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Phase transitions for support recovery under local differential
privacy
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Abstract. We address the problem of variable selection in a high-dimensional but sparse mean
model, under the additional constraint that only privatized data are available for inference. The
original data are vectors with independent entries having a symmetric, strongly log-concave
distribution on R. For this purpose, we adopt a recent generalization of classical minimax theory
to the framework of local ˛-differential privacy. We provide lower and upper bounds on the
rate of convergence for the expected Hamming loss over classes of at most s-sparse vectors
whose non-zero coordinates are separated from 0 by a constant a > 0. As corollaries, we derive
necessary and sufficient conditions (up to log factors) for exact recovery and for almost full
recovery. When we restrict our attention to non-interactive mechanisms that act independently
on each coordinate our lower bound shows that, contrary to the non-private setting, both exact
and almost full recovery are impossible whatever the value of a in the high-dimensional regime
such that n˛2=d2 . 1. However, in the regime n˛2=d2 � log.d/ we can exhibit a critical
value a� (up to a logarithmic factor) such that exact and almost full recovery are possible for
all a � a� and impossible for a � a�. We show that these results can be improved when
allowing for all non-interactive (that act globally on all coordinates) locally ˛-differentially
private mechanisms in the sense that phase transitions occur at lower levels.

1. Introduction

We consider the problem of distributed support recovery of the sparse mean of n inde-
pendent, identically distributed (i.i.d.) random vectors. Precisely, for i D 1; : : : ; n, the
i th data holder observes a random vector X i D .X ij /jD1;:::;d 2 Rd issued from a
rescaled and shifted vector � i : X i D � C �� i . The noise is supposed to have inde-
pendent coordinates � ij , j D 1; : : : ; d identically distributed with a symmetric and
strongly log-concave distribution of variance 1 (see Section 1.3 below for definition
and details). Note that the standard Gaussian distribution belongs to our model, but
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the symmetric and strongly log-concave probability density functions form a large
non-parametric class of functions.

The mean vector � is assumed to be .s; a/-sparse in the sense that � belongs to
one of the following sets:

‚C
d
.s; a/ D ¹� 2 Rd W there exists a set S � ¹1; : : : ; dº with at most s elements

such that �j � a for all j 2 S , and �j D 0 for all j … Sº;

or

‚d .s; a/ D ¹� 2 Rd W there exists a set S � ¹1; : : : ; dº with at most s elements

such that j�j j � a for all j 2 S , and �j D 0 for all j … Sº:

1.1. Differential privacy

Nowadays, a large amount of data, such as internet browsing history, social media
activity, location information from smart phones, or medical records, are collected
and stored. On the one hand, the analysis of these data can benefit to individuals,
companies, or communities such as the scientific one. For instance, companies can
use data to improve their products and services, or health data can be used for medical
research. On the other hand, people are more and more concerned with the protection
of their privacy and may be reluctant to share their sensitive data. In this context, it
seems essential to be able to understand the trade-offs between the statistical utility of
the collected data and the privacy of individuals from whom these data are obtained.
This requires a formal definition of privacy and differential privacy has been adopted
by researchers in the computer science, machine learning, and statistics communities
as a natural one.

Two kinds of differential privacy are discussed in the literature: central differen-
tial privacy which has been introduced by Dwork et al. in [22], and local differential
privacy. We will focus in this paper on the second setting but we briefly discuss the
difference between central and local privacy. In both settings, n individuals want their
privacy to be preserved while their data, which will be denoted X1; : : : ; Xn, are used
for statistical analyses. In the central setting, the n data-holders share confidence in
a common curator who has access to the original data X1; : : : ; Xn and use them to
generate a private release Z. In a nutshell, central differential privacy ensures that the
probability of observing an output does not change much when a single data point
of the original database is modified. We refer to [38] for the formal definition of dif-
ferential privacy in the central setting. In the local setting, data is privatized before
it is shared with a data collector: for all i 2 J1; nK, Xi is transformed into a pri-
vate data Zi directly on the i th individual’s machine and the data collector or the
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statistician only have access to the private sample Z1; : : : ; Zn. However, some inter-
action between the different data-holders is allowed. Formally, the privatized data
Z1; : : : ; Zn are obtained by successively applying suitable Markov kernels: given
Xi D xi and Z1 D z1; : : : ; Zi�1 D zi�1, the i th data holder draws

Zi � Qi .� j Xi D xi ; Z1 D z1; : : : ; Zi�1 D zi�1/

for some Markov kernelQi WZ �X �Zi�1! Œ0; 1�where the measure spaces of the
non-private and private data are denoted with .X;X / and .Z;Z /, respectively. Such
randomizations are known as sequentially interactive. We say that the sequence of
Markov kernels .Qi /iD1;:::;n provides ˛-local differential privacy or that Z1; : : : ; Zn
are ˛-local differentially private views of X1; : : : ; Xn if

sup
A2Z

Qi .A j Xi D x;Z1 D z1; : : : ; Zi�1 D zi�1/

Qi .A j Xi D x0; Z1 D z1; : : : ; Zi�1 D zi�1/
� exp.˛/ (1)

for all i 2 J1; nK, and for all x; x0 2 X. In this paper, we will focus on the special
case of non-interactive local differential privacy whereZi depends only onXi but not
on Zk for k < i . In this scenario, we have

Zi � Qi .� j Xi D xi /;

and condition (1) becomes

sup
A2Z

Qi .A j Xi D x/

Qi .A j Xi D x0/
� exp.˛/

for all i 2 J1; nK, and for all x; x0 2 X.
The aim is that every data holder releases a private view Zi of X i such that the

notion of local differential privacy is satisfied and that the support of � can be esti-
mated from the data Z1; : : : ; Zn in an optimal way.

Notation. For two sequences ¹ad ºd and ¹bd ºd of non-negative real numbers, we
write ad . bd if there exists some constant C > 0 such that ad � Cbd . If bd > 0,
we write ad � bd if ad=bd ! 1 as d !1, and we write ad � bd if ad=bd !1
as d !1. We recall that a centered Laplace distribution with parameter � > 0 has
the probability density function defined by f�.x/ D 1

2�
exp.� jxj

�
/ on R.

1.2. Motivation

The problem of high-dimensional sparse vectors estimation has recently been studied
in the framework of local differential privacy in [19]. For the 1-sparse mean estima-
tion problem, the authors considered the set of distributions P supported on B1.r/,
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i.e., the ball of radius r in Rd with respect to the sup norm k � k1, and having
kEP ŒX�k0 � 1. They proved that the private minimax mean squared error for non-
interactive ˛-locally differentially private mechanisms is bounded from below by

min
²
r2;

r2d log.2d/
n.e˛ � 1/2

³
;

proving that high-dimensional 1-sparse mean estimation is impossible in this setting
when both r2 & 1 and r2d log.2d/ & n.e˛ � 1/2. This result can be related to select-
ing the support of a 1-sparse mean vector of such a distribution P , under the same
constraints. We generalize these results to symmetric and strongly log-concave distri-
butions on the whole Rd and to arbitrary sparsity.

Obvious applications of variable selection are the estimation of the set that sup-
ports the non-null coefficients in the mean vector, or the estimation of its size. We
propose to use our procedure to build a private mean estimator of s-sparse vectors
in two steps: use one part of the sample to recover the support and the other part
to estimate the mean values of the selected variables, that is a vector of reduced
size. Moreover, these results are a benchmark for working on more realistic models
such as high-dimensional linear regression and clustering of high-dimensional vec-
tors, see [31] and [30].

1.3. Strongly log-concave distributions

Log-concave measures play a significant role in many areas of pure and applied math-
ematics, such as convex geometry [23], functional inequalities [7], optimal transport
theory [13, 14], random matrix theory [1], Monte-Carlo sampling [17, 20], Bayesian
inference [32] or non-parametric estimation [16, 18, 24]. The log-concavity assump-
tion arises also naturally in various modelization contexts, such as survival and relia-
bility analysis [27] or econometrics [4], since it possesses many interesting properties
subject to interpretation, such as monotone likelihood ratio or non-decreasing hazard
rate function for instance. For further applications and references, see [4, 34].

Let us now state the definitions related to log-concavity that will be in force in this
article. A probability distribution P on R is log-concave if it admits a density p with
respect to the Lebesgue measure, that writes p D exp.��/, with � a convex function
on R. The function � is called the potential of the density p and of the probability
measure P .

Furthermore, a function �WR! R is c-strongly convex for some constant c > 0
if, for all .x; y/ 2 R2 and t 2 .0; 1/, we have

�.tx C .1 � t /y/ �
�
t�.x/C .1 � t /�.y/

�
� �

c

2
t.1 � t /.x � y/2: (2)
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Note that the parameter c in (2) gives a positive lower bound on the curvature of
the convex function �. In the case where the function � is two times differentiable,
condition (2) indeed corresponds to a lower bound on the second derivative:

inf
x2R
¹�00.x/º � c > 0:

A probability measure P is said to be c-strongly log-concave if it admits a density
function pWR! .0;C1/ which is c-strongly log-concave with potential �, in the
sense that p D exp.��/ and � is a c-strongly convex potential. This is equivalent to
assuming that

p.x/ D exp.��0.x// exp.�cx2=2/

for all x 2 R, with �0 being a finite convex function.
We consider the problem of support recovery of the sparse mean � of a random

vectorX D � C �� of distribution P� , where � has i.i.d. coordinates �j , j D 1; : : : ; d ,
distributed according to a c-strongly log-concave distribution P �1 for some constant
c > 0, with unit variance and that is symmetric around zero. As �1 is assumed to be
symmetric, this amounts to require that the c-strongly convex potential � of p is even,
or again that p.x/ D exp.��0.x// exp.�cx2=2/ for all x 2 R, where �0 is a finite
even convex function.

When dealing with some minimax lower bounds in the sequel, we will need to
assume that the normalized noise distribution p is not too peaked around its mean, in
the sense that its curvature is bounded from above. More precisely, we will assume
in this case that p D exp.��/, where � is a finite convex potential, for a constant
cC > 0, for all .x; y/ 2 R2 and t 2 .0; 1/, satisfying

�.tx C .1 � t /y/ �
�
t�.x/C .1 � t /�.y/

�
� �

cC

2
t.1 � t /.x � y/2: (3)

When the potential � is two times differentiable, condition (3) can be equivalently
formulated as an upper bound on the second derivative of �:

sup
x2R
¹�00º � cC:

Such framework provides a non-parametric generalization of the Gaussian assum-
ption, where �0 would be assumed to be a constant function and the unit variance of �
would correspond to the value c D cC D 1. Note that when � is only assumed to
be centered and strongly log-concave, with unit variance and scaling parameter c, we
have in general c � 1 and the equality case c D 1 characterizes the normal distribution
N .0; 1/, see [25]. Informally speaking, this means that the Gaussian distribution is
the most peaked among strongly log-concave distributions with a fixed variance and
thus, it corresponds to the easiest estimation case for support recovery. Finally, let us
denote ˆ the cumulative distribution function of the normal distribution.
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1.4. Minimax framework

Let X i , i D 1; : : : ; n be i.i.d. random vectors of Rd with distribution P� . We assume
that the vectors X i D .X ij /jD1;:::;d for i D 1; : : : ; n are observed by n distinct data
holders who refuse to share their respective observations. The statistician does not
have access to these data but only to ˛-locally differentially private viewsZ1; : : : ;Zn.
We assume that � belongs to one of the sets ‚C

d
.s; a/ or ‚d .s; a/ introduced in

Section 1.1 and we study the problem of selecting the relevant components of � , that
is, of estimating the vector

� D �.P� / D
�
I.�j ¤ 0/

�
jD1;:::;d

;

where I.�/ is the indicator function. Our goal is to estimate the vector � by a selector y�,
that is a measurable function y� D y�.Z1; : : : ; Zn/ taking values in ¹0; 1ºd , where
Z1; : : : ; Zn are ˛-locally differentially private views of X1; : : : ; Xn. We judge the
quality of a selector y� as an estimator of � by the Hamming loss between y� and �
which counts the number of positions at which y� and � differ:

jy� � �j WD

dX
jD1

jy�j � �j j D

dX
jD1

I.y�j ¤ �j /:

For the support recovery problem, we consider only ˛-locally differentially private
mechanisms which transform each X i 2 Rd into a private release Zi taking also
values in Rd , that are known as non-interactive privacy mechanisms. However, we
distinguish between privacy mechanisms that act on each coordinate of X i either
separately, locally or globally. More specifically, we will consider the two following
scenarios:

Coordinate Local (CL) privacy mechanisms. There is a sequenceQD.Qi /iD1;:::;n

of Markov kernels providing ˛-local differential privacy such that

Zi � Qi .� j X i D xi /

for all i 2 J1;nK, andQi is obtained as product of coordinate-wise kernels as follows:

8i 2 J1; nK; j 2 J1; dK; Zij � Q
i
j .� j X

i
j D x/

for some .˛=d/-differentially private mechanism Qi
j . We denote by QCL

˛ the set of
all privacy mechanisms Q D .Q1; : : : ;Qn/ satisfying these assumptions.

Coordinate Global (CG) privacy mechanisms. There is a sequenceQD.Qi /iD1;:::;n

of Markov kernels providing ˛-local differential privacy such that

Zi � Qi .� j X i D xi /
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for all i2J1;nK. We denote by Q˛ the set of all privacy mechanismsQD.Q1; : : : ;Qn/

satisfying this assumption.
In other words, in the Coordinate Local case, we consider only non-interactive

˛-locally differentially private mechanisms that act coordinates by coordinates. This
scenario is easier to study than the second one for which any non-interactive ˛-locally
differentially private mechanism is allowed to be used.

For both scenarios, if P� denotes the distribution of X i then we denote by QiP�
the distribution of Zi . Since the distribution of .X1; : : : ;Xn/ is P˝n

�
, the distribution

of .Z1; : : : ;Zn/will be denoted byQ.P˝n
�
/. In the Coordinate Local case, we denote

by P�j the distribution of X ij and by Qi
jP�j the distribution of Zij .

We say that a selector y�D .y�1; : : : ; y�d / is separable if for all j D 1; : : : ; d its j th
component y�j depends only on .Zij /iD1;:::;n. We denote by T the set of all separable
selectors. We are interested in the study of the following private minimax risks

RCL
n .˛;‚/ D inf

Q2QCL˛

inf
y�Dy�.Z1;:::;Zn/2T

sup
�2‚

1

s
E
Q.P

˝n
�

/
jy�.Z1; : : : ; Zn/ � �j; (4)

in the coordinate local case, and

Rn.˛;‚/ D inf
Q2Q˛

inf
y�Dy�.Z1;:::;Zn/2T

sup
�2‚

1

s
E
Q.P

˝n
�

/
jy�.Z1; : : : ; Zn/ � �j; (5)

in the coordinate global case, for ‚ D ‚C
d
.s; a/ and ‚ D ‚d .s; a/.

We are interested in the study of two asymptotic properties: almost full recov-
ery and exact recovery, that we define here. Let .‚C

d
.sd ; ad //d�1 be a sequence

of classes of sparse vectors. We will say that almost full recovery is possible for
.‚C

d
.sd ; ad //d�1 in the Coordinate Local case if there exists Q 2 QCL

˛ and a selec-
tor y� such that

lim
d!1

sup
�2‚

C

d
.sd ;ad /

1

sd
E
Q.P

˝n
�

/
jy� � �j D 0:

We will say that almost full recovery is impossible for .‚C
d
.sd ; ad //d�1 in the Coord-

inate Local case if

lim inf
d!C1

inf
Q2QCL˛

inf
y�Dy�.Z1;:::;Zn/2T

sup
�2‚

C

d
.s;a/

1

sd
E
Q.P

˝n
�

/
jy� � �j > 0:

We will say that exact recovery is possible for .‚C
d
.sd ; ad //d�1 in the Coordinate

Local case if there exists Q 2 QCL
˛ and a selector y� such that

lim
d!1

sup
�2‚

C

d
.sd ;ad /

E
Q.P

˝n
�

/
jy� � �j D 0:
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We will say that exact recovery is impossible for .‚C
d
.sd ; ad //d�1 in the Coordinate

Local case if

lim inf
d!C1

inf
Q2QCL˛

inf
y�Dy�.Z1;:::;Zn/2T

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy� � �j > 0:

We use similar definitions in the Coordinate Global case with QCL
˛ replaced by Q˛ .

1.5. Related work

Variable selection with Hamming loss in the Gaussian mean model in Rd has been
studied in the non-private setting in [11]. The authors provide non-asymptotic lower
and upper bounds on the non-private version of minimax risk (4). As corollaries, they
derive necessary and sufficient conditions for almost full recovery and exact recovery
to be possible. If s; d !1 such that s=d ! 0, they highlight a critical value

a� D .�=
p
n/
p
2 log.d=s � 1/.1C ı/

for a specific sequence ı D ı.d; s/ ! 0 such that almost full recovery is possible
for a � a� and impossible for a < a�. Similar results have been obtained for exact
recovery with the greater critical value

a� D .�=
p
n/
�p
2 log.d � s/C

p
2 log s

�
:

In the present paper, we will see how these results are affected by the privacy con-
straints.

For estimating the 1-sparse mean of high-dimensional vectors with distribution
supported on a compact support it is known that the rates are deteriorates by a factor d
under local differential privacy, see [19]. Under a relaxation of central differential
privacy called .˛; ı/-approximate differential privacy; see, for instance, [2,6,21] have
provided estimators of the mean and the covariance of high-dimensional Gaussian
vectors and theoretical guarantees that do not require additional assumptions on the
parameters. In some regimes the rates are not deteriorated and it is therefore difficult
to anticipate the role of privacy on each particular problem.

A few papers tackle a slightly different selection problem under privacy con-
straints mostly under central differential privacy constraints. They are interested in
the largest sum of k coordinates of the common mean value � of a vector supported
on ¹0; 1ºd . We are mainly interested in recovering the position of significant coordi-
nates in the s-sparse mean vector � .

In [35], the authors study top�k selection under a relaxation of central differential
privacy called .˛; ı/-approximate differential privacy. However, they use a weighted
Hamming loss as described below. Precisely, if X1; : : : ; Xn are drawn i.i.d. from
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some distribution P on ¹0; 1ºd , they want to find the k greatest coordinates of the
mean vector � DEP ŒX1�while respecting .˛;ı/-differential privacy constraints. They
prove the existence of a .1; 1=.nd//-differentially private mechanism that outputs
Z 2 ¹0; 1ºd with k non-zero coordinates such that

E

� dX
jD1

�j I.Zj D 1/

�
� max
�2¹0;1ºd Wk�k1Dk

dX
jD1

�j I.�j D 1/ � ˇ

requires n&
p
k logd samples in the low accuracy regime where ˇDk=10. Moreover,

repeated use of the classical exponential mechanism solves this problem with n D
O.
p
k log d/ samples. In [3], the authors study an empirical version of the problem

studied in [35]: they want to find the top-k coordinates of the vector q 2 Rd defined
by

qj D
1

n

nX
iD1

Xi;j ; j D 1; : : : ; d;

while respecting .˛; ı/-differential privacy constraints. Let � be the kth largest value
among the coordinates ¹q1; : : : ; qkº. They prove the existence of a .˛; ı/-differentially
private mechanism that outputs a set S � J1; dK of k elements such that qj � � � ˇ
for all j 2 S requires n & k log.d/ samples in the high-accuracy regime where ˇ �p

log d=n. In [37], the author studies the same problem as [35] for k D 1 under non-
interactive ˛-local differential privacy constraints. If we consider the low-accuracy
regime considered by [35], this result shows that estimating the largest coordinate
of a 1-sparse mean � under non-interactive ˛-local differential privacy requires n &
d log d=˛2 samples, which is by a factor d larger than in the central model of .˛; ı/-
approximate differential privacy.

1.6. Description of results

We address the problem of variable selection in a symmetric, strongly log-concave
model in Rd under local differential privacy constraints. We provide lower and upper
bounds on the rate of convergence for the expected Hamming loss over classes of
at most s-sparse vectors whose non-zero coordinates are separated from 0 by a con-
stant a > 0.

When we restrict our attention to non-interactive mechanisms that act indepen-
dently on each coordinate (coordinate local privacy mechanisms) we have proved
that, contrary to the non-private setting, almost full recovery and exact recovery are
impossible whatever the value of a in the high-dimensional regime when n˛2 . d2.
This is due to the fact that the loss of information due to privacy may reduce the
effective sample sizeN WD n˛2=d2 under the value 1, and this does not allow support
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a . �p
N

�p
N
� a � 2� a � 2�

N WD n˛2

d2
. 1 impossible impossible impossible

N WD n˛2

d2
� 1 impossible possible, as soon as

a� �p
N

p
log.d/

if, moreover,
N � log.d/

possible if
log.d/
N

. 1

Table 1. Exact recovery of � in either ‚C
d
.s; a/ or ‚d .s; a/ in the Coordinate Local case.

Similar results hold for almost full recovery with log.d/ replaced by log.d=s/.

recovery neither exact nor almost full. This result is significantly different from the
non-private case where [11] shows that variable selection is always possible, even for
n D 1 observation for significant enough mean value a.

However, in the regime n˛2=d2 � log.d/ we exhibit a critical value a� (up to a
logarithmic factor) such that exact recovery is possible for all a� a� and impossible
for all a � a�. We also prove that these results can be improved when allowing for all
non-interactive locally differentially private mechanisms, that we also call coordinate
global. The effective sample size is Nd in this case and it is larger than N .

Let us note that the separable selectors that we propose are free of the sparsity
parameter s. They depend on a and methods could be made adaptive to a, but this is
beyond the scope of this work.

For many estimation problems, allowing for sequentially interactive privacy mech-
anisms, that randomize each vector Xi by using also the publicly available informa-
tion Z1; : : : ; Zi�1, i D 2; : : : ; n, does not improve substantially over non-interactive
minimax rates. This includes, for instance, density estimation [10], one-dimensional
mean estimation [19], and estimation of a linear functional of the true distribution [33].
However, for some estimation problems (see for instance the estimation of the inte-
grated square of a density, [12]) and some testing problems (see [5] and [12]) allowing
for sequentially interaction between data-holders can substantially improve over non-
interactive minimax rates of estimation or non-interactive minimax rates of testing.
We consider here only non-interactive privacy mechanisms for each vectorXi , but we
conjecture that the exact and almost full recovery would be improved for interactive
privacy mechanisms. It is left for future work to study whether that is indeed the case.

The paper is organized as follows. In Section 2, we study the minimax risk (4). We
first provide a lower bound which enables us to derive necessary conditions for almost
full recovery and exact recovery to be possible in the case where only coordinate
local privacy mechanisms are used. In particular, we prove that almost full recovery
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a . �

q
logd
Nd

�

q
logd
Nd
� a � 2� a � 2�

Nd
logd . 1 impossible impossible impossible if

a � �

q
log
�
1C

logd
16Nd

�
Nd

logd � 1 impossible possible, as soon as

a� �

q
logd
Nd

if, moreover,
Nd � log.d/

possible

Table 2. Exact recovery of � in either ‚C
d
.s; a/ or ‚d .s; a/ in the Coordinate Global case. We

have set N D n˛2=d2 for a better comparison with the Coordinate Local case.

is impossible in this case as soon as the quantity n˛2=d2 is bounded from above. We
then provide non-asymptotic upper bounds on the minimax risks in propositions and
state more explicit asymptotic sufficient conditions for almost full recovery and exact
recovery to be possible in our corollaries. These conditions and associated results are
summarized in Table 1. In Section 3, we study the minimax risk (5) and prove that
the results of Section 2 can be improved when any non-interactive (coordinate global)
˛-locally differentially private mechanism is allowed. See Table 2 for a summary of
these results. Detailed proofs can be found in the appendix.

2. Coordinate local non-interactive privacy mechanisms

In this section, we provide a lower bound on the private minimax risk (4). This enables
us to obtain necessary conditions for almost full recovery and exact recovery to be
possible in the Coordinate Local scenario. In particular, we prove that almost full
recovery is impossible in the private setting of the Coordinate Local case if the quan-
tity N WD n˛2=d2 is bounded from above. We then provide upper bounds on the
minimax risk that entail sufficient conditions for almost full recovery and exact recov-
ery to be possible.

2.1. Lower bound

We first state our lower bound.

Theorem 2.1. Assume that the measure P �1 of the noise coordinates, is log-concave
with a density p D exp.��/, where the potential � has a curvature bounded from
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above by a constant cC > 0, that satisfies inequality (3). Then for any a > 0, ˛ > 0,
1 � s � d , n � 1, we have

RCL
n .˛;‚C

d
.s; a// �

�
1 �

s

d

�
exp

�
�4n.e˛=d � 1/2 min

²
cCa

2

4�2
; 1

³�
: (6)

The proof of Theorem 2.1 can be found in Appendix A.2. Some auxiliary results
used for the proof of Theorem 2.1 can be found in Appendix A.1. Note that since
‚C
d
.s; a/ � ‚d .s; a/, we have

RCL
n .˛;‚C

d
.s; a// � RCL

n .˛;‚d .s; a//;

thus the right-hand side of (6) is also a lower bound for RCL
n .˛;‚d .s; a//.

A careful look at the proof of Theorem 2.1 shows that log-concavity is in fact not
needed in the previous result, if we assume the existence of a positive density, con-
verging to zero at infinity, and with a two times continuously differentiable potential
achieving (3).

For better confidentiality in practice, the parameter ˛ must not be too large. In
particular, we assume that ˛=d ! 0 when d !C1. We thus have

n.e˛=d � 1/2 � n˛2=d2

and Theorem 2.1 immediately shows the following.

Corollary 2.2. Grant assumptions of Theorem 2.4. Let ˛ > 0, 1 � s � d , n � 1 be
such that s=d � C0 for some constant C0 2 .0; 1/, and ˛=d ! 0 when d ! 1.
Then, if n˛2=d2 � C1 for some constant C1 > 0 or if n˛2=d2!1 as d !1, and
a2 � C2�

2d2=n˛2 for some constant C2 > 0 depending only on cC, it holds that

RCL
n .˛;‚/ � C

for some constant C > 0, where ‚ D ‚C
d
.s; a/ or ‚ D ‚d .s; a/.

Corollary 2.2 shows that almost full recovery is impossible under local differen-
tial privacy constraints if the quantity n˛2=d2 is bounded from above. In particular,
almost full recovery is impossible under local differential privacy constraints in the
high-dimensional setting, that is when n � d , whatever the value of a. Corollary 2.2
also proves that if n˛2=d2 !C1 then almost full recovery is impossible if

a . �d=
p

n˛2:

This underlines a strong difference between the private setting and the classical
setting, since [11] proved that in the non-private setting almost full recovery is possi-
ble for values of jaj large enough, even if n D 1. However, both almost full and exact
recovery are impossible for any signal value a when the effective sizeNDn˛2=d2.1
under privacy constraints.
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2.2. Privacy mechanism

In this section, we introduce a non-interactive privacy mechanism creating private
views Z1; : : : ; Zn of the original data X1; : : : ; Xn that satisfy the local differential
privacy constraint of level ˛. These privatized data will then be used to define a private
selector whose risk will be studied in Section 2.3.

To obtain the privatized data, we first censor the unbounded random variables X ij ,
for i D 1; : : : ; n, j D 1; : : : ; d , and then make use of an appropriately scaled version
of the classical Laplace mechanism. For all i 2 J1; nK and j 2 J1; dK, define

Zij D sgnŒX ij �C
2d

˛
W i
j ; (7)

where sgnŒx� D 1, for x � 0, and 0, for x < 0, the W i
j ’s are i.i.d. Laplace.1/ random

variables, and W i
j is independent from X ij .

Note that the privacy mechanism defining .Zi /iD1;:::;n is non-interactive since Zi

does only depend on X i and not on Zk for k ¤ i . This is also a coordinate local
mechanism since Zij depends on X ij but not on the X i

l
for l ¤ j . The following

proposition shows that it satisfies the condition of ˛-local differential privacy.

Proposition 2.3. For all i 2 J1;nK and j 2 J1;dK,Zij is an ˛=d -differentially private
view of X ij . Consequently, for all i 2 J1; nK, Zi D .Zij /jD1;:::;d is an ˛-differentially
private view of X i .

Proof. Set r D 2d=˛. By definition of the privacy mechanism (7), the conditional
density of Zij given X ij D x can be written as

q
Zi
j
jX i
j
Dx
.z/ D

1

2r
exp

�
�
jz � sgnŒx�j

r

�
:

Thus, by the reverse and the ordinary triangle inequality, for all i 2 J1; nK, j 2 J1; dK
and all x; x0; z 2 R, it holds that

q
Zi
j
jX i
j
Dx
.z/

q
Zi
j
jX i
j
Dx0
.z/
D exp

�
jz � sgnŒx0�j

r
�
jz � sgnŒx�j

r

�
� exp

�
jsgnŒx0� � sgnŒx�j

r

�
� exp

�2
r

�
� exp

�˛
d

�
:

This proves that Zij is an ˛=d -differentially private view of X ij . Let us check that Zi

is an ˛-differentially private view of X i . Denote by qZ
i jX iDx the conditional density

of Zi given X i D x and note, for all x; x0; z 2 Rd , it holds that

qZ
i jX iDx.z/

qZ
i jX iDx0.z/

D

dY
jD1

q
Zi
j
jX i
j
Dxj .zj /

q
Zi
j
jX i
j
Dx0
j .zj /

� e˛;



C. Butucea, A. Dubois, and A. Saumard 14

using the independence of the coordinates X i1; : : : ; X
i
d

and the conditional indepen-
dence of Zi1; : : : ; Z

i
d

given X i .

2.3. Upper bounds

Using these privatized data, we define two selectors that will provide upper bounds
on the minimax risk (4). For the class ‚C

d
.s; a/, we will use the selector y�C with the

components

y�Cj D I

�
1

n

nX
iD1

Zij � �

�
; j D 1; : : : ; d; (8)

where the threshold � has to be properly chosen, later on. For the class ‚d .s; a/, we
will use the selector y� with the components

y�j D I

�ˇ̌̌̌
1

n

nX
iD1

Zij

ˇ̌̌̌
� �

�
; j D 1; : : : ; d;

where � to be defined later on. Note that y�C and y� are separable selectors since y�Cj
and y�j depend only on .Zij /iD1;:::;n and not on the Zi

k
for k ¤ j . We now study the

performances of these selectors. Recall that ˆ is a cumulative distribution function of
the normal distribution.

Proposition 2.4. Assume that a � 2� . Set C1 WD 2ˆ.2
p
c/ � 1 > 0. If � is chosen

such that

C1 � � > 0; �˛=.8d/ � 1; and ˛.C1 � �/=.8d/ � 1;

then it holds, for all � 2 ‚C
d
.s; a/, that

E

�
1

s
jy�C � �j

�
�
d � jS j

s

�
exp

�
�
n�2

23

�
C exp

�
�
�2n˛2

27d2

��
C
jS j

s

�
exp

�
�
n.C1 � �/

2

23

�
C exp

�
�
.C1 � �/

2n˛2

27d2

��
; (9)

and, for all � 2 ‚d .s; a/, it holds that

E

�
1

s
jy� � �j

�
� 2

d � jS j

s

�
exp

�
�
n�2

23

�
C exp

�
�
�2n˛2

27d2

��
C 2
jS j

s

�
exp

�
�
n.C1 � �/

2

23

�
C exp

�
�
.C1 � �/

2n˛2

27d2

��
; (10)

where S denotes the support of � .
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The proof of Proposition 2.4 is given in Section A.4 in the Appendix. Some aux-
iliary results used in the proof of Proposition 2.4 can be found in Appendix A.3. The
following Corollary gives sufficient conditions so that almost full recovery and exact
recovery are possible under local differential privacy in the Coordinate Local case
when a � 2� .

Corollary 2.5. Set C1 D 2ˆ.2
p
c/ � 1 > 0. Assume that

˛=d ! 0; n˛2=d2 !C1; and lim sup
log.d=s/
n˛2=d2

<
C 21
29
:

Then the selector y�C defined by (8) with � D C1=2 satisfies

sup
�2‚

1

s
E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd / � �j ! 0 (11)

for all a � 2� , where ‚ D ‚C
d
.s; a/ or ‚ D ‚d .s; a/. If, in addition,

lim sup
log.d/
n˛2=d2

<
C 21
29
;

then
sup
�2‚

E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd / � �j ! 0 (12)

for all a � 2� .

The proof of Corollary 2.5 is given in Section A.5 in the appendix. Since we have
seen that almost full recovery is impossible when n˛2=d2 is bounded from above
or when n˛2=d2 ! C1 and a . .�d/=.

p
n˛/, it remains to study the case where

n˛2=d2 !C1 and �d=.
p
n˛/� a � 2� . This is done below.

Proposition 2.6. Let a > 0. If � is chosen such that � < 2a=�p.2/, �˛=.8d/ < 1 and
˛.a=�p.2/ � �=2/=.4d/ � 1, then, for all � 2 ‚C

d
.s; a/, it holds that

E

�
1

s
jy�C � �j

�
�
d � jS j

s

�
exp

�
�
n�2

23

�
C exp

�
�
�2n˛2

27d2

��
C
jS j

s

�
exp

�
�
n.a=�p.2/ � �=2/2

23

�
C exp

�
�
.a=�p.2/ � �=2/2n˛2

25d2

��
;

where S denotes the support of � .

The proof of Proposition 2.6 can be found in Section A.6 in the appendix. Note
that as for the case a � 2� , if � 2 ‚d .s; a/ we use y� instead of y�C and we can prove
the same result with an extra multiplicative factor 2. The next corollary gives new
sufficient conditions so that almost full recovery and exact recovery are possible.
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Corollary 2.7. Assume that ˛=d ! 0, n˛2=d2 !C1 and �d=.
p
n˛/� a � 2� .

The selector y�C defined by (8) with � D p.2/a=� satisfies for d large enough

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd / � �j � 2 exp

�
log
�d
s

�
�
p2.2/a2n˛2

29�2d2

�
:

In particular, if a� �d

˛
p
n

log1=2.d
s
/, it holds that

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd / � �j ! 0: (13)

Moreover, if a� �d

˛
p
n

log1=2.d/, then

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd // � �j ! 0: (14)

If n˛2=d2 !1 with .n˛2=d2/� log.d=s/, then Corollary 2.7 combined with
Corollary 2.5 and with the lower bound (6) prove a phase transition result (up to log
factors) at the value a� D a�.n;˛;d;�/D �d=.˛

p
n/. Indeed, we get that almost full

recovery is impossible in the Coordinate Local case for all a � Ca� and is possible
for all a� a� log1=2.d=s/.

3. Coordinate global non-interactive privacy mechanisms

In this section, we study the minimax risk (5). We prove that in the Coordinate Global
case, almost full recovery and exact recovery are possible under weaker assumptions
than the one we obtained for the Coordinate Local case.

3.1. Privacy mechanism

We describe in this section the privacy mechanism we use to obtain private data that
will be used to design a private selector and to obtain upper bounds on the minimax
risk (5) in the Coordinate Global case.

For all i 2 J1; nK, the private view Zi of X i is obtained using the following steps:

(1) Compute f .X i / D .sgnŒX ij �/jD1;:::;d . For short, let us denote zX i D f .X i /.

(2) Sample Y i � B.�˛/ where �˛ D e˛=.e˛ C 1/ and generate zZi uniformly
distributed on the set®

zz 2 ¹�B;Bºd j hzz; zX i i > 0 or .hzz; zX i i D 0 and zz1 D B zX i1/
¯



Phase transitions for support recovery under local differential privacy 17

if Y i D 1, respectively on the set®
zz 2 ¹�B;Bºd j hzz; zX i i < 0 or .hzz; zX i i D 0 and zz1 D �B zX i1/

¯
if Y i D 0, with

B D
e˛ C 1

e˛ � 1
Kd ; where

1

Kd
D

8<:
1

2d�1

�
d�1
d�1
2

�
if d is odd;

.d�2/Š.d�2/

2d�1.d2 �1/Š
d
2 Š

if d is even:
(15)

(3) Define the vector Zi by Zi D zZi if d is odd, and by its components

Zij D

8<: d�2
2.d�1/

zZi1 if j D 1;

zZij 8j 2 J2; dK;

if d is even.

This mechanism is strongly inspired by the one proposed by Duchi et al. [19] for mean
estimation on the set of distributions P supported on B1.r/�Rd with kEŒX�k0 � s.
In particular, if d is odd, the event ¹hzz; zX i i D 0º has probability zero for all zz 2
¹�B;Bºd and our mechanism coincides in this case with the one proposed by Duchi
et al. [19] applied to sgn.X i / instead of X i .

Proposition 3.1. For all i 2 J1; nK, Zi is an ˛-differentially private view of X i .

The following proposition will be useful in the analysis of the selector proposed
in Section 3.2.

Proposition 3.2. For all i 2 J1; nK, it holds that

EŒZi j X i � D f .X i /:

The proofs of Proposition 3.1 and Proposition 3.2 can be found respectively in
Section B.1 and B.2 of the appendix. Note it also holds that EŒZi j X i � D f .Xi /

when Zi is produced via the Laplace mechanism described in Section 2.2. However,
the variance Var.Zij j X

i / is slower by a multiplicative factor d when Zi is produced
with the Laplace mechanism than when it is obtained with the above coordinate global
mechanism. Indeed, if Zi is produced with the above mechanism, then we have

Var.Zij j X
i / � B2:

Stirling’s approximation yields K2
d

. d for d large enough, see Lemma B.1 in App-
endix B.3 for details. Thus, if ˛ is bounded, we obtain Var.Zij j X

i / � d=˛2. Now,
if Zi is produced with the Laplace mechanism then it holds that

Var.Zij j X
i / D 8d2=˛2:
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This faster variance explains that we will obtain better results when allowing for coor-
dinate global mechanisms.

3.2. Upper bounds

Using the privatized data of the previous subsection, we define two selectors that will
enable us to obtain upper bounds on the minimax risk (5). As in the Coordinate Local
case, for the class ‚C

d
.s; a/, we will use the selector y�C with the components

y�Cj D I

�
1

n

nX
iD1

Zij � �

�
; j D 1; : : : ; d; (16)

where the threshold � has to be chosen. For the class ‚d .s; a/, we will use the selec-
tor y� with the components

y�j D I

�ˇ̌̌̌
1

n

nX
iD1

Zij

ˇ̌̌̌
� �

�
; j D 1; : : : ; d:

We now study the performances of these selectors.
The following result gives an upper bound on the risk of selector (16) when

a � C� and will enable us to obtain sufficient conditions so that almost full recovery
is possible when a � 2� in the Coordinate Global case.

Proposition 3.3. Assume that a > 2� and set C1 WD 2ˆ.2
p
c/� 1 > 0. If � is chosen

such that C1 � � > 0; then it holds for all � 2 ‚C
d
.s; a/ that

E

�
1

s
jy�C � �j

�
�
d � jS j

s
exp

�
�
n�2

2B2

�
C
jS j

s
exp

�
�
n.C1 � �/

2

2B2

�
;

where S denotes the support of � . In particular, choosing � D C1=2 yields

sup
�2‚

C

d
.s;a/

E

�
1

s
jy�C � �j

�
�
d

s
exp

�
�
C 21 n.e

˛ � 1/2

8.e˛ C 1/2K2
d

�
for all a � 2� .

The proof of Proposition 3.3 can be found in Section B.4 of the appendix. Note
that we can provide similar results on the class ‚d .s; a/ considering the selector y�.
The upper bounds are the same as for the class‚C

d
.s; a/ up to a multiplicative factor 2

that comes from the use in the proof of the two-sided Hoeffding’s inequality instead
of the one-sided inequality. Since Kd � C

p
d for d large enough, we obtain that a

sufficient condition for almost full recovery to be possible when a � 2� is that

n.e˛ � 1/2

.e˛ C 1/2d
& log.d=s/:
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Moreover, using that .e˛ � 1/2=.e˛ C 1/2 � 0:2˛2 if ˛ � 1, we obtain that a suf-
ficient condition for almost full recovery to be possible when a � 2� and ˛ � 1 is
that n˛2=d & log.d=s/. This improves the result we obtained when we considered
only privacy mechanisms acting coordinates by coordinates for which we needed
n˛2=d2 & log.d=s/. We now deal with the case a� � .

Proposition 3.4. Let a > 0 and a � 2� . If � is chosen such that � < 2p.2/a=�; then
it holds for all � 2 ‚C

d
.s; a/ that

E

�
1

s
jy�C � �j

�
�
d � jS j

s
exp

�
�
n�2

2B2

�
C
jS j

s
exp

�
�
n.2p.2/a=� � �/2

2B2

�
;

where S denotes the support of � .

The proof of Proposition 3.4 can be found in Appendix B.5.

Corollary 3.5. Assume that ˛=d ! 0, n˛2=d !C1 and �
p
d=.˛

p
n/� a � 2� .

The selector y�C defined by (16) with � D p.2/a=� satisfies for n; d large enough

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd // � �j �

d

s
exp

�
�
n.e˛ � 1/2p2.2/a2

2�2.e˛ C 1/2K2
d

�
:

In particular, if ˛ 2 .0; 1�, if n˛2=d !C1 with n˛2=d � log.d/ then it holds that

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd // � �j ! 0

for all a satisfying �
q

d
n˛2

p
log.d=s/� a � 2� ; and also that

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy�C.Z1; : : : ; Zd // � �j ! 0

for all a satisfying �
q

d
n˛2

p
log.d/� a � 2� .

The first statement in Corollary 3.5 is a direct consequence of Proposition 3.4.
The second statement is a direct consequence of the first one where we have used
.e˛ � 1/2=.e˛ C 1/2 � 0:2˛2 for ˛ 2 .0; 1� and Kd � C

p
d for d large enough.

In the next subsection, we complement these results with a lower bound. This will
enable us to exhibit a value a� such that exact recovery is impossible for all a � a�

and possible for a � a� under the assumptions ˛ 2 .0; 1� and n˛2=d ! 1 with
n˛2=d � log.d/.
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3.3. Lower bound

Recall that P0 denotes the distribution of ��1 and Pa that of a C ��1 and denote by
�2.P0; Pa/ the chi-square discrepancy between the two distributions.

Proposition 3.6. For any a > 0 such that �2.P0; Pa/ <1, ˛ > 0, d � 4, 1 � s � d ,
n � 1, we have

inf
Q2Q˛

inf
y�2T

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy� � �j �

1

4

�
1 �

2n.e˛ � 1/2

d log.d/
�2.P0; Pa/

�
:

Assume now that the measure P �1 of the noise coordinates is strongly log-concave,
with density p D exp.��/, with a potential � that has a curvature bounded from
above by a constant cC as in (3). Then

�2
�
P0; Pa

�
� exp

�
cC

�a
�

�2�
� 1: (17)

Note that inequality (17) is sharp in the sense that in the Gaussian case, cC D 1
holds and inequality (25) turns out to be an equality. Note also that log-concavity is
actually not needed in Proposition 3.6, since we only require an upper bound on the
curvature of the potential �.

The proof of Proposition 3.6 is based on a private version of Fano’s method,
see [19, Proposition 2]. It can be found in Section B.6 of the appendix. Using that
.e˛ � 1/2 � 4˛2 for ˛ 2 .0; 1/ and exp.cCx2/ � 1 � Lx2 for 0 � x � 2 and some
constant L only depending on cC (e.g., L D .exp.2cC/ � 1/=2), Proposition 3.6
immediately shows the following.

Corollary 3.7. Let ˛ 2 .0; 1/. If n˛2=.d log d/ � C=.32L/ for some constant C 2
.0; 1/, then it holds that

inf
Q2Q˛

inf
y�2T

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy� � �j �

1

4
.1 � C/ > 0;

for all a � 2� .

This shows that exact recovery is impossible for all a � 2� if

n˛2=.d log d/ � C=.32L/

for some constantC 2 .0;1/. Proposition 3.6 also implies that exact recovery is impos-
sible if

a � �
p

log.1C Cd log d=.8n˛2//=cC
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for some constant C 2 .0; 1/. However, unlike the coordinate local case, the lower
bound provided by Proposition 3.6 does not allow us to say that exact recovery is also
impossible for

a � max
®
2�; �

p
log.1C Cd log d=.8n˛2//=cC

¯
when n˛2=.d log d/ is bounded from above. The following corollary is also a direct
consequence of Proposition 3.6. It shows that when n˛2=.d logd/!1, exact recov-
ery is still impossible if a is too small.

Corollary 3.8. If ˛ 2 .0; 1/, n˛2=d !C1 with n˛2=d � log d and

a � .�=.16L//
p
d log d=.n˛2/

it holds that
lim inf
d!C1

inf
Q2Q˛

inf
y�2T

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy� � �j �

1

8
:

The lower bound of Proposition 3.6 combined with the upper bounds of Subsec-
tion 3.2 exhibit a phase transition at the value a� (up to a logarithmic factor) such
that exact recovery is impossible for all a � a� and possible for a � a� under the
assumptions ˛ 2 .0; 1� and n˛2=d !1 with n˛2=d � log.d/. Precisely, set

a� D a�.n; ˛; d; �/ D
�

16L

r
d log d
n˛2

;

where we recall that L D .exp.2cC/ � 1/=2. Proposition 3.6 combined with Corol-
lary 3.5 and Proposition 3.3 give the following result.

Corollary 3.9. Assume that ˛ 2 .0; 1� and n˛2=d ! C1 with n˛2=d � log.d/.
Then, exact recovery is impossible for all a � a� and is possible for all a� a�:

Note that Proposition 3.6 does not allow us to obtain impossibility results for
almost full recovery in the regime n˛2=.d log d/� 1. Its proof relies on a private
Fano’s method ([19, Proposition 2]) applied with the family of distributions®

N .a!i ; �
2Id /; i D 1; : : : ; d

¯
;

where !i 2 ¹0; 1ºd is defined by !ij D ıij and ı is the Kronecker delta. The same
proof with !i defined by !ij D 1 if j 2 J.i � 1/s C 1; isK and !ij D 0 otherwise for
i D 1; : : : ; bd=sc, provides the following lower bound.

Proposition 3.10. Let a > 0 be such that �2.P0; Pa/ <1, ˛ > 0, n � 1. If d=s � 4,
then we have

inf
Q2Q˛

inf
y�2T

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy� � �j �

1

4

�
1 �

2n.e˛ � 1/2

bd=sc log.bd=sc/
�2.P˝s0 ; P˝sa /

�
:
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a . �
s

q
log.d=s/
Nd

�
s

q
log.d=s/
Nd

� a . �p
s

a� �p
s

s Nd
log.d=s/ . 1 impossible impossible ?

s Nd
log.d=s/ � 1 impossible possible, as soon as

a� �

q
log.d=s/
Nd

if, moreover,
Nd � log.d=s/

possible

Table 3. Almost full recovery of � in either ‚C
d
.s; a/ or ‚d .s; a/ in the Coordinate Global

case. We have set N D n˛2=d2.

If the noise has a potential � that is two times continuously differentiable, with cur-
vature bounded from above by a constant cC as in (3), then it holds that

�2.P˝s0 ; P˝sa / D exp.s � cCa2=�2/ � 1:

Note that �2.P˝s0 ; P˝sa / D .�2.P0; Pa/C 1/
s � 1.

However, this bound turns out to be suboptimal in the sense that when n˛2=d �
log.d=s/ holds, the combination of this bound with upper bounds in Proposition 3.3
and Corollary 3.5 allows us to exhibit the critical value a� for almost full recovery
only up to a logarithmic factor times the sparsity s. Indeed, on the one hand, Proposi-
tion 3.3 and Corollary 3.5 prove that almost full recovery is possible for all

a� �
p
d=.n˛2/

p
log.d=s/

in the regime n˛2=d � log.d=s/. On the other hand Proposition 3.10 proves that, in
the same regime, almost full recovery is impossible for

a . .�=s/
p
d=.n˛2/

p
log.d=s/;

but does not allow us to say what happens for

.�=s/
p
d=.n˛2/

p
log.d=s/� a . �

p
d=.n˛2/

p
log.d=s/:

A. Proofs of Section 2

A.1. Some auxiliary results for the proof of the lower bound

The proof of Theorem 2.1 strongly relies on the following result known as the Bayes-
ian version of the Neyman–Pearson lemma.
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Theorem A.1 ([29, Problem 3.10]). Let P0 and P1 be probability distributions pos-
sessing densities p0 and p1 with respect to a measure �. Consider the problem of
testing H0WP D P0 against H1WP D P1, and suppose that known probabilities �
and 1 � � can be assigned to H0 and H1 prior to the experiment. Then the test T �

given by
T �.X/ D I

�
.1 � �/p1.X/ > �p0.X/

�
is a minimizer of the overall probability of error resulting from the use of a test T ,

�E0ŒT .X/�C .1 � �/E1Œ1 � T .X/�:

The following lemmas are also useful to prove the lower bound.

Lemma A.2. Let b; c > 0. Let P and Q be two probability measures having densi-
ties p and q with respect to some measure �. It holds thatZ

min¹bp.x/; cq.x/º d�.x/ �
bc

b C c

�Z p
p.x/q.x/ d�.x/

�2
:

The case b D c D 1 can be found in [36, Lemma 2.3]. We generalize the proof for
any b; c > 0.

Proof. The Cauchy–Schwarz inequality yields

bc

�Z p
p.x/q.x/ d�.x/

�2
D

�Z p
bp.x/ � cq.x/ d�.x/

�2
D

�Z p
min¹bp.x/; cq.x/º

p
max¹bp.x/; cq.x/º d�.x/

�2
�

Z
min¹bp.x/; cq.x/º d�.x/

Z
max¹bp.x/; cq.x/º d�.x/:

In order to finish, we use that max¹u; vº � uC v and getZ
max¹bp.x/; cq.x/º d�.x/ � b

Z
p.x/ d�.x/C c

Z
q.x/ d�.x/ D b C c:

In the proof of the lower bound, Lemma A.2 will be combined with the following
result whose proof can be found in [36].

Lemma A.3. Let P and Q be two probability measures having densities p and q
with respect to some measure �. It holds that�Z p

p.x/q.x/ d�.x/
�2
� exp.�KL.P;Q//:
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A.2. Proof of Theorem 2.1

LetQ 2QCL
˛ and let y� be a separable selector. Since y�j depends only on .Zij /iD1;:::;n,

it holds that

E
Q.P

˝n
�

/
jy�.Z/ � �j D

dX
jD1

E
˝n
iD1

Qi
j
P�j
jy�j .Z

1
j ; : : : ; Z

n
j / � �j j:

Following the proof of [11, Theorem 2.2], we denote by‚0 the set of all � in‚C
d
.s; a/

such that exactly s components of � are equal to a and the remaining d � s compo-
nents are equal to 0. Since ‚0 is a subset of ‚C

d
.s; a/, it holds that

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�.Z/ � �j

�
1

sj‚0j

X
�2‚0

dX
jD1

E
˝n
iD1

Qi
j
P�j
jy�j .Z

1
j ; : : : ; Z

n
j / � �j j

D
1

sj‚0j

dX
jD1

� X
�2‚0W�jD0

E
˝n
iD1

Qi
j
P0
.y�j /C

X
�2‚0W�jDa

E
˝n
iD1

Qi
j
Pa
.1 � y�j /

�

D
1

s

dX
jD1

��
1 �

s

d

�
E
˝n
iD1

Qi
j
P0
.y�j /C

s

d
E
˝n
iD1

Qi
j
Pa
.1 � y�j /

�
�
1

s

dX
jD1

inf
T2Œ0;1�

��
1 �

s

d

�
E
˝n
iD1

Qi
j
P0
.T /C

s

d
E
˝n
iD1

Qi
j
Pa
.1 � T /

�
:

Set
L�j D inf

T2Œ0;1�

��
1 �

s

d

�
E
˝n
iD1

Qi
j
P0
.T /C

s

d
E
˝n
iD1

Qi
j
Pa
.1 � T /

�
:

Since Qi
j provides j̨ -differential privacy, the channel probabilities Qi

j .� j x/ have
densities z 7! qij .z j x/ with respect to some measure �ij . Therefore,

dQi
jP0.z/ D m

i
j;0.z/ d�ij .z/ and dQi

jPa.z/ D m
i
j;a.z/ d�ij .z/;

where
mij;b.z/ D

Z
R
qij .z j x/dPb.x/; b 2 ¹0; aº:

Thus, for b 2 ¹0; aº, it holds that

d.˝niD1Q
i
jPb/.y1; : : : ; yn/ D

� nY
iD1

mij;b.yi /

�
d�j .y1; : : : ; yn/;
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where �j D �1j ˝ � � � ˝ �
n
j . According to Theorem A.1, the infimum L�j is thus

attained for T D T �j given by

T �j .Y1; : : : ; Yn/ D I

�
s

d

nY
iD1

mij;a.Yi / >
�
1 �

s

d

� nY
iD1

mij;0.Yi /

�
:

Set

Aj D

²
.y1; : : : ; yn/ 2 Rn W

s

d

nY
iD1

mij;a.yi / >
�
1 �

s

d

� nY
iD1

mij;0.yi /

³
:

Then

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�.Z/ � �j

�
1

s

dX
jD1

��
1 �

s

d

� Z
Aj

� nY
iD1

mij;0.yi /

�
d�j .y1; : : : ; yn/

C
s

d

Z
AC
j

� nY
iD1

mij;a.yi /

�
d�j .y1; : : : ; yn/

�
D
1

s

dX
jD1

Z
Rn

min
²�
1 �

s

d

� nY
iD1

mij;0.yi /;
s

d

nY
iD1

mij;a.yi /

³
d�j .y1; : : : ; yn/

�

�
1 �

s

d

�
�
1

d

dX
jD1

�Z
Rn

p� nY
iD1

mij;0.yi /

�� nY
iD1

mij;a.yi /

�
d�j .y1; : : : ; yn/

�2
�

�
1 �

s

d

�
�
1

d

dX
jD1

exp
�
�KL

�
˝
n
iD1Q

i
jP0;˝

n
iD1Q

i
jPa

��
;

where the two last inequalities follow from Lemmas A.2 and A.3. Using the tensoriza-
tion property of the Kullback–Leibler divergence, we obtain

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy�.Z/ � �j

�

�
1 �

s

d

�
�
1

d

dX
jD1

exp
�
�

nX
iD1

KL
�
Qi
jP0;Q

i
jPa

��

�

�
1 �

s

d

�
�
1

d

dX
jD1

exp
�
�4n.e˛=d � 1/2TV.P0; Pa/2

�
D

�
1 �

s

d

�
exp

�
�4n.e˛=d � 1/2TV.P0; Pa/2

�
;
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where the second inequality is a direct consequence of the strong data processing
inequality in [19, Theorem 1] showing the contraction property of privacy:

KL.QP0;QPa/C KL.QPa;QP0/ � .4 ^ e2˛=d /.e˛=d � 1/2T V.P0; Pa/2

if Q is ˛=d -DP. Since this result holds for all Q 2 QCL
˛ and all separable selector y�,

we obtain

inf
Q2QCL˛

inf
y�2T

sup
�2‚

C

d
.s;a/

1

s
E
Q.P

˝n
�

/
jy� � �j

�

�
1 �

s

d

�
exp

�
�4n.e˛=d � 1/2TV.P0; Pa/2

�
:

Note that the T V distance is invariant to a scale parameter, thus T V.P0; Pa/ can be
calculated as the T V distance between the distribution of �1 and the same one shifted
by a=� . The inequality T V.P0; Pa/ � 1, Pinsker’s inequality and inequality (19) of
Lemma A.4 below, give

T V.P0; Pa/ �

r
KL.P0; Pa/

2
�
a
p
cC

2�
;

which implies the statement of Theorem 2.1.

Lemma A.4. Consider that the measure P �1 of the noise coordinates is c-strongly
log-concave on R, with density p D exp.��/, the convex function � thus being c-
strongly convex for some constant c > 0. Recall that the measure P0 is the distribution
of the scaled noise coordinate ��1 and that Pa is the image of P0 by the translation
of a. It holds that

KL.P0; Pa/ �
ca2

2�2
: (18)

If, on the other hand, we assume that the measure P �1 has a density p D exp.��/
converging to zero at infinity, with � being two times continuously differentiable and
satisfying inequality (3) for a constant cC > 0, that gives a uniform upper bound of
the curvature of � by the constant cC, then it holds

KL.P0; Pa/ �
cCa

2

2�2
: (19)

If P �1 is c-strongly log-concave and its potential achieves (3) for a positive con-
stant cC, then inequality (19) holds true.

Note that Lemma A.4 is tight in the sense that if P0 is Gaussian with variance �2,
then KL.P0; Pa/ D a2=.2�2/ and we have equality in both bounds (18) and (19),
with c D cC D 1.
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Proof. Consider first the case of a c-strongly log-concave density p.By standard
approximation arguments (see, for instance, [34, Proposition 5.5]), we can assume
without loss of generality that the potential � is two times continuously differentiable.
Consequently, c-strong convexity of � is equivalent to �00.x/ � c for all x 2R. Using
Taylor expansion, this gives for any x 2 R that

�.x � a/ � �.x/ � a�0.x/C c
a2

2
:

This gives

KL.P0; Pa/ D
1

�2

Z
R
Œ�.x � a/ � �.x/� exp.��.x// dx

� �
a

�2

Z
R
�0.x/ exp.��.x// dx C c�

a2

2�2

Z
R

exp.��.x// dx

D c�
a2

2�2
:

Hence, (18) is proved. In order to prove (19), just remark that the regularity of �
and the upper bound on its curvature yield supx2R �

00.x/ � cC. Hence, by Taylor
expansion again,

�.x � a/ � �.x/ � a�0.x/C cC
a2

2
:

Analogous computations now give KL.P0; Pa/ � cCa2=.2�2/, which is (19).
Finally, if p is strongly log-concave, then it tends to zero at infinity. By convo-

lution by Gaussians, we can also assume without loss of generality that � is two
times continuously differentiable ([34, Proposition 5.5]). Hence, if in addition p sat-
isfies (3), then it achieves the conditions that lead to (19). This concludes the proof of
Lemma A.4.

A.3. Some auxiliary results for the upper bounds

First recall that since the vector � D .�1; : : : ; �d / is c-strongly log-concave – as it has
independent c-strongly log-concave coordinates – then it achieves the following sub-
Gaussian concentration inequality for Lipschitz functions (see [28, Proposition 2.18]):
for any L-Lipschitz function F WRd ! R, and any r � 0, we have

P .F.�/ � EŒF .�/� � r/ � exp.�cr2=.2L2//:

Furthermore, the celebrated Cafarelli’s contraction theorem [14] state that the Bre-
nier transport map pushing forward a Gaussian distribution to a strongly log-concave
measure with the same Gaussian factor is a contraction. As a result, one can derive
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the following Mill’s type bound for the deviations the coordinate �1 (see [15, Propo-
sition 2]): for any r > 0, we have

P .j�1j � r/ � 2.1 �ˆ.
p
cr// �

r
2

�

exp.�cr2=2/
p
cr

; (20)

where ˆ is the standard Gaussian cumulative distribution function. Another useful
fact is that, as �1 is log-concave, it is unimodal (see [34]) and as �1 is also symmet-
ric, the maximum of its density p.x/ D exp.��0.x// exp.�cx2=2/ is attained at its
median 0. Note that as �0 is convex and symmetric, the maximum of the function
exp.��0.x// is also attained at 0. In addition, by a result of Bobkov and Ledoux [8]
(see also [34, Proposition 5.2]), as 0 is the median of �1, it holds that

p.0/ D exp.��0.0// � 1=.
p
2��1/ � 1=

p
2:

Putting things together, for any x 2 R, we obtain that

p.x/ �
1
p
2

exp.�cx2=2/:

Lemma A.5. For all a � 0 and all � > 0, by Hoeffding’s inequality, we have

P

�
1

n

nX
iD1

�
sgnŒaC �� ij � � E

�
sgnŒaC �� ij �

��
� �

�
� exp

�
�n
�2

2

�
:

We now recall Bernstein’s inequality (cf. [9, Corollary 2.11]).

Theorem A.6. Let Y1; : : : ; Yn be independent real valued random variables. Assume
that there exist some positive numbers v and u such that

nX
iD1

EŒY 2i � 6 v;

and for all integers m > 3,

nX
iD1

EŒjYi j
m� 6

mŠ

2
vum�2:

Let S D
Pn
iD1.Yi � EŒYi �/, then for every positive t , we have

P .S > t / 6 exp
�
�

t2

2.v C ut/

�
: (21)
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Note that if v � ut , then (21) yields

P .S � t / � exp.�t=.4u//:

If ut � v, then (21) yields

P .S � t / � exp.�t2=4v/:

We will apply this to get concentration bounds for the average of i.i.d. Laplace
distributed random variables that check the assumptions of the theorem.

A.4. Proof of Proposition 2.4

It holds that

jy�C � �j D
X

j W�jD0

y�Cj C
X

j W�jD1

.1 � y�Cj /

D

X
j W�jD0

I

�
1

n

nX
iD1

sgnŒ�� ij �C
2d

n˛

nX
iD1

W i
j � �

�
C

X
j W�jD1

I

�
1

n

nX
iD1

sgnŒ�j C �� ij �C
2d

n˛

nX
iD1

W i
j < �

�
:

Thus,

E

�
1

s
jy�C � �j

�
D
1

s

X
j W�jD0

P

�
1

n

nX
iD1

sgnŒ�� ij �C
2d

n˛

nX
iD1

W i
j � �

�
„ ƒ‚ …

DT1;j

C
1

s

X
j W�jD1

P

�
1

n

nX
iD1

sgnŒ�j C �� ij �C
2d

n˛

nX
iD1

W i
j < �

�
„ ƒ‚ …

DT2;j

:

We first study T1;j . It holds that

T1;j � P

�
1

n

nX
iD1

sgnŒ�� ij � �
�

2

�
C P

� nX
iD1

W i
j �

� n˛

4d

�
:

Note that EŒsgnŒ�� ij ��D 0 by symmetry of � ij . Using Lemma A.5 to bound from above
the first term and Bernstein’s inequality (21) with v D 2n and u D 1 to bound from
above the second term, we obtain if �˛=.8d/ < 1

T1;j � exp
�
�
n�2

23

�
C exp

�
�
�2n˛2

27d2

�
:
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Since x 7! sgnŒx� is a non-decreasing function and since �j � a for all j such that
�j D 1, it holds that

T2;j � P

�
1

n

nX
iD1

sgnŒaC �� ij �C
2d

n˛

nX
iD1
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�
2d
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j > E
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�
:

As �1 is symmetric and absolutely continuous, we have

E
�
sgnŒaC ��1�

�
D P

�
�1 � �

a

�

�
� P

�
�1 < �

a

�

�
D 1 � 2P

�
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a

�

�
:

Using (20), we further get

E
�
sgnŒaC ��1�

�
� 2ˆ

�p
c
a

�

�
� 1 � 2ˆ.2

p
c/ � 1 DW C1;

for a=� � 2, with ˆ the cumulative distribution function of the standard Gaussian
distribution.

Thus, if a � 2� , it holds
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4d

�
:

We can now bound from above the first term using Lemma A.5 and the second term
using Bernstein’s inequality. If C1 � � and ˛.C1 � �/=.8d/ � 1, this gives

T2;j � exp
�
�
n.C1 � �/

2

23

�
C exp
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2n˛2

27d2

�
:
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This ends the proof of (9). We now prove (10). If � 2‚d .s; a/, we use the estimator y�
instead of y�C and it holds that
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We first study zT1;j . It holds that
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n

nX
iD1

sgnŒ�� ij �
ˇ̌̌̌
C
2d

n˛

ˇ̌̌̌ nX
iD1

W i
j

ˇ̌̌̌
� �

�
� P

�ˇ̌̌̌
1

n

nX
iD1

sgnŒ�� ij �
ˇ̌̌̌
�
�

2

�
C P

�ˇ̌̌̌ nX
iD1

W i
j

ˇ̌̌̌
�
� n˛

4d

�
� 2

�
exp

�
�
n�2

23

�
C exp

�
�
�2n˛2

27d2

��
;

if �˛=.8d/ < 1, where we have used the two-sided versions of the concentration
inequalities we used to prove (9). We now study zT2;j . For all j such that �j D 1,
it holds that

zT2;j D P

�ˇ̌̌̌
1

n

nX
iD1

�
sgnŒ�j C �� ij � � E

�
sgnŒ�j C �� ij �

��
C E

�
sgnŒ�j C ��1j �

�
C
2d

n˛

nX
iD1

W i
j

ˇ̌̌̌
< �

�
� P

�ˇ̌
E
�
sgnŒ�j C ��1j �

�ˇ̌
�

ˇ̌̌̌
1

n

nX
iD1

�
sgnŒ�j C �� ij � � E

�
sgnŒ�j C �� ij �

��
C
2d

n˛

nX
iD1

W i
j

ˇ̌̌̌
< �

�
D P

�ˇ̌̌̌
1

n

nX
iD1

�
sgnŒ�j C �� ij � � E

�
sgnŒ�j C �� ij �

��
C
2d

n˛

nX
iD1

W i
j

ˇ̌̌̌
>
ˇ̌
E
�
sgnŒ�j C ��1j �

�ˇ̌
� �

�
:

Now, observe thatˇ̌
E
�
sgnŒ�j C ��1j �

�ˇ̌
� E

�
sgnŒ�j C ��1j �

�
� E

�
sgnŒaC ��1j �

�
;
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if �j � a since x 7! sgnŒx� is non-decreasing, and if �j � �a, we haveˇ̌
E
�
sgnŒ�j C ��1j �

�ˇ̌
� �E

�
sgnŒ�j C ��1j �

�
� �E

�
sgnŒ�aC ��1j �

�
D �E

�
sgnŒ�a � ��1j �

�
D E

�
sgnŒaC ��1j �

�
;

where we have used that x 7! sgnŒx� is a non-decreasing and odd function and that
��1j and �1j have the same distribution. Moreover, we have seen in the proof of (9)
that the following holds:

E
�
sgnŒaC ���

�
� 2ˆ.2

p
c/ � 1 DW C1;

where ˆ denotes the cumulative distribution function of the Gaussian distribution.
Thus, if a � 2� , it holds that EŒsgnŒaC ��1j �� � C1 for all j such that �j D 1, and

zT2;j � P

�ˇ̌̌̌
1

n

nX
iD1

�
sgnŒ�j C �� ij � � E

�
sgnŒ�j C �� ij �

��
C
2d

n˛

nX
iD1

W i
j

ˇ̌̌̌
> C1 � �

�
� P

�ˇ̌̌̌
1

n

nX
iD1

�
sgnŒ�j C �� ij � � E

�
sgnŒ�j C �� ij �

��ˇ̌̌̌
C

ˇ̌̌̌
2d

n˛

nX
iD1

W i
j

ˇ̌̌̌
> C1 � �

�
� P

�ˇ̌̌̌
1

n

nX
iD1

�
sgnŒ�j C �� ij � � E

�
sgnŒ�j C �� ij �

��ˇ̌̌̌
>
C1 � �

2

�
C P

�ˇ̌̌̌ nX
iD1

W i
j

ˇ̌̌̌
>
n˛.C1 � �/

4d

�
:

Using the two-sided version of the concentration inequalities that we used to bound
T2;j in the proof of (9), if C1 > � and ˛.C1 � �/=.8d/ � 1, we obtain

zT2;j � 2

�
exp

�
�
n.C1 � �/

2

23

�
C exp

�
�
.C1 � �/

2n˛2

27d2

��
:

This ends the proof of (10).

A.5. Proof of Corollary 2.5

Let us prove (11). Note that if the assumptions of Corollary 2.5 are satisfied, and if
� DC1=2 then the assumptions of Proposition 2.4 are also satisfied and for all a� 2� ,
we have

sup
�2‚

E

�
1

s
jy�C � �j

�
� 2 �

d

s

�
exp

�
�
C 21 n

25

�
C exp

�
�
C 21 n˛

2

29d2

��
D 2

²
exp

�
log
�d
s

�
�
C 21 n

25

�
C exp

�
log
�d
s

�
�
C 21 n˛

2

29d2

�³
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D 2 exp
�
�
n˛2

d2

�
C 21 d

2

25˛2
�

log.d=s/
n˛2=d2

��
C 2 exp

�
�
n˛2

d2

�
C 21
29
�

log.d=s/
n˛2=d2

��
:

The two terms appearing in the last inequality both tend to 0 as d ! C1 under the
assumptions of Corollary 2.5, which gives (11). The proof of (12) is similar.

A.6. Proof of Proposition 2.6

The beginning of the proof is similar to the proof of Proposition 2.4. It holds that

E

�
1

s
jy�C � �j

�
D
1

s

X
j W�jD0

P

�
1

n

nX
iD1

sgnŒ�� ij �C
2d

n˛

nX
iD1

W i
j � �

�
„ ƒ‚ …

DT1;j

C
1

s

X
j W�jD1

P

�
1

n

nX
iD1

sgnŒ�j C �� ij �C
2d

n˛

nX
iD1

W i
j < �

�
„ ƒ‚ …

DT2;j

;

and we have

T1;j � exp
�
�
n�2

23

�
C exp

�
�
�2n˛2

27d2

�
if �˛=.8d/ < 1, and

T2;j � P

�
�
1

n

nX
iD1

�
sgnŒaC �� ij � � E

�
sgnŒaC �� ij �

��
�
2d

n˛

nX
iD1

W i
j > E

�
sgnŒaC ��1j �

�
� �

�
:

Now, we bound from below E
�
sgnŒa C ���

�
in a different way than in the proof of

Proposition 2.4 by the tighter bound

E
�
sgnŒaC ��1�

�
D 2P

�
0 < �1 �

a

�

�
� 2

a

�
p
�a
�

�
� 2

a

�
p.2/;

for a=� < 2, as the probability density function p of �1 is c-strongly log-concave and
symmetric and thus uni-modal at 0 and decreasing on .0;1/. Thus,

T2;j � P

�
�
1

n

nX
iD1

�
sgnŒaC �� ij � � E

�
sgnŒaC �� ij �

��
�
2d

n˛

nX
iD1

W i
j > 2

a

�
p.2/ � �

�
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� P

�
�
1

n

nX
iD1

�
sgnŒaC �� ij � � E

�
sgnŒaC �� ij �

��
>
a

�
p.2/ �

�

2

�
C P

� nX
iD1

.�W i
j / >

n˛.a=�p.2/ � �=2/

2d

�
:

We can now bound from above the first term using lemma A.5 and the second term
using Bernstein’s inequality. If � < 2a=�p.2/ and ˛.a=�p.2/ � �=2/=.4d/ � 1, this
gives

T2;j � exp
�
�
n.a=�p.2/ � �=2/2

23

�
C exp

�
�
.a=�p.2/ � �=2/2n˛2

25d2

�
:

A.7. Proof of Corollary 2.7

Let prove (13). The chosen value of � D a=� �p.2/ satisfies the assumptions of Propo-
sition 2.6 for d large enough and yield

sup
�2‚

C

d
.s;a/

E

�
1

s
jy�C � �j

�
�
d

s

�
exp

�
�
na2

23�2
p2.2/

�
C exp

�
�
n˛2a2

27�2d2
p2.2/

��
D exp

�
log
�d
s

�
�
na2

23�2
p2.2/

�
C exp

�
log
�d
s

�
�
n˛2a2

27�2d2
p2.2/

�
� 2 exp

�
log
�d
s

�
�
n˛2a2

27�2d2

�
:

Conclude using that a� �d=
p
n˛2

p
log.d=s/. The proof of (14) is similar.

B. Proofs of Section 3

B.1. Proof of Proposition 3.1

Note that it is sufficient to prove that zZi is an ˛-LDP view ofX i . Indeed, if zZi is an ˛-
LDP view of X i then it holds for all z 2 Z and x; x0 2 Rd (we omit the superscript i )
that

P .ZDz j XDx/

P .ZDz j XDx0/
D

P
zz2¹�B;Bºd P .Z D z j zZ D zz;X D x/P . zZ D zz j X D x/P
zz2¹�B;Bºd P .Z D z j zZ D zz;X D x0/P . zZ D zz j X D x0/

D

P
zz2¹�B;Bºd P .Z D z j zZ D zz/P . zZ D zz j X D x/P
zz2¹�B;Bºd P .Z D z j zZ D zz/P . zZ D zz j X D x0/

� e˛;

where we have used that Z is independent from X conditionally to zZ and the fact
that P . zZ D zz j X D x/ � e˛P . zZ D zz j X D x0/ for all zz 2 ¹�B; Bºd if zZ is an
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˛-LDP view of X . So, let’s prove that zZi is an ˛-LDP view of X i . In what follows,
we omit once again the superscript i . We have to prove that for all zz 2 ¹�B;Bºd and
all x; x0 2 Rd it holds that

P . zZ D zz j X D x/

P . zZ D zz j X D x0/
� e˛:

Let zz 2 ¹�B;Bºd and x 2 Rd . It holds that

P . zZ D zz j X D x/ D
X

zx2¹�1;1ºd

P . zZ D zz j X D x; zX D zx/ � P . zX D zx j X D x/

D

X
zx2¹�1;1ºd

P . zZ D zz j zX D zx/ � P . zX D zx j X D x/;

and since Y and zX are independent, we have

P . zZ D zz j zX D zx/ D P . zZ D zz j zX D zx; Y D 1/ � P .Y D 1/

C P . zZ D zz j zX D zx; Y D 0/ � P .Y D 0/

D �˛P . zZ D zz j zX D zx; Y D 1/

C .1 � �˛/P . zZ D zz j zX D zx; Y D 0/:

Moreover, since for zx 2 ¹�1; 1ºd , we have

Card
�®
zz 2 ¹�B;Bºd j hzz; zxi > 0 or .hzz; zxi D 0 and zz1 D Bzx1/

¯�
D Card

�®
zz 2 ¹�B;Bºd j hzz; zxi < 0 or .hzz; zxi D 0 and zz1 D �Bzx1/

¯�
D 2d�1;

it holds that

P . zZ D zz j zX D zx;Y D 1/D

´
0 if hzz; zxi < 0 or .hzz; zxi D 0 and zz1 D �Bzx1/;
1

2d�1
if hzz; zxi > 0 or .hzz; zxi D 0 and zz1 D Bzx1/;

and

P . zZ D zz j zX D zx;Y D 0/D

´
1

2d�1
if hzz; zxi < 0 or .hzz; zxi D 0 and zz1 D �Bzx1/;

0 if hzz; zxi > 0 or .hzz; zxi D 0 and zz1 D Bzx1/:

We thus have

P . zZ D zz j zX D zx/ D

´
1��˛
2d�1

if hzz; zxi < 0 or .hzz; zxi D 0 and zz1 D �Bzx1/;
�˛
2d�1

if hzz; zxi > 0 or .hzz; zxi D 0 and zz1 D Bzx1/;

and, if we set

Azz D
®
zx 2 ¹�1; 1ºd W hzz; zxi > 0 or .hzz; zxi D 0 and zz1 D Bzx1/

¯
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and
Czz D

®
zx 2 ¹�1; 1ºd W hzz; zxi < 0 or .hzz; zxi D 0 and zz1 D �Bzx1/

¯
;

we obtain

P . zZDzz jX D x/D
�˛

2d�1

X
zx2Azz

P . zX D zx jX D x/C
1 � �˛

2d�1

X
zx2Czz

P . zX D zx jX D x/:

Consequently, for all zz 2 ¹�B;Bºd and all x 2 Rd , it holds that

min¹�˛; 1 � �˛º
2d�1

� P . zZ D zz j X D x/ �
max¹�˛; 1 � �˛º

2d�1
;

where we have used thatAzz tCzz D¹�1;1ºd and
P
zx2¹�1;1ºd P . zX D zx jX D x/D 1.

Finally, for all zz 2 ¹�B;Bºd and all x; x0 2 Rd , we obtain

P . zZ D zz j X D x/

P . zZ D zz j X D x0/
�

max¹�˛; 1 � �˛º
min¹�˛; 1 � �˛º

D
�˛

1 � �˛
D e˛:

B.2. Proof of Proposition 3.2

Let x 2 Rd . We first compute EŒ zZ j X D x�. It holds that

EŒ zZ j X D x� D
X

zx2¹�1;1ºd

P . zX D zx j X D x/ � EŒ zZ j X D x; zX D zx�

D

X
zx2¹�1;1ºd

P . zX D zx j X D x/ � EŒ zZ j zX D zx�;

and since Y and zX are independent, we have

EŒ zZ j zX D zx� D P .Y D 1/ � EŒ zZ j zX D zx; Y D 1�

C P .Y D 0/ � EŒ zZ j zX D zx; Y D 0�

D �˛EŒ zZ j zX D zx; Y D 1�C .1 � �˛/EŒ zZ D z j zX D zx; Y D 0�:

Define

Azx WD
®
zz 2 ¹�B;Bºd j hzz; zxi > 0 or .hzz; zxi D 0 and zz1 D Bzx1/

¯
;

Czx WD
®
zz 2 ¹�B;Bºd j hzz; zxi < 0 or .hzz; zxi D 0 and zz1 D �Bzx1/

¯
:

Conditionally on ¹ zX D zx; Y D 1º, it holds that Z � U.Azx/. Thus,

EŒ zZ j zX D zx; Y D 1� D
X
zz2Azx

P . zZ D zz j zX D zx; Y D 1/zz D
1

Card.Azx/

X
zz2Azx

zz:
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Similarly,

EŒ zZ j zX D zx; Y D 0� D
1

Card.Czx/

X
zz2Czx

zz D
1

Card.Czx/

X
zz2Azx

.�zz/

D �EŒ zZ j zX D zx; Y D 1�;

where we have used that Card.Czx/ D Card.Azx/. We thus obtain

EŒ zZ j zX D zx� D
2�˛ � 1

Card.Azx/

X
zz2Azx

zz;

and, using that Card.Azx/ D 2d�1 for all zx 2 ¹�1; 1ºd , we obtain

EŒ zZ j X D x� D
2�˛ � 1

2d�1

X
zx2¹�1;1ºd

�
P . zX D zx j X D x/ �

X
zz2Azx

zz

�
:

We now compute
P
zz2Azx

zz for all zx 2 ¹�1; 1ºd . Note that for zz 2 ¹�B; Bºd and
zx 2 ¹�1; 1ºd , hzz; zxi is a sum of d terms, each equal to �B or B . If a denotes the
number of elements of this sum equal to B and b denotes the number of elements of
this sum equal to �B , then it holds aC b D d and hzz; zxi D aB � bB D B.d � 2b/.
Thus we can only have hzz; zxi D kB , where k 2 J�d; dK and jkj has the same parity
as d . We thus have X

zz2Azx

zz D

.d�1/=2X
pD0

X
¹zz2¹�B;Bºd Whzz;zxiD.2pC1/Bº

z; (22)

if d is odd, and X
zz2Azx

zz D

d=2X
pD1

X
zz2¹�B;Bºd W
hzz;zxiD2p�B

zz C
X

zz2¹�B;Bºd W
hzz;zxiD0;
zz1DBzx1

zz; (23)

if d is even. Now, observe that for all zx 2 ¹�1; 1ºd , for all j 2 J1; dK and for all
k 2 ¹0; : : : ; dº with the same parity as d , it holds thatX

zz2¹�B;Bºd Whzz;zxiDkB

zzj D B

��
d � 1
dCk
2
� 1

�
�

�
d � 1
dCk
2

��
zxj : (24)

Indeed, for all zz 2 ¹�B;Bºd , for all zx 2 ¹�1; 1ºd , and for all k 2 ¹0; : : : ; dº with the
same parity as d , it holds that

hzz; zxi D k � B ”

´
zzj D Bzxj for dCk

2
elements j 2 J1; dK;

zzj D �Bzxj for d�k
2

elements j 2 J1; dK:
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Setting Dk;zx D ¹zz 2 ¹�B;Bºd W hzz; zxi D k � Bº, it thus holds thatX
zz2Dk;zx

zzj D
X
zz2Dk;zx

Bzxj 1.zzj D Bzxj / �
X

z2Dk;zx

Bzxj 1.zzj D �Bzxj /

D B
�
Card.zz 2 Dk;zx W zzj D Bzxj / � Card.zz 2 Dk;zx W zzj D �Bzxj /

�
zxj

D B

��
d � 1
dCk
2
� 1

�
�

�
d � 1
dCk
2

��
zxj :

We now end the proof of Proposition 3.2 when d is odd. Combining (24) with (22),
we obtain for d odd X

z2Azx

zz D B

�
d � 1
d�1
2

�
zx;

and the choice of B yields

EŒ zZ j X D x� D
2�˛ � 1

2d�1
B

�
d � 1
d�1
2

� X
zx2¹�1;1ºd

P . zX D zx j X D x/ � zx

D EŒ zX j X D x�:

Since for all j 2 J1; dK it holds that

EŒ zXj j X D x� D sgnŒxj �;

we obtain for d odd

EŒZ j X D x� D EŒ zZ j X D x� D EŒ zX j X D x� D f .x/;

which proves Proposition 3.2 when d is odd. From now on, we assume that d is even.
Combining (24) with (23), we obtainX

zz2Azx

zz D B

�
d � 1
d
2

�
zx C

X
zz2¹�B;Bºd W
hzz;zxiD0;
zz1DBzx1

zz:

Now, observe that for zz 2 ¹�B;Bºd and zx 2 ¹�1; 1ºd it holds that hzz; zxi D 0 if and
only if zzj D Bzxj for exactly d=2 subscripts j 2 J1; dK, and zzj D �Bzxj for exactly
d=2 subscripts j 2 J1; dK. We thus haveX

zz2¹�B;Bºd W
hzz;zxiD0
zz1DBzx1

zz1 D Bzx1 � Card
�®
zz 2 ¹�B;Bºd W hzz; zxi D 0 and zz1 D Bzx1

¯�

D B

�
d � 1
d
2
� 1

�
zx1;



Phase transitions for support recovery under local differential privacy 39

and for j � 2 it holds thatX
zz2¹�B;Bºd W
hzz;zxiD0
zz1DBzx1

zzj D Bzxj

h
Card

�®
zz 2 ¹�B;Bºd W hzz; zxi D 0; zz1 D Bzx1; zzj D Bzxj

¯�
� Card

�®
zz 2 ¹�B;Bºd W hzz; zxi D 0; zz1 D Bzx1; zzj D �Bzxj

¯�i
D B

��
d � 2
d
2
� 2

�
�

�
d � 2
d
2
� 1

��
zxj :

We thus obtain

X
zz2Azx

zzj D

8<:B
�
d
d
2

�
zx1 if j D 1;

B
��
d�1
d
2

�
C
�
d�2
d
2 �2

�
�
�
d�2
d
2 �1

��
zxj if j 2 J2; dK:

The choice

B D
2d�1

2�˛ � 1
�

.d
2
� 1/Šd

2
Š

.d � 2/Š.d � 2/

then yields

EŒ zZj j X D x�

D

8<:
.2�˛�1/B

2d�1

�
d
d
2

�P
zx2¹�1;1ºd zx1P . zX D zx j X D x/ if j D 1;

.2�˛�1/B

2d�1
�
.d�2/Š.d�2/

.d2 �1/Š
d
2 Š

P
zx2¹�1;1ºd zxjP . zX D zx j X D x/ if j 2 J2; dK;

D

8<:
2.d�1/
d�2

P
zx2¹�1;1ºd zx1P . zX D zx j X D x/ if j D 1;P

zx2¹�1;1ºd zxjP . zX D zx j X D x/ if j 2 J2; dK:

Thus, it holds EŒZj j X D x�D
P
zx2¹�1;1ºd P . zX D zx j X D x/zxj for all j 2 J1; dK,

and

EŒZ j X D x� D
X

zx2¹�1;1ºd

P . zX D zx j X D x/zx D EŒ zX j X D x� D f .x/:

B.3. Asymptotic analysis of the value Kd defined in (15)

Lemma B.1. The value Kd defined in (15) behaves asymptotically in d as

Kd �
d!1

r
�

2

p
d:

In particular, it holds Kd .
p
d for d large enough.
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The proof relies on Stirling’s approximation. We first deal with the case where d
is odd. In this case, Stirling’s approximation yields

Kd D 2d�1
Œ.d�1

2
/Š�2

.d � 1/Š

�
d!1

2d�1 � �.d � 1/
�d � 1
2e

�d�1
�

�p
2�.d � 1/

�d � 1
e

�d�1��1
:

The right-hand side of this asymptotic equivalence is equal to
p
�=2
p
d � 1. We thus

obtain
Kd �

d!1

p
�=2
p
d:

We now assume that d is even. in this case, Stirling’s approximation yields

Kd D
2d�1.d

2
� 1/Šd

2
Š

.d � 2/Š.d � 2/

�
d!1

2d�1

d � 2
� �
p
.d � 2/d

�d � 2
2e

�d
2 �1

� d
2e

�d
2

�

�p
2�.d � 2/

�d � 2
e

�d�2��1
:

The right-hand side of this asymptotic equivalence is equal to
p
�

e
p
2

p
d.d � 2/�

d
2 d

d
2 D

p
�

e
p
2

p
d exp

�
�
d

2
log
�
1 �

2

d

��
�

d!1

r
�

2

p
d;

which ends the proof.

B.4. Proof of Proposition 3.3

The proof is similar to the one we made in the Coordinate Local case (Proposi-
tion 2.4). However, in the Coordinate Global case, for all j 2 J1; dK the .Zij /i are
bounded random variables, which will enable us to use Hoeffding’s inequality instead
of Lemma A.5 and Bernstein’s inequality.

Writing
jy�C � �j D

X
j W�jD0

y�Cj C
X

j W�jD1

.1 � y�Cj /;

we have

E

�
1

s
jy�C � �j

�
D
1

s

X
j W�jD0

P

�
1

n

nX
iD1

Zij � �

�
„ ƒ‚ …

DT1;j

C
1

s

X
j W�jD1

P

�
1

n

nX
iD1

Zij < �

�
„ ƒ‚ …

DT2;j

:

We first study T1;j . For j satisfying �j D 0, it holds that

EŒZij � D E
�
EŒZij j X

i �
�
D E

�
sgnŒX ij �

�
D E

�
sgnŒ�� ij �

�
D 0;
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where we have used Proposition 3.2 and the fact that the distribution of the random
variable � ij is symmetric. Thus, Hoeffding’s inequality yields

T1;j D P

� nX
iD1

�
Zij � EŒZij �

�
� n�

�
� exp

�
�
n�2

2B2

�
:

We now study T2;j . Let j 2 J1; dK such that �j D 1. It holds that

T2;j D P

�
1

n

nX
iD1

�
Zij � EŒZij �

�
C
1

n

nX
iD1

EŒZij � < �

�
D P

�
1

n

nX
iD1

�
�Zij � EŒ�Zij �

�
> EŒZ1j � � �

�
:

Proposition 3.2 gives

EŒZ1j � D E
�
sgnŒX1j �

�
D E

�
sgnŒ�j C ��1j �

�
� E

�
sgnŒaC ��1j �

�
;

and we have proved in Appendix A.4 that the following holds:

E
�
sgnŒaC ��1�

�
� 2ˆ

�p
c
a

�

�
� 1;

whereˆ denotes the standard Gaussian cumulative distribution function. Thus, if a �
2� , it holds that EŒsgnŒaC ��1j �� � C1 with C1 D 2ˆ.2

p
c/ � 1, and

T2;j � P

�
1

n

nX
iD1

�
�Zij � EŒ�Zij �

�
> C1 � �

�
� exp

�
�
n.C1 � �/

2

2B2

�
according to Hoeffding’s inequality if C1 � � > 0. This yields

E

�
1

s
jy�C � �j

�
�
d � jS j

s
exp

�
�
n�2

2B2

�
C
jS j

s
exp

�
�
n.C1 � �/

2

2B2

�
:

The proof of the second statement of Proposition 3.3 is straightforward.

B.5. Proof of Proposition 3.4

The beginning of the proof is similar to the proof of Proposition 3.3. It holds that

E

�
1

s
jy�C � �j

�
D
1

s

X
j W�jD0

P

�
1

n

nX
iD1

Zij � �

�
„ ƒ‚ …

DT1;j

C
1

s

X
j W�jD1

P

�
1

n

nX
iD1

Zij < �

�
„ ƒ‚ …

DT2;j

;
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with

T1;j � exp
�
�
n�2

2B2

�
;

and

T2;j � P

�
1

n

nX
iD1

�
�Zij � EŒ�Zij �

�
> E

�
sgnŒaC �� ij �

�
� �

�
:

Moreover, we have proved in Appendix A.6 that E
�
sgnŒa C ��1�

�
� 2p.2/a=� for

a=� < 2. Thus, if � < 2p.2/a=� , Hoeffding’s inequality yields

T2;j � P

�
1

n

nX
iD1

�
�Zij � EŒ�Zij �

�
>
2p.2/a

�
� �

�
� exp

�
�
n.2p.2/a=� � �/2

2B2

�
:

B.6. Proof of Proposition 3.6

For i D 1; : : : ; d , define the vector !i 2 ¹0;1ºd by !i;j D 1 if j D i , !i;j D 0 if j ¤ i
and define P!i as the multivariate distribution of the random vector X D a!i C ��.
For i ¤ j , it holds that

j�.P!i / � �.P!j /j D j!i � !j j D 2:

The private Fano method ([19, Proposition 2]) thus yields

inf
Q2Q˛

inf
y�2T

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy� � �j

�
1

2

²
1 �

n.e˛ � 1/2

d log.d/

�
sup


2B1.Rd /

dX
iD1

.'!i .
//
2

�
�

log.2/
log.d/

³
;

with

B1.R
d / D

®

 2 L1.R

d / j k
k1 � 1
¯
;

'!i .
/ D

Z
X


.x/.dP!i .x/ � d
xP .x// D

Z
Rd

.x/.f!i .x/ �

xf .x// dx;

where f!i is the density of P!i and xf D .1=d/
Pd
iD1 f!i . We have

dX
iD1

.'!i .
//
2

D

dX
iD1

�Z
Rd

.x/.f!i .x/ �

xf .x// dx
��Z

Rd

.y/.f!i .y/ �

xf .y// dy
�

D

Z
Rd

.x/

�Z
Rd

� dX
iD1

.f!i .x/ �
xf .x//.f!i .y/ �

xf .y//

�

.y/ dy

�
dx:
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Let xp denote the density of the random vector ��. If 
 belongs to B1.Rd / then it
also belongs to L2.Rd ; dq/ and, moreover, k
kL2.Rd ;d xp/ � 1. We can write

dX
iD1

.'!i .
//
2

D

Z
Rd

.x/

�Z
Rd

� dX
iD1

f!i .x/ �
xf .x/

xp.x/
�
f!i .y/ �

xf .y/

xp.y/

�

.y/ xp.y/ dy

�
xp.x/ dx

D h
;K
iL2.Rd ;d xp/;

where

KWL2.R
d ; d xp/! L2.R

d ; d xp/


 7!

Z
Rd

� dX
iD1

f!i �
xf

xp
.�/ �

f!i .y/ �
xf .y/

xp.y/

�

.y/ xp.y/ dy:

For any ! 2 ¹0; 1ºd , f! 2 L2.Rd ; d xp/. Note that we can rewrite

K
 D

dX
iD1

��
f!i �

xf

xp
; 


�
L2.Rd ;d xp/

�
f!i �

xf

xp

�
:

This expression implies that K is an operator of finite rank (it is thus a compact
operator), K is self-adjoint, and hK
; 
i � 0 for all 
 2 L2.Rd ; d xp/. In particular,
the last point implies that the eigenvalues of K are non-negative. We have

sup

2B1.Rd /

dX
iD1

.'!i .
//
2
� sup
¹
2L2.Rd ;d xp/Wk
k

2

L2.R
d ;d xp/

�1º

h
;K
iL2.Rd ;d xp/

D sup
¹
2L2.Rd ;d xp/Wk
k

2

L2.R
d ;d xp/

D1º

h
;K
iL2.Rd ;d xp/

D sup
¹
2L2.Rd ;d xp/Wk
k

2

L2.R
d ;d xp/

D1º

jh
;K
iL2.Rd ;d xp/j

D kKk;

where the last equality follows from the fact that .L2.Rd ; d xp/; h�; �iL2.Rd ;d xp// is a
Hilbert space andK is self-adjoint. SinceK is also compact and since the eigenvalues
of K are non-negative it follows that

sup

2B1.Rd /

dX
iD1

.'!i .
//
2
� kKk D max¹j�j W � 2 VP.T /º D max¹� W � 2 VP.T /º;
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where VP.T / is the set of all the eigenvalues of K. It remains to compute this max-
imum. By definition, � is an eigenvalue of K if �I �K is not injective. For � ¤ 0,
the Fredholm alternative for compact self-adjoint operators (see, for instance, [26])
implies that �I �K is not injective if and only if �I �K is not surjective. Thus, the
non-zero eigenvalues of K are the values of � 2 R� such that the operator �I �K is
not surjective. For � 2 R, let A� be the matrix with coefficients

.A�/ij D

�
f!i �

xf

xp
;
f!j �

xf

xp

�
L2.Rd ;d xp/

� �ıij ; i; j 2 J1; dK;

where ı is the Kronecker delta. The following result proves that if � is a non-zero
eigenvalue of K then it holds Det.A�/ D 0.

Lemma B.2. Let � 2 R, � ¤ 0. If Det.A�/ ¤ 0, then �I �K is surjective.

Proof. To lighten the notation, set h� ; �i2; xp D h� ; �iL2.Rd ;d xp/. Let � 2 R, � ¤ 0 and
assume that Det.A�/ ¤ 0. We prove that for all g 2 L2.Rd ; d xp/, there exists 
 2
L2.Rd ;d xp/ such that gD .�I �K/
 . Consider g2L2.Rd ;d xp/. Since Det.A�/¤0,
the matrix A� is invertible and for all v 2 Rd there exists � 2 Rd such that v D A�� .
In particular, for

v D

��
f!1 �

xf

xp
; g

�
2; xp

; : : : ;

�
f!d �

xf

xp
; g

�
2; xp

�T
;

there exists � 2 Rd such that v D A�� , that is�
f!i �

xf

xp
; g

�
2; xp

D .A��/i D

dX
jD1

�
f!i �

xf

xp
;
f!j �

xf

xp

�
2; xp

�j � ��i

for all i 2 J1; dK. Define


 D
1

�
g �

1

�

dX
jD1

�j
f!j �

xf

xp
:

We have

.�I �K/
 D �
 �K


D g �

dX
iD1

�i
f!i �

xf

xp
�

dX
iD1

��
f!i �

xf

xp
; 


�
L2.Rd ;d xp/

�
f!i �

xf

xp

�
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D g �

dX
iD1

�
�i C

1

�

�
f!i �

xf

xp
; g

�
2; xp

�
1

�

dX
jD1

�j

�
f!i �

xf

xp
;
f!j �

xf

xp

�
2; xp

�
„ ƒ‚ …

D0

f!i �
xf

xp

D g;

which concludes the proof of the lemma.

We now find the values of � for which we have Det.A�/ D 0. To do so, we first
make explicit the coefficients of A�. It holds that�

f!i �
xf

xp
;
f!j �

xf

xp

�
2; xp

D

�
f!i
xp
;
f!j

xp

�
2; xp

�

�
f!i
xp
;
xf

xp

�
2; xp

�

�
xf

xp
;
f!j

xp

�
2; xp

C

�
xf

xp
;
xf

xp

�
2; xp

D

�
f!i
xp
;
f!j

xp

�
2; xp

�
1

d

dX
kD1

�
f!i
xp
;
f!k
xp

�
2; xp

�
1

d

dX
kD1

�
f!k
xp
;
f!j

xp

�
2; xp

C
1

d2

dX
kD1

dX
lD1

�
f!k
xp
;
f!l
xp

�
2; xp

:

Furthermore, due to the independence of the coordinates of the vector � , the scalar
products h

f!k
xp
;
f!l
xp
i2; xp can only take two values. More precisely, recall that P0 den-

otes the distribution of the random variable ��1 and Pa the distribution of the random
variable aC ��1, we get�

f!i
xp
;
f!j

xp

�
2; xp

D

´
1C �2.P0; Pa/ if j D i;

1 if j ¤ i:

We thus obtain�
f!i �

xf

xp
;
f!j �

xf

xp

�
2; xp

D

´ �
1 � 1

d

�
�2.P0; Pa/ if j D i;

�
1
d
�2.P0; Pa/ if j ¤ i:

Write

C1 D
�
1 �

1

d

�
�2.P0; Pa/ and C2 D �

1

d
�2.P0; Pa/:

The matrix A� has its diagonal elements equal to C1 � � and the other coefficients
equal to C2. Operations on the rows and columns of A� yield

Det.A�/ D
�
C1 C .d � 1/C2 � �

�
.C1 � C2 � �/

d�1
D ��

�
�2.P0; Pa/ � �

�d�1
:
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Thus, the operator K has only one non-zero eigenvalue and it is equal to �2.P0; Pa/.
We finally obtain

inf
Q2Q˛

inf
y�2T

sup
�2‚

C

d
.s;a/

E
Q.P

˝n
�

/
jy� � �j �

1

2

�
1 �

n.e˛ � 1/2

d log.d/
�2.P0; Pa/ �

log.2/
log.d/

�
�
1

4

�
1 �

2n.e˛ � 1/2

d log.d/
�2.P0; Pa/

�
;

if d � 4. To conclude with the proof of Proposition 3.6, just use Lemma B.3 below.

Lemma B.3. Consider that the measure P �1 of the noise coordinates has a density
p D exp.��/, where the potential � is two times continuously differentiable and has
a curvature that is bounded from above by a constant cC as in (3). Then it holds that

�2.P0; Pa/ � exp
�
cC

�a
�

�2�
� 1: (25)

If the density p is log-concave, with a potential with curvature bounded above by cC
as in (3), then inequality (25) holds without assuming the differentiability of �.

Note that Lemma B.3 is sharp in the sense that in the Gaussian case, cC D 1 holds
and Inequality (25) turns out to be an equality. Note also that log-concavity is actually
not needed in Lemma B.3, since we only require an upper bound on the curvature of
the potential �.

Proof. Denote xa D a=� . It suffices to show the following inequality,Z
R

p2.x � xa/

p.x/
dx � exp.cCxa2/; (26)

where we recall that p is the density of �1. It holdsZ
R

p2.x � xa/

p.x/
dx D

Z
R

exp
�
�.x/ � 2�.x � xa/

�
dx:

As � is two times continuously differentiable, for all x 2R, we have by Taylor expan-
sion

�.x/ � �.x � xa/ � xa�0.x � xa/C cC
xa2

2

and

�.x � 2xa/ � �.x � xa/ � �xa�0.x � xa/C cC
xa2

2
:

By adding the two previous inequalities, we get

�.x/ � 2�.x � xa/ � ��.x � 2xa/C cCxa
2:
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This gives Z
R

p2.x � xa/

p.x/
dx D

Z
R

exp
�
�.x/ � 2�.x � xa/

�
dx

� exp.cCxa2/
Z

R

�
exp.��.x � 2xa//

�
dx

D exp.cCxa2/:

We proved (26). In the case where p is log-concave, it can be suitably approximated
by infinitely differentiable densities, via the use of convolutions with Gaussian ran-
dom variables, which completes the proof of Lemma B.3.
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