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Abstract. We consider the classical problem of prediction with expert advice. In the fixed-
time setting, where the time horizon is known in advance, algorithms that achieve the optimal
regret are known when there are two, three, or four experts or when the number of experts is
large. Much less is known about the problem in the anytime setting, where the time horizon is
not known in advance. No minimax optimal algorithm was previously known in the anytime
setting, regardless of the number of experts. Even for the case of two experts, Luo and Schapire
have left open the problem of determining the optimal algorithm.

We design the first minimax optimal algorithm for minimizing regret in the anytime setting.
We consider the case of two experts, and prove that the optimal regret is 


p
t=2 at all time

steps t , where 
 is a natural constant that arose 35 years ago in studying fundamental properties
of Brownian motion. The algorithm is designed by considering a continuous analog of the regret
problem, which is solved using ideas from stochastic calculus.

1. Introduction

We study the problem of prediction with expert advice, whose origin can be traced
back to the 1950s [35]. (The problem of prediction with expert advice is sometimes
worded slightly differently than we do but these formulations are essentially equiva-
lent. For more details, see the discussion in Appendix D.) The problem is a sequential
game between an adversary and an algorithm as follows. There are n actions, which
are called “experts”. At each time step, the algorithm computes a distribution over
the experts, then randomly chooses an expert according to that distribution; concur-
rently, the adversary chooses a loss (or cost) in Œ0; 1� for each expert, with knowledge
of the algorithm’s distribution but not its random choice. The loss of each expert is
then revealed to the algorithm, and the algorithm incurs the loss that its chosen expert
incurred. The goal is to design an algorithm whose expected regret is small. That
is, the goal is to minimize the difference between the algorithm’s expected total loss
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and the total loss of the best expert. This problem and its variants have been a key
component in numerous results; we refer the reader to [5].

The most well-known algorithm for the experts problem is the celebrated multi-
plicative weights update algorithm (MWU) [42, 54]. In the fixed-time setting (where
a time horizon T is known in advance), MWU suffers a regret of

p
.T=2/ lnn at

time T , where n is the number of experts [12, 13]. This bound on the regret of MWU
is known to be tight for any even n [32]. It is also known that

p
.T=2/ lnn is the regret

of the best possible algorithm, asymptotically for large n and T . (A precise statement
may be found in the references [13, Corollary 3.2.2] [14, Theorem 3.7].) Interestingly,
MWU is not optimal for small values of n. For n D 2, Cover [18] observed decades
earlier that a natural dynamic programming formulation of the problem leads to a
simple analysis showing that the minimax optimal regret is

p
T=2� , asymptotically

for large T (a proof of this can also be found in [13, §3], [37, Theorem 18.5.5]).
For some applications, the time horizon T is not known in advance; examples

include any sort of online tasks (e.g., online learning), or tasks requiring convergence
over time (e.g., convergence to equilibria). An alternative model, more suited to those
scenarios, is the anytime setting,1 in which algorithms are not given T but must bound
the regret for all T . Yet another model is to assume that T is random with a known
distribution [43]. For example, the geometric horizon setting of Gravin, Peres, and
Sivan [31] assumes that T is a geometric random variable. In this setting, they gave
the optimal algorithm for two and three experts. Moreover, they propose a conjecture
on the relationship between the fixed-time and the geometric horizon settings that
could lead to optimal bounds for all n.

Our focus is the anytime setting. One can convert algorithms for the fixed-time
setting to the anytime setting by the well-known “doubling trick” [13, §4.6]. This
involves restarting the fixed-time horizon algorithm every power-of-two steps with
new parameters. If the fixed-time algorithm has regret O.T c/ at time T for some
c 2 .0; 1/ then the doubling trick yields an algorithm with regret O.tc/ at time t for
every t � 1. On the one hand, this is a conceptually simple and generic reduction. On
the other hand, restarting the algorithm and discarding its state is clearly wasteful and
probably not very practical.

Instead of using the doubling trick, one can use variants of MWU with a dynamic
step size; see, e.g., [14, §2.3], [45, Theorem 1], [11, §2.5]. This is a much more ele-
gant and practical approach and is even simpler to implement. However, the analysis
is more subtle than for MWU with a fixed step size. It is known that, with an appro-

1Other authors have referred to this setting as an “unknown time horizon” or “bounds that
hold uniformly over time”.
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priate choice of step sizes, MWU can guarantee2 a regret of
p
t lnn for all t � 1 and

all n � 2 (see [11, Theorem 2.4] or [29, Proposition 2.1]). However, it is unknown
whether

p
t lnn is the minimax optimal anytime regret, for any value of n. Indeed,

Luo and Schapire [43] have also stated that “finding the minimax solution to this
setting seems to be quite challenging, even for the simplest case of n D 2”.

Results and techniques. This work considers the anytime setting with nD 2 experts.
We show that the optimal regret is 


2

p
t , where 
 � 1:30693 is a fundamental constant

that arises in the study of Brownian motion [46]. (Note that 
=2 � 0:653 < 0:833 �
p

ln 2.) This also answers a question that has been left open by Luo and Schapire [43].
It is not a priori obvious why this fundamental constant should play a role in both
Brownian motion and regret. Nevertheless, some connections are known. For exam-
ple, in the fixed-time setting, the optimal algorithms for n 2 ¹2;3; 4º (see [31]) and the
optimal lower bound for n!1 all involve properties of random walks. Since Brown-
ian motion is a continuous limit of random walks, a connection between anytime
regret and Brownian motion is plausible.

Our techniques to analyze the optimal anytime regret are a significant departure
from previous work on regret minimization. First, we define a continuous-time analog
of the problem which expresses the regret as a stochastic integral. This allows us to
utilize tools from stochastic calculus to arrive at a potential function whose derivative
gives the optimal continuous-time algorithm. Remarkably, the optimal discrete-time
algorithm is the discrete derivative of the same potential function. We note that Fre-
und [27] has used stochastic differential equations for a continuous-time formulation
of the experts problem, although he did not discuss the discrete-time problem.

The potential function that we derive involves a “confluent hypergeometric func-
tion”. Such functions often arise in solutions to differential equations, and are useful
in discrete mathematics [30, §5.5].

Application. An interesting application of our results is to a problem in probability
theory that does not involve regret at all. Let .Xt /t�0 be a standard random walk.
Then EŒjX� j� � 
 EŒ

p
�� for every stopping time � ; moreover, the constant 
 cannot

be improved.3 This result is originally due to Davis [19, eq. (3.8)], who proved it first
for Brownian motion and later derived the result for random walks (via the Skorokhod
embedding). We give a new derivation of Davis’ result from our results in Section 2.4.

2It can be shown, by modifying arguments of [32], that this is the optimal anytime analysis
for MWU with step sizes c=

p
t .

3At first glance, the inequality may seem to contradict the Law of the Iterated Logarithm.
However, we remark that if � WD inf¹t > 0 W jXt j � c

p
t ln ln tº for some c 2 .0;

p
2/, then

EŒ
p
�� D1 (despite � being a.s. finite) and the inequality is trivial.
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Related work. The minimax regret for the experts problem has been well studied
in the fixed-time horizon setting. As mentioned above, some tight asymptotics of the
minimax regret were known decades ago: for n D 2, it is

p
T=2� (see [18]), whereas

asymptotically in n, it is
p
T ln.n/=2 (see [12, 13]). Recent work, building on results

of Gravin et al. [31], shows that the minimax regret is
p
8T=9� for n D 3 (see [1])

and
p
�T=8 for n D 4 (see [6]). The anytime setting is not as well understood. In the

two-experts setting, Luo and Schapire [43] demonstrate that, if the time horizon T
is chosen by an adversary and unknown to the algorithm then the algorithm may be
forced to incur regret at least

p
T=� . This exceeds the minimax regret of

p
T=2� in

the fixed-time setting, which establishes that the adversary has more power to cause
regret in the anytime setting.

Recently, there has been a line of work that makes connections between the experts
problem (in the finite-time horizon and geometric-time horizon setting) and PDEs [4,
6, 7, 23, 24, 39, 40]. There is also work connecting regret minimization to option pric-
ing [20] and to the Black–Scholes formula [2], which is based on Brownian motion
and stochastic calculus. Intuitively, stochastic calculus is a crucial tool to optimally
hedge against future losses, which we exploit too.

Our algorithm chooses the distribution on the experts using the discrete deriva-
tive of a potential function. This idea has also been used in the AdaNormalHedge
algorithm [44], although their potential function was not derived in continuous time.

Our work crucially uses stopping times for Brownian motion hitting a time-depen-
dent boundary. Such techniques have also been used for non-adversarial bandits to
approximate Gittins indices (see, e.g., [10]).

2. Discussion of results and techniques

2.1. Formal problem statement

We will formulate the problem in the style of online convex optimization [52], in
which at each time step a deterministic algorithm picks a distribution on experts. An
alternative formulation would be to have a randomized algorithm pick a single expert;
see, e.g., [14, Chapter 4]. Using the randomized formulation in the anytime setting
has certain subtleties which we discuss in Section 2.1.1.

Let n denote the number of experts. There is a deterministic algorithm A which
we think of as an infinite sequence of functions A D .A1; A2; : : :/, where

At W .Œ0; 1�
n/t�1 ��t�1n ! �n:

Here, �n D ¹x 2 Rn�0 W
Pn
iD1 xi D 1º is the set of probability distribution in Rn.

In addition, we have a deterministic adversary B which we think of as an infinite
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sequence of loss vectors in Œ0;1�n, i.e., B D .`1; `2; : : :/2.Œ0;1�
n/N , where `t 2 Œ0; 1�n

for each t � 1. We refer to the coordinate `t;j as the loss of the j th expert at time t .
Next, given A and B, we define x1 D A1 and for t � 1, we recursively define

xt D At .`1; : : : ; `t�1; x1; : : : ; xt�1/:

Further, for T � 1, we write AT D .A1; : : : ; AT / and BT D .`1; : : : ; `T / for the
algorithm and the adversary restricted to the first T steps.

The loss incurred by the algorithm at time t is the inner product hxt ; `t i. This may
be thought of as the “expected loss” of the algorithm, although the algorithm is actu-
ally deterministic. The total expected loss of the algorithm up to time t is

Pt
iD1hxi ; `i i.

For j 2 Œn�, the total loss of the j th expert up to time t isLt;j D
Pt
iD1 `i;j . The regret

at time t of algorithm A against adversary B is the difference between the algorithm’s
total expected loss and the total loss of the best expert, i.e.,

Regret.n; t;A;B/ D
tX
iD1

hxi ; `i i � min
j2Œn�

Lt;j : (2.1)

Anytime setting. This work focuses on the anytime setting. In this setting, one may
view the algorithm as running forever, with the goal of minimizing, for all t , the regret
normalized by

p
t . The formal definition is somewhat different: the algorithm knows

that it will run for at most T steps, but then we take the limit T !1. For a fixed
time T , we define the anytime normalized regret up to time T as follows.

AnytimeNormRegret.n; T / WD inf
AT

sup
BT

max
1�t�T

Regret.n; t;AT ;BT /
p
t

: (2.2)

This definition uses a single infimum over a sequence of functions, corresponding
to the algorithm (which knows T ), and a single supremum over a sequence of loss
vectors, corresponding to the adversary (which knows T and AT ). It may be more
intuitive to think of a sequence of successive minimizations and maximizations over
the algorithm’s actions and adversary’s actions. This leads to the following definition
which, as shown in Appendix C, is equivalent:

AnytimeNormRegret.n; T /

WD min
x1

max
`1

� � �min
xT

max
`T

max
1�t�T

1
p
t

� tX
iD1

hxi ; `i i � min
j2Œn�

tX
iD1

`t;j

�
: (2.3)

In (2.3), the minimization is over all vectors from the probability simplex �n and the
maximization is over Œ0; 1�n. The anytime normalized regret is defined to equal

AnytimeNormRegret.n/ WD lim
T!1

AnytimeNormRegret.n; T /:
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This limit exists because (2.2) is clearly non-decreasing in T , and it is finite due to
known algorithms such as MWU.

The value of AnytimeNormRegret.n/ was previously unknown even for n D 2.
The best known bounds prior to our work were

0:564 �
p
1=� � AnytimeNormRegret.2/ �

p
ln 2 � 0:833: (2.4)

The lower bound, due to [43], demonstrates a gap between the anytime setting and
the fixed-time setting, where the optimal normalized regret is

p
1=2� [18]. Our main

result is that AnytimeNormRegret.2/D 
=2� 0:653 and consequently neither inequal-
ity in (2.4) is tight.

As mentioned above, MWU with a dynamic step size shows that

AnytimeNormRegret.n/ �
p

lnn

for all n � 2 (see [11, §2.5]). The lower bound

lim inf
n!1

AnytimeNormRegret.n/=
p

lnn �
p
1=2

follows from the bound in the fixed-time setting [13]. Thus, the upper bound is loose
by at most a factor

p
2.

2.1.1. Randomized formulations. Several alternative formulations of the problem
arise if A selects a single expert It 2 Œn� randomly at each time t according to a
probability vector xt 2 Rn, and the adversary chooses an ending time � . We mention
three possibilities, differing in the power of the adversary B. For this subsection alone,
we define

Regret.n; t;A;B/ D
tX
sD1

`Is
� min
j2Œn�

tX
sD1

`s;j ;

which is the realized regret of the algorithm.

• An excessively powerful adversary would allow `t to depend on It . This definition
is of little interest, and is mentioned primarily for contrast with the next two possibil-
ities. The trouble is that one easily obtains an adversary B with

Regret.n; t;A;B/ D �.t/

by setting `t;It
D 1 and `t;i D 0 for i ¤ It . In this case, the algorithm’s realized loss

is t while there exists an expert with total loss at most t=n. Hence, the algorithm’s
realized regret is at least .1 � 1=n/t .

• An adversary of intermediate power allows the loss vector `t and the event � D t
to be determined by I1; : : : ; It�1. This is analogous to the “non-oblivious opponent”
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of [14, §4.1]. Interestingly, one can design an adversary B for which

E
�

Regret.n; �;A;B/
p
� log log �

�
D �.1/:

The surprising aspect is the
p

log log � in the denominator, which arises due to the
law of the iterated logarithm. A proof of this statement can be found in our technical
report [36].

• The weakest adversary requires that `t and � depend only on A and not its random
choices I1; I2; : : : This is analogous to the “oblivious opponent” of [14, §4.1], which
we discuss further in Appendix D. The expected regret in this model is identical to
the regret in the deterministic model described at the start of Section 2.1. Indeed, in
this model, the expectation of the realized regret is

EŒRegret.n; t;A;B/� D
tX
sD1

EŒ`Is
� � min

j2Œn�

tX
sD1

`s;j D

tX
sD1

hxs; `si � min
j2Œn�

tX
sD1

`s;j ;

which is precisely (2.1).

In this paper, we study this third model. It is intriguing that in the anytime setting,
the non-oblivious opponent has more power than the oblivious opponent. In contrast,
the two adversaries have the same power in the fixed time setting [14, §4.1].

2.2. Statement of results

To state our results, we require two definitions:

erfi.x/ D
2
p
�

Z x

0

ez
2

dz;

M0.x/ D e
x
�
p
�x erfi.

p
x/:

(2.5)

The first is the imaginary error function, a well-known special function that relates
to the Gaussian error function. The second is an example of a confluent hyperge-
ometric function, a very broad class of special functions that includes, e.g., Bessel
functions and Laguerre polynomials. (See Section 2.6 for formal definitions.) Our
analysis makes use of a few elementary properties of these functions. A key constant
used in this paper is 
 , which is defined to be the smallest4 positive root5 ofM0.x

2=2/,
i.e.,


 WD min¹x > 0 WM0.x
2=2/ D 0º � 1:3069 : : : (2.6)

4In fact, 
 is the unique positive root; see Fact 2.7.
5The roots of certain confluent hypergeometric functions have appeared in studying some

natural phenomena of Brownian motion; for some examples, see [8, 19, 33, 46].
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Theorem 2.1 (Main result). In the anytime setting with two experts, the minimax
optimal normalized regret (over deterministic algorithms A and adversaries B) is

AnytimeNormRegret.2/ D lim
T!1

inf
AT

sup
BT

max
1�t�T

Regret.2; t;AT ;BT /
p
t

D



2
: (2.7)

The proof of this theorem has two parts: an upper bound, in Section 3, which
exhibits an optimal algorithm, and a lower bound, in Section 4, which exhibits an
optimal randomized adversary. The algorithm is very short, and it appears below in
Algorithm 1. We also note that the statement allows for the algorithm to depend on T .
However, the algorithm we design to achieve the upper bound does not depend on T .
On the other hand, our lower bound shows that even if the algorithm was provided
with T beforehand, it is unable to achieve regret better than 
=2.

One might imagine that some form of duality theory is involved in our matching
upper and lower bounds. Indeed, if the losses are in ¹0; 1º one may write

AnytimeNormRegret.2/

as the value of an infinite-dimensional linear program, although we do not explicitly
adopt this viewpoint. Instead, 
 arises in our lower bound as the maximizer in (4.3),
whereas 
 arises in our upper bound as the minimizer in (5.13). We are not aware
of any direct relationship between those two equations. Nevertheless, our algorithm
and our lower bound can be seen as constructing feasible primal and dual solutions,
respectively, to the aforementioned linear program.

Comparison to existing techniques. A duality viewpoint is adopted by Gravin et
al. [31] in the fixed-time and geometric horizon settings using von Neumann’s mini-
max theorem (see also [37, §18.5]). Their dual problem is characterized by properties
of random walks, which allows one to determine the optimal dual value directly
without reference to the primal. It is conceivable that some form of von Neumann’s
minimax theorem can be applied for the anytime setting, although it is unclear due to
the appearance of the supremum and 1=

p
t in (2.7). Our results of Section 4 may be

viewed as using random walks to construct feasible dual solutions of value 
=2 � "
for all " > 0, but it is not obvious that these solutions converge to the optimal dual
value. The only way we know of to prove optimality of those dual solutions is to con-
struct an algorithm whose regret is 


p
t=2. This is the more challenging part of this

paper, which we discuss in Sections 3 and 5.

A conjecture for n experts. We suspect that hypergeometric functions may also have
a key role to play in designing optimal algorithms when there are n> 2 experts. As we
will see in Section 3, functions involving M0.x

2=2/ have properties that are useful
when employed as potential functions for online learning algorithms. It is known
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that M0.x
2=2/ � �e�x

2=2=x2, and therefore the equation M0.x
2=2/ D �n has the

solution x �
p
2 lnn. This motivates our conjecture that

lim
n!1

AnytimeNormRegret.n/p
ln.n/=2

D 1:

In other words, we conjecture that the optimal regret for n experts in the anytime
setting is asymptotically the same as the fixed time setting, in the limit as n increases.

Remark. Our lower bound can be strengthened to show that, for any algorithm A,

sup
B

lim sup
t�1

Regret.2; t;A;B/
p
t

�



2
:

The key aspect is here the lim sup rather than a sup. In particular, even if A is granted
a “warm-up” period during which its regret is ignored, an adversary can still force it
to incur large regret afterwards. This strengthened result is proved in Section 4.1.

The algorithm’s description and analysis relies heavily on a function RWR�0 �R

! R defined by

R.t; g/ D

8̂̂<̂
:̂
0 (t D 0);
g
2
C �
p
t �M0

�
g2

2t

�
(t > 0 and g � 


p
t );



p
t

2
(t > 0 and g � 


p
t );

(2.8)

where
� D

1
p
2� erfi.
=

p
2/

and M0 as defined in (2.5). The function R may seem mysterious at first, but in fact
arises naturally from the solution to a stochastic calculus problem6 in Section 5. In
our usage of this function, t will correspond to the time and g will correspond to the
gap between (i.e., absolute difference of) the total loss for the two experts. One may
verify that R is continuous on R>0 � R because the second and third cases agree
on the curve ¹.t; 


p
t / W t > 0º since 
 satisfies M0.


2=2/ D 0. We next define a
function p to be

p.t; g/ D
1

2

�
R.t; g C 1/ �R.t; g � 1/

�
: (2.9)

This is the discrete derivative of R at time t and gap g. The algorithm constructs its
distribution xt so that p.t; g/ is the probability mass assigned to the expert with the

6As we will see below, the regret against a random adversary is a stochastic integral. View-
ing this problem in continuous time, then designing a function to minimize the integral leads to
a PDE which R solves.
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greatest accumulated loss so far at time t . It is shown later that p.t; g/ 2 Œ0; 1=2�
whenever t � 1 and g � 0 so that p is indeed a probability and the algorithm is well
defined. We remark that p.t; 0/ D 1=2 (Lemma 3.5) for all t � 1 so the algorithm
places equal mass on both experts when their cumulative losses are equal.

Algorithm 1 The algorithm achieving the minimax anytime regret for two experts. At
each time step, each expert incurs a loss in the interval Œ0; 1�, so the loss vector `t lies
in Œ0; 1�2.

1: Initialize L0  
�
0
0

�
.

2: for t D 1; 2; : : : do
3: If necessary, swap indices so that Lt�1;1 � Lt�1;2.
4: The current gap is gt�1  Lt�1;1 � Lt�1;2.
5: Set xt Œp.t;gt�1/;1�p.t;gt�1/�, where p is the function defined by (2.9).
6: F Observe loss vector `t and incur loss hxt ; `t i.
7: Lt  Lt�1 C `t .
8: end for

2.3. Techniques

Lower bound. A common approach to prove lower bounds in the experts problem is
to consider a random adversary. With two experts, this adversary chooses one of the
two experts uniformly at random and assigns a loss of 1 to that expert and a loss of 0
to the other expert. One can equivalently think of the adversary in the following way,
which is more convenient for our purposes. If the gap between the experts at time t � 1
is positive then at time t , the adversary changes the gap by ˙1 uniformly at random.
On the other hand, if the gap between the experts at time t � 1 is 0 then at time t ,
the adversary deterministically increases the gap by 1. This gap process is known as
a reflected random walk. In the fixed-time setting, the adversary has no control over
the time horizon; it is known to both the adversary and the algorithm beforehand.
The adversary in the anytime setting has the additional power to choose the time
horizon, without informing the algorithm, and therefore it is perhaps unsurprising
that an adversary using a fixed time horizon does not provide the optimal anytime
lower bound.

To obtain the optimal lower bound, we allow the adversary to select a random
time � at which the game ends. In general, a random adversary in the anytime setting
could generate an infinitely long sequence of random bits as its losses, then select the
ending time � as a function of the entire sequence. We will consider a weaker random
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adversary in which � is not a function of the entire sequence, but instead the event
� D t is known at time t ; that is, � is a stopping time [38, §9.1]. There is an adversary
of this weaker form that is nonetheless optimal, as we discuss next.

First, let us view the regret as a discrete stochastic process. To analyze this stoch-
astic process, we use an elementary identity known as Tanaka’s formula for ran-
dom walks, which allows us to write the regret process as Regret.t/ D Zt C gt=2,
where Zt is a martingale with Z0 D 0 and gt is the current gap at time t . When �
is a stopping time satisfying certain hypotheses, the optional stopping theorem (OST)
yields EŒZ� � D Z0 D 0. We will restrict our attention to adversaries whose stopping
times satisfy the hypotheses of the OST. (The stopping times in the fixed-time and
geometric horizon settings trivially satisfy the hypotheses.) It is not a priori obvious
that there is an optimal adversary in the anytime setting satisfying this restriction.

Concretely, we will consider adversaries that select � to be the first time that
the gap gt exceeds7 some time dependent boundary f .t/. This approach follows an
established doctrine that connects optimal stopping and stochastic control problems
to free-boundary problems [16, 47]. The conclusion of the OST is then that

EŒRegret.�/� D EŒg� �=2 � EŒf .�/�=2:

However, the hypotheses of the OST must be respected, otherwise the adversary could
just select the boundary f .t/ to be arbitrarily large, and the resulting regret lower
bound would violate known upper bounds.

To understand what boundaries f .t/ to consider, let us discuss the OST hypothe-
ses. First, it is not sufficient for the stopping time to be almost surely finite. (Otherwise,
one could use a boundary f .t/ D ‚.

p
t ln ln t / and the Law of the Iterated Loga-

rithm [25] to prove lower bounds that contradict the O.
p
t / upper bound of Cover or

MWU.) At this point a lucky guess is required: we will consider boundaries of the
form f .t/ D c

p
t , since this is consistent with the known ‚.

p
t / regret bounds. It is

known [8,53] that choosing c < 1 is necessary and sufficient to ensure that EŒ� � <1,
which is a sufficient hypothesis for the OST. Unfortunately this only yields a regret
lower bound of

p
t=2, which is trivial. (The algorithm can easily be forced to have

regret 1=2 at time t D 1.) Therefore, the condition EŒ� � <1 is too restrictive.
Fortunately, there is a less-widely known hypothesis for the OST that allowed us

to determine the optimal boundary. It is stated as follows: if Zt is a martingale with
bounded increments (i.e., supt�0 jZtC1 �Zt j � K for some K > 0) and � is a stop-
ping time satisfying EŒ

p
�� <1, then EŒZ� � D EŒZ0� D 0. The crucial detail is to

bound the expected square root of � . This result is stated formally in Theorem 4.2.

7Note that � D min¹t � 0 W gt � f .t/º is a stopping time.
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It remains to choose as large a boundary as possible such that the associated stop-
ping time of hitting the boundary satisfies EŒ

p
�� < 1. Using classical results of

Breiman [8] and Greenwood and Perkins [33], we show that the optimal choice of c
is 
 . While this version of the OST provided intuition leading to the correct boundary,
interestingly our proof in Section 4 does not explicitly use this version of the OST.

Upper bound. Our analysis of Algorithm 1, to prove the upper bound in Theorem 2.1,
uses a deceptively simple argument where R defined in (2.8) acts as a potential func-
tion. Specifically, we show that the change in regret from time t � 1 with gap gt�1 to
time t with gap gt is at most R.t; gt /�R.t � 1; gt�1/. By telescoping, this immedi-
ately implies that maxg R.t; g/ is an upper bound on the regret at time t . The analysis
has a number of key features. First, note that the potential function R is bivariate; it
depends on both the time t as well as the state gt . To deal with this bivariate potential,
we use a tool known as the discrete Itô formula. This formula allows us to relate the
regret to the potential R, while elegantly handling changes to both time and state. In
fact, the potential R turns out to be an extremely tight approximation to the actual
regret. Previously, there have been several works that make use of bivariate potentials
(e.g., [15, 44]). However, to the best of our knowledge, our work is the first to use the
discrete Itô formula in the setting of regret minimization.

The functionR and the use of discrete Itô do not come “out of thin air”; they come
from considering a continuous-time analog of the problem. This continuous viewpoint
brings a wealth of analytical tools that do not exist (or are more cumbersome) in the
discrete setting. As discussed in the lower bound section above, in discrete-time it
is natural to assume the gap process evolves as a reflected random walk. In order
to formulate the continuous-time problem, we assume that the continuous adversary
evolves the gap between the best and worst expert as a reflected Brownian motion (the
continuous-time analog of a random walk). Using this adversary, the continuous-time
regret becomes a stochastic integral.

The most natural way to analyze an integral is to use the fundamental theorem of
calculus (FTC). However, the continuous-time regret is defined by a stochastic inte-
gral so the FTC cannot be applied.8 However there is a stochastic analog of the FTC,
namely the (continuous) Itô formula, which we state in Theorem 5.3. We use it to
provide an insightful decomposition of the continuous-time regret. In particular, this
decomposition suggests that the algorithm should satisfy an analytic condition known
as the backwards heat equation. A key resulting idea is: if the algorithm satisfies the
backward heat equation, then there is a natural potential function that upper bounds
the regret of the algorithm. This enables a systematic approach to obtain an explicit

8The integrator is reflected Brownian motion, which is not of bounded variation.
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continuous-time algorithm and a potential function that bounds the continuous algo-
rithm’s regret. To go back to the discrete setting, using the same potential function,
we replace applications of Itô’s formula with the discrete Itô formula. Remarkably,
this leads to exactly the same regret bound as the continuous setting.

2.4. Application

As mentioned in Section 1, the following theorem of Davis can be proven as a corol-
lary of our techniques. Intriguingly, the proof involves regret, despite the fact that
regret does not appear in the theorem statement.

Theorem 2.2 (Davis [19]). Let .Xt /t�0 be a standard random walk. Then EŒjX� j� �

 EŒ
p
�� for every stopping time � ; moreover, the constant 
 cannot be improved.

Proof. We begin by proving the first assertion. Suppose that Regret.T / is the regret
process when Algorithm 1 is used against a random adversary. As discussed in Sec-
tion 2.3 and (4.1), we can write the regret process as

Regret.T / D ZT C gT =2;

where ZT is a martingale and gT evolves as a reflected random walk.9 Moreover, if �
is a stopping time satisfying EŒ

p
�� <1, then EŒZ� � D 0 (see Theorem 4.2).

The upper bound in Theorem 2.1 asserts that



p
T =2 � Regret.T / D ZT C gT =2

simultaneously for all T � 0. Hence, 
 EŒ
p
��=2 � EŒg� �=2. Replacing g� with jX� j

(since both gt and jXt j are reflected random walks), the proof of the first assertion is
complete.

The fact that no constant smaller than 
 is possible is a direct consequence of the
results of Breiman [8] and Greenwood and Perkins [33] as mentioned in Section 2.3
(see also Section 4 or [19]).

Remark. Davis [19] proved Theorem 2.2 for both random walks and Brownian mo-
tion. We are also able to recover the result for Brownian motion as a corollary of our
continuous-time result (Theorem 5.2). The proof is very similar to that above.

9Equality holds because our algorithm satisfies p.t; 0/ D 1=2; this is discussed in the text
preceding (4.1).
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Remark. In retrospect, our arguments in Section 5 have some similarities with Davis’
proof of the Brownian motion version of Theorem 2.2 [19, Theorem 1.1]. For exam-
ple, in Section 5, we see that the backwards heat equation appears naturally in the
design of the continuous algorithm. Analogously, the backwards heat equation also
appears in the proof of [19, Theorem 1.1] but as a result of searching for a super-
martingale.

2.5. An expression for the regret involving the gap

In our two-expert prediction problem, the most important scenario restricts each loss
vector `t to be either

�
1
0

�
or
�
0
1

�
. That is, at each time step, some expert incurs loss 1

and the other expert incurs no loss. This restricted scenario is equivalent to the con-
dition gt � gt�1 2 ¹˙1º for all t � 1, where gt WD jLt;1 � Lt;2j is the gap at time t .
To prove the optimal lower bound it suffices to consider this restricted scenario. The
optimal upper bound is first proven in the restricted scenario, then extended to gen-
eral loss vectors in Section 3.3. With the sole exception of Section 3.3, we assume the
restricted scenario.

We now present an expression, valid for any algorithm, that emphasizes how the
regret depends on the change in the gap. This expression will be useful in proving
both the upper and lower bounds. Henceforth we write Regret.t/ WDRegret.2; t;A;B/
where A and B are usually implicit from the context.

Proposition 2.3. Assume the restricted setting in which gt � gt�1 2 ¹˙1º for every
t � 1. When gt�1 ¤ 0, let pt denote the probability mass assigned by the algorithm to
the “worst expert”, i.e., if Lt�1;1 � Lt�1;2 then pt D xt;1 and otherwise pt D xt;2.
The quantity pt may depend arbitrarily on `1; : : : ; `t�1. Then

Regret.T / D
TX
tD1

pt � .gt � gt�1/ � 1Œgt�1 ¤ 0�C
TX
tD1

hxt ; `t i � 1Œgt�1 D 0�: (2.10)

Furthermore, assume that if gt�1 D 0, then pt D xt;1 D xt;2 D 1=2. In this case

Regret.T / D
TX
tD1

pt � .gt � gt�1/: (2.11)

Remark. Observe that (2.11) is a discrete analog of a Riemann–Stieltjes integral
of p with respect to g. If .gt /t�0 is a random process, then (2.11) is called a discrete
stochastic integral. In the specific case that .gt /t�0 is a reflected random walk (the
absolute value of a standard random walk), then (2.10) is the Doob decomposition [38,
Theorem 10.1] of the regret process .Regret.t//t�0, i.e., the first sum is a martingale
and the second sum is an increasing predictable process.
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Proof. Define �R.t/ D Regret.t/� Regret.t � 1/. The total loss of the best expert at
time t is L�t WD min¹Lt;1; Lt;2º. The change in regret at time t is the loss incurred by
the algorithm minus the change in the total loss of the best expert, so

�R.t/ D hxt ; `t i � .L
�
t � L

�
t�1/:

Case 1: gt�1 ¤ 0. In this case, the best expert at time t � 1 remains a best expert at
time t . Note that this uses the assumption that gt � gt�1 2 ¹˙1º, so gt�1 � 1. If the
worst expert incurs loss 1, then the algorithm incurs loss pt and the best expert incurs
loss 0, so�R.t/D pt and gt � gt�1 D 1. Otherwise, the best expert incurs loss 1 and
the algorithm incurs loss 1 � pt , so �R.t/ D �pt and gt � gt�1 D �1. For either
choice of loss, we have �R.t/ D pt � .gt � gt�1/.

Case 2: gt�1 D 0. Both experts are best, but one incurs no loss, so L�t D L
�
t�1 and

�R.t/ D hxt ; `t i.

The above two cases prove (2.10). For the last assertion, we have that

hxt ; `t i D 1=2 D pt � .gt � gt�1/

whenever gt�1 D 0. Hence, we can collapse the two sums in (2.10) into one to
get (2.11).

2.6. Basic facts about confluent hypergeometric functions

For any a;b 2R with b 62Z�0, the confluent hypergeometric function of the first kind
is defined as

M.a; b; z/ D

1X
nD0

.a/nz
n

.b/nnŠ
;

where .x/n WD
Qn�1
iD0.x C i/ is the Pochhammer symbol. See, e.g., Abramowitz and

Stegun [3, eq. (13.1.2)].
For notational convenience, for i 2 ¹0; 1; 2; : : : ; º, we write

Mi .x/ DM.i � 1=2; i C 1=2; x/: (2.12)

Fact 2.4. If b … Z�0 then d
dxM.a; b; x/ D

a
b
�M.aC 1; b C 1; x/. Consequently,

(1) M 00.x/ D �M1.x/; and

(2) M 01.x/ D
1
3
�M2.x/.

Proof. See [3, eq. (13.4.9)].

Fact 2.5. The following identities hold:

(1) M0.x/ D �
p
�x erfi.

p
x/C ex .
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(2) M1.x/ D
p
� erfi.

p
x/

2
p
x

.

(3) M2.x/ D
3.2ex

p
x�
p
� erfi.

p
x//

4x3=2 .

(4) 2
3
�M2.x/ � x CM1.x/ D e

x .

Proof. (2) See [3], equations (7.1.21) or (13.6.19), and use that erfi.x/ D �i erf.ix/,
where i D

p
�1.

(1) Differentiating the right-hand side (using the definition of erfi in (2.5)) yields

�

p
� erfi.

p
x/

2
p
x

:

So the right-hand side is an anti-derivative of �M1.x/, by part (2). Thus, the iden-
tity (1) follows from Fact 2.4 (1) and the initial condition M0.0/ D 1.

(3) This follows directly by differentiating (2) and Fact 2.4 (2).
(4) Immediate from (2) and (3).

Fact 2.6. The function M0.x/ is decreasing and concave on Œ0;1/.

Remark. In fact, M0.x/ is decreasing and concave on R but we will not require this
fact.

Remark. The function M0.x
2=2/ is also decreasing and concave on Œ0;1/. Indeed,

the concavity follows from the fact that if f is a non-increasing concave function
on R and g is a convex function on R then f .g.x// is concave. Although this fact is
crucial for our algorithm, we do not explicitly make reference to this in the paper.

Proof. By Fact 2.4, we haveM 00.x/D �M1.x/ andM 000 .x/D �
1
3
�M2.x/. Note that

the coefficients ofM1.x/;M2.x/ in their Taylor series are all non-negative. As x � 0,
we have that M 00.x/;M

00
0 .x/ � 0, as desired.

Fact 2.7. The function x 7!M0.x
2=2/ has a unique positive root at xD 
 . Moreover,

M0.x
2=2/ > 0 for x 2 .0; 
/ and M0.x

2=2/ < 0 for x 2 .
;1/.

Proof. The Maclaurin expansion of M0.x
2=2/ is given by

M0

�x2
2

�
D 1 �

1X
kD1

1

.2k � 1/kŠ

x2k

2k
:

Note that M0.0/ D 1. It is clear, from the series expansion above (and Fact 2.6),
that M0.x

2=2/ is strictly decreasing in x on .0;1/ and limx!1M0.x
2=2/ D �1.

Hence, M0.x
2=2/ contains a positive root 
 and it is unique. Finally, it is clear that

M0.x
2=2/ is positive on .0; 
/ and negative on .
;1/.
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The proof of the lower bound requires the following fact onM which is a straight-
forward corollary of [46, Proposition 1]. The proof can be found in Appendix A.

Claim 2.8. For any " > 0, there exists a" 2 .�1;�1=2/ such that the smallest10 pos-
itive root c" of z 7!M.a"; 1=2; z

2=2/ satisfies c" � 
 � ".

3. Upper bound

In this section, we prove the upper bound in Theorem 2.1 via a sequence of simple
steps. The main ideas of the proof are contained in the restricted setting where the gap
changes by ˙1 each step. This corresponds to each loss vector `t being either

�
1
0

�
or
�
0
1

�
. We first prove the upper bound in Theorem 2.1 in this restricted setting. In

Section 3.3, we extend the analysis to general loss vectors in Œ0; 1�2 through the use
of concavity arguments.

The proof in this section uses the potential function R which, as explained in
Section 2.3, is defined via continuous-time arguments in Section 5. Moreover, the
structure of the proof is heavily inspired by the proof in the continuous setting.

Moving forward, we need a few observations about the functions R and p, which
were defined in equations (2.8) and (2.9). First, we require two straightforward cal-
culations. These are special cases of Lemma 5.9 (with zR
 D zR and R
 D R). For
convenience, we restate them here without the subscript but only prove Lemma 5.9
later in the paper.

Lemma 3.1. Consider the function zR.t; g/ D g
2
C �
p
tM0.

g2

2t
/. Then

@

@g
zR.t; g/ D

1

2

�
1 �

erfi.g=
p
2t/

erfi.
=
p
2/

�
:

Note that R.t; g/ D zR.t; g/ for g � 

p
t and R.t; g/ D zR.t; 


p
t / D 


p
t=2 for

g � 

p
t . So one should think of zR as the “untruncated” version of R. Here, and for

the remainder of the paper, we write .x/C D max¹x; 0º.

Lemma 3.2. For all t > 0 and g � 0, it holds that

@

@g
R.t; g/ D

1

2

�
1 �

erfi.g=
p
2t/

erfi.
=
p
2/

�
C

:

Lemma 3.3. For any t > 0, R.t; g/ is concave and non-decreasing in g.

10In fact, there is a unique positive root.
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Proof. The fact thatR.t;g/ is non-decreasing in g follows from Lemma 3.2. The con-
cavity of R.t; g/ (in g) follows from the fact that erfi is non-decreasing, so @

@g
R.t; g/

is non-increasing in g.

As a consequence of Lemma 3.3, we can easily get the maximum value of R.t; g/
for any t .

Lemma 3.4. For any t > 0, we have R.t; g/ � 

p
t=2.

Proof. Lemma 3.3 shows that R.t; g/ is non-decreasing in g. By definition, R.t; g/
is constant for g � 


p
t . It follows that maxg R.t; g/ � R.t; 


p
t / D 


p
t=2.

In the definition of the prediction task, the algorithm must produce a probabil-
ity vector xt . Recalling the definition of xt in Algorithm 1, it is not a priori clear
whether xt is indeed a probability vector. We now verify that it is, since Lemma 3.5
implies that p.t; g/ 2 Œ0; 1=2� for all t; g.

Lemma 3.5. Fix t � 1. Then

(1) p.t; 0/ D 1=2;

(2) p.t; g/ is non-increasing in g; and

(3) p.t; g/ � 0.

Proof. For the first assertion, we have

p.t; 0/ D
1

2
.R.t; 1/ �R.t;�1//

D
1

2

�1
2
C �
p
tM0.1=2t/C

1

2
� �
p
tM0.1=2t/

�
D
1

2
:

For the second equality, we used that 1 � 
 � 

p
t for all t � 1. The second assertion

follows from concavity of R, which was shown in Lemma 3.3, and an elementary
property of concave functions (Fact A.1). The final assertion holds because R is non-
decreasing in g, which is also shown in Lemma 3.3.

3.1. Analysis when gap increments are ˙1

In this subsection we prove the upper bound of Theorem 2.1 for a restricted class
of adversaries (that nevertheless capture the core of the problem). The analysis is
extended to all adversaries in Section 3.3.

Theorem 3.6. Let A be the algorithm described in Algorithm 1. For any adversary B

such that each loss vector `t is either
�
1
0

�
or
�
0
1

�
, we have

sup
t�1

Regret.2; t;A;B/
p
t

�



2
:
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Our analysis relies on an identity known as the discrete Itô formula, which is
the discrete analog of Itô’s formula from stochastic analysis (see Theorem 5.3). To
make this connection (in addition to future connections) more apparent, we define the
discrete derivatives of a function f to be

fg.t; g/ D
f .t; g C 1/ � f .t; g � 1/

2
;

ft .t; g/ D f .t; g/ � f .t � 1; g/;

fgg.t; g/ D
�
f .t; g C 1/C f .t; g � 1/

�
� 2f .t; g/:

It was remarked earlier that p.t; g/ (see (2.9)) is the discrete derivative of R, and this
is because

p.t; g/ D Rg.t; g/: (3.1)

Lemma 3.7 (Discrete Itô formula). Let g0; g1; : : : be any sequence of real numbers
(not necessarily random) satisfying jgt � gt�1j D 1. Then for any function f and any
fixed time T � 1, we have

f .T; gT / � f .0; g0/ D

TX
tD1

fg.t; gt�1/ � .gt � gt�1/

C

TX
tD1

�1
2
fgg.t; gt�1/C ft .t; gt�1/

�
: (3.2)

This lemma is a small generalization of [28, §2] and [41, Theorem 2] to accom-
modate a bivariate function f that depends on t . The proof is essentially identical.

Proof. By telescoping,

f .T; gT / � f .0; g0/ D

TX
tD1

�
f .t; gt / � f .t � 1; gt�1/

�
:

Consider a fixed t 2 ŒT �. We can write

f .t; gt / � f .t � 1; gt�1/ D

�
f .t; gt / �

f .t; gt�1 C 1/C f .t; gt�1 � 1/

2

�
C

�
f .t; gt�1 C 1/C f .t; gt�1 � 1/

2
� f .t � 1; gt�1/

�
:

For the first bracketed term, by considering the cases gtDgt�1C 1 and gtDgt�1 � 1,
we have

f .t; gt / �
f .t; gt�1 C 1/C f .t; gt�1 � 1/

2

D
f .t; gt�1 C 1/ � f .t; gt�1 � 1/

2
� .gt � gt�1/

D fg.t; gt�1/ � .gt � gt�1/: (3.3)
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Note that the above step is the only place where the assumption that jgt � gt�1j D 1
is used. For the second bracketed term, we have

f .t; gt�1 C 1/C f .t; gt�1 � 1/

2
� f .t � 1; gt�1/

D
f .t; gt�1 C 1/C f .t; gt�1 � 1/ � 2f .t; gt�1/

2
C .f .t; gt�1/ � f .t � 1; gt�1//

D
1

2
fgg.t; gt�1/C ft .t; gt�1/:

This gives the desired formula.

Now we show that the regret involves a discrete integral of the same form as (3.2).
Let us recall that Lemma 3.5 (1) guarantees p.t; 0/ D 1=2, i.e., xt D Œ1=2; 1=2�.
Hence, (2.11) gives

Regret.T / D
TX
tD1

p.t; gt�1/ � .gt � gt�1/; (3.4)

where g0 D 0 and gt � 0 for all t � 1.

Key technical step. The following is the most non-obvious step of the proof. We
apply the discrete Itô formula to (3.4), taking f D R. Since p D Rg D fg , observe
that the main difference between (3.2) and (3.4) is the absence of 1

2
fgg.t; gt�1/ C

ft .t; gt�1/ in (3.4). In the continuous setting, we will see that a key idea is to try to
obtain a solution satisfying .1

2
@gg C @t /f D 0; this is the well-known backwards heat

equation. In the discrete setting, by a remarkable stroke of luck, we have the following
analogous property.

Lemma 3.8 (Discrete backwards heat inequality). For all t � 1 and g � 0, it holds
that

1

2
Rgg.t; g/CRt .t; g/ � 0:

This lemma is the most technical part of the discrete analysis. Its proof appears in
Section 3.2.

Proof of Theorem 3.6. First we apply Lemma 3.7 to the function R and the sequence
g0; g1; : : : of (integer) gaps produced by the adversary B. Then, for any time T � 0,

R.T; gT / �R.0; g0/

D

TX
tD1

Rg.t; gt�1/ � .gt � gt�1/C

TX
tD1

�1
2
Rgg.t; gt�1/CRt .t; gt�1/

�
(by Lemma 3.7)
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�

TX
tD1

p.t; gt�1/ � .gt � gt�1/ (by (3.1) and Lemma 3.8)

D Regret.T / (by (3.4)).

Since g0 D 0 and R.0; 0/ D 0, applying Lemma 3.4 shows that

Regret.T / � R.T; gT / � 

p
T =2:

This completes the proof of Theorem 3.6. However, the proof does not reveal why
Algorithm 1 is optimal. The constant 
 in the regret bound appears due to properties
of the function R, whose definition has yet to be explained. In Section 5, we will
define the function R specifically to obtain 
 in the preceding analysis. In Section 4,
we prove a matching lower bound and show that 
 is indeed the right constant.

We remark that the proof of Theorem 3.6 may also be viewed as an amortized
analysis, in which the algorithm incurs amortized regret at most




2
.
p
t �
p
t � 1/ �




4
p
t

at each time step t . This viewpoint may be helpful to see how the potential function
used in our setting relates to the potential functions in traditional algorithm design [17,
§17.3].

3.2. Proof of Lemma 3.8

Lemma 3.9. For all u 2 Œ0; 1=2�, we have M0.u/ �
p
1 � 2u.

Proof. The Maclaurin expansion of M0.u/ is given by

M0.u/ D 1 �

1X
kD1

1

.2k � 1/kŠ
uk :

Note that
dk

dxk
p
1 � 2x D �

.2k � 3/ŠŠ

.1 � 2x/.2k�1/=2
;

where .n/ŠŠ denotes the double factorial (note that .�1/ŠŠ D 1).11 Hence, the Maclau-
rin expansion of

p
1 � 2u is

p
1 � 2u D 1 �

1X
kD1

.2k � 3/ŠŠ

kŠ
uk :

11If n 2 Z�0, we define .n/ŠŠ D
Qdn=2e�1

kD0
.n � 2k/. If n 2 Z<0, we define .n/ŠŠ via the

recursive relation .n/ŠŠ D .nC2/ŠŠ
nC2

, so that .�1/ŠŠ D .1/ŠŠ
1
D 1.
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It is not hard to verify that

.2k � 3/ŠŠ �
1

2k � 1
:

This implies that M0.u/ �
p
1 � 2u.

Lemma 3.10. For all z 2 Œ0; 1/ and x 2 R, we have

M0

�
.x C z/2

2

�
CM0

�
.x � z/2

2

�
� 2
p

1 � z2M0

�
x2

2.1 � z2/

�
:

Proof. Fix z 2 Œ0; 1/ and consider the function

hz.x/ DM0

�
.x C z/2

2

�
CM0

�
.x � z/2

2

�
� 2
p

1 � z2M0

�
x2

2.1 � z2/

�
:

Note that hz.0/ � 0 by applying Lemma 3.9 with uD z2=2. We will show that x D 0
is the minimizer of hz which implies the lemma.

Indeed, computing derivatives, we have

h0z.x/ D�M1

�
.x C z/2

2

�
� .x C z/ �M1

�
.x � z/2

2

�
� .x � z/

C 2M1

�
x2

2.1 � z2/

�
�

x
p
1 � z2

:

As h0z.0/ D 0, x D 0 is a critical point of hz . We will now show that hz is convex
which certifies that x D 0 is indeed a minimizer.

To obtain h00z , we differentiate term-by-term. Let u D .x C z/2=2. Then

d
dx
M1

�
.x C z/2

2

�
� .x C z/ D

M2

�
.xCz/2

2

�
� .x C z/2

3
CM1

�
.x C z/2

2

�
D
2M2.u/ � u

3
CM1.u/

D
2u.2eu

p
u �
p
� erfi.

p
u//

4u3=2
C

p
� erfi.

p
u/

2
p
u

D eu D exp
�
.x C z/2

2

�
:

The first equality is by Fact 2.4 and the third equality is by identities (2) and (3) in
Fact 2.5. We can similarly show that

d
dx
M1

�
.x � z/2

2

�
� .x � z/ D exp

�
.x � z/2

2

�
:
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Finally, for the last term, we have

d
dx
M1

�
x2

2.1 � z2/

�
�

x
p
1 � z2

D
1

3
M2

�
x2

2.1 � z2/

�
�

x2

.1 � z2/3=2
CM1

�
x2

2.1 � z2/

�
�

1
p
1 � z2

D
1

p
1 � z2

�
2

3
M2

�
x2

2.1 � z2/

�
�

x2

2.1 � z2/
CM1

�
x2

2.1 � z2/

��
D

exp
�

x2

2.1�z2/

�
p
1 � z2

;

where the first equality uses Fact 2.4 and the last equality is by identity (4) in Fact 2.5.
Hence, we have

h00z.x/ D
2ex

2=2.1�z2/ � .e.xCz/
2=2 C e.x�z/

2=2/
p
1 � z2

p
1 � z2

:

So to check that h00z.x/ � 0 for all x 2 R, it suffices to check that

.e.xCz/
2=2 C e.x�z/

2=2/
p
1 � z2

2
� ex

2=2.1�z2/:

Indeed, we have

.e.xCz/
2=2 C e.x�z/

2=2/
p
1 � z2

2
�
.e.xCz/

2=2 C e.x�z/
2=2/e�z

2=2

2

D ex
2=2 .e

xz C e�xz/

2
� ex

2=2ex
2z2=2

D ex
2.1Cz2/=2

� ex
2=2.1�z2/;

where the first inequality is because 1 � a � e�a for all a 2 R, the second inequality
is because .ea C e�a/=2 D cosh.a/ � ea

2=2 for all a 2 R, and the last inequality
is because 1 C a � 1=.1 � a/ for all a < 1. This proves that hz is convex which
concludes the proof that x D 0 is a minimizer for hz and hence, completes the proof
of the lemma.

Proof of Lemma 3.8. The inequality Rt .t; g/C 1
2
Rgg.t; g/ � 0 is equivalent to

R.t; g C 1/CR.t; g � 1/ � 2R.t � 1; g/: (3.5)

We first prove the claim for t D 1. In this case, the right-hand side of (3.5) is iden-
tically zero. On the other hand, the left-hand side of (3.5) is non-decreasing in g by
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Lemma 3.3. Hence, it suffices to prove the inequality for gD 0. With t D 1 and gD 0,
we have

R.1; 1/CR.1;�1/ D 2�M0.1=2/:

AsM0 is decreasing (Fact 2.6) and 1=2 � 
2=2, we haveM0.1=2/ �M0.

2=2/D 0.

So (3.5) holds for t D 1 and g � 0.
For the remainder of the proof, we assume that t > 1. We consider a few cases

depending on the value of g and t .

Case 1: g � min¹

p
t � 1; 


p
t � 1º. In this case, gC 1 � 


p
t , g � 


p
t � 1, and

g � 1 � 

p
t . Hence,

R.t; g C 1/ D
g C 1

2
C �
p
t �M0

�
.g C 1/2

2t

�
;

R.t; g � 1/ D
g � 1

2
C �
p
t �M0

�
.g � 1/2

2t

�
;

R.t � 1; g/ D
g

2
C �
p
t �M0

�
g2

2.t � 1/

�
:

So (3.5) is equivalent to

p
t �M0

�
.g C 1/2

2t

�
C
p
t �M0

�
.g � 1/2

2t

�
� 2
p
t � 1 �M0

�
g2

2.t � 1/

�
; (3.6)

or rearranging, is equivalent to

M0

�
.g C 1/2

2t

�
CM0

�
.g � 1/2

2t

�
� 2

p
1 � 1=t �M0

�
g2

2.t � 1/

�
:

The latter inequality is true by Lemma 3.10 using x D g=
p
t and z D 1=

p
t 2 .0; 1/.

Case 2: 

p
t � 1 � g � 


p
t � 1. Let zR be the function defined in Lemma 3.1. In

this case, we have

R.t; gC 1/ D 

p
t D zR.t; 


p
t / � zR.t; gC 1/ D

g C 1

2
C �
p
t �M0

�
.g C 1/2

2t

�
:

The inequality is by Lemma 3.1 which implies that zR.t; g C 1/ is non-increasing
for g 2 .


p
t � 1;1/. Using the lower bound on R.t; g C 1/, (3.5) is again implied

by (3.6) and we have already verified that (3.6) is true.

Case 3: 

p
t � 1 � g � 


p
t � 1. In this case

R.t; g C 1/ D
g C 1

2
C �
p
t �M0

�
.g C 1/2

2t

�
;
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R.t; g � 1/ D
g � 1

2
C �
p
t �M0

�
.g � 1/2

2t

�
;

R.t � 1; g/ D



2

p
t � 1:

As g � 

p
t � 1, we haveM0.

.g�1/2

2t
/ �M0.

.gC1/2

2t
/ �M0.


2

2
/ D 0. Here, the first

two inequalities are because M0 is decreasing (Fact 2.6). Hence,

R.t; g C 1/CR.t; g � 1/ � g � 

p
t � 1 D 2R.t � 1; g/;

which is precisely (3.5).

Case 4: max¹

p
t � 1; 


p
t � 1º � g. In this case, R.t � 1; g/ and R.t; g C 1/ are

constant in g but R.t; g � 1/ is non-decreasing in g. Hence, it suffices to check (3.5)
for gDmax¹


p
t � 1;


p
t � 1º, which holds by either case 2 (if 


p
t � 1�


p
t � 1)

or case 3 (if 

p
t � 1 � 


p
t � 1).

3.3. Analysis of Algorithm 1 for general loss vectors

Theorem 3.6 proves Theorem 2.1 in the special case that `t 2 ¹0; 1º2. A standard
approach to generalize to the setting where `t 2 Œ0; 1�2 is to simulate `t as a distri-
bution over loss vectors in ¹0; 1º2 (see [32, Claim 4, Appendix A]). Here, we take
a different approach and directly show that Algorithm 1 achieves the optimal regret
without the need to do this simulation.

Theorem 3.11. Let A be the algorithm described in Algorithm 1. For any advers-
ary B (allowing any loss vectors `t 2 Œ0; 1�2), we have

sup
t�1

Regret.2; t;A;B/
p
t

�



2
:

In Section 3.1, since the gap was integer-valued, the identity of the best expert
could only change when the gap is exactly 0 (at which time there are two best experts).
In general, the gap can be real-valued, so the best expert can switch abruptly, which
affects our formula for the regret. We will need to generalize Proposition 2.3 to deal
with this possibility. Let �R.t/ D Regret.t/ � Regret.t � 1/.

Proposition 3.12. Let gt�1 be the gap after time t � 1 but before playing an action
at time t . Let gt be the gap after time t . Let p.t; gt�1/ denote the probability mass
assigned to the worst expert at time t . Suppose that p.t; 0/ D 1=2 for all t � 1.

(1) If a best expert at time t � 1 remains a best expert at time t , then

�R.t/ D .gt � gt�1/p.t; gt�1/:
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(2) If a best expert at time t � 1 is no longer a best expert at time t then

�R.t/ D gt � .gt C gt�1/p.t; gt�1/:

Moreover, gt C gt�1 � 1.

The proof of this is very similar to that of Proposition 2.3 and appears in Sec-
tion 3.3.1

Remark. Note that, at any specific time, the set of best experts may have size either
one or two so the choice of the best expert in Proposition 3.12 may be ambigu-
ous. However, note that if gt�1 D 0 (i.e., there are two best experts at time t � 1),
then p.t; gt�1/ D 1=2, so both formulas give �R.t/ D

1
2
gt . On the other hand,

if gt D 0 (i.e., there are two best experts at time t ), then both formulas give �R.t/ D

�gt�1p.t; gt�1/. Hence, there is no issue with the ambiguity.

We will need the following identity which is essentially the same as Lemma 3.7
but without specializing to the case where jgt � gt�1j D 1.

Lemma 3.13. Let g0; g1; : : : be a sequence of real numbers. Then for any function f
and any fixed time T � 1, we have

f .T; gT / � f .0; g0/ D

TX
tD1

f .t; gt / �
f .t; gt�1 C 1/C f .t; gt�1 � 1/

2

C

TX
tD1

�
1

2
fgg.t; gt�1/C ft .t; gt�1/

�
:

Proof. The proof is identical to the proof of Lemma 3.7 except that we do not perform
the simplification in (3.3).

When we assumed the gaps were integer-valued, we had

�R.t/ D R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2

because both sides were equal to Rg.t; gt�1/ � .gt � gt�1/; see (2.11) and (3.3). This
does not hold in the general setting, but we will be able to prove the following inequal-
ity.

Lemma 3.14. For all t � 1,

�R.t/ � R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2
:

The proof of Lemma 3.14 appears in Section 3.3.2. Given Lemma 3.14, we can
now prove our upper bound in general.
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Proof of Theorem 3.11. Fix any T � 1. Then

R.T; gT / �R.0; g0/ D

TX
tD1

R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2

C

TX
tD1

�1
2
Rgg.t; gt�1/CRt .t; gt�1/

�
(Lemma 3.13)

�

TX
tD1

�R.t/ (Lemmas 3.14 and 3.8)

D Regret.T /:

As g0 D 0 and R.0; 0/ D 0, we have Regret.T / � R.T; gT / � 

p
T =2, where the

last inequality is by Lemma 3.4.

3.3.1. Proof of Proposition 3.12.

Proof of Proposition 3.12. Fix t and for notational convenience, let p D p.t; gt�1/

throughout the proof. In addition, throughout the proof, we use expert 1 to refer to
the worst expert at time t � 1 (chosen arbitrarily if the choice of worst expert is not
unique) and use expert 2 to refer to the other expert. Let `t;1; `t;2 2 Œ0; 1� be the
respective losses at time t and Lt;1; Lt;2 be the respective cumulative losses up to
time t . Note that gt�1 D Lt�1;1 � Lt�1;2. Finally, we set L�t D mini2¹1;2º Lt;i . By
assumption, L�t�1 D Lt�1;2.

For the first assertion we have L�t D Lt;2 (because a best expert remains a best
expert). Note that

`t;1 � `t;2 D .Lt;1 � Lt;2/ � .Lt�1;1 � Lt�1;2/ D gt � gt�1:

So the change in the loss of the algorithm can be written as

p`t;1 C .1 � p/`t;2 D p.`t;1 � `t;2/C `t;2 D p.gt � gt�1/C `t;2:

On the other hand, the change in the loss of the best expert is

L�t � L
�
t�1 D Lt;2 � Lt�1;2 D `t;2:

Subtracting this from the above equation gives �R.t/ D .gt � gt�1/p.
In the second assertion, we have L�t D Lt;1, so gt D Lt;2 � Lt;1. Again, the

algorithm incurs loss p`t;1 C .1 � p/`t;2. This time, note that

`t;1 � `t;2 D .Lt;1 � Lt;2/ � .Lt�1;1 � Lt�1;2/ D �gt � gt�1:
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So the algorithm incurs loss �p.gt C gt�1/C `t;2. On the other hand, the change in
the loss of the best expert is

L�t � L
�
t�1 D Lt;1 � Lt�1;2 D Lt;1 � Lt�1;1 C Lt�1;1 � Lt�1;2

D `t;1 C gt�1 D `t;2 � gt ;

where the last equality uses the identity `t;1 � `t;2D�gt � gt�1. Subtracting this last
quantity with the change in the algorithm’s loss gives �R.t/ D gt � p.gt C gt�1/.

To complete the proof for the second assertion, it remains to check that gt C gt�1
� 1. From above, we have the identity gt C gt�1 D `t;2 � `t;1 � `t;2 � 1, as desired.

3.3.2. Proof of Lemma 3.14.

Proof of Lemma 3.14. Fix t � 1. We will consider the two cases corresponding to the
two cases in Proposition 3.12.

Case 1: A best expert at time t � 1 remains a best expert at time t . In this case,
�R.t/ D .gt � gt�1/p.t; gt�1/, so it suffices to check that

p.t; gt�1/ � .gt � gt�1/ � R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2
: (3.7)

Rearranging, the above inequality is equivalent to

R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2
� p.t; gt�1/ � .gt � gt�1/ � 0:

If gt�1 is fixed then notice that the left-hand side of the above expression is concave
in gt . To see this, Lemma 3.3 implies that R.t; gt / is concave in gt , the second term
is constant in gt , and the last term is linear in gt . Hence, it suffices to verify the
inequality when gt D gt�1˙ 1 (Fact A.2). Indeed, if jgt � gt�1j D 1 then, as in (3.3)

R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2

D
R.t; gt�1 C 1/ �R.t; gt�1 � 1/

2
� .gt � gt�1/

D p.t; gt�1/ � .gt � gt�1/;

where the second equality used the definition of p.

Case 2: A best expert at time t � 1 is no longer a best expert at time t . This case is
nearly identical to the previous case but in this case

�R.t/ D gt � .gt C gt�1/p.t; gt�1/
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with the promise that gt C gt�1 � 1. Hence, the inequality we need to verify is that

gt � .gt C gt�1/p.t; gt�1/ � R.t; gt / �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2
: (3.8)

Once again, we do this via a concavity argument. Fix gt�12Œ0;1�. Since gtCgt�1�1,
we have gt 2 Œ0;1� gt�1�. Notice that the left-hand side of (3.8) is linear in gt and the
right-hand side of (3.8) is concave in gt (by Lemma 3.3). Hence, again by Fact A.2, it
suffices to check the inequality assuming gt 2 ¹0;1� gt�1º. Note that the case gt D 0
is handled by case 1 since the left-hand side of (3.7) and (3.8) are identical (see also
the remark after Proposition 3.12).

Now assume that gt D 1 � gt�1. Then (3.8) becomes

1 � gt�1 � p.t; gt�1/ � R.t; 1 � gt�1/ �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2
:

Recall that p.t; g/ D .R.t; g C 1/ � R.t; g � 1//=2 so that the above inequality is
equivalent to

1 � gt�1 �
R.t; gt�1 C 1/ �R.t; gt�1 � 1/

2

� R.t; 1 � gt�1/ �
R.t; gt�1 C 1/CR.t; gt�1 � 1/

2
:

Rearranging the inequality becomes

1 � gt�1 CR.t; 1 � gt�1/ �R.t; gt�1 � 1/:

Note that gt�1 � 1 � 

p
t (since t � 1 and 
 � 1). Hence, by definition of R, the

right-hand side of the above inequality is

gt�1 CR.t; 1 � gt�1/ �R.t; gt�1 � 1/

D gt�1 C
1 � gt�1

2
C �
p
tM0

�
.1 � gt�1/

2

2

�
�
gt�1 � 1

2
� �
p
tM0

�
.gt�1 � 1/

2

2

�
D 1;

and obviously, 1 � 1. This proves that the desired inequality holds with equality.

4. Lower bound

The main result of this section is the following theorem, which implies the lower
bound in Theorem 2.1.
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Theorem 4.1. For any " > 0, there exists T such that for all algorithms A, there
exists an adversary B such that

max
1�t�T

Regret.2; t;A;B/
p
t

�

 � "

2
:

As remarked earlier, we can also show that large regret is obtained infinitely often;
see Section 4.1.

It is common in the literature for regret lower bounds to be proven by random
adversaries; see, e.g., [14, Theorem 3.7]. We will also consider a random adversary,
but the novelty is the use of a non-trivial stopping time at which it can be shown that
the regret is large.

A random adversary. Suppose an adversary produces a sequence of loss vectors
`1; `2; : : : 2 ¹0; 1º

2 as follows. For all t � 1:

• If gt�1 > 0, then `t is randomly chosen to be one of the vectors
�
1
0

�
or
�
0
1

�
,

uniformly and independent of `1; : : : ; `t�1. Thus, gt � gt�1 is uniform in ¹˙1º.

• If gt�1 D 0, then `t D
�
1
0

�
if xt;1 � 1=2, and `t D

�
0
1

�
if xt;2 > 1=2. In both

cases gt D 1.

As remarked above, the process .gt /t�0 has the same distribution as the absolute
value of a standard random walk (which is also known as a reflected random walk).

We now obtain from (2.10) a lower bound on the regret of any algorithm against
this adversary. The adversary’s behavior when gt�1 D 0 ensures that hxt ; `t i � 1=2,
showing that

Regret.T / �
TX
tD1

pt .gt � gt�1/ � 1Œgt�1 ¤ 0�„ ƒ‚ …
martingale

C
1

2

TX
tD1

1Œgt�1 D 0�„ ƒ‚ …
local time

8T 2 N:

(Equality holds if the algorithm sets xt D Œ1=2; 1=2� whenever gt�1 D 0.) The first
sum is a martingale indexed by T . (This holds because gt � gt�1 has conditional
expectation 0 when gt�1 ¤ 0, and 1Œgt�1 ¤ 0�D 0 when gt�1 D 0.) The second sum
is called the local time of the random walk. Using Tanaka’s formula [38, Ex. 10.8],
the local time can be written as

Pt
sD1 1Œgs�1 D 0� D gt � Z0t , where Z0t is a mar-

tingale with uniformly bounded increments and Z00 D 0. Thus, combining the two
martingales, we have

Regret.t/ � Zt C
gt

2
8t 2 Z�0; (4.1)

where Zt is a martingale with uniformly bounded increments and Z0 D 0.
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Intuition for a stopping time. Optional stopping theorems assert that, under some
hypotheses, the expected value of a martingale at a stopping time equals the value at
the start. Using such a theorem, at a stopping time � it would hold that EŒRegret.�/��
EŒg� �=2 (under some hypotheses on � and Z). Thus it is natural to design a stopping
time � that maximizes EŒg� � and satisfies the hypotheses. We know from (2.4) that the
optimal anytime regret at time t is ‚.

p
t /, so one reasonable stopping time would be

�.c/ WD min¹t > 0 W gt � c
p
tº (4.2)

for some constant c yet to be determined. If �.c/ and Z satisfy the hypotheses of the
optional stopping theorem, then it holds that EŒRegret.�.c//� � c

2
EŒ
p
�.c/�. From

this, it follows, fairly easily, that AnytimeNormRegret.2/ � c=2; this will be argued
more carefully later.

An optional stopping theorem. The OST as formulated in standard references re-
quires one of the following hypotheses: (i) � is almost surely bounded, or (ii) EŒ� � is
bounded and the martingale has bounded increments, or (iii) the martingale is almost
surely bounded and � is almost surely finite. See, e.g., [9, Theorem 5.33], [25, Theo-
rem 4.8.5], [38, Theorem 10.11], [34, Theorem 12.5.1], [50, Theorem II.57.4], or [55,
Theorem 10.10]. These will not suffice for our purposes. For example, condition (ii)
is the only useful hypothesis for our setting. It is known [8, 53] that EŒ�.c/� < 1,
with �.c/ as above, if and only if c < 1; this yields a weak lower bound on the regret.
Instead, we will require the following theorem, which has a weaker hypothesis (due
to the square root). We are unable to find a reference for this theorem, although it is
presumably folklore. A proof of this theorem can be found in our technical report [36].

Theorem 4.2. LetZt be a martingale andK>0 a constant such that jZt�Zt�1j�K
almost surely for all t . Let � be a stopping time. If EŒ

p
�� <1, then EŒZ� � D EŒZ0�.

Optimizing the stopping time. Since the martingale Zt defined above has bounded
increments, Theorem 4.2 may be applied so long as EŒ

p
�.c/� < 1, in which case

the preceding discussion yields AnytimeNormRegret.2/ � c=2. We reiterate that the
condition EŒ

p
�.c/� <1 is a stronger assumption than �.c/ being almost surely finite.

So it remains to determine

sup¹c � 0 W EŒ
p
�.c/� <1º; (4.3)

where �.c/ is the first time at which a standard random walk crosses the two-sided
boundary ˙c

p
t . We will use the following theorem, in which M is the confluent

hypergeometric function defined in Section 2.6, and the meaning of a slowly-varying
function � is that limx!1 �.ax/�.x/

�1 D 1 for all a > 0; see [26, Chapter VIII,
eq. (8.6)].



N. J. A. Harvey, C. Liaw, E. Perkins, and S. Randhawa 118

Theorem 4.3 ([8, Theorem 2], [33, Theorem 5]). Let c > 1 and a < 0 be such that c
is the smallest positive root of the function x 7!M.a; 1=2; x2=2/. Then

PrŒ�.c/ > u� D ua�.u/ D 1;

where � is a slowly-varying function.

Fact 4.4 ([26, Lemma VIII.8.2]). Let � be a slowly-varying function. Then for all
" > 0, there exists M" such that �.x/ � x" for all x �M".

By combining Theorem 4.3 and Fact 4.4, we see that if c is the smallest positive
root of the function x 7!M.a;1=2;x2=2/ then for any ı > 0, there exists a constantCı
such that PrŒ�.c/ > u� � CıuaCı .

Recall the definition of 
 in (2.6). For intuition, let us apply Theorem 4.3 with
c D 
 , which is defined so that it is the root for a D �1=2 (see (2.12) and Fact 2.5).
It then follows that (ignoring the slowly varying function for now),

EŒ
p
�.
/� D

Z 1
0

PrŒ
p
�.
/ > s� ds D

Z 1
0

PrŒ�.
/ > s2� ds � K
Z 1
0

s�1 ds;

by Theorem 4.3. This integral is infinite, so the OST (Theorem 4.2) cannot be applied
to �.
/. However, the integral is on the cusp of being finite. By slightly decreasing a
below �1=2, and slightly modifying c to be the new root, we should obtain a finite
integral, showing that EŒ

p
�.c/� is finite.

We now prove Theorem 4.1. Note that while it does not explicitly make use of
Theorem 4.2, the above discussion remained fruitful as it led us to the correct con-
stant 
 .

Proof of Theorem 4.1. Fix any " > 0 that is sufficiently small and any algorithm A.
Consider the random adversary, B, and the stopping times �.c/ described above. Let
Regret.t/ D Regret.2; t;A;B/ denote the (random) regret at time t for algorithm A

against the random adversary B. By Claim 2.8, there exists a" 2 .�1;�1=2/ and
c" � 
 � " such that c" is the unique positive root of z 7! M.a"; 1=2; z

2=2/. Let
ı > 0 be a constant such that a" C ı < �1=2. By Theorem 4.3 and Fact 4.4, there is
a constant Cı such that

PrŒ�.c"/ � s� � Cısa"Cı : (4.4)

Fix T � 1. For notation, we write a ^ b D min¹a; bº. We have that

EŒRegret.�.c"/ ^ T /� � EŒZ�.c"/^T �C
1

2
EŒg�.c"/^T � (by (4.1))

D EŒZ0�C
1

2
EŒg�.c"/^T � (by OST)

�
1

2
EŒg�.c"/^T � 1Œ�.c"/ < T ��
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�
c"

2
EŒ
p
�.c"/ ^ T � 1Œ�.c"/ < T �� (by (4.2))

D
c"

2
EŒ
p
�.c"/ ^ T � �

c"

2
EŒ
p
T � 1Œ�.c"/ � T ��: (4.5)

Note that in the first equality the optional stopping theorem asserts that EŒZ�.c"/^T �D

EŒZ0�, since �.c"/^ T is an almost surely bounded stopping time. Our goal now is to
show that the second term in (4.5) tends to 0 as T tends to infinity. Indeed, by (4.4),
we have

EŒ
p
T � 1Œ�.c"/ � T �� D

p
T � PrŒ�.c"/ � T � � Cı � T 1=2Ca"Cı :

Since a"C ı <�1=2, we thus conclude that the last term in (4.5) tends to 0 as T !1.
To conclude, for any " > 0, there exists a fixed time T" (depending on " but not on A)
such that

EŒRegret.�.c"/ ^ T"/� � .1 � "/ �
c"

2
EŒ
p
�.c"/ ^ T"�

�
.
 � "/.1 � "/

2
� EŒ
p
�.c"/ ^ T"�:

By the probabilistic method, we conclude that for any " > 0, there exists T" > 0 such
that for all algorithms A, there exists losses `1; : : : ; `T"

such that for some 1� t � T",
the regret of A is at least .
�"/.1�"/

2
�
p
t . A suitable adjustment to " completes the

proof.

4.1. Large regret infinitely often

In this subsection, we prove the following extension of Theorem 4.1, which shows
that one can achieve regret 


p
t=2 infinitely often.

Theorem 4.5. For any " > 0, there exists an infinite sequence of times T1 < T2 < � � �
such that for all algorithms A, there is an adversary B such that for every i � 1,

max
Ti�1<t�Ti

Regret.2; t;A;B/
p
t

�

 � "

2
: (4.6)

The proof of Theorem 4.5 is very similar to that of Theorem 4.1 except that the
proof ignores the first T0 time steps. Specifically, fix a T0 > 0. We show that there is
an adversary that ensures that the regret at time t C T0, for some t > 0, is roughly
c
p
t C T0=2, for some c close to (but smaller than) 
 .
To accomplish this, first observe that for any algorithm, the regret at time T0 is

at least �T0, since any algorithm incurs at least regret �1 at each time step. Thus,
to prove a regret bound of c

p
t C T0=2 at time t C T0 for any algorithm, it suffices

to prove a regret bound of c
p
t C T0=2C T0 at time t for any algorithm. Similar to
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Theorem 4.1, the proof makes use of the stopping time of a reflected random walk to
hit the c

p
t C T0 C 2T0 boundary. The difference is that this boundary is no longer a

square root boundary; however, it is still an asymptotically square root boundary. For-
tunately, there is an extension of Theorem 4.3 to functions which are asymptotically
square root.

Theorem 4.6 ([33, Theorem 5]). Let c > 1 and a < 0 be such that c is the smallest
positive root of the function x 7! M.a; 1=2; x2=2/. Let f .t/ be a function such that
limt!1 f .t/t

�1=2 D c. Let � D inf¹t > 0 W gt � f .t/º. Then PrŒ� > u� D ua�.u/,
where � is a slowly-varying function.

Proof of Theorem 4.5. We show how, given any T0 � 0, one can find an integer T > 0
such that for some 1 � t � T , the regret at time t C T0 is at least .
 � "/

p
t C T0=2

regardless of the value of Regret.2; T0;A;B/. The claim follows from this by first
taking T0 D 0 to find a T1 such that

max
0DT0<t�T1

Regret.2; t;A;B/=
p
t � .
 � "/=2:

Having found Ti�1, we set T0 D Ti�1 to find Ti such that (4.6) holds.
Fix any " > 0 that is sufficiently small and any algorithm A. Let B be the random

adversary from the proof of Theorem 4.1. Let

Regret.t/ D Regret.2; T0 C t;A;B/ � Regret.2; T0;A;B/

denote the regret incurred by A from time T0 to time T0 C t against the adversary B.
By Claim 2.8, there exists a" 2 .�1;�1=2/ and c" � 
 � " such that c" is the

unique positive root of z 7!M.a"; 1=2; z
2=2/. Let

f .t/ D c"
p
t C T0 C 2T0=.1 � "/:

As before, let gt be the absolute value of a standard random walk. Note that

lim
t!1

f .t/t�1=2 D c":

Define the stopping time � D inf¹t > 0 W gt � f .t/º. Finally, let ı > 0 be a constant
such that a" C ı < �1=2. By Theorem 4.6 and Fact 4.4, there is a constant Cı such
that PrŒ� > s� � Cıs

a"Cı . Fix T � 1. For notation, we write a ^ b D min¹a; bº.
Following the proof of Theorem 4.1, we have that there is a martingale Zt such that

EŒRegret.� ^ T /� � EŒZ�^T �C
1

2
EŒg�^T �

D EŒZ0�C
1

2
EŒg�^T �
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�
1

2
EŒg�^T � 1Œ� < T ��

�
1

2
EŒf .� ^ T / � 1Œ� < T ��

D
1

2
EŒf .� ^ T /� �

1

2
EŒf .T / � 1Œ� � T ��: (4.7)

Our goal now is to show that the second term in (4.7) tends to 0 as T tends to infinity.
Indeed, we have

EŒf .T / � 1Œ� � T �� D f .T / � PrŒ� � T � � Cı � f .T / � T a"Cı :

Note that
f .T / � T a"Cı D .f .T / � T �1=2/ � .T 1=2Ca"Cı/:

The first factor tends to c" as T !1 and the second factor tends to 0 as T !1 since
a" C ı < �1=2. We thus conclude that the last term in (4.7) tends to 0 as T !1. To
conclude, for any " > 0, there exists a fixed time T" (depending on " but not on A)
such that

EŒRegret.� ^ T"/� �
1 � "

2
EŒf .� ^ T"/�

�
.1 � "/c"

2
EŒ
p
T0 C .� ^ T"/�C T0;

Now recall that we had defined

Regret.t/ D Regret.2; T0 C t;A;B/ � Regret.2; T0;A;B/

and that Regret.2; T0;A;B/ � �T0. By the probabilistic method, we conclude that
for any " > 0, there exists T" > 0 such that for all algorithms A, there exists losses
`T0C1; : : : ; `T0CT"

(independent of `1; : : : ; `T0
) such that, for some 1 � t � T", the

regret of A at time T0 C t is at least

.1 � "/

2
� f .t/ � T0 �

.
 � "/.1 � "/

2

p
T0 C t :

5. Derivation of a continuous-time analog of Algorithm 1

The purpose of this section is to show how the potential function R defined in (2.8)
arises naturally as the solution of a stochastic calculus problem. The derivation of that
function is accomplished by defining, then solving, an analog of the regret minimiza-
tion problem in continuous time. The main advantage of considering this continuous
setting is the wealth of analytic methods available, such as stochastic calculus.
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5.1. Defining the continuous regret problem

Continuous time regret problem. The continuous regret problem is inspired by
equation (2.11). Notice that, when the adversary chooses loss vectors in ¹

�
1
0

�
;
�
0
1

�
º,

the sequence of gaps g0; g1; g2; : : : live in the support of a reflected random walk.
The goal in the discrete case is to find an algorithm p that bounds the regret over all
possible sample paths of a reflected random walk. In continuous time it is natural to
consider a stochastic integral with respect to reflected Brownian motion, denoted jBt j,
instead. Our goal now is to find a continuous-time algorithm whose regret is small for
almost all reflected Brownian motion paths.

Definition 5.1 (Continuous regret). Let pWR>0 �R�0! Œ0; 1� be a continuous func-
tion that satisfies p.t; 0/D 1=2 for every t > 0. Let Bt be a standard one-dimensional
Brownian motion. Then, the continuous regret of p with respect to B is the stochastic
integral

ContRegret.T; p; B/ D
Z T

0

p.t; jBt j/ djBt j: (5.1)

Remark. The condition p.t; 0/D 1=2 is due to (5.1) being inspired by (2.11), which
requires this condition.

In this definition we may think of p as a continuous-time algorithm and B as a
continuous-time adversary. The goal for the remainder of this section is to prove the
following result.

Theorem 5.2. There exists a continuous-time algorithm p� such that

ContRegret.T; p�; B/ �


p
T

2
8T 2 R�0; almost surely:

Remark. A natural question arises upon reviewing the definition of continuous regret:
What role does Brownian motion play in Definition 5.1 and is it the “correct” stochas-
tic process to consider in order to uncover the optimal algorithm? In the analysis that
follows, the only properties of reflected Brownian motion that we use are its non-
negativity and that its quadratic variation is t . It turns out that one can generalize
Theorem 5.2 by allowing any non-negative, continuous semi-martingale X to control
the gap process, and by letting time grow at the rate of the quadratic variation of X .
See Appendix B.2 for more details.
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5.2. Connections to stochastic calculus and the backward heat equation

Since ContRegret.T / evolves as a stochastic integral with respect to a semi-martin-
gale12 (namely reflected Brownian motion), Itô’s lemma provides an insightful decom-
position. The following statement of Itô’s lemma is a specialization of [49, Theo-
rem IV.3.3] for the special case of reflected Brownian motion.13

Notation. Up to now, we have used the symbol g as the second parameter to the
bivariate functions p and R. Henceforth, it will be more consistent with the usual
notation in the literature to use x to denote g. We will also use the notation C 1;2 to
denote the class of bivariate functions that are continuously differentiable in their first
argument and twice continuously differentiable in their second argument.

Theorem 5.3 (Itô’s formula). Let f WR�0 �R! R be C 1;2. Then, almost surely,

f .T; jBT j/ � f .0; jB0j/ D

Z T

0

@xf .t; jBt j/ djBt j

C

Z T

0

h
@tf .t; jBt j/C

1

2
@xxf .t; jBt j/„ ƒ‚ …

DW
�

�f.t;jBt j/

i
dt:

The integrand of the second integral is an important quantity arising in PDEs and
stochastic processes (see, e.g., [22, p. 263]). We will denote it by

�

�f .t; x/ WD @tf .t; x/C
1

2
@xxf .t; x/:

Some discussion about the statement of Theorem 5.3 appears in Appendix B.1.

Applying Itô’s formula to the continuous regret. Comparing these equations, it is
natural to assume that p D @xf for a function f that is C 1;2 with f .0; 0/D 0, @xf 2
Œ0; 1�, and @xf .t; 0/ D 1=2; the latter two conditions are needed for Definition 5.1 to
be applicable. Itô’s formula then yields

ContRegret.T; p D @xf;B/ D
Z T

0

@xf .t; jBt j/ djBt j

D f .T; jBT j/ �

Z T

0

�

�f .t; jBt j/ dt:

12A semi-martingale is a stochastic process that can be written as the sum of a local martin-
gale and a process of finite variation.

13Specifically, we are using the statement of Itô’s formula that appears in [49, Remark 1
after Theorem IV.3.3] with Xt D jBt j and At D t . Note that y in their notation is t in ours and
hjBj; jBjit D t .
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Path independence and the backward heat equation. At this point a useful idea
arises: as a thought experiment, suppose that

�

�f D 0. Then the second integral would
vanish, and we would have the appealing expression

ContRegret.T; p; B/ D f .T; jBT j/:

Moreover, since f is a deterministic function, the right-hand side depends only on
jBT j rather than the entire Brownian path BjŒ0;T �. Thus, the same must be true of
the left-hand side: at time T , the continuous regret of the algorithm p depends only
on T and jBT j (the gap). We say that say that such an algorithm has path indepen-
dent regret. Our supposition that led to these attractive consequences was only that
�

�f D 0, which turns out to be a well-studied condition.

Definition 5.4. Let f WR>0 � R ! R be a C 1;2 function. If
�

�f .t; x/ D 0 for all
.t; x/ 2 R>0 �R, then we say that f satisfies the backward heat equation. A synony-
mous statement is that f is space-time harmonic.

We may summarize the preceding discussion with the following proposition.

Proposition 5.5. Let f WR>0 � R ! R be a C 1;2 function that satisfies
�

�f D 0

everywhere with f .0; 0/ D 0. Let p D @xf . Then,Z T

0

p.t; jBt j/ djBt j D f .T; jBT j/:

Suppose that a function f satisfies the hypothesis of Proposition 5.5 and in addi-
tion p D @xf 2 Œ0; 1� with p.t; 0/ D 1=2. Then, we would have

ContRegret.T; p; B/ D f .T; jBT j/: (5.2)

We are unable to derive a function that satisfies the properties required for (5.2) to
hold along with maxx�0 f .T; x/ � 


p
T =2. Instead, we will begin by relaxing the

constraint that p.t; x/ 2 Œ0; 1� and allow p.t; x/ to be negative. We will overload the
notation ContRegret.�/ to include such functions. In the next section, we will derive a
family of such functions that all achieve

ContRegret.T; p; jBT j/ D f .T; jBT j/ D O.
p
T /:

This is done by setting up and solving the backwards heat equation. Next, we use a
“smoothing” argument to obtain a family of functions that all achieve

ContRegret.T; p; jBT j/ D O.
p
T /;

and that do satisfy p.t; x/ 2 Œ0; 1�. Finally, we will optimize ContRegret.T; �; jBT j/
over this family of functions to prove Theorem 5.2. The constant 
 will appear as a
consequence of this optimization problem.
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5.2.1. Satisfying the backward heat equation. The main result of this section is
the derivation of a family of functions zpWR>0 � R ! R that satisfy zp.t; x/ � 1,
zp.t; 0/ D 1=2 and

ContRegret.T; zp;B/ D f .T; jBT j/ D O.
p
T /; (5.3)

but do not necessarily satisfy zp.t; x/ � 0.
The first step is to find a function f which satisfies the partial differential equation

�

�f D 0. Since the boundary condition zp.t; 0/D 1=2 is a condition on zp D @xf , not
on f itself, it will be convenient to solve a PDE for zp instead, and then to derive f by
integrating. However, some care is needed since not all antiderivatives of zp (in x) will
satisfy the backwards heat equation. Fortunately, we have a useful lemma showing
that if zp satisfies the backward heat equation, then we can construct an f that also
does.

Lemma 5.6. Suppose that hWR>0 �R! R is a C 1;2 function. Define

f .t; x/ WD

Z x

0

h.t; y/ dy �
1

2

Z t

0

@xh.s; 0/ ds:

Then,

(1) f 2 C 1;2,

(2) If
�

�h D 0 over R>0 �R, then
�

�f D 0 over R>0 �R,

(3) h D @xf .

Proof. First, we check that f 2 C 1;2. Let .t; x/ 2 R>0 � R. It is easy to check via
standard applications of the dominated convergence theorem (DCT) and the funda-
mental theorem of calculus (FTC) that

(1) @tf .t; x/ D
R x
0
@th.t; y/ dy � 1

2
@xh.t; 0/,

(2) @xf .t; x/ D h.t; x/, and

(3) @xxf .t; x/ D @xh.t; x/.

All of the above partial derivatives are clearly continuous since h is C 1;2.
Next, we show that if

�

�h.t; x/ D 0 for all .t; x/ 2 R>0 � R, then
�

�f .t; x/ D 0

for all R>0 �R. Indeed,

�

�f .t; x/ D
�
@t C

1

2
@xx

�
f .t; x/

D

Z x

0

@th.t; y/ dy �
1

2
@xh.t; 0/C

1

2
@xh.t; x/ (by (1) and (3))
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D

Z x

0

�
@th.t; y/C

1

2
@xxh.t; y/

�
„ ƒ‚ …

D0

dy (by FTC)

D 0;

as claimed.

Defining boundary conditions for p. Obtaining a particular solution to the back-
ward heat equation requires sufficient boundary conditions in order to uniquely iden-
tify zp. The boundary condition mentioned above is that zp.t; 0/ D 1=2 for all t . This
condition together with the backward heat equation clearly do not suffice to uniquely
determine zp. Therefore, we impose some reasonable boundary conditions on zp.

What should the value be at the boundary? Intuitively, x 7! zp.t; x/ should be a
decreasing function because zp represents the weight placed on the worst expert as a
function of the gap. Therefore, it is natural to consider an “upper boundary” which
specifies the point at which the difference in experts’ total losses is so great that the
algorithm places zero weight on the worst expert. The upper boundary can be specified
by a curve, ¹.t; �.t// W t > 0º for some continuous function �WR>0 ! R>0. We will
incorporate this idea by requiring zp.t; �.t// D 0 for all t > 0.

Where should the boundary be? One reasonable choice for the boundary is to use
�˛.t/ D ˛

p
t for some constant ˛ > 0, as this is similar to the boundary used by the

random adversary in the lower bound of Section 4. For now, we leave ˛ as an unknown
parameter whose value can be optimized later. These conditions are combined into the
following partial differential equation:

Backward heat equation: @tu.t; x/C
1
2
@xxu.t; x/ D 0 for all .t; x/ 2 R>0 �R;

(5.4)

Upper boundary: u.t; ˛
p
t / D 0 for all t > 0; (5.5)

Lower boundary: u.t; 0/ D
1

2
for all t > 0: (5.6)

Next we show that the following function solves this PDE. Define zp˛WR>0 �R! R

by

zp˛.t; x/ WD
1

2

�
1 �

erfi.x=
p
2t/

erfi.˛=
p
2/

�
: (5.7)

Lemma 5.7. The function zp˛ satisfies the following properties:

(1) zp˛ is C 1;2 over R>0 �R,

(2) zp˛ satisfies the constraints in (5.4), (5.5) and (5.6), and

(3) For all t > 0 and all x � 0, zp˛.t; x/ � 1=2.
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Proof. Let us assume that we can write u.t; x/ D v.x=
p
t /. Then, we have

@tu.t; x/ D �
x

2t3=2
v0.x=

p
t / and

1

2
@xxu.t; x/ D

1

2t
v00.x=

p
t /:

The backward heat equation enforces that

v00.x=
p
t / D

x
p
t
v0.x=

p
t /:

By a change of variables .z D x=
p
t /, we obtain the following ordinary differential

equation
v00.z/ D z � v0.z/:

Hence, v0.z/ D C � ez
2=2 for some constant C . We can then integrate to obtain

v.z/ D

Z z

0

Cey
2=2 dy CD D

Z z=
p
2

0

p
2Cer

2

dr CD

for some constantD. For the last equality, we made the change of variables r D y=
p
2

in the integral. Therefore, by the definition of erfi (and a different constantC ), we have
v.z/ D C erfi.z=

p
2/CD. Hence, for some constants C;D 2 R, we have

u.t; x/ D C erfi.x=
p
2t/CD:

Plugging in the boundary condition at x D 0 and recalling that erfi.0/ D 0, we see
that D D 1=2. Plugging in the boundary condition that u.t; ˛

p
t / D 0 and using that

D D 1=2, we see that

C D �
1

2 erfi.˛=
p
2/
:

Therefore, we have that the following function

u.t; x/ D
1

2

�
1 �

erfi.x=
p
2t/

erfi.˛=
p
2/

�
satisfies the backwards heat equation and the boundary conditions. Moreover, u2C 1;2

on R>0 �R.

Lemma 5.7 shows that zp˛.t; x/ nearly defines a valid continuous time algorithm,
in that it satisfies the conditions of Definition 5.1 except for non-negativity. Next, we
will integrate zp˛ as described in Lemma 5.6. Define the function zR˛WR>0 �R! R

as

zR˛.t; x/ D
x

2
C �˛
p
t �M0

�x2
2t

�
; where �˛ D

1
p
2� erfi.˛=

p
2/
: (5.8)



N. J. A. Harvey, C. Liaw, E. Perkins, and S. Randhawa 128

Lemma 5.8. The following equation holds:

zR˛.t; x/ D

Z x

0

zp˛.t; y/ dy �
1

2

Z t

0

@x zp˛.s; 0/ ds:

First we need to compute some derivatives.

Lemma 5.9. The following identities hold for every ˛ > 0:

(1) @x zR˛.t; x/ D zp˛.t; x/ D 1
2

�
1 � erfi.x=

p
2t/

erfi.˛=
p
2t/

�
,

(2) @xx zR˛.t; x/ D @x zp˛.t; x/ D ��˛ �
exp.x2=2t/
p
t

.

Proof. The proof is a straightforward calculation. We have

@x zR˛.t; x/ D
1

2
� �˛

x
p
t
�M1

�x2
2t

�
D
1

2
�

1
p
2� erfi.˛=

p
2/
�
x
p
t
�

p
� erfi.x=

p
2t/

2 � x=
p
2t

D
1

2

�
1 �

erfi.x=
p
2t/

erfi.˛=
p
2/

�
;

where the first equality uses Fact 2.4 and the second equality uses identity (2) in
Fact 2.5. This proves the first identity.

For the second identity, using the definition of erfi.�/, we have

@xx zR˛ D @x zp˛.t; x/ D �
exp.x2=2t/

p
2� erfi.˛=

p
2/
p
t
D ��˛ �

exp.x2=2t/
p
t

:

Proof of Lemma 5.8. By the first identity in Lemma 5.9, we haveZ x

0

zp˛.t; y/ dy D zR˛.t; x/ � zR˛.t; 0/: (5.9)

Note that zR˛.t; 0/ D �˛
p
t . Next, the second identity of Lemma 5.9 implies that

�@x zp˛.s; 0/ D
�˛
p
s
:

Hence,

�
1

2

Z t

0

@x zp˛.s; 0/ ds D �˛
p
t D zR˛.t; 0/: (5.10)

Summing (5.9) and (5.10) givesZ x

0

zp˛.t; y/ dy �
1

2

Z t

0

@x zp˛.s; 0/ ds D zR˛.t; x/ � zR˛.t; 0/C zR˛.t; 0/

D zR˛.t; x/:
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By Lemma 5.7, the function zp˛ satisfies the hypothesis of the function h in
Lemma 5.6. Applying Lemma 5.6 with h D zp˛ and f D zR˛ , we have the follow-
ing observation on zR˛ .

Observation 5.10. The function zR˛ satisfies the following properties:

(1) zR˛ is C 1;2,

(2) zR˛ satisfies
�

� zR˛ D 0 over R>0 �R,

(3) @x zR˛.t; x/ D zp˛.t; x/.

Observation 5.10 shows that zR˛ satisfies the hypotheses of Proposition 5.5. Hence,
we have

ContRegret.T; zp˛; B/ D zR˛.T; jBT j/:

Since erfi.�/ is a strictly increasing function with erfi.0/D 0, observe that @x zR˛ D zp˛
has exactly one root at ˛

p
t . In particular, for any fixed T > 0, the function zR˛.T; x/

is maximized at x D ˛
p
T . Therefore, for every T , we have

zR˛.T; jBT j/ � max
x�0

zR˛.T; x/ � zR˛.T; ˛
p
T / D

�˛
2
C �˛M0

�˛2
2

��p
T ;

where the equality is by definition of zR˛ in equation (5.8). To summarize, we have
shown that

ContRegret.T; zp˛; B/ �
�˛
2
C �˛M0

�˛2
2

��p
T : (5.11)

This establishes (5.3), as desired.

5.2.2. Resolving the non-negativity issue. The only remaining step is to modify zp˛
so that it lies in the interval Œ0; 1=2�. We modify zp˛ in the most natural way: by
modifying all negative values to be zero. Specifically, we set

p˛.t; x/ WD

´
0 (t D 0)

. zp˛.t; x//C (t > 0)
D

8<: 0 (t D 0)
1
2

�
1 � erfi.x=

p
2t/

erfi.˛=
p
2/

�
C

(t > 0)
: (5.12)

Here, we use the notation .x/CDmax¹0;xº. Note that p˛.t;0/D 1=2 for all t > 0 and
p˛.t; x/ 2 Œ0; 1=2� for all t; x � 0. So p˛ defines a valid continuous-time algorithm.
From (5.12), we obtain a truncated version of zR˛ as

R˛.t; x/ WD

8̂̂<̂
:̂
0 .t D 0/;

zR˛.t; x/ .t > 0 ^ x � ˛
p
t /;

zR˛.t; ˛
p
t / .t > 0 ^ x � ˛

p
t /:

It is straightforward to verify that @xR˛ D p˛ . This is because for x � ˛
p
t , we have

p˛.t; x/ D zp˛.t; x/ and R˛.t; x/ D zR˛.t; x/



N. J. A. Harvey, C. Liaw, E. Perkins, and S. Randhawa 130

(in Observation 5.10, we noted that @x zR˛ D p˛). In addition, R˛.t; x/ is constant
(in x) for x � ˛

p
t so its derivative (in x) is 0.

If R˛ were sufficiently smooth then we could immediately apply Itô’s formula
(Theorem 5.3) to obtain a formula for the regret of p˛ . For 0 < x < ˛

p
t , we have

�

�R˛.t; x/ D 0

by Observation 5.10 (because R˛.t; x/ D zR˛.t; x/, whenever 0 < x < ˛
p
t ) and for

x > ˛
p
t , it is not difficult to verify that

�

�R˛.t; x/ > 0:

Itô’s formula would then suggest that

ContRegret.T; p˛; B/ � Regret.T; jBT j/:

The only flaw is that @xxR˛ is not well defined on the curve ¹.t; ˛
p
t / W t > 0º so R˛

is not in C 1;2 and Theorem 5.3 cannot be applied directly. Fortunately, it is possible
to resolve this issue and to formally prove the following lemma which bounds the
continuous regret for the algorithm p˛ D @xR˛ in terms of the potential function R˛ .
As the details are quite technical and distract from our main goal of providing intuition
on how the discrete algorithm is obtained, the proof of Lemma 5.11 is omitted from
the present paper but may be found in our technical report [36].

Lemma 5.11. Fix ˛ > 0. Then, almost surely, for all T � 0,

ContRegret.T; p˛; B/ � R˛.T; jBT j/:

The remainder of this section proves Theorem 5.2 by setting p� D p˛ for the
optimal ˛.

Remark. The definition of p˛ has an interesting interpretation. Let B be a Brownian
motion. Fix a time t and a position x > 0. Now let � D inf¹s > t W jBsj � ˛

p
sº. It is

known [21] that
p˛.t; x/ D PrŒB� < 0 j Bt D x�:

In words, p˛.t; x/ is the probability that a Brownian motion started at time t and
position x crosses the bottom �˛

p
t boundary before crossing the topC˛

p
t bound-

ary. As a sanity check, one may observe that p˛.t; ˛
p
t / D 0 and p˛.t; 0/ D 0:5.

Interestingly, the optimal algorithms for two experts in both the finite-time horizon
setting [18] and the geometric time horizon setting have a similar interpretation [32].
In both cases, the optimal algorithm is to assign the probability that a random walk
started at position x > 0 at time t remains positive at the stopping time. In the finite-
time case, the stopping time is a deterministic quantity T whereas in the geometric-
time case, the stopping time is a geometric random variable. A similar connection also
exists for three and four experts [6, 32].



Optimal anytime regret with two experts 131

5.3. Optimizing the boundary to minimize continuous regret

By Lemma 5.11,

ContRegret.T; @xR˛; B/ � R˛.T; jBT j/ � R˛.T; ˛
p
T /;

where the last inequality is because @xR˛.t; x/D p˛.t; x/ is positive for x 2 Œ0;˛
p
t /

and 0 for x � ˛
p
t . As observed in (5.11), we have the formula

R˛.T; ˛
p
T / D .˛=2C �˛M0.˛

2=2//
p
T :

Thus, to minimize R˛.T; ˛
p
T /, it is convenient to define

h.˛/ WD R˛.1; ˛/ D
˛

2
C �˛M0.˛

2=2/:

The only remaining task is now to solve the following optimization problem.

min
˛>0

h.˛/ D min
˛>0

°˛
2
C �˛ �M0

�˛2
2

�±
(5.13)

The following lemma verifies that there exists some ˛ for which

ContRegret.T; @xR˛; B/ �


p
T

2
;

completing the proof of Theorem 5.2.

Lemma 5.12. The function h.˛/ is minimized at ˛ D 
 and h.
/ D 
=2. Conse-
quently, for any fixed T > 0,

min
˛
R˛.T; ˛

p
T / D R
 .T; 


p
T / D



p
T

2
:

Lemma 5.12 follows easily from the following claim.

Claim 5.13. For all ˛ > 0, it holds that

h0.˛/ D �
exp.˛2=2/

� erfi.˛=
p
2/
�M0.˛

2=2/:

In particular, h0.˛/ < 0 for ˛ 2 .0; 
/, h0.
/ D 0, and h0.˛/ > 0 for ˛ 2 .
;1/.

Proof. Recall that h.˛/ D ˛
2
C

M0.˛
2=2/

p
2� erfi.˛=

p
2/

and that d
dx erfi.x=

p
2/ D

q
2
�
ex

2=2.
Hence,

h0.˛/ D
1

2
�

˛ �M1.˛
2=2/

p
2� erfi.˛=

p
2/
�

exp.˛2=2/ �M0.˛
2=2/

� erfi.˛=
p
2/2

(by Fact 2.4)

D �
exp.˛2=2/ �M0.˛

2=2/

� erfi.˛=
p
2/2

(by Fact 2.5 (2)):

This proves the first assertion.
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Next, observe that exp.˛2=2/= erfi.˛=
p
2/2 is positive for all ˛ > 0. Hence, by

Fact 2.7, we have that h0.˛/ < 0 for ˛ 2 .0;
/, h0.
/D 0, and h0.˛/ > 0 for ˛2.
;1/.

Proof of Lemma 5.12. Claim 5.13 implies that 
 is the global minimizer for h.˛/.
Since 
 is a root ofM0.˛

2=2/, it follows that h.
/D 
=2. This proves the first asser-
tion. Next, for every ˛ > 0, we have

R˛.T; ˛
p
T / D

p
T � h.˛/ �

p
T � h.
/ D 


p
T =2;

which proves the second assertion.

A. Standard concavity facts

Fact A.1. Suppose f WR! R is concave. Then for any ˛ < ˇ, the function g.t/ D
f .t C ˇ/ � f .t C ˛/ is non-increasing.

Fact A.2. Suppose f WR!R is concave. Let ˛ < ˇ. Then f .x/ �min¹f .˛/; f .ˇ/º
for all x 2 Œ˛; ˇ�.

Claim 2.8. For any " > 0, there exists a" 2 .�1;�1=2/ such that the smallest14 pos-
itive root c" of z 7!M.a"; 1=2; z

2=2/ satisfies c" � 
 � ".

Proof. Following Perkins’ notation [46], let �0.�c; c/ be such that c is the smallest
positive root of

x 7!M.��0.�c; c/; 1=2; x
2=2/:

By [46, Proposition 1], the map c 7! �0.�c; c/ is strictly decreasing and continuous
on R>0, so it has a continuous inverse ˛. From (2.6) and Fact 2.5 (1), we see that

�0.�
; 
/ D 1=2;

hence ˛.1=2/ D 
 . By continuity, for all " > 0, there exists ı 2 .0; 1=2/ such that
˛.1=2C ı/ > 
 � ". Then we may take a" D �.1=2C ı/ and c" D ˛.1=2C ı/.

The following fact is well known; see, e.g., [48, Lemma 2].

Fact A.3. Let X and Y be topological spaces, and let f WX � Y ! R be a (jointly)
continuous function. If Y is compact then

g.x/ D inf
y2Y

f .x; y/ and h.x/ D sup
y2Y

f .x; y/

are continuous functions on X.

14In fact, there is a unique positive root.
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B. Additional discussions for Section 5

B.1. Discussion on the statement of Theorem 5.3

In this paper, we use the version of Itô’s formula that appears in [49, Remark 1 after
Theorem IV.3.3]. It states that if f 2C 1;2,X is a continuous semi-martingale15 andA
is a process with bounded variation, then

f .AT ; XT / � f .A0; X0/ D

Z T

0

@xf .At ; Xt / dXt C
Z T

0

@tf .At ; Xt / dAt

C
1

2

Z T

0

@xxf .At ; Xt / dhX;Xit : (B.1)

In our setting, we take Xt D jBt j and At D t . We now explain the notation hX;Xi.

(1) For a continuous local martingale M , hM;M i is the unique increasing con-
tinuous process vanishing at 0 such that M 2 � hM;M i is a martingale [49,
Theorem IV.1.8].

(2) If X is a continuous semi-martingale with M being the (continuous) local
martingale part then hX;Xi D hM;M i [49, Definition IV.1.20].

Tanaka’s formula [51, Theorem IV.43.3] asserts that jBt j D Wt C Lt , where Wt is a
Brownian motion and Lt is the local time of Bt at 0, which is an increasing, continu-
ous, adapted process. Hence, jBt j is a semi-martingale with hjBj; jBjit D hW;W it D
t . Plugging these into (B.1) gives

f .T; jBT j/ � f .0; jB0j/ D

Z T

0

@xf .t; jBt j/ djBt j

C

Z T

0

h
@tf .t; jBt j/C

1

2
@xxf .t; jBt j/

i
dt;

which is what appears in Theorem 5.3.

B.2. Continuous regret against any continuous semi-martingale

Recall that the continuous regret upper bound (Theorem 5.2) involved the adversary
evolving the gap process as a reflected Brownian motion, which is a continuous semi-
martingale. In this section, we generalize the definition of continuous regret to allow
arbitrary, non-negative, continuous semi-martingales to control the gap process, and
derive an analog of Theorem 5.2 in this generalized setting. We use the notation ŒX�t

15A continuous semi-martingaleX is a process that can be written asX DM CN , whereM
is a continuous local martingale and N is a continuous adapted process of finite variation.
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to refer to hX; Xit , the quadratic variation process of X , which was introduced in
Appendix B.1.

We begin with a generalized definition of continuous regret.

Definition B.1 (Continuous regret). Let pWR>0 �R�0! Œ0; 1� be a continuous func-
tion that satisfies p.t; 0/D 1=2 for every t > 0. LetXt be a continuous, non-negative,
semi-martingale. Then, the continuous regret of p with respect to X is the stochastic
integral

ContRegret.T; p;X/ D
Z T

0

p.t; Xt / dXt :

The main result for this generalized setting is as follows.

Theorem B.2. There exists a continuous-time algorithm p� such that for any contin-
uous, non-negative, semi-martingale X ,

ContRegret.T; p�; X/ �



2

p
ŒX�T 8T 2 R�0; almost surely:

We provide an overview of the proof of this result below. For the sake of expo-
sition, we sketch the proof of Theorem B.2 in the setting where we allow p� to take
values in .�1; 1�. Truncating p� as was done in Section 5.2.2 yields Theorem B.2 as
stated.

Proof sketch. Let p�.t;x/WD zp
 .ŒX�t ;x/ andR.t;x/WD zR
 .t;x/. (See equations (5.7)
and (5.8) for definitions of zp
 and zR
 .) Recall the following three important proper-
ties of R from Observation 5.10:

(1) R is C 1;2,

(2) R satisfies
�

�R D 0 over R>0 �R,

(3) @xR.t; x/ D zp
 .t; x/.

Since R is C 1;2, we may apply Itô’s formula (specifically equation (B.1) with At D
ŒX�t , which is a bounded variation process since it is increasing) to obtain

R.ŒX�T ; XT /

D

Z T

0

@xR.ŒX�t ; Xt / dXt C
Z T

0

@tR.ŒX�t ; Xt /C
1

2
@xxR.ŒX�t ; Xt / dŒX�t

D

Z T

0

p�.t; Xt / dXt

C

Z T

0

@tR.ŒX�t ; Xt /C
1

2
@xxR.ŒX�t ; Xt /„ ƒ‚ …

D
�

�R.ŒX�t ;Xt /

dŒX�t .@xR D zp
 /
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D

Z T

0

p�.t; Xt / dXt .
�

�R D 0/

D ContRegret.T; p�; X/:

Next, recall the upper bound on R from equation (5.11):

R.t; x/ D R
 .t; x/ �
�

2
C �
M0

�
2
2

��p
t D




2

p
t ;

where the final equality is because 
 is a root of M0.x
2=2/. Putting everything to-

gether, we have

ContRegret.T; p�; X/ D R.ŒX�T ; XT / �



2

p
ŒX�T ;

as desired.

C. Equivalent definitions of anytime regret

Let X and L be subsets of Rn. For all t � 1, let

ft WX
t
�Lt

! R

be a function. Using this function we define

P.T / D inf
x12X

sup
`12L

: : : inf
xT 2X

sup
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /:

For all t � 1, let
At WX

t�1
�Lt�1

! X

be a function. Using those functions, we can iteratively define the points

xt D At .x1; : : : ; xt�1; `1; : : : ; `t�1/

for all t � 1. For convenience, we have the following sequences:

AT D .A1; : : : ; AT /;

BT D .`1; : : : ; `T /:

Lastly, define
Q.T / D inf

AT

sup
BT

fT .x1; : : : ; xT ; `1; : : : ; `T /:
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Proposition C.1. The following holds: P.T / D Q.T /.

Proof. First, we show P.T / �Q.T /. For fixed x1; : : : ; xT�1; `1; : : : ; `T�1, we have

inf
xT 2X

sup
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T / D inf
AT

sup
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /;

since we may define AT .x1; : : : ; xT�1; `1; : : : ; `T�1/ D xT . This equality holds
because the function AT is only ever evaluated at the single point

.x1; : : : ; xT�1; `1; : : : ; `T�1/:

Next, we may take the supremum over `T�1 to obtain

sup
`T�12L

inf
AT

sup
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /

� inf
AT

sup
`T�1;`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /:

Next, we may take the infimum over xT�1. Arguing as above, we have

inf
xT�12X

inf
AT

sup
`T�1;`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /

D inf
AT�1;AT

sup
`T�1;`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /

since AT�1 is only ever evaluated at the single point .x1; : : : ; xT�2; `1; : : : ; `T�2/.
Repeating this argument proves P.T / � Q.T /.

Next we show Q.T / � P.T /. Fix " > 0. There exist functions A1; : : : ; AT such
that, for all `1; : : : ; `T 2L, and setting xt D At .x1; : : : ; xt�1; `1; : : : ; `t�1/, we have

fT .x1; : : : ; xT ; `1; : : : ; `T / � Q.T /C ":

This implies, by reordering the quantifiers,

9A1;8`1; 9A2;8`2; : : : ; 9AT ;8`T ; fT .x1; : : : ; xT ; `1; : : : ; `T / � Q.T /C ":

Now defining x1 DA1, and in general xt DAt .x1; : : : ; xt�1; `1; : : : ; `t�1/, we obtain

9x1;8`1; 9x2;8`2; : : : ; 9xT ;8`T ; fT .x1; : : : ; xT ; `1; : : : ; `T / � Q.T /C ":

This implies that P.T / � Q.T /C ". Since " is arbitrary, the proof is complete.

Proposition C.2. If X and L are compact and fT is jointly continuous, then

P.T / D min
x12X

max
`12L

: : : min
xT 2X

max
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /:
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Proof sketch. For any fixed values x1; : : : ; xT and `1; : : : ; `T�1, the function fT is a
continuous function of `T . Compactness of Y implies that the supremum is achieved,
so we may write

sup
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T / D max
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /:

By Fact A.3 this is a jointly continuous function of x1; : : : ; xT ; `1; : : : ; `T�1. Hence,
for any fixed values of x1; : : : ; xT�1; `1; : : : ; `T�1 it is a continuous function of xT .
By compactness, the infimum is achieved and we may write

inf
xT 2X

sup
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T / D min
xT 2X

max
`T 2L

fT .x1; : : : ; xT ; `1; : : : ; `T /:

By Fact A.3 this is a jointly continuous function of x1; : : : ; xT�1; `1; : : : ; `T�1. An
inductive argument completes the proof.

To summarize, we can now show the equivalence of the two definitions of anytime
regret. The definitions (2.2) and (2.3) are equal by Propositions C.1 and C.2 using the
compact sets X D �n, L D Œ0; 1�n and the function

fT .x1; : : : ; xT ; `1; : : : ; `T / D max
1�t�T

1
p
t

� tX
iD1

hxi ; `i i � min
j2Œn�

tX
iD1

`t;j

�
;

which is easily seen to be jointly continuous. A related discussion appears in [14,
Section 2.10].

D. Comparison with some other models

In this section, we provide a brief discussion on the similarities between our model
and the “prediction with expert advice” (PWEA) model and “oblivious opponent”
(OO) model discussed in [14].

Comparison with our model and PWEA. We note that our model and the PWEA
model defined in [14, Chapter 2] are essentially equivalent without any further struc-
ture on the models. In the PWEA model, one assumes a convex decision space D ,
an outcome space Y, a finite set E of experts, and a loss function `WD � Y ! Œ0; 1�

which is convex in the first argument. This model proceeds as follows: For each round
t D 1; 2; : : :

(1) The environment chooses an outcome yt 2 Y and expert advice ¹ft;E 2 D W

E 2 Eº. The expert advice is given to the forecaster.

(2) The forecaster chooses prediction ypt 2 D .
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(3) The environment reveals yt 2 Y.

(4) The forecaster incurs loss `. ypt ; yt / and each expert E 2 E incurs loss
`.ft;E ; yt /.

The regret incurred by the forecaster is

TX
tD1

`. ypt ; yt / � min
E2E

TX
tD1

`.ft;E ; yt /:

The environment (resp. forecaster) in the PWEA setting is analogous to the adver-
sary (resp. algorithm) in our setting. PWEA captures our model because one can take
E D Œn�, Y D Œ0; 1�n, D D �n (the probability simplex on Rn), and the expert advice
vectors are ft;i D ei , where ei 2 Rn is i th standard basis vector. Finally, the loss
function is `.p; y/ D hp; yi which is clearly convex in p.

On the other hand, it is not hard to see that any regret bound obtained in our model
translates to a bound in the PWEA model that is no larger. Indeed, reindexing so that
the set of experts E D Œn�, one can take `t;i D `.ft;i ; yt / (the left-hand side is the
loss defined in our model). Next, if the algorithm (in our model) chooses xt then
the forecaster (in the PWEA model) chooses

Pn
iD1 xt;ift;i . The loss incurred in our

model is hxt ; `t i whereas the loss incurred in the PWEA model is

`

� nX
iD1

xt;ift;i ; yt

�
�

nX
iD1

xt;i`.ft;i ; yt / D hxt ; `t i:

This latter explanation is also briefly discussed in [14, Chapter 4].

Comparison with OO. Our OO discussion in Section 2.1.1 is directly inspired by
the OO discussion in [14] (see the discussion after Remark 4.1 in [14]). If one views
our algorithm as a randomized algorithm which chooses an expert at time t according
to a probability distribution xt then one has the deal with some subtlety in what the
adversary can do. The OO model in [14] assumes that the adversary’s sequence of
outcomes (which are analogous to our loss vectors) may depend on the algorithm but
are chosen before the algorithm’s random choices are revealed. This is exactly analo-
gous to our setting where the adversary is allowed to know xt but not the realization
of the algorithm’s coin flips.
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