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Deconvolution for some singular density errors
via a combinatorial median of means approach

Clément Marteau and Mathieu Sart

Abstract. We present a versatile and model based procedure for estimating a density in a decon-
volution setting where the error density is assumed to be singular enough. We assess the quality
of our estimator by establishing non-asymptotic risk bounds for the L1 loss. We specify them
when the density is piecewise constant on a finite number of (unknown) pieces, when it is uni-
modal, and when it is concave/convex.

1. Introduction

Let Y1; : : : ; Yn be n independent and identically distributed real valued random vari-
ables defined on an abstract probability space .�;E;P /. We assume that each random
variable Yi can be written as

Yi D Xi C "i ; i 2 ¹1; : : : ; nº; (1)

where for all i 2 ¹1; : : : ; nº, Xi denotes a random variable admitting a density f0
with respect to the Lebesgue measure. The variable "i denotes measurement errors,
independent of Xi , with known density q. Our aim is to estimate f0 on a compact
interval, say Œ0; 1�, from the indirect observations Y1; : : : ; Yn.

Deconvolution in a statistical context has been at the core of several investigations
in the literature. We refer to, e.g., [26] for a comprehensive introduction to this topic.
Over the last decades, several approaches have been proposed. For instance, kernel
procedures have been designed, taking advantage of the convolution structure in the
Fourier domain. We mention a seminal contribution by [20] who establishes rates of
convergence under smoothness assumptions on the target density f0. Several exten-
sions and improvements have then been obtained, including in particular discussions
regarding an adaptive choice of the bandwidth. We refer, e.g., to [17] for bootstrap
bandwidth selection, [9] or [12] when the error density q is unknown, [16] for rates of
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convergence using the Wasserstein metric, or [23,29] for adaptation under Lp-losses.
Alternatively, several methods based on the minimization of a (penalized) criterion
over a given family have been carried out. The penalty allows to include constraints
on the target, often in an adaptive way. We refer for instance to [14] for projection
methods and to [28] where the performance of a dictionary based method is inves-
tigated in a spherical context. Other authors have extended wavelet approaches to
the deconvolution model, taking advantage of the density representation property in
a wavelet basis. The coefficients of this decomposition must then be estimated and
sometimes thresholded in an appropriate way, see [11, 21, 24, 27].

The aforementioned references assess the quality of their estimators by means
of Lp-losses, with p larger than 1 (except [20] and [23]). In the present paper, we
focus to the case p D 1. The loss then does not only measure the distance between
the estimator and the density f0, but also the distance between the two underlying
probability measures.

We restrict our study to a moderately ill-posed deconvolution problem with small
degree of ill-posedness. More precisely, we assume that the Fourier transform q? of q
does not vanish and that jq?.t/j�1 is of the order of jt jˇ for large values of t . The
parameter ˇ should be smaller than 1=2, which indicates in some sense that q is sin-
gular enough, or in other terms, that the framework is not so far away from the direct
setting (which would correspond to ˇ D 0). As noticed by [15, 26], this condition
makes it possible the consistent estimation of the distribution function without further
assumptions on f0. This last problem is indeed closely related to the estimation of a
density using the L1 loss. We refer to [19] for more information regarding this issue.

In direct estimation, there exist general procedures that lead to both optimal and
robust estimators. We are thinking in particular to methods based on robust tests or
like-minded approaches such as those described in [2, 3, 6, 19]. There does not seem
to be, in the literature of deconvolution, a general-purpose estimation procedure. In
this paper, we present a first attempt by proposing a new estimation procedure in line
with [19]. It does not lead to risk bounds as general as in the direct case, but at least, it
already yields new results in the deconvolution setting under the L1 loss as described
below.

We investigate the case where f0 is piecewise constant on a finite number r of
pieces. The parameter r is assumed to be known but the pieces may be fully unknown
to the statistician. We use our method to derive an estimator and get a risk bound of
the order of kf0 � qk1

1=2r1=2Cˇ .log n=n/1=2. Moreover, we show that such a result
cannot be true in general, no matter the estimator, when ˇ is higher.

Our method also allows us to deal with shape constraints on f0. The problem
of estimation under shape constraints has been widely studied in different statistical
frameworks, such as, for example, that of density without noise, or that of regression.
This does not seem to be true in density deconvolution, where the only attempts we
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are aware of are those of [10, 30]. Here, we propose to consider the case where f0 is
unimodal on Œ0;1� (with unknown mode) and the case where f0 is concave on Œ0;1�. In
each case, our procedure can be applied to get a consistent estimator. The rate of con-
vergence is .logn=n/1=.2ˇC3/ under the unimodal assumption, and .logn=n/2=.2ˇC5/

under the concavity assumption. We prove that these rates are the minimax ones,
within a logarithmic factor.

Throughout the paper, we will use the following notation. The termsX;Y;" denote
generic random variables having same law than respectively Xi ; Yi and "i . We will
sometimes write

R
A
f instead of

R
A
f .x/dx to shorten the formulas and omit the setA

when A D R. We denote the Fourier transform of a integrable, or square integrable,
function f by f ?. The following definition is used when f is integrable:

f ?.t/ D

Z
eitxf .x/ dx for all t 2 R.

Since we estimate f0 on Œ0; 1� only, it is convenient to modify the definition of
the L1 distance by setting

d1.f1; f2/ D

Z
Œ0;1�

jf1.x/ � f2.x/j dx:

The domain of integration is thus reduced to Œ0; 1� even when the functions are defined
on a much larger domain such as R. For all F � L1.R/, and f 2 L1.R/, we set

d1.f;F/ D inf
g2F

d1.f; g/:

The complex conjugate of a number x is xx. The notation jI j may refer either to the
Lebesgue measure or the cardinality of I . The supremum norm of a function f is

kf k1 D sup
x2R
jf .x/j

and its derivative (provided it exists) is denoted by f 0. The notations c; c0; C; C 0; : : :
are used for quantities that may change from line to line. They are usually constants
(that is numbers), but may sometimes depend on some parameters. In that case, the
dependency will be specified in the text.

This paper is organized as follows. In Section 2, we present an elementary approach
based on an histogram-type estimator. We carry out our main results in Section 3. The
description of our general procedure is deferred to Section 4. Section 5 gathers the
proofs.
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2. Preliminaries

This section gathers some preliminary results. We introduce and comment our main
assumption on the error density q. Then, we discuss the estimation of the probability
that the variable X belongs to a given set and use the obtained results to design a first
histogram estimator.

2.1. Assumptions on the error density

All along the paper, we will assume that the variables "i involved in the model (1)
admits a density q satisfying the following requirement. This assumption will always
assumed to be met in the next sections (except in Proposition 4 below, but this will be
specified).

Assumption 1. The Fourier transform q? of q does not vanish. Moreover, there exist
three constants �1; �2 and ˇ 2 .0; 1=2/ such that for all t 2 R,

jq?.t/j�2 � �1 C �2jt j
2ˇ : (2)

Such kind of assumption is quite classical in the statistical literature (see, e.g.,
[26, Chapter 2]). The fact that q? is not allowed to vanish entails in particular that f ?0
can be recovered from .f0 � q/

? at any frequency and hence ensures that the prob-
lem is identifiable. Such a constraint is for instance satisfied when q is even and its
derivative q0 on .0;C1/ exists and is strictly increasing (see [32]). The difficulty
(expressed for instance in terms of convergence rates) of the deconvolution problem
is often measured through the behavior of q?.t/ for large value of t . The condition (2)
indicates that q? has a polynomial behavior: the deconvolution problem is said in this
case to be mildly ill-posed. We restrict our attention to the specific case where the
polynomial exponent ˇ is smaller than 1=2.

The following proposition provides examples of densities satisfying such a require-
ment. In particular, such examples correspond to densities having a singularity on a
given point which appears to be of first mathematical interest. The proof of Proposi-
tion 1 is postponed to Section 5.1.

Proposition 1. Let 'WR! R be a map such that '.0/ is positive and whose deriva-
tive exists, is bounded and integrable on R. Let q be a density of the form q.x/ D

jxjˇ�1'.x/ with ˇ 2 .0; 1=2/. Then if q? does not vanish, q satisfies Assumption 1.
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2.2. Estimation of a probability

Our procedures are heavily based on probability estimations of the form

P .X 2 I / D

Z
I

f0

for some I � R. The estimation of these terms seems to be tricky when I is only
assumed to be a Borel set, but is more easy when I is an interval, or more generally
a union of intervals. This has been studied for instance in [15, 26], and we will adopt
here the estimation strategy described in [26, Section 2.7.2].

In the following, for any d 2 N?, we denote by 	d the collection of unions of at
most d intervals included in Œ0; 1�. For any I 2 	d , the function

�I W t ! 1?I .t/ � Œq
?.t/��1

belongs to L2.R/ according to Assumption 1 (this uses ˇ < 1=2). Its Fourier trans-
form �?I is therefore a square integrable function almost everywhere finite. It is also
real-valued as �I is Hermitian. Since Y is absolutely continuous with respect to the
Lebesgue measure, the random variable Z.I / D .1=.2�//�?I .Y / is real-valued (and
finite) on an event of probability 1. In the remaining part of the paper, the random
variables can be defined almost surely without specifying it again. They can always
be modified on zero probability events without changing our results.

When kf0 � qk1 is finite, Z.I / has moments up to second order, see Proposi-
tion 2 below. We may moreover apply Plancherel isometry to get

EŒZ.I /� D

Z
�?I .y/.f0 � q/.y/ dy

D
1

2�

Z
�I .t/f

?
0 .t/q

?.t/ dt

D
1

2�

Z
1?I .t/f

?
0 .t/ dt

D P .X 2 I /; (3)

where the last equality comes from Plancherel isometry when f0 2 L2.R/ and from
an additional density argument otherwise, see Section 5.2. We deduce that

Zn.I / D
1

2�n

nX
jD1

�?I .Yj / (4)

is an unbiased estimator for the term P .X 2 I /. A control on its variance is given by
the proposition below. Its proof is postponed to Section 5.3.
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Proposition 2. For all union of at most d intervals I 2	d of Œ0;1�, we haveZ.I /2R

and
E
�
.Z.I //2

�
� kf0 � qk1

�
�1d jI j C cˇ�2d

1C2ˇ
jI j1�2ˇ

�
; (5)

where cˇ only depends on ˇ.

Let us mention that the condition ˇ < 1=2 plays an important role in the estimation
of probabilities in deconvolution. The parametric rate of convergence obtained above
is impossible to get when ˇ > 1=2 without additional assumptions on the density. We
refer to [15] and [26, Section 2.7.2] for results when f0 is smooth and ˇ > 1=2. Note
that the estimation rate they obtain depends on the smoothness index of the density
(the more irregular the density, the slower the rate).

2.3. Estimation of f0 using histograms

In this paper, we are interested in the estimation of the density f0 of the Xi rather
than a probability in itself. For pedagogical reasons, we present below an histogram
estimator and give a L1 risk bound. The following results should be seen as a foretaste
of our main contributions that will be presented in Sections 3 and 4.

Let m be a (finite) partition of Œ0; 1� into intervals of positive lengths. The integral
of f0 over each interval I included inm can be estimated thanks to the expression (4).
Gathering all these estimations, we can define an histogram estimator yfm of f0 as
follows:

yfm D
X
I2m

Zn.I /

jI j
1I : (6)

By using Proposition 2, we get a control (in expectation) of its L1-risk as displayed
in the following proposition. The proof is deferred to Section 5.4.

Proposition 3. Let m be a (finite) partition of Œ0; 1� into intervals of positive lengths,
and

Fm D

²X
I2m

˛I1I ; .˛I /I2m 2 Œ0;C1/
jmj;

X
I2m

˛I jI j D 1

³
(7)

be the collection of piecewise constant densities on m. Then, the above histogram
estimator satisfies

E
�
d1.f0; yfm/

�
� 2d1.f0;Fm/C

s
kf0 � qk1

�1jmj C cˇ�2jmj1C2ˇ

n
; (8)

where cˇ only depends on ˇ.

This upper bound is non-asymptotic and shares similarities with results obtained
in the direct case (which would roughly correspond to ˇD 0). In particular, our bound
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is composed of a bias term d1.f0;Fm/ and an estimation component. The supremum
norm of f0 � q that appears in this inequality can always be related to a suitable Ls

norm of f0. Indeed, by Young’s inequality,

kf0 � qk1 � inf
s�1

®
kf0kskqks=.s�1/

¯
:

Since q is not bounded, we cannot get an upper bound of kf0 � qk1 independent
of f0. Nevertheless, we always have the rough upper-bound

kf0 � qk1 � kf0k1

as q is a density. More generally, if q satisfies our conditions of Proposition 1 with
a function ' that decreases fast enough at infinity, kqks=.s�1/ is finite as soon as
s > 1=ˇ.

Let us mention that there are many solutions in the literature to estimate a density,
whether ˇ is smaller or larger than 1=2 (the usual solution to deal with larger values
of ˇ is to impose a certain regularity on the estimator; see [13, Assumption Kvar.ˇ/],
for instance). However, we will see in the next section that (8) is specific to small
values of ˇ.

2.4. Piecewise constant functions

The previous result applies in particular to densities f0 that are piecewise constant on
a known partitionm of Œ0; 1�. We may indeed considerM > 0 and get an upper-bound
on the minimax risk over

Fm.M/ D
®
f 2 Fm; kf � qk1 �M

¯
:

More precisely, the bias term in (8) vanishes when f0 2 Fm.M/, which leads to

sup
f02Fm.M/

E
�
d1.f0; yfm/

�
� cM 1=2 jmj

ˇC1=2

p
n

; (9)

where the multiplicative factor c depends on �1; �2; ˇ only. As in the direct case, we
observe here that the optimal estimation rate of a piecewise constant density is n�1=2.

It is noteworthy that this upper-bound depends on the partition only through its
cardinal and not on the thinness of its elements. It turns out that such a result may
be incorrect for larger values of ˇ. The following proposition is the only one in this
paper that does not suppose Assumption 1. It is proved in Section 5.5.

Proposition 4. Suppose that q is bounded and there exists � > 0 such that for all
x > 0, then Z �p

q.t � x/ �
p
q.t/

�2 dt � �2x2: (10)
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Consider n > 2=.25�2/ and the partition m of size 3 of Œ0; 1� defined by

m D
®�
0; 1=.�

p
50n/

�
;
�
1=.�
p
50n/; 2=.�

p
50n/

�
;
�
2=.�
p
50n/; 1

�¯
:

Then,
inf
yf

sup
f02Fm.2/

E
�
d1.f0; yf /

�
� 0:14min

®
1; 1=kqk1

¯
;

where the infimum is taken over all possible estimators of f0.

The assumption in this proposition requires that
p
q is sufficiently regular, see [22,

Chapter 1, Theorem 7.6]. For example, the Laplace distribution satisfies (10) with
�2 D 1=4. This result entails that consistent estimation is not possible uniformly
over Fm.2/ provided the partition contains small elements. Note that it does not apply
when ˇ < 1=2 as q must be bounded. Thereby, what happens when ˇ < 1=2 can be
quite different from the general case.

2.5. Estimation of a non-increasing density

The previous approach can also be used to establish the minimax rate of a monotone
density. Consider the class D composed of densities bounded from above by 1 and
whose restriction to Œ0; 1� is non-increasing. It follows from [5] that there exists for
all N � 1 a partition m of size N such that

sup
f02D

d1.f0;Fm/ � C=N;

where C is a universal constant. We therefore deduce from (8) and an adequate choice
of N ,

sup
f02D

E
�
d1.f0; yfm/

�
� cn�1=.2ˇC3/;

where c depends on �1; �2; ˇ only. The proposition below, to be proved in Section 5.6,
shows that this rate is optimal:

Proposition 5. Suppose Assumption 1 is met and that there exist �01, �02, �03 such that
for all t 2 R,

jq?.t/j�2 � �01 C �
0
2jt j

2ˇ and j.q?/0.t/j2 � �03jt j
�2ˇ�2;

where .q?/0 denotes the derivative of q?. Then, there exists c depending only on q
such that

inf
yf

sup
f02D

E
�
d1.f0; yf /

�
� cn�1=.2ˇC3/;

where the infimum is taken over all possible estimators yf of f0.
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3. Non-asymptotic risk bounds

We propose below a multi-purpose estimation procedure that leads to more general
results than those displayed in Section 2. For the ease of exposition, we concentrate
our attention on the results and defer the presentation of the procedure to Section 4.

3.1. Assumption and main result

In the following, F denotes a collection of non-negative and integrable maps vanishing
outside Œ0; 1� and given by the statistician. This collection can be seen as a translation
of the a priori available knowledge on f0. It is assumed to satisfy the condition below:

Assumption 2. Every f 2 F may be associated to an integer df such that the follow-
ing assertion holds true: for all g 2 F, the set

Œf > g� D
®
x 2 Œ0; 1�; f .x/ > g.x/

¯
is a union of at most min¹df ; dgº intervals. Moreover, there exists an at most count-
able collection xF � F such that: for all f 2 F and " > 0, there exists f 0 2 xF satisfying
d1.f; f

0/ � " and df 0 � df .

Under this assumption, it is possible to design an estimator yf (defined in Sec-
tion 4) whose performances are given by the following theorem.

Theorem 6. Let F be a model fulfilling Assumption 2. Then, there exists an estima-
tor yf satisfying

E
�
d1.f0; yf /

�
� 5 inf

f 2F

²
d1.f0; f /C c

s
kf0 � qk1

.�1df C cˇ�2d
1C2ˇ

f
/ log.ndf /

n
C
1

n

³
: (11)

In the above inequality, c is a universal constant and cˇ only depends on ˇ.

In order to keep this paper to a reasonable size, we illustrate this risk bound by
giving only three examples. Other examples are covered in the preprint version of this
manuscript [25].

3.2. Estimation of a piecewise constant density

We start by revisiting the problem of estimating a piecewise constant function. In Sec-
tion 2.4, we assumed that the density was piecewise constant on a known partition m,
which led to a minimax bound on Fm.M/. The above theorem allows us to generalize
this result by no longer assuming that the partition is known.
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To be a little more precise, define the collection Mr gathering all the partitions m
of the form

m D
®
Œ0; x1�; .x1; x2�; .x2; x3�; : : : ; .xr�1; 1�

¯
; (12)

where x1 < x2 < � � � < xr�1 are r � 1 real numbers (with the convention that m D
¹Œ0; 1�º when r D 1). Set,

Fr.M/ D
[
m2Mr

Fm.M/; Fr D
[
M>0

Fr.M/:

We may check that Assumption 2 is fulfilled with FD Fr , df D 2r . Theorem 6 hence
gives an estimator yf such that: for all M > 0 and n large enough,

sup
f02Fr .M/

E
�
d1.f0; yf /

�
� cM 1=2 r

1=2Cˇ log1=2.rn/
n1=2

:

The term c depends on �1; �2; ˇ only. If we put aside the logarithmic factor, we
observe that the upper-bound coincides with the one obtained for the histogram esti-
mator yfm on the much smaller class Fm.M/. The estimator yf , however, does not
require the knowledge of m and is therefore adaptive. The logarithmic factor is most
likely superfluous even though a logarithmic term is involved in the minimax bounds
on Fr in direct estimation under the Hellinger and L2 losses, see [8].

3.3. Estimation of a unimodal density

The histogram approach leads to optimal rates when the density is non-increasing and
bounded. It can easily be adapted to estimate a unimodal density when the mode is
known. When the mode is unknown, Theorem 6 can be used instead.

We introduce the collection

U D
®
f; f 1Œ0;1� D f11Œ0;x� C f21.x;1�;where f1 is non-decreasing on Œ0; x�,

where f2 is non-increasing on .x; 1�, and where x 2 .0; 1/
¯

(13)

composed of maps whose restriction to Œ0; 1� is unimodal.
We define for all functions f and all intervals I ,

VI .f / D sup
a;b2I

jf .b/ � f .a/j: (14)

We then set for all f 2 U,

L1.f / D inf
x2.0;1/;

f1;f2 such that
f 1Œ0;1�Df11Œ0;x�Cf21.x;1�

®
log1=2

�
1C xVŒ0;x�.f1/

�
C log1=2

�
1C .1 � x/V.x;1�.f2/

�¯2
:
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Proposition 3 of [1] shows that Assumption 2 is fulfilled for the set

F D

1[
rD1

U \ Fr (15)

with df proportional to r when f 2 U \ Fr . Theorem 6 can therefore be applied
to define an estimator yf . The main properties of this estimator are stated in the
corollary below whose proof ensues from elementary approximation results (see [25,
Appendix C], for instance).

Corollary 1. There exists an estimator yf satisfying for all M;L > 0, and n large
enough,

sup
f02U;

L1.f0/�L; kf0�qk1�M

E
�
d1.f0; yf /

�
� cL.2ˇC1/=.2ˇC3/

�
M

logn
n

�1=.2ˇC3/
:

Moreover, the same estimator satisfies for all M; r > 0, and n large enough,

sup
f01Œ0;1�2U\Fr ;

kf0�qk1�M

E
�
d1.f0; yf /

�
� c

s
M
r1C2ˇ log.rn/

n
:

In the above inequalities, c depends on �1; �2; ˇ only.

We thus get the same rate of convergence (up to log factors) as the one which could
be reached by a histogram estimator (which however requires the a priori knowledge
of the mode). The second inequality shows that the rate of the estimator is much better
when the density is, in reality, piecewise constant. This phenomenon is fully auto-
matic and also appears for some other estimators, such as, for instance the Grenander
estimator in the direct setting, or the least squares estimator in isotonic regression.

3.4. Estimation of a concave density

We now consider stronger assumptions on the shape of f0 in order to get faster rates
of convergence.

We define the collection C gathering all the densities whose restriction to Œ0; 1� is
concave. A function f in C is derivable on both the left and right-hand sides. Such a
derivative (on the right or the left, according to the reader’s choice) is denoted as f 0.
Then, we set

L2.f / D log2
�
1C

q
V.0;1/.f 0/

�
:

We define for r � 1, the collection

Ar D

²X
I2m

fI1I ; where m 2Mr , and where fI is a non-negative affine function
³



C. Marteau and M. Sart 62

composed of piecewise affine functions. It follows from Proposition 5 of [1] that the
set F defined as

F D

1[
rD1

.C \Ar/; (16)

satisfies Assumption 2 with df proportional to r when f 2 C \Ar .
We may thus apply Theorem 6 to this model. By using suitable approximation

results, see [25, Appendix C], we deduce:

Corollary 2. There exists an estimator yf satisfying for all M;L > 0, and n large
enough,

sup
f02C ;

L2.f0/�L; kf0�qk1�M

E
�
d1.f0; yf /

�
� cL.2ˇC1/=.2ˇC5/

�
M

logn
n

�2=.2ˇC5/
;

where c depends on �1; �2; ˇ only.

The convergence rate of our estimator is therefore faster under a concavity con-
straint than under a monotonicity constraint. Although the corollary assumes that f0
is concave, the same result can be established when f0 is convex. We now claim that
the above rate is optimal, within a logarithmic factor. We indeed show in Section 5.7:

Proposition 7. Suppose Assumption 1 is met and that there exist �01, �02, �03 such that
for all t 2 R,

jq?.t/j�2 � �01 C �
0
2jt j

2ˇ and j.q?/0.t/j2 � �03jt j
�2ˇ�2;

where .q?/0 is the derivative of q?. Then, there exists c depending only on q such that
for n large enough,

inf
yf

sup
f02C

L2.f0/�2; kf0k1�2

E
�
d1.f0; yf /

�
� c.1=n/2=.2ˇC5/;

where the infimum is taken over all possible estimators yf of f0.

4. Estimation procedure

This section is devoted to the construction of the estimator yf 2F leading to the results
displayed in Theorem 6.
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4.1. Probability estimators

In Section 2.2, we proposed simple estimators Zn.I / of P .X 2 I /. Unfortunately,
the only deviations bounds that can be established for these quantities come from
Chebyshev inequality (as Z.I / may not admit moments of order larger than 2). Such
bounds are too rough to be used in the construction of our estimator yf of f0. This
is why we propose in the following new probability estimators for which uniform
bounds in deviation can be proved. Their constructions involve different steps.

Step 1. We consider an interval I of Œ0; 1� and begin by defining a median of means
estimator of the probability P .X 2 I /. We refer, e.g., to [18] for more details regard-
ing this approach.

Let ı > 0 be a parameter whose value will be specified later on. When either
ı � n � 1 or jI j D 0, we set yZı.I / D 0. Otherwise, we split the data .Y1; : : : ; Yn/
into r 2 .ı; ı C 1� parts b1; : : : ; br . Each part should be approximately of the same
size and more precisely such that jbkj 2 .n=r; n=r C 1�. For each k 2 ¹1; : : : ; rº, we
define the empirical mean based on the observations in the k-th block only:

Zbk .I / D
1

2�jbkj

X
Yj2bk

�?I .Yj /:

We then define yZı.I / as any empirical median of ¹Zb1.I /; : : : ; Zbr .I /º, that is as
any real number such thatˇ̌®

k 2 ¹1; : : : ; rº; Zbk .I / �
yZı.I /

¯ˇ̌
D
ˇ̌®
k 2 ¹1; : : : ; rº; Zbk .I / �

yZı.I /
¯ˇ̌
:

Step 2. We broaden the previous definition of yZı.I / to unions I of intervals. In the
sequel, we denote 	1 D [

1
dD1

	d and the closure of a set I by xI .
Every union of intervals I 2 	1 can be written as xI D

SdI
jD1
xIj where dI 2 N?

and the Ij are intervals such that xIj \ xIj 0 D ; for all j ¤ j 0. We stress that dI and
the intervals xIj are defined in a unique way. Due to the additivity of measures, it is
then natural to set

yZı.I / D

dIX
jD1

yZı.xIj /:

Note that this definition is coherent with the first step as yZı.I / D yZı.xI / when I is
an interval (in which case dI D 1).

Step 3. One may already show that each estimator yZı.I / is close to P .X 2 I / with
high probability. However, we need this result to be true uniformly for all I 2 	1.
Hence, we add a technical discretization step.
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For any d; j 2 N?, we introduce the grid

Gd;j D
®
k2�j =d; k 2 ¹0; : : : ; d2j º

¯
� Œ0; 1�;

and define the set 	d;j � 	d of unions of at most d intervals whose endpoints lie
in Gd;j . For all union of intervals I 2	1, let �j .I / be the largest set of 	dI ;j included
in I . If such set does not exist, �j .I / D ;.

Consider, � � 1 and ıj .I / D 2 log.2jdI / C 2 log.1 C dI2jC1/ for all .I; j / 2
	1 �N?. We define for all I 2 	1, our final estimator yZn;�.I / of P .X 2 I / by

yZn;�.I / D yZ�Cı1.I /.�1.I //C

1X
jD1

yZ�Cıj .I /.�jC1.I / n �j .I //:

This sum is composed of a finite number of terms as � C ıj .I / exceeds n � 1 for j
large enough. We prove in Section 5.8 the following result.

Proposition 8. Consider � � 1. Then, there is an event of probability lower bounded
by 1 � e�� on which: for all I 2 	1,

ˇ̌
yZn;�.I / � P .X 2 I /

ˇ̌
� C

s
kf0 � qk1.�1dI C cˇ�2d

2ˇC1
I /.� C log dI /

n
:

In the above inequality, C denotes a universal constant and cˇ only depends on ˇ.

4.2. Estimation procedure

We consider a collection F of non-negative and integrable maps compactly supported
on Œ0; 1� satisfying Assumption 2 and propose a theoretical procedure in line with the
combinatorial method [19] to define an estimator yf satisfying (11). Examples of such
collections are given in Sections 3.2, 3.3 and 3.4.

We define for d � 1, the set x	d � 	d of unions of at most d intervals of Œ0; 1�
with endpoints in Q. For any � � 1, we introduce the criterion 
�.�/ defined for f 2 F
by


�.f / D sup
I2x	df

ˇ̌̌̌Z
I

f � yZn;�.I /

ˇ̌̌̌
:

Then, we consider an estimator zf 2 F satisfying


�. zf / � inf
f 2F


�.f /C 1=n; (17)

and set
yf D min

²
1;

�Z
zf

��1 ³
zf : (18)
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Assumption 2 asserts that there is a dense and at most countable suitable subset xF
of F. The lemma below ensures that we may always define zf as an element of this
set xF to avoid possible measurability issues.

Lemma 1. There exists an estimator zf 2 xF satisfying (17).

Note that there is no uniqueness concerning the way where our estimator is defined.
However, Theorem 6 applies for any of the estimators yf defined above with � D logn.
It is proved in Section 5.10.

Let us mention that there are algorithmic issues concerning the computation of
this estimator that are far beyond the scope of this paper. This is the counterpart to get
a versatile procedure. This weakness also appears for instance in the original combi-
natorial method of [19], in the procedures based on robust tests, see [6], and in the
�-estimation procedure [2]. As it is said in the introduction of [7], we cannot have our
cake and eat it.

5. Proofs

5.1. Sketch of the proof of Proposition 1

Define for t 2 R,

I.t/ D

Z 1

�1

jxjˇ�1 eitx dx:

Then elementary computations give

jt jˇI.t/ D 2

Z jt j
0

yˇ�1 cos.y/ dy:

We use classical results on Fourier cosine transforms to get

jt jˇI.t/! 2 cos.�ˇ=2/�.ˇ/ as jt j ! C1.

In the above equality, �.�/ denotes the Gamma function. In particular, the limit is
finite and non-zero.

Setting  .x/ D jxjˇ�1.'.x/ � '.0// for all x 2 R, we can writeZ 1

�1

q.x/eitx dx D '.0/I.t/C
Z 1

�1

 .x/eitx dx:

Note that  is bounded on Œ�1; 1�. Moreover,  admits a derivative  0 on R n ¹0º

such that

j 0.x/j � .1 � ˇ/jxjˇ�2
Z
Œ0;jxj�

j'0.t/j dt C jxjˇ�1 j'0.x/j

� 2jxjˇ�1k'0k1;
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where '0 is the derivative of '. Therefore,  0 is integrable on Œ�1; 1�. Integration by
parts then shows Z 1

�1

 .x/eitx dx D O.1=t/ as jt j ! C1.

Since '0 is integrable, ' is bounded and q.x/ tends to 0 when jxj ! C1. We also
have,Z

.�1;�1�[Œ1;C1/

jq0.x/j � .1 � ˇ/

Z
.�1;�1�[Œ1;C1/

jxjˇ�2 j'.x/j dx

C

Z
.�1;�1�[Œ1;C1/

jxjˇ�1 j'0.x/j dx

� .1 � ˇ/

Z
.�1;�1�[Œ1;C1/

jxjˇ�2 j'.x/j dx

C

sZ
.�1;�1�[Œ1;C1/

jxj2ˇ�2 dx
Z
j'0.x/j2 dx:

Since '0 is bounded and integrable, it belongs to L2. The above integral is hence
finite. We deduce as before,Z

.�1;�1�[Œ1;C1/

q.x/eitx dx D O.1=t/:

Hence,
q?.t/ D '.0/I.t/CO.1=t/ as jt j ! C1;

from which we deduce that .jt jˇ jq?.t/j/�1 admits a finite limit when jt j ! C1.
As q? does not vanish and is continuous, jq?.t/j�1 is bounded above on Œ�1; 1� and
.jt jˇ jq?.t/j/�1 is bounded above on .�1;�1� [ Œ1;C1/. This ends the proof.

5.2. Proof of (3) when f0 62 L2.R/

Without loss of generality, we may suppose that I is an interval say I D Œa; b�.
Let K be a density belonging to L2.R/, h > 0 and Kh.�/ D .1=h/K.�=h/. Then,
if F0 denotes the cumulative distribution function of X ,Z

1I .t/.f0 �Kh/.t/ dt �
Z

1I .t/f0.t/ dt

D

Z
K.x/

�
F0.b � xh/ � F0.b/C F0.a/ � F0.a � xh/

�
dx:

By using the dominated convergence theorem, we deduce

lim
h!0

Z
1I .t/.f0 �Kh/.t/ dt �

Z
1I .t/f0.t/ dt D 0:
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Yet, f0 �Kh 2 L2.R/ as it is the case for Kh, and by Plancherel isometry,

lim
h!0

1

2�

Z
1?I .t/f

?
0 .t/K

?
h .t/ dt D

Z
1I .t/f0.t/ dt:

Note that
1?I .t/f

?
0 .t/ D

�
1?I .t/Œq

?.t/��1
�
�
�
q?.t/f ?0 .t/

�
:

This map is a product of two square integrable functions (q?f ?0 belongs to L2.R/

as q � f0 does since this density is bounded) and is therefore integrable. We may thus
use limh!0K

?
h
.t/ D K?.0/ D 1 and the dominated convergence theorem to getZ

1?I .t/f
?
0 .t/ dt D

Z
1I .t/f0.t/ dt

as wished.

5.3. Proof of Proposition 2

For any I 2 	d , we can always write I D [kjD1Ij , where k � d and where the Ij are
disjoint intervals of Œ0; 1�. Then,

E
�
.Z.I //2

�
D

1

4�2

Z
.�?I .y//

2.f0 � q/.y/ dy

�
kf0 � qk1

4�2

Z
.�?I .y//

2 dy:

We successively use the Fourier–Plancherel theorem and Cauchy–Schwarz inequality
to get

E
�
.Z.I //2

�
�
kf0 � qk1

2�

Z ˇ̌̌1?I .t/
q?.t/

ˇ̌̌2
dt

D
kf0 � qk1

2�

Z ˇ̌̌ kX
jD1

1?Ij .t/

q?.t/

ˇ̌̌2
dt

�
kf0 � qk1

2�
� k �

kX
jD1

Z ˇ̌̌1?Ij .t/
q?.t/

ˇ̌̌2
dt:

For any j 2 ¹1; : : : ; kº and t 2 R, we have

j1?Ij .t/j D j1
?
Ij
.t/j D 2

j sin.t jIj j=2/j
jt j
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since Ij is an interval of finite length jIj j. Hence, thanks to Assumption 1,Z ˇ̌̌̌1?Ij .t/
q?.t/

ˇ̌̌̌2
dt D 4

Z
sin2.t jIj j=2/
t2jq?.t/j2

dt

� 4

Z
sin2.t jIj j=2/

t2

�
�1 C �2jt j

2ˇ
�

dt

� 4�1
�
jIj j=2

� Z sin2.t/
t2

dt C 4�2
�
jIj j=2

�1�2ˇ Z sin2.t/jt j2ˇ�2 dt:

By computing these integrals,Z ˇ̌̌̌1?Ij .t/
q?.t/

ˇ̌̌̌2
dt � 2�1�jIj j C 4�2

sin.�ˇ/�.2ˇ/
1 � 2ˇ

jIj j
1�2ˇ ;

where �.�/ denotes the Gamma function. Finally, we get

EŒ.Z.I //2� �
kf0 � qk1

2�
� k �

�
2�1�

kX
jD1

jIj jC
4�2 sin.�ˇ/�.2ˇ/

1 � 2ˇ

kX
jD1

jIj j
1�2ˇ

�
;

�
kf0 � qk1

2�
� d �

�
2�1�jI jC

4�2 sin.�ˇ/�.2ˇ/
1 � 2ˇ

d2ˇ jI j1�2ˇ
�
;

where we have used k � d ,
Pk
jD1 jIj j D jI j and the Hölder inequality (as ˇ < 1=2).

5.4. Proof of Proposition 3

Define
xfm D

X
I2m

P .X 2 I /

jI j
1I :

For all I 2 m, and ˛ 2 R,Z
I

ˇ̌̌̌
f0 �

1

jI j

Z
I

f0

ˇ̌̌̌
�

Z
I

jf0 � ˛j C

ˇ̌̌̌
˛jI j �

Z
I

f0

ˇ̌̌̌
D

Z
I

jf0 � ˛j C

ˇ̌̌̌Z
I

.˛ � f0/

ˇ̌̌̌
� 2

Z
I

jf0 � ˛j:

Therefore,

d1.f0; xfm/ D
X
I2m

Z
I

ˇ̌̌̌
f0 �

1

jI j

Z
I

f0

ˇ̌̌̌
� 2d1.f0;Fm/:
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Moreover,

E
�
d1
�
yfm; xfm

��
D

X
I2m

E
�
jZn.I / � P .X 2 I /j

�
�

X
I2m

q
E
�
jZn.I / � P .X 2 I /j2

�
�

1

n1=2

X
I2m

q
E
�
.Z.I //2

�
:

By using Proposition 2 and the Hölder inequality (as ˇ < 1=2),

E
�
d1
�
yfm; xfm

��
�
kf0 � qk

1=2
1

n1=2

�
�
1=2
1

X
I2m

jI j1=2 C c
1=2

ˇ
�
1=2
2

X
I2m

jI j1=2�ˇ
�

�
kf0 � qk

1=2
1

n1=2

�
�
1=2
1 jmj

1=2
C c

1=2

ˇ
�
1=2
2 jmj

1=2Cˇ
�
:

The proof then follows from the triangle inequality

E
�
d1
�
f0; yfm

��
� d1

�
f0; xfm

�
CE

�
d1
�
yfm; xfm

��
:

5.5. Proof of Proposition 4

Let h be the Hellinger distance defined for two densities f1; f2 by

h2.f1; f2/ D
1

2

Z
R

�p
f1.x/ �

p
f2.x/

�2 dx:

It follows from standard arguments (see, e.g., [31, Chapter 2]) that

inf
yf

sup
f02Fm.2/

E
�
d1.f0; yf /

�
�
1

2
sup

f1;f22Fm.2/

d1.f1; f2/
�
1 �
p
2nh.f1 � q; f2 � q/

�
:

(19)
Consider p D min¹1; 1=kqk1º, a D 50�2, and set

f1 D p
p
an1Œ0;1=

p
an/ C .1 � p/1Œ0;1�;

f2 D
p
p
an

2
1Œ0;2=

p
an/ C .1 � p/1Œ0;1�:

Young’s Inequality implies kf1 � qk1 � pkqk1 C 1 � p � 2: The same result is
true for f2 � q. Therefore, f1 and f2 both belong to Fm.2/.

We now bound h.f1 � q; f2 � q/. We have,

f2 � q.x/ � f1 � q.x/ D
p

2

Z 1

0

�
q
�
x � .uC 1/=

p
an
�
� q

�
x � u=

p
an
��

du:
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We introduce for x 2 R,

'2.x/ D

Z 1

0

�q
q
�
x � .uC 1/=

p
an
�
�

q
q
�
x � u=

p
an
� �2

du;

and decompose f2 � q.x/ � f1 � q.x/ as

f2 � q.x/ � f1 � q.x/ D
p

2
'2.x/

C p

Z 1

0

�q
q
�
x � .uC 1/=

p
an
�
�

q
q
�
x � u=

p
an
� �q

q
�
x � u=

p
an
�

du:

We apply the Cauchy–Schwarz inequality:

jf2 � q.x/ � f1 � q.x/j �
p

2
'2.x/C p'.x/

sZ 1

0

q
�
x � u=

p
an
�

du

�
p

2
'2.x/C '.x/

p
p
p
f1 � q.x/:

Let
X D

®
x 2 R; f1 � q.x/C f2 � q.x/ � '

2.x/
¯
:

We deduce

2h2.f1 � q; f2 � q/ �

Z
X

jf1 � q � f2 � qj C

Z
Xc

.f1 � q � f2 � q/
2

f1 � q C f2 � q

�

Z
X

'2 C
1

2

Z
Xc

p2'4 C 4p'2f1 � q

f1 � q C f2 � q

�

Z
X

'2 C
5

2

Z
Xc

'2

�
5

2

Z
'2:

Yet, Z
'2 � sup

u2Œ0;1�

Z �q
q
�
x � .uC 1/=

p
an
�
�

q
q
�
x � u=

p
an
� �2

dx

� 2 sup
u2Œ0;1�

�Z �q
q
�
x � .uC 1/=

p
an
�
�
p
q.x/

�2
dx

C

Z �q
q
�
x � u=

p
an
�
�
p
q.x/

�2
dx
�

� 10�2=.an/

thanks to (10). We use the definition of a to get 2nh2.f1; f2/ � 1=2. We conclude by
using (19) and by remarking that d1.f1; f2/ D p.
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5.6. Proof of Proposition 5

The arguments we propose are inspired by the lower minimax bound of [4] for non-
increasing functions in the noise free case. Let p� 1whose value will be made precise
at the end of the proof. We define

" D
log.3=2/

p
� 1; u D Œ.1C "/p � 1��1; and � D

1C "

u.1C "=2/
:

For any j 2 ¹1; : : : ; pº, we introduce xj D uŒ.1 C "/j � 1�, Ij D Œxj�1; xj / and
j̀ D xj � xj�1. Remark that the intervals Ij are disjoint and included in Œ0; 1�.

Now, for any j 2 ¹1; : : : ; pº, define the functions fj and gj as

fj D �.1C "/
�j .1C "=2/1Œxj�1;xj /;

gj D �.1C "/
�jC11Œxj�1;.xj�1Cxj /=2� C �.1C "/

�j 1..xj�1Cxj /=2;xj /:

We denote by ' the Cauchy density, introduce for all � 2 ¹0; 1ºp ,

�� D .1 � log.3=2//' C
pX
jD1

�
�jfj C .1 � �j /gj

�
;

and gather all these functions into a set F D ¹�� ; � 2 ¹0; 1º
pº. We begin by estab-

lishing the following inequality:

Claim 1. We have F � D . Moreover, for any j 2 ¹1; : : : ; pº,

d1.fj ; gj / � "
2=3:

Proof. For any j 2 ¹1; : : : ; pº, we observe that the functions fj and gj share the
following properties:

• fj and gj are piecewise constant functions, compactly supported on Ij ;

• for all x 2 Ij and y 2 Ij�1,

max¹fj .x/; gj .x/º � min¹fj�1.y/; gj�1.y/ºI (20)

•
R
fj D

R
gj D ";

• kf1k1 � 1=2 and kg1k1 � 1=2.

We deduce that �� is a density, non-increasing on Œ0; 1�, and bounded by 1. Moreover,

d1.fj ; gj / D j̀�.1C "/
�j "

2
D "2 �

1

2C "
�
1

3
"2:
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In the sequel, to underline the dependency of the density f0 in the results, we add
a subscript to the expectation. More precisely, Ef corresponds to the expectation with
respect to the variables Xi which are assumed to be of density f . We have for all
estimators yf ,

sup
f02D

Ef0
�
d1
�
f0; yf

��
�

1

2p

X
�2¹0;1ºp

E��
�
d1
�
f0; yf

��
�

1

2p

X
�2¹0;1ºp

pX
jD1

E��
�
d1
�
yf 1Ij ; ��1Ij

��
�
1

2
inf

�2¹0;1ºp

pX
jD1

°
E��j;1

�
d1
�
yf 1Ij ;

�
.1 � log.3=2//' C fj

�
1Ij
��

C E��j;0
�
d1
�
yf 1Ij ; ..1 � log.3=2//' C gj /1Ij

��±
;

where for any � 2 ¹0; 1ºp and k 2 ¹0; 1º,

�j;k D .�1; : : : ; �j�1; k; �jC1; : : : ; �p/:

Then, using the triangle inequality,

sup
f02D

Ef0
�
d1
�
f0; yf

��
�
1

2
inf

�2¹0;1ºp

pX
jD1

d1.fj ; gj /

Z
Rn

min
� nY
kD1

��j;1 � q.xk/;

nY
kD1

��j;0 � q.xk/

�
dx:

Using Claim 1, we get

sup
f02D

Ef0
�
d1
�
f0; yf

��
�
"2

6
inf

�2¹0;1ºp

pX
jD1

Z
Rn

min
� nY
kD1

��j;1 � q.xk/;

nY
kD1

��j;0 � q.xk/

�
dx: (21)

For any j 2¹1; : : : ;pº, we recall that the �2 divergence between ��j;1 � q and ��j;0 � q
is defined as

�2�.j / D

Z
.��j;1 � q � ��j;0 � q/

2

��j;0 � q
:

It follows from standard results about distance comparisons thatZ
Rn

min
� nY
kD1

��j;1 � q.xk/;

nY
kD1

��j;0 � q.xk/

�
dx � 1 �

�
.1C �2�.j //

n
� 1

�1=2
:

(22)
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We refer to Chapter 2 of [31] for the proof of this inequality. We use the claim below
whose proof is delayed after the present proof.

Claim 2. There exists c depending only on q such that

sup
1�j�p

�2�.j / � c.1=p/
2ˇC3:

By choosing p as the smallest integer larger than .2cn/1=.2ˇC3/, �2�.j /� 1=.2n/.
We now put (21), (22) and the elementary inequality .1C 1=.2n//n � e1=2 together
to get

sup
f02D

Ef0
�
d1
�
f0; yf

��
�
1

6

�
1 �

p
e1=2 � 1

�
"2p;

which gives the desired result.

Proof of Claim 2. Consider some a such that
R a
�a
q.y/ dy > 0. For all x 2 R, j 2

¹1; : : : ; pº and � 2 ¹0; 1ºp ,

��j;0 � q.x/ � .1 � log.3=2//' � q.x/;

�
1 � log.3=2/

�

Z a

�a

q.y/

1C .x � y/2
dy

�
1 � log.3=2/

�

Z a

�a

q.y/

1C 2x2 C 2a2
dy:

There exists therefore c0 (depending only on a and
R a
�a
q.y/ dy and hence of q) such

that
��j;0 � q.x/ �

1

c0.1C x2/
:

Therefore, for all j 2 ¹1; : : : ; pº, � 2 ¹0; 1ºp

�2�.j / � c0

�Z �
��j;1 � q.x/ � ��j;0 � q.x/

�2 dx

C

Z
x2
�
��j;1 � q.x/ � ��j;0 � q.x/

�2 dx
�
:

For any j 2 ¹1; : : : ; pº, let  j be the map defined as

 j .t/ D �
?
�j;1
.t/ � �?�j;0.t/

D f ?j .t/ � g
?
j .t/

D �"
sin.t j̀ =4/
t.1C "/j

�
eit.xjCmj /=2 � eit.xj�1Cmj /=2

�
;
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where mj D .xj�1 C xj /=2 and j̀ D xj � xj�1 D u.1C "/
j�1 ". Then, by using

Plancherel isometry,

�2�.j / �
c0

2�

�Z
j j q

?
j
2
C

Z
j 0j q

?
C  j .q

?/0j2
�

�
c0

2�

�Z
j j q

?
j
2
C 2

Z
j j .q

?/0j2 C 2

Z
j 0j q

?
j
2

�
: (23)

Moreover, Z
j j q

?
j
2
�

�2"2

.1C "/2j

Z ˇ̌̌̌
sin.t j̀ =4/

t

ˇ̌̌̌2
jq?.t/j2 dt:

Elementary computations entailZ
j j q

?
j
2
� c1�

2.1C "/�2j "2
�
`2j C `

2ˇC1
j

�
� c01�

2.1C "/�2j "2`
2ˇC1
j

as ˇ < 1=2. Here, c1; c01 depend on �01, �02 and ˇ only. Likewise,Z
j j .q

?/0j2 � c2�
2.1C "/�2j "2`

2ˇC3
j ;Z

j 0j q
?
j
2
� c3�

2.1C "/�2j "2`
2ˇC1
j ;

where c2 depends on �03; ˇ only and where c3 depends on �01; �
0
2; ˇ only.

We finally deduce from (23) that

�2�.j / � c4�
2.1C "/�2j "2`

2ˇC1
j � c5.1=p/

2ˇC3;

where c5 depends on q only.

5.7. Proof of Proposition 7

We use here the same notation as those introduced in the proof of Proposition 5, except
for p (which is an integer whose value, defined later on, will be different from the one
in the previous proof). We set

x��1 D
�
1C

"

2

�
�
1

p

pX
jD1

�
u2

2
".1C "/j�2 C .1 � xj /

u

1C "

�
:

We also define for x 2 R and j 2 ¹1; : : : ; pº:

xfj D x�.1C "/
�j .1C "=2/1Œxj�1;xj /;

xgj D x�.1C "/
�jC11Œxj�1;.xj�1Cxj /=2� C

x�.1C "/�j 1..xj�1Cxj /=2;xj /;
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Fj .x/ D

Z x

�1

xfj .y/ dy and Gj .x/ D

Z x

�1

xgj .y/ dy:

For � 2 ¹0; 1ºp , we set

x'�.x/ D

�
1 � log.3=2/ �

x�u2"3

8.1C "/2

pX
jD1

.1C "/j .1 � �j /

��
1=
p
3
�
'
�
x=
p
3
�

C

pX
jD1

�
�jFj .x/C .1 � �j /Gj .x/

�
1Œ0;1�.x/:

We gather these functions x'� into the set H D ¹x'� ; � 2 ¹0; 1º
pº and prove the fol-

lowing claim.

Claim 3. We have H � C . Moreover, any function f 2 H satisfies kf k1 � 2,
kf 01.0;1/k1 � 2, where f 0 is the derivative of f . For all j 2 ¹1; : : : ; pº,

d1.Fj ; Gj / � 0:3"
3:

Proof of Claim 3. Elementary but tedious computations give

x��1 D
.1C "=2/u

2.1C "/ log.3=2/

�
2 log.3=2/.1C u/ � 2 � "

�
:

Moreover,

0:3 �
x�u2

8.1C "/2
�

x�u2

8.1C "/2
.1C "/p � 0:8: (24)

Note now that '.�=
p
3/ is concave on Œ0; 1� and

1 � log.3=2/ �
x�u2"3

8.1C "/2

pX
jD1

.1C "/j .1 � �j / � 1 � log.3=2/ � 0:8"3p > 0:

Moreover, for all x 2 Œ0; 1�,

x'�.x/ D

�
1 � log.3=2/ �

x�u2"3

8.1C "/2

pX
jD1

.1C "/j .1 � �j /

��
1=
p
3
�
'
�
x=
p
3
�

C

Z x

�1

pX
jD1

�
�j xfj .t/C .1 � �j /xgj .t/

�
dt:

As in (20),
max¹ xfj .x/; xgj .x/º � min¹ xfj�1.y/; xgj�1.y/º;

for all x 2 Ij and y 2 Ij�1. This implies that the sum in the integrate above is non-
increasing and that x'� is concave on Œ0;1�. Besides, the map in the integrate is bounded
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from above by x�. Some computations show that this quantity is not greater than 0:95.
In particular, x'� is differentiable on .0; 1/ and jx'0� j is bounded from above by a con-
stant smaller than 1:1. The mean value theorem implies that jx'�.x/j � 1:3 < 2 for all
x 2 Œ0; 1� and the same result is true for x 62 Œ0; 1�. Now,Z

Ij

Fj .x/ dx D x�.1C "/�j .1C "=2/
`2j

2
;

and Z 1

0

Fj .x/ dx D
Z
Ij

Fj .x/ dx C .1 � xj /Fj .xj /

D x�".1C "=2/

�
u2

2
".1C "/j�2 C .1 � xj /

u

1C "

�
:

Therefore,

pX
jD1

Z 1

0

Fj .x/ dx D x�".1C "=2/
pX
jD1

�
u2

2
".1C "/j�2 C .1 � xj /

u

1C "

�
D "p D log.3=2/: (25)

We define the triangle function �.x/ D .1 � jxj/1Œ�1;1�.x/ and remark that

Hj .x/ D Gj .x/ � Fj .x/ D
x�" j̀

4.1C "/j
�

�
2.x �mj /

j̀

�
: (26)

In particular, since Gj .x/ D Fj .x/ for all x 62 Œ0; 1�,Z
Œ0;1�

.Gj � Fj / D

Z
R
.Gj � Fj /

D

x�" j̀

4.1C "/j

Z
R
�

�
2.x �mj /

j̀

�
dx;

D

x�"`2j

8.1C "/j
;

D

x�u2

8
"3.1C "/j�2:

This result, combined with (25), entails that x'� is a density. It also gives as � � 0,

d1.Fj ; Gj / D
x�u2

8.1C "/2
.1C "/j "3 �

x�u2

8.1C "/2
"3 � 0:3"3:
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By using the usual techniques (see Section 5.6, for instance) we get for all estima-
tors yf ,

sup
f02C

L2.f0/�2; kf0k1�2

Ef0
�
d1
�
f0; yf

��
�
1

2
inf

�2¹0;1ºp

pX
jD1

�
Ex'�j;1

Z
Ij

j yf � x'�j;1 j C Ex'�j;0

Z
Ij

j yf � x'�j;0 j

�
�
1

2
inf

�2¹0;1ºp

pX
jD1

Z
Ij

jx'�j;1 � x'�j;0 j �
�
1 �

�
.1C x�2�.j //

n
� 1

�1=2�
; (27)

where

x�2�.j / D

Z
.x'�j;1 � q � x'�j;0 � q/

2

x'�j;0 � q
:

By using the triangle inequality,Z
Ij

jx'�j;1 � x'�j;0 j � d1.Fj ; Gj / �
x�u2"3

8.1C "/2
.1C "/j

Z
Ij

'

� 0:3"3 � 0:13
x�u2"3

8.1C "/2
.1C "/j j̀

� 0:3"3 � 0:13 � 0:8"4u.1C "/j�1:

By using " D log.3=2/=p, the definition of u, and elementary computations, we getZ
Ij

jx'�j;1 � x'�j;0 j � 0:15"
3:

We deduce from (27),

sup
f02C

L2.f0/�2; kf0k1�2

Ef0
�
d1
�
f0; yf

��
� 0:07"3 inf

�2¹0;1ºp

pX
jD1

�
1�

�
.1C x�2�.j //

n
� 1

�1=2�
:

We need the following result:

Claim 4. There exists c depending on q only such that: for all � 2 ¹0; 1ºp ,

sup
1�j�p

x�2�.j / � c.1=p/
2ˇC5:

By choosing p as the smallest integer than .2cn/1=.2ˇC5/, we get that x�2�.j /
becomes not larger than 1=.2n/. In particular,

sup
f02C

L2.f0/�2; kf0k1�2

Ef0
�
d1
�
f0; yf

��
� 0:07

�
1 �

p
e1=2 � 1

�
"3p;

which concludes the proof of Proposition 7.



C. Marteau and M. Sart 78

Sketch of the proof of Claim 4. It follows from the proof of Claim 2 that there is
some c0 depending only on q such that

x�2�.j / � c0

�Z �
x'�j;1 � q.x/ � x'�j;0 � q.x/

�2 dx

C

Z
x2
�
x'�j;1 � q.x/ � x'�j;0 � q.x/

�2 dx
�
:

Let x j be defined for j 2 ¹1; : : : ; pº and t 2 R by

x j .t/ D x'
?
�j;1
.t/ � x'?�j;0.t/;

D F ?j .t/ �G
?
j .t/C

x�u2"3

8
'?
�
t
p
3
�
.1C "/j�2:

Let � be the triangle function introduced in the proof of the preceding claim. Since
�?.t/ D 4 sin2.t=2/=t2 for all t 2 R, we deduce from (26)

x j .t/ D �
x�" j̀

4.1C "/j

�
�

�
2.: �mj /

j̀

��?
.t/C

x�u2"3

8
'?
�
t
p
3
�
.1C "/j�2;

D �
2x�"

.1C "/j
sin2.t j̀ =4/

t2
eitmj C

x�u2"3

8
e�
p
3jt j.1C "/j�2

D
2x�"

.1C "/j

�
�

sin2.t j̀ =4/
t2

eitmj C
`2j

16
e�
p
3jt j

�
:

As for (23),

x�2�.j / �
c0

2�

�Z
j x j q

?
j
2
C 2

Z
j x j .q

?/0j2 C 2

Z
j x 0j q

?
j
2

�
:

There exists C1 depending only on �01; �
0
2 such thatZ

j x j q
?
j
2
� C1

x�2"2

.1C "/2j

�Z �
sin.t j̀ =4/

t

�4
1

1C jt j2ˇ
dt C `4j

�
:

By noticing that x� � 0:95, j̀ � 3", ˇ < 1=2, we getZ
j x j q

?
j
2
� C 01"

2ˇC5;

where C 01 only depends on ˇ; �01; �
0
2. By doing quite similar computations, we obtainZ
j x j .q

?/0j2 � C2"
2ˇC5;Z

j x 0j q
?
j
2
� C3"

2ˇC5;
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where C2; C3 only depend on ˇ; �01; �
0
2; �
0
3. By gathering these results, we deduce

x�2�.j / � C
0"2ˇC5;

and it remains to say that " D log.3=2/=p.

5.8. Proof of Proposition 8

Claim 5. For all I 2 	d ,

P .X 2 I / �
q
kf0 � qk1

�
�1d jI j C cˇ�2d1C2ˇ jI j1�2ˇ

�
: (28)

Proof. We use Proposition 2 and Jensen’s inequality EŒZ.I /� �
p

EŒ.Z.I //2�.

Claim 6. For all ı > 0 and interval I 2 	1, the following assertion holds true on an
event of probability lower bounded by 1 � e�ı :

j yZı.I / � P .X 2 I /j � C

s
kf0 � qk1Œ�1jI j C cˇ�2jI j1�2ˇ �.1C ı/

n
: (29)

In this inequality, C is a universal constant and cˇ only depends on ˇ.

Proof. The proof is straightforward when jI j D 0. Suppose now that jI j > 0. When
ı < n� 1, this inequality comes from standard results about median of means estima-
tors, see [18, Section 4.1]. When ı is larger, yZı.I /D 0, and (29) ensues from (28).

Claim 7. For all � > 0, the following assertion holds true on an event of probability
lower bounded by 1 � e�� : for all d; j and closed interval I 2 	1 with endpoints
lying in Gd;j ,

j yZ�Cıd;j .I / � P .X 2 I /j � C

s
kf0 � qk1Œ�1jI j C cˇ�2jI j1�2ˇ �.� C 1C ıd;j /

n
;

(30)
where ıd;j D 2 log.jd/C 2 log.1C d2j /: In this inequality, C is a universal constant
and cˇ only depends on ˇ.

Proof. Let for all ı > 0 and interval I , E.ı; I / be the event on which (29) is true.
Let 	0

d;j
be the collection of closed intervals with endpoints in Gd;j . Then, (30) holds

true on
E D

\
.d;j /2.N?/2; I2	d;j

E.� C ıd;j ; I /:
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Moreover, Bonferroni’s inequality asserts

P .Ec/ �
X

.d;j /2.N?/2

j	0d;j jP
�
Ec.� C ıd;j ; I /

�
� e��

X
.d;j /2.N?/2

.1C d2j /2 e�2 log.jd/�2 log.1Cd2j /

� e�� :

Claim 8. For all � > 0, the following assertion holds true on an event of probability
lower bounded by 1 � e�� : for all d; j and I 2 	d;j ,

j yZ�Cıd;j .I / � P .X 2 I /j

� C

s
kf0 � qk1Œ�1d jI j C cˇ�2d1C2ˇ jI j1�2ˇ �.� C 1C ıd;j /

n
:

In this inequality, C is a universal constant and cˇ only depends on ˇ.

Proof. Let I 2 	d;j written as xI D [d
kD1
xIk such that xIk1 \ xIk2 D ; for all k1 ¤ k2.

Then,

j yZ�Cıd;j .I / � P .X 2 I /j �
dX
kD1

j yZ�Cıd;j .
xIk/ � P .X 2 xIk/j:

Note that each xIk belongs to the set 	0
d;j

defined in the preceding proof. Therefore,
on the event defined in the preceding claim,

j yZ�Cıd;j .I / � P .X 2 I /j

� C

r
kf0 � qk1.� C 1C ıd;j /

n

dX
kD1

q
�1jIkj C cˇ�2jIkj1�2ˇ :

We finally use Cauchy–Schwarz inequality and the Hölder inequality (as ˇ <1=2).

Claim 9. For all � > 0, the following assertion holds true on an event of probability
lower bounded by 1 � e�� : for all j and I 2 	1 with endpoints lying in G2dI ;j ,

j yZ�Cıj .I /.I / � P .X 2 I /j

� C

s
kf0 � qk1Œ�1dI jI j C cˇ�2d

1C2ˇ
I jI j1�2ˇ �.� C 1C ıj .I //

n
:

In this inequality, C is a universal constant and cˇ only depends on ˇ.

Proof. We apply the preceding claim, use that ıj .I /D ı2dI ;j and increase C , cˇ .
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Proof of Proposition 8. For all j and I 2 	1,

j�jC1.I / n �j .I /j � 2
�jC2

and �jC1.I / n �j .I / belongs to 	2dI ;j . The preceding claim then ensures thatˇ̌
yZ�Cıj .I /

�
�jC1.I / n �j .I /

�
� P

�
X 2 �jC1.I / n �j .I /

�ˇ̌
� C

s
kf0 � qk1.�1dI2

�j C cˇ�2d
1C2ˇ
I 2�.1�2ˇ/j /

n

�

q
� C 1C 2 log.2jdI /C 2 log.1C dI2jC1/

Therefore,

1X
jD1

ˇ̌
yZ�Cıj .I /

�
�jC1.I / n �j .I /

�
� P

�
X 2 �jC1.I / n �j .I /

�ˇ̌
� C 0

s
kf0 � qk1.�1dI C c

0
ˇ
�2d

2ˇC1
I /.� C log dI /

n
;

where C 0 is a universal constant and where c0
ˇ

depends on ˇ only. Since

P .X 2 I / D P
�
X 2 �1.I /

�
C

1X
jD1

P
�
X 2 �jC1.I / n �j .I /

�
;

we obtain

j yZn;�.I / � P .X 2 I /j � C 0

s
kf0 � qk1.�1dI C c

0
ˇ
�2d

2ˇC1
I /.� C log dI /

n

C
ˇ̌
yZ�Cı1.I /.�1.I // � P

�
X 2 �1.I /

�ˇ̌
:

We use Claim 9 again to bound the last term.

5.9. Proof of Lemma 1

Let f be an arbitrary function of F. Thanks to Assumption 2, there exists f 0 2 xF such
that df 0 � df , d1.f; f 0/ � 1=.2n/. Then,


�.f
0/ � sup

I2x	df 0

²ˇ̌̌̌Z
I

f 0 �

Z
I

f

ˇ̌̌̌
C

ˇ̌̌̌Z
I

f � yZn;�.I /

ˇ̌̌̌³
� d1.f; f

0/C 
�.f /

� 1=.2n/C 
�.f /:
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We thus deduce that

inf
f 2xF


�.f / � 1=.2n/C inf
f 2F


�.f /:

Therefore, any zf 2 xF such that


�. zf / � inf
f 2xF


�.f /C 1=.2n/

satisfies condition (17).

5.10. Proof of Theorem 6

Lemma 2. Let zf 2 F be an estimator satisfying (17). Then,

d1.f0; zf / � inf
f 2F

²
5d1.f0; f /C 4 sup

I2x	df

ˇ̌̌̌
yZn;�.I / �

Z
I

f0

ˇ̌̌̌
C 2=n

³
:

Proof. For all f 2 F, we define

I D Œf > zf � if
Z
Œ0;1�

f �

Z
Œ0;1�

zf , and

I D Œ zf > f � otherwise:

Note that I 2 	df \ 	d zf and

d1.f; zf / D 2

ˇ̌̌̌Z
I

f �

Z
I

zf

ˇ̌̌̌
�

ˇ̌̌̌Z
Œ0;1�

f �

Z
Œ0;1�

zf

ˇ̌̌̌
as f and zf vanish outside Œ0; 1�. There exists xI 2 x	df \ x	d zf included in I such that

d1.f; zf / � 2

ˇ̌̌̌Z
xI

f �

Z
xI

zf

ˇ̌̌̌
C 1=n

� 2

ˇ̌̌̌Z
xI

f � yZn;�.xI /

ˇ̌̌̌
C 2

ˇ̌̌̌
yZn;�.xI / �

Z
xI

zf

ˇ̌̌̌
C 1=n:

Therefore,

d1.f; zf / � 2
�.f /C 2
�. zf /C 1=n

� 4
�.f /C 2=n (31)
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by using (17). Now,


�.f / � sup
I2x	df

ˇ̌̌̌Z
I

f0 �

Z
I

f

ˇ̌̌̌
C sup
I2x	df

ˇ̌̌̌Z
I

f0 � yZn;�.I /

ˇ̌̌̌
� d1.f0; f /C sup

I2x	df

ˇ̌̌̌Z
I

f0 � yZn;�.I /

ˇ̌̌̌
:

This inequality, together with (31) entails that

d1.f; zf / � 4d1.f0; f /C 4 sup
I2x	df

ˇ̌̌̌Z
I

f0 � yZn;�.I /

ˇ̌̌̌
C 2=n:

We conclude using the triangle inequality

d1.f0; zf / � d1.f0; f /C d1.f; zf /:

Proof of Theorem 6. Elementary computations give d1.f0; yf / � d1.f0; zf /. We may
now combine Proposition 8 and Lemma 2 with � D log n to get an event En of prob-
ability 1 � 1=n such that

d1.f0; yf /1En

� inf
f 2F

´
5d1.f0; f /C c

s
kf0 � qk1

.�1df C cˇ�2d
1C2ˇ

f
/ log.ndf /

n

µ
C 2=n:

Yet,

E
�
d1.f0; yf /

�
� E

�
d1.f0; yf /1En

�
C E

�
d1.f0; yf /1Ecn

�
� E

�
d1.f0; yf /1En

�
C 2=n;

thanks to the inequality d1.f0; yf / �
R
Œ0;1�

f0 C
R
Œ0;1�

yf � 2.
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