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Non-backtracking spectra of
weighted inhomogeneous random graphs

Ludovic Stephan and Laurent Massoulié

Abstract. We study a model of random graphs where each edge is drawn independently (but
not necessarily identically distributed) from the others, and then assigned a random weight.
When the mean degree of such a graph is low, it is known that the spectrum of the adjacency
matrix A deviates significantly from that of its expected value EA.

In contrast, we show that over a wide range of parameters the top eigenvalues of the non-
backtracking matrix B – a matrix whose powers count the non-backtracking walks between two
edges – are close to those of EA, and all other eigenvalues are confined in a bulk with known
radius. We also obtain a precise characterization of the scalar product between the eigenvectors
of B and their deterministic counterparts derived from the model parameters.

This result has many applications, in domains ranging from (noisy) matrix completion to
community detection, as well as matrix perturbation theory. In particular, we establish as a
corollary that a result known as the Baik–Ben Arous–Péché phase transition, previously estab-
lished only for rotationally invariant random matrices, holds more generally for matrices A as
above under a mild concentration hypothesis.

1. Introduction

Let P 2Mn.R/ be a symmetric n� nmatrix with entries in Œ0; 1�, andW a (symmet-
ric) weight matrix with independent random entries. We define the inhomogeneous
undirected random graph G D .V; E/ associated with the couple .P;W / as follows:
the vertex set is simply V D Œn�, and each edge ¹u; vº is present in E independently
with probability Puv , and holds weight Wuv .

The entrywise expected value and variance of the weighted adjacency matrix ofG
are

EA D P ı EW; Var.A/ WD P ı E
�
W ıW

�
� P ı P ı EW ı EW; (1.1)

where ı denotes the Hadamard product. When the entries of P are small, the sec-
ond term of Var.A/ is negligible and the variance can be well approximated by the
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entrywise second moment; we thus define

Q WD P ı EW; K WD P ı E
�
W ıW

�
: (1.2)

A natural question, arising from matrix perturbation theory, is then as follows:

What is the relationship between the eigendecomposition ofA and the one ofQ?

Unfortunately, at least in the unweighted case, when the mean degree of G is
low (o.log.n//), it is known that the largest eigenvalues (and associated eigenvectors)
of A are determined by the large degree vertices; see [9] for a complete description of
this phenomenon. To extract meaningful information on the spectrum of Q, another
matrix has shown better performance: the non-backtracking matrix, whose application
to community detection has been studied in [14, 25].

Given a weighted graph G, we define its associated non-backtracking matrix B
as follows: B is a 2jEj � 2jEj matrix indexed by the oriented edges of G, whose
coefficients are

Bef D Wf 1¹e ! f º D Wf 1¹e2 D f1º1¹e1 ¤ f2º;

where e D .e1; e2/ and f D .f1; f2/. The above question rephrases in our setting as

What is the relationship between the eigendecomposition ofB and the one ofQ?

and the main focus of this article is to provide an answer as precise as possible to this
problem. To this end, let

Q D

rX
iD1

�i'i'
>
i with j�1j � j�2j � � � � � j�r j

be the eigendecomposition of Q, and � D �.K/ the largest eigenvalue (in absolute
value) of K. Note that by definition, Q and K are symmetric and therefore all eigen-
values defined above are real.

We shall assume that there exists some deterministic boundL (possibly depending
on n) such that max jWij j � L. We can then state our main theorem, without detailing
the needed hypotheses for now:

Theorem 1 (informal statement). Assume the following conditions:

(i) r D no.1/,

(ii) the graph G is sparse enough,

(iii) the eigenvectors of Q are sufficiently delocalized.

Let r0 be the number of eigenvalues ofQ whose absolute value is larger than both
p
�

and L:
�k >

p
� _ L for all k 2 Œr0�; �r0C1 �

p
� _ L: (1.3)
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Then, for i � r0, the i -th largest eigenvalue of B is asymptotically (as n goes to
infinity) equal to �i , and all the other eigenvalues of B are constrained in a circle of
center 0 and radius max.

p
�; L/. Further, if i � r0 is such that �i is a sufficiently

isolated eigenvalue of Q, then the eigenvector associated with the i -th eigenvalue
of B is correlated to a lifted version of 'i .

Next section consists in the detailed statement of this theorem (with precise hypothe-
ses and bounds given).

2. Detailed setting and results

2.1. Notations

General notations. Throughout this paper, we use the following notations:

• for integer n, Œn� denotes the set ¹1; : : : ; nº.

• for x 2 Rn, we shall denote by xi or x.i/ the i -th coordinate of x, whichever is
most convenient. kxk is the 2-norm of x, and kxk1 the infinity norm of x.

• the operator norm of a matrix M is noted kMk; it is the maximal singular value
of M . Its Frobenius norm is denoted kMkF and its infinity norm kMk1 D
supi;j jMij j.

• 1 denotes the all-one vector, and 1¹�º is the indicator function of an event.

• the group of permutations on r elements is noted Sr .

• the max (resp. min) of two numbers a; b is noted a _ b (resp. a ^ b).

• the letter c denotes any absolute constant, whose value should be assumed to be
the maximum of any such constant encountered so far. To improve the readability
of our computations, we use numbered constants ci during proofs.

Graph theoretic notations. For a graph g D .V; E/, let EE be the set of oriented
edges in E, and

EE.V / D ¹.u; v/ j u ¤ v 2 V º

be the set of all directed edges of the complete graph on V . If t is an integer, g D
.V;E/ is a graph and x 2 V , then the ball .g; x/t is the subgraph induced by all edges
at distance at most t from x, and @.g; x/t is the boundary of the ball, i.e. the set of
vertices at distance exactly t from x. Finally, the set of all non-backtracking paths of
length t starting with x will be denoted Pg.x; t/.

Non-backtracking matrix. Since we are interested in the spectrum of the non-back-
tracking matrix B , we need to be able to translate “vertex” quantities such as the
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vectors 'i into “edge” quantities. Recall that V D Œn�, and identify EE with the set Œ2m�;
we define the 2m � n start and terminal matrices S and T as

8e 2 EE; i 2 Œn�; Sei D 1¹e1 D iº; Tei D 1¹e2 D iº: (2.1)

For a vector � 2 Rn, this implies that ŒT��.e/D �.e2/ for every edge e 2 EE. We then
define the “lifted” eigenvectors �i D T 'i for i 2 Œr�.

We also define the reverse operator J such that Je D xe WD .e2; e1/, and the diagonal
matrix DW such that DW .e; e/ D We; from the definition of B and symmetry of W
it is straightforward to see that JDW = DW J and for all t � 0,

JDWB
t
D .B�/

t
DW J; (2.2)

which is known in mathematical physics as parity-time invariance. For any vector
x 2 R EE , we denote the vector Jx by Lx.

Building upon the sketch in the introduction, we now expand on the model defini-
tion. Recall that the expectation and variance matrices were defined as

Q D P ı EW; K D P ı E
�
W ıW

�
:

2.2. Defining the convergence parameters

In full generality, with no assumptions on P and W , we do not expect meaningful
results to hold; however, we are still able to provide interesting properties on a large
class of matrices. We define in the following the parameters that will govern the con-
vergence behavior:

(i) the rank
r D max

�
rank.Q/;

p
rank.K/

�
I

note that in most practical applications (such as the unweighted case), we shall have
r D rank.Q/, but we also treat cases where r � rank.Q/.

(ii) the sparsity parameter

d D n max
i;j2Œn�

Pij I

(iii) the eigenvector delocalization parameter

b D
p
n max
i�rank.Q/

k'ik1I

(iv) the signal-to-noise ratio

� D max
�2
i
>�1

�1

�2i
I
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(v) and finally the almost sure probability bound

kW k1 D LI

our results hold trivially whenever L D C1 so we shall restrict ourselves to the case
where L is finite, and the Wij are almost surely bounded. While Theorem 2 below
requires an almost sure bound, techniques for dealing with high probability bounds
are discussed in Theorem 6.

The average degree of a vertex i will be noted by

di D
X
j2Œn�

Pij � d;

which corresponds to the entries of the vector P 1. To ensure that G is connected
enough for spectral properties to hold, we make the (common) assumption that di � 1
for all i 2 Œn�. The entries ofK1 can be viewed as an extension of the average degrees
in the weighted case (see [5] or [10] for examples), and for the same reason as above
we require that K1 is bounded away from zero by a constant.

2.3. Main theorem

In the following, G D G.P; W / is the random graph defined in the introduction,
B is the non-backtracking matrix associated with G, and j�1j � � � � � j�2mj are its
eigenvalues.

In its most general form, our main result is as follows:

Theorem 2. Let n � 0 and .P;W / be a couple of n � n matrices defining a random
graphG. Define �D �.K/, r0 as in (1.3), r;b;d;�;L as in Section 2.2, and zLDL=�1.

Let

` D
1 � �

16

log.n/
log.d/

;

for arbitrary � > 0. There exist numbers n0 and C0, all depending on n and the
convergence parameters, such that the following holds:

(i) C0 is smaller than

c

�
rbd zL log.n/

1 � �

�25
;

and n0 is smaller than

exp
�
c

max¹log.r/; log.b/; log .d/2; log .zL/; log.log.n//º
log.��1/

�
:
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(ii) If n � n0, define
� WD C0�1�

`=2: (2.3)

Then the following holds with probability at least 1 � c= log.n/, there exists
a permutation s of Œr0� such that

max
i2Œr0�

j�i � �s.i/j � �; (2.4)

and all the remaining eigenvalues of B are less than C 1=`0 .
p
� _ L/.

(iii) For any i 2 Œr0�, if

ıi WD min
j¤s.i/

j�s.i/ � �j j � 2�; (2.5)

then there exists a normed eigenvector � associated with �i such that

h�; �i i �

s
1 � rd2 zL2

�

�2i
CO

� �

ıi � �

�
; where �i D

T 'i

kT 'ik
:

In order to get an applicable and useful result, we need n � n0 when n is suffi-
ciently large, and C 1=`0 goes to 1 as n goes to infinity. Both conditions are verified in
particular when

1 � � D �.1/; r; b D no.1/; log .d/2 D o.log.n//:

By definition of zL, whenever zL > 1 we have �1 < L, and thus r0 D 0. We can
therefore safely assume zL � 1 in applications and not focus on any bound for L.

The proof of this theorem follows the same method as in many spectral proofs,
from [28] to more recent papers such as [13]. It consists of the following:

• show that the neighborhood of any vertex v is close to a suitably defined random
tree,

• study a family of graph functionals that give rise to approximate eigenvectors of
the random tree,

• use a concentration argument to transpose those tree eigenvectors to pseudo-eigen-
vectors of the non-backtracking matrix,

• bound the remaining eigenvalues using a variant of the trace method in [20],

• conclude by a matrix perturbation argument.

A large portion of the remainder of this paper is dedicated to implementing this
method; however, we first provide several applications of our result to the fields of
random matrix theory and random graph theory.
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3. Applications

3.1. Phase transition in random graphs

Matrix perturbation theory focuses on finding the eigenvalues and eigenvectors of
matrices of the form X C �, where X is a known matrix and � is a perturbation
assumed “small” in a sense. Celebrated results in this field include the Bauer–Fike
theorem [8] for asymmetric matrices, and the Weyl [34] and Davis–Kahan [35] theo-
rems for symmetric ones; incidentally the present paper makes use of those results in
its proofs. Finding sharp general theorems without additional assumptions is known
to be hard, since the eigenvalues and eigenvectors depend on the interactions between
the eigenspaces of X and �.

In the last two decades, growing attention has been paid to problems of the fol-
lowing form: finding the eigenvectors of Xn C Pn (or, in its multiplicative form,
Xn.In C Pn/), where Pn is an n � n matrix with low rank r � n (usually fixed) and
known eigenvalues, and Xn is a random matrix with known distribution. Examples
of this setting are the spiked covariance model [6, 23] and additive perturbations of
Wigner matrices [16,19,30]. A more systematic study has been performed in [10,12]
on orthogonally invariant random matrices.

A staple of those results is the existence of a so-called BBP phase transition
(named after Baik–Ben Arous–Péché, from the seminal article [6]): in the limit n!1,
each eigenvalue of Pn that is above a certain threshold gets reflected (albeit perturbed)
in the spectrum of Xn C Pn, with the associated eigenvector correlated to the one
of Pn.

Phase transition for the adjacency matrix. The adjacency matrix A of our random
graph G can be viewed as a perturbation model by writing

A D EAC .A � EA/ D Q � diag.Q/C .A � EA/:

The term diag.Q/ being negligible with respect to the others, we can see A as the
sum of a deterministic low-rank matrix and a random noise matrix with i.i.d. centered
entries. Further, the entrywise variance of A is equal (up to a negligible term) to K,
so the parameter � can be seen as an equivalent to the variance in the Wigner model.
We thus expect, whenever

p
�� L (so that

p
� is the actual threshold in Theorem 2),

to find a phase transition akin to the one in [11]; and indeed the following theorem
holds:

Theorem 3. Let .P;W / be a matrix couple of size n � n and r; b; d; �; L as above.
Assume further that:

(i) the Perron–Frobenius eigenvector of K is 1; that is K1 D �1,
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(ii) the above eigenvector equation concentrates, i.e. with high probability there
exists " � 1=2 such that for all i 2 Œn�,ˇ̌̌̌X

j�i

W 2
ij � �

ˇ̌̌̌
� "�: (3.1)

Then, if i 2 Œr0� is such that �2i � 2L
2, there exists an eigenvalue �i of A that verifies

�i D �i C
�

�i
C

�

�i
�O

�
L

�i
C
L2

�2i
C "

�
: (3.2)

Further, if the mean degree dj for all j is equal to d0 > 1, and i is such that ıi � 2�
(with � and ıi defined in (2.3) and (2.5)), then there exists a normed eigenvector �
of A with corresponding eigenvalue �i such that

h�; 'i i D

s
1 �

�

�2i
CO

�
1

ıi � �

�
L�

�2i
C
L2�

�3i
C "

�

�i

��
: (3.3)

Whenever �� L2, and " goes to zero as n!1, then the condition �2i � 2L
2

is always verified and the O.�/ term in (3.2) vanishes, and the obtained expansion is
therefore asymptotically correct. The presence of ıi renders a similar result on the
scalar product harder to obtain; however, assuming ıi D‚.

p
�/ (that is, the eigenval-

ues of Q are somewhat regularly spaced) implies similarly that the O.�/ term in (3.3)
vanishes.

The obtained expression for �i , as well as the scalar product expansion, are iden-
tical to the ones in [11], for low-rank additive perturbations of Gaussian Wigner
matrices. Our result is thus a direct extension of [11], for a larger class of matrices
upon a sparsity and concentration condition. Such an extension is not unexpected, in
view of results concerning the universality of the semicircle law for Bernoulli random
matrices, such as [17].

An especially interesting particular case of Theorem 3 is the unweighted ran-
dom graph setting, where Wij D 1 for all i; j . In this case, we have K D P so
the eigenvector equation K1 D �1 is equivalent to all the average degrees being
equal, i.e. di D d0 D � for i 2 Œn�. It is a well-known fact (see for example [18])
that for unweighted random graphs the degree concentration property holds with
" D 2

p
log.n/=d0. A slight modification of the proof of Theorem 3 further removes

several error terms, and the following corollary ensues:

Corollary 1. Let P be a n� n matrix and r; b; d; � as above, withW D 1�1. Assume
further that for all i 2 Œn�, X

j2Œn�

Pij D d0 > 16 log.n/:
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Then for all i 2 Œr0�, there exists an eigenvalue �i of A that verifies

�i D �i C
d0

�i
CO

�s
log.n/
d0

d0

�i

�
;

and if i is such that ıi > 2� , there exists a normed eigenvector of A such that

h�; 'i i D

s
1 �

d0

�2i
CO

�
1

ıi � �

s
log.n/
d0

d0

�i

�
:

In particular, we have

�1 D d0 C 1CO

�s
log.n/
d0

�
:

This is an improvement on the results of [10], which only give �i D�i CO.
p
d0/.

The condition d0 > 16 log.n/ ensures that the degrees of G concentrate. Since our
result is really only meaningful whenever d0� log.n/, so that the error term is negli-
gible before d0=�i , we do not perform the same detailed analysis as in [5]. However,
a more precise phase transition around d0 � log.n/ is not excluded.

Theorem 3 is derived from Theorem 2 through an adaptation of the Ihara–Bass for-
mula [7], obtained by expanding arguments from [9, 33]:

Proposition 1. Let x be an eigenvector of the matrix B with associated eigenvalue �,
such that �2 ¤W 2

ij for every i; j . Define the weighted adjacency matrix zA.�/ and the
diagonal degree matrix zD.�/ by

zA.�/ij D 1¹i � j º
�Wij

�2 �W 2
ij

; zD.�/i i D
X
j�i

W 2
ij

�2 �W 2
ij

:

Then the vector y D S�DW x, where S is defined as in (2.1), is a null vector of the
laplacian matrix

�.�/ D I � zA.�/C zD.�/:

The details and computations are left to the appendix.

3.2. Community detection in random networks

Community detection is a clustering problem that aims to identify large subgroups
(or communities) with similar characteristics inside a large population, with the only
data available being the pairwise interactions between individuals. Starting from its
introductory paper [22], the stochastic block model has been a popular generative
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model for algorithm design; it consists of a random graph G where vertices are parti-
tioned randomly in communities, and edges are present independently with probabil-
ity depending only on the community membership of their endpoints. Popular algo-
rithms for recovering communities include semi-definite programming methods [29],
belief propagation [4], and spectral methods [26,28]; a comprehensive review of algo-
rithms and results can be found in [1].

Unlabeled stochastic block model. In a general form, we can define the stochastic
block model SBM.n; r; �;M/, where � 2 Œr�n and M 2 Œ0; 1�r�r as follows:

• the vertex set is V D Œn�,

• each vertex i 2 Œn� has a community label �i in Œr�,

• for any pair of vertices .i; j /, an edge is present between i and j independently
from the others with probability M�i�j .

It is common to assumeM D ˛
n
M0, whereM0 does not depend on n and ˛ is a scaling

parameter. It is easy to see that up to diagonal terms, the expected adjacency matrix
has the form

P D ‚M‚�;

where ‚ is a n � r matrix such that ‚ij D 1 if �i D j , and 0 otherwise. We shall
assume that for any k 2 Œr�,

#¹i 2 Œn� j �i D kº
n

D �k > 0; (3.4)

where � is a deterministic probability vector. Let �1 � � � � � j�r j the eigenvalues of
diag.�/M0, with ˛ chosen such that j�1j D 1, and �1; : : : ; �r the associated eigen-
vectors. Then the non-zero eigenvalues of P are easily found to be the ˛�i , with
associated eigenvectors ‚�i .

A common assumption is that each vertex type has the same average degree, i.e.

P 1 D ˛1;

otherwise a simple clustering based on vertex degree correlates with the underlying
communities. Making this additional assumption, the following theorem holds:

Theorem 4. Assume that r is constant, and ˛ D no.1/. Let r0 be defined as follows:

• if ˛ � 1 is constant, r0 is the only integer in Œr� such that

˛�2k > 1 for i 2 r0; ˛�2r0C1 � 1:

• if ˛ D !.1/, then r0 D r .
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Then, for any n larger than an absolute constant and all i 2 Œr0�, one has

j�i � �i j � c.˛ log.n//a.˛�r0/
�� log˛.n/ WD �

for some positive constants c;a;�, and all other eigenvalues ofB are confined in a cir-
cle with radius .1C o.1//

p
˛. Further, if �i is an isolated eigenvalue of diag.�/M0,

then there exists an eigenvector � of the non-backtracking matrixB associated with �i
such that

h�; �i i �

s
1 �

1

˛�2i
CO.� 0/; where �i D

T‚�i

kT‚�ik
:

This theorem is essentially a corollary of Theorem 2, with some simplifications
due to Q D K D P and P 1 D ˛1; the error bound � is the same as in the main
theorem. It is a direct generalization of Theorem 4 in [14], for a diverging degree
sequence; further, the property h�; �i i D 1 � o.1/ as soon as ˛ � 1 suggests that a
clustering algorithm such as k-means performed on the eigenvectors of B recovers all
but a vanishing fraction of the community memberships in this regime, which would
provide an alternative to the Sphere-comparison algorithm presented in [3].

Conjecture 1. In the SBM defined as above, as soon as ˛D!.1/, running an approx-
imate k-means algorithm on the top r eigenvectors of B allows to recover the com-
munity memberships of every vertex but a vanishing fraction as n!1.

Proving this conjecture would require a more careful eigenspace analysis for
eigenvalues with multiplicity more than one, such as the one performed in [32], as
well as an error bound on the clustering step similar to the one in [26].

Remark. When the expected degrees of each vertex type is not the same, an analo-
gous version of Theorem 4 holds. The main difference in this case is that the scalar
product h�; �i i has a less elegant asymptotic expansion.

Since the lead eigenvector of P is now non-constant, the condition for reconstruc-
tion is simply ˛ > 1 (or r0 � 1). In particular, this is true as long as the average degree
of the graph is above one; indeed by the Courant–Fisher principle

˛ >
1>P 1
n

:

Labeled block models. In real-world networks, pairwise interactions often carry
more information than just a binary one. A popular variant of the stochastic block
model is thus a model with added edge labels, as follows: let L be a label space, and
consider a SBM drawn under the model described above. We assign to an edge .i; j / a
label Lij 2L, drawn independently from a distribution P�i�j . Such classes of models
have been investigated in full generality in [21, 27], and a variant with the underlying
graph being an Erdős–Rényi model in [31].
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We shall focus here on the symmetric two-community SBM, with

� D
�1
2
;
1

2

�
; M D

 
a b

b a

!
; P11 D P22 D P ; P12 D P21 D Q; (3.5)

and assume that both measures are absolutely continuous with respect to another mea-
sure m (note that we can take m D P C Q), with Radon–Nikodym derivatives f
and g. Let wWL! R a bounded weight function, such that w.`/ � L for any ` 2 L;
and define the weight matrix Wij D w.Lij / and the associated weighted non-back-
tracking matrix B . Then, an application of Theorem 2 yields the following result:

Theorem 5. Define the parameter � by

� D 2
.aEP Œw

2�C bEQŒw
2�/ _ L

.aEP Œw� � bEQŒw�/
2

:

Then, whenever � < 1, let � be a normed eigenvector corresponding to the second
eigenvalue of B . There exists a parameter

� � .a log.n//25�� loga.n/

for some constant � such that

h�; �0i D
p
1 � � CO.�/; where �0 D

‚
�
1
�1

�
p
n
:

Whenever this result holds, a proof identical to the one in [28] implies that recov-
ering a positive fraction of the community memberships is possible.

In order to maximize the region in which reconstruction is possible, we need to
choose the weightsw.`/ such that � is minimized. This optimization step is performed
in the appendix, and leads to the following:

Proposition 2. Define the weight function w and signal-to-noise ratio ˇ as

w.`/ D
af .`/ � bg.`/

af .`/C bg.`/
; ˇ D

1

2

Z
.af � bg/2

af C bg
dm; (3.6)

where a;f;b;g andm are defined in equation (3.5) and below. Then, whenever ˇ > 1,
a spectral algorithm based on the matrix B is able to recover a positive fraction of
the community memberships when n!1.

This settles a conjecture of [21], generalizing the setting from finite to arbitrary
label space. Whenever we allow for a higher number of communities, as well as arbi-
trary choices for the connectivity matrix Q and distributions Pij , the problem proves
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to be harder; an analog to Theorem 5 does hold, but the optimization problem required
to minimize the ratio � looks to be untractable. In the symmetric SBM case, where

� D
1
k
; M D a1¹i D j º C b1¹i ¤ j º; Pij D P1¹i D j º CQ1¹i ¤ j º;

we make the following conjecture:

Conjecture 2. In the labeled symmetric SBM, partial reconstruction is possible as
soon as ˇ > 1, where

ˇ D
1

k

Z
.af � bg/2

af C .k � 1/bg
dm;

and a spectral algorithm based on the non-backtracking matrix with weight function

w.`/ D
af .`/ � bg.`/

af .`/C .k � 1/bg.`/

recovers a positive fraction of the community memberships in polynomial time.

As with Theorem 4, whenever the mean degree ˛ of the graph grows to infinity,
we have h�; �0i D 1 � o.1/, which brings us our second conjecture:

Conjecture 3. If we have a D ˛a0, b D ˛b0 with ˛ D !.1/, a0; b0 fixed, then as
n!1 a clustering algorithm based on the second eigenvector of the weighted non-
backtracking matrix B with the weight function defined in (3.6) recovers all but a
vanishing fraction of the community memberships.

As a final remark, note that the optimal weight function assumes perfect knowl-
edge of all model parameters, especially the exact label distribution for each com-
munity pair. However, in some cases, this weight function is a rescaling of a more
agnostic one; as an example, in the censored block model [2] we find that w.`/ D c`
(with ` D ˙1), and thus the spectral algorithm mentioned here is the same as in [31].

3.3. Extension to gaussian weights

In the form presented in Theorem 2, our result is only meaningful with almost surely
bounded random variables (i.e. with L < 1). With a more careful analysis of the
error bounds, this can be extended to

L D sup
i;j2Œn�

sup
k

E
�
W k
ij

�1=k
I (3.7)

however, we determined the class of distributions satisfying (3.7) was not different
enough from the bounded case to warrant increasing the complexity of the proof.
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To the contrary, the setting where the Wij are gaussian random variables is of
independent interest; it can be seen as a special case of noisy matrix completion as
described in [15, 24]. In this case, the moment condition of (3.7) is far from satisfied,
and at least at first glance our proof cannot be adapted readily. Still, we show the
following:

Theorem 6. Assume that the Wij � N .mij ; s
2
ij / are independent Gaussian random

variables, and let
m D

X
i;j

mij ; s D sup
i;j

sij :

Then the conclusions of Theorem 2 apply with

L D mC 2s
p

log.n/:

The loss of a
p

log.n/ factor comes from the use of a concentration bound for
the Wij ; details can be found in the appendix.

To the best of our knowledge, there is not much literature to compare with on
the topic of eigenvalue reconstruction for noisy matrix completion, the works cited
above being focused on reconstructing the whole matrix. However, results on gaussian
matrix perturbation such as [11] seem to indicate that the

p
log.n/ factor is superflu-

ous and can be improved upon with other methods.

4. A Bauer–Fike type bound for almost orthogonal diagonalization

One important tool in tying together the local analysis of G is a matrix perturbation
theorem, derived from the Bauer–Fike theorem. It mostly consists in a simplification
and adaptation of Theorem 8.2 in [13], tailored to our needs. We begin by recalling
the original Bauer–Fike theorem:

Theorem 7 (Bauer–Fike theorem [8]). Let D be a diagonalizable matrix, such that
D D V �1ƒV for some invertible matrix V and ƒ D diag.�1; : : : ; �n/. Let E be any
matrix of size n � n. Then, any eigenvalue � of D CE satisfies

j� � �i j � kEk �.V /; (4.1)

for some i 2 Œn�, where �.V / D kV kkV �1k is the condition number of V .
Let R be the right-hand side of (4.1), and Ci WD B.�i ; R/ the ball centered at �i

with radius R (in C). Let 	 � Œn� be a set of indices such that�[
i2	

Ci

�
\

�[
i…	

Ci

�
D ;:

Then the number of eigenvalues of D CE in
S
i2	 Ci is exactly j	j.
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4.1. A custom perturbation lemma for almost diagonalizable matrices

Building on this theorem, we now expose this section’s first result. LetUD.u1; : : : ;ur/
and V D .v1; : : : ; vr/ be n � r matrices; our nearly diagonalizable matrix shall be
S D U†V � with†D diag.�1; : : : ; �r/. We shall assume that the �i are in decreasing
order of modulus:

j�r j � j�r�1j � � � � � j�1j D 1:

Now, let A be a n � n matrix, not necessarily diagonalizable. The assumptions
needed for our results are as follows:

(i) For some small constant " > 0,

kA � Sk � ":

(ii) The matrices U and V are well-conditioned: both U �U and V �V are non-
singular, and there exist two constants ˛; ˇ > 1 such that

kU �U k � ˛; kV �V k � ˛;

k.U �U/
�1
k � ˇ; k.V �V /

�1
k � ˇ:

(iii) There exists another constant 0 < ı < 1 such that

kU �V � Irk1 � ı:

(iv) The �i are well-separated from 0, in the sense that

j�r j > 2�; (4.2)

where an exact expression for � will be given over the course of the proof.

Then the following result, whose statement and proof (regarding the eigenvalue
perturbation) are adapted from [13], holds:

Theorem 8. Let A be a matrix satisfying assumptions (i)–(iv) above, and let j�1j �
j�2j � � � � � j�r j be the r eigenvalues of A with largest modulus. There exists a per-
mutation � such that for all i 2 Œr�,

j��.i/ � �i j � r � �;

and the other n � r eigenvalues of A all have modulus at most � . Additionally, if i is
such that

B.�i ; �/ \

�[
j¤i

B.�j ; �/

�
D ;; (4.3)
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then there exists a normed eigenvector � associated with ��.i/ such that



� � ui

kuik





 � 3�

ıi � �
;

where ıi is the minimum distance from �i to another eigenvalue:

ıi D min
j¤i
j�j � �i j � 2�:

Proof. We begin with defining an alternative matrix xU such that xU �V D Ir . Let Hi
be the subspace of Rn such that

Hi D vect.vj j j ¤ i/;

and consider the vectors zui and xui defined as

zui D ui � PHi .ui /; xui D
zui

hzui ; vi i

with PHi the projection on Hi , and zU , xU the associated n � r matrices. Then it is
straightforward to see that

hxui ; vi i D 1; hxui ; vj i D 0

for all j ¤ i , which shows that xU �V D Ir . Now, if we let Vi be the matrix V with
the i -th column and row deleted,

PHi D Vi .V
�
i Vi /

�1
V �i ;

and
kV �i uik

2
D

X
j¤i

hvj ; ui i
2
� rı2;

hence we can compute kui � zuik:

kui � zuik D kPHi .ui /k � kVikk.V
�
i Vi /

�1
kkV �i uik;

and by the interlacing theorem kVik�
p
˛ and k.V �i Vi /

�1
k�ˇ since Vi is a principal

submatrix of V . Using the fact that kMk � kMkF for any matrix M , we find

kU � zU k � r2
p
˛ˇı:

For the second part, note that by the Cauchy–Schwarz inequality,

jhzui ; vi i � 1j � jhui ; vi i � 1j C kui � zuik � kvik

� ı.1C r˛ˇ/;
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with the (generous) inequality kvik � kV k used in the last line. Whenever ı is small
enough, we can use the inequality j.1 � t /�1 � 1j � 2t which is valid for t � 1=2:ˇ̌̌̌

1

hzui ; vi i
� 1

ˇ̌̌̌
� 2ı.1C r˛ˇ/:

As a result,

kxui � zuik D kzuik

ˇ̌̌̌
1

hzui ; vi i
� 1

ˇ̌̌̌
� 2ı
p
˛.1C r˛ˇ/

� 4r˛3=2ˇı:

Using again the norm equivalence bound and the triangle inequality,

k xU � U k � 5r2˛3=2ˇı; (4.4)

which ends the preliminary part of the proof.

We now set accordingly xS D xU†V �, and claim that S is now a truly diagonalizable
matrix. Indeed, any xui is an eigenvector of xS with associated eigenvalue �i , and a basis
of im .V /? provides a family of eigenvectors of†with eigenvalue 0. We consequently
set

… D
�
xU Y

�
;

where Y is an orthonormal basis of im .V /?; … is the matrix of an eigenvector basis
for S . Further, we have

k xS � Sk � kU � xU kk†kkV k � 5r2˛2ˇı WD "0:

The above bound implies that the matrices A and xS are still close:

kA � xSk � kA � Sk C kS � xSk � "C "0; (4.5)

and we can apply the Bauer–Fike theorem to A and xS ; the eigenvalues of A are con-
tained in the union of the balls B.�i ; "00/ and B.0; "00/, where

"00 D ."C "0/�.…/:

The computation of �.…/ being cumbersome, we defer the following lemma:

Lemma 1. Let X be a n � r matrix with rank r , and X such that X�X 0 D Ir . Let Y
be a matrix for an orthonormal basis of im .X 0/

?
D ker..X 0/�/, and P D .X; Y /.

Then, if kXk � 1 and kX 0k � 1,

k…k �
p
2kXk; k…�1k �

p
2
�
1C kXkkX 0k

�
:
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Applying this to X D xU and X 0 D V gives the bound

�.…/ � 2
�
k xU k C k xU k2kV k

�
;

and we use the triangle inequality to bound k xU k:

k xU k � kU k C k xU � U k � 6r2˛3=2ˇ;

a very loose but sufficient bound, that entails

�.…/ � 84r2˛7=2ˇ:

The corresponding bound on "00 reads

"00 � 84r2˛7=2ˇ."C 5r˛2ˇı/;

and we define � to be the right-hand side of this inequality:

� WD 84r2˛7=2ˇ."C 5r˛2ˇı/: (4.6)

Going back to the Bauer–Fike application, the separation condition (4.2) implies that
B.0; �/ is disjoint from B.�i ; �/ for i 2 Œr� and we can apply the second part of the
theorem: there are exactly r eigenvalues of A inside the region

� D
[
i2Œr�

B.�i ; �/;

and all other eigenvalues of A have modulus less than � . Further, again by the second
part of Theorem 7, all connected components of � have the same number of eigen-
values of A and B . As a result, there exists a permutation � such that for all i 2 Œr�,
we have

j��.i/ � �i j � sup
�0��

diam.�0/ � 2r�;

where the supremum is taken over all connected subsets of �.
We now move on to the eigenvector perturbation bound; let � be a normed eigen-

vector of A associated with the eigenvalue ��.i/. We write � D…x with… the matrix
defined before, and use (4.1):



��.i/…x � rX

jD1

�jxj xuj





 D 

.A � xS/x

 � "C "0;
which we rewrite as 



…���.i/x �X

j2Œr�

�jxj ej

�



 � "C "0;
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with .e1; : : : ; en/ the usual orthonormal basis of Rn. Using the inequality kvk �
kP�1kkPvk holding for any vector v,



��.i/x �X

j2Œr�

�jxj ej





 � k…�1k."C "0/:
We introduce the notation �rC1 D � � � D �n D 0; whenever the ball B.�i ; �/ is disjoint
from all other such balls, we have j��.i/ � �i j � � , and thus for j ¤ i

j��.i/ � �j j � j�j � �i j � j��.i/ � �i j � ıi � �;

so that

kx � xieik D





X
j¤i

xj ej





 � 1

ıj � �





X
j¤i

.��.i/ � �j /xj ej





 � k…�1k."C "0/ıj � �
:

We now apply … inside the norm of the left-hand side, and use the fact that �.…/ �
."C "0/ � � :

k� � xi xuik �
�

ıi � �
:

Now, for any vectors w;w0 2 Rn, we have



 w

kwk
�

w0

kw0k





 � 2kw � w0k

kwk
; (4.7)

and all that remains is to write



� � ui

kuik





 � 



� � xui

kxuik





C 



 ui

kuik
�
xui

kxuik






�

2�

ıi � �
C 2kui � xuik

�
3�

ıi � �
;

having used (4.7) twice and 2kui � xuik � � . This ends the proof.

As announced, we now prove the aforementioned Lemma 1 on the condition num-
ber of P :

Proof. Let z 2 Rn be a unit vector, and write z D
�
x
y

�
with x of size r and y of size

n � r . Then, using that kY k D 1,

k…zk D kXx C Yyk � kXk � kxk C kY k � kyk

�
�
1 _ kXk

��
kxk C kyk

�
�
p
2kXk;
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which proves the first inequality. The second one relies on the following explicit for-
mula for …�1:

…�1 D

 
.X 0/

�

�Y �X.X 0/
�
C Y �

!
:

Indeed, using the relations Y �Y D In�r and .X 0/�Y D 0: 
.X 0/

�

�Y �X.X 0/
�
C Y �

!
P D

 
.X 0/

�

�Y �X.X 0/
�
C Y �

!
.X Y /

D

 
.X 0/

�
X .X 0/

�
Y

�Y �X.X 0/
�
X C Y �X �Y �X.X 0/

�
Y C Y �Y

!

D

 
Ir 0

�Y �X C Y �X Y �Y

!

D

 
Ir 0

0 In�r

!
D In:

Furthermore, we have

k�Y �X.X 0/
�
C Y �k � kY kkIn �X.X

0/
�
k � 1C kXkkX 0k;

and the exact same argument as in the first inequality yields

kP�1k �
p
2
�
1C kXkkX 0k

�
:

4.2. Matrix power perturbation and phase perturbation control

We aim in the following section to apply Theorem 8 to powers of the matrix B;
however, such a process introduces uncertainty on the phase of the eigenvalues of B .
The next theorem, adapted from [13] and [14], develops a method to control such
uncertainty. As before, let † D diag.�1; : : : ; �r/ with

1 D j�1j � � � � � j�r j;

and U;U 0; V; V 0 four n � r matrices. We set

S D U†`V �; S 0 D U 0†`
0

.V 0/
�

for two integers `; `0.
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Theorem 9. Assume the following:

(i) the integers `; `0 are relatively prime,

(ii) the matrices U;U 0; V; V 0 are well-conditioned:

• they all are of rank r ,

• for some ˛; ˇ � 1, for X in ¹U; V; U 0; V 0º,

kX�Xk � ˛; k.X�X/
�1
k � ˇ;

• for some small ı < 1,

kU �V � Irk � ı; k.U
0/
�
V 0 � Irk � ı;

(iii) there exists a small constant " > 0 such that

kA` � Sk � "; kA`
0

� S 0k � ";

(iv) if we let
�0 WD 84r

3˛7=2ˇ."C 5r˛2ˇı/;

then
�0 < ` j�r j

`; �0 < `
0
j�r j

`0 : (4.8)

Assume without loss of generality that ` is odd, and let

� WD
�0

`j�r j`
:

Then, the r largest eigenvalues of A are close to the �i in the following sense: there
exists a permutation � of Œr� such that for i 2 Œr�,

j��.i/ � �i j � 4�;

and all other eigenvalues of A are less that �1=`0 . Additionally, if i is such that

B.�i ; �/ \

�[
j¤i

B.�j ; �/

�
D ;; (4.9)

then there exists a normed eigenvector � associated to ��.i/ such that



� � ui

kuik





 � 3�

ıi � �
;

with ıi defined as in Theorem 8.
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Proof. We apply Theorem 8 to A`; S and A`
0

; S 0; for any i 2 Œr�,

j�`�.i/ � �
`
i j � �0; j�

`0

� 0.i/ � �
`
i j � �0: (4.10)

Examining the proof of Theorem 8, we notice that we can take � D � 0 since taking
the `-th power does not change the ordering. We fix i 2 Œr� and let �D ��.i/ D j�jei!

and � D �i for now; then ˇ̌̌�`
�`
� 1

ˇ̌̌
� � WD

�0

j� j`
:

The argument of .�=�/` is thus between �� and � , with

� D j2 arcsin.�=2/j � �=2�;

and the same holds for `0 (with �0 defined accordingly). Thus, there exists two integers
p; p0 and two numbers s; s0 with absolute value less than �=2� (resp. �=2�0), such
that

`! D p� C s; `0! D p0� C s0:

This implies

p`0 � p0` D
s0` � s`0

�
:

The left-hand side of this inequality is an integer, and using condition (4.8) both terms
in the right-hand side have a magnitude strictly lower than 1=2, so both sides are 0.
As ` and `0 are relatively prime, ` divides p and `0 divides p0, so that

! D k� C
s

`
:

Whenever �i is positive, k is even and we can take ! D s=`, and when k is odd we
choose ! D � C s=`.

We now come back to (4.10), and write

�`i D �
`
i .1C z/

with jzj � �. Taking the modulus on both sides we find j�i j D j�i jj1C zj1=` and we
use the inequality jj1C zj1=` � 1j � 2jzj=` (valid for jzj � 1=2) to findˇ̌

j�i j � j�i j
ˇ̌
�

2�0

`j�i j`
:

We can now prove the lemma: whether � is positive or negative, a case analysis yields

j�i � �i j �
ˇ̌
j�i j � j�i j

ˇ̌
C j�i j je

is=`
� 1j

�
2�0

`j�i j`
C j�i j

jsj

`

�
4�0

`j�i j`
;
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the desired bound. Now, assuming that ` is odd, we have by the mean value theorem

j�`i � �
`
j j � `

�
j�i j ^ j�j j

�`�1
j�i � �j j � `j�r j

`
j�i � �j j;

so that condition (4.9) implies the separation condition (4.3) applied to A`. We can
then apply the same proof as in Theorem 8 and get



� � ui

kuik





 � 3�0

`j�r j`ıi � �0
;

which is equivalent to the theorem bound.

5. Proof of Theorem 2

We prove in this section the main result on the spectral properties of B . We shall use
the same notations as in Theorem 2; since the statement of the theorem is invariant
upon multiplying the entries of W by a common constant, we shall assume in the rest
of the paper that �1 D 1.

Our candidates for the singular vectors of B` are the vectors .u1; : : : ; ur0/ and
.v1; : : : ; vr0/, where for i 2 Œr0�,

ui D
B`�i

�`i
; vi D

.B�/`DW L�i

�`C1i

; (5.1)

with associated eigenvalue �`i . We let U (resp. V ) be the n� r matrix whose columns
are the ui (resp. vi ), andDD diag.�1; : : : ;�r0/. The subspace spanned by the vectors
.v1; : : : ; vr0/ will be denoted byH , and we let PH and PH? be the projections onH
and its orthogonal H?, respectively.

Finally, we will need an approximation of the Gram matrix of the vectors u
(and v); we define for every t � 0 the covariance matrices �.t/U and �.t/V such that
for i; j 2 Œr0�,

�
.t/
U;ij D

tX
sD0

hP 1; Ks'i;j i
.�i�j /

s ; �
.t/
V;ij D

tX
sD0

hK1; Ks'i;j i
.�i�j /

sC1
; (5.2)

where 'i;j D 'i ı 'j .

Remark. In the classical stochastic block model, we have K D Q and the all-one
vector 1 is an eigenvector of Q. This implies that the matrices �.t/U;ij and �.t/V;ij are
diagonal, and thus the ui (resp. vi ) are asymptotically orthogonal. This greatly sim-
plifies the perturbation analysis of Theorem 8 for this special case.
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5.1. Structure of the matrices U and V

Following from the subsequent local analysis ofG, as well as a trace bound argument,
we gather the following relations between matrices B`, D` and U .

Theorem 10. Let r;d;b; �;L be parameters as above, such that a� n1=4, and .P;W /
be any matrices in C.r; d; b; �; L/. Let ` be any integer such that

` �
1 � �

16

log.n/
log.d/

; (5.3)

for some � > 0. Then there exists an event with probability at least 1 � c= log.n/ and
a parameter N0 � a12L6 such that if n � N0,

kU �U � �
.`/
U k � C � n

�1=4; (5.4)

kV �V � �
.`/
V k � C � n

�1=4; (5.5)

kU �V � Ir0k1 � C � n
�1=4; (5.6)

kB`U � UD`
k � C 0.

p
� _ L/

`
; (5.7)

kB`PH?k � C
0.
p
� _ L/

`
; (5.8)

where C and C 0 satisfy

C � crd4b2L; C 0 � cr2d6b2L2 log .n/20:

Furthermore, on this same event, we have the following bound:

kB`k � c log.n/n1=4L`: (5.9)

The proof of this theorem will occupy the next few pages of this article; we first
show how it implies the statement of Theorem 2.

5.2. Proof of the perturbation bounds

The goal here is to apply Theorem 9 to B`, U and V : we choose ` equal to the upper
bound in (5.3) (with arbitrary �, say 0:01) and `0 D `C 1, and let

S D UD`V �; S 0 D U 0D`0V 0�;

where U 0; V 0 are defined identically to U and V replacing ` by `0. We now check all
the conditions of Theorem 9:

Condition (i). Since `0 D `C 1, ` and `0 are relatively prime.
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Condition (ii). We shall need a small lemma on the spectral properties of the covari-
ance matrices, which will be proven in a subsequent section:

Lemma 2. For all t � 1, the matrix �.t/U (resp. �.t/V ) is a positive definite matrix, with
all its eigenvalues greater than 1 (resp. c�10 ) and such that

1 � k�
.t/
U k �

r2d3L2

1 � �
; c�10 � k�

.t/
V k �

r2d2L2

1 � �
:

Then, the minimum eigenvalue of V �V is at least c�10 � Cn
�1=4, which is more

than c�10 =2 as soon as
n � c1r

4a4d16b8L4;

and we can take ˇ D 2c0 whenever this holds. On the other hand,

kV �V k �
rd2L2

1 � �
C
rb2d4L

n1=4
�
2rb2d4L2

1 � �
:

Performing the same computations on U �U leads us to the choice

˛ D
2rb2d4L2

1 � �
:

Finally, equation (5.6) allows us to take

ı D Cn�1=4:

Condition (iii). This condition requires some additional computations. Recall that
H D im.V /; we have the formula

PH D V .V
�V /

�1
V �:

Noticing that SPH D S , we can bound kB` � Sk as follows:

kB` � Sk � kB`PH � SPHk C kSPH?k C kB
`PH?k

� kB`PH � Sk C kB
`PH?k

� kB`V .V �V /
�1
� UDkkV �k C kB`PH?k:

To apply (5.7), we let

U D PHU C PH?U D V .V
�V /

�1
C zU C PH?U :

The second term is equal to V .V �V /�1.V �U � Ir0/, and we can thus use (5.6):

k zU k � kV kk.V �V /
�1
kkV �U � Ir0k � r

p
˛ˇı:
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Going back to the above inequality, we find

kB` � Sk � kB`U � UD`
k C kB`kk zU k C kB`PH?kkU k C kB

`PH?k;

and the bounds in Theorem 10 readily imply that all terms in the above inequality are
bounded above by " WD C 00.

p
� _ L/`, with

C 00 �
c3r

3ad8b3L3 log .n/20

1 � �
:

Condition (iv). Using all the bounds proven in the above computations, we find that

�0 � C0.
p
� _ L/

` with C0 �
c4 a

2r11d25b13L12 log .n/20

.1 � �/6
:

The bound we have to check is therefore

C0.
p
� _ L/

`
� `j�r0 j

`
” C0�

`
� `;

which happens as soon as

log.n/ �
20 log.C0/ log.d/

log.��1/
:

The same proof holds for `0, with the same constants.

Having checked all assumptions of Theorem 9, we can now apply it to B`; this im-
plies the existence of a permutation � 2 Sr0 (possibly depending on n) such that for
i 2 Œr0�,

j�i � ��.i/j � � WD C0�
`;

and all the other eigenvalues of B satisfy

j�j � C
1=`
0 .
p
� _ L/:

Now, assume that for some i 2 Œr0�, we have ıi � 2� . Then, applying the last part
of Theorem 9, there exists an eigenvector of B associated with �i such that



� � ui

kuik





 � 3�

ıi � �
:

We define in the following


i D hP 1; .In � ��2i K/
�1
'i;i i:

If we rewrite the definition of �.t/U;i i as

�
.t/
U;i i D

�
P 1;

tX
sD0

.�i /
�2sKs'i;j

�
;
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the matrix sum converges as t !1 since �.K/ < �2i , and using Lemma 3 below, we
have

j�
.`/
U;i i � 
i j D

1X
tD`C1

��2ti hP 1; Kt'i;j i �
1X

tD`C1

rd3L2�t��2ti � �;

and combined with (5.4) yields ˇ̌
kuik

2
� 
i

ˇ̌
� 2�:

On the other hand, we shall prove the following inequality in the following sections
(equation (8.7)): for all t � 2`,ˇ̌

hB t�i ; �i i � �
t
i hP 1; 'i;i i

ˇ̌
� ��ti :

Setting t D 0 and t D ` in this inequality yields at the same timeˇ̌
k�ik

2
� hP 1; 'i;i i

ˇ̌
� �;

ˇ̌
hui ; �i i � hP 1; 'i;i i

ˇ̌
� �:

We now have, using the Cauchy–Schwarz inequality,ˇ̌̌̌
h�; �i i �

s
hP 1; 'i;i i


i

ˇ̌̌̌
�





� � ui

kuik





C ˇ̌̌̌D uikuik ; �i

k�ik

E
�

s
hP 1; 'i;i i


i

ˇ̌̌̌
�

3�

ıi � �
C c5 � �

c6 �

ıi � �
:

Finally, notice that


i D hP 1; 'i;i i C
�
P 1;

1X
sD1

.�i /
�2sKs'i;j

�
� hP 1; 'i;i i C rd2L2

�=�2i
1 � �=�2i

:

Using that rd2L2 � 1 and hP 1; 'i;i i � 1, we find

hP 1; 'i;i i

i

� 1 � rd2L2
�

�2i
:

6. Preliminary computations

We begin the proof of Theorem 10 with some elementary computations on the entries
of K and �.t/, which will be of use in the later parts of the proof. Most of the results
from this section are adapted from [13], although sometimes improved and adapted
to our setting.
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Bounding � and L from below. We begin with a simple bound on � D �.K/; by
the Courant–Fisher theorem, � � hw;Kwi for every unit vector w, and applying it to
w D 1=

p
n yields

� �
hw;Kwi

n
D
1

n

X
i;j2Œn�

PijE
�
W 2
ij

�
D
1

d

X
i;j2Œn�

P 2ijEŒWij �
2
D
kQk2F
d

;

where we used that Pij � d=n and the Jensen inequality. The Frobenius norm of Q
is then greater than �21 D 1, which in turns implies

� �
1

d
; (6.1)

so that � is bounded away from zero. In order to prove a similar bound on L, we write
for x 2 Œn�,

'1.x/ D
X
y2Œn�

Qxy'1.y/ �

sX
y

Q2
xy �

dL
p
n
:

Squaring and summing those inequalities over x gives

1 D k'1k
2
� d2L2;

so that as with �,

L �
1

d
: (6.2)

A scalar product lemma. Our second step is an important lemma for the following
proof, leveraging the entrywise bounds on W :

Lemma 3. Let '; '0 2 Rn be any unit vectors. Then, for any t � 0,

h1; Kt' ı '0i � rd2L2�t :

Proof. We write the eigendecomposition of K as

K D

sX
kD1

�k k 
�
k ;

with �1 D � the Perron–Frobenius eigenvalue of K and s � r2 its rank. Then, for all
i 2 Œn�,

sX
kD1

�2k k.i/
2
D .K2/i i D

X
j2Œn�

K2ij

D

X
j2Œn�

P 2ijE
�
W 2
ij

�2
�

X
j2Œn�

�d
n

�2
L4 �

d2L4

n
:

This is akin to a delocalization property on the eigenvectors of K.
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We can now prove the above lemma:

h1; Kt' ı '0i D
sX

kD1

�tkh1;  kih k; ' ı '
0
i

� �t�1
sX

kD1

k kkk1k � j�kj
ˇ̌
h k; ' ı '

0
i
ˇ̌

� �t�1
p
n
X
i2Œn�

j'.i/jj'0.i/j

sX
kD1

j�kjj k.i/j

� �td
p
n
X
i2Œn�

j'.i/jj'0.i/j
p
s

p
sX

kD1

�2k k.i/
2

� �ta
p
n
p
s
dL2
p
n

X
i

j'.i/jj'0.i/j � rd2L2�t ;

where we extensively used the Cauchy–Schwarz inequality, as well as the bound
��1 � d from (6.1).

Entrywise bounds for K t . For a more precise estimation of entrywise bounds, we
define the scale-invariant delocalization parameter

‰ D
dL2

�
:

Using the same proof technique as in (6.2), as well as (6.1), we have

1 � ‰ � d2L2

for any i; j 2 Œn�. Recall that, as shown in the proof of Lemma 3, for all i 2 Œn�,

.K2/i i �
d2L4

n
D
‰2

n
�2:

Now, for t � 0 and i; j 2 Œn�,

.Kt /ij D
X
k2Œs�

�tk k.i/ k.j /

� �t�2
X
k

�2k j k.i/j j k.j /j � �
t�2
q
.K2/i i .K

2/jj ;

where we again used the Cauchy–Schwarz inequality at the last line. This yields

.Kt /ij �
‰2

n
�t (6.3)

for any t � 1 and i; j 2 Œn�.



L. Stephan and L. Massoulié 230

The covariance matrices. We now study the covariance matrices �.t/U and �.t/V def-
ined in (5.2). Our aim is to prove the following lemma:

Lemma 4. For all t � 1; the matrix �.t/U (resp. �.t/V ) is a positive definite matrix, with
all its eigenvalues greater than 1 (resp. c�1) and such that

1 � k�
.t/
U k �

r2d3L2

1 � �
; c�1 � k�

.t/
V k �

r2d2L2

1 � �
:

Proof. We first prove the bounds for �.t/V . Let C .s/ be the r0 � r0 matrix (where r0 is
defined as in Theorem 1) with

C
.s/
ij D

hK1; Ks'i;j i
.�i�j /

sC1
:

Then for every w 2 Rr0 , we have

w�C .s/w D
X

i;j2Œr0�

wiwj

.�i�j /
sC1

X
x2Œn�

ŒKsC11�.x/'i .x/'j .x/

D

X
x2Œn�

ŒKsC11�.x/
�X
i2Œr0�

wi'i .x/

�
sC1=2
i

�2
� 0;

hence every matrix C .s/ is positive semi-definite. Further, we have

C .0/ D D�1ˆ� diag.K1/ˆD�1;

where ˆ is the n � r matrix whose columns are the 'i . Using �i � 1 for any i 2 Œr0�,
the eigenvalues of C .0/ are all greater than minxŒK1�.x/� c�1 by our initial assump-
tions. This settles the positive definite property, as well as the minimum eigenvalue
of �.t/V .

Now, applying Lemma 3 to 'i and 'j , for all i; j 2 Œr0�, one has

�
.t/
V;ij �

tX
tD0

rd2L2�sC1

.�i�j /
sC1
� rd2L2

1X
sD0

� �

�i�j

�s
:

By definition of � , the summand above is less than � s , whose sum converges since
� < 1. As a result,

k�
.t/
V k1 �

rd2L2

1 � �
;

and the classic bound k�.t/V k � r0k�
.t/
V k1 implies the upper bound.

The proof for �.t/U is very similar; the upper bound simply ensues from the fact
that dx � d for any x 2 Œn�. For the lower bound, if we let as above

C
0.s/
ij D

hP 1; Ks'i;j i
.�i�j /

s ;
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then
C 0.0/ D ˆ� diag.P 1/ˆ;

and the minimum of P 1 is at least 1. This implies that the eigenvalues of C 0.0/ are
larger than one, and we conclude as before.

7. Local study of G

It is a well-known fact (see for example [14]) that when the mean degree is low enough
(d D no.1/), the graph G is locally tree-like – that is, vertex neighborhoods behave
almost like random trees. The goal of this section is to establish rigorously this result,
as well as provide bounds on neighborhood sizes.

7.1. Setting and definitions

Labeled rooted graphs. A labeled rooted graph is a triplet g� D .g; o; �/ consisting
of a graph g D .V; E/, a root o 2 V , and a mark function � W V ! N with finite
support. We shall denote by G� the set of labeled rooted graphs with V D N, and will
often write g� D .g; o/ for an element of G�, dropping the mark function. Notions of
subgraphs, induced subgraphs and distance extend naturally from regular graphs to
this setting.

Labeling trees and graphs. We recall that G is the inhomogeneous random graph
defined earlier. For each vertex x 2 V , we can define the associated element of G� as
follows: the root is set to x, each vertex y 2 Œn� is given a mark �.y/ D y, and we let
�.z/ D 0 for all z 2 N n Œn�. The resulting triple .G; x; �/ is a random element of G�.

Now, let o 2 Œn�; we define the inhomogeneous random tree as follows: first, the root
is given a mark �.o/D o. Then, for each vertex x already labeled, we draw the number
of children of x according to Poi.d�.x//, where we recall that

d�.x/ D
X
j

P�.x/;j � d:

Each child y of x receives a label drawn independently at random from the distribu-
tion

��.x/ D

�
P�.x/;1

d�.x/
; : : : ;

P�.x/;n

d�.x/

�
; (7.1)

which sums to 1 by definition. The resulting tree is a random element of G�, denoted
by .T; o/.
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7.2. Growth properties of trees and graphs

A number of growth properties for neighborhoods in T and G are needed to ensure
the successful couplings below. By definition of d ,G (resp. .T;o/) is dominated by an
Erdős–Rényi graph G .n;d=n/ (resp. a Galton–Watson tree with offspring distribution
Poi.d/); we are thus able to directly lift properties from [14, Sections 8 and 9].

Lemma 5. Let v be an arbitrary vertex in G; then, there exist absolute constants
c0; c1 > 0 such that for every s > 0, we have

P
�
8t � 1; j@.G; v/t j � sd

t
�
� 1 � c0e

�c1s: (7.2)

The same result holds when replacing .G; v/ with the tree .T; o/ defined above.

Taking s D c�11 log.c0n2/ in the above inequality, one gets

P
�
8t � 1; 8v 2 V;

ˇ̌
@.G; v/t

ˇ̌
� c3 log.n/d t

�
� 1 �

1

n
; (7.3)

for any n � 3. Summing these inequalities for 1 � t � ` yields a similar bound for
the whole ball: with probability at least 1 � 1

n
, we have

j.G; v/t j � c4 log.n/d t (7.4)

for all v 2 V and t � 1. In particular, this implies the following useful bound: for any
v 2 V ,

deg.v/ � c4d log.n/:

Another consequence of (7.2) is the following useful lemma:

Lemma 6. For every p � 2, there is a constant cp such that

E

�
max
v2V

sup
t�1

�
j@.G; v/t j

d t

�p�
� cp log .n/p: (7.5)

Similarly to the proof of (7.4), we have

max
v2V
j.G; v/t j

p
� d tptp max

x2V
sup
s�t

j@.G; v/t j
p

d sp
;

which yields

E

�
max
v2V
j.G; v/t j

p

�
� cpt

p log .n/pd tp: (7.6)

An important note is that the above results apply to any collection of n random
variables satisfying an inequality like (7.2); in particular, it also applies to an i.i.d.
collection of inhomogeneous random trees of size n.
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7.3. Local tree-like structure

We first check that the random graph G is tree-like. We say that a graph g is `-tangle-
free if there is at most one cycle in the `-neighborhood of every vertex in the graph.
As mentioned before, the random graph G is dominated by an Erdős–Rényi graph
G .n; d=n/; we can therefore lift the desired properties from [14].

Lemma 7. Let ` � n be any integer parameter.

(i) the random graph G is `-tangle-free with probability at least 1 � ca2d4`=n.

(ii) the probability that a given vertex v has a cycle in its `-neighborhood is at
most cad2`=n.

We shall assume in the following that the 2`-tangle-free property happens with
probability at least 1 � cn�� for some � > 0, which happens whenever

` �
1 � �

10
logd .n/ � c3 log.n/: (7.7)

We now gather all the result of the current section into one proposition, for ease
of reading. The bound ` � c log.n/ assumed above is used to simplify the inequalities
below.

Proposition 3. LetG be an inhomogeneous random graph, and .Tx; x/x2Œn� a family
of random trees as defined above. Let ` be small enough so that (7.7) holds. Then
there exists an event E with probability at least 1 � .1= log.n//, under which:

(i) the graph G is 2`-tangle-free,

(ii) for all v 2 G, t � 2`, we have

j.G; x/t j � c log.n/d t ; (7.8)

(iii) for any t � 2`, the number of vertices in G whose t -neighborhood contains
a cycle is at most c log .n/2d tC1.

Furthermore, for any t � 2` and p � 1, we have

E

�
max
v2V
j.G; v/t j

p

�1=p
� c log .n/2d t ; (7.9)

and the same holds for the family .Tx; x/x2Œn�.

7.4. Coupling between rooted graphs and trees

We now turn onto the main argument of this proof: we bound the variation distance
between the neighborhoods of .G; x/ and .T; x/ up to size `.
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First, recall some definitions: if P1;P2 are two probability measures on the space
.�;F /, their total variation distance is defined as

dTV.P1;P2/ D sup
A2F

jP1.A/ � P2.A/j:

The following two characterizations of the total variation distance shall be useful:
first, whenever � is countable, we have

dTV.P1;P2/ D
1

2
kP1 � P2k1 D

1

2

X
!2�

jP1.!/ � P2.!/j: (7.10)

Additionally,
dTV.P1;P2/ D min

P2�.X1;X2/
P .X1 ¤ X2/; (7.11)

where �.X1; X2/ denotes the set of all couplings between P1 and P2, i.e. probability
measures on .�2;F ˝ F / such that the marginal distributions are P1 and P2.

Denoting by L.X/ the probability distribution of a variable X , the aim of this
section is to prove the following:

Proposition 4. Let ` � c0 log.n/ for some constant c0 > 0. Then, for every vertex
v 2 V ,

dTV
�
L..G; v/`/;L..T; v/`/

�
�
c log .n/2d2`C2

n
: (7.12)

7.4.1. A total variation distance lemma for sampling processes. For an integer n,
denote by �.n/ the set of all multisets with elements in Œn�, and by P .n/ � �.n/

the powerset of Œn�. Let p1; : : : ; pn 2 Œ0; 1=2�, with
P
pi D � and

P
p2i D ˛, and

consider the two probability laws on �.n/:

• P1: each element i of Œn� is picked with probability pi ,

• P2: the size of the multiset S is drawn according to a Poi.�/ distribution, and each
element of S has an i.i.d. label with distribution .p1=�; : : : ; pn=�/.

Note that P1 is actually supported on P .n/.

Proposition 5. Let P1;P2 be defined as above. Then

dTV.P1;P2/ � ˛ C
e2˛ � 1

2
:

Proof. Using characterization (7.10), we have

2 dTV.P1;P2/ D
X

S2P .n/

jP1.S/ � P2.S/j C P2.S … P .n//: (7.13)
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We shall treat those two terms separately. First, notice that for S 2 P .n/, we have

P1.S/ D
Y
i2S

pi
Y
i…S

.1 � pi / (7.14)

P2.S/ D
e���jS j

jS jŠ
� jS jŠ

Y
i2S

pi

�
D e��

Y
i2S

pi ; (7.15)

and thus by summing over all sets S ,

P2.S 2 P .n// D e��
nY
iD1

.1C pi /:

Using the classical inequality log.1C x/� x � x2=2, we can bound the second mem-
ber of (7.13) as follows:

P2.S … P .n// D 1 � e��
nY
iD1

.1C pi /

� 1 � e��e��˛=2

� ˛=2:

On the other hand, using again (7.14) and (7.15), the first term reduces toX
S2P .n/

jP1.S/ � P2.S/j D
X

S2P .n/

Y
i2S

pi

ˇ̌̌̌Y
i…S

.1 � pi / � e
��

ˇ̌̌̌
�

X
S2P .n/

Y
i2S

pi

�ˇ̌̌̌
e�� �

nY
iD1

.1 � pi /

ˇ̌̌̌
C

ˇ̌̌̌Y
i…S

.1 � pi / �

nY
iD1

.1 � pi /

ˇ̌̌̌�
:

Both absolute values above can be removed since the expressions inside are non-
negative; further, for 0 � p � 1=2, we have log.1 � x/ � �x � x2. Combining all
those estimates, we findX
S2P .n/

jP1.S/ � P2.S/j

� e��.1 � e�˛/
X

S2P .n/

Y
i2S

pi C

nY
iD1

.1 � pi /
X

S2P .n/

Y
i2S

pi

�Y
i2S

1

1 � pi
� 1

�
� ˛e��

nY
iD1

.1C pi /C e
��

� nY
iD1

�
1C

pi

1 � pi

�
�

nY
iD1

�
1C pi

��
� ˛ C e�� exp

� nX
iD1

pi

1 � pi

�
� e�˛=2;
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where we again used the logarithm inequalities extensively. Finally, for 0 � p � 1=2,
we have p=.1 � p/ � p C 2p2, which allows us to finish the computation:X

S2P .n/

jP1.S/ � P2.S/j �
3

2
˛ C e2˛ � 1: (7.16)

Combining (7.16) with (7.13) easily implies the lemma.

We introduce now a family of probability laws on �.n/; for a subset S � Œn�, let PS
be the measure corresponding to picking each element i of S with probability pi .

The variation distance between those laws and P1 D PŒn� is then easier to bound:

Lemma 8. For any S � Œn�, we have

dTV.P1;PS / �
X
i…S

pi :

Proof. Consider the following coupling: we take a realization X of P1, and set Y D
X \ S . Then, Y � PS , and we find

P .X ¤ Y / D P1.X \ S
c
¤ ;/ � EŒjX \ Scj� D

X
i…S

pi :

This ends the proof, since (7.11) ensures that dTV.P1;PS / � P .X ¤ Y /.

7.4.2. Proof of Proposition 4. Gathering all the previous results, we are now ready
to prove Proposition 4.

Proof. Define the classical breadth-first exploration process on the neighborhood of
a vertex v as follows : start with A0 D ¹vº and at stage t � 0, if At is not empty, take
a vertex vt 2 At at minimal distance from v, reveal its neighbors Nt in V n At , and
update AtC1 D .At [ Nt / n ¹vtº. We denote by .Ft /t�0 the filtration generated by
the .At /t�0, and by Dt D

S
s�t As the set of vertices already visited at time t , and �

the first time at which all vertices in .G; v/` have been revealed.
We perform the same exploration process in parallel on .T; v/, which corresponds

to a breadth-first search of the tree. At step t , we denote by Pt the distribution of Nt
given Ft , and Qt the distribution of the offspring of vt in T (no conditioning is needed
there).

LetE` denote the event that .G; v/` is a tree and contains no more than c1log.n/d `

vertices; from (7.4) and Lemma 7, we can choose c1 such that E` has probability at
least 1 � c2d2`C1=n for some absolute constant c2. By iteration, it suffices to show
that if E` holds, there exists a constant c3 > 0 such that

dTV.Pt ;Qt / �
c3 log.n/d `C2

n
for all t � �: (7.17)
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Given Ft , the probability measure Pt is as follows: each element i of V n At is
selected with probability pi D Pvt i . Let P 0t denote the same probability measure, but
where the selection is made over all of V . Using Lemma 8, we first find that

dTV.Pt ;P
0
t / �

X
i2At

Pvt i � c1 log.n/d ` �
d

n
:

On the other hand, Proposition 5 yields

dTV.P
0
t ;Qt / � c4

nX
iD1

P 2vt i � c5
d2

n
:

Equation (7.17) then results from a straightforward application of the triangle inequal-
ity.

8. Near eigenvectors of G

8.1. Functionals on .T; o/

8.1.1. Vertex functionals on trees. Similarly to [14], quantities of interest in the
study of B will be tied to functionals on the random inhomogeneous tree defined
above. Define a functional f';t on the set of labeled rooted trees T� � G� by

f';t .T; o/ D
X

xt2@.T;o/t

W�.o/;�.x1/ : : : W�.xt�1/;�.xt /'.�.xt //;

where .o; x1; : : : ; xt / is the unique path of length t between o and xt . Then the fol-
lowing proposition holds:

Proposition 6. Let t � 0 be an integer. For any i; j 2 Œr�, the following identities are
true:

E
�
f'i ;t .T; x/

�
D �ti 'i .x/; (8.1)

E
�
f'i ;t .T; x/f'j ;t .T; x/

�
D .�i�j /

t
tX
sD0

ŒKs'i;j �.x/

.�i�j /
s ; (8.2)

E
��
f'i ;tC1.T; x/ � �if'i ;t .T; x/

�2�
D ŒKtC1'i;i �.x/; (8.3)

where we recall that 'i;j D 'i ˇ 'j .
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8.1.2. Adapting functionals to non-backtracking paths. The matrix B considered
here acts on (directed) edges, whereas the functionals considered so far are defined
on vertices. Consequently, we define the following transformation: for a function
f WG� ! R, and a random vector w 2 RV with expected value xw, let

E@wf .g; o/ D
X
eWe2Do

we1f .ge; o/;

where ge denotes the graph g with the edge e1; e2 removed.
The expectations from Proposition 6 are then adapted as follows:

Proposition 7. Let t � 0 be an integer. For any i; j 2 Œr�, and � 2 ker.P /, the fol-
lowing identities are true:

E
�
E@wf'i ;t .Tx; x/

�
D ŒP xw�.x/ � E

�
f'i ;t .Tx; x/

�
; (8.4)

E
�
E@w.f'i ;t � f'j ;t /.Tx; x/

�
D ŒP xw�.x/ � E

�
f'i ;t .Tx; x/f'j ;t .Tx; x/

�
; (8.5)

E
�
E@w Œ.f'i ;tC1 � �if'i ;t /

2�.Tx; x/
�

D ŒP xw�.x/ � E
��
f'i ;tC1.Tx; x/ � �if'i ;t .Tx; x/

�2�
: (8.6)

The proof for those results makes use of properties specific to moments of Poisson
random variables; as with the preceding results, it is deferred to a later section.

8.2. Spatial averaging of graph functionals

In this section, we leverage the coupling obtained above to provide bounds on quan-
tities of the form 1

n

P
x2V f .G; x/, for local functions f . The tools and results used

in this section are essentially identical to those in [14], with a few improvements and
clarifications added when necessary.

We begin with a result that encodes the fact that the t -neighborhoods in G are
approximately independent. We say that a function f from G� to R is t -local if f .g;o/
is only function of .g; o/t .

Proposition 8. Let t � c0 log.n/ for some constant c0 > 0. Let f;  W G� ! R be
two t -local functions such that jf .g; o/j �  .g; o/ for all .g; o/ 2 G� and  is
non decreasing by the addition of edges. Then

Var
�X
o2V

f .G; o/

�
� c log .n/4nd2t �

r
E
�
max
o2V

 .G; o/4
�
:

Proof. For x 2 V , denote byEx the set ¹¹u; xº 2 E j u � xº; the vector .E1; : : : ;En/
is an independent vector, and we have

Y WD
X
v2V

f .G; v/ D F.E1; : : : ; En/

for some measurable function F .
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Define now Gx the graph with vertex set V and edge set
S
y¤x Ey , and set

Yx D
X
v2V

f .Gx; v/:

The random variable Yx is
S
y¤x Ey-measurable, so the Efron–Stein inequality app-

lies:
Var.Y / �

X
x2Œn�

E
�
.Y � Yx/

2
�
:

For a given x 2 V , the difference f .G; o/ � f .Gx; o/ is always zero except if x 2
.G; o/t , due to the locality property; consequently,

jY � Yxj �
X
o2V

jf .G; o/ � f .Gx; o/j

�

X
o2.G;x/t

 .G; o/C  .Gx; o/

� 2 max
x2Œn�
j.G; x/t j �max

o2V
 .G; o/;

where we used the non-decreasing property of  in the last line. By the Cauchy–
Schwarz inequality and equation (7.6), we can write

E
�
.Y � Yx/

2
�
� 4

r
E
�
j max
x2Œn�

.G; x/t j
4
�
�

r
E
�
max
o2V

 .G; o/4
�

� c1t
2 log .n/2d2t �

r
E
�
max
o2V

 .G; o/4
�
:

Using that t � c0 log.n/, and the linearity of expectation, yields the desired bound.

We now use our previous coupling results to provide a concentration bound bet-
ween a functional on graphs and its expectation on trees:

Proposition 9. Let t 2 N and f; WG� ! R be as in the previous proposition. Then,
with probability at least 1 � .1=.r2 log .n/2//, the following inequality holds:ˇ̌̌̌X

v2V

f .G; v/ � E

�X
x2Œn�

f .Tx; x/

�ˇ̌̌̌
� c r log .n/3d tC1

p
nk k?;

where k k? is defined as

k k? D
�
E
�
max
v2V

 .G; v/4
��1=4

_
�
max
x2Œn�

E
�
 .Tx; x/

2
��1=2

:
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Proof. Using the Chebyshev inequality and the variance bound from the preceding
proposition, with probability at least 1 � .1=.r2 log .n/2//, we haveˇ̌̌̌X

v2V

f .G; v/ � E

�X
v2V

f .G; v/

�ˇ̌̌̌
� c1 r log .n/3d t

p
nk k?:

It then remains to bound the difference between the expectation term and its counter-
part on trees. For x 2 V , let Ex denote the event that the coupling between .G; x/t and
.Tx; x/t fails; by the locality property, f .G; x/ D f .Tx; x/ on Ex . Therefore, using
the Cauchy–Schwarz inequality,ˇ̌̌̌ X

x2Œn�

E
�
f .G; x/ � f .Tx; x/

�ˇ̌̌̌
�

X
x2Œn�

E
�
jf .G; x/j1Ex C jf .Tx; x/j1Ex

�
�

X
x2Œn�

p
P .�/Ex

�q
E
�
 .G; x/2

�
C

q
E
�
 .Tx; x/

2
� �

�

s
c2 log .n/2d2tC2

n
�

X
x2Œn�

�
E
�
 .G; x/4

�1=4
C

q
E
�
 .Tx; x/

2
� �

� c3 log.n/ad tC1
p
n k k?:

It is then straightforward to check that both obtained bounds are less than the
right-hand side in the proposition, upon adjusting c.

8.3. Structure of near eigenvectors

In the following, the aim is to obtain bounds on the norms and scalar product of the
near eigenvectors ui and vi defined in (5.1). The main result of this section is as
follows:

Proposition 10. Let ` be small enough so that (7.7) holds. On an event with proba-
bility 1� c1= log.n/, the following inequalities hold for all i; j 2 Œr�, t � 2` and some
absolute constant c > 0:ˇ̌
hB t�i ; �j i � �

t
i h'i ;DP'j i

ˇ̌
�
c rb2d2 log .n/6d2tLt

p
n

; (8.7)

ˇ̌
hB t�i ;DW L�j i � �

tC1
i ıij

ˇ̌
�
c rb2d3L log .n/6d2tLt

p
n

; (8.8)

ˇ̌
hB t�i ; B

t�j i � �
t
i�
t
j�

.t/
U;ij

ˇ̌
�
c rb2d2 log .n/7d3tL2t

p
n

; (8.9)
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h.B�/

t
DW L�i ; .B

�/
t
DW L�j i � �

tC1
i �tC1j �

.tC1/
ij

ˇ̌
�
c rb2d2L2 log .n/6d3tL2t

p
n

; (8.10)



B tC1�i � �iB t�i

2 � rd3L2�tC1 C crb2d3 log .n/7d3tL2t
p
n

: (8.11)

Proof. The proof of those inequalities relies on careful applications of Proposition 9
to previously considered functionals. We aim to prove that each of those inequalities
hold with probability 1 � c2=r log.n/; we fix in the following an integer t � 2` and
i;j 2 Œr�. Let Vt be the set of vertices such that .G; v/t is not a tree; we place ourselves
in the event described in Proposition 3 and as a consequence

Vt � c3 log .n/2d tC1:

We first prove (8.7); let

f .g; o/ D 1.g;o/t has no cycles 'j .o/E@1f'i ;t .g; o/:

The function f is clearly t -local, and

jf .g; o/j � k'ik1k'j k1 deg.o/j@.g; o/t jL
t

�
b2

n
deg.o/j.g; o/t jL

t
WD  .g; o/:

The function  thus defined is non-decreasing by the addition of edges. When v … Vt ,
we notice that

f .G; v/ D 'j .v/ � ŒT
�B t�i �.v/;

hence,ˇ̌̌̌
hB t�i ; �j i �

X
v2V

f .G; v/

ˇ̌̌̌
D

ˇ̌̌̌X
v2Vt

'i .v/T
�B t�j

ˇ̌̌̌
� 2jVt jmax

v
 .G; v/;

since by the tangle-free property there are at most two paths from v to any vertex
in .G; v/t . Furthermore, using the results in Section 7.2, we find that with probability
at least 1 � 1=n,

max
v
 .G; v/ �

c4 b
2 log .n/2d tC1Lt

n
 k? �

c4 b
2 log .n/3d tC1Lt

n
:

Finally, a direct computation shows thatX
x2Œx�

E
�
f .Tx; x/

�
D

X
x2Œn�

'j .x/ � dx�
t
i'i .x/ D �

t
i h'j ;DP'i i:
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Applying Proposition 9 to f and  , and using the triangle inequality:ˇ̌
hB t�i ; �j i � �

t
i h'j ;DP'i i

ˇ̌
�
c5 b

2 log .n/4d2tC2Lt

n
C
c6 rb

2 log .n/6d2tC2Lt
p
n

�
c7 rb

2d2 log .n/6d2tLt
p
n

:

The proof of the other inequalities is very similar, applying Proposition 9 to other
functionals from Section 8.1. To avoid clutter, it is deferred to the appendix.

9. Proof of Theorem 10

Having shown Proposition 10, all that remains is simply to gather the preceding
bounds, and simplify them to get an easy-to-read summary. Bounds (5.4)–(5.6), as
well as (5.9), being straightforward computations, they are deferred to the appendix.

9.1. A telescopic trick: proof of (5.7)

Notice that for a r0 � r0 matrix M , we have

kMk � r0 max
i
kMik; (9.1)

where Mi are the columns (or lines) of M . To apply this inequality, we write

kB`ui � �
`
iuik �

`�1X
tD0

�`�t�1i kB tC1ui � �iB
tuik; (9.2)

and (8.11) yields

kB tC1ui � �iB
tuik

2
� ��2`i kB

tC`C1�i � �iB
tC`�ik

2

� ��2`i

�
rd3L2�tC`C1 C

crb2d3 log .n/7d3.tC`/L2.tC`/
p
n

�
:

Since i � r0, the bounds �2i � � � 1=d apply, so that

kB tC1ui � �iB
tuik

2
� rd3L2�tC`C1��2`i

C
crb2d3 log .n/7d3tC5`L2.tC`/

p
n

: (9.3)
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We now use the (very crude) inequality
p
x C y �

p
x C
p
y inside (9.3):

kB`ui � �
`
iuik

�

`�1X
tD0

�
�`�t�1i

p
rd3=2L�.tC`C1/=2��`i C

c1 bd
3=2 log .n/7=2d .3tC5`/=2LtC`

n1=4

�
�
p
rd3=2L�`=2

`�1X
tD0

�p�
�i

�tC1
C c2 bd

2 log .n/9=2
.Ld4/

`

n1=4
L`:

The terms in the sum are all less than 1 since i � r0, and ` < c3 log.n/ implies

kB`ui � �
`
iuik � c3

p
rd3=2L log.n/�`=2 C c2bd2 log .n/9=2

.aLd3/
`

n1=4
L`:

The bound .Ld4/` � n1=4 holds by definition of `, and (5.7) ensues via (9.1).

9.2. Bounding kB`PH ?k

Having established the candidates and error bounds for the upper eigenvalues of B`,
it remains to bound the remaining eigenvalues (also called the bulk) of the matrix.
This is done using a method first employed in [28], and leveraged again in a similar
setting in [13, 14]. Our approach will be based on the latter two, adapting the non-
backtracking method to the weighted case.

Our first preliminary step is the following lemma:

Lemma 9. On an event with probability at least 1� 1= log.n/, for any t � `, any unit
vector w 2 H? and i 2 Œr0�, one has

ˇ̌
h.B�/

t
DW L�i ; wi

ˇ̌
�
p
rd3=2L2�t=2 C

c4 bd
3=2 log .n/9=2d2`L`

n1=4
:

Proving this bound is done through the same telescopic sum trick as above, and is
done in the appendix.

9.2.1. Tangle-free decomposition of B` . We adapt here the decomposition first
used in [14] to our setting. Through the remainder of this section, we shall consider B
as an operator on EE.V / instead of EE, setting Bef D 0 whenever e … EE or f … EE.
This yields a matrix with B as a principal submatrix and zeros everywhere else, thus
the non-zero spectrum stays identical.

For e; f 2 EE.V /, and t � 0, we define �k
ef

the set of non-backtracking paths of
length k from e to f ; further, for an edge e we define Xe the indicator variable of
e 2 EE, and Ae D XeWe , so that A is the (weighted) adjacency matrix of G.
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We then have that

.Bk/ef D
X


2�
kC1
ef

Xe

kY
sD1

A
s
sC1 :

Define F k
ef

the set of `-tangle-free paths (i.e. the set of paths 
 such that the subgraph
induced by 
 is tangle-free). Then, whenever the graph G is tangle-free, for all k � `
the matrix Bk is equal to B.k/, with

.B.k//ef D
X


2F
kC1
ef

Xe

kY
sD1

A
s
sC1 :

Define now the “centered” versions of the weighted and unweighted adjacency matri-
ces A and X by

Aij D Aij �Qij ; Xij D Xij � Pij

for every i ¤ j , and its centered non-backtracking counterpart as

.�.k//ef D
X


2F
kC1
ef

Xij

kY
sD1

A
s
sC1 ;

with the convention that the product over an empty set is equal to 1.
Recall that for any two sets of real numbers .xi /; .yi /, we have the following:

Ỳ
sD0

xs D
Ỳ
sD0

ys C
X̀
tD0

t�1Y
sD0

ys.xt � yt /
Ỳ
sDtC1

xs:

Applying this formula to the above definitions, and separating the case t D 0 in the
sum yields

B
.`/

ef
D �

.`/

ef
C

X

2F

`C1
ef

Qe
Ỳ
sD1

A
s
sC1

C

X̀
tD1

X

2F

`C1
ef

Xe

t�1Y
sD1

A
s
sC1Q
t
tC1

Ỳ
sDtC1

A
s
sC1 : (9.4)

Define now F `C1
t;ef
� �`C1

ef
the set of non-backtracking tangled paths 
 such that

.
0; : : : ; 
t / 2 F
t
eg , .
tC1; : : : ; 
`C1/ 2 F `�tg0f

for some edges g;g0 2 EE.V /. As an edge

case, F `C1
0;ef

is the set of tangled paths 
 such that .
0; 
1/ D e1 and .
1; : : : ; 
`C1/ 2

F `
g0f

for some g0 2 EE.V / (note that necessarily e2 D g01), and similarly for F`;ef .
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Finally, we introduce the two matrices M and M .2/ as

Mef D 1¹e ! f ºQe; M
.2/

ef
D 1.e

2
�! f /Qe2f1

for e; f 2 EE.V /, where e
2
�! f means that there exists a non-backtracking path of

length two between e and f . Then, equation (9.4) can be rewritten as

B.`/ D �.`/ CMDWB
.`�1/

C

`�1X
tD1

�.t�1/M .2/DWB
.`�t�1/

C�.`�1/M �
X̀
tD0

R
.`/
t ; (9.5)

where

.R
.`/
t /ef D

X

2F

`C1
t;ef

Xe

t�1Y
sD1

A
s
sC1Q
t
tC1

Ỳ
sDtC1

A
s
sC1 ;

.R
.`/
0 /ef D

X

2F

`C1
t;ef

Qe
Ỳ
sD1

A
s
sC1 :

Note that M .2/ is pretty close to a modified version of Q; more specifically, we
make the decomposition

M .2/
D TQT � C zM D

rX
kD1

�k�k L�
�
k C

zM:

Then, the following decomposition holds:

B.`/ D �.`/ CMDWB
.`�1/

C

`�1X
tD1

rX
kD1

�k�
.t�1/�k L�

�
kDWB

.`�t�1/

C

`�1X
tD1

�.t�1/ zMB.`�t�1/ C�.`�1/M �
X̀
tD0

R
.`/
t :

Noticing that kMk � d and k�kk � d log.n/, the following lemma ensues:

Lemma 10. On an event with probability at least 1� 1= log.n/, the following inequal-
ity holds for any normed vector x 2 R EE.V /:

kB`xk � k�.`/k C LkMB`�1k C d log.n/
`�1X
tD1

k�.t�1/k

rX
kD1

ˇ̌
hDW L�k; B

`�t�1xi
ˇ̌

C

`�1X
tD1

k�.t�1/ zMB`�t�1k C dk�.`�1/k �
X̀
tD0

kR
.`/
t k:
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9.2.2. Norm bounds. It then remains to bound the different quantities in the lemma
above; this is done in another section, using a trace bound method. The results are as
follows:

Proposition 11. On an event with probability 1 � c0= log.n/, for any k � c1 log.n/,
the following bounds hold with probability at least 1 � 1= ln .n/2:

k�.k�1/k � cd3 log .n/17
�p
� _ L

�k
; (9.6)

kMBk�1k �
cd7=2L log .n/7dkLk

p
n

; (9.7)

k�.t�1/ zMBk�t�1k �
cd13=2L log .n/24dk

�p
� _ L

�k
p
n

; (9.8)

kR
.k/
t k �

cd2 log .n/22dkLk

n
: (9.9)

Using these bounds, we are now finally able to prove (5.8):

Proof. By definition of `, d ` � n1=4 so most of the summands in Lemma 10 are
negligible with respect to the others. More precisely, we have

kB`xk � c1

�
k�`k C d log.n/

`�1X
tD1

k�.t�1/k

rX
kD1

ˇ̌
hDW L�k; B

`�t�1xi
ˇ̌�
: (9.10)

When k 2 Œr0�, Lemma 9 implies that

ˇ̌
hDW L�k; B

`�t�1xi
ˇ̌
�
p
rd3=2L2�t=2 C

c4 bd
3=2 log .n/9=2d2`L`

n1=4
;

and by definition of `, d2`L` � .1 ^
p
�/` so the second term is bounded above by

the first. On the other hand, for k 2 Œr� n Œr0�, we can use equation (8.10) as follows:

k.B�/
t
DW L�ik

2
� �2tC2i �

.tC1/
V;i i C

c rb2d4L2 log .n/6d3tL2t
p
n

:

We now apply Lemma 3:

�
.tC1/
V;i i �

tC1X
sD0

rd2L2�s

�2si
� crd2 log.n/L2�tC1��2t�2i ;

since �2i < �; the second term being negligible before the first,ˇ̌
hDW L�k; B

`�t�1xi
ˇ̌
�


.B�/`�t�1DW L�i

 � crd log.n/L�.`�t/=2:
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We can now apply the above bounds on the scalar product as well as those of
Proposition 11 to equation (9.10), and we get

kB`xk � c2d
5=2L log .n/17.

p
� _ L/

`

C c3r
2d6L2 log .n/20.

p
� _ L/

`
C c4d

4 log .n/17.
p
� _ L/

`

� cr2d6L2 log .n/20.
p
� _ L/

`
;

which ends the proof of (5.8).

10. Trace method: proof of Proposition 11

The aim of this section is to prove the bounds in Proposition 11; we leverage here the
powerful trace method introduced by Füredi and Komlòs [20], and already used with
success in [14] and [13]. We only prove (9.6) in this section, all other bounds being
proven in the appendix.

Let m be a parameter to be fixed later. We start with the classical bound

k�.k�1/k2m D k�.k�1/�.k�1/�km

D k.�.k�1/�.k�1/�/
m
k � tr

�
.�.k�1/�.k�1/�/

m�
:

Expanding the trace above gives

k�.k�1/k2m �
X

.e1;:::;e2m/

mY
iD1

.�.k�1//e2i�1;e2i .�
.k�1//e2iC1;e2i

D

X

2Wk;m

2mY
iD1

X
i;0
i;1

kY
sD2

A
i;s�1
i;s ; (10.1)

whereWk;m is the set of sequences of paths .
1; : : : ;
2m/ such that 
iD.
i;0; : : : ;
i;k/
is non-backtracking tangle-free of length k, and with boundary conditions that for all
i 2 Œm�,

.
2i;k�1; 
2i;k/ D .
2i�1;k�1; 
2i�1;k/; .
2iC1;0; 
2iC1;1/ D .
2i;0; 
2i;1/; (10.2)

with the convention 
2mC1 D 
1. All the random variables in the expression above
are centered and independent as soon as they are supported by distinct edges, so the
expectation of each term in the sum is zero except when each (unoriented) edge is vis-
ited at least twice. We letW 0

k;m
be the set of all such sequences of paths. To 
 2 W 0

k;m
,

we associate the graph G
 D .V
 ; E
 / of visited vertices and edges, and let

v
 D jV
 j; e
 D jE
 j:
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For an unoriented edge e 2 E
 , we define its multiplicityme as the number of times e
is visited in 
 ; we also let S
 be the set of starting edges in 
 , that is

S
 D ¹.
i;0; 
i;1/ j i 2 Œ2m�º:

Using these definitions, we can bound the expectation as follows:

E
�
k�.k�1/k2m

�
�

X

2W 0

k;m

Y
e2S


E
�
jXej � jAej

me�1
� Y
e…S


E
�
jAej

me
�
:

We now bound the two terms in the products above: let e be an edge, and p � 2 be
any multiplicity. Then conditioning on Xe ,

E
�
jAej

me
�
D PeE

�
jWe � PeEŒWe�j

p
�
C .1 � Pe/P

p
e EŒWe�

p

� PeL
p�2

�
1C

d

n

�p�2
E
��
We � PeEŒWe�

�2�
C

�dL
n

�p�2dPe
n

EŒWe�
2

� PeL
p�2

�
1C

d

n

�p�2
EŒW 2

e �C PeL
p�2EŒW 2

e �
�d
n

�p�2
� KeL

p�2
�
1C

d

n

�p
:

The other product is trickier; whenever p � 3, a similar computation yields

E
�
jXej � jAej

p�1
�
� KeL

p�3
�
1C

d

n

�p
:

On the other hand if p D 2,

E
�
jXej � jAej

�
�
d

n
L
�
1C

d

n

�2
:

As a consequence, for 
 2 W 0
k;m

, we define S 0
 � S
 the set of starting edges with
multiplicity 2. Then

E
�
k�.k�1/k2m

�
�

X

2W 0

k;m

�
1C

d

n

�2km�d
n

�jS 0
 j
d2mL2km�2e


Y
e…S 0


Ke;

where we used L�1 � d and S
 D 2m.
We now partition the paths in W 0

k;m
as follows: we say that 
 � 
 0 if there exists

a permutation � 2 Sn such that 
i;t D �.
 0i;t / for all i; t 2 Œ2m� � Œk�. Clearly, all
parameters such as v
 , e
 and jS 0
 j are constant on any equivalence class; therefore
it makes sense to define Wk;m.v; e/ the set of equivalence classes of W 0.k; m/ such
that v
 D v and e
 D e. Then, a path counting argument performed in [14] yields the
following estimation:
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Lemma 11. Let v; e be integers such that e � v C 1 � 0. Then

Wk;m.v; e/ � k
2m.2km/6m.e�vC1/: (10.3)

All that remains to bound the sum above is to control the contribution of a single
equivalence class; this is done through this lemma:

Lemma 12. Let 
 2 W 0
k;m

such that v
 D v, e
 D e and jS 0
 j D s. We haveX

 0�


Y
f …S 0


0

Kf � d
2mnv�eCs�e.‰2/

3.e�v/C8m
: (10.4)

Proof. For a sequence of paths 
 2 W 0
k;m

, denote by E 0
 the set E
 n S 0
 .Then, due to
the boundary conditions in (10.2), the graphG0
 induced byE 0
 is connected. We let vj
(resp. v�j ) be the number of vertices with degree j (resp. at least j ) in G0
 . Again,
by (10.2), removing an edge in S 0
 does not create a vertex of degree 1; therefore we
have

v1 � 4m;

since a vertex ofG
 can only be of degree 1 if it is an endpoint of 
i for some i 2 Œ2m�.
Additionally, edge and vertex counting yields

v1 C v2 C v�3 � v � s; v1 C 2v2 C 3v�3 � 2.e � s/;

since removing an edge in S 0
 removes at most one vertex from G
 . Combining those
inequalities gives

v�3 C v1 � 2.e � s/ � 2.v � s/C 2v1 � 2.e � v/C 8mI (10.5)

this inequality encodes the fact that in a union of paths most vertices are of degree 2.
We now reduce G0
 into a multigraph yG
 D . yV
 ; yE
 / as follows: yV
 is the set of
vertices in G0
 with degree different from 2, and we add an edge between two vertices
x1 and x2 of yV
 for each path between x1 and x2 in G0
 . For yf 2 yE
 , we annotate yf
with the length q yf of its corresponding path in G0
 .

We let yv and ye be the number of vertices and edges of yG
 ; a sequence 
 0 � 

is uniquely determined by an embedding of yV
 in Œn� and for each edge yf 2 yE
 , an
embedding of yf as a path of length q yf . As a result, we have

X

 0�


Y
f …S 0


0

Qf �
X

y1;:::;yyv2Œn�
yv

Y
yfD.yi ;yj /2 yE


X
x1;:::;xq yf

�12Œn�

q yfY
tD1

Kxt�1;xt

D

X
y1;:::;yyv2Œn�

yv

Y
yfD.yi ;yj /2 yE


.K
q yf /yi ;yj
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�

X
y1;:::;yyv2Œn�

yv

Y
yf 2 yE


�‰2
n
�
q yf

�
;

using (6.3) and recalling that ‰ D L2=�. Now, notice thatX
yf 2 yE


q yf D jE
0

 j D e � s; ye � yv D jE

0

 j � jV

0

 j � e � v � sI

further ye � yvC e � v � s � 3.e � v/C 8m� s using (10.5) and the inequality above.
We finally find X


 0�


Y
f …S 0


0

Qf � n
yv�ye.‰2/

ye
�e�s

� nv�eCs�e�s.‰2/
3.e�v/C8m�s

;

which ends the proof of Lemma 12, since ‰2 � 1 and ��1 � a.

We now are able to conclude this part; the contribution of one equivalence class
in Wk;m.v; e/ is less than

C
 D
�
1C

d

n

�2km�d
n

�jS 0
 j
d2mL2km�2e

X

 0�


Y
e…S 0


0

Ke

� c2m1 d6mn�jS
0

 jL2km�2env�eCjS

0

 j�e.‰2/

3.e�v/C8m

� c2m1 d6mnv�e.�‰/km�e�e.‰2/
3.e�v/C8m

� c2m1 d6m�km
�‰
d

�km�e
n1�g.‰2/

3gC8m
;

with g D e � v C 1 and we used that L D
p
�‰=d and the bound�

1C
d

n

�k
� exp

�dk
n

�
� c1:

Summing over all equivalence classes now gives

E
�
k�.k�1/k2m

�
�

kmX
eD1

eC1X
vD1

jWk;m.v; e/j max
Œ
�2Wk;m.v;e/

C


�

kmX
eD1

eC1X
vD1

k2m.2km/6m.e�vC1/c2m1 d6m�km
�‰
d

�km�e
n1�g.‰2/

3gC8m

� n.c1d
3k/

2m
�km

kmX
eD1

�‰
d

�km�e 1X
gD0

�
‰6.2km/6m

n

�g
: (10.6)
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We set the parameter m to

m D

�
log.n=‰6/
12 log.log.n//

�
I

when n � c2‰6 for some absolute constant c2, we have

‰6.2km/6m

n
<
1

2
n1=2m � log .n/12:

The infinite sum inside (10.6) thus converges, and

E
�
k�.k�1/k2m

�1=2m
� c3d

3 log .n/14
p
�
k

�
1 _

r
‰

d

�k
:

Finally, from the definition of ‰, we have
p
�.1 _

p
‰=d/ D

p
� _ L, hence (9.6)

by a Markov bound.

A. Applications of Theorem 2

A.1. Proof of Proposition 1

Let x be an eigenvector ofB associated with the eigenvalue �; the eigenvalue equation
for x reads

�xe D
X
e!f

Wf xf : (A.1)

On the other hand, the definition y D S�DW x expands to

yi D
X
eWe1Di

Wexe:

Applying equation (A.1) to e and e�1 yields

�xe D ye2 �Wexe�1 ; �xe�1 D ye1 �Wexe;

and as a result

�2xe D �ye2 � �Wexe�1 D �ye2 �We.ye1 �Wexe/:

Rearranging the terms, we find an expression for xe:

xe D
�ye2 �Weye1
�2 �W 2

e

I (A.2)
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in particular y ¤ 0 if x ¤ 0. Plugging (A.2) into the eigenvalue equation (A.1), for
i; j 2 Œn�, we get

�2yi � �Wijyj

�2 �W 2
ij

D

X
k�i
k¤j

Wik
�yk �Wikyi

�2 �W 2
ik

;

and we rearrange to find

�2yi

�2 �W 2
ij

�
W 2
ijyi

�2 �Wij2
D

X
k�i

�Wik

�2 �W 2
ik

yk �
X
k�i

W 2
ik

�2 �W 2
ik

yi :

The fraction on the left-hand side cancels out, and writing the right-hand side as a
matrix product

y D zA.�/y � zD.�/y;

the desired result.

A.2. Proof of Theorem 3

Our first step is to show that the matrices involved in Proposition 1 approximate the
matrices A and �I . If �2 � 2L2, we have

j� zAij .�/ � Aij j D 1¹i � j º
ˇ̌̌̌

Wij

1 � .W 2
ij =�

2/
�Wij

ˇ̌̌̌
� 1.i � j /

2LW 2
ij

�2
;

which implies using the Gershgorin circle theorem

� zAij .�/ � Aij

 � 2L

�2
max
i

X
j�i

W 2
ij �

4L�

�2
: (A.3)

Similarly, ˇ̌
�2 zDi i .�/ � �

ˇ̌
�
2L2

�2

X
j�i

W 2
ij C

ˇ̌̌̌X
j�i

W 2
ij � �

ˇ̌̌̌
�

�4L2
�2
C "

�
� �: (A.4)

We now take � D �i with i 2 Œr0�; then there is a vector y that is a singular value of

��i�.�i / D A �
�
�i C

�

�i

�
I C

�
� zA.�i / � A

�
� ��1i

�
�2 zD.�/ � �I

�
:

We can thus apply Weyl’s inequality [34] to find that there exists an eigenvalue �i
of A such that ˇ̌̌

�i �
�
�i C

�

�i

�ˇ̌̌
�
4L�

�2i
C

�4L2
�2i
C "

�
�
�

�i
:
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Now, we use Theorem 2 to find that j�i ��i j � � , and we have � D o.�/ whenever n
is large enough by virtue of (6.1). Since

j�i � �i j � �;
ˇ̌̌ �
�i
�
�

�i

ˇ̌̌
�

�

�i�i
� � c0�;

equation (3.2) ensues by noticing that �i > c1�i for some constant c1 and � is negli-
gible before the other error terms.

Assume now that ıi � 2� ; examining the proof of Theorem 2, we have the existence
of an eigenvector � of B associated with �i such that

k� � uik �
3�kuik

ıi � �
:

Proposition 1 implies that the vector y D S�DW � is a null vector of the deformed
laplacian �.�/ D I � zA.�/ C zD.�/. Notice that the matrix S�D2

W S is a diagonal
matrix such that

ŒS�D2
W S�i i D

X
j�i

W 2
ij � 2�;

from which we have

ky � S�DW uik �
6�
p
�kuik

ıi � �
:

We now follow the line of proof of Theorem 2; we first find

hS�DW ui ; 'i i D �
�`
i hB

`�i ;DW L�i i;

and combine it with (8.8) to obtainˇ̌
hS�DW ui ; 'i i � �i

ˇ̌
� �: (A.5)

Computing kS�DW uik is trickier; we find

hS�DW ui ; S
�DW ui i D �

�2`
i hS

�DWB
`�i ; S

�DWB
`�i i

D ��2`i hS
�DWB

`�i ; T
�JDWB

`�i i

D ��2`i hTS
�DWB

`�i ; .B
�/
`
DW L�i i:

Writing the coefficients of TS�DW explicitly, we have

ŒTS�DW �ef D Wf
X
i2Œn�

1¹e2 D iº1¹f1 D iº D Bef C ŒJDW �ef ;

which yields

hS�DW ui ; S
�DW ui i D �

�2`
i

�
hB2`C1�i ;DW L�i i C hB

`DW L�i ; B
`DW L�i i

�
:
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Those scalar products correspond to equations (8.8) and (8.10), respectively, and we
thus get ˇ̌

kS�DW uik
2
� �2i

�
1C �

.`/
V;i i

�ˇ̌
� 2�:

The hypothesis K1 D �1 allows us to approximate �.`/V;i i efficiently:

�
.`/
V;i i D

X̀
tD0

h1; KtC1'i;i i
�2tC2i

D

X̀
tD0

� �
�2i

�tC1
since k'ik D 1, and we have as in the proof of Theorem 2ˇ̌̌̌

�
.`/
V;i i �

�=�2i
1 � �=�2i

ˇ̌̌̌
� �:

Gathering the previous bounds, we eventually arrive atˇ̌̌̌
kS�DW uik

2
�

�2i
1 � �=�2i

ˇ̌̌̌
� 3�: (A.6)

The exact same computations imply that

kuik
2
�

d

1 � �=�2i
C c5�;

and thus noticing that �i �
p
�,



 y

kyk
�

S�DW ui

kS�DW uik





 � c6 �
p
d

ıi � �
:

Combining this error bound with (A.5) and (A.6), we find the following result:ˇ̌̌̌D y
kyk

; 'i

E
�

s
1 �

�

�2i

ˇ̌̌̌
�
c7 �
p
d

ıi � �
:

The final step is to use the Davis–Kahan theorem [35] as follows: there exists an
eigenvector � of A with associated eigenvalue �i , and such that



� � y

kyk





 � c8
�
4L�

�2
i

C
�
4L2

�2
i

C "
�
�
�
�i

�
ıi

:

This error term dominates all the other ones found above, hence the bound in Theo-
rem 3.

The proof of Corollary 1 follows along the same lines; however, we have directly

zA.�/ D
�A

�2 � 1
; zD.�/ D

d0

�2 � 1
I;

and thus the approximation bounds (A.3) and (A.4) become superfluous.
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A.3. Proof of Theorem 4

We first link the SBM setting to the one of Theorem 2. In the unweighted case, we have
Q DK D P , and the eigenvector equation P 1D ˛1 yields � D ˛. It is easy to check
that whenever n is large enough, the r0 defined in Theorem 4 satisfies the assumptions
of Theorem 2, with � D 1=.˛�2r0/ < 1. Equation (3.4) ensures that k'ik1 � c=

p
n

for some absolute constant c > 0, therefore b D O.1/. Finally, since ��1 D ˛�r0 , we
have

C0 � c˛ log .n/25; n0 � exp
�
c log.d/ log.log.n//

�
:

An application of Theorem 2 thus directly yields the bound on the eigenvalues
of B; regarding the eigenvectors, notice that as in the proof of Theorem 3

kuik
2
D

˛

1 � 1=.˛�2i /
CO.�/; kT 'ik D ˛ CO.�/;

which gives

h�; �i i D

s
1 �

1

˛�2i
CO.�/:

A.4. Proof of Theorem 5 and Proposition 2

Letting again ‚ be the n � 2 group membership matrix, we find as in the proof of
Theorem 4 that we have Q D ‚ zQ‚� and K D ‚ zK‚�, with

zQ D
1

2

 
aEP Œw� bEQŒw�

bEQŒw� aEP Œw�

!
; zK D

1

2

 
aEP Œw

2� bEQŒw
2�

bEQŒw
2� aEP Œw

2�

!
:

This implies first that

� D
aEP Œw

2�C bEQŒw
2�

2
;

and that the vector ‚
�
1
�1

�
is an eigenvector of Q associated with the eigenvalue

�2 D
aEP Œw� � bEQŒw�

2
:

All other hypotheses of Theorem 2 are easy to check, and we find that the announced
results hold as soon as �22 > � _ L, or

.aEP Œw
2�C bEQŒw

2�/ _ L

.aEP Œw� � bEQŒw�/
2

< 1:

Now, let us disregard for a moment the condition on L, and compute �:

� D
1

2

Z
L

�
af .`/C bg.`/

�
w.`/2 dm.`/:
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Define a scalar product on `1.L/, the set of all bounded functions from L to R, as

hh1; h2iL D

Z
L

�
af .`/C bg.`/

�
h1.`/h2.`/ dm.`/I

then � D kwk2
L

, and applying the Cauchy–Schwarz theorem

� �





 af � bgaf C bg





2
L

�

�
w;
af � bg

af C bg

�2
L

D �22:

This implies that the signal-to-noise ratio �22=� is maximized whenever

w.`/ D
af .`/ � bg.`/

af .`/C bg.`/
;

and in this case

ˇ D
�22
�
D
1

2

Z
L

.af .`/ � bg.`//2

af .`/C bg.`/
dm.`/:

In particular, we have �2 D � D ˇ, so ˇ > 1 implies �2 > 1. It remains to notice that
w.`/ � 1 for any `, so the condition �2 � L is redundant as assumed.

A.5. Proof of Theorem 6

For i; j 2 Œn�, we note Wij D mij C sijZij with Z � N .0; 1/ a standard gaussian
random variable. Let zL D 2

p
log.n/; a well-known tail bound for gaussians reads

P
�
jZij j � zL

�
�
2

zL
e�
zL=2
�

1

n2
p

log.n/
: (A.7)

We now define the modified matrix zW with

zWij D mij C sijZij 1¹jZij j � zLº;

with zQ and zK the associated expected and variance matrices. It is readily seen that
zQ D Q, and that the variables zWij are bounded by

L D sup
i;j

jmij j C zL sup
i;j

sij :

By a union bound, we have

P . zW ¤ W / D P
�
Zij > zL for some i 2 Œn�

�
�

�
n

2

�
1

n2
p

log.n/
�

1

2
p

log.n/
;



Non-backtracking spectra of weighted inhomogeneous random graphs 257

and whenever zW DW , then the modified non-backtracking matrix coincides with the
original one. Finally, notice that for i; j 2 Œn�,

Var
�
Zij 1¹jZij j � zLº

�
� 1;

which implies using the Perron–Frobenius theorem that �. zK/ � �.K/. Theorem 2
then applies to the modified couple .P; zW / and the announced result follows.

B. Computing functionals on trees

We prove in this section the martingale estimates of Proposition 6 and Proposition 7.

B.1. Study of compound Poisson processes

Many proofs in this section rely on computations of Poisson compound processes,
i.e. Poisson sums of random variables. For convenience, we gather them all in the
following lemma:

Lemma 13. Let N be a Poi.d/ random variable, and .Xi /, .Yi /, .Zi / three i.i.d.
sequences of random variables, independent from N , such that Xi and Yj (resp. Yi
and Zj , or Zi and Xj ) are independent whenever i ¤ j . Denote by A;B the random
variables

A D

NX
iD1

Xi ; B D

NX
iD1

Yi :

Then the following identities hold:

EŒA� D dEŒX�; EŒB� D dEŒY �; (B.1)

EŒAB� D dEŒXY �C d2EŒX�EŒY � D dEŒXY �C EŒA�EŒB�; (B.2)

E

� NX
iD1

Zi

�X
j¤i

Xj

��
D dEŒA�EŒZ�; (B.3)

E

� NX
iD1

Zi

�X
j¤i

Xj

��X
k¤i

Yk

��
D dEŒAB�EŒZ�: (B.4)

Although the first two identities are well known, we provide a full proof of this
lemma:

Proof. The sequence .Xi / being independent from N , we immediately find that

EŒA j N� D NEŒX�;
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from which equation (B.1) is derived. We then write

AB D

� NX
iD1

Xi

�� NX
iD1

Yi

�
D

NX
iD1

XiYi C
X
i¤j

XiYj ;

and using the independence property of .Xi /i and .Yi /i yields

EŒAB j N� D NEŒXY �CN.N � 1/EŒX�EŒY �:

Since N is a Poisson random variable, EŒN.N � 1/� D d2, hence (B.2).

We now move onto the third equation; rearranging terms gives

NX
iD1

Zi

�X
j¤i

Xj

�
D

X
i¤j

ZiXj ;

and therefore the conditional expectation given N is N.N � 1/EŒX�EŒZ�. Using
again that EŒN.N � 1/� D d2 brings (B.3).

Similarly, we can rearrange

NX
iD1

Zi

�X
j¤i

Xj

��X
k¤i

Yk

�
D

X
j¤i

XjYjZi C
X
i¤j¤k

XiYjZj ;

and take conditional expectations on both sides to arrive at

E

� NX
iD1

Zi

�X
j¤i

Xj

��X
k¤i

Yk

� ˇ̌̌
N

�
D N.N � 1/EŒXY �EŒZ�CN.N � 1/.N � 2/EŒX�EŒY �EŒZ�:

Again, the expected value of N.N � 1/.N � 2/ is d3, and we finally find

E

� NX
iD1

Zi

�X
j¤i

Xj

��X
k¤i

Yk

��
D d2EŒXY �EŒZ�C d3EŒX�EŒY �EŒZ�

D dEŒAB�EŒZ�;

which ends the proof.

B.2. Decomposing the tree functionals

We now fix t � 1, x 2 Œn� and two vectors ';'0 2Rn for the rest of the section. LetN
be the number of children of the root of T , and .Tk; Ik/k�N the subtrees at depth 1.
We further introduce the following first moment notations:

g'.t; x/ D E
�
f';t .Tx; x/

�
; h';'0.t; x/ D E

�
f';t .Tx; x/f'0;t .Tx; x/

�
:
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We begin by a small elementary computation: let � 2 Rn be any vector. Then,

E
�
WxIk�.Ik/

�
D

X
y2Œn�

Pxy

dx
EŒWxy ��.y/ D

ŒQ��.x/

dx
: (B.5)

Now, by linearity, we have

f';t .Tx; x/ D

NX
kD1

WxIkf';t�1.Tk; Ik/: (B.6)

By definition of the Galton–Watson tree, the random variables

Xk D WxIkf';t�1.Tk; Ik/; Yk D WxIkf'0;t�1.Tk; Ik/

satisfy the assumptions of Lemma 13. Furthermore, conditioning on the value of Ik ,
we can compute EXk:

E
�
WxIkf';t�1.Tk; Ik/

�
D E

�
WxIkg'.t � 1; Ik/

�
D
ŒQg'.t � 1; �/�.x/

dx
:

Applying (B.1), and from the definition of g' , we come to the following recurrence
relation:

g'.t; x/ D
�
Qg.t � 1; �/

�
.x/:

Solving this recurrence is straightforward, and we find

g'.t; �/ D Q
tg'.0; �/ D Q

t';

which implies (8.1).

Using now equation (B.2) from Lemma 13, we derive

h';'0.t; x/ D dxE
�
W 2
xIk
h';'0.t � 1; Ik/

�
C g'.t; x/g'0.t; x/

D
�
Kh';'0.t; �/

�
.x/C g'.t; x/g'0.t; x/; (B.7)

from which we can solve for h';'0 :

h';'0.t; �/ D Kh';'0.t � 1; �/C .Q
t'/ˇ .Qt'0/

D

tX
sD0

Ks
�
.Qt�s'/ˇ .Qt�s'0/

�
:

The eigenvector equations for 'i and 'j then imply (8.2).
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Consider now the functionFi;t .Tx;x/D f'i ;tC1.Tx;x/��if'i ;t .Tx;x/, and its asso-
ciated first moment functions

G.t; x/ D E
�
Fi;t .Tx; x/

�
; H.t; x/ D E

�
Fi;t .Tx; x/

2
�
:

The linearity of f'i ;t implies that Fi;t also verifies equation (B.6), and therefore

G.t; �/ D QtG.0; �/ D 0

for all t � 0. Equation (B.7) thus reduces to

H.t; �/ D KtH.0; �/

D Kt
�
h'i ;'i .1; �/ � �

2
i '
i;i
�

D Kt
�
�2i '

i;i
CK'i;i � �2i '

i;i
�

D KtC1'i;i ;

which ends the proof.

B.3. Edge functionals

Most of the handiwork needed to prove Proposition 7 was done in Lemma 13; indeed,
in the tree .Tx; x/, the edge transformation on f';t can be written as

E@wf';t .Tx; x/ D

NX
jD1

wIj

X
k¤j

WxIkf';t�1
�
T .k/; Ik

�
:

We define accordingly the random variables

Xk D WxIkf';t�1
�
T .k/; Ik

�
; Yk D WxIkf'0;t�1

�
T .k/; Ik

�
; Zk D wIk ;

that verify the assumptions of Lemma 13. Computing EŒZ� is straightforward:

EŒZ� D
X
y2Œn�

Pxy

dx
EŒwy � D ŒP xw�.x/:

Hence, we can apply equation (B.3) to those variables, to deduce (8.4). Similarly, the
product transformation has the form

E@w.f';t � f'0;t /.Tx; x/ D

NX
jD1

wIj

�X
k¤j

WxIkf';t�1
�
T .k/; Ik

��
�

�X
k¤j

WxIkf'0;t�1
�
T .k/; Ik

��
;

which using (B.4) implies (8.5). Finally, equation (8.6) is proved with the exact same
technique, considering Fi;t .Tx; x/ instead of f';t .Tx; x/.
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C. Near eigenvectors: computations

We finish here the proof of Proposition 10. First, let

f .g; o/ D 1.g;o/tC1 has no cycles 'j .o/f';tC1.g; o/:

Then f is .t C 1/-local, and we have

jf .g; o/j � k'ik1k'j k1j@.g; o/tC1jL
tC1

�
b2

n
j.g; o/jtC1L

tC1
WD  .g; o/:

On the other hand, the scalar product hB t�i ;DW L�j i can be written as

hB t�i ;DW L�j i D
X
e2 EE

We'j .e1/
X



tY
sD1

W
s
sC1'i .
tC1/

D

X
e2 EE

'j .e1/
X



tY
sD0

W
s
sC1'i .
tC1/;

where the sum ranges over all non-backtracking paths 
 D .
0; : : : ; 
tC1/ such that
.
0; 
1/ D e. It follows thatˇ̌̌̌

hB t�i ;DW L�j i �
X
v2V

f .G; v/

ˇ̌̌̌
�

ˇ̌̌̌ X
eWe1…VtC1

ŒB t�i �.e/ŒDW L�j �.e/

ˇ̌̌̌
� 2jVtC1jmax

v
 .G; v/;

using the tangle-free property as before. This time, the results from Section 7.2 yield

max
v
 .G; v/ �

c1 b
2 log .n/2d tC1LtC1

n
; k k? �

c1 b
2 log .n/3d tC1LtC1

n
;

and the expected value on the tree isX
x2Œn�

E
�
f .Tx; x/

�
D

X
x

'j .x/�
tC1
i 'i .x/ D �

tC1
i ıij :

Concluding,ˇ̌
hB t�i ;DW L�j i � �

tC1
i ıij

ˇ̌
�
c2 b

2 log .n/4d2tC3LtC1

n
C
c3 rb

2 log .n/6d2tC3LtC1
p
n

�
c4 rb

2d3L log .n/6d2tLt
p
n

;

which proves (8.8).
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Now, let
f .g; o/ D 1.g;o/t has no cycles

E@1
�
f'i ;t � f'j ;t

�
.g; o/:

Again, f is t -local, and we have

jf .g; o/1j � k'ik1k'j k1 deg.o/j@.g; o/t j
2L2t

�
b2

n
deg.o/j.g; o/t j

2L2t WD  .g; o/:

By definition of the E@ operator, for v 2 V , we have

f .g; v/ D
X
eWe2Dv

ŒB t�i �.e/ŒB
t�j �.e/:

Hence, ˇ̌̌̌
hB t�i ; B

t�j i �
X
v2V

f .G; v/

ˇ̌̌̌
D

ˇ̌̌̌ X
eWe2…Vt

ŒB t�i �.e/ŒB
t�j �.e/

ˇ̌̌̌
� 2jVt jmax

v
 .G; v/;

using the tangle-free property as before. This time, the results from Section 7.2 yield

max
v
 .G; v/ �

c5 b
2 log .n/3d2tC1L2t

n
; k k? �

c5 b
2 log .n/4d2tC1L2t

n
;

and we can compute the expected value on the tree:X
x2Œn�

E
�
f .Tx; x/

�
D

X
x

ŒP 1�.x/�ti�
t
j

tX
sD0

ŒKs'i;j �.x/

.�i�j /
s

D .�i�j /
t
tX
sD0

hP 1; Ks'i;j i
.�i�j /

s D .�i�j /
t�
.t/
U;ij :

Gathering those estimates, we findˇ̌
hB t�i ; B

t�j i � .�i�j /
t�
.t/
U;ij

ˇ̌
�
c6 b

2 log .n/5d3tC2L2t

n
C
c7 rb

2 log .n/7d3tC2L2t
p
n

�
c8 rb

2d2 log .n/7d3tL2t
p
n

;

which proves (8.9).

Next is (8.10); we first notice that the parity-time equation (2.2) implies that

h.B�/
t
DW L�i ; .B

�/
t
DW L�j i D hDWB

t�i ;DWB
t�j i:
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Similarly to the previous computation, we therefore let wo D .W 2
1o; : : : ; W

2
no/, and

f .g; o/ D 1.g;o/t has no cycles
E@wo Œf'i ;tf'j ;t �.g; o/:

We have similarly

jf .g; o/j �
b2

n
j.g; o/t j

2L2tC2 WD  .g; o/;

Now,

max
v
 .G; v/ �

c9 b
2 log .n/2d2tL2tC2

n
; k k? �

c10 b
2 log .n/3d2tL2tC2

n
;

and as aboveX
x2Œn�

E
�
f .Tx; x/

�
D

X
x

ŒPwx�.x/�
t
i�
t
j

tX
sD0

ŒKs'i;j �.x/

.�i�j /
s

D

X
x

ŒK1�.x/�ti�
t
j

tX
sD0

ŒKs'i;j �.x/

.�i�j /
s D �

.t/
V;ij :

Equation (8.10) is then derived as we did earlier.

Our final inequality to prove is (8.11); we consider now the function

Ft .g; o/ D 1.g;o/tC1 has no cycles
E@1ŒF

2
i;t �.g; o/:

For all t � 0, the function Ft is t C 1-local, and

jFt .g; o/j � deg.o/
�
2k'ik1j.g; o/tC1j

�2
L2t

� 4 deg.o/
b2

n
j.g; o/tC1j

2L2t WD  t .g; o/:

Whenever v … Vt ,

Ft .G; v/ D
X
eWe2Dv

�
ŒB tC1�i �.v/ � �i ŒB

t�i �.v/
�2
:

The same computations as in the other equations then imply thatˇ̌̌̌
kB tC1�i � �iB

t�ik
2
�

X
x2Œx�

Ft .G; v/

ˇ̌̌̌
� 2jVt jmax

v
 .G; v/;

and

max
v
 .G; v/ �

c5 b
2 log .n/3d2tC1L2t

n
; k k? �

c5 b
2 log .n/4d2tC1L2t

n
:
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Furthermore,X
x2Œn�

E
�
Ft .Tx; x/

�
D

X
x2Œn�

ŒP 1�.x/
�
KtC1'i;i

�
.x/ D hP 1; KtC1'i;i i;

and we can apply Lemma 3 to findˇ̌̌̌ X
x2Œn�

E
�
Ft .Tx; x/

�ˇ̌̌̌
� rd3L2�tC1:

Concluding as above,

kB tC1�i � �iB
t�ik

2
� rd3L2�tC1 C

c11 b
2 log .n/5d3tC3L2t

n

C
c12 rb

2 log .n/7d3tC3L2t
p
n

� rd3L2�tC1 C
c13rb

2d3 log .n/7d3tL2t
p
n

:

D. Proofs for Theorem 10

D.1. Proof of (5.4)–(5.6)

We shall make use of the following classical bound: for a r0 � r0 matrix M , we have

kMk � r0kMk1: (D.1)

First, the .i; j / entry of matrix U �U is hui ; uj i, and using (8.9) we find

jhui ; uj i � �
.`/
U;ij j �

c rb2d2 log .n/7d3`L2`

.�i�j /
`pn

:

Since i; j � r0, we have �i�j � L2, thus

jhui ; uj i � �
.`/
ij j �

c rb2d2 log .n/7d3`
p
n

:

By definition of `, it is easy to check that d3` � n�1=4. Via (D.1), this implies that
kU �U � �

.`/
U k is less than Cn�1=4, the desired result. The derivation of (5.5) is iden-

tical, the bound from Proposition 10 being essentially the same for both cases.
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We now move onto the proof of (5.6); we write the scalar product hB`�i ;.B�/`DW L�j i
as hB2`�i ;DW L�j i and use (8.8) to find

jhui ; vj i � ıij j �
c rb2d3L log .n/6d4`L2`

�2`C1i

p
n

�
c rb2d7=2L log .n/6d4`

p
n

:

The bound we now need is d4` � n1=4, which is true by choice of `, and we conclude
as above.

D.2. Bounding kB`k: proof of (5.9)

Letw be any unit vector inR EE , and assume that we are in the event described in Prop-
osition 3. Then

kB twk2 D
X
e2 EE

� X
.e0;:::;et /2P .e;t/

t�1Y
iD0

WeieiC1w.et /

�2
� L2`

X
e2 EE

jP .e; t/j
X

.e0;:::;et /2P .e;t/

w.et /
2

by the Cauchy–Schwarz inequality. Under the good event from Proposition 3, we have

jP .e; t/j � 2j.G; e/t j � c1 log.n/d `:

Additionally, note that the factorw.et /2 appears for each path of length t ending at et ,
or equivalently (reversing edge orientation) for each path in P .e�1t ; t /. Hence,

kB twk2 � c1 log.n/d `L2`
X
e2 EE

w.e/2jP .e�1; t /j

� c2 log .n/2d2`L2`;

and the definition of ` ensures (generously) that d2` <
p
n.

D.3. Proof of Lemma 9

Note first that for all t � 0, the parity-time equation (2.2) allows the simplification

h.B�/
t
DW �i ; wi D hB

t�i ;DW Jwi;

and we have kDW Jwk � L. Further, the assumption w 2 H? implies

��ti h.B
�/
t
DW �i ; wi D �

�t
i h.B

�/
t
DW �i ; wi � �

�`
i h.B

�/
`
DW �i ; wiI
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combining the two above arguments and using a telescopic sum as in the proof of (5.7)
gives

ˇ̌
��ti h.B

�/
t
DW �i ; wi

ˇ̌
D

ˇ̌̌̌`�1X
sDt

��si hB
s�i ;DW Jwi � �

�.sC1/
i hBsC1�i ;DW Jwi

ˇ̌̌̌
�

`�1X
sDt

�
�.sC1/
i

ˇ̌
hBsC1�i ;DW Jwi � �i hB

s�i ;DW Jwi
ˇ̌

� L

`�1X
sDt

�
�.sC1/
i kBsC1�i � �iB

s�ik;

where we used the Cauchy–Schwarz inequality at the last line. Now, we can apply
equation (8.11):

kBsC1�i � �iB
s�ik

2
� rd3L2�sC1 C

crb2d3 log .n/7d3sL2s
p
n

;

and still following the proof of (5.7), we find

kBsC1�i � �iB
s�ik �

p
rd3=2L�.sC1/=2 C

c2bd
3=2 log .n/7=2d3s=2Ls

n1=4
:

Summing these inequalities (and using ` � c3 log.n/) yields

ˇ̌
h.B�/

t
DW L�i ; wi

ˇ̌
�
p
rd3=2L2�ti

`�1X
sDt

�p�
�i

�sC1
C ��`i

c4bd
3=2 log .n/9=2d3`=2L`

n1=4
:

Since i � r0, we have �i >
p
�. As a result, all terms in the sum are bounded by the

one for s D t � 1, and ��`i � d
`=2. We finally getˇ̌

h.B�/
t
DW L�i ; wi

ˇ̌
�
p
rd3=2L2�t=2 C

c4 bd
3=2 log .n/9=2d2`L`

n1=4
;

as desired.

E. Norm bounds: additional proofs

E.1. Bound (9.7) on kMBkk

Since kMk is of order 1, we notice that (9.7) improves by a factor of
p
n on the crude

bound kKBkk � kKkkBkk. We use the same trace method as above; we have

kMBk�2k2m � tr
��
MBk�2.B�/

k�2
M �

�m�
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�

�d
n

�2m X

2Wk;m

mY
iD1

X
2i�1;1
2i�1;2

kY
sD3

A
2i�1;s�1
2i�1;s

�

k�2Y
sD1

A
2i;s�1
2i;sX
2i;k�2
2i;k�1 ;

whereWk;m is the set of sequences of paths defined just below equation (10.1). The set
of edges of the form .
2i�1;0; 
2i�1;1/ or .
2i;k�1; 
2i;k/, which support no random
variable, has cardinality at most m by the boundary conditions, hence the bound for
any 
 2 Wk;m:

mY
iD1

X
2i�1;1
2i�1;2

kY
sD3

A
2i�1;s�1
2i�1;s

k�2Y
sD1

A
2i;s�1
2i;sX
2i;k�2
2i;k�1

�

�d
n

�e
�m
L2.k�2/m:

Using bound (10.3) on Wk;m.v; e/ and the fact that each equivalence class contains at
most nv elements, we get

kMBk�2k2m �
�d
n

�m 2kmX
eD1

eC1X
vD1

k2m.2km/6m.e�vC1/nv
�d
n

�e
L2.k�2/m

� n�md5mL2kmk2m
2kmX
eD1

eC1X
vD1

.2km/6m.e�vC1/d env�e

� n�mC1d5mL2kmk2m.2km/d2km
1X
gD0

�
.2km/6m

n

�g
: (E.1)

The choice of parameter

m D

�
log.n/

12 log.log.n//

�
ensures that the infinite sum in (E.1) converges for n larger than an absolute constant,
which yields (9.7).

E.2. Bound (9.8) on k�.t�1/ zMBk�t�1k

First, notice that M .2/

ef
is equal to .TQT �/ef except when 1¹e

2
�! f º D 0, which

happens only when e D f , e ! f , e ! f �1, or f �1 ! e. Therefore, we can write

jLef j �
d

n

�
zM1 C zM2 C zM3 C zM4

�
;



L. Stephan and L. Massoulié 268

where each entry of the matrix Mi is one whenever the i -th condition mentioned
above is true. Then, for each i , we can write

k�.t�1/ zMiB
k�t�1

k � k�.t�1/kk zMiB
k�t�1

k;

and a straightforward adaptation of the proof of bound (9.7) gives

d

n
k zMiB

k�t�1
k �

cd7=2L ln .n/7dk�tLk�t
p
n

:

Combining the above bound with (9.6) easily implies (9.8).

E.3. Bound (9.9) on R.`/
t

The proof of (9.9) is very similar to those above, as well as the one in [14]; we only
highlight the main differences. Let t � 1 (the case t D 0 is almost identical), and
k � log.n/. The same trace argument gives

kR
.k�1/
t k

2m
� tr

��
R
.k�1/
t R

.k�1/�

t

�m�
D

X

2Tk;m;t

2mY
iD1

X
i;0
i;1

tY
sD2

A
i;s�1
i;sQ
i;t ;
i;tC1

kY
sDtC2

A
i;s�1
i;s ;

where Tk;m;t is the set of sequences of paths .
1; : : : ; 
2m/ such that for all i , 
1i D
.
i;0; : : : ; 
i;t / and 
2i D .
i;tC1; : : : ; 
i;k/ are tangle-free and 
i is tangled, with
similar boundary conditions as in (10.2).

We define G
 as the union of the G
z
i

for z 2 Œ2m�; j 2 ¹1; 2º. Since we remove
an edge to each path, G
 need not be connected; however, since 
i is tangled, each
connected component in G
i contains a cycle, and the same holds for G. It follows
that

v
 � e


for all 
 2 Tk;m;t . As before, we define the equivalence relation � and Tk;m;t .v; e/

the set of equivalence classes with v
 D v and e
 D e. Then, the following lemma
from [14] holds:

Lemma 14. Let v; e be any integers such that v � e. Thenˇ̌
Tk;m;t .v; e/

ˇ̌
� .4km/12m.e�vC1/C8m:
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As for bounding the contribution of a single path, the computations already per-
formed in bounding (9.6) work similarly:

2mY
iD1

X
i;0
i;1

tY
sD2

A
i;s�1
i;sQ
i;t ;
i;tC1

kY
sDtC2

A
i;s�1
i;s

�

�a
n

�e
C2m�
1C

d

n

�2km
d2mL2km;

using Qij � dL=n for all i; j . Finally, for Œ
� 2 Tk;m;t .v; e/, there are at most nv

sequences 
 0 such that 
 0 � 
 . This yields

E
�
kR

.k�1/
t k

2m
�
� c2m1 d2mL2km

�d
n

�2m
.4km/20m

2kmX
eD1

.4km/12m.e�v/
eX
vD1

d env�e

� c2m2 d4mL2kmn�2m log .n/40m.2km/d2km
1X
gD0

�
.4km/12m

n

�g
;

using preemptively the boundm� log.n/ and the change of variables gD e � v. This
time, choosing

m D

�
log.n/

24 log.log.n//

�
yields a convergent sum, and (9.9) follows.
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