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Distributed function estimation:
Adaptation using minimal communication

Botond Szabó and Harry van Zanten

Abstract. We investigate whether in a distributed setting, adaptive estimation of a smooth func-
tion at the optimal rate is possible under minimal communication. It turns out that the answer
depends on the risk considered and on the number of servers over which the procedure is
distributed. We show that for the L1-risk, adaptively obtaining optimal rates under minimal
communication is not possible. For the L2-risk, it is possible over a range of regularities that
depends on the relation between the number of local servers and the total sample size.

1. Introduction

Distributed methods have attracted a lot of attention in the statistics and machine
learning communities recently. There are several reasons for this, the most promi-
nent ones being that they provide a way of dealing with large datasets and with
privacy considerations. The theoretical literature on distributed methods is still rather
minimal at the moment. A number of papers have recently investigated fundamental
performance limits in distributed models, in particular pointing out issues that occur
in high-dimensional or nonparametric problems, see for instance [1, 2, 4, 8, 17, 18, 21,
24,26,27,30]. For example, optimal rates in distributed function estimation depend on
the amount of communication that is allowed, and the relation of that amount with the
regularity of the unknown function. The lower bounds obtained in [25,28,31] and the
subsequent adaptation results in [25] show that in particular, automatically adapting
to the smoothness of the unknown function is a complicated issue in communication
restricted distributed settings. In the present paper we study this problem from a dif-
ferent, we think relevant and interesting perspective, not restricting communication a
priori, but asking for rate-optimal procedures that require minimal communication.

To be specific, we will consider a distributed signal estimation problem in which
we have m local machines and one central machine. At the i th machine we observe
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the random function X .i/ satisfying the stochastic differential equation

dX
.i/
t D f0.t/ dt C

r
m

n
dW

.i/
t ; t 2 Œ0; 1�; i D 1; 2; : : : ; m; (1.1)

where W .1/; : : : ; W .m/ are independent standard Wiener processes. The goal is to
estimate the function f0 2 L2Œ0; 1� which is assumed to have (Besov) regularity
s > 0. Each local machine independently processes its own data and then commu-
nicate simultaneously in a single round an estimator, or statistic to a central machine.
The central machine somehow aggregates all local estimators and produces a final
estimator yf for the unknown signal f0.

In the classical, non-distributed setting (m D 1) the minimax lower bound over
Besov balls of regularity s is known to be of the order n�s=.1C2s/ (e.g. [14]). Recently
established minimax results for distributed nonparametric methods (see [25, 28, 31],
and the appendix to this paper) show that this optimal rate can also be achieved in
the distributed case (m D mn ! 1), but only if each local machine is allowed to
communicate at least (up to a logarithmic factor) order n1=.1C2s/ bits of information
to the central machine (this is what the authors of [31] call the sufficient regime).

If the regularity s of the signal is known, a distributed strategy that achieves the
rate n�s=.1C2s/ under the restriction that the local machines communicate at most the
minimal order n1=.1C2s/ bits is easily constructed, see Theorem B.2 in the appendix.
The situation changes in an interesting way if s is unknown however. We study in this
paper to what degree it is in that case possible to estimate the signal at the optimal
rate n�s=.1C2s/, while at the same time only communicating order n1=.1C2s/ bits of
information between the local machines and the central one. The additional difficulty,
on top of the fact that we ask for rate-adaptive estimation, is that the local machines
must then ensure that they communicate at most of order n1=.1C2s/ bits using only
their local data, without knowing the regularity s. We stress that we do not put a
priori communication restrictions on the considered estimation procedures, but that
we study the question of estimation at the optimal rate, using minimal communication.

It turns out that whether or not this is possible for the L2-risk depends on the
relation between the number of machines m and the total sample size, or signal-to-
noise ratio n. We prove that if m D np for some p 2 .0; 1=2/, then:

� There exists a distributed estimator that is adaptive over any range of regularities
Œs1; s2� such that

0 < s1 < s2 <
1

4p
�
1

2
;

achieving the optimal rate and transmitting the minimal amount of bits.

� If
s2 > s1 >

1

4p
�
1

2
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however, then there exists no single-round distributed procedure that achieves the
optimal rate for every signal f with regularity in ¹s1; s2º, while transmitting the
minimal amount of bits.

Stated differently, when considering L2-risk, adaptively achieving the optimal rate
using minimal communication over a range of regularities Œs1; s2� is possible if and
only if

.2C 4s2/ logm < logn:

This shows that it is problematic if either the number of machines is too large, or the
range of regularities to which adaptation is required is too large.

The adaptive, minimal communication procedure that we propose in the first case
implicitly exploits the fact that for the L2-risk, there is a difference between lower
bounds for estimation and testing, see for instance [14, 16]. Indeed, we employ the
testing result of [10] to extract sufficient information about the regularity of the un-
known signal in the local servers, which we then use in the subsequent estimation
procedure. This approach depends crucially on the fact that we consider the L2-risk.
For the L1-risk there is no difference between testing and estimation rates and this
approach breaks down. In fact, we prove that for the L1-norm, adaptive estimation
at the optimal rate under minimal communication is never possible!

The impossibility results all derive from the fact that at the local servers, the sam-
ple size is too small to extract sufficient information about the regularity of a general
signal. This suggests that if we restrict to a class of “nice” signals for which we do
have access to such smoothness information from limited data, we should be able to
obtain optimal rates and minimal communication adaptively. We prove that this is
indeed the case if we consider the class of self-similar functions, cf. [13, 19], initially
considered in the context of adaptive nonparametric confidence sets, where similar
issues arise. See also for instance [6,7,13,20,22,23]. While noticing the fact that very
similar issues play a role, we are not able at the moment to obtain a more formal clar-
ification of the connection between our impossibility results for adaptive distributed
methods and the existing impossibility results for adaptive confidence sets.

The remainder of the paper is organised as follows. In the next section we present
our main results. Theorems 2.1 and 2.2 and Corollary 2.3 assert that whether simulta-
neous adaptation over a range of regularities and minimal communication is possible
for theL2 risk, depends on the relation between the range of regularities and the num-
ber of local machines. Theorem 2.5 shows that simultaneous adaptation and minimal
communication is not possible when L1 risk is considered. Finally, Theorem 2.6
asserts that it is possible under a self-similarity assumption. Proofs and auxiliary
results are deferred to Sections 3–4 and the appendices.
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1.1. Notations

For two positive sequences an; bn we use the notation an . bn if there exists a uni-
versal positive constant C such that an � Cbn. Along the lines an � bn denotes that
an . bn and bn . an hold simultaneously. In the proofs we use the notation C and c
for universal constants which value can differ from line to line and denote by #S or jS j
the cardinality of the finite set S . Furthermore, let l.Y / denote the length of a binary
string Y , and log x denote the logarithm with base 2, i.e. log2 x.

2. Main results

In our analysis we work with the distributed Gaussian white noise model also con-
sidered for instance in [24, 31], and which can be seen as an idealized version of
the nonparametric regression model. Our results can in principle be derived in the
regression context as well, similarly to we did in [25], or in a more general nonpara-
metric setting, see [28]. However, since the additional technical issues would seriously
lengthen the already long paper and would add no fundamental insight, we formulate
everything in the signal in white noise setting in this paper.

As explained in the introduction, we assume that we have m local machines and
that at the i th machine we observe the random function X .i/ given by the stochastic
differential equation (1.1). Parallel to each other, the local machines carry out a local
statistical procedure and transmit the results to a central machine simultaneously, in
one round, which constructs the final estimator yf for the functional parameter f0
by somehow aggregating the local outcomes. The number of bits transmitted from
machine i to the central machine is denoted by yB.i/. It is allowed to depend on the
number of machines m and the local data X .i/, i.e. yB.i/ D yB.i/.X .i//, and hence
it is a random variable in general. We will impose a smoothness condition on f0,
assuming that either f0 2 Bs2;1.L/ or f0 2 Bs1;1.L/, see Appendix A for a rigorous
introduction of these Besov classes. The first class is of Sobolev type, while the second
one is of Hölder type.

2.1. Adaptation in L2

We show that in case of the L2-risk one can only adapt up to a limited range of
smoothness levels (depending on the number of local machines). Outside that range
one will achieve sub-optimal rates (where the rate is sub-optimal by a polynomial
factor). The following theorem is our first main result.

Theorem 2.1. Suppose that m D np for some p 2 .0; 1=2/. Then for any regularity
parameters s2 > s1 > 1=.4p/ � 1=2 there does not exist a single-round distributed



Distributed function estimation: Adaptation using minimal communication 163

estimator yf with yB.i/ � .L2n/1=.1C2s1/C"1 logn such that for l D 1; 2, we have

max
i2¹1;:::;mº

sup
f02B

sl
2;1

.L/

E
.i/

f0
yB.i/ . .L2n/

1
1C2sl

C"1 ; (2.1)

sup
f02B

sl
2;1

.L/

Ef0k
yf � f0k

2
2 . L

1
1C2sl

C"2n
�

2sl
1C2sl

C"2 ; (2.2)

for some small enough constants "1; "2 > 0 depending only on s1; s2 and p.

Proof. See Section 3.1.

The theorem tells us that considering even just two regularity classes (with regu-
larities above some threshold level) there does not exist any single round distributed
method that transmits the minimal amount of bits (multiplied by some (small) poly-
nomial factor) and at the same time achieves the minimax rate in both smoothness
classes (again up to a (small) polynomial factor). A formal definition of the minimal
amount of transmitted bits is given in (B.1) in the Appendix. This negative result
delivers a strong message. It shows that the issue of non-existence of an adaptive,
rate-optimal distributed procedure using minimal communication cannot be resolved
by allowing extra logarithmic factors, but is on the polynomial level.

The phenomenon behind the negative result is that in case of many local machines
(large m) it is getting more difficult to test locally between the regularity classes (as
the local “sample size” decreases in m) and also the “local regularity” of the function
which one can judge at noise levelm=nmight be completely different than the “global
regularity” of the truth which can be judged at a smaller noise level 1=n.

Although full adaptation is not possible, it turns out that on a limited range of
regularity levels it is possible to construct adaptive methods. Below we derive the
complement of the results in Theorem 2.1 by describing a procedure which adapts
to arbitrary two fixed regularities below the threshold 1=.4p/ � 1=2, i.e. 0 < s1 <

s2 � 1=.4p/ � 1=2, and transmits the minimal number of bits at the same time. The
proposed procedure has two stages. First we “estimate” the smoothness of the under-
lying functional parameter of interest in every local machine parallel to each other and
based on that transmit the right amount of information to the central machine. In the
second stage we aggregate the locally transmitted information and provide a “global”
adaptive estimator. We describe the procedure in more details below.

In our procedure we work with the equivalent sequence representation of the
model using the Daubechies wavelets, i.e. in each machine i D 1; : : : ; m we observe
the noise random variables

X
.i/

jk
D

Z 1

0

 jk.t/ dX
.i/.t/ D f0;jk C

r
m

n
Z
.i/

jk
; j D 0; 1; 2; : : : I k D 1; : : : ; 2j ;

(2.3)
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where  jk.t/, t 2 Œ0; 1� are the Daubechies wavelet bases, f0;jk D
R 1
0
 jk.t/f0.t/ dt

are the wavelet coefficients of f0 and Z.i/
jk

are iid standard normal random vari-
ables. In Section A in the appendix we have collected a few properties of Daubechies
wavelets which we will apply throughout the paper.

As a first step we split the data in all of the local models i 2 ¹1; : : : ; mº into two
subsets X .i;1/

jk
; X

.i;2/

jk
for j D 0; 1; 2; : : :, k D 1; : : : ; 2j , such that they are pairwise

independent and their variance is 2m=n (this can be done by adding and subtracting
zZ
.i/

jk

iid
� N.0;m=n/ from X

.i/

jk
).

Next note that it was shown in [10] that there exists a consistent composite test
between the classes Bs22;1.L/ and Bs12;1.L/ in the local problem using the first subset
of observations X .i;1/ if they are at least L.1=2/=.1=2C2s1/.n=m/�s1=.1=2C2s1/ sepa-
rated. The test proposed in Section 3 of [10] takes the form (in the local machines
using the first subset of observations X .i;1/)

‰
.i/

n=m
D ‰

.i/

n=m
.˛; s1; s2/ D 1 �

Y
0�l�b

log.L2n=.2m//
2s1C1=2

c

1
¹T
.i/

n=m
.l/�tn=m.l;s2;˛/º

; (2.4)

where

tn=m.l; s2; ˛/ D
L2

22ls2
C

L

2ls2
�l C

�2
l

4
;

�l D 24

r
1

˛

2
lCb

log.L2n=.2m//
1=2C2s2

cp
n=.2m/

for l > 0;

�0 D 24

r
1

˛

1p
n=.2m/

;

T
.i/

n=m
.l/ D k…l

yf
.i/

n=m
k
2
2 �m2

lC1=n for l > 0;

T
.i/

n=m
.0/ D k…0

yf
.i/

n=m
k
2
2 � 2m=n;

˛ D n
�
2s1.1=2�p.1C2s1//

.1C2s1/.1=2C2s1/ ;

where …lf denotes the projection of the function f to the resolution level l , i.e.

…lf D

2lX
kD1

flk l;k;

see [10, (3.1), (3.2)], and yf .i/
n=m

is the wavelet estimate of f in the i th local machine
using observations X .i;1/, see [10, top of p. 6].
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Using the test function above, we define the smoothness estimate at each local
machine as

ys
.i/

n=m
D

´
s2; if ‰.i/

n=m
D 0;

s1; if ‰.i/
n=m
D 1:

In each local model we take the first .L2n/1=.1C2ys
.i/

n=m
/ coefficients in the second sub-

set of observations in the sequence representation, i.e.

X
.i;2/

jk
with 2j C k � .L2n/

1

1C2ys
.i/
n=m :

Since these numbers might note have a finite binary representation we transmit their
approximations Y .i/

jk
following Algorithm 1, in Section 4.

Let us denote by zN the median of the values .L2n/1=.1C2ys
.i/

n=m
/, i D 1; : : : ;m and ys

the corresponding regularity estimator at the central machine. The central machine
then constructs the estimator yf as the average of the transmitted observations (for the
first zN coefficient), i.e.

yfn;jk D

´
1
jMjk j

P
i2Mjk

Y
.i/

jk
; for 2j C k � zN;

0; for 2j C k > zN;

whereMjk is the collection of local machines satisfying 2j C k � .L2n/1=.1C2ys
.i/

n=m
/,

i.e. the machines from which the local approximations Y .i/
jk

are transmitted.
We state below that the above described procedure achieves the adaptive rate and

transmits the minimum number of required bits .L2n/1=.1C2s/ (up to a logarithmic
factor).

Theorem 2.2. For arbitrary 0 < s1 < s2 � 1=.4p/� 1=2 andm� 5 logn there exists
a distributed estimator yf with number of transmitted bits . yB.1/; : : : ; yB.m//, such that
yB.i/ � .L2n/1=.1C2s1/ logn, i D 1; : : : ; m, and for all s 2 ¹s1; s2º, we have

max
i2¹1;:::;mº

sup
f02B

s
2;1

.L/

E
.i/

f0
yB.i/ . .L2n/

1
1C2s logn;

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 . L

2
1C2s n�

2s
1C2s :

Proof. See Section 3.2.

The difficulty, as also discussed above, arises from the higher noise level in the
local problems which results in less accurate tests between the smoothness classes.
The existence of an estimator which can achieve adaptation (in a limited range of
smoothness classes) is a consequence of the difference between the nonparametric
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testing and estimation rates in the case of the L2-norm, see for instance [14, 16].
Since one can test between smoothness classes with a faster rate than the correspond-
ing estimation rate, it can compensate (up to some extent) for the higher local noise
level m=n.

The preceding result can be extended to a scale of smoothness classes as well.
Let us consider the collection of regularity classes s0 2 Œs1; s2�, where s0 denotes
the regularity of the truth we want to adapt to. The idea behind the approach is to
introduce a fine enough grid of regularities in the interval Œs1; s2� and test between
which two grid points the true regularity lies. Then one can apply the distributed
method introduced above to these two grid points.

More concretely, similarly to the previous, simpler setting, we divide the data in
each machine to two independent samples X .i;1/ and X .i;2/. Let �n denote a 1= logn-
grid of the interval Œs1; s2�, i.e. �n D ¹s1; s1 C 1= log n; : : : ; s2º. We will describe
next a testing procedure for the regularity hyper-parameter s0. Let us compute the test
‰
.i/

n=m
.M�1n;t ; t; s/ for all t < s, s; t 2 �n and take ys.i/

n=m
to be the largest regularity s for

which the null hypothesis was retained for every t < s, i.e.

ys
.i/

n=m
D max¹s 2 �n W ‰

.i/

n=m
.M�1n;t ; t; s/ D 0; 8t < sº: (2.5)

The aggregated regularity estimator ys and the distributed estimator yf is then con-
structed the same way as above, but using the estimator ys.i/

n=m
given in (2.5). We state

below that this procedure adapts both to the minimax risk and the minimum number
of required communication.

Corollary 2.3. Assume that m D np for some 0 < p<1=2, then for arbitrary 0 <
s1 < s2 < 1=.4p/ � 1=2 and m � 5 log n there exists a distributed estimator yf
transmitting yB.i/ bits in the local machines i D 1; : : : ; m satisfying that yB.i/ �
.L2n/1=.1C2s1/ logn and

max
iD1;:::;m

sup
s2Œs1;s2�

sup
f02B

s
2;1

.L/

E
.i/

f0
yB.i/

.L2n/1=.1C2s/ logn
. 1;

sup
s2Œs1;s2�

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2

L2=.1C2s/n�2s=.1C2s/
. 1:

Proof. See Section 3.3.

Remark 2.4. We note that our procedure considers a fixed L > 0. In principle one
could allowL to tend to infinity arbitrarily slowly and then our procedure would cover
all regularity balls with constant radius for a price of an asymptotically negligible
term. Alternatively one could modify our procedure to adapt to the radius L as well.
The difficulty is that f0 can belong to multiple Besov balls Bs2;1.L/ corresponding
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to different pairs of radius and regularity hyper-parameters and our goal is to adapt to
the most appropriate one. We describe below our approach.

Let us assume that L 2 Œ1; n� and take the dyadic grid of this interval. For each
grid point Lj D 2j , j D 0; : : : ; blog nc, we construct the local regularity estima-
tors ys.i/

n=m
.Lj / following our approach described above and based on them we can

construct the global estimators for the regularity and the functional parameter. All
these pairs satisfy the guarantees given in Theorem 2.3 for radius Lj and corre-
sponding regularity hyper-parameter sj . After obtaining these log n pairs of local
estimators .Lj ; ys

.i/

n=m
.Lj // we simply transmit the local approximations of the first

min
j
.L2j n/

1

1C2ys
.i/
n=m

.Lj /

wavelet coefficients. Then by slightly adapting the aggregation technique described
earlier we obtain an optimal procedure up to a logarithmic factor.1

2.2. Adaptation in L1

Next we deal with the L1-norm case. Here we show that in contrast to the L2-case,
adaptation is not possible even on a limited range of smoothness classes. The reason
behind it is that in this case the minimax testing and estimation rates are the same and
hence there is no room left to compensate for the higher local noise level.

Theorem 2.5. Take any 0 < s1 < s2 and assume that m D np , with p 2 .0; 1=2/.
Then there does not exist a distributed estimator yf with transmitted bits yB.i/ �
n1=.1C2s1/C"1 , i D 1; : : : ; m, satisfying, for ` D 1; 2, that

max
iD1;:::;m

sup
f02B

s`
1;1.L/

E
.i/

f0
yB.i/ . .L2n/

1
1C2s`

C"1 ; (2.6)

sup
f02B

s`
1;1.L/

Ef0k
yf � f0k1 . L

1
1C2sl

C"2.n= logn/�
s`

1C2s`
C"2 ; (2.7)

for some sufficiently small "1; "2 > 0.

Proof. See Section 3.4.

Next we introduce some additional restriction on the true function of interest under
which adaptation is possible in the distributed setting. To do so, we consider the so-
called self-similarity assumption, where loosely speaking we assume that the true

1For an alternative approach reaching adaptation in a somewhat modified and extended
setting we refer to the recent manuscript [9] submitted after our paper.
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function has similar smoothness at every resolution level. This will allow us to esti-
mate the regularity s of the functional parameter of interest and therefore transmit the
right amount of bits from the local machines to the central one.

We first introduce necessary notation. Let  jk be the wavelet basis functions
described in Appendix A. For f 2 L2Œ0; 1� and natural numbers j1 � j2 we define

fŒj1;j2� D

j2X
jDj1

2jX
kD1

fjk jk :

Then following [5] we say that the function f 2 Bs1;1.L/ belongs to the self-similar
class S s1.L; "; j0; �/ if

kfŒj;�j �kBs1;1 � "L for j � j0 and � > 1. (2.8)

The self-similarity property was introduced (amongst other places) in the con-
text of adaptive confidence bands. It was shown that under self-similarity one can
construct adaptive L1 confidence bands whose size also adapts to the level of regu-
larity, see for instance [5, 13, 19]. The underlying idea is the same as here. Under this
assumption one can provide a consistent estimator for the smoothness and based on
that construct the band corresponding the function class.

The following theorem shows that under the self-similarity assumption there exists
a distributed method which adapts to regularity and at the same time transmits the
minimal amount of bits (again up to logarithmic factors).

Theorem 2.6. Consider the distributed Gaussian white noise model with m � nı ,
for some ı 2 .0; 1/ and assume that f0 2 Bs1;1.L/ for some s 2 Œs1; s2� (where
0< s1 < s2 are arbitrary). Then there exists a distributed method such that the number
of transmitted bits satisfies yB.i/ � .L2n= logn/1=.1C2s1/ logn and

max
i2¹1;:::;mº

sup
s2Œs1;s2�

sup
f02S

s
1.L;";j0;�/

E
.i/

f0
yB.i/

.L2n/
1

1C2s .logn/
2s
1C2s

. 1;

sup
s2Œs1;s2�

sup
f02S

s
1.L;";j0;�/

Ef0k
yf � f0k1

L
1

1C2s .n= logn/�
s

1C2s

. 1:

Proof. See Section 3.5.

3. Proofs

3.1. Proof of Theorem 2.1

We argue by contradiction. We assume that the inequalities (2.1) and (2.2) hold. Then
we construct a finite but large enough set F0 �B

s1
2;1.L/ such that there does not exist
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a consistent test between the elements of the set and the zero function, which clearly
belongs to the smoother class Bs22;1.L/. Using this non-existence result we arrive to
contradiction with our assumptions.

As a first step we construct the set F0. Let us introduce the following notations

zın D xın ^ .L
2n=m/

�
1C2s1
1=2C2s1 .L2n/�"3 ; (3.1)

with

xın D L
�2 min

²
m

n logn
;

1

nŒxı
1=.1C2s1/
n bn logn ^ 1�

³
;

bn D
�
�n _ .L

2n/
"1�

.s1C1=4/"3
1C2s1 .L2n/

1
1C2s1

�
logn;

�n D .L
2n/

1=2
1C2s1

C
1=2
1C2s2

C"1 ;

and constants

"3 2

�
0;
p.1C 2s1/ � 1=2

1=2C 2s1

�
;

where p.1C 2s1/ � 1=2 > 0 follows from the assumption s1 > 1=.4p/ � 1=2, and

"1 2

�
0;

s2 � s1

.1C 2s1/.1C 2s2/
^
.s1 C 1=4/"3

1C 2s1

�
:

Note that bn � .L2n/1=.1C2s1/�"4 logn, with

"4 D

�
s2 � s1

.1C 2s1/.1C 2s2/
� "1

�
^

�
.s1 C 1=4/"3

1C 2s1
� "1

�
> 0:

In view of the definition of xın this implies that

xın �
.L2n/

"4
1C2s1
2C2s1

L2n logn
� .L2n/�1C

"4
2 :

Furthermore,

.L2n=m/
�

1C2s1
1=2C2s1 .L2n/�"3 D .L2n/

�.1�p/
1C2s1
1=2C2s1

�"3

D .L2n/�1.L2n/
p.1C2s1/�1=2

1=2C2s1
�"3 :

Therefore, we can conclude that for large enough n, we obtain

zın � .L
2n/�1C"5 with "5 D ."4=2/ ^

�
p.1C 2s1/ � 1=2

1=2C 2s1
� "3

�
> 0: (3.2)
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The elements f 2 F0 are then defined with the wavelet coefficients as

fjk D

´
Lˇkzı

1=2
n ; if j D jn WD b

log zı�1n
1C2s1

c, k D 1; : : : ; 2jn ;

0; else;
(3.3)

where ˇk 2 ¹�1; 1º. It is easy to check that F0 � B
s1
2;1.L/ and besides, for every

f 2 F0, in view of the definition of zın,

k0 � f k22 D

1X
jD0

2jX
kD1

f 2jk D L
22jnzın � L

2zı

2s1
1C2s1
n D o

�
L

1
1=2C2s1 .n=m/

�
2s1

1=2C2s1

�
:

Next we take the average likelihood ratio over the class F0:

Z D
1

jF0j

X
f 2F0

dP
.i/

f

dP
.i/
0

; where jF0j D 2jn :

In view of [14, (6.23)],

inf
‰.i/

²
E
.i/
0 ‰

.i/
C

1

jF0j

X
f 2F0

E
.i/

f
.1 �‰.i//

³
� .1 � �n/

�
1 �

q
E
.i/
0 .Z � 1/

2

�n

�
;

(3.4)
for every �n 2 .0; 1/, where the infimum is taken over all local tests in the local
problems. Furthermore, one can show by following the steps in the proof of Theo-
rem 6.2.11 (c) on pages 493–494 of [14] (with 
 0

L2n=m
D c20.n=m/

zın and 
n=m D
.L2n=m/zı

.1=2C2s1/=.1C2s1/
n � .L2n/�..1=2C2s1/=.1C2s1//"3) that

E
.i/
0 .Z � 1/

2
� exp¹c0
2n=mº � 1 . 
2n=m . .L2n/

�
1C4s1
1C2s1

"3 :

By choosing �n D .L2n/�..1=4Cs1/"3/=.1C2s1/, we get that

inf
‰.i/

²
E
.i/
0 ‰

.i/
C

1

jF0j

X
f 2F0

E
.i/

f
.1 �‰.i//

³
� .1 � C�n/

2; (3.5)

for some large enough constant C > 0, concluding the proof of the non-existence of
consistent tests between F0 and the zero function.

Next we show that (3.5) contradicts our assumptions. Let us define the test

‰.i/ D 1 yB.i/��n :

First note that following from Markov’s inequality and assumption (2.1),

E
.i/
0 ‰

.i/
D P

.i/
0 . yB.i/ � �n/ � E

.i/
0 .
yB.i//=�n � .L

2n/
1=2
1C2s2

�
1=2
1C2s1 D o.1/:
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Therefore in view of (3.5), we have that

1

jF0j

X
f 2F0

P
.i/

f
. yB.i/ < �n/ D

1

jF0j

X
f 2F0

E
.i/

f
.1 �‰.i//

� .1 � C�n/
2
� .L2n/

1=2
1C2s2

�
1=2
1C2s1 :

As a consequence and in view of assumption yB.i/ � C.L2n/1=.1C2s1/C"1 log n, we
have
1

jF0j

X
f 2F0

E
.i/

f
yB.i/ . �n C .L

2n/
1

1C2s1
C"1.logn/

�
�n C .L

2n/
1=2
1C2s2

�
1=2
1C2s1

�
. bn:

This means that the expected number (with respect to the joint distribution of the
variables F and Pf , f 2 F0) of transmitted bits on the class F0 is bounded from
above by a multiple of bn. So the distributed estimator satisfies assertion (B.7) in the
proof of Theorem B.3 with B.i/ replaced by Cbn. Hence in view of the minimax
lower bound derived in assertion (B.9) and the definition of zın (with B.i/ replaced
by bn in the definition of ın in the proof of Theorem B.3)

sup
f02F0

Ef0k
yf � f0k

2
2 & L2zı

2s1
1C2s1
n � L

2
1C2s1

C"2n
�

2s1
1C2s1

C"2 ;

with "2 D 2"5s1=.1C 2s1/, where the last inequality follows from (3.2). This contra-
dicts assumption (2.2), finishing the proof of our statement.

3.2. Proof of Theorem 2.2

Let us then denote by PX.i;1/ and PX.i;2/ the distribution of the first and second sub-
set of observations, respectively, and by PX.i;2/jX.i;1/ the conditional distribution of
the second subset given the first. The corresponding expected values are denoted
by EX.i;1/ ; EX.i;2/ , and EX.i;2/jX.i;1/ , respectively. Furthermore, let us introduce the
notations Xl D .X .1;l/; : : : ; X .m;l//, l D 1; 2 and denote by PXl and EXl the corre-
sponding probability distributions and expected values. Finally, we also note that we
took z0 D 1 in the test proposed in [10, Section 3] (since for notational convenience
we take J0 D 0, see Section A, hence we have z0 D 2J0 D 1).

Let us introduce the notation

Rs1˛ .L/ D
°
f 2 B

s1
2;1.L/ W kf � B

s2
2;1.L/k2 �

zC˛L
1=2

1=2C2s1 .n=m/
�

s1
1=2C2s1

±
:

In view of Lemma 4.4, we have for all ˛ 2 .0; 1/ and 0 < m � n the test given in (2.4)
satisfies that

sup
f 2B

s2
2;1

.L/

EX.i;1/‰
.i/

n=m
C sup
f 2R

s1
˛ .L/

EX.i;1/.1 �‰
.i/

n=m
/ � ce�0:5=

p
˛; (3.6)
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with
zC˛ D 24

�
2s1

p
1 � 2�2s1

C 19

�
2

s1
1C2s1 =

p
˛

and c not depending on ˛;n;m. LetMnD n
2s1.1=2�p.1C2s1//

.1C2s1/.1=2C2s1/ tending to infinity (where
the positivity of the exponent follows from the assumption s1 < 1=.4p/� 1=2). Then
the above test ‰.i/

n=m
(with ˛ DM�1n ) is consistent in each local problem between the

hypotheses
H0Wf 2 B

s2
2;1.L/ vs. H1Wf 2 R

s1

M�1n
.L/:

Note that in view of Lemma 4.2 (with � D f0;jk) we have that l.Y .i/
jk
/ � log n

with approximation error

j"
.i/

jk
j D jX

.i;2/

jk
� Y

.i/

jk
j � n�1=2

on a set E
.i/

jk
with PX.i;2..E

.i/

jk
/c/ � e�c

0n, for some c0 > 0. Let us then introduce the
notation

E D \miD1 \
logn
jD0 \

2j

kD1E
.i/

jk
(3.7)

and note that PX2.E
c/ � n2e�c

0n . e�cn, for any 0 < c < c0. Hence, the number of
transmitted bits conditioned on the first subsample X .i;1/ is bounded from above by
l.Y .i// � .L2n/

1=.1C2ys
.i/

n=m
/ logn almost surely.

We show that this procedure achieves the minimax convergence rate and trans-
mits the optimal amount of bits (up to a logarithmic factor). First note that yB.i/ .
.L2n/1=.1C2s1/ log n follows immediately by construction. Then recall that the test
‰
.i/

n=m
is consistent, hence

sup
f 2B

s2
2;1

.L/

PX.i;1/.ys
.i/

n=m
D s1/ � Ce

�M
1=2
n =2

and

sup
f 2B

s2
2;1

.L/

EX.i;1/;X.i;2/
yB.i/ � sup

f 2B
s2
2;1

.L/

EX.i;1/.L
2n/

1

1C2ys
.i/
n=m logn

� .L2n/
1

1C2s2 lognC Ce�M
1=2
n =2.L2n/

1
1C2s1 logn

� .1C o.1//.L2n/
1

1C2s2 logn;

verifying that the number of transmitted bits is indeed optimal.
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Next we provide optimal upper bounds for the risk. First let us consider the case
f 2 B

s2
2;1.L/ [R

s1

M�1n
.L/, where the estimator ys.i/

n=m
is consistent, i.e.

ys
.i/

n=m
D s1 for f 2 Rs1

M�1n
.L/;

ys
.i/

n=m
D s2 for f 2 Bs22;1.L/;

with PX.i;1/-probability at least 1 � ce�M
1=2
n =2. Let us introduce the notation M for

the number of machines in ¹1; : : : ; mº, where ys.i/
n=m
¤ sl , l D 2; 1, for f 2 Bs22;1.L/

or f 2Rs1
M�1n

.L/, respectively. Note that M has a binomial distribution with parame-
ters m and p � ce�M

1=2
n =2. Then by Hoeffding’s inequality

sup
f 2R

s1

M�1n

.L/

PX1
�
zN ¤ .L2n/

1
1C2s1

�
C sup
f 2B

s2
2;1

.L/

PX1
�
zN ¤ .L2n/

1
1C2s2

�
� P

�
M � m=2

�
< e�m=5: (3.8)

Then in view of the almost sure inequality zN � .L2n/1=.1C2s1/, we have that

sup
f 2R

s1

M�1n

.L/

EX1
zN�2s1 D .L2n/

�
2s1
1C2s2 PX1.M � m=2/

C .L2n/
�

2s1
1C2s1 PX1.M < m=2/

� .1C o.1//.L2n/
�

2s1
1C2s1 ; (3.9)

sup
f 2B

s2
2;1

.L/

EX1
zN D .L2n/

1
1C2s2 PX1.M < m=2/

C .L2n/
1

1C2s1 PX1.M � m=2/

� .L2n/1=.1C2s2/ C .L2n/1=.1C2s1/e�m=5

� .1C o.1//.L2n/1=.1C2s2/; (3.10)

for m � 5 log.L2n/ � 10.s2�s1/
.2s1C1/.2s2C1/

log.L2n/.
Then similarly to the proof of Theorem B.2 (with m replaced by jMjkj), we get

on the set E (with PX2.E
c/ � e�cn), that

yfn;jk D f0;jk C
1
p
n
Zjk C "jk;

with
Zjk

iid
� N

�
0;

q
2m=jMjkj

�
and j"jkj � n

�1=2:
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Also note that j yfn;kj �
p
n, since jY .i/

jk
j �
p
n for all i; j; k. Using this reformulation

of the estimator and the notation zjn D blog zN c, we get that

sup
f 2B

sl
2;1

.L/

EX2jX1k
yf � f0k

2
21E �

X
j�zjn

2jX
kD1

f 20;jkC

zjnX
jD0

2jX
kD1

E
� 1
p
n
Zjk C "jk

�2
1E

�

X
j�zjn

2�2jsl sup
j�zjn

22jsl
2jX
kD1

f 20;jk C

zjnX
jD0

2jX
kD1

2E.Z2
jk
/

n
C
2

n

� L22�2jnsl C .2
zjnC2 C 2/=n � L2 zN�2sl C zN=n;

sup
f 2B

sl
2;1

.L/

EX2jX1k
yf � f0k

2
21Ec � PX2.E

c/2
zjnC1.nC L2/ D o.n�1/; (3.11)

for l D 1; 2. Therefore, in view of assertion (3.9),

sup
f 2B

s2
2;1

.L/

EX1;X2k
yf � f0k

2
2 . sup

f 2B
s2
2;1

.L/

EX1
�
L2 zN�2s2 C zN=n

�
. L

2
1C2s2 n�2s2=.1C2s2/;

sup
f 2R

s1

M�1n

.L/

EX1;X2k
yf � f0k

2
2 . sup

f 2R
s1

M�1n

.L/

EX1
�
L2 zN�2s1 C zN=n

�
. L

2
1C2s1 n�2s1=.1C2s1/:

It remains to deal with the intermediate set, i.e. f0 2 B
s1
2;1.L/nR

s1

M�1n
.L/. Our

local estimator ys.i/
n=m

will be either s1 or s2, hence for each machine the amount of
transmitted bits is bounded from above by

.L2n/
1

1C2ys
.i/
n logn � .L2n/

1
1C2s1 logn

PX.i;2/-almost surely. Note that the median zN also satisfies almost surely that

.L2n/
1

1C2s1 � zN � .L2n/
1

1C2s2 :

Then, using the notation f0;j�zjn D
Pzjn
jD0 f0;jk jk , we get similarly to above, that

EX1;X2k
yf � f0;j�zjnk

2
2 � EX1

zjnX
jD0

2jX
kD1

EX2jX1

� 1
p
n
Zjk C "jk

�2
C o.n�1/

. EX1
zN=n � L

2
1C2s1 n

�
2s1
1C2s1 : (3.12)
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To deal with the bias term let us denote by zf 2 Bs22;1.L/ a function satisfying

kf0 � zf k
2
2 . zC 2

M�1n
L

1
1=2C2s1 .n=m/

�
2s1

1=2C2s1 ;

then by recalling that

.n=m/
1

1=2C2s1 D n
1�p

1=2C2s1 D n
1=2�p.1C2s1/

.1C2s1/.1=2C2s1/n
1

1C2s1 ;

we get that

EX1kf0;j�zjn � f0k
2
2 � EX1

1X
jDzjn

2jX
kD1

f 20;jk

� 2EX1

� 1X
jDzjn

2jX
kD1

.f0;jk � zfjk/
2
C sup
j�zjn

�
22js2

2jX
kD1

zf 2jk

� 1X
jDzjn

2�2js2
�

. zC 2
M�1n

L
1

1=2C2s1 .n=m/
�

2s1
1=2C2s1 CEX1L

2 zN�2s2 . L
2

1C2s1 n
�

2s1
1C2s1 ; (3.13)

where the last inequality follows from zCM�1n � n
s1.1=2�p.1C2s1//

.1C2s1/.1=2C2s1/ . Then by combining
(3.12) and (3.13), we get that

EX1;X2k
yf � f0k

2
2 . L

2
1C2s1 n

�
2s1
1C2s1 ;

concluding the proof of the theorem.

3.3. Proof of Corollary 2.3

Let us introduce the notation s D s1 C 
n= logn for some 0 � 
n � d.s2 � s1/ logne,

n 2 N, the lower bound of the 1= log n-bin containing s0, i.e. s0 2 Œs; s C 1= log n�.
Then the probability of under smoothing is bounded from above by

.
n � 1/
2
� .s2 � s1/

2 log2 n

times the probability of rejecting the correct null-hypothesis. Hence, in view of asser-
tion (3.6) and the monotone decreasing property of the function s 7! Mn;s , we get
that

P
�
ys
.i/

n=m
< s

�
. .s2 � s1/

2.logn/2e�M
1=2
n;s2

=2
D o.1/:

This implies, for all i 2 ¹1; : : : ; mº, that

EX.i;1/;X.i;2/
yB.i/ D EX.i;1/

yB.i/ � EX.i;1/.L
2n/

1

1C2ys
.i/
n=m logn

. .L2n/
1

1C2s lognC .L2n/
1

1C2s1 e�M
1=2
n;s2

=2 log2 n

. .L2n/
1

1C2s0 logn;
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and similarly to assertions (3.8) and (3.9) that

PX1.ys < s/ D PX1
�
zN > .L2n/

1
1C2s

�
� e�m=5 (3.14)

EX1
zN < .L2n/

1
1C2s C .L2n/

1
1C2s1 PX1

�
zN > .L2n/

1
1C2s

�
. .L2n/

1
1C2s0 ;

for m � 5 logn.
It remains to show that our procedure adapts to the minimax risk. First note that

in view of assertion (3.12) and (3.14),

sup
f02B

s

2;1

EX1
�
EX2jX1k

yf � f0;j�zjnk
2
2

�
� EX1

zN=n . L
2

1C2s0 n
�

2s0
1C2s0 :

Next, let jn;s D .1C 2s/�1 log.L2n/, then for zjn D blog zN c, we have

EX1
�
kf0;j�zjn � f0k

2
2

�
D

� X
s<s; s2�n

C

X
sDs

C

X
s>s; s2�n

�
PX1.ys D s/EX1

�
kf0;j�jn;s � f0k

2
2 j ys D s

�
D

� X
s<s; s2�n

C

X
sDs

C

X
s>s; s2�n

�
PX1.ys D s/

1X
jDjn;s

2jX
kD1

f 20;jk : (3.15)

We deal with the three terms on the right-hand side separately. In view of assertion
(3.14) and kf0k22 � L

2, we have that

X
s<s

PX1.ys D s/

1X
jDjn;s

2jX
kD1

f 20;jk � L
2e�m=5 D o

�
n
�

2s0
1C2s0

�
:

Then it is also easy to see that

PX1.ys D s/

1X
jDjn;s

2jX
kD1

f 20;jk <

1X
jDjn;s

2�2js sup
j�jn;s

22js
2jX
kD1

f 20;jk

� L2.L2n/
�

2s

1C2s . .L2n/
�

2s0
1C2s0 :

Then for arbitrary s > s, s 2 �n, using the notation

R
s;s

M�1n;s
.L/ WD

®
f 2 B

s
2;1.L/ W kf � B

s
2;1.L/k2 �

zCM�1n;sL
1=2

1=2C2s .n=m/
�

s

1=2C2s
¯
;

we have that

sup
f02R

s;s

M�1n;s

.L/

PX.i;1/
�
ys
.i/

n=m
� s

�
� sup
f02R

s;s

M�1n;s

.L/

EX.i;1/
�
1 �‰

.i/

n=m

�
M�1n;s ; s; s

��
. e�M

1=2
n;s =2:
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Therefore, by Hoeffding’s inequality,

sup
f02R

s;s

M�1n;s

.L/

PX1.ys � s/ � e
�m=5; (3.16)

hence by combining the preceding two displays, we get that

sup
f02R

s;s

M�1n;s

.L/

1X
jDjn;s

2jX
kD1

f 20;jkPX1.ys D s/ � L
2e�m=5 D o

�
n
�

2s0
1C2s0 = logn

�
:

For any f0 2 Fs WD B
s
2;1.L/nR

s;s

M�1n;s
.L/, there exists an zf0 2 Bs2;1.L/ such that

kf0 � zf k2 � zCM�1n;sL
1=2

1=2C2s .n=m/
�

s

1=2C2s :

Then similarly to assertion (3.13), we get that

sup
f02Fs

1X
jDjn;s

2jX
kD1

f 20;jk

� 2 sup
f02Fs

� 1X
jDjn;s

2jX
kD1

.f0;jk � zf0;jk/
2
C

1X
jDjn;s

2�2js sup
j�jn;s

22js
2jX
kD1

zf 20;jk

�
. zC 2

M�1n;s
L

1
1=2C2s .n=m/

�
2s

1=2C2s C 2�2jn;ss

. L
2

1C2s n
�

2s

1C2s C L
2

1C2s n�
2s
1C2s . L

2
1C2s0 n

�
2s0
1C2s0 :

Hence,

sup
f02B

s

2;1
.L/

s2X
s>s

PX1.ys D s/

1X
jDjn;s

2jX
kD1

f 20;jk

.
s2X
s>s

�
PX1.ys D s/C o.1= logn/

�
L

2
1C2s0 n

�
2s0
1C2s0 . L

2
1C2s0 n

�
2s0
1C2s0 :

Combining the upper bounds above, we get that

sup
f02B

s

2;1
.L/

EX1;X2k
yf � f0k

2
2

� 2 sup
f02B

s

2;1
.L/

�
EX1kf0;j�zjn � f0k

2
2 CEX1;X2k

yf � f0;j�zjnk
2
2

�
. L

2
1C2s0 n

�
2s0
1C2s0 ;

concluding the proof of the corollary.
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3.4. Proof of Theorem 2.5

The proof follows the same lines of reasoning as the proof of Theorem 2.1, here we
highlight only the differences.

First of all the set of functions F0 is defined slightly differently. Let us introduce
the notations

zın D xın ^ .L
�2m=n/; (3.17)

with

xın D L
�2 min

²
m

n logm
;

1

nŒxı
1=.1C2s1/
n bn ^ 1� logm

³
;

bn D
�
�n _ .L

2n/
1

1C2s1
�"1
�

logn and �n D .L
2n/

1=2
1C2s1

C
1=2
1C2s2

C"1 ;

with

"1 2

�
0;

s2 � s1

.1C 2s1/.1C 2s2/
^
.1 � p/=8

1C 2s1

�
:

By elementary computations, one can deduce that xın � .L2n/"1=2�1, and therefore

zın � .L
2n/."1=2^p/�1: (3.18)

Next, let us denote byKj the largest set of Daubechies wavelets with disjoint supports
at resolution level j . Note that jKj j � c02j (for large enough j and sufficiently small
c0 > 0). Then we consider the class of functions

F0 D ¹fk W k 2 Kjnº; where fk D Lzı1=2n  jn;k;
zjn D �

log.zın/
1C 2s1

: (3.19)

Since the functions in F0 have disjoint supports, we have

sup
f 2F0

k0 � f k1 D sup
k2Kjn

Lzı1=2n k jn;kk1 . L2jn=2zı1=2n

. Lzıs1=.1C2s1/n D o
�
L

1
1C2s1 .n=m/

�
s1

1C2s1

�
;

following from the definition of zın. Hence, it is not possible to test between the zero
function and the set F0 in the local servers.

Using the notation Z for the likelihood ratio introduced in the proof of Theo-
rem 2.1, we note that in view of the proof of Theorem 6.2.11 (b) on page 493 of [14],
we have that

E.Z � 1/2 � .ex

2
n � 1/=jF0j; where x
n D

q
zınL2n=m:
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Then the infimum of the tests given in (3.4) is bounded from below by .1 � C�n/2

for �n D zı
1=.4C8s1/
n � .L2n/�.1�p/=.4C8s1/ � n�2"1 . This leads to

1

jF0j

X
f 2F0

E
.i/

f
yB.i/ . �n C .L

2n/
1

1C2s1
C"1.logn/

�
�n C .L

2n/
1=2
1C2s2

�
1=2
1C2s1

�
. bn:

This means that the expected number (with respect to the joint distribution of the
variables F and Pf , f 2 F0) of transmitted bits on the class F0 is bounded from
above by a multiple of bn. So the distributed estimator satisfies assertion (B.7) in
with B.i/ replaced by Cbn. Hence, in view of the minimax lower bound derived in
assertion (B.13) (with B.i/ replaced by bn in the definition of ın in the proof of The-
orem B.5) and the definition of zın, we have

sup
f02F0

Ef0k
yf � f0k1 & Lzı

s1
1C2s1
n � L

1
1C2s1

C"2n
�

s1
1C2s1

C"2 ;

with "2 D ."1=2 ^ p/s1=.1C 2s1/, where the last inequality followed from (3.18).
This contradicts assumption (2.7), finishing the proof of our statement.

3.5. Proof of Theorem 2.6

First note that in Lemma 5.2 of [5], it was shown that the smoothness can be consis-
tently estimated under the self-similarity condition, i.e. there exists an estimator ys.i/

n=m

such that for every i 2 ¹1; : : : ; mº and c > 0 there exists C > 0 satisfying

inf
s2Œs1;s2�

inf
f02S

s
1.L;";j0/

Pf0
�
s � C= log.n=m/ � ys.i/

n=m
� s

�
. .m=n/c : (3.20)

By choosing c D 1=.1� p/, we have .m=n/c D 1=n. Then we propose a similar esti-
mation method as in Theorem 2.2. First we split the data into X .i;1/ and X .i;2/ and
use the first sample X .i;1/ to construct the estimator ys.i/

n=m
for the smoothness param-

eter s. Next transmit the approximation of the first zN .i/ D .L2n= logn/1=.1C2ys
.i/

n=m
/

coefficients (instead of .L2n/1=.1C2ys
.i/

n=m
/ as in Theorem 2.2) of the second subset of

observations X .i;2/, following Algorithm 1. Then yB.i/ � .L2n= logn/1=.1C2s1/ logn
and

EX.i;1/;X.i;2/
yB.i/ D EX.i;1/

yB.i/ D EX.i;1/
zN .i/ logn

� .L2n= logn/
1

1C2s lognC n�1.L2n= logn/
1

1C2s1 logn

. .L2n/
1

1C2s .logn/
2s
1C2s :

Besides, we also have that the median zN of the values zN .i/ satisfy that

PX1
�
L2=.1C2s/n1=.1C2s/ � zN � C1L

2=.1C2s/n1=.1C2s/
�
� 1 � C2e

�m=5; (3.21)

for some large enough constants C1; C2 > 0.
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Similarly to before, let zjnDblog zN c and f0;j�zjn D
P
j�zjn

P2j

kD1 f0;jk jk . Then
using the notation E introduced in (3.7), we get that

k yf � f0k11E � k
yf � f0;j�zjnk11E C kf0;j�zjn � f0k1

� k

X
j�zjn

2jX
kD1

1

jMjkj

X
i2Mjk

�rm

n
Z
.i/

jk
C "

.i/

jk

�
 jkk11EC

1X
jDzjn

2j=2 sup
k2Kj

jf0;jkj

. sup
j�zjn

�ˇ̌̌ 1

jMjkj

X
i2Mjk

r
m

n
Z
.i/

jk

ˇ̌̌
C n�1=2

� zjnX
jD0

2j=2 C

1X
jDzjn

2j=2 sup
k2Kj

jf0;jkj

.

s
zN

n
sup

j2¹1;:::;zjnº

sup
k2Kj

�
jZj;kj C 1

�
C 2�

zjns

1X
jDzjn

2j.sC1=2/ sup
k2Kj

jf0;jkj;

where

Zjk WD

p
n

jMjkj

X
i2Mjk

r
m

n
Z
.i/

jk

iid
� N

�
0;

m

jMjkj

�
; 0 � "

.i/

jk
� 1=
p
n on E:

Therefore, in view of (3.21),

EX1;X2k
yf � f0k1 . EX1

s
zN

n
log zN CEX1L zN

�s
C o.n�1/

. L
1

1C2s .n= logn/�
s

1C2s C e�m=5 . L
1

1C2s .n= logn/�
s

1C2s :

concluding the proof of our statement.

4. Technical lemmas

The first lemma extends slightly the results of Shannon’s source coding theorem by
allowing also non-prefix codes, see [25, Lemma 5.1].

Lemma 4.1. Let Y be a random finite binary string. Its expected length satisfies the
inequality

H.Y / � 2El.Y /C 1:

Let us take an arbitrary x 2 R and write it in a scientific binary representation, i.e.

jxj D

log2 jxjX
kD�1

bk2
k;
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with bk 2 ¹0; 1º, k 2 Z. Then let us take y consisting the same digits as x up to the
.D log2 n/th digits, for some D > 0, after the binary dot (and truncated there), i.e.

jyj D

log2 jxjX
kD�D log2 n

bk2
k;

unless jxj �
p
n, in which case we set y to zero, see also Algorithm 1, a slightly

modified version of Algorithm 1 from [25]. In the algorithm the function x 7! sign.x/
is one if x � 0, and zero otherwise.

Algorithm 1 Transmitting a finite-bit approximation of a number

1: procedure TRANSAPPROX(x)
2: if jxj � n then
3: Transmit: sign.x/, b�bD logncC1; : : : ; bblog jxjc.
4: Construct: y D .2 sign.x/ � 1/

Plog jxj
kD�D lognC1 bk2

k .
5: else
6: Transmit: 0.
7: Construct: y D 0.

The next lemma gives an upper bound for the number of transmitted bits and
the accuracy of the procedure described in Algorithm 1. It is a slightly reformulated
version of Lemma 2.3 of [25] to accommodate almost sure upper bound on the code
length.

Lemma 4.2. For X � N.�; �2/, with j�j � M and � � 1 let the approximation Y
of X given in Algorithm 1 and denote by EX the event that jX j �

p
n. Then for large

enough n, we have

PX .E
c
X / D O.e

�cn/; jX � Y j1EX < 2n
�D; and l.Y / � .D C 1=2/ logn;

for some c > 0.

Proof. It is straightforward to see that the last two inequalities of the statement hold.
To prove the first one note that

PX .E
c
X / � PX

�
jX j �

p
n
�
� PX

�
jX � �j �

p
n �M

�
. e�cn:

Next we provide an extended version of Lemma 4.2 of [10] with tighter upper
bounds for small�>0. The main difference in the proof is that instead of Chebyshev’s
inequality we apply a more accurate concentration inequality, see [3, Lemma 8.1].
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Lemma 4.3. Let � > 0. Then

P

²
8l W J0 � l � j; jTn.l/ � k…lf k

2
2j � 4

s
3z0

�

�2.jCl/=2
n2

C 2l=4
k…lf k

2
2

n

�³
� 2e�c=

p
�

for c D
p
3=2 and z0 D 2J0 the number of father wavelets (at resolution level J0)

and …lf D
P2l

kD1 flk lk the projection of f into the wavelet resolution level l .

Proof. Note that for the wavelet estimator yf with signal-to-noise ration n, we get that

k…l
yf k22 D

X
k

yf 2lk;

where yflk � flk
iid
� N.0; 1=n/.

Hence, in view of [3, Lemma 8.1] (with degree of freedomD D 2l , non-centrality
parameter B D n

P2l

kD1 f
2
lk

and x D 1=.2
p
ıl/), we get for ıl � 1=4 that

P

²ˇ̌̌
k…l

yf k22 �
2l

n
� k…lf k

2
2

ˇ̌̌
�

s
4

ıl

�
2l

n2
C
k…lf k

2
2

n

�³

D P

²ˇ̌̌ 2lX
kD1

yf 2lk �
2l

n
�

2lX
kD1

f 2lk

ˇ̌̌
�

p
4

ıl

�
2l

n2
C

P2l

kD1 f
2
lk

n

�³

� P

²ˇ̌̌ 2lX
kD1

n yf 2lk � 2
l
� n

2lX
kD1

f 2lk

ˇ̌̌
� 2

q�
2l C 2n

2lX
kD1

f 2lk
1

2
p
ıl

�
C2

1

2
p
ıl

³
� 2e�0:5=

p
ıl :

Similarly,

P

²ˇ̌̌
k…J0

yf k22 �
z0

n
� k…J0f k

2
2

ˇ̌̌
�

s
4

ıJ0

�
z0

n2
C
k…J0f k

2
2

n

�³
� 2e�0:5=

p
ıJ0 :

By the definition of Tn.l/ and union bound these results imply that

P

²
8l W J0 < l � j;

ˇ̌
Tn.l/ � k…lf k

2
2

ˇ̌
�

s
4

ıl

�
2l

n2
C
k…lf k

2
2

n

�
;

ˇ̌
Tn.J0/ � k…J0f k

2
2

ˇ̌
�

s
4

ıJ0

�
z0

n2
C
k…J0f k

2
2

n

�³
�

X
J0�l�j

e�0:5=
p
ıl :
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Setting similarly to Lemma 4.2 of [10] the parameters ıl D .2�.j�l/=2C 2�l=4/�=12
and ıJ0 D �=12, we get in view of

jX
lDJ0

e�0:5=
p
ıj �

jX
lDJ0

�
e�
p
3=2��1=22.j�l/=4

C e�
p
3=2��1=22l=8

�
. e�

p
3=2��1=2 ;

which implies together with z0 � 1 that

P

²
8l W J0 � l � j; jTn.l/ � k…lf k

2
2j � 4

s
3z0

�

�
2.jCl/=2

n2
C 2l=4

k…lf k
2
2

n

�³
. e�

p
3=2��1=2 ;

concluding the proof of the lemma.

The next lemma is a slightly rewritten version of Theorem 3.1 of [10] with tighter
error bounds (for small ˛ > 0).

Lemma 4.4. Let ˛ > 0. The test ‰n.˛/ satisfies, for all ˛ > 0 and n > 0, that

sup
f 2H0

Ef‰n C sup
f 2H1

Ef .1 �‰n/ � 2e
�1=
p
˛;

where

H0Wf 2 B
s2
2;1.L/ and H1Wf 2

®
B
s1
2;1.L/ W kf � B

s2
2;1.L/k2 � �n

¯
;

with

�n D zC˛n
�s1=.1=2C2s1/ and zC˛ D 24

�
2s1L

p
1 � 2�2s1 C 19

p
1=˛

�
:

Proof. The proof goes the same way as of Theorem 3.1 of [10], with the only dif-
ference that we apply Lemma 4.3 instead of Lemma 4.2 of [10] and replacing (4.3)
and (4.4) in [10] with the (slightly) sharper bounds

jX
lDJ0

c
2.jCl/=8
p
n
�

c
p
n
2j=4

�
1C

1

1 � 2�1=8

�
� 14cL

1=2
1=2C2t n�

t
1=2C2t ;

c
L

p
1 � 2�2t

2�jt �
c

p
1 � 2�2t

L
1=2

1=2C2t n�
t

1=2C2t ;

for j D .1=2C 2t/�1 log.L2n/, respectively.
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A. Definitions and notations for wavelets

In this section, we collect some notations and definitions about wavelets, a more
detailed description can be found for instance in [14, 15].

We consider the Cohen, Daubechies and Vial construction of compactly sup-
ported, orthonormal, N -regular wavelet basis of L2Œ0; 1�, see for instance [11] and
let the us use the notation ¹ jk W j D 0; 1; : : : ; k D 1; : : : ; 2j º. For an arbitrary func-
tion f 2 L2Œ0; 1�, we can consider the wavelet representation

f D

1X
jD0

2jX
kD1

fjk jk;

with fjk D hf; jki. Following from the orthonormality of the wavelet basis, we have
that

kf k22 D

1X
jD0

2jX
kD1

f 2jk :

In our analysis we work with the Besov spaces Bs2;1 and Bs1;1. The correspond-
ing Besov norms for s 2 .0;N / are defined as

kf k2Bs
2;1
D sup
j�j0

22js
2j�1X
kD0

f 2jk and kf kBs1;1 D sup
j�0;k

®
2j.sC1=2/jfjkj

¯
:

Then the Besov spaces Bs2;1, Bs1;1 and the corresponding Besov balls Bs2;1.L/,
Bs1;1.L/ of radius L > 0 are defined as

Bs2;1 D ¹f 2 L2Œ0; 1� W kf kBs2;1 <1º;

Bs2;1.L/ D ¹f 2 L2Œ0; 1� W kf kBs2;1 < Lº;

Bs1;1 D ¹f 2 L2Œ0; 1� W kf kBs1;1 <1º;

Bs1;1.L/ D ¹f 2 L2Œ0; 1� W kf kBs1;1 < Lº;

respectively. We note that the Besov space Bs2;1 is larger than the standard Sobolev
space where instead of the supremum one would take the sum over the resolution lev-
els j . For s ¤ N , Bs1;1 is equivalent to the classical Hölder space with regularity s,
while for integer s they are equivalent to the so-called Zygmond spaces, see [11].
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B. Minimax bounds for the distributed white noise model

B.1. Distributed minimax rates

As explained in the introduction, the results in this paper are motivated by minimax
lower bounds that we have for estimation in the distributed white noise model under
communication constraints. The analogous results for the distributed nonparametric
regression model were derived in the paper [25], cf. [31] for the white noise case.
Since the minimax bounds put the results of the present paper into context, we give
the formulations and proofs for the setting of the white noise model in this appendix
for the sake of completeness.

The setting is as before that we have m local machines and at the i th machine we
observe the random function X .i/ given by the stochastic differential equation (1.1).
The local machines carry out a local statistical procedure and transmit the results to
a central machine, which constructs the final estimator. Now we add the restriction
that local machine i is allowed to send at most B.i/ bits (on average) to the central
machine. The central machine will then collect the transmitted bits from the local
computers and combine them to a global, aggregated answer. More formally, for a
target function class F , we write yf 2 Fdist.B

.1/; : : : ; B.m/IF / if yf is a measurable
function of messages of length yB.i/ sent from the local machines and for every f0 2F

it holds that Ef0 yB
.i/ � B.i/ for every i . For simplicity, we will focus on the case

B.1/ D � � � D B.m/ that the communication restriction is the same for every local
machine.

Theorem B.1. Let s; L > 0.

� If B � n1=.1C2s/= logm, then

inf
yf 2Fdist.B;:::;BIB

s
2;1

.L//

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 � cL

2
1C2s n�

2s
1C2s I

� If .n log.n/=m2C2s/1=.1C2s/ � B � n1=.1C2s/= logm, then

inf
yf 2Fdist.B;:::;BIB

s
2;1

.L//

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2� cL

1
1Cs

� B logn
n1=.1C2s/

�� s
1Cs

n�
2s
1C2s I

� If B � .n log.n/=m2C2s/1=.1C2s/, then

inf
yf 2Fdist.B;:::;B/

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 � cL

2
1C2s

� n

m logn

�� 2s
1C2s

;

for some c > 0 small enough not depending on L.

Proof. See Section B.2.
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The result shows that it is indeed only possible to obtain the optimal rate n�s=.1C2s/

over Besov balls of regularity s if, up to a logarithmic factor, every machine is allowed
to transmit order n1=.1C2s/ bits to the central machine. Also for completeness, and to
prepare for our new adaptation results, we recall the following theorem that shows that
this result is indeed sharp (up to log-factors), i.e. if order n1=.1C2s/ bits are allowed,
then the optimal rate can indeed be achieved with some procedure.

In fact, the theorem considers the first two cases of the preceding one, i.e.�n log.n/
m2C2s

� 1
1C2s

� B:

The third case is not interesting since in that case distributed methods do not perform
better than any standard technique applied on a single, local server.

Theorem B.2. Let s; L > 0, m � n. Then there exists a distributed estimator yf 2
Fdist.B; : : : ; BIB

s
2;1.L// satisfying:

� for B � .L2n/1=.1C2s/= logn:

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 � c

�
L

2
1C2s n�

2s
1C2s

�
_
�
L2.B= logn/�2s

�
;

� for .L2n log.n/=m2C2s/1=.1C2s/ _ logn � B � .L2n/1=.1C2s/= logn:

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 � cMnL

2
1Cs

�
n1=.1C2s/

B logn

� 2s
2C2s

n�
2s
1C2s ;

with Mn D .logn/2s and c > 0 not depending on L.

Proof. See Section B.3.

Based on the above distributed minimax lower and upper bounds we define the
minimum communication required to reach the minimax squared-L2 estimation rate
L2=.1C2s/n�2s=.1C2s/ over the Besov class Bs21.L/ as

arg inf
B>0

inf
yf 2Fdist.B;:::;BIB

s
21

.L//

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 �ML

2
1C2s n�

2s
1C2s ; (B.1)

for some given, large enough constantM>0. We note that Theorems B.1 and B.2 show
that the optimal communication is (up to a logarithmic factor) order .L2n/1=.1C2s/.
Furthermore, the choice of M only influences the constant factor, not the rate of B ,
hence we omit it from our notation.

One can also derive similar matching lower and upper bounds for the L1-norm
for f0 2 Bs1;1.L/ in case of the Gaussian white noise model, as in [25] where the
nonparametric regression model was considered. Since our focus in this paper is not
on deriving minimax rates, we have deferred this result to Section B.4 in the appendix.
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B.2. Proof of Theorem B.1

The proof of the theorem follows from the following, more general theorem with
taking B.1/ D � � � D B.m/ D B . The proof is a slight extension for a larger set of esti-
mators and adaptation to the Gaussian white noise setting of the proof of Theorem 2.1
in [25].

Theorem B.3. Let the sequence ın D o.1/ be defined as

ın D 2
�15L�2 min

²
m

n logn
;

m

n
Pm
iD1Œı

1
1C2s
n B.i/ logn ^ 1�

³
: (B.2)

Then in the distributed Gaussian white noise model (1.1), we have for any s > 0 that

inf
yf 2Fdist.B.1/;:::;B.m//

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 � cL

2ı
2s
1C2s
n ;

for some c > 0 not depending on L.

Proof of Theorem B.3. We prove the desired lower bound for the minimax risk using
a modified version of Fano’s inequality, given in Theorem B.7. As a first step we
construct a finite subset F0 � B

s
2;1.L/. We use the wavelet notation outlined in App-

endix A and define jn D b.log ı�1n /=.1C 2s/c. For ˇ 2 ¹�1; 1º2
jn , let fˇ 2 L2Œ0; 1�

be the function with wavelet coefficients

fˇ;jk D

´
Lˇkı

1=2
n ; if j D jn, k D 1; : : : ; 2jn ;

0; else:
(B.3)

Now define F0 D ¹fˇ W ˇ 2 ¹�1; 1º
2jn º. Note that F0 � B

s
2;1.L/, since

kfˇk
2
Bs
2;1
D sup

j

22sj
2jX
kD1

f 2ˇ;jk D L
22.2sC1/jnın � L

2:

Therefore, for an arbitrary set of estimators yF we have that

inf
yf 2 yF

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 � inf

yf 2 yF

sup
f02F0

Ef0k
yf � f0k

2
2:

To prove the statement of the theorem we take the set of distributed estimators yF D
Fdist.B

.1/; : : : ; B.m/IBs2;1.L//, but the inequality holds more generally.
For this set of functions F0, the maximum and minimum number of elements in

balls of radius t > 0, given by

Nmax
t D max

fˇ2F0

®
#¹fˇ 0 2 F0 W kfˇ � fˇ 0k2 � tº

¯
;

Nmin
t D min

fˇ2F0

®
#¹fˇ 0 2 F0 W kfˇ � fˇ 0k2 � tº

¯
;
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satisfy

Nmax
t D Nmin

t and Nmax
t D

ztX
iDo

�
2jn

i

�
<
jF0j

2

for zt WD t2=4ınL2 < 2jn�1 (and therefore Nmax
t < jF0j �N

min
t ).

Recall the notations X D .X .1/; : : : ; X .m// for the data available at the local
machines and Y D .Y .1/; : : : ; Y m// for the binary messages transmitted to the cen-
tral machine satisfying the distribution protocol, and consider the Markov chain F !
X ! Y , where F is a uniform random element in F0. It then follows from Theo-
rem B.7 (with t2 D L2ın2jnC1=3 and d.f; g/ D kf � gk2) that

inf
yf 2 yF

sup
f02F0

Ef0k
yf � f0k

2
2 & L2ın2

jn

�
1 �

I.F IY /C log 2
log.jF0j=Nmax

t /

�
; (B.4)

where I.F IY / is the mutual information between the random variables F and Y .
To lower bound the right-hand side, first note that

Nmax
t D

ztX
iD1

�
2jn

i

�
< 2

�
2jn

zt

�
� 2

�e2jn
zt

�zt
and therefore, for zt D 2jn�1=3 (i.e. t2 D L2ın2jnC1=3),

log
�
jF0j

Nmax
t

�
� 2jn log

�
2.6e/�1=62�2

�jn �
� 2jn�1=3:

Hence, recalling that 2jn D ı�1=.1C2s/n , we see that to prove

inf
yf 2 yF

sup
f02F0

Ef0k
yf � f0k

2
2 & L2ı2s=.1C2s/n (B.5)

and as a consequence to derive the statement of the theorem it is sufficient to show
that

I.F IY / � ı�1=.1C2s/n =8CO.1/: (B.6)

Observe that for the class of distributed estimators yF D Fdist.B
.1/; : : : ; B.m/I

Bs2;1.L//, by definition the following inequality holds

E.i/l
�
Y .i/

�
D

1

jF0j

X
f 2F0

E
.i/

f
l
�
Y .i/

�
� B.i/; (B.7)

where the expectation is taken over the joint distribution of the random variable F
and P .i/

f
, f 2 F0. Next note that for ın � m=.211L2n log n/ the conditions of Lem-

ma B.8 are satisfied hence by applying the lemma (with ı2DL2ın and dDı�1=.1C2s/n ),
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we get

I.F IY / � 2L2nınm
�1

mX
iD1

min
°
210 log

�
mı
� 1
1C2s

n

�
H.Y .i//; ı

� 1
1C2s

n

±
C 4 log 2

� 2L2nınm
�1ı
� 1
1C2s

n

mX
iD1

�
211 log.n/ı

1
1C2s
n B.i/ ^ 1

�
CO.1/; (B.8)

where the last inequality follows from Lemma 4.1 and assertion (B.7). Since from the
definition of ın it follows that

ın �
2�4L�2mn�1Pm

iD1

�
211 log.n/ı

1
1C2s
n B.i/ ^ 1

� ;
the right-hand side of (B.8) is further bounded by 2�3ı�1=.1C2s/n C O.1/, finishing
the proof of assertion (B.6) and concluding the proof of the theorem.

Note that we have used the properties of the distributed estimation class yF only
in assertion (B.7), hence for any distributed method satisfying this inequality we have
that

inf
yf 2 yF

sup
f02B

s
2;1

.L/

Ef0k
yf � f0k

2
2 & L2ı

2s
1C2s
n : (B.9)

We note that all the computations above hold for arbitrary ı0n � ın as well.

B.3. Proof of Theorem B.2

First we give the algorithm achieving the upper bound. Let us introduce the notation

� D
���

.L2n/
1

1C2s log.n/=B
� 1C2s
2C2s

˘
_ 1

�
^m:

Then we group the local machines into � groups and let the different groups work
on different parts of the signal as follows: the machines with indexes 1 � i � m=�
each transmit the approximations Y .i/

jk
of the observations X .i/

jk
for 1 � 2j C k �

.B= logn/ ^ n1=.1C2s/ using Algorithm 1. If � > 1 then the next machines, with
indexes m=� < i � 2m=�, each transmit the approximations Y .i/

jk
for B= log n <

2j C k � 2B= logn, and so on. The last machines with numbers .�� 1/m=� < i �m
transmit Y .i/

jk
for .�� 1/B= logn < 2j C k � �B= logn. Then in the central machine

we average the corresponding transmitted approximated noisy coefficients in the obvi-
ous way. Formally, using the notation

�jk D
˙
.2j C k/ log.n/=B

�
� 1;
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the aggregated estimator yf is the function with wavelet coefficients given by

yfjk D

´
mean

®
Y
.i/

jk
W
�jkm

�
< i �

.�jkC1/m

�

¯
; if 2j C k � �B= logn;

0; else:

The procedure is summarized as Algorithm 2.

Algorithm 2 Algorithm for the L2-norm

1: In the local machines:
2: for ` D 1 to � do
3: for i D b.` � 1/m=�c C 1 to b`m=�c do
4: for 2j C k D b.` � 1/B= lognc C 1 to b`B= lognc do
5: Y

.i/

jk
:=TransApprox(X .i/

jk
)

6: In the central machine:
7: for 2j C k D 1 to b.�B= logn/ ^ n1=.1C2s/c do
8: yfjk WD mean¹Y .i/

jk
W �jkm=� < i � .�jk C 1/m=�º

9: Construct: yf D
P
yfjk jk .

In the algorithm described above each machine transmits the approximations of at
most n1=.1C2s/ ^ .B= log n/ noisy coefficients. Note that for any f 2 Bs2;1.L/, we
have that

f 2jk � sup
j

2js
X
k

f 2jk � L
2;

hence in view of Lemma 4.2 (with j�j D jf0;jkj � L) the approximation satisfies

0 � jX
.i/

jk
� Y

.i/

jk
j1E � 1=

p
n; jY

.i/

jk
j �
p
n; and l.Y

.i/

jk
/ � logn;

where the set E was defined in (3.7) and satisfies that PX .E/ � e�cn, for some c > 0.
Therefore, we need at most B bits to transmit n1=.1C2s/ ^ .B= log n/ coefficients,
hence yf 2 Fdist.B; : : : ; BIB

s
2;1.L//.

Next for convenience we introduce the notation

Ajk D
®
b�jkm=�c C 1; : : : ; b.�jk C 1/m=�c

¯
for the collection of machines transmitting the .j; k/th coefficient and note that
#.Ajk/ � m=�. Then our aggregated estimator yf on the set E satisfies for 2j C k �
�B= logn (i.e. the total number of different coefficients transmitted) that

yfjk D
1

#.Ajk/

X
i2Ajk

Y
.i/

jk
D f0;jk C

r
m

n#.Ajk/
Zjk � "jk;
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where
"jk D

1

#.Ajk/

X
i2Ajk

"
.i/

jk
2 Œ0; n�1=2� and Zjk

iid
� N.0; 1/:

Let jn D blog
�
.L2n/1=.1C2s/ ^ .�B= log n/

�
c. Then the risk of the aggregated

estimator is bounded as

Ef0k
yf � f0k

2
21E �

1X
jDjn

2jX
kD1

f 20;jk C

jnX
jD0

2jX
kD1

Ef0

� m

n#.Ajk/
Z2jk C "

2
jk

�
1E

.
1X

jDjn

2�2js sup
j�jn

22js
2jX
kD1

f 20;jk C

jnX
jD0

2jX
kD1

�=n

. L2
� �B

log2 n
^ .L2n/

1
1C2s

��2s
C
�

n

� �B

log2 n
^ .L2n/

1
1C2s

�
�

°
.logn/

2s
1CsL

2
1Cs

�n1=.1C2s/
B logn

� s
1Cs

_ L
2

1C2s

±
n�

2s
1C2s _

� mB
logn

��2s
.
°
.logn/2sL

2
1Cs

�n1=.1C2s/
B logn

� s
1Cs

_ L
2

1C2s

±
n�

2s
1C2s ; (B.10)

where we have used that for f0 2 Bs2;1.L/, we have jf0;jkj � L for any j � 0,
k D 1; : : : ; 2j . The above inequality together with

Ef0k
yf � f0k

2
21Ec . nPf0.E

c/ . L2ne�cn D o.n�1/

concludes the proof of the theorem.

B.4. Minimax bounds for distributed methods in L1-norm

Similarly to the L2-case we consider the situation where all communication budgets
are the same, i.e. B.1/ D � � � D B.m/ D B .

Theorem B.4. Consider s; L > 0, communication constraint B.1/ D � � � D B.m/ D
B > 0, then

(ib) if B �
�
L2n=.logn/3C4s

�1=.1C2s/, then

inf
yf 2Fdist.B;:::;BIB

s
1;1.L//

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1 � cL

1
1C2s .n= logn/�

s
1C2s I
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(iib) if .L2n log.n/=m2C2s/1=.1C2s/ � B <
�
L2n=.logn/3C4s

�1=.1C2s/, then

inf
yf 2Fdist.B;:::;BIB

s
1;1.L//

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1

� cL
1
1Cs

�
n1=.1C2s/

B.logn/
3C4s
1C2s

� s
2C2s � n

logn

�� s
1C2s

I

(iiib) if .L2n log.n/=m2C2s/1=.1C2s/ > B , then

inf
yf 2Fdist.B;:::;BIB

s
1;1.L//

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1 � L

1
1C2s

�n logn
m

�� s
1C2s

;

for some c > 0 not depending on L.

This theorem is actually a direct consequence of the following more general the-
orem where the communication thresholds can vary between the machines.

Theorem B.5. Consider s; L > 0, communication constraints B.1/; : : : ; B.m/ > 0

and let the sequence ın D o.1/ be defined as the solution to the equation (B.2). Then
in the distributed Gaussian white noise model (1.1) there exists c > 0 not depending
on L such that

inf
yf 2Fdist.B.1/;:::;B.m/IB

s
1;1.L//

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1

� cL
1

1C2s

� n

logn

�� s
1C2s

_ Lı
s

1C2s
n :

Proof. First of all we note that in the non-distributed case where all the information
is available in the global machine the minimax L1-risk is .n= logn/�

s
1C2s . Since the

class of distributed estimators is clearly a subset of the class of all estimators this will
be also a lower bound for the distributed case. The rest of the proof goes similarly to
the proof of Theorem B.2.

First we construct a finite subset F0 � B
s
1;1.L/ and then give a lower bound for

the minimax risk over it. Let us denote by Kj the largest set of Daubechies wavelets
at resolution level j with disjoint supports. Note that jKj j � c02j (for large enough j
and sufficiently small c0 > 0). Let us again multiply ın with a sufficiently small con-
stant and work with this ın in the rest of the proof

ın WD c02
�13L�2 min

²
m

n logn
;

m

n
Pm
iD1Œı

1=.1C2s/
n log.n/B.i/ ^ 1�

³
: (B.11)

Let jn D b.log ı�1n /=.1C 2s/c and for ˇ 2 ¹�1; 1ºjKjn j let fˇ 2 L1Œ0; 1� be the
function with wavelet coefficients

fˇ;jk D

´
Lı

1=2
n ˇk; if j D jn, k 2 Kjn ;

0; else:
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Now let F0 D ¹fˇ W ˇk 2 ¹�1; 1º; k 2 Kjnº.
Note that each function fˇ 2 F0 belongs to the set Bs1;1.L/, since

kfˇkBs1;1 D sup
j;k

2.sC1=2/jf 2ˇ;jk

D 2.sC1=2/jn sup
k2Kjn

Lı1=2n D L2.sC1=2/jnı1=2n � L:

Furthermore, if fˇ 6D fˇ 0 , then there exists a k0 2 Kjn such that ˇk0 ¤ ˇ0k0 . Then due
to the disjoint support of the corresponding Daubechies wavelets  jn;k , k 2 Kjn the
L1-distance between the two functions is bounded from below by

kfˇ � fˇ 0k1 � jfjnk0 � f
0
jnk0
j � k jn;k0k1&2jn=2C1Lı1=2n � Lı

s
1C2s
n :

Next observe that for an arbitrary set of estimators yF , we have

inf
yf 2 yF

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1 � inf

yf 2 yF

sup
f02F0

Ef0k
yf � f0k1:

Now let F be a uniform random variable on the set F0. Then in view of Fano’s
inequality (see Theorem B.7 with t D Lıs=.1C2s/n and p D 1), we get that

inf
yf 2 yF

sup
f02F0

Ef0k
yf � f0k1 & Lı

s
1C2s
n

�
1 �

I.F IY /C log 2
log jF0j

�
:

Hence, since log jF0j � jKjn j � c02
jn D c0ı

�1=.1C2s/
n , it remains to show that

I.F IY / � .c0=2/ı
� 1
1C2s

n CO.1/:

In view of Lemma B.8 (applied with ı D ı1=2n , d D jKjn j D c0ı
�1=.1C2s/
n , X D

X .i/, Y D Y .i/, i D 1; : : : ; m, and noting that ın � m=.211L2n log n/, hence the
conditions are fulfilled),

I.F IY / � 2L2nınm
�1ı
� 1
1C2s

n

mX
iD1

�
210 log.n/ı

1
1C2s
n H.Y .i// ^ c0

�
C 4 log 2;

� 212L2nınm
�1ı
� 1
1C2s

n

mX
iD1

�
log.n/ı

1
1C2s
n B.i/ ^ 1

�
CO.1/

� .c0=2/ı
� 1
1C2s

n CO.1/;

where the second inequality follows from Theorem 4.1 and assertion (B.7) for yF D
Fdist.B

.1/; : : : ; B.m/I Bs1;1.L// and the third by the definition of ın, see (B.11).
Hence, we can conclude that

inf
yf 2Fdist.B.1/;:::;B.m/IF0/

sup
f02F0

Ef0k
yf � f0k1 & Lı

s
1C2s
n : (B.12)
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Note that we have used the properties of the distributed estimation class yF only in
assertion (B.7), hence for any class of distributed estimator yF satisfying this inequal-
ity, we have that

inf
yf 2 yF

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1 & Lı

s
1C2s
n ; (B.13)

which concludes the proof.

Next we give an algorithm providing matching upper bounds in the first two cases.
Note that the last case, similarly to the L2-norm is less relevant as using the data
available only on a single machine would provide at least as good an estimator as any
distributed algorithm. The algorithm is very similar to the L2-case, i.e. Algorithm 2,
and is basically the rewrite of Algorithm 4 of [25] tailored to the Gaussian white noise
model. Here we just highlight the differences compared to Algorithm 2. We divide the
machines into � D .b.L2n.log2 n/

2s=B1C2s/1=.2C2s/c ^ m/ _ 1 equal sized groups
(� D 1 corresponds to case (ib), while � > 1 corresponds to case (iib)). Similarly to
before machines with indexes 1 � i � m=� transmit the approximations Y .i/

jk
for

1 � 2j C k � bB= log2 nc ^ .n= log2 n/
1

1C2s ;

and so on, the last machines with numbers .�� 1/m=� < i � m transmit the approx-
imations Y .i/

jk
for�

.� � 1/bB= log2 nc
�
^ .n= log2 n/

1
1C2s < 2j C k

�
�
�bB= log2 nc

�
^ .n= log2 n/

1
1C2s :

Then in the central machine we average the corresponding transmitted coefficients
in the obvious way, similarly to the L2-norm case. The procedure is summarized
as Algorithm 3 and the (up to a logarithmic factor) optimal behaviour is given in
Theorem B.6 below.

Theorem B.6. Let s;L> 0, then the distributed estimator yf described in Algorithm 3
belongs to Fdist.B; : : : ; BIB

s
1;1.L// and satisfies

� for B � .L2n/1=.1C2s/.log2 n/
2s=.1C2s/, we have

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1 � cL

1
1C2s .n= log2 n/

� s
1C2s I

� for .L2n.log2 n/=m
2C2s/

1
1C2s _ log2 n � B < .L

2n/
1

1C2s .log2 n/
2s
1C2s , we have

sup
f02B

s
1;1.L/

Ef0k
yf � f0k1 � cMnL

1
1Cs

�
n1=.1C2s/

B.log2 n/
3C4s
1C2s

� s
2C2s

.n= log2 n/
� s
1C2s ;

with Mn D .log2 n/
s_ 3s
2C2s and c > 0 not depending on L.
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Algorithm 3 Non-adaptive L1-method, combined

1: In the local machines:
2: for ` D 1 to � do
3: for i D b.` � 1/m=�c C 1 to b`m=�c do
4: for 2j C k D .` � 1/bB= log2 nc C 1 to `bB= log2 nc do
5: Y

.i/

jk
:=TransApprox(X .i/

jk
).

6: In the central machine:
7: for 2j C k D 1 to �bB= log2 nc do
8: yfjk WD mean¹Y

.i/

jk
W �jkm=� < i � .�jk C 1/m=�º.

9: Construct: yf D
P
yfjk jk .

The proof of the theorem follows the same reasoning as the proof of Theorem B.3
but for the L1-norm and it basically follows from the proof of Theorem 2.8 of [25]
tailored to the Gaussian white noise model.

B.5. Technical lemmas

First we recall a slight modification of Fano’s inequality, see [12, Corollary 1] or [25,
Theorem A.6]. Given a finite set F0 � F , we use the notations

Nmax
t D max

f 2F0

®
#¹ zf 2 F0 W d.f; zf / � tº

¯
;

Nmin
t D min

f 2F0

®
#¹ zf 2 F0 W d.f; zf / � tº

¯
:

Theorem B.7. If F contains a finite set F0 and jF0j � Nmin
t > Nmax

t , then for all
p; t > 0,

inf
yf 2E.Y /

sup
f 2F

Ef d
p. yf ; f / � tp

�
1 �

I.F IY /C log 2
log.jF0j=Nmax

t /

�
;

where E.Y / denotes the set of all estimators depending only on Y and the function
class F , and F is a uniformly distributed random variable on F0.

The next lemma gives an upper bound for the mutual information between the
uniform random variable F on F0 � Rd and the set of observations on all local
machines Y D .Y .1/; : : : ; Y .m// in the d -dimensional many normal means model.

Lemma B.8. Let F Dıˇ, with ı2�2�10m=.n log.md// and ˇ a uniformly distribu-
ted random variable over ¹�1;1ºd . Furthermore, suppose thatX D .X .1/; : : : ;X .m//,
where X .i/s are d -dimensional random variables satisfying that X .i/j j Fj and Fj are
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independent of F�j , and X .i/j j .F D f / � P .i/
fj
D N.fj ; m=n/. Then

I.F IY / �

mX
iD1

2ı2

m=n
min

®
210 log.md/H.Y .i//; d

¯
C 4 log 2;

where I.F I Y / is the mutual information between F and Y in the Markov chain
F ! X ! Y .

Proof. Let us introduce the notation a2 D 24 log.md/m=n and note that

sup
jxj�a

'ı;m=n.x/

'�ı;m=n.x/
� sup
jxj�a

e
nj.x�ı/2�.xCı/2j

2m � sup
jxj�a

e
2nıjxj
m � e

2anı
m ;

where '�;�2 denotes the density function of a normal distribution with mean � and
variance �2. Furthermore, let us introduce the notationBj D ¹jxj j � aº, j D 1; : : : ; d .
Then by Theorem B.9 (with F0 D ¹f D ıˇ W ˇ 2 ¹�1; 1º

d º), we have that

I.F IY .i// � d.log 2/
r
P
X
.i/

j

.X
.i/
j … Bj /C d

2P
X
.i/

j

.X
.i/
j … Bj /

C 2C 2.C � 1/2I.X .i/IY .i//; (B.14)

with C D e2
3jıj
p

log.md/n=m. Next note that for Z � N.0;m=n/, we have

P
X
.i/

j

.X
.i/
j … Bj / � P

�
jZj � a � ı

�
� 2e�

.a�ı/2n
2m � 2e�

a2n
4m � 2.md/�4;

and the inequality I.X .i/I Y .i// � H.Y .i// holds. Then by plugging in the above
inequalities into (B.14) and using the inequalities ex � 1C 2x for x � 0:4 andC 2 � 2,
we get that

I.F IY .i// �
p
2.log 2/m�2d�1 C 2.log 2/m�4d�2 C 211ı2

log.md/n
m

H.Y .i//:

Furthermore, from the data-processing inequality and the convexity of the KL
divergence

I.F IY .i// � I.F IX .i// �
1

jF0j2

X
f;f 02F0

K
�
P .i/
f
kP .i/
f

�
D

ı2

2m=n

1

jF0j2

X
f;f 02F0

kˇ � ˇ0k22 � 2.n=m/dı
2:

We conclude our statement by noting that

I.F IY / �

mX
iD1

I.F IY .i//
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The next theorem provide an upper bound for the mutual information, see [25,
Theorem A.9] or [29, Lemma 3].

Theorem B.9. Let us consider the Markov chain F ! X .i/ ! Y .i/, where F is the
uniform distribution on F0�Rd andX .i/ j .F D f /�PX.i/jFDf is a d -dimensional
random variable. Assume that X .i/j j Fj and Fj are independent of F�j . For C � 1,
define

Bj D

²
xj W max

f 6Df 0

p.xj j fj /

p.xj j f
0
j /
� C

³
for a constant C � 1 and density p.xj jfj /. Then

I.F IY .i// �

dX
jD0

�
.log 2/

r
P
X
.i/

j

.X
.i/
j 62 Bj /C log jF0jPX.i/

j

.X
.i/
j 62 Bj /

�
C 2C 2.C � 1/2I.X .i/IY .i//;

where I.X .i/IY .i// is the mutual information between X .i/ and Y .i/.
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