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Abstract.Group synchronization requires to estimate unknown elements .�v/v2V of a compact
groupG associated to the vertices of a graphG D .V;E/, using noisy observations of the group
differences associated to the edges. This model is relevant to a variety of applications ranging
from structure from motion in computer vision to graph localization and positioning, to certain
families of community detection problems.

We focus on the case in which the graphG is the d -dimensional grid. Since the unknowns �v

are only determined up to a global action of the group, we consider the following weak recovery
question. Can we determine the group difference ��1

u �v between far apart vertices u; v better
than by random guessing? We prove that weak recovery is possible (provided the noise is small
enough) for d � 3 and, for certain finite groups, for d � 2. Vice-versa, for some continuous
groups, we prove that weak recovery is impossible for d D 2. Finally, for strong enough noise,
weak recovery is always impossible.
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1. Introduction

In the group synchronization problem, we are given a (countable) graphG D .V;E/,
a group G and, for each edge .u; v/ 2 E, a noisy observation Y u;v . The objective
is to estimate group elements .�v/v2V associated to the vertices v 2 V , under the
assumption that the Y u;v are noisy observations of the group difference between the
adjacent vertices. Roughly speaking (see below for a precise definition):

Y uv D �
�1
u �v C noise : (1.1)

In order for the above to be unambiguous, we will assume that an orientation .u; v/
is fixed arbitrarily for each edge.

It is useful to introduce two concrete examples.
Example 1.1. The simplest example is G D Z2 D f.C1;�1/; � g, the group with
elements .C1;�1/ and operation given by ordinary multiplication (equivalently, the
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group of integers modulo 2). For each edge .u; v/ 2 E we are given Y uv , which is
a noisy observation of �u�v D ��1u �v . For instance we can assume that, for some
p 2 Œ0; 1=2/,

Y uv D

(
�u�v with probability 1 � p;
��u�v with probability p:

(1.2)

with the .Y uv/.u;v/2E conditionally independent given .�v/v2V . In other words Y uv
is the output of a binary symmetric channel with flip probability p and input �u�v .

We will refer to this case as Z2 synchronization.
Example 1.2. Consider G D O.m/: the group of m �m orthogonal matrices, with
the following noise model. Let .Zuv/.u;v/2E be an i.i.d. collection of matrices with
i.i.d. standard normal entries, and define

Y uv D PO.m/.�
�1
u �v C �Zuv/ : (1.3)

Here PO.m/ is the projector for the Frobenius norm k � kF onto the orthogonal group,
namely for a matrix M with singular value decomposition M D U†V T, we set
PO.m/.M / D UV T.

Group synchronization plays an important role in a variety of applications.
Structure frommotion is a central problem in computer vision: given multiple images
of an object taken fromdifferent points of view (and in presence of noise or occlusions)
we want to reconstruct the 3-dimensional structure of the object [9, 22, 31, 40].
A possible intermediate step towards this goal consists in estimating the relative
orientation of the object with respect to the camera in each image. This can be
formulated as a group synchronization problem over G D SO.3/, whereby �u
describes the orientation of image u, and pairwise image registration is used to
construct the relative rotations Y uv .
Graph localization and positioning. Consider a set of nodes with positions

x1; : : : ;xn 2 Rd :

We want to reconstruct the nodes positions from noisy measurements of the pairwise
distances kxu � xvk2. This question arises in sensor network positioning [14, 29],
imaging [10, 37], manifold learning [38], to name only a few applications. It is
often the case that measurements are only available for pairs u; v 2 Œn� that are close
enough, e.g. only if kxu � xvk2 � � for � a certain communication range [18, 34].

Graph localization can be interpreted as a group synchronization problem in
multiple ways. First, we can interpret the unknown position xv as a translation
and hence view it as a synchronization problem over the group of translations
in d dimensions. Alternatively we can adopt a divide-and-conquer approach
following [10]. First, we consider cliques in the graph and find their relative
positions. Then we reconstruct the relative orientations of various cliques, which
can be formulated as an SO.d/ synchronization problem.
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Community detection and the symmetric stochastic block model. Thek-groups sym-
metric stochastic block model is a random graph over n vertices generated as
follows [1, 25]. First, partition the vertex set into k subsets of size n=k, uniformly
at random. Then connect vertices independently, conditional on the partition. Two
vertices are connected with probability p if they belong to the same subset, and with a
smaller probability q < p otherwise. Given a realization of this graph, we would like
to identify the partition. This problem is in fact closely related to synchronizations
over Zk (the group of integers modulo k). Extensions of the stochastic block model
where edges are endowed with labels have also been considered [20]. In particular
the so-called censored block model considered in [36] corresponds precisely to
Example 1.1 on an Erdős–Rényi graph.

The literature on group synchronization is fairly recent and rapidly growing.
The articles [35, 41] discuss it in a variety of applications and propose several
synchronization algorithms, mostly based on spectral methods or semidefinite
programming (SDP) relaxations. Theoretical analysis — mostly in the case of
random (or complete) graphs G — is developed in [2, 7, 19, 33]. Most of these
studies use perturbation theoretic arguments which crucially rely on the fact that the
Laplacian (or connection Laplacian, [8]) of the underlying graph has a spectral gap.
This paper shows that nontrivial recovery is possible even in the absence of a spectral
gap, as in the case of grids with d � 3. A crucial role in our proofs is played by the
fact that the pseudoinverse of the graph Laplacian has appropriately bounded trace.
The trace of the Laplacian’s pseudoinverse is also known as the Kirchoff index of
the graph, and can be thought as a measure of how well connected is the graph: a
small Kirchoff index corresponds to a well-connected graph. As shown in [5, 7], the
Kirchoff index provides a lower bound on the minimum error achievable in a group
synchronization problem (see also [3, 4] for related work).

In the present paper we study the case in which G is the d -dimensional grid,
d � 1. Namely, V D Zd , and –to be definite– we orient edges in the positive
direction:

E �
˚
.x; y/ W y � x 2 fe1; : : : ; ed g

	
; (1.4)

where ei D .0; : : : ; 0; 1; 0; : : : ; 0/ is the i th element of the canonical basis in Rd .
By construction, we can hope to determine the unknowns .�x/x2Zd only up to

a global action by a group element. In other words, we cannot distinguish between
.�x/x2Zd and .g�x/x2Zd for some g 2 G. We thus ask the followingweak recovery
question:

Is it possible to estimate ��1x �y better than random guessing, as kx�yk2 !1?

Note that, if we have an estimator Txy.Y / of the relative group element ��1x �y , we
can produce an estimate .y�x.Y //x2V of the overall configuration (up to a global
action of G), by assuming �x0

D Im, and setting y�x.Y / D Tx0;x.Y /. This point
will be discussed further in the next section.
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In absence of noise (i.e. if Y uv D ��1u �v exactly), the answer to the above
question is always positive: we can multiply the observations Y uv’s along any path
connecting x to y to reconstruct exactly ��1x �y . However for any arbitrarily small
noise level, errors add up along the path and this simple procedure is equivalent to
random guessing for kx � yk2 ! 1. The weak recovery question hence amounts
to asking whether we can avoid error propagation.

Focusing on the case of compact matrix groups, we will present the following
main results:

Low noise, d � 3. For sufficiently lownoise, we prove thatweak recovery is possible
for d � 3 and any group. As mentioned above, this shows that group synchronization
is possible even in graphs with vanishing spectral gap.

High noise. Vice-versa, weak recovery is impossible in any dimension at sufficiently
high noise (or for d D 1 at any positive noise).

Discrete groups. For the special case of Z2-synchronization, we prove that weak
recovery is possible (at low enough noise) for all d � 2.

Continuous groups, d D 2. Vice-versa, for the simplest example of continuous
group, SO.2/, we prove that weak recovery is impossible for d D 2.

The above pattern is completely analogous to the one of phase transitions in spin
models within statistical physics [11]. We refer to Section 4 for a discussion of the
connection with statistical physics.

The rest of the paper is organized as follows. Section 3 presents formal definitions
and statements of our main results. In order to achieve optimal synchronization, it
is natural to consider the Bayes posterior of the unknowns .�v/v2V , cf. Section 4.
While this does not lead directly to efficient algorithms, it clarifies the connection
with statistical physics. Some useful intuition can be developed by considering the
case1 in which �v 2 R and Yuv D �v � �u C Zuv with .Zuv/.u;v/2E i.i.d. noise.
This can be treated by elementary methods, cf. Section 5. Finally, Section 6 and 7
prove our positive results (reconstruction is possible) with other proofs deferred to
the appendices.

Notations. Throughout the paper we use boldface symbols (e.g. �x , Y xy) to denote
elements of the group G, and, occasionally, for matrices with the same dimensions
as elements of G (i.e. m � m matrices). We normal symbols for other quantities
(including vectors and matrices). Given two vectors u; v 2 Rn, we denote by
hu; vi D

Pn
iD1 uivi their scalar product. Analogously, for matrices A;B 2 Rm�n,

hA;Bi D Tr.ABT/ is their scalar product.

1Strictly speaking, this is not a special case of the problem studied in the rest of the paper, because
G D R is not a compact group.
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2. Definitions and problem formulation

As mentioned above, G D .V;E/ will be the infinite d -dimensional grid, and G
a compact matrix group. Without substantial loss of generality, we will assume
G � O.m/ (the group ofm�m orthogonal matrices). We attach to each vertex x 2 V
an element �x 2 G which may be deterministic or random, chosen independently
from some distribution.

We are given observations Y D .Y xy/.x;y/2E , Y xy 2 G, that are conditionally
independent given � . We assume that observations are unbiased in the following
sense:

EfY xy j�g D ��
�1
x �y ; (2.1)

where the parameter � is a natural measure of the signal-to-noise ratio. Note that,
since Y xy 2 O.m/, we have, by Jensen’s inequality,

m D E
˚
hY xy ;Y xyi

ˇ̌
�
	
�
˝
EfY xy j�g;EfY xy j�g

˛
D �2m : (2.2)

Hence we have j�j � 1, and we can assume, without loss of generality, � 2 Œ0; 1�.
In particular, if � D 1, then Jensen’s inequality is satisfied with equality, which
corresponds to Y xy D ��1x �y almost surely (i.e. � D 1 corresponds to noiseless
observations).

The two examples given in the introduction fit this general definition:
� For Z2 synchronization (cf. Example 1.1) we have EfY xy j�g D .1� 2p/�

�1
x �y ,

and therefore � D .1 � 2p/.
� For O.m/ synchronization (cf. Example 1.2) we have EfY xy j�g D �.�2/�

�1
x �y

where �2 7! �.�2/ is a continuous function on Œ0;1/with �.�2/! 1 as �2 ! 0

and �.�2/! 0 as �2 !1 (see Appendix A).

A simple mechanism to produce the noisy observations Y xy consists in introducing
a probability kernel Q on G and stipulate that, for each edge .x; y/,

P .Y x;y 2 � j�/ D P .Y x;y 2 � j�
�1
x �y/ D Q. � j��1x �y/ : (2.3)

In other words, all observations are obtained by passing ��1x �y through the same
noisy channel. While our results do not necessarily assume this structure, both of the
examples given above are of this type.

As mentioned in the introduction, in general we can only hope to estimate the
vertex variables .�x/x2V up to a global action of the groupG. In particular, under the
model (2.3), the law of .Y xy/.xy/2E is invariant under the trasformation �x 7! g�x
for a fixed g 2 G. One possible option to remove this unidentifiability issue is to
fix the value of �x0

at one specific vertex x0 2 V , for instance by stipulating that
�x0
D Im. An alternative choice is to define the reconstruction problem as the one

of estimating the group differences ��1x �y for every pair of vertices x; y 2 V . We
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will mostly adopt the second formulation, but the discussion below clarifies that the
points of views are in fact closely related (especially for transitive graphs).

Formally, an estimator is a collection of measurable functions TuvWY 7!

Tuv.Y / 2 G indexed by all vertex pairs u; v 2 V (here Y D .Y xy/.x;y/2E denotes
the set of all observations). In this paper we ask whether there exists an estimator
such that Txy.Y / is more correlated to ��1x �y than random guessing, even when
kx � yk ! 1. In order to formalize this idea, it is useful to consider two extreme
cases (here and below PX denotes the law of the random variable X ):
� Txy.Y / is “random guessing”, i.e. independent of the vertex variables .�x/x2V .
In this case �

��1x �y ; Txy.Y /
�
� P

��1
x �y

� PTxy.Y /

for every x ¤ y.
� Txy.Y / is a perfect estimator, i.e. Txy.Y / D ��1x �y . In this case

.��1x �y/
�1Txy.Y / D Im

with probability one.

Motivated by these remarks, we introduce the following definition.

Definition 2.1. We say that the weak recovery problem is solvable for the probability
distribution P over .�;Y / defined above if there exists an estimator T , and " > 0,
such that

lim inf
kx�yk!1

P
.��1

x �y ;Txy.Y //
� P

��1
x �y

� PTxy.Y /


TV
� " > 0 : (2.4)

Slightly different versions of this definition are also potentially interesting. The
next lemma clarifies the relation with mutual information. Given two random
variables U;W , we denote by I.U IW / their mutual information, namely

I.U IW / � E
n
log

dPU;W
d.PU � PW /

.U;W /
o
; (2.5)

where d�
d� denoted the Radon–Nikodym derivative of � with respect �.

The next lemma connects the definition of weak recovery given above with the
asymptotic behavior of the mutual information I.Txy.Y /I��1x �y/, and with another
measure of dependency expressed in terms of total variation distance. Its proof is
presented in Appendix B.

Lemma 2.2. If the weak recovery problem is solvable, then there exists an esti-
mator T , and "0 > 0, such that

lim inf
kx�yk!1

I
�
Txy.Y /I�

�1
x �y

�
� "0 > 0 : (2.6)
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Vice-versa, assume that .�x/x2V �iid PHaar (with PHaar denoting the Haar measure
on G). If

lim inf
kx�yk!1

P
�
�xTxy.Y /�

�1
y 2 �

�
� PHaar

�
�
�

TV
� "00 > 0 ; (2.7)

then the weak recovery problem is solvable.
As mentioned above, it is instructive to consider a slightly different formulation

of the weak recovery question, whereby we try to estimate the hidden configuration
.�x/x2V . Formally, for each x 2 V , we let y�x WY 7! y�x.Y / be an estimator of the
corresponding group element �x . Consider a finite box in Zd , namely the subset of
vertices VL D V \ Œ�L;L�d , of cardinality jVLj D .2LC 1/d . We then evaluate
the performance of the estimator y� by considering the overlap

RL.y�/ D E sup
Q2G

�
1

jVLj

X
x2VL

h�x;Qy�x.Y /i

�
: (2.8)

Note that the supremumoverQ is introduced in order to remove the global invariance.
For instance, in the case of Z2-synchronization, RL.y�/ measures the expected
fraction of agreements minus disagreements, up to a global flip.
Definition 2.3. Assume .�x/x2V to be independent with Ef�xg D 0. We say that
the estimator y� achieves positive overlap for the synchronization problem if

lim inf
L!1

RL.y�/ � " > 0 : (2.9)

While at a first look this formulation might appear very different from the one of
Definition 2.1, the two points of view are closely related. Indeed, if weak recovery
is possible — in the sense of Definition 2.1 — then the estimators

�
Txy.Y /

�
x;y2V

provide an overall estimate of the configuration .�x/x2V , always up to a global group
action. The estimate is simply given by

y�x.Y / D Tx0;x.Y / ; (2.10)

where x0 2 V is an arbitrarily chosen vertex. This amounts to assuming that
�x0
D Im. For instance, we can set x0 D 0.
In all of our results, when we prove weak recovery, the same proof implies that

the estimator y�x.Y / D T0;x.Y / achieves positive overlap in the sense given in the
last definition.

3. Main results

Our first result establishes that the problem is solvable if noise is small enough in
d � 3 dimensions.
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Theorem 1. If d � 3, then there exists �UB 2 .0; 1/ such that, if � > �UB then the
weak recovery problem is solvable. Further, the corresponding estimator achieves
positive overlap.

If noise is strong enough, the problem becomes unsolvable.
Theorem 2. Assume that:
(1) P .Y x;y 2 � j�/ D P .Y x;y 2 � j�

�1
x �y/.

(2) P .Y x;y 2 � j�0/ has density q. � j�0/, �0 2 G, with respect to the Haar
probability measure.

Let pc.d/ 2 .0; 1� the critical threshold for percolation on the d -dimensional grid.
If

inf
y;�0

q.yj�0/ > 1 � pc.d/ ; (3.1)

then the weak recovery problem is not solvable.
In particular, for d D 1, the recovery is not solvable as soon as the noise is

strictly positive infy;� q.yj�/ > 0 (since pc.d D 1/ D 1).
Note that for the case of a finite group G, denoting by Q. � j�0/ the probability

mass function on G induced by q. � j�0/, we have that condition (3.1) reads

min
y;�0

Q.yj�0/ > .1 � pc.d//=jGj:

In particular, the percolation threshold in d D 2 dimensions is [13]

pc.d D 2/ D 1=2;

and therefore for Z2 synchronization with d D 2, the weak recovery problem is
impossible if the flip probability is p 2 .1=4; 3=4/.

The appearance of the percolation threshold pc.d/ is quite interesting and can
be explained intuitively. Let p � 1 � infy;�0

q.yj�0/. Under the assumptions of
this theorem, the noisy observations Y x;y can be characterized as follows. For each
edge .x; y/ 2 E, draw an independent Bernoulli random variable Uxy 2 f0; 1g
with success probability p. If Uxy D 0, then let Y xy be pure noise (i.e. Haar
distributed). Otherwise, let Y xy � q�. � j��1x �y/ for a suitably constructed kernel q�
(in other words, this observationmight contain some information about ��1x �y). This
determines a percolation subgraph of the grid (namely the graph induced by edges
with Uxy D 1), which can be referred to as the “information graph”. It is intuitively
clear that, for two vertices u; v, the relative group element ��1u �v can be estimated
in a non-trivial way only if u and v are connected by a path in the information graph.
This happens with probability bounded away from zero as ku � vk ! 1, only
if p > pc.d/.

While Theorems 1 and 2 provide a complete qualitative picture for d � 3, for
d D 2 the situation is more complicated. First of all, we show that for certain
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discrete groups the problem is solvable at low enough noise. We consider here the
case G D Z2, but it would be interesting to generalize this result to other finite
groups.
Theorem 3. Consider d D 2, and G D Z2, with uniform flip probability p. Then
there exists p� 2 .0; 1/ such that, if p � p� then the weak recovery problem is
solvable. Further, the corresponding estimator achieves positive overlap.

On the contrary, for continuous groups, we expect weak recovery not to be
possible in d D 2 dimensions, even for very weak noise. This is analogous to the
celebrated Mermin–Wagner theorem in statistical mechanics [21, 26]. For the sake
of simplicity, we focus on the case of G D SO.2/ which is isomorphic to U.1/, the
group of complex variables of unit modulus, with ordinary multiplication. Let Z a
U.1/-valued random variable with density g satisfying

g 2 C 2; inf
s2Œ0;2��

g.eis/ > 0 : (3.2)

We consider observation on the edges corrupted by multiplicative noise

Y xy D �
�1
x �yZxy ; (3.3)

where .Zxy/.x;y/2E �iid g.
Theorem 4. If d D 2 and G D SO.2/ with noise model satisfying (3.2) and (3.3),
then the weak recovery problem is not solvable.
Remark 3.1. A result related to Theorem 3 was established in [15] using a Peierls
argument (Section 4 outlines the connection with the statistical physics formulation).
We present here an independent proof that also provides an efficient recovery
algorithm. Also notice that the result of [15] does not imply immediately weak
recovery.
Remark 3.2. While we state and prove these results for regular grids, we expect
similar results to hold for more general graphs with finite-dimensional structure. A
natural class of graphs to investigate possible generalizations is given by random
geometric graphs well above the connectivity threshold.

Some of the proof techniques used here should generalize to such graphs. For
instance, Theorem 1 is proved via a second moment calculation that relies on the
recurrence properties of suitable ensembles of random paths in the d -dimensional
grid. These recurrence properties should remain unchanged for related ensembles of
paths in random geometric graphs.

Similarly, the recursive argument to prove Theorem 3 uses the decomposition of a
grid of linear size L into .L=`/2 blocks of linear side `. This is repeated recursively,
down to some large size `0. Such a recursive construction can be repeated (within a
suitable approximation error) for random geometric graphs as well.

We leave the investigation of these generalizations to future work.
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Remark 3.3. Some of our results are limited to specific groups: Theorem 3 applies
toZ2 and Theorem 4 to SO.2/. It is natural to ask whether they generalize to arbitrary
finite groups (the former) and to arbitrary compact Lie groups (the latter).

4. Bayesian posterior and connection to statistical physics

In this section it is convenient to assume a more general model in which the
observations Y xy 2 Rm�m are not necessarily elements of the matrix group G.
We assume that the conditional distribution of the observations Y xy given the
unknowns �x is absolutely continuous with respect to a reference measure P#
(independent of �). In practice, we will take P# to be either the Haar measure
on G, or the Lebesgue measure on Rm�m. We denote the corresponding density by

dP

dP#
.Y x;y j�/ D

1

Z0
exp

˚
� u.��1x �y IY xy/

	
; (4.1)

where uWG � Rm�m ! R [ fC1g is a measurable function bounded below.
Assuming the prior distribution of .�x/x2V to be i.i.d. Haar, we can use Bayes
formula to write the posterior �Y .B/ D P .� 2 BjY / as

�Y .d�/ D
1

Z.Y /
exp

�
�

X
.x;y/2E

u.��1x �y IY xy/

�
�0.d�/ ; (4.2)

where �0.d�/ D �0.d�1/ � � ��0.d�n/ is the product Haar measure over the
unknowns and Z.Y / is a normalization constant. The joint distribution (4.2) takes
the form of a Gibbs measure on the graph G.
Remark 4.1. For Eq. (4.2) to make sense, the graph G needs to be finite. However,
the Bayesian interpretation implies immediately that quantities of interest have a well
defined limit over increasing sequences of graphs. In particular, we can take G to be
the finite grid with vertex set

V D
˚
�L; : : : ; L

	d
;

and edges
E D

˚
.x; y/ 2 V � V W y � x 2 fe1; : : : ; ed g

	
:

Then the quantity

sup
Txy. � /

P
.��1

x �y ;Txy.Y //
� P

��1
x �y

� PTxy.Y /


TV

(4.3)

is obviously non-decreasing in L (because larger L corresponds to a larger class of
estimators) and hence admits a well defined limit. We will refer succinctly to this
L!1 limit as the model on “the d -dimensional grid”.



Group synchronization on grids 237

In the rest of this section, it will be useful to distinguish between the arguments of
the posterior density (that we will keep denoting by .�x/x2V ), and the true unknowns
that we will denote by .�0;x/x2V . We further assume that the function u satisfies

u.��IY / D u.�I��1Y / D u.�IY ��1/; (4.4)

for any � , � 2 G and any Y 2 Rm�m. This condition is verified by all of our
examples. Thanks to this symmetry, for any f�xgx2V and any Y , the distribution
�Y . � / of � in (4.2) coincides with that of f�x��1x gx2V where � is distributed
according to �zY .�/, and zY xy D �xY xy�

�1
y . By taking �x D �0;x for all x, we

can assume that �0;x D Im for all x, which then leads to the .Y xy/.xy/2E being
i.i.d. with common distribution

Y xy �
1

Z1
exp

˚
� u.ImIY xy/

	
P#.dY xy/ : (4.5)

In the jargon of statistical physics, Gibbs measures of the form (4.2) with associated
parameters distribution (4.5) are known as spin-glasses on the “Nishimori line.”
These were first introduced for the case �x 2 fC1;�1g [27] and subsequently
generalized to other groups in [12]. Several results about spin glasses on the
Nishimori line were derived in [28, 30] and the connection with Bayesian statistics
was emphasized in [17, 24]. The weak recovery phase transition corresponds to a
paramagnetic-ferromagnetic phase transition in physics language.
Example 4.2. The simplest example is the so-called random bond Ising modelwhich
is obtained by taking �x 2 fC1;�1g and

�Y .�/ D
1

Z.Y /
exp

�
ˇ
X

.x;y/2E

Y xy�x�y

�
; (4.6)

where Y xy D C1 with probability 1 � p and Y xy D �1 with probability p. The
Nishimori line is given by the condition ˇ D .1=2/ log..1 � p/=p/. It is easy to
see that this is equivalent to the Bayes posterior for the Z2 synchronization model of
Example 1.1, if we take �0;x D C1.

This model has attracted considerable interest within statistical physics. In
particular, high-precision numerical estimates of the phase transition location yield
pc � 0:1092 (in d D 2) and pc � 0:233 (in d D 3) [16, 32].
Example 4.3. Take G D O.m/ (the group of orthogonal matrices), and assume

Y xy D �
�1
0;x�0;y C � Zxy (4.7)

where Zxy is a noise matrix with i.i.d. entries .Zxy/ij � N.0; 1/. This model is
analogous to the one of Example 1.2, although we do not project observations onto
the orthogonal group.
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After a simple calculation, the Gibbs measure (4.2) takes the form

�Y .d�/ D
1

Z.Y /
exp

�
ˇ
X

.x;y/2E

Tr
�
�xY xy�

T
y

��
�0.d�/ ; (4.8)

where ˇ D 1=�2. By the symmetry under O.m/ rotations, for the purpose of analysis
we can assume Y xy D Im C � Zxy which is the usual setting in physics.
Example 4.4. In the case G D SO.2/ we can identify �x with an angle in Œ0; 2�/,
and let

Y xy D �0;y � �0;x CZxy ; mod 2� ; (4.9)
where Zxy is noise with density proportional to exp.�u.z// for u.z/ a periodic
function bounded below.

The Gibbs measure (4.2) takes the form

�Y .d�/ D
1

Z.Y /
exp

�
�

X
.x;y/2E

u
�
Y xy � �y C �x

��
�0.d�/ : (4.10)

For the purpose of analysis we can assume Y xy D Zxy . This is known as the “XY
model” in physics.

Our results have direct implications on these models that we summarize in the
following statement.
Corollary 4.1. Consider the Gibbs measure (4.2) on the d -dimensional grid, with
parameters Y xy 2 G distributed according to Eq. (4.5) and satisfying Eq. (2.1).
Then, the following hold:
(1) For d � 3, and G � O.m/ is any compact matrix group, then there exists

�UB < 1 such that the model is in a ferromagnetic phase for any � > �UB.
(2) For the case of Example 4.2 (i.e. G D Z2) and d � 2, there exists p� 2 .0; 1/

such that the model is in a ferromagnetic phase for any p � p�.
(3) For the case of Example 4.4 (i.e. G D SO.2/) and d D 2 the model is not in a

ferromagnetic phase provided z 7! u.z/ is bounded.
(4) For any group G, d � 2, there exists a constant c.d/ such that, if kuk1 � c.d/

then the model is not in a ferromagnetic phase.
Furthermore point 1 applies to Example 4.3 as well.

Proof. These statements are merely a translation of Theorems 1, 2, 3, 4 for the case
in which channel observations take values in G. For the case in Example 4.3, note
that we can always project Y xy onto the group O.m/, hence recovering the setting of
Example 1.2. Since weak recovery is possible in the latter, it is also possible in the
former.

As already pointed out in Section 3, the existence of a ferromagnetic phase for
Example 4.2 (i.e. G D Z2) was already obtained in [15].
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5. A toy example

It is instructive to consider a simple example in which G D R is the group of
translations on the real line. This case does not fit the framework of the rest of this
paper, but presents the same dichotomy between d D 2 and d � 3 and can be solved
by elementary methods.

Throughout this section, we adopt additive notation, and hence the observation
on edge .x; y/ takes the form

Yx;y D �y � �x CZx;y ; (5.1)

where fZxyg.x;y/2E are i.i.d. random variables with mean 0 and variance �2.
To simplify our treatment, we assume the graph to be the discrete torus, with vertex

set V D f1; 2; : : : ; Lgd and edges E D f.x; x C ej / W x 2 V; j 2 f1; : : : ; dgg

(where we identify LC 1 with 1). Denoting by D the difference operator on G, the
observation can be written as

Y D D� CZ : (5.2)

As usual, � can be determined only up to a global shift. To resolve this ambiguity,
it is convenient to assume that � is centered: h�; 1i D 0. Consider the least square
estimator y�.Y / D D�Y D L�DTY where � denotes the pseudoinverse. A standard
elementary calculation [39, Theorem 14.13] yields the following formula for the
mean square error

MSE.L; �2/ �
1

Ld
E
˚
k�.Y / � �k22

	
(5.3)

D
�2

Ld
Tr0

�
.DTD/�

�
D
�2

Ld
Tr0

�
L�
�
: (5.4)

Here we denoted by L D DTD the Laplacian of G and by Tr0 the trace on the
subspace orthogonal to the all-ones vector. The eigenpairs of the Laplacian are [23]:

v.p/x D
1

Ld=2
eihp;xi ; �.p/ D

dX
iD1

Œ2 � 2 cos.p/� ; (5.5)

p 2 BL �
n2�
L
.n1; : : : ; nd / W ni 2 f0; : : : ; L � 1g

o
: (5.6)

Hence

MSE.L; �2/ D
�2

Ld

X
p2BLnf0g

1

�.p/
: (5.7)

For large L, the sum can be estimated by approximating it via Riemann integrals to
yield the following fact.
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Fact 5.1. The mean square error of least-square estimation within the translation
synchronization model of Eq. (5.1) is

1

�2
MSE.L; �2/ D

�
L
12
COL.1/; for d D 1;

1
2�

logLCOL.1/; for d D 2;
C.d/C oL.1/; for d � 3;

(5.8)

where C.d/ is a dimension dependent constant.

We observe that this qualitative behavior is the same that we obtain for continuous
compact groups, cf. Theorem1 andTheorem4: theweak recovery problem is solvable
only for d � 3.

6. Proof of Theorem 1

Throughout this section we assume a probability distribution P over � , Y satisfying
the unbiasedness condition Eq. (2.1). For most of our analysis, we consider general
estimators TuvWY 7! Tuv.Y / 2 Rm�m whose output is not necessarily in G, and
let T uv D Tuv.Y / (as projecting them into G at the end can only increase their
accuracy).

Before presenting the actual proof, it is useful to discuss the basic intuition.
Consider first the case in which we are given noiseless observations. Namely, for
each edge in the grid .u; v/ 2 E, we observe Y uv D ��1u �v (note that in this
case � D 1). We can then construct an straightforward estimate Txy.Y /: choose
an arbitrary directed path  from x to y, and take the product of the Y uv’s along
the path (ordered as the edges of the path itself). It is immediate to see that in
this case Txy.Y / D ��1x �y . However, if observations are noisy, the error of
this estimator grows exponentially with the path length. For instance, in the case
of Z2 synchronization, cf. Example 1.1, we would get Txy.Y / 2 fC1;�1g with
EfTxy.Y /g D .1 � 2p/j j�

�1
x �y .

In order to overcome this difficulty, we average over the paths between x and y to
reduce the variance of the estimator. It turns out however that averaging uniformly
over paths is not sufficient to obtain a tight result and only allows to establish weak
recovery for d � 4. The key feature of the underlying measure over paths is
the exponential intersection property. A construction by Benjamini, Pemantle, and
Peres [6] provides such a measure for d D 3.

In order to apply our construction to our problem, we proceed in two steps. First
we consider pair of vertices that differ by a vector on the diagonal of the three-
dimensional subgrid: y�x D .n; n; n; 0; : : : ; 0/. In a second step, we piece together
such estimators, to cover all vertex pairs.
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Turning to the actual proof, we set u.n/ D .n; : : : ; n/ 2 Zd . We will use
repeatedly two elementary facts in linear algebra. First, for any two matrices A, B,

kABkF � kAkF kBkF :

Second, if B is an orthogonal matrix, then

kABkF D kAkF :

As mentioned above, we start by defining the estimator Tx;y.Y / for x D 0,
y D u.n/, and will then generalize it to other pairs x; y.
Lemma 6.1. Consider d � 3. Then there exists an estimator T D .Tu;v/ such that
for any " > 0 there exists �0."0/, such that, for all � > �0 and all even n,

P
˚�0T 0;u.n/��1v.j;n/ � ImF � "	 � "0 : (6.1)

In fact, it is sufficient to take �."/ D
q
1 � "30=.C1m/, for C1 an absolute constant.

Proof. We consider the case of d D 3, as larger dimensions follow from this case.
Denote by PC the set of infinite increasing paths in the grid that start at 0. Benjamini,
Pemantle and Peres [6] construct a probability measure� over paths in PC satisfying
the so-called exponential intersection property (EIT). Namely, there exist absolute
constants ˇ� < 1, C� such that

.� � �/
˚
.1; 2/ 2 PC �PC W j1 \ 2j � k

	
� C�ˇ

k
� : (6.2)

We first need to extend this property from infinite increasing paths starting at 0,
to paths starting at 0 and ending at .n; n; n/. We use a symmetrization argument.
Assume for simplicity that n=3 2 Z. The idea is to take a random walk that follows
the distribution of the randomwalk from [6], stop the walk once it hits the hyperplane

H.n/ D
˚
x 2 R3 W hx � .n=2; n=2; n=2/; .1; 1; 1/i D 0

	
(note that this is reached in 3n=2 steps), and reflect the walk from the hyperplane for
the next 3n=2 steps to end in .n; n; n/. The second segment of the walk is thus a
deterministic reflection of the first segment. Note however that the reflected segment
may no longer stay in the grid Z3; in fact, the reflection is given by

.x; y; z/ 7!
�
xCn�2=3.xCyCz/; yCn�2=3.xCyCz/; zCn�2=3.xCyCz/

�
;

and, for instance, .1; 0; 0/ is reflected to .nC 1=3; n � 2=3; n � 2=3/. We therefore
restrict ourselves next to walk that stay in the grid under reflection.

For this purpose, consider the supper-grid 3Z3 D f.3x; 3y; 3z/ W x; y; z 2 Zg.
For a path  in 3Z3, we denote by ext./ the extension of  to a path in Z3 obtained
by connecting vertices of the supper-grid with the shortest paths (of length 3) in Z3.
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Let P
.3/
C be the set of infinite increasing paths in 3Z3 starting at 0. Let �.3/ be

the distribution from [6] that has EIT on P
.3/
C , with the same parameters as in (6.2).

For � � �.3/, let �.�/ be the restriction of ext.�/ on the first 3n=2 steps, �.C/ the
reflection of �.�/ from the hyperplane H.n/ and let �n D .�.�/; �.C//. Denote
by Pn the set of paths in Z3 that have the form of �n, i.e. starting at 0, length 3n,
increasing in the first 3n=2 steps, symmetric with respect to the hyperplane H.n/,
and thus ending in .n; n; n/.

We will work with the probability measure�n of �n. Since the reflection part can
only double the overlap of two paths, and since the extension from the supper-grid to
the grid can only triple the overlap of two paths, it follows from (6.2) that there exists
C; ˇ < 1, both independent of n, such that

�n � �n
˚
.1; 2/ 2 Pn �Pn W j1 \ 2j � k

	
� Cˇk : (6.3)

For a path  2 Pn, denote the ordered sequence of directed edges in  by
I1./; : : : ; I3n./, where Ij ./ 2 E, j 2 Œ3n�, and define

Y  WD Y I1./Y I2./ � � �Y I3n./ ; (6.4)

T 0;u WD
1

�3n
E .Y  / ; (6.5)

where E denotes expectation with respect to �n. Note that by the assumption (2.1)
we have EY  D �3n�

�1
0 �u.n/ for any  2 Pn, and therefore

ET 0;u.n/ D �
�1
0 �u.n/ : (6.6)

Observe that if two paths 1; 2 in Pn intersect in an edge e then they must intersect
in the same position since the paths are increasing, i.e. we must have e D Ik.1/ D
Ik.2/ for some k. Writing for simplicity u D u.n/, and denoting by E1;2

expectation with respect to 1; 2 �iid �n

E
˚
T 0;uT

T
0;u

	
D

1

�6n
E1;2

EY 1
.Y 2

/T

D
1

�6n
E1;2

EY I1.1/ : : :
�
EY I3n.1/Y

T
I3n.2/

�
Y T
I3n�1.2/

: : :Y T
I1.2/

.a/
D

1

�6n
E1;2

�j1jCj2j�2j1\2jIm

D E1;2
��2j1\2j Im ;

where .a/ follows by repeatedly applying the identity Y eY T
e D Im for any edge e,

each time an intersection appears, and taking expectation with respect to Y e1
, Y e2

for not repeated edges. By this last expression, the trace � of E
˚
T 0;uT

T
0;u

	
reads

� D m E
�
��2X

�
whereX is a random variable counting the number of intersections
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in two paths 1, 2 independently drawn from �n. Thus for �2 > ˇ,

m�1� D
X
x�0

��2x
�
P .X � x/ � P .X � x C 1/

�
(6.7)

D 1C
X
x>0

P .X � x/
�
��2x � ��2xC2

�
(6.8)

� 1C .1 � �2/
X
x>0

C
�
ˇ=�2

�x (6.9)

D 1C .1 � �2/
Cˇ

�2 � ˇ
; (6.10)

where the inequality follows from Eq. (6.3). Thus

E
˚�0T 0;u��1u � Im2F 	

D TrE
˚
�0T 0;uT

T
0;u�

T
0

	
� 2TrE

˚
�0T 0;u�

�1
u

	
Cm (6.11)

D � �m (6.12)

� .1 � �2/m
Cˇ

�2 � ˇ
; (6.13)

where we used Eq. (6.6) together with our previous bound on � .

E
˚
�0T 0;u.n/�

�1
u.n/

	
D Im ; (6.14)

E
˚�0T 0;u.n/��1u.n/ � Im2F 	 � C0m.1 � �2/ : (6.15)

We therefore conclude that there exist absolute constants �0 < 1, C0 such that, for
all � > �0

E
˚�0T 0;u.n/��1u.n/ � Im2F 	 � C0m.1 � �2/ : (6.16)

The claim follows from this bound and Eq. (6.6), using Markov inequality.

We next treat arbitrary pairs of vertices x; y by “stitching together” estimators
constructed in the last lemma. For this task, we use the following linear algebra
remark.
Lemma 6.2. For any two matrices X1, X2 2 Rm�m, we have

1C kX1X2 � IkF �
�
1C kX1 � IkF

��
1C kX2 � IkF

�
; (6.17)

Proof. Letting X i D I CAi , this follows formA1 CA2 CA1A2F � A1F C A2F C A1A2F (6.18)
�
A1F C A2F C A1F A2F : (6.19)
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We can now prove our main result, that is a strengthening of Theorem 1.
Theorem 5. Consider any d � 3 and fix " > 0. Then there exists an estimator
T D .Tu;v/u;v2V , and a constant �d ."/ < 1, such that, for all � > �d and all n,

P
˚�xT x;y��1y � ImF � "	 � " : (6.20)

Proof. Without loss of generality, assume x D 0.
First consider the case y D v.n/ D .n; 0; 0; : : : ; 0/. For n even and let w.n/ �

.n=2; n=2; n=2; 0; : : : ; 0/. Let .T .�/x;y/x;y2V be the estimator of Lemma 6.1 (where
we use only the observations on the subgraph induced by the hyperplane fx 2 Zd W
x4 D � � � D xd D 0g). Define

T
.#/
0;v.n/

D T
.�/

0;w.n/
T
.�/

w.n/;v.n/
: (6.21)

From the inequality (6.17), we get

k�0T
.#/
0;v.n/

��1v.n/ � IkF

�
�
1C k�0T

.�/

0;w.n/
��1w.n/ � IkF

��
1C k�w.n/T

.�/

w.n/;v.n/
��1v.n/ � IkF

�
� 1 :

and hence the claim follows from Lemma 6.1 using union bound (using "0 D "=3).
For n odd, the same claim follows by setting T .#/

0;v.n/
D T

.#/
0;v.n�1/

Y v.n�1/;v.n/.
Finally, by symmetry, the same result holds for y D v.j; n/ D n ej along any of the
coordinate axes.

Next consider the case of general y. For j 2 f0; : : : ; dg we define

w.j / � .y1; : : : ; yj ; 0; : : : ; 0/

(in particular, w.0/ D 0 and w.d/ D y) and let

T 0;y D T
.#/
w.0/;w.1/

T
.#/
w.1/;w.2/

� � �T
.#/
w.d�1/;w.d/

: (6.22)

By the argument above, for all � > ��."0/ we have

P
�
max
1�j�d

�w.j�1/T .#/w.j�1/;w.j /��1w.j / � ImF � "0� � d "0 : (6.23)

By repeated application of Inequality (6.17), on the complement of the event in the
right-hand side, one has

k�0T 0;y�
�1
y � Imk �

dY
jD1

�
k�w.j�1/T

.#/
w.j�1/;w.j /

��1w.j / � Imk C 1
�
� 1 � "02

d :

The claim follows by taking "0 D "=.2d / and by setting �d ."/ D ��."=2d /.
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7. Proof of Theorem 3

We give a multi-scale scheme to reconstruct the unknowns � D .�x/x2Z2
when

d D 2 although our approach could easily be generalized to any d � 3. Without
loss of generality we will consider pairs of vertices u; v in the positive quadrant. For
k � 0 let `k D 210k.kC1/. We partition the lattice Z2 into blocks of side-length `k
as follows,

B.k/u D
˚
.x1; x2/ 2 Z2 W ui D dxi=`ke

	
(7.1)

Let B.k/ be the set of blocks at level k and letDu;k denote the unique block in B.k/

containing u. For each block B 2 B.k/ we will define synchronization random
variables W .k/

B 2 f�1; 1g that are measurable with respect to fY xygx;y2B . Our
estimate for �u��1v is

Q
k�0W

.k/
Du;k

W
.k/
Dv;k

. For some large enough k? we have
that Du;k?

D Dv;k?
and so W .k/

Du;k
W
.k/
Dv;k

D 1 for all k � k?. The product of
synchronization variables at u up to level k will be denoted as

zW .k/
u D

kY
`D1

W
.`/
Du;`

: (7.2)

We say that two blocksB;B 0 2 B.k/ are adjacent (denotedB � B 0) if there exist
x 2 B; x 2 B 0 such that .x; x0/ 2 E. In this case there are exactly `k such pairs. We
say that B � B 0 is an honest edge if the following event holds

A.k/.B;B 0/ D

� X
x2B;x02B0

Y xx0�x�x0 �
9

10
`k

�
: (7.3)

This condition will mean that edges between vertices along the cut will be informative
as we try to synchronize them.

Next we recursively define the set of good level k blocks G .k/. A blockB 2 B.k/

is good if
� There is at most one bad .k � 1/-level sub-block of B , that isˇ̌˚

Bi 2 B.k�1/
W Bi � B;Bi 62 G .k�1/

	ˇ̌
� 1 : (7.4)

� All level k � 1 sub-block edges are honest,\
B1;B22B.k�1/

B1;B2�B; B1�B2

A.k�1/.B1; B2/ : (7.5)

Claim 7.1. There exists p? > 0 such that, if 0 < p < p? then for all B 2 B.k/

P .B 2 G .k// � 1 � 2�200k�200: (7.6)
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Proof. We will establish (7.6) inductively. Note that blocks at level 0 are good. First
we estimate the probability that the honest edge condition holds. Assuming that
p? �

1
40
,

P
�
A.k�1/.B1; B2/

�
D P

�
Bin.`k�1; 1 � p/ �

9

10
`k�1

�
� P

�
Bin

�
`k�1;

39

40

�
�
9

10
`k�1

�
� 1 � exp

�
� �210k.k�1/

�
for some � > 0. Thus

P
�
A.k�1/.B1; B2/

�
� 1 � 2�400k�800 (7.7)

for all sufficiently large k. By takingp? small enough equation (7.7) holds for small k
as well and thus for all k. Hence, since there are 240k level k � 1 sub-blocks in each
level k block we have that,

P

� \
B1;B22B.k�1/

B1;B2�B

A.k/.B1; B2/

�
� 1 � 240kC1 � 2�400.k�1/�800 � 1 � 2�200k�201 :

(7.8)
Since there are no bad sub-blocks at level 0 this implies (7.6) for k D 1. For some
k � 2, assume inductively that equation (7.6) holds up to k � 1. Then, since the
event that blocks are good are independent, for B 2 B.k/,

P
�ˇ̌˚
B 0 2 B.k�1/

W B 0 � B;B 0 … G .k�1/
	ˇ̌
� 2

�
D P

�
Bin

�
240k; 2�200.k�1/�200

�
� 2

�
�

 
240k

2

!�
2�200k

�2
� 2�320k � 2�200k�240 :

Combining with equation (7.8) we have that

P .B 2 G .k// � 1 � 2�200k�200 ;

as required.

Next we describe how to inductively construct the synchronization variablesW .k/
B

in a k C 1 block B�. For B1 � B2 k-level sub-blocks of B� we let

Y B1;B2
D sign

� X
B13x�y2B2

zW .k/
x
zW .k/
y Y xy

�
:
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We assign the W .k/
B as follows:

1. A quartet is a collection of 4 sub-blocks B1 � B2 � B3 � B4 � B1 that form a
square of side length 2`k . A quartet is incoherent if

Q4
iD1 Y Bi ;BiC1

D �1where we
take B5 D B1. Let I

.k/
B� be the set of sub-blocks of B

� that appear in no incoherent
quartets. It is possible for I

.k/
B� to be disconnected, in that case take I

.k/
B� to be the

largest component.
2. If possible, assign W .k/

B for all B 2 I
.k/
B� such that for all adjacent sub-blocks

B1; B2 2 I
.k/
B� we have that

W
.k/
B1
W
.k/
B2
D Y B1;B2

(7.9)

Denote the event that such an assignment is possible asH
.kC1/
B� . If such an assignment

is not possible set all the W .k/
B D 1. Set W .k/

B D 1 for all B 2 .I.k/B�/
c .

In the following we will write I D I.k/ D I
.k/
B� omitting arguments when clear from

the context. Note that on the event H
.kC1/
B� , the W .k/

B can be found efficiently by
assigning the variables iteratively to satisfy equation (7.9).
Claim 7.2. For k � 1, if B 2 G .k/ is good then the following hold:
(1) H

.k/
B holds.

(2) There exists a random variable S .k/B 2 f�1; 1g such that if x 2 B and on the
event

k�1\
jD0

˚
fDx;j 2 G .j /g \ fDx;j 2 I.j /g

	
(7.10)

we have that
�x D S

.k/
B
zW .k/
x : (7.11)

(3) Furthermore, for any B 0 2 G .k/ with B 0 � B ,X
x2B\@B0

S
.k/
B
zW .k/
x �x � .1 � 2

�8
C 2�10k/`k : (7.12)

(Here @B 0 � fx 2 Z2 W dist.x; B 0/ D 1g.)
Note that we do not (and cannot) construct S .k/B and observe that it is used in the

analysis but not the construction. It accounts for the fact that we can only hope to
recover the �u up to a global multiplicative shift.

Proof of Claim 7.2. We proceed inductively. In the base case when k D 0 for
x D B 2 G .0/ we may set S .0/x D �x . With the convention that an empty product
is 1 we have that zW .0/

x D 1 and so

�x D S
.0/
x
zW .0/
x :
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Now we assume the claim holds for all k0 < k and consider a good block B 2 G .k/.

1. For any good .k � 1/-level sub-blocks, B1 � B2 in B

Y B1;B2
D sign

� X
B13x�y2B2

zW .k�1/
x

zW .k�1/
y Y xy

�
D sign

�
S
.k�1/
B1

S
.k�1/
B2

X
B13x�y2B2

S
.k�1/
B1

zW .k�1/
x S

.k�1/
B2

zW .k�1/
y Y xy

�
:

(7.13)

Our inductive hypothesis implies that there are at most 2�8`k�1 vertices x in this
sum with S .k�1/B

zW
.k�1/
x ¤ �x , thusX

B13x�y2B2

S
.k�1/
B1

zW .k�1/
x S

.k�1/
B2

zW .k�1/
y Y xy �

X
B13x�y2B2

�x�yY xy�4�2
�8`k�1 ; (7.14)

and so since A.k�1/.B1; B2/ holds,X
B13x�y2B2

S
.k�1/
B1

zW .k�1/
x S

.k�1/
B2

zW .k�1/
y Y xy �

� 9
10
� 4 � 2�8

�
`k�1 > 0 : (7.15)

Combining with equation (7.13) we have that

Y B1;B2
D sign

�
S
.k�1/
B1

S
.k�1/
B2

�
: (7.16)

It follows that every quartet of good sub-blocks is coherent. If all of the .k � 1/-
level quartets of sub-blocks of B are coherent then there are exactly two assignments
of W .k�1/

Bi
(related by a multiplicative factor of �1) satisfying W .k�1/

B1
W
.k�1/
B2

D

Y B1;B2
. If there is one or more incoherent quartet, this must include the single bad

sub-block. The sub-blocks in I are good and there exist two assignments satisfying
W
.k/
B1
W
.k/
B2
D Y B1;B2

for all B1; B2 2 I, which are

W
.k�1/
Bi

� S
.k�1/
Bi

or W
.k�1/
Bi

� �S
.k�1/
Bi

: (7.17)

In either case the procedure will construct W .k/
Bi

satisfying (7.17) on I and H
.k/
B

holds. We set S .k/B so that

S
.k/
B W

.k�1/
Bi

� S
.k�1/
Bi

:

2. To verify condition (7.11) we see that for x 2 Bi ,

S
.k/
B
zW .k/
x D S

.k/
B W

.k/
Bi

zW .k�1/
x D S

.k�1/
Bi

zW .k�1/
x D �x ;

where the last equality used the inductive hypothesis.
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3. It remains to check the condition on the boundary of B adjacent to some good
block B 0. Since any sub-block in Ic must be in a quartet with a bad sub-block, there
are at most 3 on any side of B . Thus, summing over sub-blocks Bi of B we have thatX

x2B\@B0

S
.k/
B
zW .k/
x �x D

X
Bi WBi�B

0

X
x2Bi\@B

0

S
.k/
B
zW .k/
x �x

�

X
Bi2IWBi�B

0

X
Bi3x�y2B

0

S
.k/
B
zW .k/
x �x � 3`k�1

�
�
1 � 2�8 C 2�10.k�1/

�
`k�1

�
220k � 3

�
� 3`k�1

�
�
1 � 2�8 C 2�10k

�
`k;

which establishes (7.12).

By the proceeding claim, if u and v are in the same k-level block on the event

J.k/uv D

k�1\
jD0

˚
fDu;j ;Dv;j 2 G .k/g \ fDu;j ;Dv;j 2 Ig

	
we have that

zW .k�1/
u

zW .k�1/
v D �uS

.k/
B �vS

.k/
B D �u�v : (7.18)

so zW .k�1/
u

zW
.k�1/
v correctly recovers �u�v . A sufficient condition forDu;k 2G .k/\I

is thatDu;k and the 8 sub-blocks surrounding it are all good. Thus

P
�
J.k/uv

�
� 1 �

X
k0�1

18P
�
Du;k 2 G .k/

�
� 1 � 18

X
k0�1

2�200k�200 �
9

10
:

Thus
P
�
zW .k�1/
u

zW .k�1/
v D �u�v

�
�
8

10

and so the success probability of recovery is at least 8
10
> 1

2
independent of the

distance between u and v which completes the proof of Theorem 3.
Remark 7.1. This estimator in fact leads to a global estimator for all the � which, up
to a global sign flip, will correctly reconstruct a 9

10
fraction of the �u. The argument

readily generalizes to higher dimensions for discrete groups. An interesting question
is whether the multi-scale approach could be generalized to continuous groups when
d � 3 or d � 4. This seems more subtle as discreteness was used to rule out errors
that gradually accumulate over different scales.
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A. Proof of Eq. (2.1) for O.m/ synchronization

Here we prove the remark that, under the model of Example 1.2,

EfY xy j�g D �.�
2/��1x �y :

Fixing for simplicity x D 1, y D 2 and dropping the indices x; y unless necessary,
we have Y D zU zV

T
, where zX D ��11 �2 C �Z has singular value decomposition

zX D zU† zV
T
.

LetX D �1 zX��12 D U†V
T. Our claim is equivalent to EfUV T

j�g D �.�2/I .
By rotational invariance of the Gaussian distribution, we have X D I C � zG

for .Gij /1�i;j�m �iid N.0; 1/ or, equivalently, X D QT.I C � G /Q for any Q
in O.m/. Using the last representation,

E D EfUV T
j�g D EfQTUV TQj�g

for IC� G D U†V T. This implies thatQTEQ D E for any orthogonal matrixQ,
which can hold only if E D �I for some scalar �.

Continuity and the limit values of �.�2/ are straightforward.

B. Proof of Lemma 2.2

The first statement is a direct consequence of Pinsker inequality. Indeed, for any two
random variables X; Y , denoting by

I.U IW / D D
�
PU;W

PU � PW
�
� 2

PU;W � PU � PW
2

TV
: (B.1)

The claim follows by applying this inequality to U D Txy.Y /, W D ��1x �y .
In order to prove the second claim, note that, if .�x/x2V �iid PHaar, we have

��1x �y � PHaar

for any x ¤ y, and therefore, under the product measure, P
��1

x �y
� PTxy.Y / we

obtain Txy.Y /.��1x �y/�1 � PHaar. Therefore,P
.��1

x �y ;Txy.Y //
� P

��1
x �y

� PTxy.Y /


TV
�
P .Txy.Y /�

�1
y �x 2 � / � PHaar. � /


TV
:

(B.2)
However, both ��1y �x and Txy.Y / remains unchanged under the transformation
�v 7! R�v for some R 2 G. Therefore for any event A, letting R � PHaar, we have

P
�
�xTxy.Y /�

�1
y 2 A

�
D P

�
Txy.Y /�

�1
y �x 2 �

�1
x A�x

�
(B.3)

D ERP
�
Txy.Y /�

�1
y �x 2 R

�1AR
�

D EFA
�
Txy.Y /�

�1
y �x

�
; (B.4)
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where we used Fubini’s theorem, and introduced the function

FA.Z / � PR.Z 2 R
�1AR/:

We therefore have,P
�
�xTxy.Y /�

�1
y 2 �

�
� PHaar

�
�
�

TV

D sup
A

ˇ̌
EFA.Txy.Y /�

�1
y �x/ � EHaarF.Z /

ˇ̌
(B.5)

�
P .Txy.Y /�

�1
y �x 2 � / � PHaar. � /


TV

(B.6)
�
P

.��1
x �y ;Txy.Y //

� P
��1

x �y
� PTxy.Y /


TV
; (B.7)

which proves the claim.

C. Proof of Theorem 2

Let p � 1 � infy;�0
q.yj�0/. We can write the conditional probability density

q.yj�0/ (with respect to the Haar measure) as

q.yj�0/ D .1 � p/C p q�.yj�/ : (C.1)

Hence observations .Y xy/.x;y/2E can be generated as follows. First draw
independent random variables .Uxy/.x;y/2E �iid Bernoulli.p/. Then, for each
.x; y/ 2 E such that Uxy D 1, draw an independent observation

Y xy � q�. � j�
�1
x �y/:

For .x; y/ 2 E such that Uxy D 0, draw Y xy according to the Haar measure.
To upper bound the total variation distance in Eq (2.4) we consider the

easier problem in which instead of Y , we are given all the Bernoulli variables
U D .Uxy/.x;y/2E and, for each .x; y/ 2 E such that Uxy D 1 we are given the
group differenceDxy D �

�1
x �y . Denoting by

D D fDxyg.x;y/2E;UxyD1;

we then haveP
�
�xTxy.Y /�

�1
y 2 �

�
� PHaar

�
�
�

TV

� supeT xy

P
�
�xTxy.U ID/�

�1
y 2 �

�
� PHaar

�
�
�

TV
: (C.2)

Consider the percolation process defined by the variables U (whereby edge
.x; y/ 2 E is open if Uxy D 1), and denote by x �U y the event that x and y
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are in the same percolation cluster. If x and y are not in the same percolation cluster,
then the conditional distribution of ��1x �y conditional on U ID is uniformly on G.
This implies thatP

�
�xTxy.Y /�

�1
y 2 �

�
� PHaar

�
�
�

TV
� P .x �U y/ : (C.3)

For p < pc.d/, the right hand side goes to 0 as kx � yk ! 1 [13], which yields
the claim.

D. Proof of Theorem 4

For s 2 R and Z � g. � /, we define

 .s/ D kP
�
Zeis 2 �

�
� P

�
Z 2 �

�
k
2
L2.g/

D

Z 2�

0

�
g.ei.t�s//

g.ei.t//
� 1

�2
g.ei.t// dt

D

Z 2�

0

�
g.ei.t�s//

g.ei.t//

�2
g.ei.t// dt � 1 :

(D.1)

Note that  .s/ is twice differentiable, nonnegative and that  .0/ D 0 so  0.s/ D 0
and for some � D �.g/ > 0,

j .s/j � �jsj2: (D.2)

Let u; v 2 Z2 with L D ku � vk2, and define the function hWZ2 ! R by

h.x/ D 1 �
log

�
1Cmin.kx � uk2IL/

�
log.LC 1/

: (D.3)

Note that h.u/ D 1, h.v/ D 0 and h.x/ D 0 for kx � uk2 � L. Fix � 2 U.1/Z2 ,
s 2 Œ0; 2�/ and define �.s/ by letting �.s/x D eish.x/ �x . Let P�.Y 2 � / be the
the conditional distribution of the observations when the hidden variables are � D
.�x/x2V , and P

�.s/.Y 2 � /, when the hidden variables are �.s/ D .�.s/x /x2V . These
two measures are different because they correspond to data generated with different
values of the underlying hidden variables. Also, they depend onL because h. � /, and
hence �.s/ does.
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We then have, for a constant C ,P
�.s/

�
Y 2 �

�
� P�

�
Y 2 �

�2
TV

�
P
�.s/

�
Y 2 �

�
� P�

�
Y 2 �

�2
L2.P�/

(D.4)
.a/
D

Y
.x;y/2E

�
1C

P
�.s/

�
Y xy 2 �

�
� P�

�
Y xy 2 �

�2
L2

�
� 1 (D.5)

D

Y
.x;y/2E

�
1C  

�
s
�
h.x/ � h.y/

���
� 1 (D.6)

�

Y
.x;y/2E

�
1C � s2 jh.x/ � h.y/j2/

�
� 1 (D.7)

�

Y
.x;y/2E
kx�uk�L

n
1C

C�
1C kx � uk2

�
log2L

o
� 1 (D.8)

D O.1= logL/; (D.9)

where .a/ follows because both P� and P
�.s/ are product measures. Taking

expectation over s uniformly random in Œ0; 2�/ (denoted by Es), we have, for any
measurable set B ,

EsP�.s/

�
�uTuv.Y /�v 2 B

�
D EsP�.s/

�
�.s/u Tuv.Y /�

.s/;�1
v 2 eis B

�
; (D.10)

and thereforeˇ̌
EsP�.s/

�
�.s/u Tuv.Y /�

.s/;�1
v 2 eis B

�
�P�

�
�uTuv.Y /�

�1
v 2 B

�ˇ̌
D O

�
log.1=L/

�
:

(D.11)
We next take expectation with respect to .�x/x2Z2 i.i.d. uniform in U.1/. Note that
under this distribution, also .�x/x2Z2 are i.i.d. uniform in U.1/. Letting P . � / D
EP�. � /, we haveˇ̌

EsP
�
�uTuv.Y /�

�1
v 2 e

is B
�
� P

�
�uTuv.Y /�

�1
v 2 B

�ˇ̌
D O

�
log.1=L/

�
:

(D.12)
For any fixed B , �, Ps.� 2 eisB/ D PHaar.B/ and hence we getˇ̌

P�
�
�uTuv.Y /�

�1
v 2 B

�
� PHaar.B/

ˇ̌
D O

�
log.1=L/

�
: (D.13)

This proves the impossibility of weak recovery.
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