Bm.�0/: (4)

As discussed above, the intermediate quantities are denoted by

f t .X/ D yt ; t D 1; : : : ; T:

We will approximate f t by f t
�

as an operator recurrent network and g by g� as
a shallow network with fully connected layers motivated, again, by the analysis of
inverse problems. We consider the model, where parameter � consists of two parts,
� D .� 0; � 00/, and f� depends on � 0 and g� depends on � 00, that is, the parameters
determining f� and g� are unrelated. This structure, as well as the regularization
introduced in the later analysis, could be viewed as the inductive bias.
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We will consider how the functions f t and g can be approximated by operator
recurrent neural network with appropriately chosen weights. We will also analyze the
case when the data are contaminated with noise, E say, such that X C E no longer
belongs to Ran.F /. Our goal is to use to use recurrent operator neural networks to
find a trainable solution algorithm for an inverse problem so that the architecture is
informed by the PDE-based solution methods but in which the measurement noise
can be take into account in the training. Moreover, we will show that optimal (gen-
eral) operator recurrent network under the expected loss can be identified as a Bayes
estimator.

Remark 1. In the above, the direct map F is an approximation of a map F that maps
between infinite-dimensional Banach spaces and the mapH is an approximate inverse
of the map F . In practice, F can be obtained using a numerical discretization, such as
the finite element method, to approximate solutions of partial differential equations.
When the discretization of the model is taken in to account, the sequence (4) needs to
be replaced by the sequence

g.f .F.z// D Iapp.z/ for z 2 Bm.�0/; (5)

where kIapp.z/� zk� "0. However, in this paper we assume that the finite-dimension-
al approximation of function F is so precise that the approximation error "0 is negli-
gible, and assume that the identity (4) is valid.

1.2. Related work

There has been a substantial amount of progress concerning applying machine learn-
ing techniques to linear or linearized inverse problems, particularly in the domain
of natural image processing. However, nonlinear hyperbolic inverse problems are
an entirely different class of problems, see e.g., [24, 45, 51, 52, 89] and references
therein. A closely related recent work is [32], in which a neural network is trained as
an additive term to regularize each iteration of a truncated Neumann series as a way to
solve a linear reconstruction task. Our paper also uses truncated Neumann series as an
approximation to the holomorphic operator function, but the introduced deep learning
architecture is directly adapted from the Neumann series structure rather than regular-
izing it. There have been other prior works in the area of nonlinear inverse problems.
In [42], a deep neural network is constructed mimicking the structure of the filtered
back projection algorithm for computerized tomography. In [57], neural networks are
used for learning a nonlinear regularization term, also in the context of tomography.
Deep neural networks have further been employed for inverse scattering problems,
such as in [47, 58, 92] and other related inverse problems in [6–8, 21, 42, 64].
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Unrolled deep neural network architectures were first used to solve optimiza-
tion problems [36], in particular, the iterative shrinkage algorithm (ISTA) [27]; for
a recent review, see [68]. Unrolling is a way to select a domain specific architecture
for deep neural networks that approximates an operator given implicitly by an iterative
scheme [8, Sections 4.9.1 and 4.9.4]. Usage of such architectures for solving inverse
problems was outlined in [2] and [78], while further developments came in [3]. Our
work has some similarities to unrolling, as we take an existing iterative algorithm and
use it as the basis for developing a deep learning strategy.

A crucial feature of our approach is that properties derived from the mathematical
analysis provide insight as to how to efficiently and sparsely parametrize the neural
network that learns the inverse map. Such sparsity bounds are important because fully
general neural network models are heavily over parametrized, making them both diffi-
cult to analyze as well as computationally resource intensive. Reducing the parameter
space as a way to improve learning also has connections to nascent information-
theoretic formulations of deep learning, such as through the information bottleneck
method [87]. There is a wide array of existing literature on studying sparsity in neural
networks. One popular technique to achieve sparsity is to take a pre-trained dense net-
work and prune parameters with low importance; an early example of this technique
is [56], with later examples studying pruning including [30, 37, 62]. However, it is
desirable to achieve sparsity without needing to first train a dense network. Indeed,
in our work, sparsity bounds are directly imposed for the network parameters that
encode the linear transformations across layers. Studies of sparsity promotion either
before or during network training include [16,20,66,70]. As will be seen later, sparsity
in the network parameters has an interpretation in terms of low-rank approximation
of the compact operators appearing in the original iterative scheme that is unrolled.
The use of low-rank weight matrices in deep learning has become popular for a vari-
ety of applications; see for example [41, 55, 60, 93]. However, these works all exploit
low-rank structure that is empirically found rather than mathematically derived. Our
sparsity bounds also provide improved generalization bound. This is independent of
(regularization) techniques employed to improve upon training [50].

2. Principled architecture

In this section, we focus on the network architecture for f� while suppressing the
parameter t . This network represents f , which is the main component of the inverse
map, H . The design is domain adapted in the sense that it utilizes structure that the
inverse map may possess. We exemplify this with the inverse boundary value prob-
lem associated with the wave equation and boundary control in the final section of
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this paper; however, we expect the architecture to adapt equally well to electrical
impedance tomography and the x@ method.

2.1. Operator recurrent architecture

We define a specialized neural network architecture, the operator recurrent network,
that we propose as a suitable architecture for learning certain classes of nonlinear
functions whose inputs are linear operators and whose outputs are functions. As men-
tioned in the introduction, we invoke a discretization turning operators into matrices
and functions into vectors.

2.1.1. Standard deep neural network. To draw a comparison with the operator
recurrent architecture we will introduce shortly, we first define the standard neural
network. This is a function f� WRd0 !RdL with depth L and set of weights � defined
by

f� .x/ D hL; (6)

h` D A
`;0
�
h`�1 C �`

�
b`� C A

`;1
�
h`�1

�
; (7)

h0 D x: (8)

The index `D 0; : : : ;L indicates the layer of the neural network. Each vector h` 2Rd`

is the output of layer `, where d` is the width of that layer. For each layer `, the
functions �`WRd` ! Rd` are the activation functions, which apply a scalar function
to each component, that is, for x D .xj /

d`
jD1 2 Rd` , �`.x/ D .�`.xj //

d`
jD1 2 Rd` .

The matrices A`;0
�
2 Rd`�d`�1 , which typically have an identity matrix as a sub-

block, encode skip connections by passing outputs from layer `� 1 to layer ` without
being operated on by any activation functions. The Rd`-vectors b`

�
are the bias vectors

and the d` � d`�1 matrices A`;1
�

are the weight matrices. Each of b`
�
; A

`;0
�
; A

`;1
�

are
dependent (in a context-specific way) on parameters � to be learned. For example, in
the case of convolutional neural networks, A`;1

�
is a block-sparse matrix whose blocks

are Toeplitz matrices, and the parameters � determine the values of the diagonals and
off-diagonals of these blocks.

2.1.2. Operator recurrent network. While standard neural networks have enjoyed
widespread success in many applications, they are not efficient at approximating func-
tions that are mathematically known to have a multiplicative and highly nonlinear
structure. This is because a standard neural network with rectifier activations is a form
of a multivariate linear spline. For example, approximating even a univariate polyno-
mial to high accuracy requires a fairly deep neural network [94]. In nonlinear inverse
problems, the situation is even more problematic, since their structure includes opera-
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tor polynomials where the polynomial is of high degree and the operator is discretized
as a large matrix. This situation motivates our new construction.

An operator recurrent network has an internal structure reflecting the linear oper-
ator nature of the input by performing matrix-matrix multiplications, rather than vec-
torizing the input and then performing matrix-vector multiplications. To this end, we
consider following neural networks.

Definition 2.1. A basic operator recurrent network with depth L, width n, and set of
weights (or parameters) � is defined as a function f� WRn�n ! Rn given by

f� .X/ D hL; (9)

h` D b
`;0
�
C A

`;0
�
h`�1 C B

`;0
�
X h`�1

C �`
�
b
`;1
�
C A

`;1
�
h`�1 C B

`;1
�
X h`�1

�
; (10)

where h0 2 Rn is an initial vector not explicitly given by the data, the quantities
b
`;0
�
; b

`;1
�
2Rn andA`;0

�
;A

`;1
�
;B

`;0
�
;B

`;1
�
2Rn�n are dependent on the parameters � ,

and the �` are the activation functions.

We note that h` should be viewed as a hidden state. The typical initialization of the
hidden state is h0 D 0, though it could be learned as well. This naturally applies in the
context of inverse problems; in Section 7 the hidden states take the role of boundary
controls.

Remark 2. We may consider h0 not as part of the initial layer, but instead as the
output of an initial layer whose value is entirely determined by a bias vector b0;0

�
set

to be equal to h0, with all other terms set to zero.

Remark 3. The data matrix, X , is a digitized counterpart of an operator. In Section 7
we realize this as the outcome of numerical discretization. However, the digitization
may be obtained through composition with a data acquisition operator, which may be
viewed as a pre-processing operator that can be learned. Learning a data acquisition
scheme has been considered in different contexts [10, 26, 63, 82].

2.1.3. Activation function. In general, the activation functions �` may differ at each
layer `. We choose the form of �`WRn ! Rn to be a rectifier (or ReLU). That is, �`
is given by

.�`.y//j D ��.yj / Dmax.yj ; �yj /; j D 1; : : : ; n; (11)

where 0 � � � 1 is either a hyperparameter that is chosen in advance (the “leaky”
ReLU) or could be a parameter that is learned during optimization (the “parametric”
ReLU). In either case, this choice of activation function is a piecewise-linear function
on each vector component.
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The choice of the rectifier as the activation function has both pragmatic and math-
ematical reasons. Indeed, in the case of standard deep neural networks with � D 0,
there is significant empirical evidence indicating that the use of the rectifier activation
function promotes sparsity and accelerates training [34, 65]. Rectifier networks are
also closely connected with piecewise-linear splines, which are known to interpolate
data points while minimizing the second-order total variation [90,91]. In Section 2.5,
we will show that in our case such activations induce piecewise (operator) polynomial
behavior.

We note that a network of the form (9)–(10) with activation functions being rec-
tifiers with leaky parameter � > 0 can have its activation functions replaced, without
loss of generality, by standard rectifier activation functions (� D 0). We let �� be the
activation function in (11). Then we can write

�� D � IdC.1 � �/ �0; (12)

where Id is the identity map and the activation function �0 is the standard rectified
linear unit (relu). Then, starting with (10), we have

h` D b
`;0
�
C A

`;0
�
h`�1 C B

`;0
�
X h`�1 C ��

�
b
`;1
�
C A

`;1
�
h`�1 C B

`;1
�
X h`�1

�
D .b

`;0
�
C �b

`;1
�
/C .A

`;0
�
C �A

`;1
�
/h`�1 C .B

`;0
�
C �B

`;1
�
/X h`�1

C .1 � �/�0
�
b
`;1
�
C A

`;1
�
h`�1 C B

`;1
�
X h`�1

�
; (13)

and thus an operator recurrent network with � > 0 can be replaced by another one
with � D 0 by relabeling some of the biases and weights.

2.1.4. Recurrence. By inspecting (9)–(10), we observe that the input dataX is inser-
ted multiplicatively into the network at every layer, so that each computed interme-
diate output h` depends both on X and previous intermediate outputs h`�1; h`�2; : : :
in an identical fashion for each `. In the finite-dimensional setting, such expansions
can be viewed as matrix polynomials, and each layer can be thought of as performing
another stage of an iteration in which the degree of the polynomial is raised through
multiplication by the matrix variable. Thus, the neural network learns nonlinear per-
turbations of this process at each iteration.

There may be a reason to expect that every iteration not only has the same struc-
ture, but is in fact identical. For example, this holds true for nonlinear operator func-
tions given by a truncated Neumann series. Thus, operator recurrent networks can also
be interpreted as the unrolling of an iterative nonlinear process, where the recurrence
refers to the fact that the output of each layer is fed back into another layer that may
have the same weights.
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h`�1 h`

X` D X

.b`;0; A`;0/

.b`;1; A`;1/

B`;0 B`;1

1

1

1 1

�

X

f

g

z

fully
connected

Figure 1. Cell (top) of the operator recurrent network (bottom) architecture. When concatenated
with a feed-forward network consisting of a few fully connected layers, the network adapts to
inverse problems. The data operator X is inserted multiplicatively into the network at each cell.
The initial hidden state h0 is typically chosen to be zero.

2.2. General operator recurrent networks

A general operator recurrent network is obtained from a basic operator recurrent net-
work merely by adding memory.

Definition 2.2. A general operator recurrent network of level K is an extension of
the basic operator recurrent network, including terms that contain h`�k in the expres-
sion for h`, that is,

f� .X/ D hL; (14)

h` D b
`;0
�
C

X
kD1;:::;KIiD0

�
A
`;k;i
�

h`�k C B
`;k;i
�

X h`�k
�

C �`

�
b
`;1
�
C

X
kD1;:::;KIiD1

�
A
`;k;i
�

h`�k C B
`;k;i
�

X h`�k
��
; (15)
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for `� 1, where h0 2Rn is some initial vector not explicitly given by the data, that is,
the initial hidden state, h�k D 0 for �k < 0, and the quantities b`;0

�
; b

`;1
�
2 Rn and

A
`;k;i
�

;B
`;k;i
�
2 Rn�n are dependent on the parameters � , and the �` are the activation

functions.

Basic and general operator recurrent networks can be further generalized upon
replacing vectors h` and biases in Rn by sets of r vectors, that is, matrices in Rn�r .
We will not consider this in the analysis.

In the general operator recurrent network (14)–(15), the dependency of h` on
previous outputs h`�m for m > 1 is an explicit way to encode skip connections,
which feature prominently in applications of standard neural networks [38, 79]. In
standard neural networks, however, similar generalizations are fully included in the
basic definition since they can be implemented by increasing the width of the network.
However, in operator recurrent networks, the width is fixed and so this generalization
must be explicitly included. In the following discussions, however, the basic defini-
tion (9)–(10) is sufficient as discussed in the example below.

A general operator recurrent network can be written as a basic operator recur-
rent network by extending the width of the network. We show this explicitly starting
from (14)–(15). Let zh` D .h`; : : : ; h`�K�1/T 2 RnK , where h�i D 0 for i > 0. Also,
let

zA
`;i
�
D

0BBBBBB@
A
`�1;1;i
�

A
`�1;2;i
�

: : : A
`�1;K�1;i
�

A
`�1;K;i
�

I 0 : : : 0 0

0 I : : : 0 0
:::

:::
:::

:::

0 0 : : : I 0

1CCCCCCA ; (16)

zB
`;i
�
D

0BBBBBB@
B
`�1;1;i
�

B
`�1;2;i
�

: : : B
`�1;K�1;i
�

B
`�1;K;i
�

I 0 : : : 0 0

0 I : : : 0 0
:::

:::
:::

:::

0 0 : : : I 0

1CCCCCCA ; (17)

for i D 1; 2 and zb`;i
�
D .b

`�1;i
�

; : : : ; b
`�K;i
�

/T 2 RnK for i D 1; 2. Also, let zX D
diag.X; : : : ; X/ 2 RnK�nK . Then the general operator recurrent network f� given
in (14)–(15) can be written as a basic operator recurrent network zf� WRnK�nK!RnK

given by

zf� . zX/ D zhL; (18)

zh` D zb
`;0
�
C zA

`;0
�
zh`�1 C zB

`;0
�
zX zh`�1

C �`
�
zb
`;1
�
C zA

`;1
�
zh`�1 C zB

`;1
�
zX zh`�1

�
; (19)
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and setting f� .X/ D …n. zf� . zX//. Here, …nWRnK ! Rn is the operator

…n.y1; y2; : : : ; ynK/ D .y1; y2; : : : ; yn/:

Also, we observe that k zXkRnK!RnK D kXkRn!Rn .
We can contrast this construction with the standard neural network definitions

(6)–(8). In the standard neural network, a vector x is the input, and the intermediate
outputs h` at each layer ` are produced by repeatedly applying matrix-vector products
as well as activation functions in some order. In contrast, in the operator recurrent
network, the input is a matrix X , and it is multiplied on both the left and right by
matrices. At the first layer, this is still equivalent to a standard neural network, since
the action of a matrix on another matrix is linear. However, at all subsequent layers,
this is no longer equivalent, since the matrix X is re-introduced at each layer and is
multiplied with the previous output h`�1.

Remark 4. A standard “additive” neural network (cf. (6)–(8)) with input x 2 Rn

can be written as a general operator recurrent network (14)–(15) as follows. We set
X D diag.x1; : : : ; xn/, h0 D 1 D .1; 1; : : : ; 1/T and let K D 1. For ` D 1 we choose
the weight matrices to be

B
1;1;0
�

D A
1;0
�
; B

1;1;1
�

D A
1;1
�
; A

1;1;i
�
D 0; i D 0; 1I

for 2 � ` � L we choose the weight matrices to be

A
`;1;0
�
D A

`;0
�
; A

`;1;1
�
D A

`;1
�
; B

`;1;i
�
D 0; i D 0; 1:

To simplify notation, in particular the indexing of variables, we consider mostly
basic operator recurrent networks, that is, the case K D 1. However, the results can
be generalized in a straightforward way to general operator recurrent networks. The
general operator recurrent network will play a fundamental role in Theorem 2.3 only.

2.3. Sparse representation of trained matrices

Next, we specify how the biases and weights depend on the parameters � . In a typical
fully-connected layer for a standard neural network, � determines the entries of the
biases and weights. More precisely,

b`� D �
`
0 ; A

`;1
�
D

h
�`1 �`2 � � � �`

d`

i
; (20)

where
� D

®
�`p2 Rd`C1 W ` D 1; : : : ; L; p D 0; : : : ; d`

¯
stands for a set of column vectors. We consider the parametrization of basic operator
recurrent networks in terms of � . The matrices A`;i

�
; B

`;i
�

in (10) could depend on �
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similarly to (20). However, in our analysis, it is beneficial to provide an alternative
quadratic dependence: For each ` and i D 0; 1 there are 4n column vectors

�
`;i
1 ; : : : ; �

`;i
4n 2 Rn

within the parameter set � such that for i D 0; 1,

A
`;i
�
D A`;i;.0/ C A

`;i;.1/

�
; A

`;i;.1/

�
D

nX
pD1

�
`;i
2p�1.�

`;i
2p /

T ; (21)

and similarly for B`;i
�

,

B
`;i
�
D B`;i;.0/ C B

`;i;.1/

�
; B

`;i;.1/

�
D

2nX
pDnC1

�
`;i
2p�1.�

`;i
2p /

T : (22)

Each A`;i;.0/ and B`;i;.0/ is a fixed operator that does not depend on parameter � and
is “handcrafted”. The resulting deep neural network is illustrated in Figure 1. The
fixed operators are typically the zero operator or the identity operator, but they can be
also other operators that are chosen depending on the specific application. Examples
of such operators suitable for solving the inverse problem for the wave equation are
considered later in Section 7, in particular the discussion below (289).

Remark 5. Following Remark 4, choosing for 2 � ` � L the weight matrices to be
A
`;1;i;.0/

�
D I and B`;1;i

�
D 0, i D 0; 1, we obtain a residual network [38].

We now assume that the matrices A`;i;.0/ and B`;i;.0/ and the bias vectors satisfy

1X
iD0

�
kA`;i;.0/kRn!Rn C kB

`;i;.0/
kRn!Rn C jb

`;i
�
j
�
� c0; (23)

for some c0 � 1. The lower bound, 1, arises as we allow the relevant nonlearned
matrices to be identity matrices. This makes possible the ResNet-type architectures
that contain layers

h! �
�
hC A

`;.1/

�
hC B

`;.1/

�
Xh
�

or h! hC �
�
A
`;.1/

�
hC B

`;.1/

�
Xh
�
:

We parametrize the bias vectors by b`;i
�
D �

`;1;i
0 2 Rn, i D 0; 1. With these nota-

tions f� is determined by the set of parameters � that is given as an ordered sequence

� D
�
�`;ip 2 Rn W ` D 1; 2; : : : ; L; p D 1; 2; : : : ; 4n; i D 0; 1

�
[
�
�
`;i
0 2 Rn W ` D 1; 2; : : : ; L; i D 0; 1

�
: (24)



M. V. de Hoop, M. Lassas, and C. A. Wong 14

We denote the index set in the above sequence by

P D P1 [ P2; (25)

P1 D
®
.`; i; p/ W ` D 1; 2; : : : ; L; i D 0; 1; p D 1; 2; : : : ; 4n

¯
;

P2 D
®
.`; i; p/ W ` D 1; 2; : : : ; L; i D 0; 1; p D 0

¯
:

We note that the indices in P1 are related to the learnable weight matrices, A`;i;.1/
�

and B`;i;.1/
�

of the basic operator recurrent network, and the indices in P2 are related
to bias vectors. Below, we use the fact that P1 has #P1 � 4nL elements, and P2 has
#P2 � 2L elements. We note that #P2 is significantly smaller than #P1 and that #P2
is independent of n.

For the general recurrent operator networks we add the index k D 1; : : : ; K and
replace the above parameters by the ordered sequences

z� D
�
z�`;i;kp 2 Rn W ` D 1; 2; : : : ; L; p D 1; 2; : : : ; 4n; k D 1; 2; : : : ;K; i D 0; 1

�
[
�
z�
`;i;0
0 2 Rn W ` D 1; 2; : : : ; L; i D 0; 1

�
: (26)

Also, for the general recurrent operator networks we denote the index set in the above
sequence by

zP D zP1 [ zP2; (27)

zP1 D
®
.`; i; p; k/ W ` D 1; 2; : : : ; L; i D 0; 1; p D 1; 2; : : : ; 4n; k D 1; 2; : : : ; K

¯
;

zP2 D
®
.`; i; p; k/ W ` D 1; 2; : : : ; L; i D 0; 1; p D 0; k D 0

¯
:

Next, we return to considering the basic recurrent operator networks. From a (num-
erical) linear algebra viewpoint, the decomposition (21) expresses the matrix A`;i;.1/

�

as a sum of rank 1 matrices, similar to a singular value decomposition. This structure
is valuable for our analysis, since it means that we essentially learn a factorization of
these matrices rather than the explicit matrix elements. We will exploit that in Sec-
tion 3.1 while introducing low-rank structures.

Remark 6. In the above, the parameters in each layer are allowed to be different
and independent. However, it is natural to consider the case that a subset of parame-
ters is shared across layers. We will analyze the impact of shared weights in various
estimates below.

2.4. Approximation properties

Estimates for nonlinear operator functions in the holomorphic calculus. Here,
we establish the approximation power of operator recurrent networks, within a certain
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space of general nonlinear operator functions. We begin by studying the approxima-
tion of functions mapping the linear operator X WRn ! Rn to another linear operator
q.X/WRn!Rn. This map q is holomorphic inX and it is defined by the fundamental
formula of holomorphic operator calculus [81],

q.X/ D
1

2�i

Z


q.z/ .X � z/�1 dz; (28)

where  � C is a circle having radius larger than the norm of X , oriented in the posi-
tive direction. We contract the operator q.X/ with a vector v 2 xBn.1/, where xBn.R/
is the closed ball of radius R > 0. In the context of inverse problems and reconstruc-
tion, q.X/ is often polynomial. To emphasize this context, we write f .X/ for q.X/v.
An example of a neural network based on holomorphic operator calculus is consid-
ered in Section 6. We then consider a map, H , obtained from the composition with a
nonlinear, smooth function gWRn ! Rm.

Below, we use the norms

kgkCk. xBn.r/IRm/ D max
y2 xBn.r/

max
j˛j�k

kD˛g.y/kRm ;

kf kC.Bn�nIRm/ D max
X2Bn�n

kf .X/kRm ;
(29)

where D˛g.y/ D . @
@y1
/˛2. @

@y2
/˛2 : : : . @

@yn
/˛ng.y/, ˛ D .˛1; ˛2; : : : ; ˛n/ 2 Nn, and

j˛jD˛1C˛2C � � �C˛n. We denote the linear operator norm by kXkLDkXkRn!Rn

and recall that Bn�n D ¹X 2 Rn�n W kXkRn!Rn � 1º is the closed unit ball in the
set of matrices.

Theorem 2.1. Consider a nonlinear operator function H WRn�n ! Rm, defined by

H WX 7! g.v>q.X//; (30)

where q is obtained using the holomorphic operator calculus, v 2 xBn.1/ and gWRn!
Rm, satisfying

� q is a holomorphic function whose domain contains a complex disk D1Cr1 having
radius 1C r1 > 1C r centered at the origin, for some r 2 .0; 1/,

� g 2 C k. xBn.2/IRm/ for some k � 1, and

� q and g are both bounded by 1.

Let " 2 .0; 1/. Then there exists a general operator recurrent network, H� , which
depth L � L0, level K D 2, and width W � W0, and constant C D C.k; n; r/ such
that

kH �H�kC.Bn�nIRm/ � " (31)
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with

L0 D C

�
log

�
4kgkC1. xBn.2//

r"

�
C log

�
4kC1kgkCk. xBn.2//

"

�
C 1

�
; (32)

W0 D Cmn

�
"

4kC1kgkCk. xBn.2//

��n=k�
log

�
4kC1kgkCk. xBn.2//

"

�
C 1

�
: (33)

Proof. In the proof we will first estimate how to approximate a holomorphic function
of an operator by a polynomial and represent the obtained polynomial as a gen-
eral operator recurrent network. After this we adapt Yarotsky’s results on quantified
approximation of a function pointwise by a deep neural network and represent the
obtained network as a recurrent operator network.

To prove the claim, we first approximate q.X/ locally by a polynomial P.X/.
As q is holomorphic on some disk D1Cr1 , where r1 > r > 0 and bounded by 1, its
derivatives at zero satisfy

q.j /.0/ D
j Š

2�i

Z
jzjD1Cr

q.z/

zjC1
dz (34)

and, hence, using that kqk � 1, its Taylor coefficients at zero satisfy

aj D
1

j Š
q.j /.0/; jaj j �

1

.1C r/jC1
: (35)

Thus, we have the Taylor polynomial

P.z/ D
X̀
jD0

aj z
j ; (36)

which satisfies for jzj � 1

jq.z/ � P.z/j �

1X
pD`C1

1

.1C r/pC1
�
.1C r/�`�1

r
: (37)

Hence, if q.X/ is defined using the holomorphic functional calculus, then it can be
approximated by the matrix polynomial P.X/, with

kq.X/ � P.X/kCn!Cn �
.1C r/�`

r
D "0: (38)

Given "0 < r , we choose ` to be

` D 1C

�
log..r"0/�1/
log.1C r/

�
; (39)
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where b � c is the integer part of the real number s. From the discussion in the previous
section, it is thus possible to exactly represent the map

X 7! v>P.X/ DP.X/v (40)

(see (36)) that approximates the mapX 7! v>q.X/, using a general operator recurrent
network

P.X/v D h2`C3;

h0 D 0;

h1 D v;

h2j D aj�1h2j�1 C h2j�2; j D 1; 2; : : : ; `C 1;

h2jC1 D Xh2j�1; j D 1; 2; : : : ; `C 1

(so that h2jC1 D Xj v and h2jC1 D
Pj�1
pD0 apX

pv) of depth 2`C 3 and level 2, and
whose hidden states are vectors in Rn and weight matrices are n � n.

Next, we consider the network approximation of g. First, we note that in the exact
nonlinear function f , the function g takes in a vector q.X/v whose norm is bounded
by 1, since jq.z/j � 1 on the closed disk of radius 1C r , and kvk � 1. Thus, we are
in the setting of approximating a nonlinear function gWRn! Rn uniformly by neural
networks on a bounded domain. By Remark 4, the standard neural network (6)–(8)
can be written as a general operator recurrent network (14)–(15), and thus to consider
the approximation of g we can use the results for standard neural networks. Such
approximation problems have been studied in a wide variety of settings. Here, we use
the results of Yarotsky [94] applied to the function

g1.y/ D
g.4y/

4kkgkCk. xBn.2//
: (41)

This normalization is such that kg1kCk. xBn.1=2// � 1, where the domain of g1 is a
ball in Rn of radius 1=2. With this normalization, then by Theorem 1 of [94], there
exists a constant C D C.k; n/ such that a standard additive neural network G exists,
satisfying

kg �GkL1. xBn.2// � "1; (42)

and the depth L0 and width W 0 of G satisfy

L0 � C

�
log

�
4kkgkCk. xBn.2//

"1

�
C 1

�
; (43)

W 0 � Cmn

�
"1

4kkgkCk. xBn.2//

��n=k
log

�
4kkgkCk. xBn.2//

"1
C 1

�
: (44)
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Concatenating the previous two networks, we can construct an operator recurrent
network

f� .X/ D G.v
>P.X// DG.P.X/v/:

By abuse of earlier notation we absorbed the weights of G in � . We then prove our
main estimate:

kg.q.X/v/ �G.P.X/v/kRn

� kg.q.X/v/ � g.P.X/v/k C kg.P.X/v/ �G.P.X/v/k

� kgkC1k.q.X/ � P.X//vk C kg �GkC0. xBn.1Cr//

� kgkC1"0 C "1: (45)

We choose "=2 D kgkC1"0 D "1. Then we set

` D
log.2kgkC1. xBn.2//=.r"//

log.1C r/
; (46)

and redefine C to include dependencies on r , to find the full depth bound for the
network

L � C

�
log

�
4kgkC1.. xBn.2///

r"

�
C log

�
4kC1kgkCk. xBn.2//

"

�
C 1

�
; (47)

while the width W satisfies

W � Cmn

�
"

4kC1kgkCk. xBn.2//

��n=k�
log

�
4kC1kgkCk. xBn.2//

"

�
C 1

�
: (48)

This completes the proof.

Because neural networks are naturally compositional, it is straightforward to ext-
end Theorem 2.1 to the case where the function f being approximated is given by a
composition of functions of the form (30).

Theorem 2.2. Let J 2ZC and " 2 .0;1/. Suppose there is a sequence of holomorphic
functions qj and smooth functions gj for j D 1; : : : ; J , where the qj and gj satisfy the
same assumptions as functions q and g in Theorem 2.1 with m D n, and v 2 xBn.1/.
Consider a nonlinear operator function, H , defined by

X 7! gJ
�
qJ .X/gJ�1

�
qJ�1.X/ : : : g2

�
q2.X/g1.v

>q1.X//
��
: : :
�
: (49)

There exists an operator recurrent network H� with depth JL and width W , with W
and L given by (33) and (32), respectively, such that

kH �H�kC.Bn�nIRn/ � C
0" (50)

with constant C 0 D C 0.k; n; r; J /.
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We will introduce a function R that measures the norms of the network parame-
ters, � , and provide an upper bound on the value of this function in an approximation
of such maps f or H by operator recurrent networks. This additional control over
the norms of the weight parameters will later be used to bound the derivatives of f�
or H� , ultimately leading to a generalization bound.

Universal approximation by general operator recurrent networks. Next we show
an universal approximation result for general operator recurrent networks. We recall
that the general operator recurrent networks can be written also as a basic operator
recurrent network with an increased width, as shown in formulas (18)–(19).

Theorem 2.3. Let n;K 2 ZC and

F .n;K/
D
®
f
.L;K/

�
WRn�n ! Rn j L 2 ZC; � 2 .R

n/#
zP
¯

be the space of general operator recurrent networks f .L;K/
�

of the form (14)–(15) that
have the levelK, the length L and the width n. Let Z � Rn�n be a compact set. Then
for K D 2nC 1, the set F .n;K/ is dense in the space C.ZIRn/.

Proof. In the proof we will first consider the matrix X as a vector in Rn
2

and approx-
imate a function X ! g.X/, where g 2 C.ZIRn/, using a standard neural network.
After this we represent the obtained neural network as a general recurrent neural net-
work that has the level K D 2nC 1.

Let X D .xjk/
n
j;kD1

2 Rn�n. We can consider X as a vector consisting of n2

elements and define a single layer neural network GWRn�n ! Rn of form

G .X/ D .Gp.X//
n
pD1; (51)

where

Gp.X/ D

MX
mD1

b.m/p �

�� nX
j;kD1

a
.km/
pj xjk

�
C c.m/p

�
; (52)

p D 1; 2; : : : ; n and b.m/p ; a
.km/
pj ; c

.m/
p 2 R.

Let now gWRn�n ! Rn, g.X/ D .gp.X//
n
pD1 be a continuous function, " > 0

and Z � Rn�n be a compact set. By universal approximation results for standard
neural networks [40, 77], for each p there is a neural network GpWRn�n ! Rn of the
form (52) (having a sufficiently large width M ) such that

kGp.X/ � gp.X/kRn �
"

n
for all X 2 Z: (53)

We can write G .X/ using matrix notation as

G .X/ D

MX
mD1

B.m/�

�
c.m/ C

nX
kD1

A.km/Xvk

�
; (54)
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where

B.m/ D diag.b.m/1 ; : : : ; b.m/n / 2 Rn�n; A.km/ D .a
.km/
pj /np;jD1 2 Rn�n;

c.m/ D .c.m/p /npD1 2 Rn; vk D .ıpk/
n
pD1 2 Rn:

Moreover, we can write G .X/ in (54) as

G .X/ D SM ;

S0 D 0;

Sm D �

�
B.m/c.m/ C

nX
kD1

B.m/A.km/Xvk

�
C Sm�1:

(55)

Writing for m D 0; 1; : : : ;M and k D 1; 2; : : : ; n;

h0 D 0; (56)

hm.2nC1/C2k�1 D vk; (57)

hm.2nC1/C2k D A
.km/Xhm.2nC1/C2k�1; (58)

hm.2nC1/C2nC1 D �

�
B.m/c.m/ C

nX
kD1

B.m/hm.2nC1/C2k

�
C hm.2nC1/; (59)

so that
hm.2nC1/ D Sm�1;

we see that G .X/D SM D hM.2nC1/. Thus, G .X/ can be written as a general operator
recurrent network (14)–(15) having depth L D .M C 1/.2nC 1/, level K D 2nC 1
and width n, and parameters

h0 D 0;

b
`;0
�
D vk; b

`;1
�
D 0; A

`;k;i
�
D 0; B

`;k;i
�
D 0 for ` D m.2nC 1/C 2k � 1;

b
`;i
�
D 0; A

`;k;i
�
D 0; B

`;k;0
�

D A.km/; B
`;k;1
�

D 0 for ` D m.2nC 1/C 2k;

and for ` D m.2nC 1/C 2nC 1,

b
`;0
�
D 0; b

`;1
�
D B.m/c.m/;

A
`;k;0
�
D 0; A

`;k;1
�
D B.m/; B

`;k;i
�
D 0 for k � K � 1;

b
`;i
�
D 0; A

`;k;0
�
D I; A

`;k;1
�
D 0; B

`;k;i
�
D 0 for k D K:

Moreover, by (53), the inequality

kG .X/ � g.X/kRn � " for all X 2 Z (60)

is satisfied.
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Remark 7. Let KL;K DKn
L;K be the space of functions X ! f� .X/ where f� is a

general recurrent neural network of depth L, level K and width n and vanishing non-
learned parts of the weight matrices, A`;i;k;.0/ and B`;i;k;.0/. Moreover, let K

.sp/
L;K �

KL;K be the space of (special) general recurrent neural network f� .M/ 2KL;K that
of the form (55) and that can be written in the form (14)–(15) with � 2 z‚L;K . We
note that � 2 z‚L;K implies that the learned parts of the weigh matrices, A`;i;k;.1/

�

and B`;i;k;.1/
�

are bounded.
We observe first that in formula (52) we can multiply numbers a.km/pj , b.m/p , and c.m/p

by 0 < � < 1 then the function g.X/ is changed to �2g.X/. Second, we observe that
if g.1/.X/ and g.2/.X/ are two neural networks in K

.sp/
L;K , then their sum,

g.1/.X/C g.2/.X/;

can be written as a function g.X/ 2K
.sp/
2L;K by replacing in definition (52) of g.2/p .X/

the initial value S0 D h0 D 0 of g.2/p .X/ by the output of the neural network g.1/p .X/.
Note that then the sum g

.1/
p .X/C g.2/.X/ of the two neural networks of length L is

represented as a neural network of the double length 2L.
By combining the above two observations, we conclude that the union

K
.sp/
1;K D

1[
LD1

K
.sp/
L;K (61)

is a linear subspace that is equal to the space of neural networks
S1
LD1 KL;K con-

sidered in Theorem 2.3. The fact that K
.sp/
1;K is a linear subspace will be essential in

Section 4.3, where we consider Bayes estimators and the orthogonal projection to the
subspace K

.sp/
1;K . Moreover, Theorem 2.3 implies that for K � 2nC 1 the set K

.sp/
1;K

is dense in L1.Bn�n.1/IRn/.

2.5. Expressivity

One way to assess the representational power of a network architecture is to study its
range. More precisely, suppose that one can partition the output space into regions
and also locally characterize the network as it is restricted to each of these regions.
Networks that partition the output space to a larger number of regions are consid-
ered to be more complex, or in other words, possess better representational power.
In regular, deep rectifier networks, which are linear splines that can be written as a
composition of max-affine spline operators [11], each application of the rectifier acti-
vation partitions the output space into regions bounded by hyperplanes. In contrast,
we will here show that the corresponding regions for a recurrent operator network
have algebraic varieties as their boundaries and within each region, the network is
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a polynomial operator function. To make this description precise, we introduce and
motivate several definitions.

Definition 2.3. An operator polynomial of degree d on Rn�n is a function

P WRn�n ! Rn�n

defined as

P.X/ D
�
A00 C A10XA11 C A20XA21XA22 C : : :C Ad0X : : : XAdd

�
(62)

D A00 C

dX
jD1

Aj0

jY
kD1

.XAjk/: (63)

with matrix-valued coefficients Aij 2 Rn�n.

The definition of an operator polynomial generalizes the usual definition of a
polynomial R! R, and is equivalent when n D 1. We will prove in Theorem 2.4
that locally, all operator recurrent networks behave like operator polynomials. This
is analogous to the result that locally, all deep rectifier networks behave like linear
functions.

We next introduce the concept of a polynomial region. To motivate this definition,
let us recall that in an operator recurrent network we have activation function terms
of the form

�`
�
b
`;1
�
C B`�Xh`

�
; (64)

where �` is a leaky rectifier activation. Then the first vector component of this expres-
sion is equal to ´ �

b
`;1
�
C B`

�
Xh`

�
1
;

�
b
`;1
�
C B`

�
Xh`

�
1
> 0;

�
�
b
`;1
�
C B`

�
Xh`

�
1
;
�
b
`;1
�
C B`

�
Xh`

�
1
� 0:

(65)

Therefore, the activation function partitions the first vector component of the output
into two regions, depending on the sign of .b`;1

�
C B`

�
Xh`/1. If we assume that h` is

a continuous function of X , then the resulting output above will also be continuous
in X , and therefore the boundary between these two regions is given by�

b
`;1
�
C B`�Xh`

�
1
D 0 (66)

under the assumption that the two regions are nonempty and the quantity in (66) does
not vanish identically in an open set. This is expected behavior for all neural networks
using rectifier activations. In the case of operator recurrent networks, however, this
partition is highly nonlinear due to the presence of a multiplication term. Assume that
h`DQ.X/v, whereQ.X/ is an operator polynomial and v 2Rn is a vector. Then one
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can observe that b`;1
�
C B`

�
Xh` can also be written as a polynomial P.X/v, with P

having degree one higher than Q. Thus, the boundaries separating the regions of the
output of an activation function in an operator recurrent network are subsets of zero
sets of multivariate polynomials (such sets are also called algebraic varieties). These
observations motivate the following definition and theorem.

Definition 2.4. A polynomial region is an open subset U � Rn�n such that for any
boundary point x0 2 @U , there exists an open set V containing x0, a finite index set J ,
operator polynomials Pj and vectors vj 2 Rn for j 2 J , such that

V \ U D
®
X 2 V W .Pj .X/vj /1 > 0 for all j 2 J

¯
: (67)

Remark 8. Since we can always compose with a permutation matrix, the coordinate
index 1 can be replaced by another index without loss of generality, for example,
.Pj .X/vj /k > 0 for any k.

The set ¹X 2 Rn�n W .P.X/v/1 D 0º, if nonempty, is a submanifold of codimen-
sion 1 in Rn�n, since the map X 7! .P.X/v/1 can be viewed as a real multivariate
polynomial Rn

2
! R. Thus, we can consider a polynomial region as being a high-

dimensional generalization of a domain in Euclidean space bounded between a col-
lection of polynomial surfaces. As mentioned above, in operator recurrent networks
activation functions partition the output space nonlinearly according to zero sets of
polynomials. The partitions are precisely described by the polynomial regions defined
above. The analogous behavior in standard deep rectifier networks appears in the form
of simplices, which originate from activation functions partitioning the output space
along hyperplanes. We have

Theorem 2.4. Let f� be an operator recurrent network on Rn�n with layerwise
outputs h`, ` D 0; : : : ; L. Then, for each `, there exists a countable collection of
polynomial regions ¹U `i º in Rn�n satisfying:

1. This collection partitions Rn�n; that is, U `i \ U
`
j D ; for every i ¤ j ,

and
S
U `i D Rn�n.

2. Every open ball B � Rn�n only nontrivially intersects U `i for finitely many i .

3. The restriction of h` to each U `i is an operator polynomial of degree at most `,
applied to h0.

Proof. The result of the theorem characterizes f� as a piecewise operator polynomial
whose domain is partitioned into polynomial regions, on each of which f� is exactly
an operator polynomial. Since operator polynomials form a vector space, then this
characterization is also closed under addition and scalar multiplication. In particular,
if f� and g� are two such functions, then any linear combination of the two functions
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also satisfies the result of the theorem, except with a new partition of polynomial
regions which is the mutual refinement of those of each of the original two functions.
Therefore, to prove this theorem, it suffices to consider a slightly simplified version
of an operator recurrent network, in which

f� .X/ D hL; (68)

h`C1.X/ D b
`;0
�
C �`

�
b
`;1
�
C B`�Xh`

�
; (69)

where X 2 Rn�n is the input, h0 2 Rn is given, and �` is a leaky rectifier activation
function with � > 0. The network given in (69) is derived by taking (10) and setting
several of the weight matrices to zero. This is done to highlight the fact that the non-
linearity is derived by the matrix-vector multiplication term B`

�
Xh`. By our above

argument, if the theorem holds for this simplified version, then since the general form
of an operator recurrent network in (15) is merely a sum of terms of the simplified
form, then the result will hold in general.

On this simplified case, we proceed by induction, and in our inductive step we
construct a new collection of polynomial regions based on the previous collection
of polynomial regions. For the base case, the result of the theorem holds for ` D 0,
since the output of the neural network is h0, which is independent of X . Now, for
the induction, suppose the claim is true at output layer `. Then there exists some
collection of polynomial regions ¹U `mº that partitions Rn�n (that is, disjoint sets such
that the union of their closures is Rn�n), such that for any given region U `m and for
every X 2 U `m, h`.X/ is expressible as an operator polynomial P`;m.X/ as applied
to h0, that is,

h`.X/ D P`;m.X/ WD A00h0 C
X̀
iD1

Ai0

� iY
jD1

.XAij /

�
h0; (70)

where Aij are the matrix-valued polynomial coefficients of h`.X/ in the region U `m.
Now we apply the iteration (69) to produce the next layer. We first construct the
regions and then prove that these partition the matrix space and are polynomial regions.
We define

D`
1;j D

®
X 2 Rn�n W

�
b
`;1
�
C B`�XP`;m.X/

�
j
> 0

¯
; (71)

D`
2;j D int

�
.D`

1;j /
c
�
; (72)

meaning that D`
2;j is the interior of the complement of D`

1;j in Rn�n. Note that a
polynomial P WRn�n ! R, or more generally, a real-analytic function, cannot vanish
in an open set unless it is identically zero (see [81]). Thus, if D`

1;j is nonempty but
also not all of Rn�n, then

D`
2;j D

®
X 2 Rn�n W

�
� b

`;1
�
� B`�XP`;m.X/

�
j
> 0

¯
: (73)
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We note that D`
1;j ; D

`
2;j are polynomial regions for every `; j . The significance of

these regions is that they are formed by the application of the rectifier activation func-
tion �`. We aim to show that if at the inductive step, h`.X/ is a piecewise operator
polynomial on the partition ¹U `mº, then we can use the regions D`

1;j ;D
`
2;j to produce

a refinement ¹U `C1m º that satisfies the theorem for the case `C 1.
To this end, we explicitly construct the new collection of polynomial regions

¹U `C1m º, checking that they are indeed polynomial regions. We define this collection
of subsets as the collection of all such nonempty sets U `C1m that can be written as

U `C1m D U `m0 \

n\
jD1

D`
kj ;j

(74)

for some indexm0 and some kj 2 ¹1;2º. The collection of sets in (74) are thus a refine-
ment of the original partition ¹U `mº, where the refinement is produced by intersecting
with the sets D`

1;j ;D
`
2;j .

It may be useful to observe that computing the j -th vector component of the next
layer gives for X 2 U `m0

.h`C1.X//j D

´
.b
`;0
�
/j C

�
b
`;1
�
C B`

�
XP`;m.X/

�
j
; X 2 D`

1;j\U
`
m0 ;

.b
`;0
�
/j C �

�
b
`;1
�
C B`

�
XP`;m.X/

�
j
; X 2 D`

2;j\U
`
m0 :

(75)

Having given our explicit construction of the new partition ¹U `C1m º, we now must
verify that they satisfy the conditions in the statement of the theorem. In particular,
we must show that the collection is a finite partition of the domain, that each member
is a polynomial region, and that h`C1 restricted to each such region is an operator
polynomial. First we check that this new set ¹U `C1m º partitions the space. Note that

D`
1;j \D

`
2;j D ;;

and furthermore

D`
1;j [D

`
2;j D Rn�n:

Since ¹D`
1;j ;D

`
2;j º partitions Rn�n, each elementU `C1m is constructed by picking one

element from each of nC 1 different partitions of Rn�n and taking their intersection.
Then it is clear that any two such sets have empty intersection, and[

m

U `C1m �

[�
U `m0 \

\
j

D`
kj ;j

�
D Rn�n \

\
j;kj

D`
kj ;j
D Rn�n: (76)

Furthermore, since theD`
k;j

are finite, and any open ball only finitely intersects ¹U `mº
by induction hypothesis, then the same must hold of ¹U `C1m º.
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Next we show that each set U `C1m is a polynomial region. For any given m let
x 2 @U `C1m . Since U `C1m can be expressed by (74), then there are indices m0; kj such
that

X 2 @U `m0 [
[
j

@D`
kj ;j

: (77)

Since U `m0 and D`
kj ;j

are polynomial regions, then there exists a finite collection of
open sets containing x satisfying the polynomial region definition (67) for each of the
sets U `m0 and D`

kj ;j
. Therefore, taking the intersection of these open sets yields a new

open set satisfying the conditions for (67) for the set U `C1m .
Lastly, we check that h`C1 is an operator polynomial applied to h0 when restricted

to each such set. Suppose h`C1 is restricted to one such polynomial region U `C1m .
Using the index notationm0 and kj from the decomposition (74), define a vector b2Rn

by b D .bj /njD1 and

bj D .b
`;0
�
/j C j .b

`;1
�
/j ; (78)

where

j D

´
1 for kj D 1;

� for kj D 2:
(79)

Similarly, we define a matrix B 2 Rn�n by B D .Bij / and

Bij D j .B
`
� /ij : (80)

Then, restricted to X 2 U `C1m , we can write

h`C1.X/ D b C BXP`;m.X/: (81)

Combining the above with the induction hypothesis, it is clear then that h`C1.X/ can
be expressed as an operator polynomial applied to h0 when restricted to each U `C1m .

The polynomial regions that emerge from an operator recurrent network can have
very nonlinear boundaries and thus have a much more complicated geometry com-
pared to the linear regions in standard rectifier networks. In particular, because each
polynomial region can be bounded by a number of high-degree polynomial subman-
ifolds, they can be highly irregular and highly nonconvex. This behavior enables the
resulting networks to potentially approximate highly nonlinear functions with fewer
layers compared with traditional rectifier networks, which must approximate non-
linear behavior through piecewise linear behavior. However, due to this additional
complexity, it is nonetheless likely best to employ these networks for nonlinear prob-
lems that naturally have operator polynomial or operator analytic behavior, such as
hyperbolic inverse problems.
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We should also note that since every operator recurrent network has a rectifier
network as a special case, then by utilizing the results of [69], we can construct a
particular operator recurrent network of depth L and width n that possesses at least
2.LC1/n=2 distinct polynomial regions. Thus, the expressivity of the network, as mea-
sured by the size of the polynomial region partition, increases exponentially with
depth L. In the example of representing matrix inversion, the expressivity on a spe-
cial set of real symmetric matrices is detailed in Theorem 6.3.

3. Regularization function and basic estimates

In this section, we will introduce a sparsity promoting regularization function. This
function will later be used as a penalty term in optimization and is employed in train-
ing a network; it naturally arises in the analysis of inverse boundary value problems
such as the one presented in Section 7 where weight matrices,A`;i;.1/ andB`;i;.1/ cor-
respond to compact operators that are in a Schatten class. The regularization yields
essentially improved generalization bounds in the later analysis. We note that reg-
ularization nowadays is commonly incorporated through the choice of method for
nonconvex optimization [50].

3.1. Convex regularizing function

We introduce convex regularization functions, all denoted by R that, with a slight
abuse of notations, are given by

R.�/ D
1

2

X
.`;i;p/2P1

k�`;ip kRn ;

R.�`/ D
1

2

X
.i;p/2I`

k�`;ip kRn ;

R.�`;i / D
1

2

X
p2I`;i

k�`;ip kRn ;

(82)

where I ` D ¹.i; p/ W 9.`; i; p/ 2 P1º and I `;i D ¹p W 9.`; i; p/ 2 P1º and � is a
set of parameters for neural network f� ; the index notation was introduced in (24)
with i D 0; 1 and P1 � P the index set (25) corresponding to the weight matrices. We
will use this function as part of an explicit regularization. The function R measures
the sum of the Schatten seminorms of the learnable weight matrices of the network,
which we will show below.

We consider the value of R.�/ for a neural network f� when the matrices

A`;i;.1/WRn ! Rn and B`;i;.1/WRn ! Rn
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satisfy
A
`;i;.1/

�
; B

`;i;.1/

�
2 �q; (83)

where �q is the Schatten q class of matrices; here, qD 1=2. The Schatten seminorm q,
denoted by k � k�q ; is the `q-seminorm of the vector of singular values of a matrix. We
note that for 0 < q < 1 the `q-seminorms k � kq are not norms but satisfy

kx C ykqq � kxk
q
q C kyk

q
q:

If A`;i;.1/ is an n � n matrix with singular values �`;ip and corresponding singular
vectors u`;ip ; v

`;i
p then we can choose parameters (cf. (21)–(22))

�
`;i
2p�1 D .�

`;i
p /1=2u`;ip ; �

`;i
2p D .�

`;i
p /1=2v`;ip ; (84)

so that

A
`;i;.1/

�
D

nX
pD1

�
`;i
2p�1.�

`;i
2p /

T
D

nX
pD1

�`;ip u`;ip .v`;ip /T : (85)

We note that the singular values �`;ip are bounded by the norm of A`;i;.1/ and that the
singular vectors u`;ip and v`;ip are orthonormal vectors. We also note that generally the
vectors �`;ip that parametrize the neural network are not assumed to be orthonormal,
but it is possible to choose those to be parallel to the orthogonal vectors that define
the singular value decompositions of the weight matrices. Moreover, we have

1X
iD0

nX
pD1

�
k�
`;i
2p�1kRn C k�

`;i
2p kRn

�
D

1X
iD0

nX
pD1

2.�`;ip /1=2 D 2

1X
iD0

kA
`;i;.1/

�
k
1=2

�1=2
: (86)

A similar analysis applies to B`;i;.1/
�

, i D 0; 1 with p D n C 1; : : : ; 2n. Thus, the
function R measures the sum of the �1=2 seminorms of the matrices of the network
as announced above.

Furthermore, we observe that when k�`;ip kRn � 1 for all p, we have

kA
`;i;.1/

�
kRn!Rn C kB

`;i;.1/

�
kRn!Rn �

2nX
pD1

k�
`;i
2p�1kRn � k�

`;i
2p kRn

�
1

2

2nX
pD1

�
k�
`;i
2p�1kRn C k�

`;i
2p kRn

�
� R.�`;i /: (87)

We will use this estimate in the proof of Lemma 3.1 below.
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3.2. Truncated network

For our later generalization results, it is important to guarantee that the output of
any given network is bounded. Indeed, our goal is to construct an operator recurrent
network f� WBn�n! Rn, where Bn�n DBn�n.1/D ¹X 2 Rn�n W kXkRn!Rn � 1º

is the closed unit ball in the set of matrices, that approximates a bounded, continuous
function f WBn�n ! Rn. As we know a priori that the function we approximate is
bounded by

kf k1 D kf kL1.Bn�nIRn/ D sup
X2Bn�n

kf .X/kRn ; (88)

we can add to the network f� two additional layers that cut off any coordinates values
that are too large. That is, we introduce a new parameter, m 2 RC, satisfying

m � kf k1 (89)

and add two layers that implement the function

TmWR
n
! Rn;

where, for x D .xj /njD1 2 Rn,

Tm.x/ D �b C �0.b C y/; y D b � �0.b � x/; (90)

where b D .m;m; : : : ; m/T 2 Rn, and �0 is the standard rectifier function “ReLU”.
We note that then Tm.x/ D .Tm.xj //njD1, where Tm.xj / D max.�m;min.xj ; m//.

Definition 3.1. We say that xf� WBn�n ! Rn is a truncated basic or, respectively, a
truncated general) operator recurrent network of depth LC 2 and width n if

xf� D Tm ı f� ; (91)

where Tm is of the form (90) and f� is a basic (or, respectively, general) operator
recurrent network with depth L and width n.

Truncated neural networks make it possible to effectively use Hoeffding’s inequal-
ity in studying their generalization properties. Below, we use that for a truncated
general operator recurrent network xf� we have

k xf�kL1.Bn�nIRn/ � n
1=2m (92)

and as the map Tm has Lipschitz constant 1, the Lipschitz constant of � 7! Tm. zf� .X//

is bounded by the Lipschitz constant of � 7! zf� .X/. We note that in (92) the fac-
tor n1=2 appears due to the fact that we use the Euclidean norm k � k2 in Rn. If the
norm of x D .xj /

n
jD1 2 Rn is replaced by the norm kxkmax D kxk1 D maxj jxj j,
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that is, if we replace the Euclidean space .Rn; k � kRn/ by .Rn; k � kmax/ and use
m D supX2Bn�n kf .X/kmax, we obtain

sup
X2Bn�n

k xf� .X/kmax � m: (93)

3.3. Intermediate function and regularization determining the loss functions

Here, we assume that the network xf� is a truncated basic recurrent operator network
that satisfies (92). To guarantee a generalization error bound, one needs to avoid the
problem of over fitting, in which xf� accurately approximates f WRn�n ! Rn on the
training set S , but poorly approximates f away from S . To this end, we introduce a
regularizing penalty term using R.

Definition 3.2. For parameter � and the pair .X; y/, we let L be given by

L.�; X; y/ D k xf� .X/ � yk
2
Rn : (94)

Moreover, we let Lr with regularization parameter ˛ 2 .0; 1/ be given by

Lr.�; X; y/ D k xf� .X/ � yk
2
Rn C ˛R.�/: (95)

We denote by ‚ the set of all parameters � that the weight matrices of the net-
work xf� depend upon; more precisely

‚ D ‚.L/ D
®
.�`;ip /.`;i;p/2P 2 .R

n/#P W k�`;ip kRn � 1
¯
; (96)

where P is the index set (25). The regularization term shows up explicitly and inde-
pendently in the estimate for the Lipschitz constant of the network as well as in the
estimate for its derivatives with respect to the weights in P1 in the next subsection.
Also, for the general recurrent operator neural networks we denote the parameter
space by

z‚ D z‚.L;K/ D
®
.z�`;i;kp /.`;i;p;k/2 zP 2 .R

n/#
zP
W k�`;i;kp kRn � 1

¯
: (97)

3.4. Basic estimates of the recurrent operator neural network

3.4.1. Derivative with respect to weights. We show how controlling the norms of
the parameter � provides an upper bound on directional derivatives in a local neigh-
borhood for the neural network f� , given by (9)–(10), as a function of � . Such a
bound is crucial to controlling the behavior of the neural network during training. The
key intuition here is that estimates of the derivative, which also give upper bounds on
the local Lipschitz constant of � ! f� .X/, provide some knowledge concerning the
behavior of the regularized loss function in a neighborhood of its minimum.
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In the lemma below we consider a basic operator recurrent network. Recall from
(21) that the weight matrices A`;k

�
and B`;k

�
depend quadratically on the column vec-

tors contained within any parameter set � . This lemma generalizes easily to general
operator recurrent networks and is used in the proofs of Theorem 5.2 and Lemma 5.3.

Lemma 3.1. Let f� WRn�n ! Rn be a basic operator recurrent network with leaky
rectifier activations, and h0 satisfy kh0k � 1. Let kXk � 1. Then, for .`; i; p/ 2 P1,
see (25), the local Lipschitz constant (or the derivative, if it exists) of f� .X/ with
respect to �`;ip is bounded by K`;ip with

K`;ip � cLC10 k�
`;i
.p/0
k exp.R.�//; (98)

where .p/0 D p C 1, if p is odd and .p/0 D p � 1, if p is even. For .`; i; p/ 2 P2,
see (25), the derivative of f� .X/ with respect to �`;ip is bounded by K`;ip with

K`;ip � cLC10 exp.R.�//; (99)

that is, Lip.�`;ip ! f� .X// � c
LC1
0 exp.R.�// for all .`; i; p/ 2 P .

Proof. In the proof we estimate the derivatives of the output of `-th layer and the
results are combined in a way that is analogous to the back propagation algorithm.
We consider .`; i; p/ 2 P1; that is, we consider derivatives with respect to parameters
that determine the weight matrices.

To compute K`;ip we differentiate using the chain rule. We consider the interme-
diate outputs by h`. At every point � , where h` and f� .X/ are differentiable with
respect to � , we have for `0 > ` @h`0

@�
`;i
p

 � @h`0�1
@�
`;i
p

�kA`0;0� k C kB`0;0�
k C kA

`0;1
�
k C kB

`0;1
�
k
�
: (100)

Since hL, the output at layer L, is the same as f� .X/, then iterating the above starting
from `0 D L down to `, we obtain@f� .X/

@�
`;i
p

 �  @h`
@�
`;i
p

 LY
`0D`C1

�
kA

`0;0
�
k C kB

`0;0
�
k C kA

`0;1
�
k C kB

`0;1
�
k
�
: (101)

We recall that the largest singular value �1.A/ of a matrix A 2 Rn�n satisfies

kAkRn!Rn � �1.A/ � kAk�1=2 :

Using (87), we find that

kA
`;i;.1/

�
kRn!Rn C kB

`;i;.1/

�
kRn!Rn � R.�`;i /: (102)
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With this inequality, we relate the matrix norms kA`
0;i
�
k; kB

`0;i
�
k to the regularization

terms R.�`
0;k/. By our assumptions

2X
iD1

kA
`0;i
�
k C kB

`0;i
�
k �

2X
iD1

kA`
0;i ;.0/
k C kA

`0;i ;.1/

�
k C kB`

0;i ;.0/
k C kB

`0;i ;.1/

�
k

� c0 C

2X
iD1

kA
`0;i ;.1/

�
k C kB

`0;i ;.1/

�
k � c0 CR.�`

0

/; (103)

cf. (23). We find that@f� .X/
@�
`;i
p

 �  @h`
@�
`;i
p

 LY
`0D`C1

.c0 CR.�`
0

//

� cL�`0

 @h`
@�
`;i
p

 exp
� LX
`0D`C1

R.�`
0

/

�
; (104)

where we used the simple inequality c0 C x � c0ex for x � 0. Viewing �`;ip as a
column vector,  @h`

@�
`;i
p

 � kh`�1kk�`;i.p/0k; (105)

where .p/0 D pC 1, if p is odd and .p/0 D p � 1, if p is even and the weight matrices
are written in terms of the parameters as a sum of rank-1 matrices as given in (21).
This means that every column vector �`;ip is “paired” with an adjacent column vector,
thus justifying (105). For h` we find in a similar fashion that

kh`k � kb
`;0
�
k C kb

`;1
�
k C

�
kA

`;0
�
k C kB

`;0
�
k C kA

`;1
�
k C kB

`;1
�
k
�
kh`�1k

�
�
c0 C kb

`;0
�
k C kb

`;1
�
k C kA

`;0;.1/

�
k C kB

`;0;.1/

�
k C kA

`;1;.1/

�
k C kB

`;1;.1/

�
k
�

�
�
1C kh`�1k

�
: (106)

Here, when b`;i
�
D �`;i and

A
`;i;.1/

�
D

nX
pD1

�
`;i
2p�1.�

`;i
2p /

T ; B
`;i;.1/

�
D

2nX
pDnC1

�
`;i
2p�1.�

`;i
2p /

T ;

and (23) is satisfied, we find that as in (102) and (103)

c0 C k�
`;0
k C k�`;1kCkA

`;0;.1/

�
k C kB

`;0;.1/

�
k C kA

`;1;.1/

�
k C kB

`;1;.1/

�
k

� c0 CR.�`/; (107)
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where we recall that c0 � 1. As the initial vector h0 is in the closed unit ball, using
the above and that x � ex and c0 C x � c0ex , it follows that

kh`k � c
`
0 exp

� X̀
`0D1

R.�`
0

/

�
: (108)

Using (104) and (108), we therefore find that if K`;ip is the local Lipschitz constant
of f� .X/ in a neighborhood of � (when considering only �`;ip as a variable), then

K`;ip � c
L�`
0

 @h`
@�
`;i
p

 exp
� LX
`0D`C1

R.�`
0

/

�

� cL�`0 kh`�1kk�
`;i
.p/0
k exp

� LX
`0D`C1

R.�`
0

/

�
� cL�`0 c`0k�

`;i
.p/0
k exp

�X
`0¤`

R.�`
0

/

�
� cL0 k�

`;i
.p/0
k exp.R.�//: (109)

This yields the claim for p 2 P1.
To compute derivatives with respect to bias parameters, in which case .`; i;p/2P2,

the result follows similarly to the above by using (104) and replacing (105) by@h`@�`p

 � 1: (110)

This completes the proof.

We point out that the factor cLC10 in inequality (99) that grows exponentially in L
is natural as the nonlearnable parts of the weight matrices of a neural network f�
are linear operators which norms are bounded by c0, see (23). Hence, even when
the trained parts of the weight matrices vanish, each layer of the neural network can
increase the Lipschitz constant of the function f� by a multiplicative factor c0.

3.4.2. Lipschitz constant in X variable. Obtaining sharp Lipschitz constants for
networks is essential to assess their robustness against perturbation in their inputs.
Such constants were recently derived for feed-forward neural networks in [25] using
advanced tools from nonlinear analysis. Here, we provide an upper bound to the Lip-
schitz constant for a basic operator recurrent network. This bound will play a role in
the forthcoming section on generalization.
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Lemma 3.2. Let the set of parameters or weights � belong to‚ defined in (96). Then
the Lipschitz norm of the map X ! f� .X/ satisfies

Lip.f� / � LcL0 exp.R.�//: (111)

Proof. We recall that by (103),

2X
iD1

kA
`0;i
�
k C kB

`0;i
�
k �

2X
iD1

kA`
0;i ;.0/
k C kA

`0;i ;.1/

�
k C kB`

0;i ;.0/
k C kB

`0;i ;.1/

�
k

� c0 C

2X
iD1

kA
`0;i ;.1/

�
k C kB

`0;i ;.1/

�
k � c0 CR.�`

0;i / (112)

cf. (23). AsX 2Bn�n we have kXk � 1. In the definition of a basic recurrent operator
network (cf. (9)–(10)) we introduced the notation h` D h`.X/ D h`.X I h`�1/.

Using (108), we obtain

kh`k � c
`
0 exp

� X̀
`0D1

R.�`
0

/
�
: (113)

Moreover,

kh`.X1/ � h`.X2/k D kh`.X1I h`�1.X1// � h`.X2I h`�1.X2//k

D kh`.X1I h`�1.X1// � h`.X2I h`�1.X1//k

C kh`.X2I h`�1.X1// � h`.X2I h`�1.X2//k

�

� 1X
iD0

kB
`;i
�
k

�
kX1 �X2k kh`�1.X1/k

C

� 1X
iD0

kB
`;i
�
k

�
kX2k kh`�1.X1/ � h`�1.X2/k

�

�
c0 C

1X
iD0

kB
`;i;.1/

�
k

�
kX1 �X2k kh`�1.X1/k

C

�
c0 C

1X
iD0

kB
`;i;.1/

�
k

�
kX2k kh`�1.X1/ � h`�1.X2/k

�
�
c0 CR.�`/

�
kX1 �X2k c

`�1
0 exp

� `�1X
`0D1

R.�`
0

/

�
C
�
c0 CR.�`/

�
kh`�1.X1/ � h`�1.X2/k
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� kX1 �X2k c
`
0 exp

� X̀
`0D1

R.�`
0

/

�
C c0 exp

�
R.�`/

�
kh`�1.X1/ � h`�1.X2/k:

We observe that h0.X1/ � h0.X2/ D 0. Using induction, we see from this that

kh`.X1/ � h`.X2/k � kX1 �X2k `c
`
0 exp

� X̀
`0D1

R.�`
0

/

�
:

Then the Lipschitz norm of the map X ! f� .X/ satisfies

Lip.f� / � cL0 exp
� LX
`0D1

R.�`
0

/

�
D LcL0 exp.R.�//: (114)

This completes the proof.

Remark 9. We observe that the Lipschitz constant of a truncated neural network
xf� D Tm ı f� satisfies Lip. xf� / � Lip f� /. This holds both with respect to the X

and � variables.

Remark 10. The Lipschitz constant grows with the number of layers L. This seem-
ingly indicates that deeper networks are expected to generalize more poorly even
though they reduce training error. The responsible factor, cL0 , however, arises from
the inequality with nonlearnable matrices in the network through

kA`;i;.0/k C kB`;i;.0/k C jb
`;0
�
j C jb

`;1
�
j

(cf. (23)) with c0 � 1.

4. Deep learning and inverse problem from a common statistical
viewpoint

4.1. Formulation

The learning problem is finding an approximation to a continuous nonlinear operator
function f by an operator recurrent network xf� given training data. We recall that the
inverse operator had the form H D g ı f ; that is, H stands for F �1 on its range, X.
As laid out in the introduction,

z D g
�
f 1.X/; f 2.X/; : : : ; f T .X/

�
; (115)

A key objective is to train recurrent operator networks f t
�

that approximate the func-
tions f t . To simplify notations, we below drop the index t and consider just one
function f .
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4.1.1. Definitions of random variables. We let .�;†;P / be a complete probability
space and let zW� ! Rm be a random variable that models a random object, and
X D F.z/ be a random variable modeling the noiseless measurement obtained from
the object z and y be a random variable modeling the intermediate quantity, y D f .X/.
We denote

p D f ı F; (116)

so that yD p.z/. Next, we add the measurement error E to the noiseless measurement.
To this end, we consider a random variable EW�! Rn�n having the variance

EkEk2Rn!Rn � EkEk2
Rn2
D n2�2: (117)

Here, kEk2
Rn2
D
Pn
i;jD1 jEij j

2 is the square of the Frobenius norm of the matrix E .
The noisy measurement is then defined to be

M D XC E: (118)

This defines a random variable MW�! Rn�n. We assume that X and E are indepen-
dent.

We denote by �z the distribution of z, by �X D F��z the distribution of X, and
by �E the distribution of E . Also, we define that

�0 is the distribution of the pair .X; y/,
� is the distribution of the pair .M; y/.

(119)

When F is the map z ! .F.z/; p.z// and yF is the map .z; "/! .F.z/C "; p.z//,
then the distribution �0 is given by �0 D F��z and � is given by � D yF�.�z � �E/.

Our aim below is to approximate the map f by a recurrent operator neural net-
work. We assume that we are given samples of the measurement-property pairs that
are samples of the pair .M; y/. We note that adding noise E to the noiseless data X
gives us noisy data M that may be outside the range X of the direct map F and hence
outside the domain of definition of the map f . However, the domain of the (trained)
neural network is not restricted to the range of the direct map.

To consider neural networks that are defined in a ball of radius 1, we assume that

(i) the distribution �E of E is supported in the ball of radius 1
2

, that is,
E 2 Bn�n.

1
2
/ a.s.,

(ii) the distribution �z of z is such that F��z is supported in the ball of radius
�1 D

1
2

, that is, the noiseless measurements satisfy XD F.z/ 2Bn�n.
1
2
/ a.s.,

Under these assumptions, M D F.z/C E 2 Bn�n.1/ a.s.
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4.1.2. Expected loss and regularization. Given a network with parameters � , the
expected loss for noisy and noiseless measurements are defined by

L.�; �/ D E.M;y/��
�
L.�;M; y/

�
; L.�; �0/ D E.X;y/��0

�
L.�;X; y/

�
(120)

(cf. (94)) and the expected regularized loss for noisy and noise-free measurements are
defined by

Lr.�; �/ D E.M;y/��
�
Lr.�;M; y/

�
; Lr.�; �0/ D E.X;y/��0

�
Lr.�;X; y/

�
(121)

(cf. (95)).
We remark that many other regularizers have been studied. For example, regu-

larizers that measure the Lipschitz norm of the neural network with respect to their
inputs have been shown to give good approximations [74].

4.2. Optimal network subject to sparsity bound

First we consider the case when it is a priori known that some recurrent operator
network approximates the target function f with some reasonable accuracy. We for-
malize this case in

Definition 4.1. We say that the function f WX!Rn can be approximated with accu-
racy "0, that is, in the range of F , by a neural network f�0 with sparsity bound R0 if
there is �0 2 .Rn/P with

R.�0/ D R0; (122)

such that the neural network xf�0 corresponding to the parameter �0 satisfies

sup
X2X

kf .X/ � f�0.X/kRn � "0: (123)

We observe that when f�0 satisfies (123), and m D kf k1, then the truncated
neural network, xf�0 D Tm ı f�0 , satisfies

sup
X2X

kf .X/ � xf�0.X/kRn � "0: (124)

When f satisfies the assumptions of Theorem 2.1, then by Theorem 2.2 and
inequality (50) we have that (123) holds with "0 D C 0" and parameters �0 that sat-
isfy (122) for some value R0. We note that below it is not necessary to assume that
(122)–(123) hold. Our aim is to find a neural network xf� that is a better approximation
of f than the neural network xf�0 considered in Definition 4.1.
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4.2.1. Optimal neural network when the measurements are noise free. We intro-
duce the following definition of ��0 that minimizes the regularized loss function in the
noise-free case.

Definition 4.2. The parameters of the optimal network in the noise-free case, ��0 , are
a solution of

��0 D arg min
�2‚

Lr.�; �0/ D arg min
�2‚

E.X;y/��0
�
k xf� .X/ � yk2 C ˛R.�/

�
D arg min

�2‚

Ez��z

�
k xf� .F.z// � p.z/k2 C ˛R.�/

�
: (125)

Here, xf� are truncated basic recurrent operator networks of depth LC 2 with trunca-
tion parameter m � kf k1; see (89)–(90).

Below, for simplicity, we assume that

m D kf k1: (126)

In the case when we do not know the norm kf k1 but are only given an upper boundm
for the norm, all estimates below are valid when kf k1 are replaced by m.

Remark 11. Minimizers to (125) necessarily exist because the loss function is con-
tinuous in � and the constraint R.�/ � R0 restricts the allowable set to a compact
one. The minimizer may not be unique.

Lemma 4.1. The optimal parameter for noise-free measurements, ��0 , and the noise-
free expected loss satisfy

Lr.�
�
0 ; �0/ D E.X;y/��0

�
k xf��

0
.X/ � yk2

�
C ˛R.��0 / �K0; (127)

where

K0 WD

´
min.4nkf k21; "

2
0 C ˛R0/; if (122)–(123) hold,

4nkf k21; if (122)–(123) do not hold.
(128)

Proof. If (122)–(123) hold, we find that

Lr.�0; �0/ D EX��X

�
k xf�0.X/ � f .X/k

2
�
C ˛R.�0/ � "

2
0 C ˛R0: (129)

Moreover, both in the case when (122)–(123) hold or do not hold, we can take � D 0,
in which case by (92) k xf�k � n1=2kf k1 and R.�/ D 0 and thus

Lr.�; �0/ D EX��X

�
k xf� .X/ � f .X/k2

�
C ˛R.�/

� EX��X

��
k xf� .X/k C kf .X/k

�2�
C ˛R.�/ (130)

� .n1=2 C 1/2kf k21 C 0 � 4nkf k
2
1: (131)

We conclude that Lr.�
�
0 ; �0/ D min�2‚ Lr.�; �0/ satisfies (127).
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Next we consider how adding the measurement error E changes the behavior of
the neural network xf��

0
. To this end, we return to considering the random variable M.

4.2.2. Estimate of expected loss for noisy measurements. Next, we consider the
expected loss in the case when measurements contain errors. We recall that adding
noise to the data brings us outside the range of the direct map but the domain of the
(trained) neural network is not restricted to the range of the direct map.

We introduce the notation,

Lr;0 WD min
�
4nkf k21; 2"

2
0 C 2˛R0 C 2L

2c2L0 exp.2"20=˛ C 2R0/�n
2�2

�
(132)

if (122)–(123) hold, and
Lr;0 D 4nkf k

2
1 (133)

if (122)–(123) do not hold. Sometimes, to indicate the parameter ˛, we denote Lr;0 D

Lr;0.˛/. We also write

R0 WD
1

˛
Lr;0; (134)

that is,

R0 D
1

˛
min

�
4nkf k21; 2"

2
0 C 2˛R0 C 2L

2c2L0 exp.2"20=˛ C 2R0/�n
2�2

�
; (135)

if (122)–(123) hold, and

R0 D
1

˛
4nkf k21; (136)

if (122)–(123) do not hold.

Lemma 4.2. The optimal parameters for noise-free measurements, ��0 , and the noisy
expected loss satisfy

Lr.�
�
0 ; �/ � Lr;0: (137)

Proof. First, we consider the case when (122)–(123) hold. We have

Lr.�
�
0 ; �/ D E.M;y/��

�
k xf��

0
.M/ � yk2Rn

�
C ˛R.��0 /

D E.X;E/
�
k xf��

0
.XC E/ � f .X/k2Rn

�
C ˛R.��0 /:

Equation (127) implies that
R.��0 / �K0=˛: (138)

Furthermore,

E.X;E/
�
k xf��

0
.XC E/ � f .X/k2Rn

�
� 2E.X;E/

�
k xf��

0
.XC E/ � xf��

0
.X/k2Rn

�
C 2EX

�
k xf��

0
.X/ � f .X/k2Rn

�
: (139)
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Using (127), the second term in (139) satisfies the inequality,

2EX
�
k xf��

0
.X/ � f .X/k2Rn

�
C 2˛R.��0 / � 2K0: (140)

For the first term in (139), we observe that as xf��
0
WBn�n.1/ ! Rn is in the space

C 0;1.Bn�n.1//, we have

k xf��
0
.XC E/ � xf��

0
.X/kRn � k xf��

0
kC0;1kEk: (141)

Hence,
2E.X;E/

�
k xf��

0
.XC E/ � xf��

0
.X/k2Rn

�
� 2k xf��

0
k
2
C0;1
�n2�2: (142)

Combining these two estimates, we obtain

Lr.�
�
0 ; �/ � 2K0 C 2k xf��

0
k
2
C0;1
�n2�2: (143)

As R.��0 / �K0=˛ we obtain

Lr.�
�
0 ; �/ D 2K0 C 2k xf��

0
k
2
C0;1
�n2�2 (144)

� 2K0 C 2L
2c2L0 exp

�
2R.��0 /

�
�n2�2; (145)

which proves the claim when (122)–(123) hold.
Second, we consider the case when (122)–(123) do not hold. In this case, as above,

we take � D 0 and see similarly to (131) that

Lr.�; �/ D E.X;E/
�
k xf� .XC E/ � f .X/k2Rn

�
C ˛R.�/

� EX��X

��
k xf� .X/kRn C kf .X/kRn

�2�
C ˛R.�/ (146)

� .n1=2 C 1/2kf k21 C 0 � 4nkf k
2
1: (147)

This proves the claim when (122)–(123) do not hold.

4.2.3. Intrinsic error estimate. In this section we analyze the intrinsic error, that is,
the expected error that comes from using the optimal (truncated) recurrent operator
network to solve the inverse problem. We consider the case when the data is given
with random noise.

Definition 4.3. The intrinsic error for parameters � 2 ‚ is given by

Gintrinsic.�/ D L.�; �/ D E.M;y/��k xf� .M/ � yk2

D E.X;E/��X��E
k xf� .XC E/ � f .X/k2Rn : (148)
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The optimal recurrent operator network is defined by the following

Definition 4.4. The optimal parameters for noisy measurements, ��, are a solution of

�� D arg min
�2‚

Lr.�; �/ D arg min
�2‚

�
Gintrinsic.�/C ˛R.�/

�
: (149)

Again, here xf� are truncated basic recurrent operator networks of depth LC 2 with
the truncation parameter m D kf k1; see (89)–(90).

Our above considerations yield the following

Lemma 4.3. The optimal parameters for noisy measurements, ��, and the noisy
expected loss satisfy

Lr.�
�; �/ D E.X;E/��X��E

�
k xf��.XC E/ � f .X/k2Rn

�
� Lr;0 (150)

and

R.��/ � R0: (151)

In particular, the intrinsic error with parameter �� satisfies

Gintrinsic.�
�/ � Lr;0: (152)

Proof. As �� satisfies the minimization problem (149), we see using Lemma 4.2 that

Lr.�
�; �/ D L.��; �/C ˛R.��/ � Lr.�

�
0 ; �/ � Lr;0

and R.��/ � Lr;0=˛ D R0.

4.3. Optimal operator recurrent network as Bayes estimator

In this subsection, we discuss how the optimal neural networks can be considered a
Bayesian estimators.

Below, we consider conditional expectations using � -algebras. We recall the prop-
erties of the conditional expectations in Appendix B. Let .�; †;P / be an complete
probability space and MW�! Rn�n and yW�! Rn be random variables. We denote
by � the distribution of the pair .M; y/.

Let BM � † be the � -algebra generated by the random variable MW�! Rn�n.
When y 2 L1.�I†; dP /n is a random variable, we denote the conditional expecta-
tion of y with respect to � -algebra BM by E.yjBM/. Roughly speaking, E.y j BM/

denotes the expectation of a random variable y under the condition that M is known
and M! E.y j BM/ can be considered as deterministic, measurable function of M;
see Appendix B. Below, we also use the notation

E.y j BM/ D E.y jM/:
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Below, let M and y be as above in (116) and (118), that is, MDF.z/CE and yDp.z/
where p D f ı F: Thus, we have that y 2 L1.�I†; dP /n and

jykL1.�I†;dP/n � kf kL1 :

Hence,
Tm.y/Dy;

where Tm is the truncation operator defined in (90) with m D kf kL1 .
Now let H D L2.�IBM; dP /n be the set of Rn-valued functions that lie in

L2.�I†; dP /n and are BM-measurable. We note that H is a closed subspace of the
Hilbert space L2.�I†; dP /n. For y 2 L2.�I†; dP /n, we define

PHy D arg min
u2H

ky � uk2
L2.�I†;dP/n ; (153)

which is the orthogonal projector onto the set H. As discussed in Appendix B,

PHy D E.y jM/: (154)

As kykL1.�I†;dP/n � m, we see that

kPHykL1.�I†;dP/n D kE.y jM/kL1.�I†;dP/n � kykL1.�I†;dP/n � m; (155)

and thus Tm.PHy/ D PHy, too.
We now consider the neural networks. We fix K D 2nC 1 and define the optimal

truncated general operator recurrent operator network with depth L and level K to be
xf��
.L;K/

.M/ with

��.L;K/ D arg min
z�2z‚L;K

E.y;M/��
�
jy � xfz� .M/j2

�
; xfz� .M/ D Tm

�
fz� .M/

�
: (156)

Observe that here the minimized function is the nonregularized loss function for the
truncated general recurrent operator network xfz� .

Proposition 4.4. Let n 2 ZC and K D 2nC 1. Then the optimal truncated general
operator recurrent operator network with depth L and levelK, denoted by xf��

.L;K/
D

Tm ı f N�.L;K/ satisfies

lim
L!1

xf��
.L;K/

.M/ D E.y jM/ in L2.�I†; dP /n: (157)

Proof. From the functional analytic viewpoint, the conditional expectation is a pro-
jector onto a suitable function space, namely H introduced above. Theorem 2.3 will
imply that deep operator recurrent networks are dense in this space. We will com-
bine these facts with an analysis of truncated operator recurrent networks to prove the
claim.



Deep learning for nonlinear inverse problems 43

Let KL;K be the space of functions fz� .M/ where f Q� is a general operator recur-
rent neural network of depth L, level K and width n with Q� 2 z‚L;K . Note that these
neural networks are not truncated. We denote L2 D L2.�I†; dP /n. Using Theo-
rem 2.3, we observe that

K D cl
� 1[
LD1

KL;K

�
(158)

is equal to H with cl the closure in L2; see Remark 7.
Let uL 2KL;K be the nearest point in the set Tm.KL;K/ to y and u1 2 H be the

nearest point in the set H to y, that is,

uL D QK;L.y/ 2 arg min
u2Tm.KL;K/

�
ky � uk2

L2

�
; u1 D PHy: (159)

Recall, that by (155) we have PHy D Tm.PHy/ 2 Tm.H/:
We emphasize that here uL may not be uniquely determined as KL;K are not

linear subspaces.
As Tm.KL;K/ � H, we have

dL D kuL � ykL2 � ku1 � ykL2 D d1: (160)

On the other hand, (158) implies that there are elements wL 2KL;K such that wL!
u1 in L2 as L!1. As u1 2 Tm.H/, it is easy to see that

xwL D Tm ı wL 2 Tm.KL;K/ � H

and xwL ! u1 in L2 as L!1.
Then, kxwL � ykL2!d1 asL!1 and as uL are nearest points in Tm.KL;K/�H

to y, we have
kxwL � ykL2 � dL � d1:

These imply that dL ! d1 as L!1. As u1 � y ? H in L2, we have

kuL � u1k2L2 C d
2
1 D kuL � u1k2L2 C ku1 � yk2

L2
D kuL � yk2

L2
D d2L;

the limit dL ! d1 implies that kuL � u1kL2 ! 0 as L ! 1: This shows that
QK;L.y/! PHy as L!1. This and formula (154) yield the claim.

This implies that the optimal general operator recurrent network which minimizes
the expected loss, L.z�; �/ (represented by a formula analogous to (120) but with
general operator recurrent networks) approximate a Bayes estimator for the inverse
problem without regularization. Essentially, the deep neural network, here, is used to
parametrize the set of decision rules considered in the Bayes estimator.
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Remark 12. When f is a random function having a suitable prior distribution it is
possible to prove posterior consistency and contraction rates, which give theoretical
guarantees that the posterior mean converges to the true solution (determined by f )
as the amount of data becomes larger and data error tends to zero [1,33,67,73]. Thus,
one expects f��

.L;K/
to approximate f .

5. Trained operator recurrent network and generalization

We employ the convex function R as an explicit regularizer in the loss function for
training the network, and we show that this regularizer controls the regularity of the
resulting local minimizer. This regularizer also provides a form of norm control,
which in conjunction with a concentration inequality allows us to produce a gener-
alization bound based on bounding the difference between the expected loss and the
empirical loss. Theoretical bounds for generalization and other regularity properties
by controlling the norms of parameters have been studied extensively in the literature
for neural networks in many different contexts [12, 59, 71, 72]. We perform a similar
analysis, but still distinct from the above works, since operator recurrent networks are
different from standard deep neural networks in an essential way. To clarify the pre-
sentation, we consider only (truncated) basic operator recurrent neural networks xf� .
The generalization for general operator recurrent neural networks and for the addi-
tional layers g� is possible but we omit these details.

Training data and empirical loss. The training data is the set

S D ¹.Xj ; yj / W j D 1; 2; : : : ; sº; (161)

where s 2 N and .Xj ; yj / are independent samples of the random variable .M; y/
having the distribution � . As discussed above, using the training data S in (161), our
primary aim is to find a recurrent operator network xf� WRn�n!Rn that approximates
the map f WRn�n ! Rn. Incorporating the composition with g and finding a neural
network with fully connected layers that approximates it, with training data

S 0 D ¹.yj ; zj / W j D 1; 2; : : : ; sº;

will be addressed at the end of this section.
For training set S the empirical loss function is given by

L.em/.�; S/ D
1

s

sX
iD1

k xf� .Xi / � yik
2
Rn (162)
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and the empirical regularized loss function is given by

L.em/
r .�; S/ D

1

s

sX
iD1

k xf� .Xi / � yik
2
Rn C ˛R.�/: (163)

Here, xf� are truncated basic recurrent operator networks of depth LC 2 with trunca-
tion parameter m; see (89)–(90). Below, we assume for simplicity that m D kf k1.

Typically, training is the optimization problem of finding parameters � , given a
training set S , such that L

.em/
r .�; S/ is minimized.

5.1. Optimal neural network for sampled data

In this section we consider neural networks that are truncated.
As seen above in (137), there are � 2 ‚ such that Lr.�; �/ � Lr;0, where Lr;0

was defined in (132)–(133). Thus, when we minimize Lr.�; �/ subject to condition
� 2 ‚, without loss of generality, we can search only among parameters � 2 ‚ such
that

Lr.�; �/ � Lr;0: (164)

We will see later that when the number of training samples, that is, s is large, it is prob-
able that L

.em/
r .�; S/ is close to Lr.�; �/. Due to this we enforce in the optimization

of � the constraint L
.em/
r .�; S/ � Lr;0 which automatically enforces the constraint

R.�/ � R0; (165)

where R0 is defined in (134). This yields the minimization problem with inequality
constraint,

find � minimizing L.em/
r .�; S/ subject to R.�/ � R0: (166)

Due to this we introduce the following definition.

Definition 5.1. The optimal weights corresponding to the training set S , denoted �.S/,
are a solution of the minimization problem

�.S/ D arg min
�2‚.R0/

L.em/
r .�; S/; (167)

where

‚.R0/ D ¹� 2 ‚ W R.�/ � R0º: (168)

We note that when (165) holds (see also (92)), we have

Lr.�;M; y/ � .1C n1=2/2kf k21 C ˛R0 � B0 for a.e. .M; y/ � �; (169)
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where
B0 WD 9nkf k

2
1; (170)

see formulas (92) and (135)–(136).
We use below the following technical result.

Lemma 5.1. If (122)–(123) holds and

˛ �
1

R0

�
"20 C L

2c2L0 exp.4R0/�n�2
�
; (171)

then
R0 � 4R0: (172)

Proof. The proof is a straightforward computation: Inequality (171) implies that ˛ �
1
R0
"20, so that "20=˛ � R0 and ."20 C ˛R0/=˛ � 2R0. Thus, (171) implies

4R0˛ � 2R0˛ C
�
2"20 C 2L

2c2L0 exp
�
2."20 C ˛R0/=˛

�
�n2�2

�
�
�
2"20 C 2R0˛ C 2L

2c2L0 exp
�
2."20 C ˛R0/=˛

�
�n2�2

�
� Lr;0:

Hence,

R0 D
1

˛
Lr;0 � 4R0:

For the remainder of this paper, we study (local) minimizers to (166) and show
how the resulting neural networks, xf� , enjoy good approximation properties with
respect to the true function f . We directly analyze minimizers without studying how
to compute them. Typically, the minimization is carried out using variants of stochas-
tic gradient descent. Note that while the architecture of operator recurrent networks
differs from that of standard neural networks, gradient descent can still be performed
in a straightforward manner with the computation of the gradients via the chain rule.
The key difference is that these gradients will contain multiplicative terms with X .

Selecting the parameter ˛. We later show that a large value of ˛ leads to greater
control over the so-called generalization gap. However, a large value of ˛ also leads
to large errors, k xf� .X/ � f .X/k2, which govern the accuracy of the trained network
at approximating the true function f . This is due to the fact that with a large ˛, the
loss function will be best minimized by reducing the regularization term R rather than
reducing the error.

Cross validation is an established technique for selecting the best predictive model
among a set of candidates; see [18]. However, we note that this approach may not
be practically applicable for large-scale inverse problems. It can be employed to
choose the smallest value of ˛ that has good generalization properties as follows:
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Given a training set S and particular ˛, we partition S into equally sized subsets
S1; S2; : : : ; SK . For each i D 1; : : : ;K, we train a network on S n Si and then evaluate
the prediction error on Si . The arithmetic mean of these errors over all i is computed
to produce a cross-validated error. Then, given a finite set of candidate parameter val-
ues ˛1;˛2; : : :, the smallest is chosen such that the corresponding cross-validated error
is below some tolerance. These techniques have been used, for example, to regularize
solutions to linear systems [31].

5.2. Sparsity bounds

Below, we will show that the regularized minimizer will be found in a set ‚.N0;R0/

that consists of sparse sequences. As the set of sparse sequences is a union of finite
dimensional sets,‚.N0;R0/ can be covered with a “relatively small” number of balls.
We will use this and Hoeffding’s inequality to obtain improved generalization bounds.

Let �.S/ be a minimizer that we obtain for (166). We show that �.S/ enjoys some
sparsity bounds which are controlled through the regularizing term R.�.S//. We let

N .�/ WD #¹.`; p; i/ 2 P1 [ P2 W vector �`;ip is nonzeroº; (173)

N1.�/ WD #¹.`; p; i/ 2 P1 W vector �`;ip is nonzeroº; (174)

where #A denotes the cardinality of the set A.

Theorem 5.2. Let � satisfy (165). Then

N1.�.S// �
2LcL0 R

3=2
0

˛1=2
exp.2R0/ �

2LcL0 .Lr;0/
3=2

˛2
exp

�
2Lr;0

˛

�
: (175)

Proof. We will use estimates of the directional derivatives to derive sparsity estimates
on the parameters. Let S D ¹.X1; y1/; : : : ; .Xs; ys/º: At the minimizer �.S/, every
directional derivative of L

.em/
r .�; S/ is nonnegative. Then we compute the derivative

of L
.em/
r .�; S/ with respect to � 2 .Rn/P in direction v and obtain

@vL
.em/
r .�; S/ D

2

s

sX
jD1

@v xf� .Xj / �
�
xf� .Xj / � yj

�
C ˛@vR.�/: (176)

At � D �.S/, we must have @vL
.em/
r .�.S/; S/ � 0 for every direction v, and, hence,

�@vR.�/
ˇ̌
�.S/
�

2

s˛

sX
jD1

@v xf� .Xj /
ˇ̌
�.S/
�
�
xf�.S/.Xj / � yj

�
(177)

�
2

s˛

sX
jD1

@v xf� .Xj /ˇ̌�.S/Rn

 xf�.S/.Xj / � yjRn
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�
2.Lr;0/

1=2

˛

�
1

s

sX
jD1

@v xf� .Xj /ˇ̌�.S/2Rn�1=2 (178)

�
2R

1=2
0

˛1=2

�
1

s

sX
jD1

@v xf� .Xj /ˇ̌�.S/2Rn�1=2; (179)

where we used Hölder’s inequality.
Next, we derive a relationship between @v R.�/j�.S/ and the sparsity of �.S/. For

a given .`; i; p/ 2 P , for which the corresponding column vector of �.S/, denoted
by �.S/`;ip , is nonzero, we consider the directional derivative with v D v`;ip signifying
the unit vector pointing in the direction of ��`;ip . Then,

w`;ip WD @v`;ip
R.�/

ˇ̌
�.S/
D �1: (180)

Therefore,

N1.�.S// � �
X

.`;i;p/2P1

w`;ip

�
2R

1=2
0

˛1=2

X
i;pW.`;i;p/2P1

�
1

s

sX
jD1

@
v
`;i
p

xf� .Xj /
ˇ̌
�.S/


Rn

�1=2
�
2R

1=2
0

˛1=2

X
i;pW.`;i;p/2P1

K`;ip ; (181)

where the K`;ip are the derivative estimates obtained in Lemma 3.1. Thus, we have

N1.�.S// �
2LcL0 R

1=2
0

˛1=2
exp.R0/

� X
.`;i;p/2P1

k�.S/
`;i
.p/0
kRn

�
�
2LcL0 R

3=2
0

˛1=2
exp.2R0/: (182)

This completes the proof.

Using Theorem 5.2 for finding the best parameters �.S/ given training set S , we
may solve (166) with a new constraint: When we define

N1 D

�
2LcL0 R

3=2
0

˛1=2
exp.2R0/

�
D

�
2LcL0 .Lr;0/

3=2

˛2
exp

�
2

Lr;0

˛

��
; (183)

without loss of generality, we may consider the minimization problem (166) with the
constraint that the parameters � satisfy

N1.�/ � N1;
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where N1.�/, defined in (174), is the number of nonzero parameters determining the
weight matrices. Thus, we may consider the minimization problem (166) with adding
the constraint that the parameters � satisfy

N .�/ � N0; N0 D N1 C 2LC 1; (184)

where N .�/, defined in (173), is the number of nonzero parameters determining the
weight matrices and the bias vectors. Effectively, the size of the set of feasible param-
eters is further reduced by imposing (184). We denote by ‚.N0;R0/ � ‚ the set

‚.N0;R0/ D ¹� 2 ‚ W N1.�/ � N1; R.�/ � R0º: (185)

Then we redefine �.S/ to be a solution of a problem analogous to (166), where a
minimizer is sought in ‚.N0;R0/, that is,

�.S/ D arg min
�2‚.N0;R0/

L.em/
r .�; S/: (186)

We now estimate the size of‚.N0;R0/. We recall that in our original construction
of operator recurrent networks we proposed that there could be layers with shared
parameters. Therefore, we letL1 �L represent the number of independently paramet-
rized layers in the network; in some cases, this quantity may be much smaller than L.
Then ‚.N0;R0/ � .Rn/P is given by a finite union of M0 compact subsets of linear
subspaces,

‚.N0;R0/ D

M0[
iD1

Vi ; (187)

where

M0 D

�
#P1
N1

�
� .#P1/N1 � .4nL/2Lc

L
0

R
3=2
0

˛�1=2 exp.2R0/; (188)

where R0 was introduced in (134), and V1; V2; : : : ; VM0 are compact subsets of linear
subspaces of the full parameter space, such that each Vi , i D 1; 2; : : : ;M0, has dimen-
sion N0n. Indeed, each Vi consists of those � D .�`;ip /`;i;p for which all such com-
ponents are zero except those corresponding to N1 choices of indices .`; i; p/ 2 P1,
along with the condition that R.�/ � R0.

We will extensively use the fact that the set‚.N0;R0/� .Rn/P of the form (187)
has Hausdorff dimension nN0 which is significantly smaller than n � .#P /. This means
that the assumption that � is a nN0-sparse vector implies that � is in a lower dimen-
sional subset of the parameter space RnP .

In particular, the above means that when regularization parameter ˛ is sufficiently
large, we optimize the parameter � over a set consisting of sparse vectors. Thus,
when ˛ grows, the Hausdorff dimension of the parameter set ‚.N0;R0/ (for the
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optimization problem (149)) becomes smaller. This property is crucial, and we will
see below that generalization estimates become stronger when ˛ grows.

We have assumed that the parameters �`;ip with index .`; i ; p/ 2 P1, that corre-
spond to the weight matrices, are sparse. However, the parameters �`;ip with index
.`; i ; p/ 2 P2 that correspond to the bias terms, are not assumed to be sparse.

We cover the finite union ‚.N0;R0/ with a finite set of balls of radius � with
respect to the R-norm. This allows us to further estimate the parameter set‚.N0;R0/

with a discrete, finite set.

Lemma 5.3. Let ‚.N0;R0/ be the disjoint union of compact sets given in (187).
Then, for every � 2 .0;R0/, there exists a finite set ‚� satisfying

#.‚�/ � 3N0nM0.R0=�/
N0n; (189)

such that for every � 2 ‚.N0;R0/, there exists y� 2 ‚� such that

k xf� .X/ � xfy� .X/k � 2Lc
L
0 �.R0 C 2L/ exp.2R0/ (190)

for any X 2 Bn�n.

Proof. The proof is based on the fact that the set of bounded sparse sequences is a
union of bounded finite-dimensional sets that can be covered with a “relatively small”
number of balls.

We write 	 D ¹1; 2; : : : ; N0º. For each component Vi , i D 1; 2; : : : ; M0, in
‚.N0;R0/ there is an isometry Ti WVi ! V , where

V D
®
.xi /

N0 2 RnN0 W kxk`1.	IRn/ � R0

¯
; kxk`1.	IRn/ D

N0X
iD1

kxikRn � R0;

(191)
where each xi is an element of Rn. Let m D nN0. We call the sets

Bm1;2.x0; r/ D
®
x 2 Rm W kx � x0k`1.	IRn/ � r

¯
the V -balls of radius r . Then, V � Bm1;2.0;R0/: Let � < R0 and yi ; i D 1; 2; : : : ; i0
be a maximal set of points in V such that

kyi � yi 0k`1.	IRn/ > � for i 6D i 0:

Then the balls Bm1;2.yi ; �=2/ are disjoint and contained in Bm1;2.0;
3
2
R0/. When v1

is the Euclidean volume of the V -ball Bm1;2.0; 1/ in Rm, the sum of volumes of the
balls Bm1;2.yi ; �=2/ is i0v1.�=2/m and this sum is bounded by v1.32R0/

m. Thus, i0 �
.3R0=�/

m and V � Bm1;2.0;R0/ can be covered by i0 V -balls of radius �. Thus, the
set‚.N0;R0/ can be covered by 3N0nM0.R0=�/

N0n V -balls of radius �, the centers
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of which are in ‚.N0;R0/. We let ‚� be the collection of centers of all such V -balls
of radius �. Then,

#.‚�/ � 3N0nM0.R0=�/
N0n:

Now, we consider any

� D .�`;ip /.`;i;p/2P 2 ‚.N0;R0/;

where �`;ip D.�
`;i
p;j /

n
jD12Rn. We see that there exist i2¹1;2; : : : ;M0º, such that � 2Vi ,

and there is y� 2 ‚� \ Vi such that

k� � y�kVi < �:

Let � .q/, qD 0; : : : ;N0 be such that � .0/D � , � .m/D y� , and when Ti� D �D .�j /mjD1,
and Ti y� D y� D .y�j /mjD1, and Ti� .q/ D �.q/ D .�

.q/
j /mjD1, we have

�
.q/
j D �j if j � m � q;

�
.q/
j D y�j if j > m � q:

(192)

Let .`q; iq; pq/ 2 P be such that Ti maps the unit vector in Vi corresponding to the
coordinate with the index .`q; iq; pq/ to the unit vector in Vi corresponding to the
coordinate with the index q. We note that then

k� .qC1/ � � .q/k`1.	IRn/ D k.�
.qC1//

`q ;iq
pq � .� .q//

`q ;iq
pq kRn

and
N0�1X
qD0

k� .qC1/ � � .q/k`1.	IRn/ � �:

We let X 2 Bn�n and Jq D ¹s� .q/ C .1 � s/� .qC1/ 2 Vi W 0 � s � 1º. Then, by
Lemma 3.1,

k xf� .X/ � xfy� .X/kRn �

N0�1X
qD0

k xf�.qC1/.X/ �
xf�.q/.X/kRn

�

N0�1X
qD0

sup
� 02Jq

@ xf� .X/
@�
`q ;iq
pq

ˇ̌̌̌
�D� 0


Rn!Rn

� k.� .qC1//
`q ;iq
pq � .� .q//

`q ;iq
pq kRn

�

�
sup

� 02‚.N0;R0/

X
.`;i;p/2P1[P2

@ xf� .X/
@�
`;i
p

ˇ̌̌̌
�D� 0


Rn!Rn

�

�

N0�1X
qD0

k� .qC1/ � � .q/k`1.	IRn/
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� sup
�2‚.N0;R0/

� X
.`;i;p/2P1

2LcL0 k�
`;i
.p/0

 exp.R.�//C
X

.`;i;p/2P2

2LcL0 exp.R.�//
�
�

� 2LcL0 �.R0 C 2L/ exp.2R0/: (193)

This proves the claim.

We point out that selecting the finite set ‚� means selecting � > 0, or conversely,
selecting � means selecting‚�. Hence, selecting a different � means using a different
finite set ‚�. Below, we minimize loss functions over � 2 ‚� in the proofs of the
relevant lemmas and theorems, but the set ‚� is used only as an auxiliary tool so that
in the proofs the minimization can be done over a finite set. A suitable value for the
parameter � is later chosen in formula (211).

Remark 13. If L0 is the total number of layers and L1 the number of independent
layers, then in the above estimates L is replaced by L1 in Lipschitz estimates and
in (190), and by L0 in the definition of N0 and in (189).

5.3. Generalization

In this subsection, we study the probability that a neural network optimized under
our regularized empirical loss function can approximate the map f . Given a training
set S , we therefore study the generalization error

G .S/ WD jL.em/
r .�.S/; S/ �Lr.�.S/; �/j D jL

.em/.�.S/; S/ �L.�.S/; �/j: (194)

Given that the parameters �.S/ have been computed, G .S/ measures the difference
between the expected loss L.�.S/; �/ and the empirical loss L.em/.�.S/; S/. If a
model over fits the data, the empirical loss is very small while the expected loss
remains large. Thus, an upper bound on G .S/ provides some control over the degree
of over fitting that is possible.

Considered as a random variable in S , we estimate the probability that G .S/ is
small using the following well-known inequality:

Lemma 5.4 (Hoeffding’s inequality [39]). Let Z1; : : : ; ZN be N i.i.d. copies of the
random variable Z whose range is Œ0; Zmax�, Zmax > 0. Then we have for 0 < ı <

min.EŒZ�; Zmax � EŒZ�/,

P

�ˇ̌̌̌
1

N

� NX
iD1

Zi

�
� EŒZ�

ˇ̌̌̌
� ı

�
� 1 � 2 exp

�
� 2Nı2Zmax

�2
�
: (195)

To apply Hoeffding’s inequality, one requires independent random variables. How-
ever, the optimal parameters �.S/ depend on every element of the training set S . Thus,
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we use Lemma 5.3 to apply Hoeffding’s inequality on each element of ‚�, and then
use the fact that �.S/ is sufficiently close to at least one element of ‚�. We recall
that � is the radius of the finite set of balls whose union cover ‚.N0;R0/. At this
moment we keep � as a free parameter, and will fix its value later in formula (211).
This leads to the main generalization result:

Theorem 5.5. Let xf� be a truncated basic operator recurrent network with truncation
parameter m D kf k1, of with n and depth L. Consider a random training set S
consisting of s independent samples from distribution � , and let �.S/ be a minimizer
for (149). Then,

(i) For any ˛ and every sufficiently small ı > 0,

PS��s
�
G .S/ � 2ı

�
� 1 � C1

�1
ı

�C2
exp

�
�

2

.9n/2kf k41
sı2
�
; (196)

where

C1 D exp
�
164n3=2L2cLC10 .1C kf k1/ exp.4Lr;0˛

�1/
�
; (197)

C2 D 4nLc
L
0 exp.3Lr;0˛

�1/ (198)

and Lr;0 � 4nkf k
2
1, cf. (132)–(133).

(ii) Let the function f be approximated with accuracy "0 by some neural net-
work xf�0 , where �0 2 ‚.N0;R0/ has sparsity bound R0 � 1; that is, condi-
tions (122)–(123) hold with R0 and "0. Then, for all

˛ �
1

R0

�
"20 C 2L

2c2L0 exp.4R0/�n2�2
�
; (199)

the inequality (196) holds, where

C1 � 2 exp
�
n3=2210.1C kf k1/.1CR0/L

3cLC10 e8R0.1CR20˛
�1=2/

�
;

(200)

C2 � 16nLc
L
0 e

8R0.1CR20˛
�1=2/: (201)

Note that when the depth L grows, the set of functions that the neural networks
can represent has an increasingly richer structure and this is reflected by the growths
of C1 and C2. Naturally s has to increase appropriately to mitigate this growth.

We also observe that in claim (i), making the regularization parameter ˛ larger
(that is, forcing the weight matrices to be sparser) makes the probability in (196)
larger, but then the error how well the neural network approximates the function f
becomes larger.
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Proof. The main lines of the proof are the following: The truncated neural networks
are bounded, so for each neural network xf� we can use Hoeffding’s inequality. More-
over, the empirical optimizer �.S/will be in the set‚.N0;R0/with large probability.
We use a suitable value � which balances approximating an arbitrary element � 2
‚.N0;R0/ by an element in ‚� and the number of elements in the set ‚�. Applying
Hoeffding’s inequality to for all f� , � 2 ‚� will finalize the proof.

Fix � 2 ‚.N0;R0/. When S D ..Mi ; yi //siD1 is a sequence of s independent
random samples from distribution � ; see (119). We define the random variable

Zi D Lr.�;Mi ; yi /: (202)

The set of Zi , i D 1; : : : ; s, consists of i.i.d. copies of the random variable

Z D Z.M; y/ WD Lr.�;M; y/; (203)

where .M; y/ is distributed according to the probability distribution � . The empirical
loss is given by

L.em/
r .�;S/ D

1

s

sX
iD1

Zi (204)

and, by definition, the expected loss is

Lr.�; �/ D E.M;y/ŒZ.M; y/�: (205)

Since we assumed that xf� is a truncated network, we have by (169) that 0 � Z �B0;
therefore, by Hoeffding’s inequality with Zmax D B0, we have that

P
�
jL.em/
r .�;S/ �Lr.�; �/j � ı

�
� 1 � 2 exp.�2sı2˛�2B�20 /: (206)

In particular, (206) holds for every element of ‚�. Since

#.‚�/ � 3N0nM0.R0=�/
N0n; (207)

it follows that

P
�
8� 2 ‚� W jL

.em/
r .�;S/ �Lr.�; �/j � ı

�
(208)

� 1 �
X
�2‚�

P
�
jL.em/
r .�;S/ �Lr.�; �/j > ı

�
� 1 � 2 � 3N0nM0.R0=�/

N0n exp.�2sı2˛�2B�20 /:

Furthermore, in view of (190), for every � 2‚.N0;R0/ there exists y� 2‚� such that
for any X 2 Bn�nL .1/,

k xf� .X/ � xfy� .X/k � 2Lc
L
0 �.R0 C 2L/ exp.2R0/: (209)
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Using this estimate and (92), we find that for any X 2 Bn�n and y 2 Bn.1/, we have

jk xf� .X/ � yk
2
� k xfy� .X/ � yk

2
j

�
ˇ̌�
k xf� .X/ � yk C k xfy� .X/ � yk

�
�
�
k xf� .X/ � yk � k xfy� .X/ � yk

�ˇ̌
� 2.1C n1=2/kf k1 2Lc

L
0 �.R0 C 2L/ exp.2R0/

� 4n1=2.1C kf k1/ 2Lc
L
0 �.R0 C 2L/ exp.2R0/: (210)

Below, we denote Q D 4n1=2.1C kf k1/.
We next consider the implications of the above estimates when � has the value

� D
ı

2Q � 2LcL0 .R0 C 2L/ exp.2R0/
: (211)

Then, for any S , there exists y�D y�.S/ 2 ‚� such that

G .S/ � jLr.y�; �/j CQ � 2Lc
L
0 �.R0 C 2L/ exp.2R0/: (212)

When we apply this observation for randomly chosen samples S, we obtain that

P
�
G .S/ � ı CQ � 2LcL0 �.R0 C 2L/ exp.2R0/

�
� 1 � 2 � 3N0nM0.R0=�/

N0n exp.�2sı2˛�2B�20 /: (213)

We substitute our expressions for R0, N0 and M0 to obtain the estimate

P ŒG .S/ � 2ı� � 1 � C0 exp.�2sı2˛�2B�20 /; (214)

where

C0 D 2 � 3
N0nM0.R0=�/

nN0

� 2M0

�
3� 4LcL0Q exp.4.R0 C 2L//

ı

�nN0
:

As
M0 � .4nL/

N0 ;

we have

C0 � 2M0

�
12LcL0Q exp.4.R0 C 2L//

ı

�nN0
� 2

�
4nL

.12LQ/ncnL0 exp.4n.R0 C 2L//

ın

�N0
:

Using that
N0 � 2Lc

L
0 .1CR

3=2
0 ˛�1=2/ exp.2R0/;
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we obtain the estimate

C0 � 2

�
4nL

.12LQ/ncnL0 exp.4n.R0 C 2L//

ın

�N0
� 2

�
4nL

.12LQ/ncnL0 exp.4n.R0 C 2L//

ın

�2LcL
0
.1CR

3=2
0

˛�1=2/ exp.2R0/

: (215)

For claim (i), we can use the facts that R0 D ˛�1Lr;0 and Lr;0 � 4nkf k
2
1,

so that

C0

� 2

�
4nL

.12LQ/ncnL0 exp.4n.Lr;0˛
�1 C 2L//

ın

�2LcL
0
.1C.Lr;0/

3=2˛�2/ exp.2Lr;0˛
�1/

� 2
�
ı�n exp

�
3C nLC nQC nLc0

C 4n.Lr;0˛
�1
C 2L/

��2LcL
0
.1C.Lr;0/

3=2˛�2/ exp.2Lr;0˛
�1/

� C1

�1
ı

�C2
;

where, using that Lr;0 � 1, Q � 1, c0 � 1, and ˛ � 1,

C1 D 2 exp
�
.3C nLC nQC nLc0 C 4n.Lr;0˛

�1
C 2L//

� 2LcL0 .1C .Lr;0/
3=2˛�2/ exp.2Lr;0˛

�1/
�

� 2 exp
�
20n.1CQC c0LCLr;0˛

�1/ � LcL0 .1C .Lr;0/
2˛�2/ exp.2Lr;0˛

�1/
�

� 2 exp
�
40nQc0L.1CLr;0˛

�1/ � LcL0 .1C
1
2
.Lr;0/

2˛�2/ exp.2Lr;0˛
�1/

�
� exp

�
41nQL2cLC10 exp.4Lr;0˛

�1/
�

C2 D n� 2Lc
L
0 .1C .Lr;0/

3=2˛�2/ exp.2Lr;0˛
�1/

� 4nLcL0 .1C
1
2
.Lr;0/

2˛�2/ exp.2Lr;0˛
�1/

� 4nLcL0 exp.3Lr;0˛
�1/:

This proves claim (i).
Now, we consider claim (ii). If (122)–(123) hold, and ˛ satisfies the assumption

in claim (ii), we have by Lemma 5.1 that

R0 � 4R0: (216)

Hence, we find, using (215) and 2R0 � 1 and ˛ � 1, that

C0 � 2
�
ı�n exp

�
3C nLC nQC nLc0

C 4n.4R0 C 2L/
��2LcL

0
.1C.4R0/

3=2˛�1=2/ exp.2�4R0/
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� 2
�
ı�n exp.3C 9nLC nQC nLc0 C 16R0/

�16LcL
0
.1CR2

0
˛�1=2/ exp.8R0/

� 2 exp
�
n28Q.1CR0/L

3cLC10 e8R0.1CR20˛
�1=2/

�
ı�16nLc

L
0
e8R0 .1CR2

0
˛�1=2/

Thus, we obtain

C1 � 2 exp
�
n28Q.1CR0/L

3cLC10 e8R0.1CR20˛
�1=2/

�
;

C2 � 16nLc
L
0 e

8R0.1CR20˛
�1=2/:

This completes the proof of claim (ii).

Estimate (196) quantifies the effect on the generalization error from varying the
values of the regularization parameter ˛ and the sample size s. Note that (196) app-
roaches 1 exponentially fast with respect to increasing s. On the other hand, with
increasing L the expressivity of the network also rapidly increases, so one may thus
expect that the sample size s will need to increase accordingly in order to maintain a
good generalization bound. Indeed, (196) decreases super-exponentially away from 1

as L increases. Similarly, increasing the regularization parameter ˛ also reduces the
generalization error, as it decreases the variance in the loss function. However, increa-
sing ˛ to improve the generalization competes with the goal of accurately approx-
imating the true function. Furthermore, when (122)–(123) hold then the lower bound
˛ � "20=R0 indicates when there is sufficient regularization. Additionally, a suitable
value for the error lower bound ı can also be tuned to apply the bound meaningfully.
If s;˛; ı are not chosen judiciously, the resulting probability bound may be potentially
meaningless, yielding a probability value close to, or potentially less than, zero.

5.4. Trained neural network versus optimal neural network

The generalization error expresses how efficient the training is. Here, we discuss how
close the trained network is to an optimal network. We denote the optimal weights
by �� and present a “generalization gap” type estimate for the error between networks
with weights �� and weights �.S/.

We let �� be a solution of

�� D arg min
�2‚.N0;R0/

Lr.�; �/D arg min
�2‚.N0;R0/

E.M;y/��
�
k xf� .M/� yk2C ˛R.�/

�
; (217)

and write
L�r D Lr.�

�; �/:

This means that X 7! xf��.X/ is the neural network having the optimal expected
performance for .X; y/ sampled from distribution � . Note that the optimal parame-
ter �� depends on the regularization parameter ˛, and to emphasize this we sometimes
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denote it by ��.˛/. Clearly,

E.M;y/��
�
k xf��.˛/.M/ � yk2

�
� Lr;0.˛/; (218)

cf. (132)–(133). We observe that when (122)–(123) holds, then, when ˛ grows, also
the bound Lr;0.˛/ for the expected error in (218) may grow.

A trivial, but important observation is that when xf�0 is any neural network, for
example, a neural network which corresponds to an implementation of the approxi-
mation of the analytic solution algorithm, we have

E.M;y/��
�
Lr.�

�;M; y/
�
� E.M;y/��

�
Lr.�0;M; y/

�
: (219)

This means that the optimal neural network xf�� (or a network trained with a suffi-
ciently large data set as elucidated below) has a better expected performance than the
deterministic approximation xf�0 of the analytic solution algorithm.

Next, we estimate the expected performance gap between the optimal neural net-
work and the neural network xf�.S/ optimized with the training data S , defined by,

Gopt.S/ WD
ˇ̌
E.M;y/��

�
Lr.�.S/;M; y/ �Lr.�

�;M; y/
�ˇ̌
: (220)

Given that the parameters �.S/ have been generated using the training set S , Gopt.S/

measures the difference between the expected loss Lr.�.S/; �/ and the loss of the
optimal neural network, Lr.�

�; �/.
Using similar methods to those used to prove Theorem 5.5 we obtain the follow-

ing:

Theorem 5.6. Let xf� be truncated basic operator recurrent networks with truncation
parameter m D kf k1. Consider a random training set S consisting of s indepen-
dent samples from distribution � and let �.S/ be a minimizer for (166) and �� be a
minimizer for (217) signifying the best possible weights. Then,

(i) For any ˛ > 0 and every sufficiently small ı > 0, we have

PS��n
�
Gopt.S/ � 6ı

�
� 1 � 2C1

�1
ı

�C2
exp

�
�

2

.9n/2kf k41
sı2
�
; (221)

where C1 and C2 are given as in (198).

(ii) Let the function f be approximated with accuracy "0 by some neural net-
work xf�0 , where �0 2 ‚.N0;R0/ has sparsity bound R0 � 1, that is, condi-
tions (122)–(123) hold with R0 and "0. Then, for all ˛ satisfying (199), the
inequality (221) holds with the constants C1 and C2 given by (200).
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Moreover,

PS��n
�
EM;y

�
k xf�.S/.M/ � yk2

�
� 6ı C 4"20 C 2˛R0

C 2L2c2L0 exp.8R0/ �n2�2
�

� 1 � 2C1

�1
ı

�C2
exp

�
�

2

.9n/2kf k41
sı2
�
: (222)

Roughly speaking, Theorem 5.6 (i) means that the trained neural network per-
forms almost as well as the optimal neural network with large probability. Theo-
rem 5.6 (ii) estimates the probability that training yields a neural network which
output is close to that of the target function. We note that the training of the neu-
ral network does not require that we know �0, and thus Theorem 5.6 (ii) estimates the
probability that the trained neural network xf�.S/ approximates the function f when
some �0 is just known to exist.

Proof. The main lines of the proof are the following: We will compare the minimiza-
tion of empirical and nonempirical loss functions when the parameters � vary either
in the continuous index set‚.N0;R0/ or in the finite index set‚�. Thus, we compare
four minimization problems. Finally, the claim follows by applying the results for the
generalization gap, that is, Theorem 5.5 for the “best” and the “worst” minimization
problem.

Let � be given by (211). As in Theorem 5.2 above and (184), we find that ��

satisfies the sparsity estimate
N1.�

�/ � N1: (223)

We will compare the optimal parameter �� with an optimal parameter ��� in the finite
set ‚�, that is, ��� is a solution of

��� D arg min
��2‚�

Lr.��; �/; (224)

L�r;� D Lr.�
�
� ; �/: (225)

As in (193), if y� 2‚.N0;R0/� satisfies ky� � �k`1.	IRn/ � �, then for anyX 2 Bn�n,

k xfy� .X/ �
xf� .X/kRn � 2LcL0 �.R0 C 2L/ exp.2R0/; (226)

jk xfy� .X/ � yk
2
� k xf� .X/ � yk

2
j � Q2LcL0 �.R0 C 2L/ exp.2R0/ � ı; (227)

where � is given by (211) and Q D 4n1=2.1C kf k1/ as before, cf. (209)–(210). As
� � ı, we have ky� � �k`1.	IRn/ � ı; then Lr

�.�/ � L�r C 2ı. Clearly, L�r � L�r .�/.
Thus,

L�r � L�r;� � L�r C 2ı; (228)
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or, equivalently,

Lr.�
�; �/ � Lr.�

�
� ; �/ � Lr.�

�; �/C 2ı: (229)

Let training data S be sampled from � s , and let ��.S/ be an optimal empirical
parameter for S in ‚�, that is,

��.S/ D arg min
��2‚�

L.em/
r .��; S/; (230)

Lr�.S/ D L.em/
r .��.S/; S/: (231)

We denote, as in the above, an optimal empirical parameter for sample S in the entire
parameter set by

�.S/ D arg min
��2‚.N0;R0/

L.em/
r .�; S/;

Lr.S/ D L.em/
r .�.S/; S/:

As in (228), we have

Lr.S/ � Lr�.S/ � Lr.S/C 2ı; (232)

or, equivalently,

L.em/
r .�.S/; S/ � L.em/

r .��.S/; S/ � L.em/
r .�.S/; S/C 2ı: (233)

We recall that by (208),

PS��n
�
8� 2 ‚� W jL

.em/
r .�;S/ �Lr.�; �/j � ı

�
� 1 � 2 � 3N0nM0.R0=�/

N0n exp.�2sı2˛�2B�20 /: (234)

By applying (234) when � has the value ��.S/ 2 ‚�, we trivially obtain

PS��s
�
jLr.��.S/;S/ �Lr.��.S/; �/j � ı

�
� 1 � 2 � 3N0nM0.R0=�/

N0n exp.�2sı2˛�2B�20 / (235)

and, by applying (234) when � has the value ��� 2 ‚�, we trivially obtain

PS��s
�
jLr.�

�
� ;S/ �Lr.�

�
� ; �/j � ı

�
� 1 � 2 � 3N0nM0.R0=�/

N0n exp.�2sı2˛�2B�20 /: (236)

We recall that for an arbitrary training data S , ��� and ��.S/ are defined to be some
solutions of minimization problems (224) and (230), respectively. Thus, we have for
all S ,

L.em/
r .��.S/; S/ � L.em/

r .��� ; S/; Lr.�
�
� ; �/ � Lr.��.S/; �/: (237)
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By combining (235), (236), and (237), we obtain

PS��s
�
jLr.��.S/; �/ �Lr.�

�
� ; �/j � 2ı

�
� 1 � 2 � 2 � 3N0nM0.R0=�/

N0n exp.�2sı2˛�2B�20 /: (238)

Combining this estimate with (229) and (233), we conclude that

PS��s
�
jLr.�.S/; �/ �Lr.�

�; �/j � 2ı C 2 � 2ı
�

� 1 � 2 � 2 � 3N0nM0.R0=�/
N0n exp.�2sı2˛�2B�20 /: (239)

This yields claim (i).
In claim (ii), the fact that inequality (221) holds with constants C1 and C2 given

by (200) follows by estimating C1 and C2 as in the proof of Theorem 5.5. Finally,
using inequalities (122), (123), (219), and (222), it follows that for any S

EM;yk xf�.S/.M/ � yk2 � Lr.�.S/; �/

�
�
Lr.�.S/; �/ �Lr.�

�; �/
�
C 4"20 C 2˛R0

C 2L2c2L0 exp.2Rmax/ �n
2�2: (240)

This inequality together with claim (i) yields claim (ii).

Remark 14. Above we have considered a truncated basic operator recurrent net-
work f� . The results can be generalized for a neural network xfE� , E� D .�s1 ; : : : ; �sK /
of the form

fE� .X/ D G
�
xf 1� .X/;

xf 2� .X/; : : : ;
xf K� .X/

�
; (241)

where xf j
�
.X/, j D 1; 2; : : : ;K are basic operator recurrent networks and GWRKn!

Rd ,G.z1; : : : ; zKn/D .Ga.z1; : : : ; zKn//daD1 is a given Lipschitz function, for exam-
ple a neural network of the form (6)–(8). We call xfE� in (241) a combination of basic
operator recurrent networks. This type of neural network is used below to analyze
solution algorithms for inverse problems, cf. (241).

To obtain the generalizations of the above theorems an essential observation is
that @FE� .X/

@�
`;i
p;sj

 � krGk � @ xf j� .X/
@�
`;i
p;sj

 � Lip.G/
@ xf j� .X/
@�
`;i
p;sj

: (242)

Using this and results of Lemma 3.1, we see that if Lip.G/� 1, then the Lipschitz con-
stants of FE� .X/ with respect to the components of E� satisfy the analogous estimates
that are given in Lemma 3.1 for a basic operator recurrent network f� . Moreover,
if we assume that kGk1 � m D kf k1, then the proofs of Theorems 5.5 and 5.6
show that the claims of Theorems 5.5 and 5.6 are valid when the truncated basic
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operator recurrent network f� is replaced by the combination of basic operator recur-
rent networks FE� , when the number L in the claims of these theorems is replaced
by the number KL, the terms .9n/2 are replaced by .5d/2, and the terms n3=2 are
replaced by nd1=2. The first replacement is needed as the number of components of
the parameters E� D .�s1 ; : : : ; �sK / is increased by a factor K and hence the estimate
in formula (188) changes. The second and the third replacements are needed as in the
equation (170) and (210) the factor 9n is replaced by 9d .

6. Example: Operator recurrent network for matrix inversion

Before we describe the relationship between operator recurrent neural networks and
nonlinear inverse problems for the wave equation, we describe the simpler problem
of matrix inversion. For n > 0 an integer, suppose we have a data set

¹.Xj ; yj /I j D 1; : : : ; sº; (243)

where each Xj 2 Rn�n is a nonsingular matrix and yj 2 Rn. As before, the learning
problem is to construct a function f whose graph ¹.X; y D f .X/º closely fits the
data set. However, suppose we also know that the data set comes from an algebraic
relationship

Xy D h; (244)

where h 2 Rn is a fixed vector. Then the problem of constructing f can be solved
exactly by f .X/ D X�1h. In other words, given a matrix X , we are tasked with
learning how to apply its inverse to some particular vector h.

Developing efficient methods to solve linear systems under special conditions is
a central problem in scientific computing. In the absence of any additional assump-
tions on the linear system, in practice one must use Gaussian elimination or variations
thereof. However, over the decades, a variety of faster methods have been developed
for specific families of matrices, such as those that are sparse, low-rank, oscillatory,
arising from differential equations, and so forth. Of particular note are iterative meth-
ods, such as Krylov methods. Just as deep-learning-driven methods have been shown
to be competitive with handmade algorithms in the realm of image processing, it is of
similar interest to see whether deep-learning-driven matrix inversion can be competi-
tive with handmade inversion methods.

It is important to reiterate that this problem is distinct from, and significantly more
challenging than, a linear inverse problem. In the linear inverse problem, the data set
consists of pairs of vectors ¹.xj ; yj /º which obeys a linear (or approximately linear)
relationship x D Ay for a fixed matrix A. In this case, the learning problem is to
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construct the linear (or approximately linear) map f .x/D A�1y. Traditional rectifier
neural networks are well-suited to this task.

We seek to investigate the suitability of operator recurrent networks for learning
to solve this problem under certain conditions. From Theorem 2.4, we know that
operator recurrent networks are exactly equal to piecewise matrix polynomials, and
therefore a natural question is how to approximate the matrix inversion problem with
piecewise matrix polynomials. One notable special case is Neumann series, which
represents the inverse of X via the matrix power series

X�1 D

1X
kD0

.I �X/k; (245)

and this equality holds when kI �Xk < 1, in which case the power series converges.
By truncating this power series, we can approximate X�1 by a matrix polynomial,
which can in turn be represented by an operator recurrent network. To apply Neumann
series to any matrix X , we first rescale the matrix so that kI � Xk < 1 is satisfied,
before applying the series expansion, and then scale back.

Because it comes from a Taylor expansion, Neumann series is a very simplistic
construction and only holds on the disk of convergence given by kI �Xk < 1. When
learning matrix inversion, we may have prior knowledge about additional spectral
information of X , and this can allow us to produce a polynomial approximation of
the matrix inverse that has better approximation properties and which also holds for
regions other than a disk centered about identity or a multiple of the identity.

To see this, we further assume that the matrices Xj are drawn from a set U con-
sisting of normal (that is, orthogonally diagonalizable) matrices whose eigenvalues lie
in a compact setK that does not contain some open neighborhood of zero. This guar-
antees that all Xj , as well as their inverses, have uniformly bounded spectral norm.

Lemma 6.1. Let U consist of the set of orthogonally diagonalizable matrices whose
eigenvalues lie in a compact setK�C that does not contain 0, and assume that CnK

is connected. Then there exists a sequence of operator polynomials that approximate
the function X 7! X�1 uniformly on U .

Proof. Since K does not contain 0, then the complex function z 7! 1=z is holomor-
phic on some open set containing K. Because C nK is connected, then we can apply
the celebrated theorem of Mergelyan [80] to construct a sequence of polynomials
¹pi .z/º that uniformly approximates z 7! 1=z onK. Then, by the holomorphic func-
tional calculus, we have a sequence of operator polynomials ¹pi .X/º that uniformly
approximates X 7! X�1 on U .

This basic result conveys that it is possible to find a polynomial p such that p.X/h
well-approximates X�1h under the assumption that X belongs to the set U . Next, we
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construct a toy example that demonstrates how piecewise-linear activation functions �
in a operator recurrent network can be used to separate the space of matrices into
separate regions, on each of which a different matrix polynomial is defined by the
network.

Lemma 6.2. Let U consist of real symmetric n� n matrices of norm at most 1, which
are definite (that is, all eigenvalues share the same sign), and which are diagonally
dominant. Furthermore, suppose that all matrices in U have inverses whose norms
do not exceed 1=" for some " > 0. Then there exists an operator recurrent network f
such that for every X 2 U , and for some nonzero vector h,

f .X/ D

´
Xh; X > 0;

0; X < 0:
(246)

In particular, there is a network that can distinguish X as either positive definite or
negative definite.

Proof. Because each X 2 U is diagonally dominant, then jXi i j �
P
j¤i jXij j. Then

the disks Di centered at Xi i of radius
P
j¤i jXij j must lie either entirely in the left

half of the complex plane, or the right half. It follows from the Gershgorin disk the-
orem (see [35]) that we can determine whether X is positive or negative definite by
determining the sign of any of its diagonal entries.

Let e1 D Œ1; 0; : : : ; 0�T be the first standard coordinate vector, and let E11 be the
n � n matrix of all zeros except a 1 in the .1; 1/ entry. Then we observe that for any
matrix X ,

E11Xe1 D

26664
X11

0
:::

0

37775 : (247)

If � is the standard rectifier, then �.E11Xe1/ is a nonzero vector if and only if X is
positive definite. Next, we claim that the vector�

khk2="
�
E11Xe1 CXh (248)

has a positive number in its first component if X > 0. If .v/1 denotes the first compo-
nent of any vector v, then��

khk2="
�
E11Xe1 CXh

�
1
D X11khk2="C .Xh/1

� X11khk2=" � kXhk2

� X11khk2=" � khk2

D khk2.X11=" � 1/: (249)
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Since the norm of X�1 is bounded by 1=", then the smallest eigenvalue of X must be
greater than ". Therefore X11 > ", so then the first entry of (248) must be positive.
Next, we consider the value of the first entry of (248) when X < 0. Now we consider
the sum b D

Pn
jD1 bj , where bj D .khk2="/EjjXej . We claim it is negative. Using

similar manipulations,��
khk2="

�
E11Xe1 CXh

�
1
D X11khk2="C .Xh/1

� X11khk2="C kXhk2

� X11khk2="C khk2

D khk2.X11="C 1/: (250)

Since X < 0 and its inverse has norm bounded by 1=", then its largest eigenvalue is
at most �". Therefore X11=" < �1, so the result follows.

Now consider the vector

XhC
khk2

"

nX
jD1

EjjXej : (251)

From the above, every entry of this vector is either positive or negative, depending on
whetherX itself is positive or negative definite. Now, applying the standard rectifier �
to (251), the quantity is unchanged if X > 0, and is set to zero if X < 0. Finally, we
consider the function

f .X/ D ��

�
khk2

"

nX
jD1

EjjXej

�
C �

�
XhC

khk2

"

nX
jD1

EjjXej

�
: (252)

From our above, computations we observe that this f satisfies the property desired for
the lemma, and furthermore, f can be constructed using layers of a general operator
recurrent network.

The purpose of this lemma is to produce an example that demonstrates how an
operator recurrent network can distinguish between two sets of matrices, in particular
those are that positive definite or negative definite, in a manner similar to how a stan-
dard rectifier network can determine whether a vector lies above or below a particular
hyperplane. Next, utilizing the network constructed in the above lemma, we can show
that an operator recurrent network exists that represents a different matrix polynomial
depending on whether the input matrix is positive definite or negative definite.

Theorem 6.3. Let U be the set of real symmetric matrices satisfying the same prop-
erties as those of Lemma 6.2. Then there exists an operator recurrent network f such
that f .X/ D p1.X/ when X > 0 and f .X/ D p2.X/ when X < 0, such that p1; p2
are operator polynomials applied to the input vector h0.
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Proof. First we construct a network f1 representing polynomials of degree 1; in par-
ticular

f1.X/ D

´
A1Xh0 C h0; X > 0;

A2Xh0 C h0; X < 0;
(253)

where h0 is some fixed vector. Let the operator network constructed in Lemma 6.2,
using initial vector h0, be relabeled at g. Then the above f1 can be constructed by

f1.X/ D A1g.X/ � A2g.�X/C h0: (254)

We observe that f1 is a general operator recurrent network. To obtain matrix polyno-
mials of higher degree, we perform a similar construction. By way of example, let us
write down a piecewise degree 2 matrix polynomial by

f2.X/ D .C1XB1 C A1/g.X/ � .C2XB2 C A2/g.�X/C h0: (255)

Then,

f2.X/ D

´
C1XB1Xh0 C A1Xh0 C h0; X > 0;

C2XB2Xh0 C A2Xh0 C h0; X < 0:
(256)

This construction can thus be easily extended to a network fn, and in each such case,
fn.X/ restricted to either ¹X > 0º or ¹X < 0º yields an n-th degree operator polyno-
mial.

Lastly, we can use the above theorem, combined with Lemma 6.1, to construct an
operator recurrent network that represents two different operator polynomials, each
a different approximation to the matrix inverse, applied to the vector h. Note that
the construction in the above theorem has no restrictions on the coefficient matrices
A1; A2; B1; B2, etc. Since the operator polynomials arising from Lemma 6.1 have
scalar coefficients, this is equivalent to the matrix-valued coefficients being multiples
of the identity matrix, in which case they commute with all X . In this case, it is clear
that we can arrange for values of A1; A2; B1; B2, and so forth, as to produce arbitrary
scalar coefficients.

We reiterate that the purpose of Theorem 6.3 is not to give an optimal result for
how operator recurrent networks can learn matrix inversion, but to provide a concrete
illustration for how such networks can leverage its piecewise-polynomial nature, par-
titioning its input domain into distinct regions.

Finally, we note that Theorem 5.5 (i) and Theorem 5.6 (i) provide generalization
estimates for training an operator recurrent neural network to represent matrix inver-
sion. These imply estimates for sample complexity. Claims (ii) of these theorems,
that is the improved estimates, however, are not generally applicable as we do not
know whether the weight matrices can have rapidly decaying singular values (that is,
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have small `p norms). Next, we consider an inverse problem for a wave equation in
which case there is a solution algorithm which can be approximated by our neural
network with such weight matrices that the improved generalization estimates, Theo-
rem 5.5 (ii) and Theorem 5.6 (ii) are applicable.

7. Example: Operator recurrent network for an inverse problem with
the wave equation

Here, we establish a direct relationship between operator recurrent neural networks
and reconstruction pertaining to an inverse boundary value problems for the wave
equation.

7.1. Analytic solution of inverse problem by boundary control method

We summarize the boundary control method used to solve an inverse problem for the
wave equation. For the sake of simplicity, we present the one-dimensional case. We
consider the wave equation with an unknown wave speed c D c.x/,�

@2t � c.x/
2@2x

�
u.x; t/ D 0; x 2 RC; t 2 RC;

@xu.x; t/
ˇ̌
xD0
D h.t/;

u.x; t/
ˇ̌
tD0
D 0; @tu.x; t/

ˇ̌
tD0
D 0; x 2 RC;

(257)

where we assume that c is a smooth positive function satisfying c.0/ D 1. We denote
the solutions of the wave equation with Neumann boundary value h D h.t/ by u D
uh.x; t/. Function h can be viewed as a boundary source. We assume that c is un-
known, but that we are given the Neumann-to-Dirichlet map, MND DMc

ND ,

MNDh D u
h.x; t/

ˇ̌
xD0

; t 2 .0; 2T /: (258)

This map is also called a response operator that maps the source to the boundary
value of the produced wave. The Neumann-to-Dirichlet map is a smoothing operator
of order one, that is, it is a bounded linear operator

MNDWL
2
�
Œ0; 2T �

�
! H 1

�
Œ0; 2T �

�
;

where H s.Œ0; 2T �/ are Sobolev spaces. An alternative to approximate MND by a
matrix would be to choose suitable bases in the Hilbert spaces L2.Œ0; 2T �/ and
H 1.Œ0; 2T �/ and represent MND with respect to the relevant basis vectors. An alter-
native that avoids using two different bases, is to consider the bounded operator Xc ,

Xc D @tM
c
NDWL

2
�
Œ0; 2T �

�
! L2

�
Œ0; 2T �

�
; (259)
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and approximate this operator in a basis of the Hilbert spaceL2.Œ0;2T �/. In this paper,
we use this option and consider operator (259) as the given data.

The travel time of the waves from the boundary point 0 to the point x is given by

�.x/ D

Z x

0

dx0

c.x0/
: (260)

We consider the set M D Œ0;1/ as a manifold with boundary endowed with the
distance function dM .x; y/ D j�.x/ � �.y/j that we call the travel time distance. We
denote by M.s/ D ¹x 2 RCW �.x/ � sº the set of points which travel time to the
boundary is at most s. The set M.s/ is called the domain of influence. The function �
is strictly increasing and we denote its inverse by

� D ��1W Œ0;1/! Œ0;1/;

that is, �.�.s// D s. The function �.s/ is called the travel time coordinate, because
for every time s it gives a point x whose travel time to the boundary is s. The function

Z.s/ D c.�.s//

is the wave speed in the medium represented in the travel time coordinates and by [48],
formula (22), it uniquely determines the wave speed c.x/ in Euclidean coordinates.
Thus, it also determines the data operator Xc , and thus we can define a nonlinear
operator

F WZ ! Xc : (261)

In the study of the inverse problems, this map is called the direct map. Below, we app-
roximate the function Z.s/ by a finite-dimensional vector z D .Z.sj //mjD1, where sj
are points in the interval Œ0;T �. Also,Xc will be approximated by a finite-dimensional
matrix X D .hXc ki/nj;kD1, we obtain a finite-dimensional direct map (see (4)),

F WBm.z.0/; �0/! Rn�n; F .z/ D X; (262)

where Bm.z.0/; �0/ � Rm is a ball centered at a vector z.0/ having positive elements.
Next, we return to the continuous setting we explain how the data operator Xc

measured on the boundary can be used to compute the wave speed function in the
travel time coordinate, that is, c.�.s//, and after that, how this reconstruction process
can be approximated by an algorithm that has the same form as the neural network
in (9)–(10).

We define

Sf .t/ D

Z t

0

f .t 0/ dt 0: (263)

We observe that @tMc
ND DMc

ND@t , and, hence, we have Mc
ND D SXc D XcS .
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We denote

huf .T /; uh.T /iL2.M/ D

Z
M

uf .x; T /uh.x; T /c.x/�2 dx (264)

and kuf .T /kL2.M/ D hu
f .T /; uf .T /i

1=2

L2.M/
. By the Blagovestchenskii identity (see

for example [17, 48]), we have

huf .T /; uh.T /iL2.M/ D

Z
Œ0;2T �

.Kf /.t/h.t/ dt; (265)

while

huf .T /; 1iL2.M/ D

Z
Œ0;2T �

f .t/ˆT .t/ dt; (266)

where

K D JSXc �RXcSRJ; (267)

Rf .t/ D f .2T � t / “time reversal operator”; (268)

Jf .t/ D
1

2
1
Œ0;T �

.t/

Z 2T�t

t

f .s/ ds “time filter”; (269)

ˆT .t/ D .T � t /1Œ0;T �.t/: (270)

Here, J WL2.Œ0; 2T �/! L2.Œ0; 2T �/ and RWL2.Œ0; 2T �/! L2.Œ0; 2T �/.
In the boundary control method the first task is to approximately solve the follow-

ing blind control problem: Can we find a boundary source f such that

uf .x; T / � 1
M.s/

.x/ ? (271)

Here, 1A is the indicator function of the set A, that is 1A.x/ D 1 for x 2 A, zero
otherwise. The problem is called a blind control problem because we do not know
the wave speed c.x/ that determines how the waves propagate in the medium, and
we aim to control the value of the wave at the time t D T . This control problem
can be solved via regularized minimization problems. In [49] the problem was solved
using Tikhonov regularization, while in this paper we consider sparse regularization
techniques that are closely related to neural networks.

7.2. Variational formulation and sparse regularization

In sparse regularization, we represent the function f .t/ 2 L2.Œ0; 2T �/ in terms of
orthogonal functions  j .t/ 2 L2.Œ0; 2T �/, j D 1; 2; : : : ; n, where n 2 NC [ ¹1º,
such that  nX

jD1

fj j


L2.Œ0;2T �/

� C0

nX
jD1

jfj j: (272)
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Here, the case n <1 corresponds to numerical approximations with a finite set of
basis functions, and the case n D 1 corresponds to the ideal continuous model; we
consider these two cases simultaneously. When n D 1, we assume that the func-
tions  j .t/; j D 1; 2; : : : span a dense set in L2.Œ0; 2T �/.

For f D .fj /njD1, we denote

f .t/ D .Bf/.t/ D
nX

jD1

fj j .t/: (273)

For nD1, we denote `1nD `
1 and kfk1D

P1
jD1 jfj j. For n<1, we denote `1nDRn

and kfk1 D
Pn
jD1 jfj j.

We seek solutions for which fD .fj /njD1 2 `
1
n is a sparse vector. Such sparse vec-

tors correspond to sources that are generated by a small number of basis functions  j .
We let PsWL2.Œ0; 2T �/! L2.Œ0; 2T �/ denote the multiplication by the indicator func-
tion of the interval Œ0; s�, that is, .Psf /.t/ D 1Œ0;s�.t/ f .t/.

To obtain approximate solutions of control problem (271), we consider an `1n-reg-
ularized version of the minimization problem,

min
f2`1n
kuPsBf. � ; T / � 1k2

L2.M/
C ˛kfk1; (274)

where ˛ > 0 is a regularization parameter. This minimization problem is equivalent
to finding f that solves

min
f2`1n
hKPsBf; PsBf iL2.Œ0;2T �/ � 2hPsBf; ˆT iL2.Œ0;2T �/ C ˛kfk1; (275)

whereK D JSXc �RXcSRJ as before. We denote the solution of this minimization
problem by f˛;s .

Minimization problem (275) can be solved using the Iterated Soft Thresholding
Algorithm (ISTA) [27]. The standard ISTA algorithm is the iteration

f .mC1/s D �˛
�
f .m/s � B�Ps.JSXc �RXcSRJ /PsBf .m/s C B�PsˆT

�
;

m D 1; 2; : : : ; (276)

where f .m/s 2 `1n, f .0/s D 0 and �˛ is the soft thresholding operator, given by

�˛.x/Dmax.0;x � ˛/�max.0;�x � ˛/D ReLU.x � ˛/�ReLU.�x � ˛/ (277)

for x 2 R; for a vector x D .xj /njD1 it is defined componentwise.
By [27],

f˛;s D lim
m!1

f .m/s ; (278)
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where the limit is taken in `1n, and the convergence in this limit is exponential. We
denote f˛;s D Bf˛;s . When n D1, we have by Appendix A that

lim
˛!0

uf˛;s . � ; T / D 1
M.s/

. � / (279)

in L2.M/.

7.3. Reconstruction

When the minimizers f˛;s are found for all s 2 Œ0; T � with small ˛ > 0, we continue
the reconstruction of the wave speed by computing the volumes of the domains of
influence,

V.s/D k1M.s/k
2
L2.M/

D lim
˛!0
huf˛;s .T /; 1iL2.M/ D lim

˛!0
hf˛;s;ˆT iL2.Œ0;2T �/; (280)

where s 2 Œ0; T �. We note that M.s/ D Œ0; �.s/�. In particular, V.s/ determines the
wave speed in the travel time coordinate,

v.s/ D
1

@sV.s/
: (281)

That is,

v.s/ D c.�.s//; �.s/ D

Z s

0

v.t/ dt: (282)

When v.s/ is obtained, we can find the wave speed c.x/ also in the Euclidean coor-
dinates using the formula,

c.x/ D v.��1.x//: (283)

However, in our reconstruction, we consider the function v.s/ as the final result.

7.4. Identification with operator recurrent networks

The ISTA algorithm iteration (278) produces f .n0/s after n0 steps. We observe that this
iteration can be expressed by defining

h .3mC1/s D f .m/s ; h .3mC2/s D PsBf .m/s ; h .3mC3/s D RJPsBf .m/s (284)

and viewing it as the operator recurrent neural network X 7! f.˛;s/.X/, where

f.˛;s/.X/ D h.3`0C1/s ; (285)
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in which, for m D 0; 1; : : : ; `0,

h.3mC3C1/s D �˛
�
I h.3mC1/s � B�PsJSXh.3mC3/s

C B�PsRXh.3mC2/s C B�PsˆT
�
; (286)

h.3mC3/s D PsBh.3mC1/s ; (287)

h.3mC2/s D SRJPsBh.3mC1/s (288)

with the initial state h.1/s D 0. This is motivated by the notion of unrolling. As the low-
pass filter operator J and the integrator S are compact operators in L2.0; 2T /, and
moreover, the operators SRJPs and PsJS appearing above are in a Schatten class �p

with index p > 1=2, we approximate the above algorithm as a neural network with
weight matrices of the form (21), and

A` D A`;.0/ C A
`;.1/

�
; B` D B`;.0/ C B

`;.1/

�
; (289)

where the A`;.0/ and B`;.0/, considered as fixed operators in a suitable basis are zero
operators, identity operators, projectorsPs orPsR, andA`;.1/

�
andB`;.1/

�
are operators

SRJPsB and B�PsJS appearing in (286)–(288), which are Schatten class operators,
in �p with index p > 1=2. When n <1, the generalized Hölder inequality implies
for a matrix A 2 Rn�n and p > 1=2 that

kAk�1=2.Rn�n/ � n
1=r
kAk�p.Rn�n/; (290)

where r D p=.2p � 1/. Furthermore, B�PsˆT in (286)–(288) are the bias vectors.
We have included the fixed operators A`;.0/ and B`;.0/ in the network architec-

ture, because then for any given value of s 2 Œ0; T � the computation of f .`0/s in the
discretized boundary control method can be written as an operator recurrent net-
work f s

�
.X/ of the form (10). Here, parameters � , define the operator recurrent

networks f s
�
.X/, depend on s and � . Also, by (290), when n < 1, it follows that

the neural network (286)–(288) of depth 3`0 C 1 has the sparsity bound

R.�s/ � `0
�
kB�SRJPsBk�1=2.Rn�n/ C kB

�PsJSBk�1=2.Rn�n/
�

� Cr`0n
1=r ; (291)

where r <1 is arbitrary and Cr depends on r .
In the discretized boundary control method we compute the functions f .`0/s D

f.˛;s/.X/ that approximate functions f˛;sj , for parameter values s D sj , j D 1;2; : : : ;
K, given by

sj D jT=K 2 Œ0; T �: (292)
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Note that f .`0/s converge to the functions f˛;sj , as the depth of the neural network, `0
tends to infinity. Then, we define analogously to (1), we denote

f
j

�
.X/ D f.˛;sj /.X/ 2 Rn; j D 1; 2; : : : ; K; (293)

f.X/ D
�
f 1� .X/; : : : ; f

K
� .X/

�
2 .Rn/K : (294)

We also denote s0 D 0 and f 0
�
.X/ D 0.

We may add one linear layer G1 into the neural network that computes the deriva-
tive in (281) using finite differences,

D˛.sj / WD
1

v˛.sj /
D
V˛.sj / � V˛.sj�1/

sj � sj�1

D
1

sj � sj�1

�
hf˛;sj ; ˆT iL2.Œ0;2T �/ � hf˛;sj�1 ; ˆT iL2.Œ0;2T �/

�
; (295)

where j D 1; 2; : : : ; K and

V˛.sj / D hf˛;sj ; ˆT iL2.Œ0;2T �/; (296)

cf. (280). We denote G1.f˛;s1 ; f˛;s2 ; : : : ; f˛;sK / D .D˛.s1/; : : : ;D˛.sK//.
Approximating the componentwise function s ! s�1 via a standard neural net-

work G2WRK ! RK , of the form (6)–(8), we obtain a neural network

FE� ;
E� D .�s1 ; : : : ; �sK /

of the form
HE� .X/ D G2

�
G1
�
f 1� .X/; f

2
� .X/; : : : ; f

K
� .X/

��
; (297)

which output approximates the values v.sj /Dc.�.sj //, jD1;2; : : : ;K. By using [94],
steps (296) and (295) (see also Theorem 2.1), and the function s! s�1 can be approx-
imated by a neural network G2 of the form (9)–(10). We observe that formula (297)
is analogous to (2). Finally, by (291), the neural network FE� in (297) can be written
as an operator recurrent network that has the sparsity bound

R.E�/ � C 0rK`0n
1=r ; (298)

where r <1 is arbitrary and C 0r depends on r .

The low-pass filter operator J is in a Schatten class. Here, we show that the low-
pass filter operator J used above is in a Schatten class with p>1. We consider the
extension of low pass filter operator J WL2.0; 2T /! L2.0; 2T /. It can be written as

J D A�1=2 ı .A1=2 ı J /; (299)
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where

A D �
d2

dx2
C 1;

and where d2

dx2
is Laplace operator defined as an unbounded self-adjoint operator

in L2.Œ0; 2T �/ with Neumann boundary condition,

D.A/ D
°
f 2 H 2

�
Œ0; 2T �

�
W

df
dx
.0/ D 0;

df
dx
.2T / D 0

±
;

where H s.Œ0; 2T �/ are Sobolev spaces, D.A1=2/ D H 1.Œ0; 2T �/, and

A1=2 ı J �WL2
�
Œ0; 2T �

�
! L2

�
Œ0; 2T �

�
is a bounded operator. As the eigenvalues of A are of the form �j D cT j

2 C 1, the
eigenvalues of A�1=2WL2.Œ0; 2T �/! L2.Œ0; 2T �/ are .cT j 2 C 1/�1=2, and, hence,

A�1=2WL2
�
Œ0; 2T �

�
! L2

�
Œ0; 2T �

�
is in the Schatten class �p.L

2.0;2T //with p > 1. As the Schatten classes are operator
ideals, this implies that

J 2 �p.L
2.0; 2T // with p > 1. (300)

In the same way, we observe that S 2 �p.L
2.0; 2T // with p > 1 and hence the opera-

tors SJ and SRJ appearing in (276) satisfy SJ , SRJ 2 �p.L
2.0;2T //with p > 1=2.

Thus, when we approximate these operators by matrices representing operators in a
space spanned by finitely many basis functions  j , it is natural to assume that the
�1=2-norms of these matrices are bounded with some relatively small constants.

Furthermore, we note that the “bias functions” ˆT are in the Sobolev space
H 1.Œ0;2T �/, that is, a compact subset ofL2.Œ0;2T �/ and thereforeˆT can be approx-
imated by a vector which coordinates are a sparse sequence.

In summary, the boundary control method can be approximated by an operator
recurrent network of the form (9)–(10), where the weight operatorsA andB are either
Schatten class operators (which we can train with sparsity regularization to obtain a
better algorithm), or simple operators, such as the time-reversal operator R or the
projector Ps that we may consider as fixed in the neural network and that we do
not train. The time reversal operator is extensively used in imaging applications; see
for example [9, 19]. Also, the bias vectors can be approximated by sparse vectors.
Furthermore, we observe that if we consider sparse regularization leading to activation
functions that are linear combinations of ReLU functions, we do not specify in the
neural network formulation what the basis function  j are. Thus, the training of the
neural network also leads to finding a basis that is optimal for sparse regularization.
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7.5. Discretization error versus depth and width of the network

Here, we estimate the error in the point of departure of the network design in the main
body of this paper. By stability and error analyses of the boundary control method,
we can estimate how well the discretized boundary control method works and what
are the error estimates for all wave speeds c in the set

V3
D
®
c 2 C 3.M/ W C0 � c.x/ � C1; kckC3.M/ �M; supp.c � 1/ � I0

¯
; (301)

where I0 � RC is a compact interval. We use C as a generic constant which depends
on parameters of the space V3 and which value may be different in each appearance.

We consider the discretization of analytical algorithms that reconstruct c.x/, with
error Cı in the L1.M/-norm, from the map X , or from the map MND . To this
end, we denote " D ım, where m D 270. In [48], it was shown for the discretized
boundary control method that we can compute the wave speed with error Cı D C" ,
with Hölder exponent  D 1=m, when we discretize the time interval Œ0; T � with
a grid of N0."/ D C"�4=7 points and measurement operator MND is given with
an error " in the operator norm in L2.0; 2T /. In this paper we omit the analysis of
the measurement errors in the Neumann-to-Dirichlet map, and consider only the dis-
cretization error, that is, the error caused by approximating the infinite dimensional
operators by finite dimensional matrices. The discrete BC-method in [48] requires
solving K � C"�1=18 D Cı�270=18 minimization problems of the form (274), that
is, for each value of sj in (292). Moreover, as by [27] the iteration in the ISTA algo-
rithm has exponential convergence to the solution of the minimization problem, we
conclude that the linear system can be solved with accuracy C" using an iteration
of C log."�1/ steps that each require a composition of linear operators and the oper-
ator MND .

From the discretization error estimates we may deduce estimates for the depth and
width of the operator recurrent neural network based on a scenario without training:
The upper bound for the depth is L and the upper bound for the width n is

L � C log.ı�1/; n � C"�4=7�1=18 � C"�9=14 � Cı�175: (302)

Moreover, as K � C"�1=18, we see that this neural network can be written as HE�
given in (297) that has the sparsity bound R.E�/ and accuracy bound "0 that given by

R.E�/ � C 0KLn1=r � C 0ı�270=18 � log.ı�1/ � ı�175=r � C 00ı�16; (303)

"0 D Cı; (304)

where r <1 is arbitrary and C;C 0 and C 00 depend on r . Consider now the case when
a priori distribution of the data is supported in the set of the Neumann-to-Dirichlet
maps corresponding to the wave speeds c 2 V3. Then the above implies, in terms of
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Definition 4.1, that the map Xc ! c, solving the inverse problem for the wave equa-
tion, can be approximated with accuracy "0 D Cı by a neural network X ! FE� .X/,
where E� has the sparsity bound R0 � C 00ı�16. Note that here we do not require that
the absolute values of the components of the vector E� are bounded by one. However,
this happens if T or the parameters of the set V3 are sufficiently small.

The above worst case estimate gives also an upper bound how well an optimally
trained neural network performs. However, if one is interested in reconstructing a
wave speed c in a subset W � V3 and uses training data sampled from the set W ,
then the trained network is by our analysis close to an optimal neural network that will
most likely perform better than the neural network with a priori determined parame-
ters approximating the boundary control method for three reasons: First, the optimal
neural network is optimized to the subset W , not the larger class V3. Second, the
neural network is based on theoretical estimates that prove worst case errors in all
substeps. Third, the algorithm with a priori determined parameters does not estimate
the average error in the reconstruction, but absolute error and thus the optimal neural
network that optimizes the expected error may perform better.

A. Time reversal algorithm with sparse regularization

In this appendix we consider how the results in [17,48] can be generalized in the case
when one regularizes the `1 term of the source term.

Let BW `1 ! L2.0; T / be an operator such that there is C0 > 0 such that

kBf kL2.0;T / � C0kf k`1 :

For example, when s > 1=2, the Besov space Bs11.S
1/ on the unit circle S1 is a sub-

set of L2.S1/ (that is isomorphic to L2.Œ0; T �/). Moreover, there is an isomorphism
BW `1 ! Bs11.S

1/ of the form (273), where  j are wavelets [88].

Theorem A.1. Assume that B.`1/ � L2.0; T / is a dense subset. Let r 2 Œ0; T � and
˛ > 0. Let us define

Sr D
®
f 2 L2.0; T / W supp.f / � ŒT � r; T �

¯
: (A.1)

Then the regularized minimization problem

min
f 2`1

�
hBf;KBf iL2.0;T / � 2hBf;ˆT iL2.0;T / C ˛ kf k`1

�
(A.2)

has a minimizer f˛;r . Moreover, uBf˛;r .T / converges to the indicator function of the
domain of influence,

lim
˛!0
kuBf˛;r .T / � 1M.r/kL2.M IdV / D 0: (A.3)
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Proof of Theorem A.1. Let ˛ > 0 and let f 2 `1. We define the energy function

E.f / WD hPsBf;KPsBf iL2.0;T / � 2hPsBf;ˆT iL2.0;T / C ˛ kf k`1 : (A.4)

The finite speed of wave propagation implies supp .uPsBf .T // � M.r/. Moreover,
by the Blagovestchenskii formula we have

E.f / D kuPsBf .T / � 1M.r/k
2
L2.M IdV /

� k1M.r/k
2
L2.M IdV /

C ˛kf k`1 : (A.5)

Let .fj /1jD1 � `
1 be such that

lim
j!1

E.fj / D inf
f 2`1

E.f / DW E�:

Then,

˛kfj k`1 � E.fj /C k1M.r/k
2
L2.M IdV /

� E� C vol.M/ D E��;

and we see that .fj /1jD1 is bounded in `1 and satisfies kfj k`1 � ˛�1E��:
The space `1 is the dual of the space c0 of sequences converging to zero. Thus,

by Banach–Alaoglu theorem, Hilbert space, there is a subsequence of .fj /1jD1 that
weak�-converges in `1. Let us denote the limit by f1 2 `1 and the subsequence still
by .fj /1jD1.

When y D .yi /1iD1 2 `
1, we denote pk.y/ D .yi /kiD1 2 Rk . Now, we see that as

.fj /
1
jD1 weak�-converges to f1 in `1, we have for all vectors gk D .ıjk/1jD1 2 c0

such that
.fj ; gk/`1;c0 ! .f1; gk/`1;c0 as j !1:

Hence, we see that pk.fj / converge to pk.f1/ and for all k and

kX
iD1

j.f1/i j � lim
j!1

kX
iD1

j.fj /i j � kfj k`1 � ˛
�1E��:

Taking limit k !1 we see that kf1k`1 � ˛�1E��.
The map UT WL2.0; T /! H 1.M/, mapping UT W h 7! uh.T /, is bounded. The

embedding I WH 1.M/ ,! L2.M/ is compact, and thus UT is a compact operator

UT WL
2.0; T /! L2.M/:

As PsBfj is a bounded sequence in L2.0; T /, we see that by replacing the sequence
.fj /

1
jD1 by its suitable subsequence, we can assume that

uPsBfj .T /! uPsBf1.T /

in L2.M/ as j !1.



M. V. de Hoop, M. Lassas, and C. A. Wong 78

The above yields that

E.f1/ D lim
j!1

kuPsBfj .T /�1M.r/k
2
L2.M IdV /

�k1M.r/k
2
L2.M IdV /

C˛kf1k`1

� lim
j!1

kuPsBfj .T /�1M.r/k
2
L2.M IdV /

�k1M.r/k
2
L2.M IdV /

C˛ lim inf
j!1

kfj k`1

D lim inf
j!1

E.fj /D inf
f 2Sr

E.f /;

and thus f1 2 `1 is a minimizer for (A.4).
As B.`1/ � L2.0; T / is a dense subset, we see by using Tataru’s approximate

controllability theorem that®
uPrBf .T / 2 L2.M.r// W f 2 `1

¯
is dense in L2.M.r//. Let ı > 0. For " D ı2=2, let us choose f" 2 `1, such that

kuPrBf".T / � 1M.r/k
2
L2.M IdV /

� ": (A.6)

Using (A.5) we have

kuPrBf˛;r .T / � 1M.r/k
2
L2.M IdV /

� E.f˛;r/C k1M.r/k
2
L2.M IdV /

:

Because E.f˛;r/ � E.f"/ we have

kuPrBf˛;r .T / � 1M.r/k
2
L2.M IdV /

� kuPrBf".T / � 1M.r/k
2
L2.M IdV /

C ˛ kf"k`1

� "C ˛kf"k`1 :

When 0 < ˛ < ˛ı D ı2=2kf"k`1 , we see that

kuPrBf˛;r .T / � 1M.r/kL2.M IdV / �
�
"C ˛kf"k`1

� 1
2 D ı:

Thus,
lim
˛!0
kuPrBf˛;r .T / � 1M.r/kL2.M IdV / D 0:

B. Conditional expectation as a projector

In this appendix, we recall the definition and the properties of conditional expectations
using � -algebras discussed in detail in [44, Ch. 5] and [29].

Let .�; †; P / be an complete probability space and ZW�! Rm be a random
variable. Below, we consider the case when Z is R-valued, that is, m D 1, but the
discussion below generalizes in a straight forward way for m 2 ZC.
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Let BZ � † be a � -algebra generated by the random variable Z, that is, the
smallest � -algebra that contains the sets Z�1.S/ � �, where S � R is an open set
We recall that when F W�!R satisfies F D F.!/ 2 L1.�IdP /, then E.F jBZ/.!/

is the BZ-measurable random variable that satisfiesZ
A

E.F j BZ/.!/ dP .!/ D

Z
A

F.!/ dP .!/ (B.1)

for all sets A 2 BZ .
Roughly speaking, E.F j BZ/ denotes the expectation of a random variable F D

F.!/ under the condition that Z is known. More precisely, by [29, Section 10.1 and
Theorem 4.2.8], there is a measurable function gF WR! R such that

E.F j BZ/ D gF .Z/ D gF .Z.!//; P -a.e.; (B.2)

that is, E.F j BZ/ can be considered as deterministic function of Z. To simplify
notations, one uses for the conditional expectation of the random variable F , under
the condition that Z is given, the notation

E.F j BZ/ D E.F j Z/; (B.3)

where the right-hand side is in fact equal to gF .Z/. We emphasize that as Z is a
random variable, also E.F j BZ/ D E.F j Z/ is a random variable.

Let H D L2.�IBZ ; dP / be the set of R-valued functions u D u.!/ that satisfy
u 2 L2.�I†; dP / and are BZ-measurable. Observe that H � L2.�I†; dP / is a
closed subspace of the Hilbert space L2.�I†; dP /.

By [29, Theorem 4.2.8], for any u 2 L2.�IBZ ; dP / there is a Borel-measurable
function g such that u.!/ D g.Z.!//, that is, u D g ıZ, P -a.e. in �.

By (B.1), we have

hE.F jBZ/; g.!/iL2.�I†;dP/ D hF; g.!/iL2.�I†;dP/ (B.4)

for indicator functions g D 1A with all sets A 2BZ . As such indicator functions span
a dense set in H , we have that (B.4) holds for all g 2 H . As E.F jBZ/.!/ 2 H , this
yields that

E.F jBZ/ D PHF; (B.5)

where
PH WL

2.�I†; dP /! L2.�I†; dP / (B.6)

is the orthogonal projector onto the setH D L2.�IBZ ; dP /, that is, Ran.PH /DH .
In the main text we use extensively that fact that

PHF D arg min kF � uk2
L2.�I†;dP/ (B.7)

subject to the condition u 2 H D L2.�IBZ ; dP /.
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