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Adversarial examples in random neural networks
with general activations

Andrea Montanari and Yuchen Wu

Abstract. A substantial body of empirical work documents the lack of robustness in deep learn-
ing models to adversarial examples. Recent theoretical work proved that adversarial examples
are ubiquitous in two-layers networks with sub-exponential width and ReLU or smooth activa-
tions, and multi-layer ReLU networks with sub-exponential width. We present a result of the
same type, with no restriction on width and for general locally Lipschitz continuous activations.

More precisely, given a neural network f . � I �/ with random weights � , and feature vec-
tor x, we show that an adversarial example x0 can be found with high probability along the
direction of the gradient rxf .xI �/. Our proof is based on a Gaussian conditioning technique.
Instead of proving that f is approximately linear in a neighborhood of x, we characterize
the joint distribution of f .xI �/ and f .x0I �/ for x0 D x � s.x/rxf .xI �/, where s.x/ D
sign.f .xI�// � sd for some positive step size sd .

1. Introduction

The output of a neural network at test time can be significantly changed by an imper-
ceptible but carefully chosen perturbation of its input. Such perturbed inputs are
referred to as adversarial examples. In the context of deep learning, the existence of
adversarial examples was first discovered experimentally in [23]. A rapidly expanding
literature developed algorithms to produce adversarial examples [7, 11, 13, 19, 28], as
well as techniques to increase model robustness [6, 14, 20, 21, 24, 27].

Throughout this paper, we will focus on the standard supervised learning setting,
whereby a data sample takes the form .x; y/, with x 2 Rd a covariates vector and
y 2 R the corresponding label. A model is a function f . � I�/WRd ! R parametrized
by weights � 2 Rp . In this setting, given a test point x 2 Rd , an adversary constructs
xadv D xadv.xI�/ 2 Rd . The adversary is successful if, with high probability

sign
�
f .xadv

I�/
�
D � sign

�
f .xI�/

�
; kxadv

� xk � kxk:
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In this paper we will interpret ‘with high probability’ as with probability converging
to one as d !1 with respect to a certain distribution over the random weights � , for
any fixed x 2 Rd (with normalization kxk D

p
d ). Results in the literature differ in

the choice of the point x (e.g., random according to the test distribution, or an arbitrary
training point, or a fixed x as in the present paper), and the norm k � k (empirical work
often adopts `1 norm, but we will follow earlier theoretical papers and use `2 norm.).
We refer to the next sections for formal statements.

Among the earlier hypotheses about the origins and ubiquity of adversarial exam-
ples was the idea, put forward in [11], that they are related to the fact that f . � I �/ is
approximately linear (better, affine) over large regions of the input space. This hypoth-
esis has several consequences that match empirical observations at a qualitative level:

(1) Prevalence of adversarial examples. Indeed, if f .xI �/ � a.�/C hb.�/;xi,
then

f .xadv
I�/ � f .xI�/ � hb.�/;xadv

� xi: (1.1)

Assuming without loss of generality a.�/ D 0, we have jf .xI�/j D ‚.kb.�/k2/ for
most kxk2 D

p
d . By choosing

xadv
� x D ˙b.�/=kb.�/k2;

we obtain that jf .xadvI�/� f .xI�/j is of order jf .xI�/j, while kxadv � xk2 D 1�

kxk2. With appropriate choice of sign and step size, such perturbation also flips the
sign of f .

(2) Adversarial examples can be found by efficient algorithms. Indeed, the above
argument suggests to take

xadv.xI�/ D x � s.x/rxf .xI�/; (1.2)

for a suitable s.x/. This approach was successfully implemented in [11], who ref-
erred1 to it as the ‘fast gradient sign method’ (FGSM).

The main result of this paper is a proof that this procedure indeed produces adversarial
examples when f .xI �/ is a two-layer or multi-layer fully connected neural network
with random weights. This can be interpreted as the function implemented by the
network at initialization.

Several groups obtained theoretical results on the existence of adversarial exam-
ples. One basic remark is that, if the distribution of the covariates x satisfies an
isoperimetry property, and Px.f .xI�/ > 0/2 Œı;1� ı� for some constant ı > 0, then a

1The original proposal attempted to minimize kxadv � xk1, and consequently takes
xadv � x / sign.rxf /.
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random x will be close to the decision boundary (and to an adversarial example) with
high probability. This is the case, for instance, when x is a uniformly random vector
on a high-dimensional sphere, or a standard Gaussian vector. Increasingly sophisti-
cated incarnations of this argument were given in [9, 10, 22].

The isoperimetry argument clarifies why adversarial examples are ubiquitous, but
does not explain why they can be found so easily, for instance via FGSM. In the other
direction, [5] proved that learning robust classifiers can be computationally hard.

A somewhat different point of view was developed in [12], which proposed that
non-robustness is related to the presence of non-robust features in the data. These
functions h.x/ of the data are used by a normally trained classifier (minimizing the
training error), but can be significantly changed by an imperceptible perturbation
of x. By itself, this is not incompatible with the ‘approximate linearity’ hypothesis
described above. However, [12] emphasized the existence of robust features along-
side non-robust ones.

Our work is most closely related to a recent sequence of papers analyzing the brit-
tleness of fully connected neural networks to the FGSM-style attack (1.2) [2, 4, 8]. In
particular, [8] showed that random ReLU networks are vulnerable if the width of each
layer is small relative to the width of the previous layer. For the case of two-layer net-
works, this result was improved in [4] which considered either smooth activations and
width subexponential in the input dimension m D exp.o.d//, or ReLU activations,
and width m � exp.d0:24/. Finally, [2] generalized the latter analysis to multi-layer
networks with maximal width m � exp.d c/ for some small c.

We also point to the recent paper [26] which studied trained two-layer ReLU net-
works (under the assumption that gradient flow converges to a network that perfectly
classifies the training set). These are shown to be non-robust (in a stronger sense than
above) for sample size n �

p
d .

In this paper, we prove that the FGSM-like attack (1.2) indeed finds adversarial
examples for neural networks with random Gaussian weights. We present the follow-
ing novel contributions, with respect to earlier work:

Arbitrary width. Our results apply to an arbitrary diverging width, without upper
bounds on the growth rate. This question is posed as an open problem in [4] and
is not merely academic. A large body of literature connects wide random neural
networks to Gaussian processes and kernel methods, see [1,3,15,18] for a few point-
ers. For instance [16, 17] prove that the generalization properties of two-layer net-
works linearized around their initialization approach the one of the associated infinite-
width kernel as soon as the number of parameters becomes larger than the number of
samples.

Within this context, the upper bounds on width assumed in [2, 4] are somewhat
puzzling. A priori, they could suggest that exponentially wide networks are more
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robust than sub-exponentially wide, although their generalization properties are simi-
lar. Here we prove that this is not the case. In particular, our results apply to Gaussian
processes as well.

General activation. Both for two-layer and multi-layer networks, our proof applies
for a general class of activation functions �.x/. We only require � 0.x/ to exist almost
everywhere, continuous, and bounded by a polynomial.

While most activation function of practical use are more regular than this (e.g.,
Lipschitz continuous), this generalization clarifies that the approximate linearity prop-
erty (1.1) is not a naive consequence of the smoothness of the activation functions.

Weak linearity condition. Our proofs are based on a weaker notion of linearity
than [2, 4, 8]. Namely, instead of proving that f . � I �/ is approximately linear in a
neighborhood of x, we only prove that it is approximately linear along the direction
of interest rxf .xI�/.

Gaussian conditioning. Establishing approximate linearity along a specific direction
poses an obvious mathematical challenge: The direction rxf .xI�/ is correlated with
the function f . � I �/ itself. We deal with this difficulty by introducing a Gaussian
conditioning technique that was not used before in this context, and we believe can be
useful to study other attacks.

For clarity of exposition, we will treat separately the two-layer and multi-layer
cases. This allows the reader to understand the proof strategy in a simpler example,
before diving into the notational intricacies of multi-layer networks. In the case of
two-layer networks, we prove two theorems. The first one is stated in Section 2, and
establishes that the attack succeeds with probability converging to one, but does not
provide explicit probability bounds. On the other hand, this theorem holds for very
general activation functions. We present the proof of these results in Section 3. We
then state a complementary result in Section 4 which gives explicit non-asymptotic
probability bounds, but limited to Lipschitz activations. The result for multi-layer
network is stated in Section 5 with proofs in Section 6. Several technical lemmas are
deferred to the appendices.

1.1. Notations

We generally use lowercase letters for scalars, lowercase bold for vectors and upper-
case bold for matrices. The ordinary scalar product of vectors u; v 2 Rn is denoted
by hu; vi, and we let kuk2 WD hu; ui1=2. For n 2 NC, we let Œn� D ¹1; 2; : : : ; nº. We
denote by p-lim convergence in probability. For random variables X; Y , we denote
byX ? Y ifX and Y are independent of each other. We denote by p-lim convergence
in probability.
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2. Random two-layer networks

We begin by studying the following random two-layer neural network:

f .xI�/ D

mX
iD1

ai�.w
|

i x/: (2.1)

Here, � WR! R is a fixed activation function, � D ¹.ai ;wi /ºi�m, the weight vectors
wi 2Rd are i.i.d. generated from N.0;Id=d/, and .ai /i�m

i:i:d:
� N.0; 1=m/. We denote

by W 2 Rm�d the random weight matrix with the i -th row equal to wi , a 2 Rm

the vector with the i -th coordinate equal to ai . We assume that W is independent
of a. In what follows, we shall typically drop the argument � from f , and write
f .x/ D f .xI�/.

Let � WD sign.f .x//, and sd 2 RC be the step size which depends on .m; d/. We
define

xs WD x � �sdrf .x/: (2.2)

Our main result on two-layer networks establishes that there exists a sequence of step
sizes ¹sd ºd�1, such that for d;m D m.d/!1, kx � xsk2=kxk2

P
! 0, while with

high probability sign.f .x// ¤ sign.f .xs//.

Theorem 2.1. Let x 2 Rd be a deterministic vector with kxk2 D
p
d . Assume that

�.x/ is not a constant, � is continuous, almost everywhere differentiable, � 0 is almost
everywhere continuous, and j� 0.x/j � C� .1C jxjk�1/, where k 2 NC is a fixed pos-
itive integer and C� > 0 is a constant depending only on � .

Then the following hold:

(1) There exists a constantC >0 depending only on � , such that for any ı 2 .0;1/,
with probability at least 1 � ı,

kx � xsk2

kxk2
�
Csd
p
d
.1C d�1=2 log.1=ı//.1C .mı/�1=2/:

(2) Let ¹�d ºd2NC �RC be an increasing sequence such that �d !1 as d!1.
Then there exists ¹sd ºd2NC � RC, such that sd � �d and the following hold:

p-limm;d!1

kx � xsk2

kxk2
D 0;

lim
m;d!1

P .sign.f .x// ¤ sign.f .xs/// D 1:

Remark 2.1. Note that this theorem provides a completely quantitative non-asymp-
totic upper bound on the size of the perturbation kx � xsk2. On the other hand,
it does not provide convergence rates for the success probability P .sign.f .x// ¤
sign.f .xs///.
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This can be traced to the use of a non-quantitative uniform central limit theorem
in our proof (see below). In Section 4 we obtain an explicit rate by a more careful
handling of that step, at the price of assuming Lipschitz activations.

Remark 2.2. The scale of the input is chosen so that the output after the first layer
�.w

|

i x/ are of order one when wi � N.0; Id=d/. As a consequence, the output after
the second layer f .xI�/ is also of order one for ai

i:i:d:
� N.0; 1=m/.

The proof of the theorem applies with barely any change to all inputs satisfying
c
p
d � kxk2 � C

p
d for some positive constants c; C . Here, we choose not to state

this general version to simplify notations.
We note that the scaling is unimportant when the activation function is positively

homogeneous (that is to say, for z > 0, �.zx/D z�.x/). On the other hand, for general
activations the sensitivity to input perturbations is necessarily dependent of the scale.
For instance, if �.t/D .t � 1/C and kxk2�

p
d then, with high probability we have

jw
|

i xj � 1 for all i � m. In other words, the inputs to the hidden neurons lie in the
region in which the activation vanishes, and therefore a small perturbation will not
change the network output.

2.1. Proof technique

As mentioned in the introduction, our proofs are based on Gaussian calculus. Before
delving into the actual calculation, it is perhaps useful to describe a simple calcu-
lation along the same lines. Let x 2 Rd , kxk2 D

p
d be fixed and the adversarial

example be given by equation (2.2), with f .x/ D f .xI �/, the two-layer network of
equation (2.1).

The gradient of f is given by

rf .x/ D W |D�a; (2.3)

whereD� 2 Rm�m is a diagonal matrix:D� D diag.¹� 0.w|

i x/ºi�m/.
Note that rf .x/ is a random vector, becauseW ;a are random. It is clearly useful

to understand the distribution of this random vector: this will tell us about the prop-
erties of the adversarial perturbation. It is elementary that, if b is a random vector
independent of W , then conditional on the norm kbk2, W |b is a Gaussian random
vector:

W |b
ˇ̌
kbk2
� N.0; .kbk22=d/ � Id /:

Equivalently, we can express the same fact by saying thatW |bDkbk2z=
p
d , where z

is a standard Gaussian vector that is independent of b.
This fact might suggest that

rf .x/ � z �
1
p
d



D�a



2
; (2.4)
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where z is a standard Gaussian vector that is independent of everything else. Since
(as is easy to see)



D�a



2

concentrates, this would further imply that the gradient is
approximately Gaussian with i.i.d. entries, whose variances we can easily compute.

However, the implication is not straightforward because in this case, b D D�a

is not independent of W (because the diagonal elements of D� are � 0.w|

i x/ and are
therefore a deterministic function of W ). As a consequence, equation (2.4) is at best
an approximate equality, and quantifying the error requires an argument.

Luckily, the Gaussian distribution allows for a particularly elegant such argument.
Let …x 2 Rd�d denote the orthogonal projector onto the linear space spanned by x,
…x D xx

|=d and …?x WD Id �…x . Further, define g D W x (the input first-layer
neurons). Then we have

W D W…x CW…?x

D
1

d
gx|
CW…?x :

This decomposition has several useful properties: (i) W…?x is independent of g
(because two orthogonal projections of a standard normal are independent); (ii) D�

is a function uniquely of g; (iii) the distribution of g is simple, namely g � N.0;Id /.
Using this decomposition, we obtain

rf .x/ D
1

d
xg|D�aC…

?
xW

|D�a

.�/
D ˛kx C ˛?…

?
x z; (2.5)

where z � N.0; Id / is independent of g and

˛k WD
1

d

mX
iD1

giai�
0.gi /; ˛2? WD

1

d

mX
iD1

a2i �
0.gi /

2:

Note that the crucial step .�/ is correct because …?xW
| is independent of g as dis-

cussed above. By the law of large numbers, both ˛k D OP .1=d/ and ˛? concentrates
around its expectation, which is of order 1=

p
d . Therefore, equation (2.5) provides an

exact version of equation (2.4).
The basic intuition in the decomposition (2.5) is quite simple. Even ifD� depends

onW , it only depends on a low-dimensional projection of this matrix. We can condi-
tion on this projection, and resample the orthogonal component of W independently
from it.

Our proofs push forward the same type of reasoning. Instead of computing the
distribution of rf .x/, we now have to compute the distribution of

f .xs/ D f .x � �sdrf .x//:
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By conditioning on suitable projections of W , we write this quantity (better, its dif-
ference from the first order Taylor approximation) in terms of a certain number of
empirical averages similar to ˛k, ˛? above. Thanks to such representations, the proofs
of our main theorems reduce to controlling these empirical averages and this can be
achieved by standard empirical process theory.

3. Proof of Theorem 2.1

As discussed above, our proof strategy is based on conditioning on low-dimensional
projections of W . We state a Gaussian conditioning lemma that will be used repeat-
edly throughout the paper.

We say that Y depends on X only through g.X/ if and only if there exists a
deterministic function h and a random vector Z that is independent of X , such that
Y D h.g.X/;Z /.

Lemma 3.1. Let X 2 Rm�d be a matrix with i.i.d. standard Gaussian entries, and
A1 2 Rk1�m;A2 2 Rd�k2 be other random matrices. Let Y D h1.A1X ;XA2;Z1/
and A2 D h2.A1X ;Z2/ for deterministic functions h1 and h2. Further assume that
.X ;A1;Z1;Z2/ are mutually independent. Then there exists zX 2 Rm�d which has
the same distribution with X and is independent of Y , such that

X D …?A1
zX…?A2 C…

?
A1
X…A2 C…A1X…

?
A2
C…A1X…A2 ;

where…A1 2 Rm�m,…A2 2 Rd�d are the orthogonal projectors onto the subspaces
spanned by the rows of A1, A2, respectively. Further,

…?A1 WD Im �…A1 ; …?A2 WD Id �…A2 :

The proof of Lemma 3.1 is a straightforward application of the properties of Gaus-
sian ensembles, and we defer it to Section A.1.

Proof of the first claim. We first prove claim (1) of the theorem. Recall that the gradi-
ent of f is given by equation (2.3). The next lemma provides non-asymptotic control
over the Euclidean norm of rf .x/.

Lemma 3.2. Under the conditions of Theorem 2.1, there exists a constant C > 0 that
depends only on � , such that for any ı > 0, with probability at least 1 � ı, we have

krf .x/k2 � C.1C d
�1=2 log.1=ı//.1C .mı/�1=2/:

The proof of Lemma 3.2 is deferred to Section A.2 in the appendix. Recall that
kxk2 D

p
d , thus the first claim of the theorem follows directly from Lemma 3.2.
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Proof of the second claim. We next invoke Lemma 3.1 to prove the second claim
of Theorem 2.1. For the sake of simplicity, we define g WD W x, gs WD W xs , then
g
d
D N.0; Im/. By definition, we have

gs D g � �sdW rf .x/

D g � �sdW W
|D�a: (3.1)

Recall that …x 2 Rd�d is the orthogonal projector onto the linear subspace spanned
by x, and let …?x WD Id �…x . Using Lemma 3.1, we can decompose the weight
matrix W as W D gx|=d C zW…?x , where zW has the same marginal distribution
as W and is independent of .g; a/. We then substitute this result into equation (3.1),
which gives

gs D g � �sd .gg
|=d C zW…?x

zW
|
/D�a

D g.1 � �sdg
|D�a=d/ � �sd xW xW

|
D�a

D g.1 � �sdg
|D�a=d/ � �sd…D�a

xW xW
|
D�a � �sd…

?
D�a
xW c
xW

|
D�a

D g.1 � �sdg
|D�a=d/ � �sd �

k xW
|
D�ak

2
2 � h

xW
|

cD�a; xW
|
D�ai

kD�ak
2
2

D�a

�
sd
p
d
k xW

|
D�ak2u; (3.2)

where xW ; xW c 2 Rm�.d�1/ are matrices which have i.i.d. Gaussian entries with mean
zero and variance 1=d . Furthermore, xW is independent of .g;a/ and xW c is indepen-
dent of .g; a; xW

|
D�a/. Such independence is established by Lemma 3.1. In the last

line above, u D
p
d� xW c

xW
|
D�ak xW

|
D�ak

�1
2 2 Rm, which by the property of the

Gaussian distribution and the independence result we have just established has i.i.d.
standard Gaussian entries and is independent of .g; a; xW

|
D�a/.

We introduce the following notations for the sake of simplicity.

� WD
1

d
�sdg

|D�a;

ˇ WD �sd �
k xW

|
D�ak

2
2 � h

xW
|

cD�a; xW
|
D�ai

p
mkD�ak

2
2

; (3.3)


 WD
sd
p
d
k xW

|
D�ak2:

The following lemma states that under the current setting, the above quantities are
small in probability.

Lemma 3.3. Under the conditions of Theorem 2.1, if we further assume that there
exists a constant S0 > 0, such that sd ! S0 as d !1, then as d goes to infinity
we have

� D oP .1/; ˇ D oP .1/; 
 D oP .1/:
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We postpone the proof of Lemma 3.3 to Section A.3, which constitutes merely of
standard applications of concentration inequalities. In the following parts of the proof,
we will assume ¹sd ºd2NC satisfies the condition stated in Lemma 3.3.

Let F WRm!R be a random function, such that F.y/D
Pm
iD1 ai�.yi /. Then the

quantity of interest f .xs/ � f .x/ can be expressed as F.gs/ � F.g/. Furthermore,
by equations (3.2) and (3.3), we have

F.gs/ � F.g/ � hrF.g/;gs � gi

D

mX
iD1

®
ai
�
�..1 � �/gi � ˇ

p
mai�

0.gi / � 
ui / � �.gi /
�
C �ai�

0.gi /gi

C ˇ
p
ma2i �

0.gi /
2
C 
aiui�

0.gi /
¯
:

Then we proceed to show that F.gs/ can be well approximated by the corresponding
first order Taylor expansion at g. Namely, we will show that

jF.gs/ � F.g/ � hrF.g/;gs � gij D oP .1/:

Let bi D
p
mai , then bi

i:i:d:
� N.0; 1/ for i 2 Œm�. For � D .�1; �2; �3/ 2 R3, we

define
h�.b; g; u/ WD b�..1 � �1/g � �2b�

0.g/ � �3u/ � b�.g/:

Notice that

F.gs/ D
1
p
m

mX
iD1

h.�;ˇ;
/.bi ; gi ; ui /;

F .g/ D
1
p
m

mX
iD1

h.0;0;0/.bi ; gi ; ui /:

Given these expressions, it is a natural reflex to apply the central limit theorem to study
F.gs/ � F.g/. However, the fact that .�; ˇ; 
/ are random and depend on .a;g; u/
raises doubts about such application. To fix this issue, we resort to the uniform central
limit theorem to present a valid result.

For � 2 R3, we define the empirical process Gm evaluated at � as

Gm.�/ WD
1
p
m

mX
iD1

�
h�.bi ; gi ; ui / � EŒh�.bi ; gi ; ui /�

�
; (3.4)

where the expectation is taken over ¹.bi ; gi ; ui /ºi�m
i:i:d:
� N.0; I3/. For �; x� 2 R3, we

define the covariance function cWR3 �R3 ! R as

c.�; x�/ WD EŒh�.b; g; u/hx�.b; g; u/� � EŒh�.b; g; u/�EŒhx�.b; g; u/�: (3.5)
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Application of the regularity assumptions imposed on � and the dominated conver-
gence theorem evidently reveals the continuity of c.�; �/. We denote by G the Gaussian
process indexed by � with mean zero and covariance function c.�; �/. The following
lemma establishes that Gm converges weakly to G.

Lemma 3.4. Let � WD ¹x 2 R3 W kxk1 � 1º, and C.�/ be the space of continuous
functions on � endowed with the supremum norm. Under the conditions of Theo-
rem 2.1, if we further assume that there exists a constant S0 > 0, such that sd ! S0

as d ! 1, then ¹Gmºm�1 converges weakly in C.�/ to G, which is a Gaussian
process with mean zero and covariance defined in equation (3.5).

The proof of Lemma 3.4 is deferred to Section A.4.

Remark 3.1. Lemma 3.4 is the main step in which we lose quantitative control of
success probability for the FGSM attack. We prove this lemma by an application of
the uniform central limit theorem. A more explicit approach should be able to provide
concrete probability bounds.

For �; x� 2 �, we define �.�; x�/ WD EŒ.G.�/ �G.x�//2�1=2. Then by [25, Lem-
ma 18.15], without any loss, we can and will assume that G almost surely has �-
continuous sample path.

In the following parts, we fix some positive � a priori, and define

S�.G/ WD sup
k�k1��

jG.�/j:

Note that S� is a continuous function with respect to the supremum norm on �, thus
S�.Gm/ converges weakly to S�.G/ due to the continuous mapping theorem. Recall
that we showed in Lemma 3.3 that �; ˇ; 


P
! 0 as d !1, thus for any � > 0,ˇ̌

F.gs/ � F.g/C
p
mˇEŒ� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/�

ˇ̌
(i)
D

ˇ̌̌̌
1
p
m

mX
iD1

bi
�
�..1 � �/gi � ˇbi�

0.gi / � 
ui / � �.gi /
�

�
p
mE

�
b
�
�..1 � �/g � ˇb� 0.g/ � 
u/ � �.g/

��ˇ̌̌̌
D

ˇ̌̌̌
1
p
m

mX
iD1

�
h.�;ˇ;
/.bi ; gi ; ui / � EŒh.�;ˇ;
/.bi ; gi ; ui /�

�ˇ̌̌̌
(ii)
� S�.Gm/C ı�.m/;

where ı�.m/
P
! 0 as d ! 1. In the above display, (i) is by Stein’s lemma (see

Lemma 3.5 below), (ii) is by Lemma 3.3, and the expectations are taken over

¹b; bi ; g; gi ; u; uiºi2Œm�
i:i:d:
� N.0; 1/:



A. Montanari and Y. Wu 154

Lemma 3.5 (Stein’s lemma). Suppose Z is a normally distributed random variable
with expectation x1 and variance x2. Further suppose g is a function for which the
two expectations EŒg.Z/.Z � x1/� and EŒg0.Z/� both exist. Then

EŒg.Z/.Z � x1/� D x2EŒg
0.Z/�:

We next prove that S�.Gm/ is small, which consists of two major steps. In the first
step, we show that S�.G/ is small, then we establish that S�.G/ and S�.Gm/ are close
for large d .

Note that c.0; 0/ D 0. Since G has �-continuous sample path and the covariance
function c is continuous, we then obtain that S�.G/

P
! 0 as � ! 0C. For all �0 > 0,

we first choose � > 0 small enough, such that P .S�.G/ � �0=3/ � �0=3. Since

S�.Gm/
d
�! S�.G/;

S�.G/ obviously has continuous cumulative distribution function, and ı�.m/
P
! 0 as

m;d !1, putting these together we conclude that there existsm�;�0 2NC, such that
for all m � m�;�0 ,

P .jı�.m/j � �
0=3/� �0=3 and P .jS�.Gm/j � �

0=3/� �0=3C P .jS�.G/j � �
0=3/:

In summary, for all m � m�;�0 ,

P
�ˇ̌
F.gs/ � F.g/C

p
mˇEŒ� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/�

ˇ̌
� �0

�
� �0:

As the choice of �0, we then haveˇ̌
F.gs/ � F.g/C

p
mˇEŒ� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/�

ˇ̌
D oP .1/: (3.6)

Note that in the above equation the expectation is taken over .b; g; u/ � N.0;I3/, and
EŒ� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/� is a random variable which depends on the
values of the random vector .�; ˇ; 
/.

Next, we consider hrF.g/;g �gsi. Notice that this formula admits the following
decomposition:

hrF.g/;g � gsi D �

mX
iD1

ai�
0.gi /gi C ˇ

p
m

mX
iD1

a2i �
0.gi /

2
C 


mX
iD1

aiui�
0.gi /

D �T1 C ˇ
p
mT2 C 
T3:

Since ¹
p
mai ; ui ; giºi2Œm� are i.i.d. standard Gaussian random variables, as an imme-

diate consequence of the law of large numbers and the central limit theorem, we can
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conclude that T1 and T3 are both OP .1/, and T2 D EŒ� 0.g/2�C OP .m�1=2/. Using
this result and Lemma 3.3, we further deduce that

hrF.g/;g � gsi D ˇ
p
mEŒ� 0.g/2�C oP .1/: (3.7)

The law of large numbers implies that as d !1, we have ˇ
p
mD �S0C oP .1/. As

a result,
hrF.g/;g � gsi D �S0EŒ�

0.g/2�C oP .1/:

Recall that according to Lemma 3.3, �; ˇ; 
 D oP .1/, thus intuitively we would
expect that the expectations displayed in equation (3.6) and equation (3.7) are close to
each other. To make such heuristic rigorous, we notice that by assumption, � 0 is almost
everywhere continuous and j� 0.x/j � C� .1C jxjk�1/. Then we apply the dominated
convergence theorem, and obtain that as d !1,

EŒ� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/� D EŒ� 0.g/2�C oP .1/: (3.8)

Substituting equations (3.7) and (3.8) into equation (3.6) gives

jF.gs/ � F.g/ � hrF.g/;gs � gij D oP .1/;

which further leads to

F.gs/ D F.g/ � �S0EŒ�
0.g/2�C oP .1/:

Furthermore, the central limit theorem implies that F.g/
d
�! N.0;EŒ�.g/2�/, thus as

d !1,

P
�
sign.F.g// ¤ sign.F.gs//

�
! P

�
sign.z/ ¤ sign

�
z � sign.z/S0EŒ� 0.g/2�

��
;

where z � N.0;EŒ�.g/2�/, g � N.0; 1/, and are independent of each other. Since S0 is
arbitrary, using a standard diagonal argument, we derive that there exists a sequence
of step sizes ¹sd ºd2NC , such that as d !1,

P
�
sign.F.g// ¤ sign.F.gs//

�
! 1 and kxs � xk2=kxk2

P
! 0:

More precisely, for all n 2 NC, there exists Sn0 > 0 and dn 2 NC, such that if we set
sd D S

n
0 for all d 2 NC, then for all d � dn,

P
�
sign.F.g// ¤ sign.F.gs//

�
� 1 �

1

n
:

Without loss of generality, we can assume dn < dnC1, Sn0 � �dn , and Sn0 =
p
dn < n

�1

by fixing Sn0 and taking dn large enough. We set sd DSn0 if and only if dn� d <dnC1.
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Under such choice of ¹sd ºd�1, for all dnC1 > d � dn, we have

sd
p
d
D

Sn0
p
d
�

Sn0
p
dn
�
1

n
; P

�
sign.F.g// ¤ sign.F.gs//

�
� 1 �

1

n
;

sd � �dn � �d :

Since n is arbitrary, then we combine the equations above with the first claim of the
theorem and conclude the proof of the second claim.

4. Non-asymptotic result for two-layer networks

As emphasized above, Theorem 2.1 does not provide a quantitative convergence rate
for the probability that the attack succeeds, namely, P .sign.f .x// ¤ sign.f .xs///.
We remedy to this by establishing a non-asymptotic bound below, at the price of
assuming that the activation function � is Lipschitz continuous.

Theorem 4.1. Consider the random two-layer neural network of equation (2.1). Let
x 2 Rd be a deterministic vector with kxk2 D

p
d . Assume that � is L-Lipschitz

over R for some L � 1, � is not a constant, and � 0 is almost everywhere continuous.
Then there exist numerical constants c;C0 > 0, such that for all � > 0, if the following
conditions hold:

d � max
²
C 2
�
C0.�.0/

2 C L2/

�
;
4L4C 2

�

c2

�
log

C0

�

�2
;16C 4�

�
1C Eg�N.0;1/Œ�.g/

2�
�2³

;

m � C 4� ;
zQd;m � Eg�N.0;1/Œ�

0.g/2�=2; � � C0e
�9c ; sd D C� ; (4.1)

where

C� D
4
p

log.C0=�/ � .Eg�N.0;1/Œ�.g/2�C 1/
p
c Eg�N.0;1/Œ� 0.g/2�

;

zQd;m D min
j� j1�d

�1=2;

j�2j�2m
�1=4; j�3j�d

�1=4

E
�
� 0.g/� 0..1 � �1/g � �2b�

0.g/ � �3u/
�
;

g; b; u �i:i:d: N.0; 1/:

Then with probability at least

1 � 3� � C0
�
exp.�cd/Cm�1.�.0/4 C L4/C 2L.d�1=4 Cm�1=4/

�
;

it holds that sign.f .x// ¤ sign.f .xs//.
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Remark 4.1. In order to parse the last statement, think of � as a small constant
controlling the probability that the adversarial attack fails. Then the conditions (4.1)
require d and m to be larger than some constants d0.�/ and m0.�/, where d0.�/ is of
order log.1=�/=�, and m0.�/ is only polylogarithmic in 1=� .

In order to prove Theorem 4.1, it suffices to prove the following lemma, which
can be regarded as a more general version of the statement.

Lemma 4.1. Under the conditions of Theorem 4.1, for �1; �2 > 0, we define

�d;m WD

²
� W j�1j �

sd�1

d
;
ˇ̌̌
�2 �

�sd
p
m

ˇ̌̌
�
2sd�2
p
dm

;

j�3j �
2sd
p
d
�

q
1C Eg�N.0;1/Œ�.g/2�

³
;

Qd;m WD min
�2�d;m

Eg;b;u�i:i:d:N.0;1/
�
� 0.g/� 0..1 � �1/g � �2b�

0.g/ � �3u/
�
;

ıd;m WD max
²
sd�1

d
;
2sd�2
p
dm
C
�sd
p
m
;
2sd
p
d
�

q
1C Eg�N.0;1/Œ�.g/2�

³
: (4.2)

In the above definitions, we ignore the dependence on .�1; �2/ for the sake of sim-
plicity. Then there exist numerical constants c; C0 > 0, such that with probability at
least

1 � C0
®
��21 .�.0/

2
C L2/C exp.�c�2/C exp.�cd/

Cm�1.�.0/4 C L4/C exp.�c�23/C �
�1Lıd;m

¯
;

we have sign.f .x// ¤ sign.f .xs//. In the above display,

�3 D
sdQd;m � � � 2d

�1=2sdL
2�2 � 1p

Eg�N.0;1/Œ�.g/2�C 1
:

Remark 4.2. In Lemma 4.1, if we set

� D 1; �1 D

s
C0.�.0/2 C L2/

�
; �2 D c

�1 log
C0

�
;

sd D
2
p

Eg�N.0;1/Œ�.g/2�C 1 �
�p
c�1 log.C0=�/C 1

�
C 2

Eg�N.0;1/Œ�.g/2� � 4d�1=2�2
;

then Theorem 4.1 reduces to a direct corollary of Lemma 4.1.

We will prove Lemma 4.1 in the rest of the parts of this section. Recall that �;ˇ;

were defined in equation (3.3). We first give a non-asymptotic characterization of
these random quantities.
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Lemma 4.2. There exist numerical constants c;C > 0, such that the following results
hold:

(1) For any �1 > 0, with probability at least 1 � C��21 .�.0/
2 C L2/,

j�j �
sd�1

d
:

(2) For any �2 � 1, with probability at least 1 � C exp.�c�2/,ˇ̌̌
ˇ �

�sd
p
m

ˇ̌̌
�
2sd�2
p
dm

:

(3) With probability at least 1 � 2 exp.�cd/ � Cm�1.�.0/4 C L4/,

j
 j �
2sd
p
d
�

q
1C Eg�N.0;1/Œ�.g/2�:

We postpone the proof of Lemma 4.2 to Section B.1. In what follow, we will
always assume that the events described in Lemma 4.2 occur. Namely, we will be
working on event � defined as follows:

� D

²
j�j �

sd�1

d
;
ˇ̌̌
ˇ �

�sd
p
m

ˇ̌̌
�
2sd�2
p
dm

; j
 j �
2sd
p
d
�

q
1C Eg�N.0;1/Œ�.g/2�

³
:

By Lemma 4.2,

P .�/ � 1 � C��21 .�.0/
2
C L2/ � C exp.�c�2/

� 2 exp.�cd/ � Cm�1.�.0/4 C L4/:

Recall from equations (3.2) and (3.4) that

F.gs/ � F.g/ D

mX
iD1

ai
�
�..1 � �/gi � ˇ

p
mai�

0.gi / � 
ui / � �.gi /
�

D Gm..�; ˇ; 
// �
p
mˇEg;b;u�i:i:d:N.0;1/

�
� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/

�
:

We then show that Gm..�;ˇ; 
// is close to zero. More precisely, for ı > 0, we define
the set‚ı WD ¹� 2R3 W k�k1 � ıº. We immediately see that if max¹j�j; jˇj; j
 jº � ı,
then

Gm..�; ˇ; 
// � sup
�2‚ı

Gm.�/:

For � 2 R3, we define

Lm.�/ D
1
p
m

mX
iD1

"ibi
�
�..1 � �1/gi � �2bi�

0.gi / � �3ui / � �.gi /
�
;
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where "i
i:i:d:
� Unif¹�1;C1º and are independent of everything else. By symmetriza-

tion, it holds that
E
�

sup
�2‚ı

Gm.�/
�
� 2E

�
sup
�2‚ı

Lm.�/
�
: (4.3)

Since Lm.E0/DGm.E0/D 0, we see that both sup�2‚ı Gm.�/ and sup�2‚ı Lm.�/ are
non-negative. Furthermore, conditioning on ¹.bi ; gi ; ui / W i 2 Œm�º, it is not hard to
see that ¹Lm.�/ W � 2‚ıº is a sub-Gaussian process indexed by parameters in‚ı . In
addition, the sub-Gaussian norm of this process k � k‰2 satisfies the following inequal-
ity.

Lemma 4.3. There exists a numerical constant C > 0, such that for �;� 0 2 R3,

kLm.�/ � Lm.�
0/k‰2 � C �

p
1

m

mX
iD1

M.bi ; gi ; ui /
2
� k� � � 0k2;

where
M.b; g; u/ D L � jbj �

p
g2 C L2b2 C u2:

We defer the proof of the lemma to Section B.2. Using the Dudley’s integral
inequality, we conclude that there exists another numerical constant C 0 > 0, such
that

E"i�i:i:d:Unif¹˙1º

�
sup
�2‚ı

1
p
m

mX
iD1

"ibi
�
�..1 � �1/gi � �2bi � �3ui / � �.gi /

��

� C 0

p
1

m

mX
iD1

M.bi ; gi ; ui /
2
�

Z 1
0

p
log N .‚ı ; k � k2; x/ dx; (4.4)

where N .‚; k � k2; x/ is the smallest number of closed balls with centers in ‚ and
radius x whose union covers‚. In our case, since‚ı is contained in the ball centered
at the origin with radius

p
3ı, we have N .‚ı ;k � k2; x/ � .1C 4ı=x/

3. Plugging this
upper bound into equation (4.4) further leads to the following result:

E
�

sup
�2‚ı

Lm.�/
�
� C 00L

Z p3ı
0

p
log.1C 4ı=x/ dx � 4C 00Lı; (4.5)

where C 00 > 0 is a numerical constant. Combining (4.3) and (4.5), we can further
upper bound the expectation of the non-negative random variable sup�2‚ı Gm.�/

with 8C 00Lı. By Markov’s inequality, with probability at least 1 � 8��1C 00Lı,

sup
�2‚ı

Gm.�/ � �
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for any � > 0. Recall that ıd;m is defined in equation (4.2). By Lemma 4.2, we see
that with probability at least

1 � C��21 .�.0/
2
C L2/ � C exp.�c�2/

� 2 exp.�cd/ � Cm�1.�.0/4 C L4/ � 8��1C 00Lıd;m;

we have

F.gs/ � F.g/

� sup
�2‚ıd;m

Gm.�/ �
p
mˇEg;b;u�i:i:d:N.0;1/

�
� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/

�
� � �

p
mˇEg;b;u�i:i:d:N.0;1/

�
� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/

�
:

Analogously, similar lower bound holds with at least the same amount of probability:

F.gs/ � F.g/

� �� �
p
mˇEg;b;u�i:i:d:N.0;1/

�
� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/

�
:

Furthermore, on the set � , it holds that

j
p
mˇ � �sd j �

2sd�2
p
d
:

As a result, with probability at least

1 � 2C��21 .�.0/
2
C L2/ � 2C exp.�c�2/

� 4 exp.�cd/ � 2Cm�1.�.0/4 C L4/ � 16��1C 00Lıd;m;

we haveˇ̌
F.gs/ � F.g/C �sdEg;b;u�i:i:d:N.0;1/

�
� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/

�ˇ̌
� �C

2sdL
2�2

p
d

:

Since �; ˇ; 
 are all oP .1/, we expect that

Eg;b;u�i:i:d:N.0;1/
�
� 0.g/� 0..1 � �/g � ˇb� 0.g/ � 
u/

�
should be approximately equal to Eg�N.0;1/Œ�

0.g/2�, which is strictly positive and
does not depend on .m; d/, provided that � is not a constant function. In this case,
we only need to choose the step size sd large enough to flip the sign of F.g/. This
argument can be made rigorous via the following lemma. In this lemma, we upper
bound the magnitude of F.g/.
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Lemma 4.4. For any �3 � 0, with probability at least

1 � C exp
�
�

cm

�.0/4 C L4

�
� C exp.�c�23/

for some numerical constants c; C > 0, we have

jF.g/j � �3 �

q
Eg�N.0;1/Œ�.g/2�C 1:

We prove the lemma in Section B.3. Let

� 0 WD � \
®
jF.g/j � �3 �

q
Eg�N.0;1/Œ�.g/2�C 1

¯
:

On � 0, if in addition, we have

sdQd;m � � �
2sdL

2�2
p
d

� �3 �

q
Eg�N.0;1/Œ�.g/2�C 1;

then sign.F.g// ¤ sign.F.gs//. In the rest parts of the proof, we will always take

�3 D
sdQd;m � � � 2d

�1=2sdL
2�2 � 1p

Eg�N.0;1/Œ�.g/2�C 1
:

With such choice of �3, we can finally put together all above analysis and conclude
that the adversarial example succeeds with probability at least

1 � C0
®
��21 .�.0/

2
C L2/C exp.�c�2/C exp.�cd/

Cm�1.�.0/4 C L4/C exp.�c�23/C �
�1Lıd;m

¯
for some absolute positive constants c; C0.

5. Random multi-layer networks

We generalize the model considered in Section 2 in the current section. More pre-
cisely, we consider a multi-layer neural network with l C 1 layers for l 2 NC:

f .x/ D W lC1�
�
W l�.� � � �.W 2�.W 1x// � � � /

�
:

In the above equation, the random weight matrix W i 2 Rdi�di�1 has i.i.d. Gaussian
entries: .W i /jj 0

i:i:d:
� N.0; 1=di�1/ for all j 2 Œdi �; j 0 2 Œdi�1�, and further ¹W iºi2ŒlC1�

are independent of each other. We assume d0 D d , dlC1 D 1, and di D di .d/!1
for all 0 � i � l . The d -dimensional input vector x is a deterministic vector with
Euclidean norm

p
d . The activation function � WR!R is understood to act on vectors

entrywise.
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For the simplicity of notations, we define recursively the following vectors:

h0 WD x; g1 WD W 1x; hj WD �.gj /; and gjC1 WD W jC1hj

for j 2 Œl �. The gradient of f can be expressed as

rf .x/ D W
|

1D
1
�W

|

2D
2
� � � �W

|

l
Dl
�W

|

lC1
;

where Dj
� D diag.¹� 0.gj /º/ 2 Rdj�dj . As before, we denote by � 2 ¹˙1º the sign

of f .x/, and let ¹sd ºd2NC � RC be a sequence of step sizes to be determined.

Theorem 5.1. Assume that � satisfies the conditions in Theorem 2.1. Then the fol-
lowing results hold:

(1) There exists a constant C > 0 depending uniquely on .�; l/, such that for any
ı 2 .0; 1/, with probability at least 1 � ı,

kx � xsk2

kxk2
�
Csd
p
d

�p
log.1=ı/C 1

�l�1�
1C log.1=ı/d�1=2

�
�

lY
iD1

iY
jD1

�
1C ı�1=2d

�1=2
j

�ki�j
; (5.1)

where we recall that k is a fixed positive integer such that

j� 0.x/j � C� .1C jxj
k�1/:

(2) Let ¹�d ºd2NC �RC be an increasing sequence such that �d !1 as d!1.
Then there exists ¹sd ºd2NC � RC, such that sd � �d and the following limits
hold:

p-limd!1

kx � xsk2

kxk2
D 0; lim

d!1
P
�
sign.f .x// ¤ sign.f .xs//

�
D 1:

Remark 5.1. The proof of Theorem 5.1 applies without changes to neural networks
which have different activation functions at different layers, provided they satisfy the
assumptions as stated. We refrain from stating such a generalization to avoid cumber-
some notations.

Remark 5.2. The bound on the perturbation size in equation (5.1) deteriorates when
the depth l becomes exponentially large in the input dimension d . A similar behavior
is observed in [2] which also provides an example of a random network with expo-
nential depth for which the output is nearly constant, and in particular is immune to
FGSM attacks.

For general random networks, the example of [2] implies that subexponential
depth is a required assumption. On the other hand, the example of [2] is special in
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that the network is non-balanced: it takes the same sign for any input. As we pointed
out in the introduction, if the output takes each sign on a fraction of the inputs with
measure bounded away from zero (it is ‘balanced’), then it must have adversarial
examples by isoperimetry.

On the other hand, it is unclear whether subexponential depth is necessary for
FGSM attacks to be successful on random networks, after balancing. As the depth
increases, the random function x 7! f .x/ becomes ‘rougher,’ as it can be seen by
computing its covariance function. While such a function will contain adversarial
examples, it is likely to be more difficult to find them by a single gradient step as in
FGSM. (Of course a special case is the one of linear activations: in that case depth is
irrelevant.)

6. Proof of Theorem 5.1

Proof of the first claim. For m 2 Œl �, we define

�m WD D
m
�W

|

mC1D
mC1
� � � �W

|

l
Dl
�W

|

lC1
2 Rdm and ym WD W

|
m�m 2 Rdm�1 :

The following lemma shows that the normalized Euclidean norms of �m;ym;hm;gm
converge in probability to some deterministic constants as d !1. Furthermore, such
constants are independent of the choice of ¹sd ºd2NC .

Lemma 6.1. Under the conditions of Theorem 5.1, the following sequences of ran-
dom variables converge in probability to strictly positive constants as d !1:

(1) ¹khmk22=dmºd�1 for all 1 � m � l .

(2) ¹kgmk
2
2=dmºd�1 for all 1 � m � l .

(3) ¹k�mk
2
2ºd�1 for all 1 � m � l .

(4) ¹kymk
2
2ºd�1 for all 1 � m � l .

Furthermore,

(5) h|

m�1W
|
m�m D OP .1/ for all 1 � m � l .

Remark 6.1. The above sequences of random variables are independent of the choice
of ¹sd ºd2NC .

The proof of Lemma 6.1 is deferred to Section A.5. As in the two-layers case, in
the next lemma we provide a finite sample upper bound on the Euclidean norm of the
gradient rf .x/.

Lemma 6.2. Under the conditions of Theorem 5.1, there exists a constant Q > 0,
which is a function of .�; l/ only, such that for any ı > 0, with probability at least 1� ı,
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we have

krf .x/k2 � Q
�p

log.1=ı/C 1
�l�1�

1C log.1=ı/d�1=2
�

�

lY
iD1

iY
jD1

�
1C ı�1=2d

�1=2
j

�ki�j
:

The proof of Lemma 6.2 is deferred to Section A.6. Recall that kxk2 D
p
d , thus

the first claim of the theorem is just a straightforward consequence of Lemma 6.2.

Proof of the second claim. Our proof of the second claim proceeds by induction.
Before stating our induction hypothesis, we analyze the first layer to gain some intu-
ition.

We define

gs1 WD W 1x
s
D g1 � �sdW 1W

|

1�1;

F1 WD �¹g1;�1; ¹W iº2�i�lC1;xº:

Notice that g1, gs1 can be regarded as the outputs of the first layer with the inputs
being x and xs , respectively.

Since W 1 has i.i.d. Gaussian entries, and F1 depends on W 1 only through g1 D
W 1x. Invoking Lemma 3.1, we can write

W 1 D g1x
|=d C zW 1…

?
x ;

where zW 1 has the same marginal distribution as W 1 and is independent of F1. Then
we have

gs1 D g1.1 � �sdg
|

1�1=d/ � �sd
zW 1…

?
x
zW

|

1�1:

Furthermore, using the property of Gaussian distribution, we have

zW 1…
?
x
zW

|

1 D
xW 1
xW

|

1;

where xW 1 2 Rd1�.d�1/ is a matrix that has i.i.d. Gaussian entries with mean zero
and variance 1=d that is further independent of F1. By Lemma 3.1, xW 1 admits the
decomposition

xW 1D…
?
�1
W 01 C…�1

xW 1;

where W 01 has the same marginal distribution with xW 1 and is further independent
of �¹F1; xW

|

1�1º. Therefore,

gs1 D g1.1 � �sdg
|

1�1=d/

� �sd
k xW

|

1�1k
2
2 � h.W

0
1/

|�1;
xW

|

1�1i

k�1k
2
2

�1 � �sdW
0
1
xW

|

1�1

D .1 � �1/g1 � ˇ1�1 � 
1u1;
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where
u1 WD

p
d�W 01

xW
|

1�1=k
xW

|

1�1k2:

Note that � 2 F1, and W 01 is independent of �¹F1; xW
|

1�1º. We hence obtain that
u1 � N.0; Id1/, and is independent of �¹ xW

|

1�1;F1º. In the equation above, we have

�1 WD
1

d
�sdg

|

1�1; ˇ1 WD �sd
k xW

|

1�1k
2
2 � h.W

0
1/

|�1;
xW

|

1�1i

k�1k
2
2

;


1 WD
sd
p
d
k xW

|

1�1k2:

We define the sigma algebra G1 WD �¹�1; g1; ˇ1; �1; 
1; u1; x; g2; ¹W iº3�i�lC1º.
Note that G1 depends on W 2 only through g2 D W 2h1 and y2 D W

|

2�2. In the
following parts of the proof, we will assume sd ! S0 for some positive constant S0.
Under such choice of sd , we can prove the following two lemmas.

Lemma 6.3. Under the assumptions of Theorem 5.1, if we further assume that sd!S0

for some positive constant S0, then as d !1, we have �1 D oP .1/, ˇ1 D OP .1/,

1 D oP .1/.

Lemma 6.4. Under the assumptions of Theorem 5.1, if we further assume that sd!S0

for some positive constant S0, then the following limits hold as d !1:

1

d1
k…?h1�.g

s
1/k

2
2

P
! 0;

hh1; �.g
s
1/i

kh1k
2
2

P
! 1:

The proofs of Lemmas 6.3 and 6.4 are deferred to Appendices A.7 and A.8,
respectively.

For 2� i � l , we define gsi WDW i�.g
s
i�1/ 2Rdi as the output of an intermediate

layer of the neural network with the input being the adversarial example. In summary,
we have shown Hm holds for m D 1 with Hm stated below. Next, we proceed by
induction and show that Hm holds for all m 2 Œl �.

Hm. We make five claims.

(i) There exists um � N.0; Idm/, that is independent of

Fm WD �¹gm;�m; ¹W iºmC1�i�lC1;hm�1º;

such that
gsm D .1 � �m/gm � ˇm�m � 
mum:

(ii) Let

Gm WD �¹�m;gm; ˇm;�m; 
m;um;hm�1;gmC1; ¹W iºmC2�i�lC1º:

Then Gm depends on W mC1 only through gmC1 D W mC1hm and ymC1 D
W

|

mC1�mC1. In particular, Gm ? …
?
�mC1

W mC1…
?
hm

.
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(iii) For .�m; ˇm; 
m/ in (i), the following results hold: �m D oP .1/, ˇm D
OP .1/, 
m D oP .1/.

(iv) As d !1, k…?
hm
�.gsm/k

2
2=dm

P
! 0 and hhm; �.gsm/i=khmk

2
2

P
! 1.

(v) There exists a random variable Rm and a positive constant ˛m, whose distri-
bution and value depend only on .�;m; l/. In particular, they are independent
of the input dimension and the number of neurons. Furthermore, they satisfy
ˇm � ˛mˇm�1 CRm C oP .1/.

Note that claim (v) does not apply for the base case m D 1. Next, we will show that
if Hm holds for all m � l � 1, then this further implies that HmC1 holds.

Proofs of HmC1 claims (i) and (ii). By Hm claim (i), we have

gsmC1 D W mC1�.g
s
m/

D W mC1�..1 � �m/gm � ˇmD
m
�W

|

mC1�mC1 � 
mum/: (6.1)

From Hm claim (ii), we see that Gm depends onW mC1 only through

gmC1 D W mC1hm and ymC1 D W
|

mC1�mC1;

hm is independent ofW mC1, and �mC1 depends onW mC1 only through

gmC1 D W mC1hm:

Therefore, invoking Lemma 3.1, we find that exists zW mC1 that has the same marginal
distribution asW mC1 and is independent of Gm, such that

W mC1 D
gmC1h

|
m

khmk
2
2

C…?�mC1
QW mC1…

?
hm
C
�mC1y

|

mC1…
?
hm

k�mC1k
2
2

; (6.2)

Next, we substitute equation (6.2) into equation (6.1), which leads to the following
equality

gsmC1 D
hhm; �.g

s
m/i

khmk
2
2

gmC1

C
�

|

mC1W mC1…
?
hm
�.gsm/ � �

|

mC1
zW mC1…

?
hm
�.gsm/

k�mC1k
2
2

�mC1

C zW mC1…
?
hm
�.gsm/

D .1 � �mC1/gmC1 � ˇmC1�mC1 � 
mC1umC1;

where
umC1 WD �

p
dm zW mC1…

?
hm
�.gsm/k…

?
hm
�.gsm/k

�1
2 :
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Since zW mC1 is independent of Gm, and …?
hm
�.gsm/ 2 Gm, we then conclude that

umC1 � N.0;IdmC1/, and umC1 is independent of Gm. Since hm D �.gm/ and �mC1
is a function of gmC1 and ¹W iºmC2�i�lC1, we obtain that

FmC1 � Gm and umC1 ? FmC1:

Thus, we have completed the proof of HmC1 claim (i). Furthermore,

.�mC1; ˇmC1; 
mC1/

can be expressed as follows:

�mC1 D 1 �
hhm; �.g

s
m/i

khmk
2
2

;

ˇmC1 D
��

|

mC1W mC1…
?
hm
�.gsm/C �

|

mC1
zW mC1…

?
hm
�.gsm/

k�mC1k
2
2

;


mC1 D
1
p
dm
k…?hm�.g

s
m/k2: (6.3)

Notice that GmC1 depends onW mC2 only through

gmC2 D W mC2hmC1 and ymC2 D W
|

mC2�mC2;

thus proving HmC1 claim (ii).

Proofs of HmC1 claims (iii) and (v). The following lemma is a direct consequence of
the induction hypothesis.

Lemma 6.5. Under the assumptions of Theorem 5.1, if we further assume that sd!S0
for some positive constant S0, and Hm holds, then�mC1D oP .1/ and 
mC1D oP .1/.

The proof of Lemma 6.5 is deferred to Section A.9. We define the random object

VmC1 WD .gm;D
m
� ;hm;hm�1;�mC1;um;W m/:

Note that VmC1 depends on W mC1 only through gmC1 D W mC1hm. Since hm
is independent ofW mC1, by Lemma 3.1, we can write

W mC1 D
xW mC1…

?
hm
CW mC1…hm ;

where xW mC1 2 Rdm�dmC1 has the same marginal distribution with W mC1, and is
independent of VmC1. Next we prove that ˇmC1 D OP .1/.
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We consider the first term in the enumerator of the definition of ˇmC1 in equa-
tion (6.3), and substitute in the decompositions we just obtained, which gives

h…?hmW
|

mC1�mC1; �.g
s
m/i

D h…?hmW
|

mC1�mC1; �..1 � �m/gm � ˇmD
m
�…
?
hm
W

|

mC1�mC1

� ˇmD
m
�…hmW

|

mC1�mC1 � 
mum/i

D h…?hm
xW

|

mC1�mC1; �..1 � �m/gm � ˇmD
m
�…
?
hm
xW

|

mC1�mC1

� ˇmD
m
�…hmW

|

mC1�mC1 � 
mum/i

D h xW
|

mC1�mC1; �..1 � �m/gm � ˇmD
m
�
xW

|

mC1�mC1

� ˇmımC1D
m
� hm � 
mum/i

� hhm; �.g
s
m/ihhm;

xW
|

mC1�mC1i=khmk
2
2; (6.4)

where
ımC1 WD

1

khmk
2
2

.h
|
mW

|

mC1�mC1 � h
|
m
xW

|

mC1�mC1/:

Lemma 6.1 together with the fact that xW mC1 is independent of .hm; �mC1/ implies
that ımC1 D OP .d�1m /.

From Hm claim (iv), we see that as d !1, hhm; �.gsm/i=khmk
2
2

P
! 1. Further-

more, since xW mC1 ? VmC1, then conditioning on .hm;�mC1/, we have

hhm; xW
|

mC1�mC1i
d
D N.0; khmk22k�mC1k

2
2=dm/:

Putting together these results and Lemma 6.1, we conclude that

hhm; xW
|

mC1�mC1i
d
�! N.0;H 2

mE
2
mC1/;

whereHm WD p-limkhmk2=
p
dm andEmC1 WD p-limk�mC1k2. In summary, we have

hhm; �.g
s
m/i

khmk
2
2

hhm; xW
|

mC1�mC1i
d
�! N.0;H 2

mE
2
mC1/: (6.5)

Thus, the second term in the last line of equation (6.4) is OP .1/.
Next, we consider the first term in the last line of equation (6.4). Conditioning on

hm�1, we have gm D zm�m, where

�m WD

q
khm�1k

2
2=dm�1; zm D �

�1
m W mhm�1 2 Rdm :

Since W m is independent of hm�1, we can conclude that zm � N.0; Idm/ and is
independent of hm�1. By Hm claim (i), um is independent of gm and hm�1. There-
fore, um is further independent of .zm; hm�1/. Then since xW mC1 is independent
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of .gm;hm�1;um;�mC1/, we can write

xW
|

mC1�mC1 D x
mC1xumC1=
p
dm;

where xumC1 � N.0; Idm/, is independent of .zm;um;hm�1/ and x
mC1 D k�mC1k2.
In summary, we have

zm;um; xumC1
i:i:d:
� N.0; Idm/; .zm;um; xumC1/ ? hm�1: (6.6)

For � 2 R6, we define

h
.mC1/
�

.xu; z; u/ WD �1xu�
�
.1 � �2/�3z � �4�

0.�3z/�1xu � �5�
0.�3z/�.�3z/ � �6u

�
;

xh
.mC1/
�

.xu; z; u/ WD �1xu�
�
.1 � �2/�3z � �4�

0.Hm�1z/�1xu

� �5�
0.Hm�1z/�.�3z/ � �6u

�
;

where Hm�1 D p-lim
q
khm�1k

2
2=dm�1. We further define the empirical processes

evaluated at � as

G.mC1/

d
.�/ WD

1
p
dm

dmX
iD1

�
h
.mC1/
�

.xumC1;i ; zm;i ; um;i /

� E
�
h
.mC1/
�

.xumC1;i ; zm;i ; um;i /
��
;

xG.mC1/

d
.�/ WD

1
p
dm

dmX
iD1

�
xh
.mC1/
�

.xumC1;i ; zm;i ; um;i /

� E
�
xh
.mC1/
�

.xumC1;i ; zm;i ; um;i /
��
;

where the expectations are taken over ¹.xumC1;i ; zm;i ; um;i /ºi�dm
i:i:d:
� N.0; I3/. Here,

xumC1;i is the i -th coordinate of xumC1, zm;i is the i -th coordinate of zm, and um;i is the
i -th coordinate of um. For �; x� 2 R6, we define the covariance function xc .mC1/.�; x�/
as

xc .mC1/.�; x�/ WD E
�
xh
.mC1/
�

.xu; z; u/xh
.mC1/
x�

.xu; z; u/
�

� E
�
xh
.mC1/
�

.xu; z; u/
�
E
�
xh
.mC1/
x�

.xu; z; u/
�
; (6.7)

where the expectations are taken over .xu; z; u/ � N.0; I3/. Since � 0 is almost every-
where continuous, and by assumption almost everywhere we have

j� 0.x/j � C� .1C jxj
k�1/;

then standard application of the dominated convergence theorem shows that the co-
variance function xc .mC1/.�; �/ is continuous. Recall that

Hm�1 D p-lim
q
khm�1k

2
2=dm�1 D p-lim�m:
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Furthermore, we defineEmC1 WD p-limk�mC1k2D p-limx
mC1. The following lemma
establishes a weak convergence result for xG.mC1/

d
.

Lemma 6.6. Let �mC1 WD ¹x 2 R6 W kxk1 � Hm�1 C EmC1º, and C.�mC1/ be
the space of continuous functions on�mC1 endowed with the supremum norm. Under
the conditions of Theorem 5.1, if we further assume that there exists S0 > 0 such
that sd ! S0 as d ! 1, and induction hypothesis Hm holds, then ¹ xG.mC1/

d
ºd�1

converges weakly in C.�mC1/ to xG.mC1/ as d !1, which is a Gaussian process
with mean zero and covariance defined in equation (6.7).

The proof of Lemma 6.6 is deferred to Section A.10.

Lemma 6.7. Under the conditions of Theorem 5.1, if we further assume that there
exists S0 > 0 such that sd ! S0 as d !1, and induction hypothesis Hm holds, then
as d !1, we have

G.mC1/

d
.x
mC1; �m; �m; ˇm=

p
dm; ˇmımC1; 
m/

D xG.mC1/

d
.x
mC1; �m; �m; ˇm=

p
dm; ˇmımC1; 
m/C oP .1/:

The proof of Lemma 6.7 is deferred to Section A.11. Next, we will apply Lem-
mas 6.6 and 6.7 to show that ˇmC1 DOP .1/ (thus HmC1 claim (iii) holds) and HmC1

claim (v). Note that

h xW
|

mC1�mC1; �..1 � �m/gm � ˇmD
m
�
xW

|

mC1�mC1 � ˇmımC1D
m
� hm � 
mum/i

D
1
p
dm

dmX
iD1

x
mC1xumC1;i � �
�
.1 � �m/�mzm;i � d

�1=2
m ˇmx
mC1�

0.�mzm;i /xumC1;i

� ˇmımC1�
0.�mzm;i /�.�mzm;i / � 
mum;i

�
(a)
D G.mC1/

d
.x
mC1; �m; �m; ˇm=

p
dm; ˇmımC1; 
m/

� ˇmx

2
mC1E

�
� 0.�mz/�

0
�
.1 � �m/�mz � d

�1=2
m ˇmx
mC1�

0.�mz/xu

� ˇmımC1�
0.�mz/�.�mz/ � 
mu

��
; (6.8)

where the expectation is taken over .z; u; xu/ � N.0; I3/. In step (a) we apply Stein’s
lemma to derive the equality. By Hm claim (iii), we have

�m D oP .1/; ˇm=
p
dm D oP .1/; 
m D oP .1/:

Recall that we have shown ımC1DOP .d�1m /, thus ˇmımC1D oP .1/. By Lemma 6.1,
we have

�m D Hm�1 C oP .1/; x
mC1 D EmC1 C oP .1/:
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Therefore, combining Lemmas 6.6 and 6.7, we conclude that for any � > 0,ˇ̌
G.mC1/

d
.x
mC1; �m; �m; ˇm=

p
dm; ˇmımC1; 
m/

ˇ̌
� sup
�2A

.mC1/
�

j xG.mC1/

d
j C oP .1/;

where

A.mC1/� WD
®
� 2 R6 W j�1 �EmC1j � �; j�2j � �;

j�3 �Hm�1j � �; j�4j � �; j�5j � �; j�6j � �
¯
:

Furthermore, invoking the dominated convergence theorem, we see that as d !1,

x
2mC1E
�
� 0.�mz/�

0
�
.1 � �m/�mz � d

�1=2
m ˇmx
mC1�

0.�mz/xu

� ˇmımC1�
0.�mz/�.�mz/ � 
mu

��
D E2mC1E

�
� 0.Hm�1zm/

2
�
C oP .1/: (6.9)

We defineM .mC1/
� .G/ WD sup

�2A
.mC1/
�

jG.�/j, thenM .mC1/
� is a continuous function

with respect to the supremum norm `1.�mC1/. Using Lemma 6.6 together with the
continuous mapping theorem, we see thatM .mC1/

� .xG.mC1/

d
/ converges in distribution

toM .mC1/
� .xG.mC1//. Notice that if we let � D 1, then EmC1,Hm�1, xc .mC1/, A.mC1/1

depend only on .l;mC 1; �/, thus the distribution of M .mC1/
1 .xG.mC1// also depends

uniquely on .l; m C 1; �/. By Hm claim (iii), we have ˇm D OP .1/. Putting this
together with equations (6.8) and (6.9), we obtain that there exists a random variable
R
.1/
mC1, the distribution of which depends only on .l;mC 1; �/, such that as d !1,ˇ̌˝
xW

|

mC1�mC1; �
�
.1 � �m/gm � ˇmD

m
�
xW

|

mC1�mC1 � ˇmımC1D
m
� hm � 
mum

�˛
C ˇmE

2
mC1E

�
� 0.Hm�1zm/

2
�ˇ̌

� R
.1/
mC1 C oP .1/: (6.10)

Finally, we consider the second term in the enumerator of the definition of ˇmC1 given
in equation (6.3). Conditioning on .�mC1;…

?
hm
�.gsm//,

�
|

mC1
zW mC1…

?
hm
�.gsm/

d
D N

�
0; k�mC1k

2
2k…

?
hm
�.gsm/k

2
2=dm

�
; (6.11)

which is oP .1/ by Lemma 6.1 and Hm claim (iv). Note that

k�mC1k
�2
2 D E

�2
mC1 C oP .1/:

Taking this collectively with equations (6.3)–(6.5), (6.10), (6.11), we obtain that

ˇmC1 D OP .1/:
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Furthermore, there exists a random variable RmC1 and a positive number ˛mC1, the
distribution (and the value) of which is a function of .�;mC 1; l/ only, such that

ˇmC1 � ˇm˛mC1 CRmC1 C oP .1/:

This completes the proof of HmC1 claims (iii), (v).

Proof of HmC1 claim (iv). Finally, we prove HmC1 claim (iv), which is achieved by
the following lemma.

Lemma 6.8. Under the assumptions of Theorem 5.1, if we further assume that sd!S0
for some positive constant S0, Hm holds, and claims (i), (ii), (iii), (v) from HmC1

hold, then as d !1 we have the following convergences:

1

dmC1
k…?hmC1�.g

s
mC1/k

2
2

P
! 0;

hhmC1; �.g
s
mC1/i

khmC1k
2
2

P
! 1:

The proof of Lemma 6.8 is deferred to Section A.12. We note that HmC1 claim (iv)
is a direct consequence of Lemma 6.8. By induction, we have completed the proof
of Hi for all i 2 Œl �.

Back to the proof of the theorem. Next, we will apply results from Hl to prove The-
orem 5.1. By Hl claim (i),

gsl D .1 � �l/gl � ˇlD
l
�W

|

lC1
� 
lul ;

Using our modeling assumption and Hl claim (i), we obtain that .gl ;D
l
� ;ul/ is inde-

pendent ofW lC1. By Hl claim (iii), we have

�l D oP .1/; ˇl=
p
dl D oP .1/; 
l D oP .1/:

We define �l WD ˇl=
p
dl , Fl WRdl !R, such that Fl.y/ WD

Pdl
iD1WlC1;i�.yi /. Then

we have

Fl.g
s
l / � Fl.gl/

D

dlX
iD1

WlC1;i
�
�..1 � �l/gl;i � �l�

0.gl;i /
p
dlWlC1;i � 
lul;i / � �.gl;i /

�
:

Let zi WD
p
dlWlC1;i , then ¹ziºi2Œdl �

i:i:d:
� N.0; 1/. We define gl D �lzl , where

�l WD

q
khl�1k

2
2=dl�1;

zl D �
�1
l
W lhl�1. Since W l is independent of hl�1, we have zl � N.0; Idl / and is

independent of hl�1. Since W lC1 is independent of .gl ;hl�1/, we conclude that it
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is also independent of .zl ;hl�1/. By Hl claim (i), we know that ul is independent of
.gl ;hl�1;W lC1/, thus we obtain that ul ;

p
dlW lC1; zl

i:i:d:
� N.0; Idl /. Furthermore,

.ul ;
p
dlW lC1; zl/ is independent of hl�1.

By Lemma 6.1, �l converges in probability to a positive constantHl�1. For �2R4,
we define

h
.lC1/
�

.z; zl ; ul/ WD z
�
�..1 � �1/�2zl � �3�

0.�2zl/z � �4u/ � �.�2zl/
�
;

xh
.lC1/
�

.z; zl ; ul/ WD z
�
�..1 � �1/�2zl � �3�

0.Hl�1zl/z � �4u/ � �.�2zl/
�
:

For � 2 R4, we define the empirical processes G.lC1/

d
; xG.lC1/

d
indexed by � as

G.lC1/

d
.�/ WD

1
p
dl

dlX
iD1

�
h�.zi ; zl;i ; ul;i / � E

�
h�.zi ; zl;i ; ul;i /

��
;

xG.lC1/

d
.�/ WD

1
p
dl

dlX
iD1

�
xh�.zi ; zl;i ; ul;i / � E

�
xh�.zi ; zl;i ; ul;i /

��
;

where the expectations are taken over ¹.zi ; zl;i ;ul;i /ºi2Œdl �
i:i:d:
� N.0;I3/. For �; x� 2R4,

we define the covariance function xc .lC1/.�; x�/ as

xc .lC1/.�; x�/ WD E
�
xh�.z; zl ; ul/xhx�.z; zl ; ul/

�
� E

�
xh�.z; zl ; ul/

�
E
�
xhx�.z; zl ; ul/

�
;

where the expectations are taken over .z; zl ; ul/
i:i:d:
� N.0; 1/. Using the assumptions

imposed on �;� 0, we can apply the dominated convergence theorem and conclude that
xc .lC1/.�; �/ is a continuous function. We denote by xG.lC1/ the Gaussian process with
mean zero and covariance function xc .lC1/. We define

�lC1 WD ¹x 2 R4 W kxk1 � 2Hl�1º:

Similar to the proof of Lemma 6.6, we can prove that equipped with the supremum
norm `1.�lC1/, ¹ xG

.lC1/

d
ºd�1 converges weakly in C.�lC1/ to xG.lC1/. We skip the

detailed proof here for the sake of compactness. For �; x� 2 �lC1, we define

�.�; x�/ WD E
�
.xG.lC1/.�/ � xG.lC1/.x�//2

�1=2
:

Then again by [25, Lemma 18.15], we can and will assume that xG.lC1/ almost surely
has �-continuous sample path.

For Hl�1 > � > 0, we let

B� WD ¹x 2 R4 W jx1j < �; jx2 �Hl�1j < �; jx3j < �; jx4j < �º;

S .lC1/� .G/ WD sup
�2B�

jG.�/j:
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Note that S .lC1/� is continuous with respect to `1.�lC1/, thus

S .lC1/� .xG.lC1/

d
/
d
�! S .lC1/� .xG.lC1//:

Recall that we have proved

�l D oP .1/; �l D Hl�1 C oP .1/; �l D OP .d
�1=2

l
/;


l D oP .1/; zi D
p
dlWlC1;i :

Therefore,ˇ̌
Fl.g

s
l / � Fl.gl/C

p
dl�lE

�
� 0.�lzl/�

0..1 � �l/�lzl � �l�
0.�lzl/z � 
lul/

�ˇ̌
(i)
D

ˇ̌̌̌
1
p
dl

dlX
iD1

zi
�
�..1 � �l/�lzl;i � �l�

0.�lzl;i /zi � 
lul;i / � �.�lzl;i /
�

�

p
dlE

�
z
�
�..1 � �l/�lzl � �l�

0.�lzl/z � 
lul/ � �.�lzl/
��ˇ̌̌̌

D

ˇ̌̌̌
1
p
dl

dlX
iD1

�
h.�l ;�l ;�l ;
l /.zi ; zl;i ; ul;i / � E

�
h.�l ;�l ;�l ;
l /.z; zl ; ul/

��ˇ̌̌̌
(ii)
� S .lC1/� .xG.lC1/

d
/C ı�.d/;

where ı�.d/
P
! 0 as d !1. In the above equations, the expectations are taken over

¹zi ; zl;i ; ul;i ; z; zl ; ulºi2Œdl �
i:i:d:
� N.0; 1/, (i) is by Stein’s lemma, and (ii) is by an

argument that is similar to the proof of Lemma 6.7. More precisely, we show that as
d !1

G.lC1/

d
..�l ; �l ; �l ; 
l// D xG

.lC1/

d
..�l ; �l ; �l ; 
l//C oP .1/:

We ignore the proof of this part for the sake of simplicity, as it is basically the same
as the proof of Lemma 6.7.

Since xG.lC1/ has �-continuous sample path, one can verify that

S .lC1/� .xG.lC1//
P
! 0 as � ! 0C:

For any �0 > 0, we first choose � small enough, such that

P
�
S .lC1/� .xG.lC1// � �0=3

�
� �0=3:

Since S .lC1/� .xG.lC1/

d
/
d
�! S

.lC1/
� .xG.lC1//, and ı�.d/

P
! 0 as d ! 1, there exists

d�;�0 2 NC, such that for all d � d�;�0 ,

P
�
jı�.d/j � �

0=3
�
� �0=3
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and

P
�
jS .lC1/� .xG.lC1/

d
/j � �0=3

�
� P

�
jS .lC1/� .xG.lC1//j � �0=3

�
C �0=3:

Combining these results, we conclude that for all d � d�;�0 ,

P
�ˇ̌
Fl.g

s
l / � Fl.gl/

C

p
dl�lE

�
� 0.�lzl/�

0..1 � �l/�lzl � �l�
0.�lzl/z � 
lul/

�ˇ̌
� �0

�
� �0;

Application of the dominated convergence theorem shows that

E
�
� 0.�lzl/�

0..1 � �l/�lzl � ˛l�
0.�lzl/z � 
lul/

�
D E

�
� 0.Hl�1z/

2
�
C oP .1/

as d !1. Recall that we have proved ˇl D OP .1/, thus

f .xs/ � f .x/ D Fl.g
s
l / � Fl.gl/ D �ˇlE

�
� 0.Hl�1z/

2
�
C oP .1/:

Since � is not a constant function, � 0 is almost everywhere continuous, andHl�1 > 0,
we then have EŒ� 0.Hl�1z/

2� > 0. Recall that we have shown that there exist random
variables ¹Rmº2�m�l , the distributions of which depend uniquely on .�; Œl �/. In addi-
tion, we have shown that there exist positive constants ¹˛mº2�m�l , with the values of
which depend uniquely on .�; Œl �/, such that

ˇm � ˛mˇm�1 CRm C oP .1/:

Furthermore, using the law of large numbers, we have ˇ1 D �S0 C oP .1/. By Lem-
ma 6.1,Fl.gl/ converges in distribution to a Gaussian distribution with mean zero and
variance depending only on .�; l/ (especially, independent of ¹sd ºd2NC). Therefore,
we deduce that

lim
S0!1

lim inf
d!1

P
�
sign.f .x// ¤ sign.f .xs//

�
D 1:

Finally, we prove Theorem 5.1 via a standard diagonal argument. Note that for all
n 2NC, there exists Sn0 > 0 and dn 2NC, such that if we set sd D Sn0 for all d 2NC,
then for all d � dn,

P
�
sign.f .xs// ¤ sign.f .x//

�
� 1 � n�1:

Without loss of generality, we assume that dnC1 � dn, Sn0 =
p
dn < n

�1 and Sn0 < �dn .
Indeed, to achieve these conditions, we simply need to take dn large enough. Then we
set sd D Sn0 if and only if dn � d < dnC1. Under such choice of ¹sd ºd2NC , for all
dnC1 > d � dn, we have

sd
p
d
D

Sn0
p
d
�

Sn0
p
dn
�
1

n
; P

�
sign.f .xs// ¤ sign.f .x//

�
� 1 � n�1;

sd � �dn � �d :
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Note that n is arbitrary, thus by combining the above results with the first claim of the
theorem, we complete the proof of the second claim.

A. Proofs of the supporting lemmas

A.1. Proof of Lemma 3.1

We prove Lemma 3.1 in this section. Note that X D …A1X C…
?
A1
X . Let X 0 be an

independent copy of X that is independent of .A1;A2;X ;Z1;Z2/. We consider the
matrixX1 WD…

?
A1
X C…A1X

0. Conditioning on any value of .A1;A1X ;Z1;Z2/,
the conditional distribution of X1 is equal to the distribution of X . Therefore, we
conclude thatX1

d
D X andX1 is independent of .A1;A1X ;Z1;Z2/. Notice thatX

admits the decomposition

X D …A1X C…
?
A1
X…A2 C…

?
A1
X…?A2

D …A1X C…
?
A1
X…A2 C…

?
A1
X1…

?
A2
:

We let X 00 be an independent copy of X that is independent of .A1;A2;X ;X 0;
Z1;Z2/. Define

X2 D …
?
A1
X1…

?
A2
C…A1X

00
C…?A1X

00…A2 :

Using the distributional property of the Gaussian ensemble and the fact that X1 is
independent of .A1;A1X ;Z1;Z2/ (thus is independent of .A1;A2;A1X ;Z1;Z2/),
we can conclude that conditioning on any specific value of .A1;A2;A1X ;A1X1;

X1A2;Z1;Z2/, the conditional distribution of X2 is equal to the distribution of X .
Therefore, we deduce thatX2 ? .A1;A2;A1X ;A1X1;X1A2;Z1;Z2/. Notice that

XA2 D …A1XA2 C…
?
A1
XA2

D …A1XA2 CX1A2 �…A1X1A2;

thus X2 ? .A1X ;XA2;Z1/. Combining the above analysis, we obtain that

X D …A1X C…
?
A1
X…A2 C…

?
A1
X2…

?
A2
;

with X2 independent of Y . Thus, we have completed the proof of the lemma.

A.2. Proof of Lemma 3.2

Conditioning onW x, the following two matrices are equal in distribution:

W
d
D
1

d
W xx|

C zW…?x ;
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where zW is an independent copy of W which is independent of everything else,
…x 2 Rd�d is the projection operator projecting onto the linear subspace spanned
by x, and…?x WD Id �…x . Using this decomposition, we can express the distribution
of the gradient as

rf .x/
d
D …?x

zW
|
D�aC

1

d
xx|W |D�a:

By assumption, almost everywhere we have j� 0.x/j � C� .1 C jxjk�1/. Notice that
w

|

i x
i:i:d:
� N.0; 1/ for i 2 Œm�. Therefore, we can apply Chebyshev’s inequality and

conclude that there exists a constant C1 > 0 which depends only on � , such that with
probability at least 1 � ı=4,ˇ̌̌̌

1

m

mX
iD1

.w
|

i x/
2� 0.w

|

i x/
2
� E

�
G2� 0.G/2

�ˇ̌̌̌
�

r
C1

mı
;

where G � N.0; 1/. Conditioning on g D W x, we have

x|W |D�a
d
D N

�
0;

mX
iD1

.w
|

i x/
2� 0.w

|

i x/
2=m

�
;

then using Gaussian concentration, we conclude that there exists a numerical constant
C2 > 0, such that with probability at least 1 � ı=4,

jx|W |D�aj �

p
C2.log.1=ı/C 1/ �

1

m

mX
iD1

.w
|

i x/
2�.w

|

i x/
2:

Note that k…?x zW
|
D�ak

2
2 � k

zW
|
D�ak

2
2. Let z1; : : : ; zd

i:i:d:
� N.0; 1/, then

k zW
|
D�ak

2
2

d
D

� mX
iD1

� 0.w
|

i x/
2a2i

�
�

�
1

d

dX
jD1

z2j

�
:

Using Bernstein’s inequality, with probability at least 1 � ı=4,ˇ̌̌̌
1

d

dX
jD1

z2j � 1

ˇ̌̌̌
� C3.log.1=ı/C 1/=

p
d

for some absolute constant C3. Again by Chebyshev’s inequality, with probability at
least 1 � ı=4, ˇ̌̌̌ mX

iD1

� 0.w
|

i x/
2a2i � E

�
� 0.G1/

2G22
�ˇ̌̌̌
�
p
C4=mı;
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where G1; G2
i:i:d:
� N.0; 1/ and C4 > 0 is a constant depending only on � . Then we

combine the above results, and conclude that there exists C > 0 that depends only
on � , such that with probability at least 1 � ı,

krf .x/k2 � C
�
1C d�1=2 log.1=ı/C .mı/�1=2 C .mdı/�1=2 log.1=ı/

�
;

thus concluding the proof of the lemma.

A.3. Proof of Lemma 3.3

By assumption, almost everywhere we have j� 0.x/j � C� .1C jxjk�1/. Let g1 be the
first coordinate of g, then EŒ� 0.g1/2g21� <1. By the law of large numbers,

kg|D�k
2
2=m D EŒg21�

0.g1/
2�C oP .1/:

Conditioning on g|D� , we have

g|D�a
d
D N.0; kg|D�k

2
2=m/;

thereby g|D�a D OP .1/. By assumption we have sd ! S0, then we can conclude
that �sdg|D�a=d D oP .1/. This proves � D oP .1/.

Similarly, we apply the law of large numbers, and obtain that

kD�ak2 D EŒ� 0.g1/
2�1=2 C oP .1/:

By assumption, � is not a constant function and � 0 is almost everywhere continuous,
thus we have EŒ� 0.g1/2� > 0. Given D�a, the conditional distributions of xW

|
D�a

and xW
|

cD�a are both N.0; IdkD�ak
2
2=d/, thus by the law of large numbers and

Cauchy–Schwarz inequality, we can conclude that

k xW
|
D�ak

2
2 D OP .1/; h

xW
|

cD�a; xW
|
D�ai D OP .1/:

Combining the equations above gives ˇ D oP .1/ and 
 D oP .1/ as m; d !1.

A.4. Proof of Lemma 3.4

By our assumptions imposed on � , we see that there exists a deterministic constant
C0 >0, which is a function of the activation function � only, such that for all �; x� 2�,

jh�.b; g; u/ � hx�.b; g; u/j � C0k� �
x�k2jbj

q
g2 C b2 C b2g2k C u2

�
�
1C jgjk C jbjk C jbjkjgjk

2

C jujk
�
:
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We define

m.b;g;u/ WDC0jbj

q
g2 C b2 C b2g2k C u2�

�
1C jgjk C jbjk C jbjkjgjk

2

C jujk
�
:

One can verify that kmk22 WD EŒm.b;g;u/2� <1, where the expectation is taken over
b; g; u

i:i:d:
� N.0; 1/.

Let F WD ¹h� W � 2�º. For the sake of completeness, we reproduce the definition
of bracketing number introduced in [25]. Given two functions e1; e2WR3 ! R, we
define the bracket Œe1; e2� as the set of all functions h such that e1.z/ � hz � e2.z/
for all z 2 �. An �-bracket in L2 is a bracket Œe1; e2� such that

EŒ.e1.b; g; u/ � e2.b; g; u//
2�1=2 < �;

where again the expectation is taken over b; g; u i:i:d:
� N.0; 1/. The bracketing number

NŒ �.�;F ; L2/ is the minimum number of �-brackets needed to cover F . We define
the bracketing integral as

JŒ �.ı;F ; L2/ D

Z ı

0

q
logNŒ �.�;F ; L2/ d�:

The following lemma is from [25, Theorem 19.5].

Lemma A.1. If JŒ �.1;F ; L2/ <1, then Gm converges weakly in C.�/ to G.

By Lemma A.1, to prove the theorem, we only need to show that the bracketing
integral is finite. By [25, Example 19.7], there exists a numerical constantK > 0, such
that

NŒ �.�kmk2;F ; L2/ � K�
�3:

It is not hard to see that there exists another constant K0 > 0, which depends only on
.K; kmk2/, such that

JŒ �.1;F ; L2/ � K0

Z 1

0

.log.1=�/C 1/1=2 d� � K0

Z 1

0

.��1 C 1/1=2 d� <1;

which concludes the proof of the lemma.

A.5. Proof of Lemma 6.1

Proof of claims (1) and (2). We first prove claims (1) and (2) via induction overm. For
the base case m D 1, the claims hold by the law of large numbers and the assumption
that � is not a constant function. Suppose the claims hold for 1 � m � m0, then we
prove it also holds for m D m0 C 1 by induction. Conditioning on hm0 , notice that

gm0C1
d
D

q
khm0k

2
2=dm0z;
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where z � N.0; Idm0C1/ and is independent of hm0 . Therefore,

1

dm0C1
kgm0C1k

2
2

d
D

1

dm0
khm0k

2
2 �

1

dm0C1
kzm0C1k

2
2;

which converges to some positive deterministic constant by the law of large numbers
and induction hypothesis. Similarly, conditioning on hm0 , we have

1

dm0C1
khm0C1k

2
2

d
D

1

dm0C1

dm0C1X
iD1

�
�
.khm0k

2
2=dm0/

1=2zi
�2
;

where zi is the i -th entry of z. By our induction hypothesis, khm0k
2
2=dm0 converges

in probability to some constant Hm0 > 0. Since almost everywhere

j� 0.x/j � C� .1C jxj
k�1/

and � is continuous, we can conclude that

1

dm0C1

dm0C1X
iD1

�
�
.khm0k

2
2=dm0/

1=2zi
�2
D

1

dm0C1

dm0C1X
iD1

�.H 1=2
m0
zi /

2
C oP .1/;

which further converges in probability to some positive constant by the law of large
numbers and the non-degeneracy assumption on � . Thus, we have completed the
proof of the first two claims by induction.

Proof of claims (3), (4) and (5). Then we prove claims (3), (4) and (5), again via
induction. We start with the base case m D l . Conditioning on hl�1,

k�lk
2
2

d
D

1

dl

dlX
iD1

jz
.lC1/
i j

2� 0
�
.khl�1k

2
2=dl�1/

1=2z
.l/
i

�2
;

where z.l/;z.lC1/ i:i:d:
� N.0;Idl / and are independent of hl�1. Recall that almost every-

where we have j� 0.x/j � C� .1C jxjk�1/. By Chebyshev’s inequality and claim (1)
of Lemma 6.1,

1

dl

dlX
iD1

jz
.lC1/
i j

2� 0
�
.khl�1k

2
2=dl�1/

1=2z
.l/
i

�2
D Ez�N.0;1/

�
� 0
�
.khl�1k

2
2=dl�1/

1=2z
�2�
C oP .1/;

where the expectation on the right-hand side is taken over z � N.0; 1/. By claim (2),
there exists a constant Hl�1 > 0, such that

khl�1k
2
2=dl�1

P
! Hl�1:
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Since � 0 is almost everywhere continuous, and j� 0.x/j � C� .1 C jxjk�1/, we can
apply the dominated convergence theorem and conclude that as d !1,

Ez�N.0;1/
�
� 0
�
.khl�1k

2
2=dl�1/

1=2z
�2� P
! Ez�N.0;1/

�
� 0.H

1=2

l�1
z/2
�
:

In summary, we have

k�lk
2
2

P
! Ez�N.0;1/

�
� 0.H

1=2

l�1
z/2
�
;

thus completing the proof of claim (3) for the base case.
Then we consider h|

l�1
W

|

l
�l and the proof of claim (5). SinceW lC1 is indepen-

dent ofDl
�W lhl�1, conditioning onDl

�W lhl�1, we have

h
|

l�1
W

|

l
�l D hD

l
�W lhl�1;W

|

lC1
i
d
D N

�
0; kDl

�W lhl�1k
2
2=dl

�
:

Conditioning on hl�1, we have

1

dl
kDl

�W lhl�1k
2
2

d
D

1

dl

dlX
iD1

� 0
�
.khl�1k

2
2=dl�1/

1=2z
.l/
i

�2�
.khl�1k

2
2=dl�1/

1=2z
.l/
i

�2
;

which converges in probability to Ez�N.0;1/ŒHl�1�
0.H

1=2

l�1
z/2z2� as d !1, again

by Chebyshev’s inequality and the dominated convergence theorem. Therefore, as
d !1,

h
|

l�1
W

|

l
�l

d
�! N

�
0;Ez�N.0;1/

�
Hl�1�

0.H
1=2

l�1
z/2z2

��
;

which implies that h|

l�1
W

|

l
�l D OP .1/. We have completed the proof of claim (5)

for the base case.
As the last step towards proving the base case, we consider the Euclidean norm

of y l , i.e., claim (4). Notice that �l depends onW l only throughW lhl�1. Therefore,
conditioning onW lhl�1, we have

y l D W
|

l
�l

d
D …?hl�1

zW
|

lD
l
�W

|

lC1
C

hl�1

khl�1k
2
2

hW lhl�1;D
l
�W

|

lC1
i

D zW
|

lD
l
�W

|

lC1
C

hl�1

khl�1k
2
2

�
hW lhl�1;�li � h

zW lhl�1;�li
�
;

where zW l is an independent copy of W l and is independent of everything else. By
claim (2) of the lemma, the vector hl�1=khl�1k22 has Euclidean norm OP .d

�1=2

l�1
/.

Conditioning on .hl�1;�l/, we have

h zW lhl�1;�li
d
D N

�
0; k�lk

2
2khl�1k

2
2=dl�1

�
;
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which is OP .1/ as k�lk
2
2, khl�1k22=dl�1 are both OP .1/ by claim (1) and claim (3).

As proven above, we have

hW lhl�1;�li D OP .1/:

Finally, conditioning on �l D D
l
�W

|

lC1
, we have

k zW
|

lD
l
�W

|

lC1
k
2
2

d
D

dl�1X
iD1

z2i k�lk
2
2=dl�1;

where ¹ziºi2Œdl�1�
i:i:d:
� N.0; 1/. By the law of large numbers, k zW

|

lD
l
�W

|

lC1
k22 con-

verges in probability to the same limit of k�lk
2
2 as d !1. Combining the results

above, we can conclude that ky lk
2
2 converges in probability to a positive constant as

d !1, thus concluding the proof of claim (4) of the base case.
Suppose claims (3) to (5) hold for allm0C 1�m� l , then we prove that they also

hold for m D m0. First notice that .�m0C1;D
m0
� / depends on Wm0C1 only through

Wm0C1hm0 , thus conditioning on .Dm0
� ;�m0C1/, we have

�m0 D D
m0
� W

|

m0C1
�m0C1

d
D Dm0

�
zW

|

m0C1
�m0C1 C

h
|
m0W

|

m0C1
�m0C1 � h

|
m0
zW

|

m0C1
�m0C1

khm0k
2
2

Dm0
� hm0 ;

(A.1)

where zWm0C1 has the same marginal distribution as Wm0C1, and is independent of
everything else. By claim (1), khm0k

�2
2 D OP .d

�1
m0
/. By induction hypothesis,

h
|
m0W

|

m0C1
�m0C1 D OP .1/:

Conditioning on .hm0 ;�m0C1/, we have

h
|
m0
zW

|

m0C1
�m0C1

d
D N

�
0; khm0k

2
2k�m0C1k

2
2=dm0

�
;

which is OP .1/ by induction hypothesis and claim (1). Conditioning on hm0�1,

1

dm0
kDm0

� hm0k
2
2

d
D

1

dm0

dm0X
iD1

� 0
�
.khm0�1k

2
2=dm0�1/

1=2z
.m0/
i

�2
� �

�
.khm0�1k

2
2=dm0�1/

1=2z
.m0/
i

�2
;

where ¹z.m0/i ºi2Œdm0 �
i:i:d:
� N.0; 1/ and are independent of hm0�1. By claim (2) of the

lemma, there exists a constant Hm0�1 > 0, such that

khm0�1k
2
2=dm0�1

P
! Hm0�1:
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By the assumption that � 0 is almost everywhere continuous, and

j� 0.x/j � C� .1C jxj
k�1/;

we can apply Chebyshev’s inequality and dominated convergence theorem and con-
clude that kDm0

� hm0k
2
2=dm0 converges in probability to some constant. In summary,

the second term in equation (A.1) has Euclidean norm OP .d
�1=2
m0 /.

Then we consider the first term in equation (A.1). Notice that conditioning on
hm0�1, we have

kDm0
�
zW

|

m0C1
�m0C1k

2
2

d
D

1

dm0

dm0X
iD1

� 0
�
.khm0�1k

2
2=dm0�1/

1=2z
.m0/
i

�2
z2i k�m0C1k

2
2;

where z; z.m0/ i:i:d:
� N.0; Idm0 / and are independent of hm0�1. Again by Chebyshev’s

inequality and dominated convergence theorem, we have

1

dm0

dm0X
iD1

� 0
�
.khm0�1k

2
2=dm0�1/

1=2z
.m0/
i

�2
z2i

P
! Ez�N.0;1/

�
� 0.H

1=2
m0�1

z/2
�
:

By induction hypothesis, k�m0C1k
2
2 converges in probability to a positive constant.

Therefore, we conclude that kDm0
�
zW

|

m0C1
�m0C1k

2
2 converges in probability to a pos-

itive constant. Then we plug the above results into equation (A.1), and conclude that
k�m0k

2
2 converges in probability to a positive constant which depends only on .�; l/.

Thus, we have completed the proof of claim (3) for m D m0.
We next show that

h
|

m0�1
W

|
m0�m0 D OP .1/:

Notice that .�m0C1;D
m0
� Wm0hm0�1/ depends onWm0C1 only throughWm0C1hm0 .

Then conditioning on .�m0C1;D
m0
� Wm0hm0�1/, we have

Wm0C1
d
D zWm0C1…

?
hm0
CWm0C1…hm0 ;

where zWm0C1 is an independent copy of Wm0C1 and is independent of everything
else. Therefore,

hWm0hm0�1;�m0i D hD
m0
� Wm0hm0�1;W

|

m0C1
�m0C1i

d
D
hDm0

� Wm0hm0�1;hm0i

khm0k
2
2

.h
|
m0W

|

m0C1
�m0C1 � h

|
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zWm0C1�m0C1/

C hDm0
� Wm0hm0�1;

zW
|

m0C1
�m0C1i: (A.2)
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By claim (2) of the lemma, khm0k
�2
2 D OP .d

�1
m0
/. Conditioning on hm0�1, we have

1

dm0
hDm0

� Wm0hm0�1;hm0i
d
D

1

dm0

dm0X
iD1

� 0
�
.khm0�1k

2
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1=2zi
�2

� �
�
.khm0�1k

2
2=dm0�1/

1=2zi
�2
z2i khm0�1k

2
2=dm0�1;

where z � N.0; Idm0 / and is independent of hm0�1. Again we apply Chebyshev’s
inequality and dominated convergence theorem, and conclude that

1

dm0
hDm0

� Wm0hm0�1;hm0i
P
! Hm0�1Ez�N.0;1/

�
� 0.H

1=2
m0�1

z/2�.H
1=2
m0�1

z/2z2
�

as d !1. By induction hypothesis, h|
m0W

|

m0C1
�m0C1 D OP .1/. Conditioning on

.hm0 ;�m0C1/, we have

h
|
m0
zW

|

m0C1
�m0C1

d
D N

�
0; khm0k

2
2k�m0C1k

2
2=dm0

�
;

which isOP .1/ since by claim (1) of the lemma we have khm0k
2
2=dm0 D OP .1/, and

by induction hypothesis we have k�m0C1k
2
2 DOP .1/. Combining the above analysis,

we can conclude that the first summand in equation (A.2) is OP .1/.
Then we consider the second summand in equation (A.2).
Conditioning on .Dm0

� Wm0hm0�1;�m0C1/, we have

hDm0
� Wm0hm0�1;

zW
|

m0C1
�m0C1i

d
D N

�
0; k�m0C1k

2
2kD

m0
� Wm0hm0�1k

2
2=dm0

�
:

Again we apply the conditioning technique. Conditioning on hm0�1, we have

1

dm0
kDm0

� Wm0hm0�1k
2
2

d
D

1

dm0

dm0X
iD1

� 0
�
.khm0�1k

2
2=dm0�1/

1=2zi
�2�
khm0�1k

2
2=dm0�1

�
z2i D OP .1/;

where z � N.0; Idm0 / and is independent of hm0�1. By induction hypothesis,

k�m0C1k
2
2 D OP .1/;

thus hDm0
� Wm0hm0�1;

zW
|

m0C1
�m0C1i D OP .1/. Next, we plug the above analysis

into equation (A.2) and conclude that

hWm0hm0�1;�m0i D OP .1/;

thus proving claim (5) for m D m0.
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As the last step of our induction proof, we show that kym0k
2
2 converges in proba-

bility to some positive constant.
Note that �m0 depends onWm0 only throughWm0hm0�1. As a result, condition-

ing on �m0 , we have

ym0 D W
|
m0�m0

d
D zW

|

m0
�m0 C

h
|

m0�1
W

|
m0�m0 � h

|

m0�1
zW

|

m0
�m0

khm0�1k
2
2

hm0�1;

where zWm0 is an independent copy ofWm0 and is independent of everything else. By
induction hypothesis, k�m0k

2
2 converges in probability to some positive constant. By

the law of large numbers, we have k zW
|

m0
�m0k

2
2 converges in probability to the same

limit of k�m0k
2
2 as d !1. By claim (2) of the lemma,

khm0�1k
�2
2 D OP .d

�1
m0�1

/ and khm0�1k2 D OP .d
1=2
m0�1

/:

Note that we have proved h|

m0�1
W

|
m0�m0 D OP .1/. Conditioning on .hm0�1;�m0/,

we have
h

|

m0�1
zW

|

m0
�m0

d
D N

�
0; khm0�1k

2
2k�m0k

2
2=dm0�1

�
;

which is OP .1/ by claim (1) and induction hypothesis. In summary, we can conclude
that kym0k

2
2 and k�mk

2
2 converges in probability to the same limit, thus completing

the proof of the lemma by induction.

A.6. Proof of Lemma 6.2

We first provide finite sample upper bounds on the Euclidean norms of

¹gi ;hi ;D
i
�giºi2Œl�:

Lemma A.2. Under the conditions of Theorem 5.1, there exist positive constants
¹Qiº1�i�l , which depend only on .�; l/, such that for all 1 � i � l , with probability
at least 1 � ı, we have

1
p
di
khik2 � Qi

iY
jD1

.1C ı�1=2d
�1=2
j /k

i�j

; (A.3)

1
p
di
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�
1C log.1=ı/d�1=2i

� i�1Y
jD1

.1C ı�1=2d
�1=2
j /k

i�1�j

; (A.4)

1
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kDi
�gik2

khi�1k2
�

Qi
p
di�1

iY
jD1

.1C ı�1=2d
�1=2
j /k

i�j

: (A.5)
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Proof. We prove this lemma by induction over i . For the base case i D 1, g1 �
N.0; Id1/, thus, equation (A.4) follows from Bernstein’s inequality. Since almost
everywhere we have j� 0.x/j � C� .1 C jxjk�1/, then there exists C 0� > 0 which is
a function of � only, such that almost everywhere

j�.x/j � C 0� .1C jxj
k/ and j� 0.x/xj � C 0� .1C jxj

k/:

Then with probability 1, we have

1

d1
kh1k

2
2 �

2
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d1X
iD1

.C 0� /
2.1C jg1;i j

2k/;

1
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2
2

kD1
�g1k

2
2 �

2

d1d

d1X
iD1

.C 0� /
2.1C jg1;i j

2k/;

thus, equations (A.3) and (A.5) for the base case follow from Chebyshev’s inequality.
Now suppose the lemma holds for all i �m, then we prove it also holds for i DmC 1
by induction. Conditioning on hm, we have

gmC1
d
D N

�
0; .khmk

2
2=dm/IdmC1

�
:

Thus, by Bernstein’s inequality, there exists an absolute constant C > 0, such that
with probability at least 1 � ı=3,

kgmC1k
2
2=dmC1 � Ckhmk

2
2

�
1C log.1=ı/=

p
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�
=dm:

By induction hypothesis, with probability at least 1 � ı=3,

1
p
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mkmQm

mY
jD1

.1C ı�1=2d
�1=2
j /k
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;

thus, equation (A.4) for i D mC 1 follows. To prove equations (A.3) and (A.5), note
that

1
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2
2 �

1
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d
D

1

dmC1dm

dmC1X
iD1
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�
zikhmk2=

p
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�2
z2i

�
1

dmC1dm

dmC1X
iD1

4.C� /
2z2i

�
1C z2k�2i khmk

2k�2
2 =dk�1m

�
;

where z � N.0; IdmC1/, and is independent hm. Thus, equations (A.3) and (A.5) for
i D mC 1 follows from Chebyshev’s inequality, and we complete the proof of the
lemma by induction.

Next, we control the Euclidean norms of ¹�iºi2Œl�.

Lemma A.3. Under the conditions of Theorem 5.1, there exist constants ¹ zQiº1�i�l ,
which depend only on .�; l/, such that for all 1� i � l , with probability at least 1� ı,
we have

k�ik2 �
zQi
�p

log.1=ı/C 1
�l�i lY

mDi
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jD1

.1C ı�1=2d
�1=2
j /k
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; (A.6)

jh
|

i�1W
|

i �i j

khi�1k2
�

zQi
�p

log.1=ı/C 1
�l�i

p
di�1

lY
mDi

mY
jD1

.1C ı�1=2d
�1=2
j /k

m�j

: (A.7)

Proof. We prove this lemma by induction over i . We start with the base case i D l .
Conditioning on hl�1, we have
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2
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d
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;

where zl ;zlC1
i:i:d:
� N.0;Idl / and is independent of hl�1. Then equation (A.6) for i D l

follows from Lemma A.2 and Chebyshev’s inequality. Note thatW lC1 is independent
of .Dl

� ;gl/, then
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2 d�kC1
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�
:

As a result, equation (A.7) for i D l follows from Lemma A.2 and Chebyshev’s
inequality. Thus, we have completed the proof for the base case.
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Suppose the lemma is true for all mC 1 � i � l , then we prove it also holds for
i D m via induction hypothesis. By equation (A.1),

�m
d
D Dm

�
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|

mC1�mC1 C
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|
mW

|

mC1�mC1 � h
|
m
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|
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khmk
2
2

Dm
� hm; (A.8)

where zW mC1 has the same distribution as W mC1, and is independent of everything
else. The right-hand side of equation (A.8) has Euclidean norm no larger than

kDm
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Note that
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where zm; zmC1
i:i:d:
� N.0; Idm/, and are independent of hm�1. Using the fact that

almost everywhere j� 0.x/j � C� .1C jxjk�1/, together with Lemma A.2 and Cheby-
shev’s inequality, we conclude that there exists a constant zQ.1/

m > 0, depending only
on .�; l/, such that with probability at least 1 � ı=6,
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Conditioning on .hm;�mC1/, we have
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Therefore, with probability at least 1 � ı=6, we have
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where zQ.2/
m > 0 is a numerical constant.
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where zm � N.0; Idm/ and is independent of hm�1. Since

1

dm

dmX
iD1

� 0
�
khm�1k2=

p
dm�1zm;i

�2
�
8C 2�
dm

dmX
iD1

�
1C jzm;i j

2k�2
khm�1k

2k�2
2 d�kC1m�1

�
;



Adversarial examples with general activations 189

by Lemma A.2 and Chebyshev’s inequality, we conclude that there exists zQ.3/
m > 0,

depending only on .�; l/, such that with probability at least 1 � ı=6,
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Combining equations (A.8)–(A.9), we conclude that there exists zQ.4/
m > 0, depending

only on .�; l/, such that with probability at least 1 � ı=2,
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³
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thus equation (A.6) for i D m follows from equation (A.10) and induction hypoth-
esis. Then we proceed to prove equation (A.7) for i D m. By equation (A.2), there
exists zW mC1 that has the same marginal distribution asW mC1 and is independent of
everything else, such that
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By Lemma A.2, with probability at least 1 � ı=12,
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Conditioning on .hm;�mC1/, we have
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Therefore, with probability at least 1 � ı=6, we have
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where zQ.5/
m > 0 is a numerical constant.
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Given .Dm
�W mhm�1;�mC1/, the conditional distribution of
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�1=2
j /k

m�j

³
�
p

log.1=ı/; (A.13)

where zQ.6/
m > 0 is a constant depending only on .�; l/. Using equations (A.11)–(A.13)

and induction hypothesis, we conclude that with probability at least 1 � ı=2, the last
line in equation (A.11) is no larger than

zQ
.7/
m .

p
log.1=ı/C 1/
p
dm�1

�

² mY
jD1

.1C ı�1=2d
�1=2
j /k

m�j

³
�

²
k�mC1k2 C

p
dmkh

|
mW

|

mC1�mC1k

khmk2

³
; (A.14)

where zQ.7/
m > 0 is a constant depending only on .�; l/. Thus, equation (A.7) for

i D m follows from equation (A.14) and induction hypothesis. Therefore, we have
completed the proof of the lemma by induction.

Finally, with Lemmas A.2 and A.3, we are ready to prove Lemma 6.2. Note that �1
depends on W 1 only through W 1x, thus by property of Gaussian distribution, we
have

rf .x/ D W
|

1�1
d
D
x|W

|

1�1 � x
| zW

|

1�1

kxk22
x C zW

|

1�1;

where zW 1 is an independent copy of W 1, and is independent of everything else. We
let z � N.0; Id /, independent of everything else, then we have

k zW
|

1�1k2
d
D
k�1k2kzk2
p
d

;

jx|W
|

1�1j

kxk2
D
jh

|

0W
|

1�1j

kh0k2
;

jx| zW
|

1�1j

kxk2

d
D N

�
0; k�1k

2
2=d

�
:



Adversarial examples with general activations 191

Therefore, by Lemma A.3 and Bernstein’s inequality, with probability at least 1 � ı,
we have

krf .x/k2 � Q
�p

log.1=ı/C 1
�l�1�

1C log.1=ı/d�1=2
�

�

lY
iD1

iY
jD1

.1C ı�1=2d
�1=2
j /k

i�j

;

where Q > 0 is a constant depending only on .�; l/, thus completing the proof of
Lemma 6.2.

A.7. Proof of Lemma 6.3

By definition, �1 D �sdx
|y1=d , thus by the Cauchy–Schwarz inequality we have

j�1j � sdky1k2=
p
d . By Lemma 6.1, as d ! 1, we have ky1k2 D OP .1/, thus

�1 D oP .1/. Next, we consider 
1. Since xW 1 is independent of �1, by the law of
large numbers, as d !1, we have

p-limd!1k
xW

|

1�1k2 D p-limd!1k�1k2;

which is finite and positive. As a result, 
1 D oP .1/. Finally, we consider ˇ1. Notice
that

jh.W 01/
|�1;

xW
|

1�1ij � k.W
0
1/

|�1k2k
xW

|

1�1k2;

which further converges to .p-limk�1k2/
2 as d ! 1. Similarly, we can show that

k xW 1�1k
2
2 converges to .p-limk�1k2/

2 as d !1. Therefore, we have ˇ1 D OP .1/,
thus completing the proof of the lemma.

A.8. Proof of Lemma 6.4

By definition, �1 D D
1
�W

|

2�2. Recall that u1 is independent of �¹ xW
|

1�1;F1º, then
we can conclude that .g1;D

1
� ; �2; u1/ depends on W 2 only through W 2h1. There-

fore, by Lemma 3.1, there exists xW 2 2 Rd2�d1 , which has the same marginal distri-
bution withW 2 and is independent of .g1;D

1
� ;�2;u1/, such that

gs1 D g1.1 � �1/ � ˇ1D
1
�…h1W

|

2�2 � ˇ1D
1
�…
?
h1
xW

|

2�2 � 
1u1

D g1.1 � �1/C ˇ1D
1
�h1

h
|

1
xW

|

2�2 � h
|

1W
|

2�2

kh1k
2
2

� 
1u1 � ˇ1D
1
�
xW

|

2�2

D g1.1 � �1/C �1D
1
��.g1/ � 
1u1 � ˇ1x
1D

1
�xu1=

p
d1;

where xu1 � N.0; Id1/, is independent of .g1;D
1
� ;�2;u1/ and

�1 WD ˇ1
h

|

1
xW

|

2�2 � h
|

1W
|

2�2

kh1k
2
2

; x
1 WD k�2k2:
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Recall that in Lemma 6.3, we have shown that

�1 D oP .1/; ˇ1 D OP .1/; 
1 D oP .1/

as d !1. By Lemma 6.1 claims (5), (1), and (3),

h
|

1W
|

2�2 D OP .1/; kh1k
�2
2 D OP .d

�1
1 /; x
1 D OP .1/:

By controlling the second moment then applying Chebyshev’s inequality, we can con-
clude that h|

1
xW

|

2�2 D OP .1/. Therefore, �1 D oP .1/ and ˇ1x
1=
p
d1 D oP .1/.

For � 2 R4, we define

m�.g; u; xu/ WD �
�
g.1 � �1/C �2�

0.g/�.g/ � �3u � �4�
0.g/xu

�
�.g/:

By assumption j� 0.x/j � C� .1C jxjk�1/. Using this assumption, we can conclude
that for any �; x� 2 R4 satisfying k�k1; kx�k1 � 1,

jm�.g; u; xu/ �mx�.g; u; xu/j � C
0
�k� �

x�k2
�
1C jgjn.k/ C jujn.k/ C jxujn.k/

�
;

where n.k/ 2 NC is a function of k and C 0� > 0 is a function of � . Notice that

E.g;u;xu/�N.0;I3/
�
1C jgjn.k/ C jujn.k/ C jxujn.k/

�
<1:

Then by [25, Example 19.7, Theorem 19.4], we know that ¹m� W k�k1 � 1º is a
Glivenko–Cantelli class, thus

sup
k�k1�1

ˇ̌̌̌
1

d1

d1X
iD1

m�.gi ; ui ; xui / � E.g;u;xu/�N.0;I3/
�
m�.g; u; xu/

�ˇ̌̌̌
D oP .1/:

Using the equation above and dominated convergence theorem, as d !1, we have

1

d1
hh1; �.g

s
1/i D

1

d1

d1X
iD1

m.�1;�1;
1;ˇ1x
1=
p
d1/
.gi ; ui ; xui /

D E.g;u;xu/�N.0;I3/
�
m.�1;�1;
1;ˇ1x
1=

p
d1/
.g; u; xu/

�
C oP .1/

D E.g;u;xu/�N.0;I3/
�
m0.g; u; xu/

�
C oP .1/:

By the law of large numbers,

kh1k
2
2 D E.g;u;xu/�N.0;I3/

�
m0.g; u; xu/

�
C oP .1/;

thus proving the second claim of the lemma. Again via proof of a uniform converg-
ence-type result, we can conclude that

k�.gs1/k
2
2=d1 D kh1k

2
2=d1 C oP .1/;

thus completing the proof of the first result.
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A.9. Proof of Lemma 6.5

Given equation (6.3), �mC1 D oP .1/ and 
mC1 D oP .1/ follow from claim (iv) of
the induction hypothesis Hm.

A.10. Proof of Lemma 6.6

By assumption, almost everywhere we have j� 0.x/j � C� .1 C jxjk�1/. Therefore,
there exists C 0� > 0 which is a constant depending only on � , such that

j�.x/j � C 0� .1C jxj
k/:

Using these facts, we conclude that there exists n.k/ 2 NC which is a function
of k, andC 00� > 0which is a function of .�;�mC1/ only, such that for all �; x� 2�mC1,
we have

jxh
.mC1/
�

.xu; z; u/ � xh
.mC1/
x�

.xu; z; u/j � C 00� k� �
x�k2

�
1C jxujn.k/ C jzjn.k/ C jujn.k/

�
:

Note that

E.xu;z;u/�N.0;I3/
��
1C jxujn.k/ C jzjn.k/ C jujn.k/

�2�
<1:

The rest of the proof is almost identical to that of Lemma 3.4: We apply the well-
known results regarding Donsker class in [25] and prove that ¹xh.mC1/

�
W � 2�mC1º is

a Donsker class via proving the corresponding bracketing integral is finite. Here, we
skip the details to avoid duplication.

A.11. Proof of Lemma 6.7

We define � ; x� WR3�dm ! R as follows:

�.xumC1; zm;um/ WD
1
p
dm

dmX
iD1

h
.mC1/

.x
mC1;�m;�m;ˇm=
p
dm;ˇmımC1;
m/

.xumC1;i ; zm;i ; um;i /;

x�.xumC1; zm;um/ WD
1
p
dm

dmX
iD1

xh
.mC1/

.x
mC1;�m;�m;ˇm=
p
dm;ˇmımC1;
m/

.xumC1;i ; zm;i ; um;i /:

By assumption, almost everywhere we have j� 0.x/j � C� .1 C jxjk�1/. Therefore,
there exists C 0� > 0 which is a constant depending only on � , such that

j�.x/j � C 0� .1C jxj
k/:
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Using these facts, via some computation we can conclude that there exist n0 2 NC
and xC� > 0 depending only on .�;�mC1/, such that

ˇ̌
�.xumC1; zm;um/ � x�.xumC1; zm;um/

ˇ̌
�
xC�

dm

dmX
iD1

j� 0.�mzm;i / � �
0.Hm�1zm;i /j

�
�
jˇmjx


2
mC1xu

2
mC1;i C jd

1=2
m ˇmımC1x
mC1xumC1;i j

�
1C �kmjzm;i j

k
��

�
�
1C jxumC1;i j

n0 C jzm;i j
n0 C jum;i j

n0
�

�
�
1C j�mj

n0 C j�mj
n0 C jˇmj

n0 C jx
mC1j
n0 C j
mj

n0 C jımC1j
n0
�
:

By equation (6.6), �m is independent of .xumC1; zm;um/. Recall that we have proved

ˇm D OP .1/; ımC1 D OP .d
�1
m /; �m D Hm�1 C oP .1/;

x
mC1 D EmC1 C oP .1/; 
m D oP .1/; �m D oP .1/:

Note that � 0 is almost everywhere continuous and j� 0.x/j � C� .1C jxjk�1/. Then by
applying Chebyshev’s inequality and dominated convergence theorem to the above
equation, we can conclude that as d !1,ˇ̌

�.xumC1; zm;um/ � x�.xumC1; zm;um/
ˇ̌
D oP .1/: (A.15)

Similarly, we haveˇ̌
E
�
�.xumC1; zm;um/

�
� E

�
x�.xumC1; zm;um/

�ˇ̌
D oP .1/; (A.16)

where in the above equation the expectations are taken over .xumC1;zm;um/, assuming

.�m; �m; ˇm; x
mC1; 
m; ımC1/

are fixed. Note that

G.mC1/

d

�
x
mC1; �m; �m; ˇm=

p
dm; ˇmımC1; 
m

�
D �.xumC1; zm;um/ � E

�
�.xumC1; zm;um/

�
;

xG.mC1/

d

�
x
mC1; �m; �m; ˇm=

p
dm; ˇmımC1; 
m

�
D x�.xumC1; zm;um/ � E

�
x�.xumC1; zm;um/

�
;

thus we have completed the proof of the lemma using equations (A.15) and (A.16).

A.12. Proof of Lemma 6.8

By definition, �mC1 D D
mC1
� W

|

mC2�mC2. Note that .gmC1;D
mC1
� ; �mC2; umC1/

depends on W mC2 only through gmC2 D W mC2hmC1 and hmC1 is independent
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of W mC2. By Lemma 3.1, there exists xW mC2 2 RdmC2�dmC1 that has the same
marginal distribution asW mC2 and xW mC2 ? .gmC1;D

mC1
� ;�mC2;umC1/, such that

gsmC1 D .1 � �mC1/gmC1

C ˇmC1D
mC1
� hmC1

h
|

mC1
xW

|

mC2�mC2 � h
|

mC1W
|

mC2�mC2

khmC1k
2
2

� ˇmC1D
mC1
�
xW

|

mC2�mC2 � 
mC1umC1

D .1 � �mC1/gmC1 C �mC1D
mC1
� �.gmC1/ � 
mC1umC1

� ˇmC1x
mC2D
mC1
� xumC2=

p
dmC1;

where xumC2 � N.0; IdmC1/ is independent of .gmC1;D
mC1
� ;�mC2;umC1/, and

�mC1 WD ˇmC1
h

|

mC1
xW

|

mC1�mC2 � h
|

mC1W
|

mC2�mC2

khmC1k
2
2

; x
mC2 WD k�mC2k2:

By HmC1 claim (iii),

�mC1 D oP .1/; 
mC1 D oP .1/; ˇmC1=
p
dmC1 D oP .1/:

By Lemma 6.1,

khmC1k
�2
2 D OP .d

�1
mC1/; x
mC1 D OP .1/; h

|

mC1W
|

mC2�mC2 D OP .1/:

Then we compute the corresponding second moment and apply Chebyshev’s inequal-
ity, and conclude that

h
|

mC1
xW

|

mC2�mC2 D OP .1/:

Combining these analysis, we have �mC1 D oP .1/.

We can write gmC1 D �mC1zmC1, where �mC1 WD
q
khmk

2
2=dm and zmC1 �

N.0; IdmC1/ is independent of hm. Adopting similar arguments we applied to obtain
equation (6.6), we can conclude that

gmC1; xumC2;umC1
i:i:d:
� N.0; IdmC1/:

Recall that we have proved

�mC1D oP .1/; �mC1D oP .1/; 
mC1D oP .1/; ˇmC1x
mC2=
p
dmC1D oP .1/:

By assumption, for all x; y 2 R,

j�.x/ � �.y/j � C� jx � yj.1C jxj
k�1
C jyjk�1/: (A.17)

Then we apply equation (A.17) to bound the difference between hmC1 D �.gm/

and �.gsm/, and the lemma follows from simple application of the law of large num-
bers.
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B. Proofs for the non-asymptotic results

B.1. Proof of Lemma 4.2

We will heavily rely on the Bernstein inequality to prove the lemma, and we state it
here for readers’ convenience.

Lemma B.1. Let X1; : : : ; XN be independent, mean zero, sub-exponential random
variables. Then, for every t � 0, we have

P

�ˇ̌̌̌ NX
iD1

Xi

ˇ̌̌̌
� t

�
� 2 exp

�
�cmin

²
t2PN

iD1 kXik
2
‰1

;
t

maxi2ŒN � kXik‰1

³�
;

where c > 0 is a numerical constant, and k � k‰1 is the Orlicz norm.

Proof of the first result. It suffices to prove that with probability at least

1 � C��21 .�.0/
2
C L2/

for some positive numerical constant C > 0, the following inequality holds:

jg|D�aj � �1:

Notice that g|D�a D m
�1=2

Pm
iD1 gi�.gi /bi . Therefore,

Var
�
g|D�a

�
� Eb;g�i:i:d:N.0;1/

�
b2g2�.g/2

�
� C.�.0/2 C L2/

for some numerical constant C > 0. By Chebyshev’s inequality, with probability at
least 1� C��21 .�.0/

2 CL2/, jg|D�aj � �1, thus completing the proof for this part.

Proof of the second result. By the definitions of xW and xW c , we see that

k xW
|
D�ak

2
2 � h

xW
|

cD�a; xW
|
D�ai

kD�ak
2
2

d
D
1

d

dX
iD1

.z2i � ziz
0
i /;

where zi ; z0i
i:i:d:
� N.0; 1/. By Lemma B.1, we see that there exists a numerical constant

C >0, such that for all �2� 1, with probability at least 1� 4exp.�C�2/ the following
inequalities hold: ˇ̌̌̌

1

d

dX
iD1

z2i � 1

ˇ̌̌̌
�

�2
p
d
;

ˇ̌̌̌
1

d

dX
iD1

ziz
0
i

ˇ̌̌̌
�

�2
p
d
:

When the event described above occurs, we see thatˇ̌̌̌
ˇ �

�sd
p
m

ˇ̌̌̌
�
2sd�2
p
md

;

which completes the proof of the second result.
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Proof of the third result. Notice that


2 D
s2
d

d
� k xW

|
D�ak

2
2

d
D
s2
d

d
�

�
1

d

dX
iD1

z2i

�
�

�
1

m

mX
iD1

b2i �.gi /
2

�
;

where zi ; bi ; gi
i:i:d:
� N.0;1/. Since j�.x/j � j�.0/j CLjxj, we then conclude that there

exists a numerical constant C > 0, such that

Var
�
1

m

mX
iD1

b2i �.gi /
2

�
�
C.�.0/4 C L4/

m
:

By Chebyshev’s inequality, with probability at least 1 � Cm�1.�.0/4 C L4/,ˇ̌̌̌
1

m

mX
iD1

b2i �.gi /
2
� Eg�N.0;1/

�
�.g/2

�ˇ̌̌̌
� 1:

By Bernstein’s inequality (Lemma B.1), with probability at least 1 � 2 exp.�cd/ for
some absolute constant c > 0, we have

d�1
dX
iD1

z2i � 2:

In summary, with probability at least 1 � 2 exp.�cd/ � Cm�1.�.0/4 C L4/,


 �
2sd
p
d
�

q
1C Eg�N.0;1/

�
�.g/2

�
;

thus concluding the proof of the third result.

B.2. Proof of Lemma 4.3

Recall that the sub-Gaussian norm of a random variable X is defined as

kXk‰2 WD inf
®
t > 0 W E

�
exp.X2=t2/

�
� 2

¯
:

Standard computation implies that for all � 2 R,

E
�
exp

�
�.Lm.�/ � Lm.�

0//
��

� exp
�
�2

2m

mX
iD1

b2i
�
�
�
.1 � �1/gi � �2bi�

0.gi / � �3ui
�

� �
�
.1 � � 01/gi � �

0
2bi�

0.gi / � �
0
3ui

��2�
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� exp
�
�2L2

2m

mX
iD1

b2i
�
j�1 � �

0
1j � jgi j C L � j�2 � �

0
2j � jbi j C j�3 � �

0
3j � jui j

�2�
� exp

�
�2k� � � 0k22

2
�
1

m

mX
iD1

M.bi ; gi ; ui /
2

�
:

Hence, by the sub-Gaussian property

kLm.�/ � Lm.�
0/k‰2 � Ck� � �

0
k2 �

p
1

m

mX
iD1

M.bi ; gi ; ui /
2

for some positive numerical constant C .

B.3. Proof of Lemma 4.4

We observe that

F.g/
d
D m�1z

mX
iD1

�.gi /
2;

where z � N.0; 1/ is independent of ¹giºi�m. Notice that there exists a numerical
constant C 0 > 0, such that

k�.g/2k‰1 � C
0.�.0/2 C L2/:

Then by Lemma B.1, there exist numerical constants c; C > 0, such that

P

�ˇ̌̌̌
1

m

mX
iD1

�.gi /
2
� Eg�N.0;1/

�
�.g/2

�ˇ̌̌̌
� 1

�
� C exp

�
�

cm

L4 C �.0/4

�
;

P
�
j z j � �3

�
� C exp.�c�23/;

which concludes the proof of the lemma.
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