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Helical magnetic fields and semi-classical asymptotics
of the lowest eigenvalue

Bernard Helffer and Ayman Kachmar

Abstract. We study the three-dimensional Neumann magnetic Laplacian in the presence of a semi-
classical parameter and a non-uniform magnetic field with constant intensity. We determine a sharp
two term asymptotics for the lowest eigenvalue, where the second term involves a quantity related to
the magnetic field and the geometry of the domain. In the special case of the unit ball and a helical
magnetic field, the concentration takes place on two symmetric points of the unit sphere.

1. Main results

Let � � R3 be an open and bounded set with a smooth boundary @�. Let us consider a
smooth magnetic field B W x�!R3 (so B should be closed) which will always be assumed
to satisfy

8x 2 �;
ˇ̌
B.x/

ˇ̌
D b; (1.1)

where b > 0 is a constant. Without loss of generality, we assume from now on that b D 1.
Let A.x/ be a magnetic potential such that

curl A D B: (1.2)

We are interested in the analysis of the lowest eigenvalue �1.A; h/ of the Neumann real-
ization of the Schrödinger operator in � with magnetic field

P hA WD �h;A D

3X
jD1

�
hDxj C Aj .x/

�2
: (1.3)

We introduce the following assumptions.

Assumption 1.1. The set of boundary points where B is tangent to @�, i.e.

� WD
®
x 2 @� j B � N.x/ D 0

¯
; (1.4)

is a regular submanifold of @�:

�n;B.x/ WD
ˇ̌
dT .B � N/.x/

ˇ̌
¤ 0; 8x 2 �: (1.5)
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Here dT is the differential defined on functions on @� and N.x/ is the unit inward normal
of �.

Assumption 1.2. The set of points where B is tangent to � is finite.

These assumptions are rather generic and for instance satisfied for ellipsoids, when B
is constant. When jBj is constant, the above assumptions hold for the sphere with a helical
magnetic field (see Section 3).

Let us introduce the constant y
0;B involving the “magnetic curvature” in (1.5), which
is defined by

y
0;B WD inf
x2�
z
0;B.x/; (1.6)

where

z
0;B.x/ WD 2
�2=3
y�0ı

1=3
0

ˇ̌
�n;B.x/

ˇ̌2=3�
1 � .1 � ı0/

ˇ̌
T.x/ � B.x/

ˇ̌2�1=3
: (1.7)

Here T.x/ is the oriented, unit tangent vector to � at the point x, ı0 2 �0; 1Œ and y�0 > 0
are spectral quantities relative to the de Gennes and Montgomery operators which will be
introduced in (4.2) and (4.4).

When B is constant, the lowest eigenvalue is expected to have the following asymptotic
expansion [9, 20]

�N1 .B/ �
X
j�6

cjh
j=6:

The first terms of the foregoing expansion have been obtained by Helffer–Morame [17]
and Pan [25].

Theorem 1.3 (Helffer–Morame [17]). Let us assume that B is constant. Then, if � and
B satisfy Assumptions 1.1 and 1.2, there exists � > 0 such that the lowest eigenvalue
�N1 .A; h/ satisfies as h! 0

�N1 .A; h/ D ‚0hC y
0;Bh
4
3 CO.h

4
3C�/: (1.8)

The aim of this paper is to prove that Theorem 1.3 also holds under the weaker assump-
tion that jBj is constant.

Theorem 1.4. If Assumptions 1.1 and 1.2 hold, and if jBj is constant, then the asymptotics
in (1.8) holds for the lowest eigenvalue �N1 .A; h/.

An interesting example of a non-constant magnetic field but with a constant intensity
is the helical magnetic field occurring in the theory of liquid crystals. Up to the action of
an orthogonal matrix, it can be expressed as follows [27]

B D curl n� D ��n� ; n� D
�
1

�
cos.�x3/;

1

�
sin.�x3/; 0

�
: (1.9)

Here � > 0 is a given constant. In this situation (B D ��n� ), [27] derived an upper bound
on the eigenvalue �N1 .A; h/, which is consistent with Theorem 1.4. Our contribution is
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valid for a more general class of magnetic fields with constant intensity and also determ-
ines the asymptotically matching lower bound of the lowest eigenvalue.

Discussion and applications

The inspection of the eigenvalue �N1 .A; h/ is vital in understanding the transition between
superconducting and normal states in the Ginzburg–Landau model [5]. In this context, the
magnetic field is typically constant. Accurate estimates of the lowest eigenvalue �N1 .A; h/
under constant magnetic fields [16, 17] led to a precise understanding of the transition
between superconducting and normal states [4, 10].

Non-homogeneous magnetic fields with constant intensity are encountered in the
Landau–de Gennes theory of liquid crystals, which is the analog of the Ginzburg–Landau
theory of superconductivity. Here a transition between smectic and nematic phases occurs.
Our main result, Theorem 1.4, yields an accurate estimate of the lowest eigenvalue
�N1 .A; h/ for magnetic fields with constant intensity, and by analogy with [4], we expect it
to yield a precise description of the transition between surface smectic and nematic states
(see [24]).

At the threshold of the phase transition, both superconductive and smectic states nuc-
leate on the surface of the domain (near the curve � introduced in (3.3)). The paper [26]
contains a nice discussion of this interesting analogy. The analysis of 3D surface super-
conductivity is the subject of the papers [7, 8, 25], while surface smectics are rigorously
studied in [6, 18]. It would be interesting to complete this analysis by providing more
accurate estimates at the threshold, where the linear analysis (such as the one in this paper)
becomes handy.

The analysis in this paper concerns the lowest eigenvalue. In the presence of a con-
stant magnetic field, and a “single well” assumption (i.e. the minimum in (1.6) is non-
degenerate and attained at a unique point), accurate estimates of the low-lying eigenvalues
were obtained recently in [20]. In our setting of a non-homogeneous magnetic field, the
example of the ball under the helical magnetic field suggests the presence of multiple
wells (see Remark 3.5).

The interaction between magnetic fields and 3D domains is interesting in other situ-
ations. In particular, for the Robin problem, we observe pure magnetic wells on the surface
of the domain [11], and in the case of a constant magnetic field, strong diamagnetism does
not hold for the ball [22].

Organization and outline of the proof

The proof of Theorem 1.4 is split into two parts. In the first part, we establish a lower
bound of the lowest eigenvalue, by comparing the quadratic form via a simpler form
related to a new model operator. Comparing with the constant magnetic field in [17],
we prove that the model operator in our setting is a perturbation of the one considered
in [17].
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The second part of the proof is devoted to an upper bound of the lowest eigenvalue,
already studied for B in (1.9) [27], but we revisit it since our formulation is not the same
as [27]. The upper bound follows after computing the quadratic form of a suitable trial
state, having the same structure as the constant magnetic field case in [17, 25]. However,
there are additional terms in the computations due to the varying magnetic field, which
require a careful handling.

The model operator takes into consideration two phenomena. First, after decomposing
our domain into small cells and working in a small cell near the domain’s boundary, we
have to express the integrals in a flat geometry, which requires a careful expansion of
the Riemannian metric in particular. This part is essentially the same as for the constant
magnetic field case in [17].

Then, we have to express the magnetic potential in adapted coordinates, in each small
cell, and apply a Taylor expansion and a gauge transformation to obtain a “normal”
form, i.e. a simpler effective magnetic potential. In this part, we deviate from the con-
stant magnetic field situation and find additional terms in the effective magnetic potential.
Interestingly, we can still show that the analysis with this magnetic potential is somehow
independent of those additional terms and treat the new model as a perturbation of the
model with a constant magnetic field.

The paper is organized as follows. In Section 2 we introduce the adapted coordinates in
a small “boundary” cell. In Section 3, we analyze the case of the unit ball with the “helical”
magnetic field occurring in liquid crystals and verify that Assumptions 1.1 and 1.2 hold.
Interestingly, after computing the energy in (1.6), we notice that this example shows a
phenomenon of multiple “wells” induced by the “magnetic” geometry.

In Section 4, we review two standard 1D operators that we need in defining the quant-
ities appearing in (1.6) and the statement in Theorem 1.4. Then, in Section 5, we introduce
a new model, specific to our case of a varying magnetic field with a constant intensity, and
analyze it through a perturbation argument.

With the model in Section 5, we can adjust the proof in [17] and prove Theorem 1.4.
The first step is to localize the ground states near the boundary, which is the content of
Section 6. Then, the approximation of the quadratic form and the magnetic potential are
the subject of Section 7, which allows us, in the subsequent Section 8, to obtain a lower
bound on the lowest eigenvalue.

Finally, Section 9 is devoted to the computation of the energy of a trial state, which
yields an upper bound of the lowest eigenvalue, and thereby completes the proof of The-
orem 1.4.

2. Adapted coordinates

We recall a rather standard choice of coordinates in the neighborhood of � , which straight-
ens the boundary @� locally. For every p 2 @�, recall that N.p/ denotes the inward
normal vector to @�.



Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue 861

2.1. Description of the coordinates

Let g0 be the Riemannian metric on R3, which induces a Riemannian metric G on @�.
Given two vector fields X;Y of R3, we denote by

X � Y D hX;Yi WD g0.X;Y/:

Consider a moving direct frame .V.m/;T.m/;N.m//m2� along � such that

• T.m/ is an oriented unit tangent vector of �;

• V.m/ WD T.m/ � N.m/, hence determining an oriented normal to the curve � in the
tangent space to @�.

Form 2 � , letƒm be the geodesic that passes throughm and is normal to � . Let x0 2 � . In
some neighborhood Nx0 �

x� of x0, we can introduce new coordinates .r; s; t/ as follows:

• For x 2 Nx0 , p.x/ 2 @� is defined by dist.x; p.x// D t .x/ WD dist.x; @�/;

• For x 2 Nx0 , 
.x/ 2 � is defined by dist@�.p.x/; 
.x// D dist@�.p.x/; �/, where
dist@� denotes the (geodesic) distance in @�;

• � is parameterized by arc-length s so that s D s0 defines x0, and for x 2Nx0 , s D s.x/
defines 
.x/;

• For x 2 Nx0 , the geodesic ƒp.x/ passing through p.x/ is parameterized by arclength
r , so that r D 0 defines 
.x/ and r D r.x/ defines p.x/.

In this way, we observe that ˆx0 defined by

Nx0 3 x 7! ˆx0.x/ WD
�
r.x/; s.x/; t.x/

�
2 R �R �RC (2.1)

is a local diffeomorphism which straightens Nx0 . We pick a sufficiently small �0 > 0 such
that

.r; s; t/ 2 .��0; �0/ � .��0 C s0; s0 C �0/ � .0; �0/! x D ˆ�1x0 .r; s; t/ (2.2)

is a diffeomorphism, whose image is a neighborhood of x0 2 � parameterized by .r; s; t/.
Within these coordinates, t D 0 means that we are on @�, and r D t D 0 means we are
on the curve � . Moreover, s 2 .��0 C s0; s0 C �0/ marks a point m on � , r 2 .��0; �0/
marks a point p 2 @� on the geodesic passing throughm and orthogonal to � , and finally
t marks a point in � lying on the normal to @� passing through p (see Figure 1). We can
then compute ˇ̌

dT .B � N/.x/
ˇ̌
D
ˇ̌
@r .B � N/jrD0

ˇ̌
.x 2 �/: (2.3)

It is convenient to express the magnetic field along � as follows

B.x/ D sin �T.x/C cos �V.x/
�
x D ˆ�1x0 .0; s; 0/ 2 �

�
; (2.4)

where � D �.s/ 2 Œ��
2
; �
2
� is the angle defined by

� D arcsin
�
B.x/ � T.x/

�
: (2.5)
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Figure 1. The point x 2 �, its projection p.x/ on @� and the inward normal vector N.p.x// of @�
at p.x/. The point 
.x/ is the geodesic projection of p.x/ on � and .T.
.x//;V.
.x/// is a direct
frame in the tangent plane to @� at 
.x/. Note that, if p.x/ 2 � , then p.x/ D 
.x/ and N.p.x// is
orthogonal to T.
.x//;V.
.x//.

2.2. The metric in the new coordinates

Let us consider an arbitrary point x0 2 � and a neighborhood Nx0 �
x� of x0 such that

the adapted coordinates introduced in (2.1) and (2.2) are valid. Modulo a translation, we
can center the coordinates at x0 so that .r D 0; s D 0; t D 0/ are the coordinates of x0
in the new frame. In the sequel, we follow closely the presentation of [17, Sec. 8] mainly
following the first chapter of [2] (see also the volume two of Spivak’s book [29]).

We label the new coordinates as follows

.y1; y2; y3/ D .r; s; t/; (2.6)

and the Riemannian metric g0 becomes [17, (8.26)]

g0 D dy3 ˝ dy3 C
X

1�i;j�2

�
Gij � 2y3Kij C y

2
3Lij

�
dyi ˝ dyj ; (2.7)

where

• G WD
P
1�i;j�2Gijdyi ˝ dyj is the first fundamental form on @�;

• K WD
P
1�i;j�2Kijdyi ˝ dyj is the second fundamental form on @�;

• L WD
P
1�i;j�2Lijdyi ˝ dyj is the third fundamental form on @�.

The matrix g of the metric g0 takes the form

g WD .gij /1�i;j�3 D

0@g11 g12 0

g21 g22 0

0 0 1

1A (2.8)

whose inverse is

g�1 D .gij /1�i;j�3 D

0@g11 g12 0

g21 g22 0

0 0 1

1A :



Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue 863

We will express these matrices in a more pleasant form involving, in particular, the cur-
vatures on the boundary. To that end, let s 7! 
.s/ be an arc-length parameterization of �
near x0, so that j P
.s/j D 1, 
.0/D x0 and T.
.s//D P
.s/. We can introduce the geodesic
and normal curvatures at 
.s/, �g.
.s// and �n.
.s//, as follows

R
.s/ D ��g
�

.s/

�
V
�

.s/

�
C �n

�

.s/

�
N
�

.s/

�
: (2.9)

The choice of our coordinates .r; s/ ensures that the metric G is diagonal on @� [17,
Lem. 8.2]

G D dr ˝ dr C ˛.r; s/ds ˝ ds; (2.10)

with
˛.r; s/ D 1 � 2�g

�

.s/

�
r CO.r2/; ˛.0; s/ D 1; (2.11)

and
@˛

@s
.0; s/ D 0:

Then, with (2.6), we have for the determinant of the matrix of g (see [17, (8.29) and
(8.30)]),

jgj D ˛.r; s/ � 2t
�
˛.r; s/K11.r; s/CK22.r; s/

�
C t2"3.r; s; t/; (2.12)

and

.gij /1�i;j�2 D

�
1 0

0 ˛�1.r; s/

�
C 2t

�
K11.r; s/ ˛�1K12.r; s/

˛�1K21.r; s/ ˛�2K22.r; s/

�
C t2R;

where "3 and R are smooth functions.

2.3. The operator and quadratic form

We continue to work in the setting of Section 2.2. We introduce the following neighbor-
hood of x0

Vx0 D ˆ
�1
x0
. zVx0/;

where (recall (2.6))

zVx0 D
®
.y1; y2; y3/ 2 .��0; �0/ � .��0; �0/ � .0; �0/

¯
: (2.13)

Given a function u W Vx0 ! C, we assign to it the function Qu W Vx0 ! C defined by

Qu.y1; y2; y3/ D u
�
ˆ�1x0 .y1; y2; y3/

�
: (2.14)

By the considerations in Section 2.2 on the Riemannian metric, if u 2 L2.Vx0 ; dx/, then
Qu 2 L2. zVx0 ; jgj

1=2dy/ andZ
Vx0

ˇ̌
u.x/

ˇ̌2
dx D

Z
zVx0

ˇ̌
Qu.y/

ˇ̌2
jgj1=2dy: (2.15)
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Moreover, assuming u supported in Vx0 , we have the quadratic form formula [17, (8.27)]

qhA.u/ WD

Z
Vx0

ˇ̌
.hr � iA/u

ˇ̌2
dx

D

Z
zVx0

hˇ̌
.hDy3 �

zA3/ Qu
ˇ̌2
C

X
1�i;j�2

gij .hDyi �
zAi / Qu � .hDyj �

zAj / Qu
i
jgj1=2dy;

(2.16)

where the new magnetic potential zA D . zA1; zA2; zA3/ is assigned to A D .A1; A2; A3/ by
the relation

A1dx1 C A2dx2 C A3dx3 D zA1dy1 C zA2dy2 C zA3dy3; (2.17)

and after performing a (local) gauge transformation, we may assume that

zA3 D 0:

The operator P hA in (1.3) can be expressed in the new coordinates as follows [17, (8.28)]

P hA D .hDy3 �
zA3/

2
C
h

2i
jgj�1

@

@y3
jgj.hDy3 �

zA3/

C jgj�1=2
X

1�i;j�2

.hDyj �
zAj /jgj

1=2gij .hDyi �
zAi /:

3. Helical magnetic fields

3.1. Preliminaries

Let � > 0 and consider the magnetic potential

A.x/ D n� .x/ WD
�
1

�
cos.�x3/;

1

�
sin.�x3/; 0

�
; (3.1)

which generates the magnetic field

B.x/ D curl A.x/ D ��A.x/ (3.2)

with constant intensity ˇ̌
B.x/

ˇ̌
D 1:

We will verify that Assumptions C1–C2 hold for this particular magnetic field in the case
where � is the unit ball. In particular, with in mind that y
0;B and z
0;B are introduced
in (1.6) and (1.7) respectively and that ı0 2 �0; 1Œ and y�0 > 0 will be introduced in (4.2)
and in (4.4) (there is no need in this subsection to know more about them) we will find
that

y
0;B D 2
�2=3
y�0ı

1=3
0 C.�; ı0/;
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and for � � �0, the equality,®
x 2 � j z
0;B.x/ D 2

�2=3
y�0ı

1=3
0

¯
D
®
.0;˙1; 0/

¯
;

where �0 is a constant and C.�; ı0/ is explicitly computed (see Proposition 3.4).
The inward normal of � D ¹x 2 R3 j jxj < 1º along @� is

N.x/ D �x
�
jxj D 1

�
:

The restriction of the magnetic field B to the boundary is then tangent to @� on the fol-
lowing set

� D
®
x 2 @� j x � A.x/ D 0

¯
: (3.3)

3.2. � is a regular curve

For jxj D 1, the equation x � A.x/ D 0 reads as follows

x1 cos.�x3/C x2 sin.�x3/ D 0: (3.4)

Proposition 3.1. The set � introduced in (3.3) is a C1 regular curve.

Proof. The proof follows by constructing an atlas on � ,®�
ci ; U WD .�1; 1/

�
; 1 � i � 4

¯
which turns � to a C1 regular curve.

Let us introduce the charts .c1; U / and .c2; U / which cover � n ¹.0; 0;˙1/º. These
charts are obtained by expressing x1 and x2 in (3.4) in terms of x3 2 .�1; 1/, provided
that .x1; x2; x3/ 6D .0; 0;˙1/. We write for ˛ 2 � � �; ��

x1 D

q
1 � x23 cos˛; x2 D

q
1 � x23 sin˛:

Then (3.4) becomes, for x23 < 1,

cos.�x3 � ˛/ D 0 (3.5)

which in turn yields
˛ D �x3 �

�

2
C k�; k 2 Z:

In this way, we get two branches of � parameterized by x3 and defined as follows

x3 2 .�1; 1/ 7! c1.x3/ WD

0BB@ x1 D

q
1 � x23 sin.�x3/

x2 D �

q
1 � x23 cos.�x3/
x3

1CCA ;

x3 2 .�1; 1/ 7! c2.x3/ WD

0BBB@
x1 D �

q
1 � x23 sin.�x3/

x2 D

q
1 � x23 cos.�x3/
x3

1CCCA :
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Both of the foregoing branches represent regular curves. Furthermore, c1 and c2 can be
extended by continuity to the interval Œ�1;1�, yielding a continuous representation of all � .

Now we introduce the charts .c3; U / and .c4; U / that cover the points .0; 0;˙1/. In a
neighborhood of .x1; x2; x3/ D .0; 0;˙1/, we parameterize a branch of � with respect to

� WD

q
x21 C x

2
2 as follows

x1 D � cos˛; x2 D � sin˛; x3 D
p
1 � �2:

With this in hand, (3.5) continues to hold for x3 6D 0 and we can write again ˛ D �x3 �
�
2
C k� for some k 2 Z. Consequently, we get two regular branches of � defined as

follows

� 2 .�1; 1/ 7! c3.�/ WD

0BB@ x1 D � sin.�
p
1 � �2/

x2 D �� cos.�
p
1 � �2/

x3 D
p
1 � �2

1CCA ;

� 2 .�1; 1/ 7! c4.�/ WD

0BB@x1 D �� sin.�
p
1 � �2/

x2 D � cos.�
p
1 � �2/

x3 D
p
1 � �2

1CCA :
3.3. Explicit formulas in adapted coordinates

Note that c WD c1 and c2 parameterize all of � n ¹.0; 0;˙1/º. By symmetry considerations,
we will compute, on c..�1; 1// only,ˇ̌

dT .B � N/
ˇ̌
D �

ˇ̌
dT .A � N/

ˇ̌
and jB � Tj D � jA � Tj: (3.6)

First we note that N D �x on @� and introduce the arc-length parameter

s.x3/ D

Z x3

0

ˇ̌
c0. Qx3/

ˇ̌
d Qx3

of x3 7! c.x3/, which satisfies

s0.x3/ D
ˇ̌
c0.x3/

ˇ̌
D

s
1C �2.1 � x23/

2

1 � x23
:

Clearly, x3 2 .�1; 1/ can be expressed in terms of the arc-length parameter as x3 D x3.s/
with

m.x3/ WD
dx3

ds

�
s.x3/

�
D

s
1 � x23

1C �2.1 � x23/
2
: (3.7)

The arc-length parameterization is now given by


.s/ WD c
�
x3.s/

�
;
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and consequently, with c D c1, we have

N
�

.s/

�
D �
.s/ D

0BB@�
q
1 � x23 sin.�x3/q
1 � x23 cos.�x3/
�x3

1CCA with x3 D x3.s/; (3.8)

and

T
�

.s/

�
D

d

ds

.s/ D

0@T1T2
T3

1A

D m.x3/

0BBB@
�
x3 sin.�x3/p

1�x23

C �

q
1 � x23 cos.�x3/

x3 cos.�x3/p
1�x23

C �

q
1 � x23 sin.�x3/

1

1CCCA :
We also introduce the normal vector to � on 
.s/,

V
�

.s/

�
D T

�

.s/

�
� N

�

.s/

�
D

0@V1V2
V3

1A

D m.x3/

0BBB@
�
x23 cos.�x3/p

1�x23

� �x3

q
1 � x23 sin.�x3/ �

q
1 � x23 cos.�x3/

�
x23 sin.�x3/p

1�x23

C �x3

q
1 � x23 cos.�x3/ �

q
1 � x23 sin.�x3/

�.1 � x23/

1CCCA :
We are now ready to prove that our magnetic field B satisfies the condition in Assump-
tion 1.2.

Proposition 3.2. Let B be the magnetic field introduced in (3.2). For all x 2 � , we haveˇ̌
B.x/ � T.x/

ˇ̌
D

�.1 � x23/q
1C �2.1 � x23/

2

:

In particular, B satisfies Assumption 1.2.

Proof. It is straightforward to computeˇ̌
A.x/ � T.x/

ˇ̌
D
1

�

�ˇ̌
cos.�x3/T1 C sin.�x3/T2

ˇ̌�
D

1 � x23q
1C �2.1 � x23/

2

; (3.9)

which holds for all �1 � x3 < 1 and x D c.x3/. Similarly, we can compute jA.x/ � T.x/j
for all x D c2.x3/ 2 � , and get that (3.9) holds globally on � , since � is a regular
curve. Finally, B.x/ is orthogonal to T.x/ if and only if x23 D 1, thereby Assumption 1.2
holds.
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Figure 2. The curve � and the geodesic ƒ
.s/ passing through 
.s/.

Our next task is to show that our magnetic field satisfies the condition in Assump-
tion 1.1.

Proposition 3.3. Let B be the magnetic field introduced in (3.2). For all x 2 � , we have

�n;B.x/ D

q
1C �2

�
1 � x3.s/2

�2
: (3.10)

In particular, B satisfies the condition in Assumption 1.1.

Proof. By Proposition 3.1, � is a regular curve. So all we need to verify that B satisfies
Assumption 1.1, is to derive (3.10) and observe that it yields �n;B.x/ 6D 0 everywhere
along the curve � .

Consider x D c1.x3/ with x3 D x3.s/, i.e., x D 
.s/. At the point 
.s/, the geodesic
ƒ
.s/ normal to the curve � is the great circle (of center 0 and radius 1) in the .V.
.s//;
N.
.s/// plane. A pointPDP.r;s/ onƒ
.s/ can be described by the corresponding vector
p.r; s/ D

����!

OP as follows

p.r; s/ D � cos rN
�

.s/

�
� sin rV

�

.s/

�
;

where r is the angle between p and �N; hence r is an arc-length parameter of ƒ
.s/, and
for r D 0, p.r; s/D 
.s/. Now, we can introduce the coordinates .r; s; t/ in a neighborhood
of 
.s0/ as follows (see Figure 2)

x.r; s; t/ D �.cos r C t /N
�

.s/

�
� sin rV

�

.s/

�
: (3.11)

For x D 
.s/, we would like to compute �n;B.x/ D jdT .B � N/j. We will show that
�n;B.x/ D j@r .B � N/jrDtD0 and end up with the computation of j@r .B � N/jrDtD0.

Notice that, by (3.8), we have

x3.r; s; t/ D �.cos r C t /N3
�

.s/

�
� sin rV3

�

.s/

�
D .cos r C t /x3.s/ � sin rm

�
x3.s/

�
�
�
1 � x3.s/

2
�
;
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and we observe that by (3.11),

@x

@r

ˇ̌̌̌
rDtD0

D �V
�

.s/

�
: (3.12)

In particular we have

@x3

@r

ˇ̌̌̌
rDtD0

D ��
�
1 � x23.s/

�
m
�
x3.s/

�
:

Now, using (3.7) and (3.8), we get from (3.1) that

@A
@r
� N
ˇ̌
rDtD0

D �
�.1 � x23/

2q
1C �2.1 � x23/

2

: (3.13)

Moreover, by (3.12) we have

@

@r
N
�
x.r; s; t/

�ˇ̌
rDtD0

D V
�

.s/

�
and

A �
@

@r
N
�
x.r; s; t/

�ˇ̌
rDtD0

D
1

�
cos

�
�x3.s/

�
V1 C

1

�
sin
�
�x3.s/

�
V2

D �
1

�

q
1C �2.1 � x23/

2

:
(3.14)

Summing up, we deduce from (3.13) and (3.14) thatˇ̌
@r .A � N/jrDtD0

ˇ̌
D
1

�

q
1C �2.1 � x23/

2:

We also observe that @s.A � N/jrDtD0 D 0 and we getˇ̌
dT .A � N/

ˇ̌�

.s/

�
D
1

�

q
1C �2.1 � x23/

2;

on each branch (including the end points). Inserting this into (3.6), we get the identity
in (3.10).

We return to the function in (1.7) and give its expression in coordinates. We deduce
from (3.9) and (3.10):

z
0;B.x/ D 2
�2=3
y�0ı

1=3
0

�
1C �2.1 � x23/

2
�1=3�

1 � .1 � ı0/
�.1 � x23/q

1C �2.1 � x23/
2

�1=3

for all x D .˙
q
1 � x23 sin.�x3/;�

q
1 � x23 cos.�x3/; x3/ with �1 � x3 � 1.
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Consequently, we can compute the quantity appearing in the two terms asymptotics
by computing infx2� z
0;B.x/ and determining where the infimum is attained.

Proposition 3.4. Let

�0 D
1
p
2

 
1p

ı0 C ı0.1 � ı0/
� 1

!1=2
:

The following holds:

(1) If 0 < � � �0, then

inf
x2�
z
0;B.x/ D 2

�2=3
y�0ı

1=3
0 .1C �2/1=3

�
1 � .1 � ı0/

�1=3

.1C �2/1=6

�
D z
0;B.0;˙1; 0/:

(2) If � > �0, then

inf
x2�
z
0;B.x/ D 2

�2=3
y�0ı

1=3
0 .1C �20 /

1=3

�
1 � .1 � ı0/

�
1=3
0

.1C �20 /
1=6

�
;

and the minimum is attained on the points�
˙

r
�0

�
sin �

r
1 �

�0

�
;�

r
�0

�
cos �

r
1 �

�0

�
;

r
1 �

�0

�

�
and �

˙

r
�0

�
sin �

r
1 �

�0

�
;˙

r
�0

�
cos �

r
1 �

�0

�
;�

r
1 �

�0

�

�
:

Remark 3.5. In the case where � D B.0; 1/ is the unit ball and the magnetic field is
constant, B D .0; 0; 1/, we have � D ¹x21 C x

2
2 D 1; x3 D 0º and z
0;B.x/ is constant

on � . Proposition 3.4 shows a quite different phenomenon when only the intensity of
B is constant, jBj D 1. In fact, z
0;B.x/ is no more constant along � and may have two
symmetric minimum points, .0;˙1; 0/, which is the signature of an interesting double
well tunnel effect [19] related to the magnetic geometry of the problem.

Proof of Proposition 3.4. Let us introduce vD �.1� x23/2 Œ0; �� and�0D 1� ı0 2 .0;1/.
Then

z
0;B.x/ D 2
�2=3
y�0ı

1=3
0

�
f .v/

�1=3
;

where
f .v/ D 1C v2 � �0v

p
1C v2:

We have to minimize f .v/ on Œ0; ��. Notice that

f 0.v/ D 2v � �0
1C 2v2
p
1C v2

;
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and the equation f 0.v/ D 0 has a unique positive solution, which is the solution of

v4 C v2 D
�20

4.1 � �20/
:

This solution is given by

�0 D
1
p
2

�0r
1C

q
1 � �20

q
1 � �20

and observe that f 0.v/ < 0 for 0 < v < �0 and f 0.v/ > 0 for v > �0. Then, for � � �0,

min
v2Œ0;��

f .v/ D f .�/;

while for � > �0,
min
v2Œ0;��

f .v/ D f .�0/:

4. One-dimensional models

The aim of this section is to recall the now standard properties of two important models.

4.1. The de Gennes model

We refer to [1, 15] for the proof of these now standard properties which are presented
below. For � 2 R, we consider the harmonic oscillator on RC:

H.�/ WD D2
t C .t � �/

2; (4.1)

with Neumann boundary condition at 0. We denote by �.�/ its lowest eigenvalue. � 7!
�.�/ admits a unique minimum at a point �0 which in addition is non-degenerate. This
leads to introduce the spectral constants, ‚0 and ı0:

‚0 D inf
�2R

�.�/ D �.�0/; ı0 D �
00.�0/; (4.2)

where �0 D
p
‚0.

Moreover 1
2
< ‚0 < 1 and that 0 < ı0 < 1. ‚0 is called the de Gennes constant.

If '0 2 L2.RC/ denotes the positive and normalized ground state of H.�0/,Z
RC

.t � �0/
ˇ̌
'0.t/

ˇ̌2
dt D 0;

which amounts to saying, via the Feynman–Hellmann formula, that �0.�0/ D 0. We also
introduce the regularized resolvent R0 2 L.L2.RC// as follows

R0u D

´ �
H.�0/ �‚0

��1
u if u ? '0;

0 if u k '0:
(4.3)
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4.2. The Montgomery model

Here we refer to [14, 28]. In Theorem 1.3, the constant y�0 > 0 is related to the Mont-
gomery model [23] whose spectral analysis has a long story including recently (see [13]
and references therein). For � 2 R, we introduce, in L2.R/, the operator

S.�/ D D2
r C .r

2
� �/2;

and denote its lowest eigenvalue by �Mon.�/. Then

y�0 WD inf
�2R

�Mon.�/ D �Mon.�0/; (4.4)

where �0 2 R is the unique minimum of �Mon, which has been later shown to be non
degenerate [12]. Finally, the normalized positive ground state  0 2 L2.R/ of S.�0/ be-
longs to the Schwartz space S.R/ and is an even function.

5. Model operator for non-uniform magnetic fields

Given real parameters �, �, 
 and � , we consider the operator

P
h;�;�

0I
;�
WD
�
hDr � sin � t � cos �.�s C �r/t

�2
C

�
hDs C cos � t � sin �.�s C �r/t C 


r2

2

�2
C h2D2

t ; (5.1)

on R2 � RC (actually in a neighborhood of .0; 0; 0/). Let us fix a positive constant M .
We assume that

�; �; 
 2 Œ�M;M�: (5.2)

We note, when � D � D 0, we recover the model studied in [17, Sec. 11]. Our aim
is to compare this situation with that when � D � D 0. Our main result on this model
is Proposition 5.5 below, which is useful in our derivation of the lower bound matching
with the asymptotics in Theorem 1.4. The lower bound in this proposition is uniform
with respect to the various parameters appearing in (5.1) provided (5.2) holds and h is
sufficiently small.

Let us look at this model more carefully. We proceed essentially like in the case � D
� D 0. We do the following scaling

r D h
1
3 Or; s D h

1
3 Os; t D h

1
2 Ot :

After division by h, this leads to (forgetting the hats)

P
h;�;�

1I
;�
WD
�
h
1
6Dr � sin � t � h

1
3 cos � t.�s C �r/

�2
C

�
h
1
6Ds C cos � t C h

1
6 

r2

2
� h

1
3 sin � t.�s C �r/

�2
CD2

t

on R �R �RC.
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Hence we have
�.P

h;�;�

0I
;�
/ D h�.P

h;�;�

1I
;�
/:

Unlike the case where � D � D 0, we can no more perform a partial Fourier transform in
the s-variable. But we can rewrite this operator as in the following lemma.

Lemma 5.1. It holds,

P
h;�;�

1I
;�
D D2

t C .t � h
1
6L1;
;� /

2
C h

1
3 .L

h;�;�

2;
;�
/2;

where
L1I
;� D sin �Dr � cos �

�

2
r2 CDs

�
;

L
h;�;�

2I
;�
WD cos �Dr C sin �

�

2
r2 CDs

�
� h

1
6 .�r C �s/t:

Note that to compare with the case considered in [17] (� D � D 0) we can write

L
h;�;�

2I
;�
D L2I
;� � h

1
6 .�r C �s/t; (5.3)

where L2I
;� WD L
0;0;0
2I
;�

.

Proof of Lemma 5.1. Let P h
1I
;�
WD P

h;0;0
1I
;�

. Then (see [17, (11.4)])

P h1I
;� D D
2
t C .t � h

1
6L1;
;� /

2
C h

1
3 .L2;
;� /

2:

With p D .�s C �r/t , we have

P
h;�;�

1I
;�
D P h1I
;� C h

1
3
�
� 2.h

1
6p/L2I
;� � h

1
6
�

cos �.Drp/C sin �.Dsp/
�
C .h

1
6p/2

�
:

Finally, we observe by (5.3),

.L
h;�;�

2I
;�
/2 D .L2;
;� /

2
� 2.h

1
6p/L2I
;� � h

1
6
�

cos �.Drp/C sin �.Dsp/
�
C .h

1
6p/2:

When �D � D 0, this is the operator studied in [17], modulo a Fourier transformation
with respect to the s variable. Let us recall the following important result [17, Lem. 13.4]
corresponding to the case .�; �/ D .0; 0/.

Proposition 5.2 (Helffer–Morame). For any C0 > 0, ı 2 �0; 1
3
Œ and M > 0, there exist

positive constants C and h0 such that, for all � 2 R, j
 j �M , and h 2 �0; h0�, we have,
for any u 2 C10 . � � C0h

ı ; C0h
ı Œ �R �RC/

hP
h;0;0
0I
;�

u; ui �
�
h‚0 C h

4
3 cconj.
; �/ � C.h

11
8 C hıC

13
12 /
�
kuk2;

where

cconj.
; �/ WD

�
1

2

� 2
3

ı
1
3

0 j
 j
2
3 .ı0 sin2 � C cos2 �/

1
3 y�0;

and P h;0;0
0I
;�

is the operator introduced in (5.1).
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Remark 5.3. The underlying estimate in Proposition 5.2 is in fact

hP
h;0;0
1I
;�

u; ui �
�
‚0 C h

1
3 cconj.
; �/ � C.h

3
8 C hıC

1
12 /
�
kuk2:

We can not directly compare P h;�;�
1I
;�

and P h;0;0
1I
;�

but this can be done by introducing a

small perturbation of P h;0;0
1I
;�

whose spectrum is just lifted. To achieve this goal we intro-
duce for � > 0

P h1I
;�;� WD D
2
t C .t � h

1
6L1;
;� /

2
C .1 � h� /h

1
3 .L2;
;� /

2;

where we have modified the coefficient of .L2;
;� /2 by � D h1=3C� . Heuristically this
leads to a maximal shift of the bottom of the spectrum by O.h1=3C� /. More precisely, we
show by a slight variation of the argument in [17, Lem. 13.3]

Proposition 5.4. For all � 2 �0; 1Œ, for any C0 > 0, ı 2 �0; 1
3
Œ and M > 0, there exist

positive constants C and h0 such that, for all � 2 R, j
 j �M , and h 2 �0; h0�, we have,
for any u 2 C10 . � � C0h

ı ; C0h
ı Œ�R �RC/

hP h1;
;�;�u; ui �
�
‚0 C h

1
3 cconj.
; �/ � C.h�C

1
3 C h

3
8 C hıC

1
12 /
�
kuk2: (5.4)

Note that the estimate in Proposition 5.2 holds without constraint on the support of the
function in s. This will not be the case for .�; �/ 6D 0.

We now compare hP h;�;�
1I
;�

u; ui and hP h
1I
;�;�

u; ui when

u 2 C10
�
� � C0h

ı� 13 ; C0h
ı� 13 Œ � � � C0h

ı� 13 ; C0h
ı� 13 Œ �RC

�
:

and �; � satisfies (5.2).
Let us fix

ı 2
i1
4
;
1

3

h
and � 2

i
0;
1

6

h
: (5.5)

The estimates below hold uniformly with respect to u, � 2 R and �; �; 
 satisfying (5.2).
Comparing Lh;�;�

2;
;�
and L2;
;� in (5.3), we find1, for all � > 0,˝

.L
h;�;�

2;
;�
/2u; u

˛
D kL

h;�;�

2;
;�
uk2 � .1 � h� /kL2;
;�uk

2
C .1 � h�� /



.Lh;�;�
2;
;�
� L2;
;� /u



2:
Consequently,

hP
h;�;�

1I
;�
u; ui �

˝�
D2
t C .t � h

1
6L1I
;� /

2
C .1 � h� /h

1
3 .L2I
;� /

2
�
u; u

˛
� h

1
3��



.Lh;�;�
2I
;�
� L2I
;� /u



2:
This implies (see (5.3) and the condition on the support of u),

hP
h;�;�

1I
;�
u; ui � hP h1I
;�;�u; ui � C.�

2
C �2/h2ı��ktuk2; (5.6)

1We use 2ab � "a2 C "�1b2 with " D h� , a D kLh;�;�
2;
;�

uk and b D kL2;
;�uk2.
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where we used (see (5.3))

L
h;�;�

2I
;�
� L2I
;� D h

1=6tO
��
jsj C jr j

��
D tO.hı�

1
6 /

in the support of u.
By (5.4) and (5.6) we have

hP
h;�;�

1I
;�
u; ui �

�
‚0 C c

conj.
; �/h1=3 � C.h
3
8 C hıC

1
12 C h� /

�
kuk2

� C.�2 C �2/h2ı��ktuk2:

Note that by (5.5) we have

h
3
8 C hıC

1
12 C h�C

1
3 C h2ı�� D O.h

1
3C& /;

for some & D &.ı; �/ > 0.
Consequently, there exist C , & > 0 and h0 such that, 8h 2 �0; h0�,

hP
h;�;�

1I
;�;�
u; ui �

�
‚0 C c

conj.
; �/h1=3 � Ch
1
3C&

�
kuk2 � Ch

1
3C&ktuk2;

for any u 2 C10 . � � Ch
ı� 13 ; Chı�

1
3 Œ2 �RC /.

By coming back to the initial coordinates, we get the following generalization of Pro-
position 5.2.

Proposition 5.5. Let C0;M > 0 and ı 2 �1
4
; 1
3
Œ be given. There exist positive constants C ,

h0, and & , such that, for all h 2 �0; h0�, � 2 R and 
; �; � 2 Œ�M;M�, we have, for any
u 2 C10 . � � C0h

ı ; C0h
ı Œ2 �RC/,

hP
h;�;�

0;
;�
u; ui �

�
h‚0 C h

4
3 cconj.
; �/ � Ch

4
3C&

�
kuk2 � Ch

1
3C&ktuk2:

Note here that the last term will be small when considering localized states satisfy-
ing (6.5).

6. Localization of bound states

We recall that the bound states of the operator P hA in (1.3) are localized on the boundary
near the curve where the magnetic field is tangent to the boundary @�. The localization is
related with the analysis of a family of model operators in the half-space [21].

Consider R3C WD ¹.x1; x2; x3/ 2 R3 j x1 > 0º and the Neumann realization in R3C of
the operator,

H.�/ D D2
x1
CD2

x2
C .Dx3 C x1 cos � � x2 sin �/2;

where � 2 Œ��
2
; �
2
�.

More precisely, H.�/ is self-adjoint in L2.R3C/ with the following domain

Dom
�
H.�/

�
D
®
u 2 L2.R3C/ j H.�/u 2 L

2.R3C/; @x1ujx1D0 D 0
¯
:
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We denote by
�.�/ D inf

�2Œ� �2 ;
�
2 �

spec
�
H.�/

�
:

We gather some properties of the lowest eigenvalue �.�/ (see [15,21], [17, Sec. 3.3]):

Proposition 6.1. The following properties hold for the lowest eigenvalue �.�/ of H.�/:

• For all � 2 Œ��
2
; �
2
�, �.��/ D �.�/.

• Œ0; �
2
� 3 � 7! �.�/ is monotone increasing and �.0/ D ‚0.

• �.�/ � ‚0 cos2 � C sin2 �.

• As � ! 0, �.�/ D ‚0 C
p
ı0j�j CO.�2/.

Here we recall that ‚0 and ı0 are introduced in (4.2).

Let us return to the magnetic field in (1.1). Recall that, for x 2 �, p.x/ 2 @� satisfies

dist.x; @�/ D dist
�
x; p.x/

�
;

and it is uniquely defined when x is sufficiently close to the boundary. For all x 2 x�, we
introduce �.x/ 2 Œ��

2
; �
2
� by

.B � N/
�
p.x/

�
D sin �.x/: (6.1)

Hence �.x/ D 0 implies that B.p.x// is tangent to @� at p.x/, in other words that x
belongs to � (see (1.4)). Now we recall the following lower bound related to the operator
P hA established in [17, Thm. 4.3]:

Proposition 6.2. Under Assumption (1.1), there exist constants C; h0 > 0 such that, for
all h 2 .0; h0� and u 2 H 1.�/, we haveZ

�

ˇ̌
.hr � iA/u

ˇ̌2
dx �

Z
�

�
hWh.x/ � Ch

5=4
�ˇ̌
u.x/

ˇ̌2
dx;

where

Wh.x/ D

´
1 if dist.x; @�/ � 2h3=8;

�
�
�.x/

�
if dist.x; @�/ � 2h3=8:

If additionally u 2 H 1
0 .�/, we have for some positive constant C0 the stronger lower

bound Z
�

ˇ̌
.hr � iA/u

ˇ̌2
dx � .h � C0h

5=4/

Z
�

juj2 dx:

Combining the lower bound in Proposition 6.2 with the following leading term expansion
of the lowest eigenvalue (see [17, Thm. 4.4])

�N1 .A; h/ D ‚0hC o.h/; (6.2)

we get decay estimates for the ground states. Let us recall these localization estimates (see
[5, Sec. 9.4] for details).
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Proposition 6.3. Given M > 0, there exists a positive constant ˛ such that, if uh is a
normalized bound state of Ph with eigenvalue �.h/ �Mh, then as h! 0C,Z

�

�ˇ̌
uh.x/

ˇ̌2
C h�1

ˇ̌
.hr � iA/uh

ˇ̌2� exp
�
˛ dist.x; @�/

h1=2

�
dx D O.1/: (6.3)

Furthermore, there exist constants ˛1; �0 > 0 such that, as h! 0C,Z
¹dist.x;@�/<�0º

�ˇ̌
uh.x/

ˇ̌2
C h�1

ˇ̌
.hr � iA/uh

ˇ̌2� exp
�˛1 d�.x/

h1=4

�
dx D O.1/;

where
d�.x/ D dist@�

�
p.x/; �

�
; (6.4)

and dist@� is the geodesic distance on @�.

Hence we have two levels of localization, first a strong one near @� and then an
additional but weaker one near � . Along the proof of Theorem 1.4, we will only use (6.3)
and generalizations or consequences of it, as explained in the below remark.

Remark 6.4 (Applications of Proposition 6.3). Let uh be a normalized ground state
of P hA .

(1) By (6.2), the hypothesis in Proposition 6.3 holds, hence the ground state uh satis-
fies (6.3) and (6.4).

(2) Pick an arbitrary point x0 2 � . In the coordinates introduced in (2.6), where
t .x/D dist.x; @�/, r.x/D d�.x/ and uh.x/D Quh.r; s; t/ (see (2.14)), we deduce
from (6.3) the following weaker, but quite useful estimates. For any n � 0,Z

zV0

tnj Quhj
2 ds dr dt D O.hn=2/; (6.5)Z

zV0

tn
ˇ̌
.hrr;s;t � zA/ Quh

ˇ̌2
dr ds dt D O.h1C

n
2 /; (6.6)

where zV0 WD zVx0 and zA are introduced in (2.13) and (2.17), respectively.

7. Estimating the quadratic form

7.1. A comparison estimate

We fix ı and �2 satisfying

5

18
< ı <

1

3
and 0 < �2 < 1: (7.1)

We also fix R0 > 0, h0 > 0, x0 2 � and introduce for h 2 .0; h0� the set

Qh.x0; R0; ı; �2/

D
®
x 2 � W

ˇ̌
r.x/ � r0

ˇ̌
� R0h

ı ; js.x/ � s0j � R0h
ı ; 0 < t.x/ < �2

¯
; (7.2)
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where .r.x/; s.x/; t.x// are introduced in (2.1) and, since x0 2 � ,

y0 WD .r0; s0; t0/ WD
�
r.x0/; s.x0/; t.x0/

�
D
�
0; s.x0/; 0

�
:

For simplicity, we omit most of the time the reference to ı and �2.
Let zAD . zA .2/1 ; zA

.2/
2 ; zA

.2/
3 / be the magnetic potential associated with A via (2.17), with

y D .y1; y2; y3/ D .r; s; t/ (see (2.6)). We introduce the following magnetic potential

zA.2/.y/ D
X
jˇ j�2

@ˇ zA
@yˇ

.y0/
.y � y0/ˇ

ˇŠ
; (7.3)

which is the quadratic Taylor expansion of zA at y0. We introduce the quadratic form
associated with the magnetic potential zA.2/ as follows

qh
zA.2/.u/ D

Z
QQh.x0;R0/

�
1 � r�g.x0/

��ˇ̌
.hDt � zA

.2/
3 /u

ˇ̌2
C
�
1C 2r�g.x0/

�ˇ̌
.hDs � zA

.2/
2 /u

ˇ̌2
C
ˇ̌
.hDr � zA

.2/
1 /u

ˇ̌2�
dr ds dt;

where

zQh.x0; R0; ı; �2/ D
®
.r; s; t/ W max

�
jr j; js � s0j

�
< R0h

ı ; 0 < t < �2
¯
; (7.4)

and (see (2.9))
�g.x0/ is the geodesic curvature of � at x0:

The next lemma compares the quadratic forms u 7! qh
zA.2/
.u/ and u 7! qhA.u/ introduced

in (2.16). The errors that will arise are controlled by the following energy

Mh.u/ D

6X
nD0

h�n=2
Z
�

t .x/n
�
juj2 C h�1

ˇ̌
.hr � iA/u

ˇ̌2�
dx; (7.5)

where t .x/ D dist.x; @�/. Notice that,Z
�

juj2 dx �Mh.u/; (7.6a)Z
�

ˇ̌
.hr � iA/u

ˇ̌2
dx �Mh.u/h; (7.6b)Z

�

t .x/n
�
juj2 C h�1

ˇ̌
.hr � iA/u

ˇ̌2�
dx �Mh.u/h

n=2 .1 � n � 6/: (7.6c)

Lemma 7.1. There exist constants C; h0; &0 > 0 such that, for all h 2 .0; h0� and u 2
H 1.�/ satisfying suppu � Qh.x0; R0/, we have

.1 � Ch2ı/qh
zA.2/.u/ � CMh.u/h

4
3C&0

� qhA.u/ � .1C Ch
2ı/qh

zA.2/.u/C CMh.u/h
4
3C&0 : (7.7)
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Proof. Let us recall two useful estimates whose proof does not require that the magnetic
field curl A is constant (see [17, Lem. 10.1]):

qhA.u/ � .1 � Ch
2ı/qh

zA.2/.u/ � C


t1=2.hDx � A/u



2
� C

�
qh
zA.2/.u/

�1=2

.h3ı C h2ı t C hı t2 C t3/u


� C



.h3ı C h2ı t C hı t2 C t3/u

2; (7.8)

qhA.u/ � .1C Ch
2ı/qh

zA.2/.u/C C


t1=2.hDx � A/u



2
C C

�
qh
zA.2/.u/

�1=2

.h3ı C h2ı t C hı t2 C t3/u


C C



.h3ı C h2ı t C hı t2 C t3/u

2: (7.9)

In the sequel we use the notation O.chh
�C/ in the following manner

fh D O.chh
�C/ if and only if 9� > 0 s.t. fh D O.chh

�C�/:

Since we have assumed (7.1), we have

min
�
6ı; 2ı C 1; 3ı C

1

2
; 2 � 2ı

�
>
4

3
:

We can now estimate the error terms appearing in (7.8) and (7.9). We deduce from (7.6a)
that

kh3ıuk2 D O.Mhh
6ı/ D O.Mhh

4
3C/;

where we write Mh instead of Mh.u/ for the sake of simplicity.
Using again (7.6c) with n D 1, n D 2, n D 4 and n D 6, we get

t1=2.hDx � A/u



2 D O.Mhh
5
4 /;

kh2ı tuk2 D O.Mhh
4ıC1/;

khı t2uk2 D O.Mhh
2ıC2/;

kt3uk2 D O.Mhh
3/:

Consequently,

t1=2.hDx � A/u


2 C 

.h3ı C h2ı t C hı t2 C t3/u

2 D O.Mhh

4
3C/: (7.10)

Notice that jzA � zA.2/j D O.h3ı/C O.t3/ in zQh.x0; R0/. By the triangle inequality and
(2.16)

qh
zA.2/.u/ � C

�
qhA.u/C kt

3uk2
�
:

So by using (7.6) we get
qh
zA.2/.u/ D O.Mhh/:

Consequently, the foregoing estimate and (7.10) yield,�
qh
zA.2/.u/

�1=2

.h3ı C h2ı t C hı t2 C t3/u

 D O.Mhh/:

This finishes the proof of (7.7).
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7.2. Normal form

Recall that we have fixed an arbitrary point x0 2 � and denoted its coordinates, in the
.r; s; t/-frame, by .0; s0; 0/. Let us also recall that the magnetic field B.x0/ can be ex-
pressed by (2.4).

Performing an appropriate gauge transformation on the set zQh.x0; R0/ introduced
in (7.4), will yield a convenient normal form of the magnetic potential zA .2/ introduced
in (7.3).

Lemma 7.2. There exist positive constants C and yC , and for all x0 2 � , there exist
L�; � 2 Œ� yC ; yC � and a smooth function Lp on a neighborhood of zQh.x0; R0; ı; �2/, such
that, ˇ̌

zA.2/.r; s; t/ � A00.r; s; t/Cr Lp.r; s; t/
ˇ̌
� C

�
r3 C t2 C js � s0j

3
�
;

where
A00.r; s; t/ D

�
ta1.r; s/; ta2.r; s/C

1

2
�n;B.x0/r

2; 0
�
;

�n;B.x0/ is introduced in (1.5), and

a1.r; s/ D sin �.s0/C
�
�r C L�.s � s0/

�
cos �.s0/;

a2.r; s/ D � cos �.s0/C r�g.x0/ cos �.s0/C
�
�r C L�.s � s0/

�
sin �.s0/:

Here �.s0/ is the angle introduced in (2.5) with x D x0.

This lemma is an extension of Lemma 9.1 in [17] to the case when the magnetic
field is not necessarily constant. In the constant magnetic field case we have � D 0 and
L� D �g.x0/, where �g is the geodesic curvature introduced in (2.9). Note that we do not
try at the moment to explicitly compute L� and � in the general case. We plan indeed to
show that the result on the lowest eigenvalue is independent of L� and �.

Proof of Lemma 7.2. Our goal is to determine the Taylor expansion up to order 1 of the
magnetic field vector and corresponding magnetic field 2-form in the variables .r; s; t/,
the Taylor expansion being computed at t D r D 0 and s D s0. Up to a translation, we
assume that s0 D 0.

Writing the magnetic vector field in (1.2) as

B D Qb1@r C Qb2@s C Qb3@t ;

the Taylor expansion of order 1 at .0; 0; 0/ takes the form

Qb1.r; s; t/ D cos � C 
1r C ı1s C �1t CO.r2 C s2 C t2/;

Qb2.r; s; t/ D sin � C 
2r C ı2s C �2t CO.r2 C s2 C t2/;

Qb3.r; s; t/ D 
3r C �3t CO.r2 C s2 C t2/;

where � D �.s0/ and where we used (2.3)–(2.4). Here we have used that by definition of
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the coordinate r , the function .r; s/ 7! Qb3.r; s; 0/ vanishes exactly at order 1 on r D 0.
Note that 
3 is �n;B.x0/, introduced in (1.5).

We now express that on t D 0 the norm of B should be one. In fact

jBj2 D
X

1�i;j�1

gij Qbi Qbj C Qb
2
3 ; (7.11)

where the coefficients gij can be computed by (2.7), (2.8) and (2.10).
For t D 0, this reads�

Qb1.r; s; 0/
�2
C ˛.r; s/

�
Qb2.r; s; 0/

�2
C
�
Qb3.r; s; 0/

�2
D 1;

where ˛.r; s/ is introduced in (2.10) and satisfies (2.11). We expand the last formula
around t D r D s D 0. This leads, by taking t D 0 and considering the coefficients of r
and s, to the two identities


1 cos � C 
2 sin � � �g.x0/ sin2 � D 0;

ı1 cos � C ı2 sin � D 0:

So it is natural to introduce the new parameters y� and � as follows

L� D �ı1 sin � C ı2 cos �; � D �
1 sin � C
�

2 � �g.x0/ sin �

�
cos �: (7.12)

So we observe that

ı1 D �L� sin �; ı2 D L� cos �;


1 D �� sin �; 
2 D � cos � C �g.x0/ sin �:

Hence our “normal” form becomes

Qbj .r; s; t/ D Qb
0
j .r; s; t/CO.r2 C s2 C t2/

with
Qb01.r; s; t/ D cos � � .�r C L�s/ sin � C �1t;

Qb2.r; s; t/ D sin � C .�r C L�s/ cos � C �g.x0/r sin � C �2t;

Qb3.r; s; t/ � 
3r C �3t;

with

3 D �n;B.x0/ D @rhB j N i:

Now consider zB D curl.r;s;t/ zA. We have zB D jgj1=2. Qb1; Qb2; Qb3/ (see [17, (5.13)]), where
g is introduced in (2.8). So we obtain by (2.12),

zBij .r; s; t/ D zB0ij .r; s; t/CO.r2 C s2 C t2/

with

zB023.r; s; t/ D
�
1 � �g.x0/r

�
cos � � .�r C L�s/ sin � C �1t;
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zB031.r; s; t/ D sin � C .�r C L�s/ cos � C �2t;

zB012.r; s; t/ � 
3r C �3t:

Notice that the condition div.r;s;t/ zB D 0 reads (at r D t D 0 and s D 0) as follows

�3 D
�
�g.x0/ � L�

�
cos � C � sin �:

We have now to choose a suitable corresponding magnetic potential to zB0. We find

zA00.r; s; t/ D

0B@ zA
00
1

zA002
zA003

1CA D
0B@ ta1.r; s/C

�2
2
t2

ta2.r; s/C
1
2

3r

2 �
�1
2
t2

0

1CA D A00.r; s; t/CO.t2/;

with

a1.r; s/ D sin � C .�r C L�s/ cos �;

a2.r; s/ D �
�
1 � �g.x0/r

�
cos � C .�r C L�s/ sin �:

Moreover curl zA.2/ D zB0 in the simply connected domain zQh.x0; R0; ı; �2/, so we can
find a function Lp such that zA.2/ D zA00 � r Lp.

Finally,


j .s/ WD
@ Qbj

@r
.0; s; 0/ and ıj .s/ WD

@ Qbj

@s
.0; s; 0/

are bounded functions. Setting

Mj D sup
�ˇ̌

j .s/

ˇ̌
C
ˇ̌
ıj .s/

ˇ̌�
and M D max.M1;M2/;

we get from (7.12) that

j L�j � 2M and j�j � 2M C k�gk1:

7.3. A second comparison estimate

We use the magnetic potential in Lemma 7.2 to approximate the quadratic form, as we
did in Lemma 7.1. In particular, we approximate the metric by a flat one. Let us intro-
duce the quadratic form corresponding to the magnetic potential in Lemma 7.1 (see [17,
Lem. 10.2]):

qhA00.v/ D

Z
zQh.x0;R0/

�
jhDtvj

2
C
�
1C 2r�g.x0/

�ˇ̌
.hDs � A

00
2 /v

ˇ̌2
C
ˇ̌
.hDr � A

00
1 /v

ˇ̌2�
dr ds dt; (7.13)

where v 2 H 1. zQh.x0; R0// and zQh.x0; R0/ D zQh.x0; R0; ı; �2/ is the set introduced
in (7.4).

We can obtain a further approximation of the quadratic form for functions obeying the
conditions in (7.6).



Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue 883

Lemma 7.3 (Helffer–Morame). There exist positive constants C , h0, &0 such that, for all
h 2 .0; h0� and u 2 H 1.�/ s.t. suppu � Qh.x0; R0; ı; �2/, we have

qhA00. Qu/ � CMh.u/h
4
3C&0 � qhA.u/ � q

h
A00. Qu/C CMh.u/h

4
3C&0 ;

where Mh.u/ is introduced in (7.5) and

Qu D
�
1 � r�g.x0/

�1=2
ue�i Lp=h:

Proof. We have the following two estimates from [17, Lem. 10.2] (whose proof does not
require that the magnetic field curl A is constant)

qhA.u/ � q
h
A00. Qu/ � C



t1=2.hDx � A/u


2 � C �qhA00. Qu/�1=2

.h3ı C hC h2ı t C t2/u



� C


.h3ı C hC h2ı t C t2/u

2;

qhA.u/ � q
h
A00. Qu/C C



t1=2.hDx � A/u


2 C C �qhA00. Qu/�1=2

.h3ı C hC h2ı t C t2/u



C C


.h3ı C hC h2ı t C t2/u

2:

We can then estimate the remainder terms, using (7.6), as we did in the proof of Lemma
7.1. The only term that was not present satisfies

kt2uk2 �Mh.u/h
2;

where we used (7.6c) with n D 4.

7.4. An estimate away from the curve �

Let us now look at the quadratic form, qhA.u/, when u is supported away from � . We start
with a rough lower bound.

Lemma 7.4. Given c > 0, �2 2 .0; 1/ and � 2 .0; 1
4
/, there exist positive constants h0, Qc

such that, if u 2 H 1.�/ satisfies

suppu �
®
x 2 � W dist.x; @�/ < �2; d�.x/ � ch�

¯
;

where d�.x/ D dist@�.p.x/; �/ is introduced in (6.4), then

qhA.u/ � .‚0 C Qch
�/h

Z
�

juj2 dx:

Proof. If we verify that, for a given constant c > 0,

d�.x/ � ch
�
H) 9c0 > 0;

ˇ̌
�.x/

ˇ̌
� c0h�; (7.14)

then the proof follows from Proposition 6.2, by using that h5=4 D o.h1C�/ and the lower
bound from Proposition 6.1,

�.�/ � ‚0 C

p
ı0

2
j�j;

in a neighborhood of 0.
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Let us denote by m� D minx2� �n;B.x/, then m� > 0 by Assumption 1.1, and (7.14)
holds with c0 D m�c=2. In fact, if j�.x/j � c0h�, we get by (6.1)ˇ̌

B � N
�
p.x/

�ˇ̌
� c0h�;

and it follows from (2.4) that (recall that d�.x/ D jr j, see Section 2)

m�d�.x/ � c
0h� D m�

c

2
h�:

The next proposition is an improvement of Proposition 7.4 since it allows for the
support of u to be closer to the curve � .

Proposition 7.5. Given c > 0, �2 2 .0; 1/ and ı 2 Œ1
4
; 1
3
/, there exist positive constants

h0, c�, C , &0 such that, if u 2 H 1.�/ satisfies

suppu �
®
x 2 � W dist.x; @�/ < �2; d�.x/ � chı

¯
; (7.15)

where d�.x/ D dist@�.p.x/; �/ is introduced in (6.4), then

qhA.u/ � .‚0 C c�h
ı/h

Z
�

juj2 dx � CMh.u/h
4
3C&0 ;

where Mh.u/ is introduced in (7.5).

Proof.

Step 1. Let us fix constants c; R0 > 0, �2 2 .0; 1/, ı 2 Œ14 ;
1
3
/ and � 2 .0; 1

4
/. We assume

that suppu�Qh.x�0 ;R0; ı; �2/where x�0 2 @�with boundary coordinates .r0; s0; t0 D 0/
satisfies (for h small enough) chı � jr0j D d�.x�0 /� 2ch

� andQh.x�0 ;R0; ı; �2/ is intro-
duced in (7.2).

We denote by
zQh.x

�
0 / D

zQh.x
�
0 ; R0; ı; �2/

the neighborhood associated with Qh.x�0 ; R0; ı; �2/ by (7.4). By a translation, we may
assume that s0 D 0.

Consider the magnetic potential zA.2/ introduced in (7.3). We modify the coordinates
.r; s; t/ so that, locally near .r0; 0; 0/, the metric G in (2.10) is diagonal2 with

˛.r0; s/ D 1 and
@˛

@r
.r0; s/ D �2�g

�

.s/

�
CO.h�/: (7.16)

By Taylor’s formula

˛.r; s/ D 1 � 2�g
�

.s/

�
.r � r0/CO

�
h�.r � r0/

�
CO

�
.r � r0/

2
�
:

2We consider the curve �h defined by s 7! ˆ�1x0 .r0; s; 0/, where x0 D 
.x�0 / and ˆx0 is the coordinate
transformation introduced in (2.1). We parameterization �h by arc-length s 7! 
h.s/ and define the adapted
coordinates by considering the normal geodesic to �h passing through x�0 .
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In zQh.x�0 /, we write ˇ̌
�g
�

.s/

�
� �g.x

�
0 /
ˇ̌
� Chı ;

˛.r; s/ D 1 � 2�g.x
�
0 /.r � r0/ � Ch

ıC�;

hDy � zA D .hDy � zA.2// � .zA � zA.2//:

So we get, as in Lemma 7.1, the existence of C 0; &0 > 0 such that

qhA.u/ � .1 � Ch
ıC�/q

h;x�0
zA.2/

.u/ � C 0Mh.u/h
4
3C&0 ;

where

q
h;x�0
zA.2/

.u/ D

Z
zQh.x

�
0 /

�
1 � .r � r0/�g.x

�
0 /
��ˇ̌
.hDt � zA

.2/
3 /u

ˇ̌2
C
�
1C 2.r � r0/�g.x

�
0 /
�ˇ̌
.hDs � zA

.2/
2 /u

ˇ̌2
C
ˇ̌
.hDr � zA

.2/
1 /u

ˇ̌2�
dr ds dt:

Performing a change of variables

.r; s/ 7!
�
.r � r0/ cos! � s sin!; .r � r0/ sin! C s cos!

�
which amounts to a rotation in the .r; s/-plane (centered at .r0; 0/), we may assume that
the second component of zB D curl.r;s;t/ zA D . zB23; zB31; zB12/ vanishes at .r0; 0; 0/, by
choosing ! so that

zB31.x
�
0 / cos! C zB23.x�0 / sin! D 0:

At the same time, this rotation leaves jBj and the measure dr ds invariant. Then perform-
ing a gauge transformation (see [17, Sec. 16.3]), we may assume that

zA.2/.r; s; t/ D zA.2;0/.r; s; t/CO
�
jr � r0jt C jsjt C t

2
�
;

where

zA.2;0/.r; s; t/ WD

0B@ Qc01s
2

zB
.0/
23 t C

zB
.0/
12 .r � r0/C Qc

0
2.r � r0/

2

0

1CA :
Here

zB.0/ WD zB.r0; 0; 0/ D . zB.0/23 ; zB
.0/
31 D 0;

zB
.0/
12 /

and Qc01 ; Qc
0
2 are constants.

Similarly to the proof of Lemma 7.1, by writing

hDy � zA.2/ D hDy � zA.2;0/ � .zA.2/ � zA.2;0//;

.hDy � zA.2;0//u

 � 

.hDy � zA/u

C 

.zA � zA.2//u

C 

.zA.2/ � zA.2;0//u

;
we get

q
h;x�0
zA.2/

.u/ � .1 � Ch2ı/q
h;x�0
zA.2;0/

.u/ � C 00Mh.u/h
4
3C&0 :

Thus we are left with finding a lower bound of qh;x
�
0

zA.2;0/
.u/.
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Note that, since jBj D 1 and by (7.16), the metric satisfies jgj D 1 on x�0 , we have
by (7.11), j zB.0/23 j

2 C j zB
.0/
12 j

2 D 1.
Moreover, since B �N vanishes linearly on � D ¹r D 0º, there exist C1 > 0 and C2 > 0

such that
1

C1
jr0j � j zB

.0/
12 j

2
� C2jr0j;

ˇ̌
j zB
.0/
23 j � 1

ˇ̌
� C2r

2
0 ; j Qc

0
1 j C j Qc

0
2 j � C2:

The previous estimates yield a lower bound of qh
zA.2;0/

.u/ by comparing with a model oper-
ator (after rescaling the variables Qr D h1=3.r � r0/, Qs D h1=3s and Qt D h1=2t ). In fact, by
[17, Lem. 16.1], there exists c1 > 0 such that,

q
h;x�0
zA.2;0/

.u/ �
�
‚0 C c1jr0j

�
h

Z
�

juj2 dx:

Note that, we can use Lemma 16.1 of [17] under our assumptions on the support of u.

Step 2. We can reduce to the setting of Step 1 and Lemma 7.4 by means of a partition of
unity. In fact, consider an h-dependent partition of unity �21C�

2
2D1 on ¹dist.x; @�/<�2º

such that

supp�1 �
°
d�.x/ �

c

2
h�
±
; supp�2 �

®
d�.x/ � ch

�
¯
;

2X
iD1

jr�i j
2
D O.h�2�/:

If u 2 H 1.�/ satisfies (7.15), then

qhA.u/ D

2X
iD1

�
qhA.�iu/ � h

2


jr�i ju

2�;

where

qhA.�1u/ � .‚0 C Qch
�/h

Z
�

j�1uj
2 dx by Proposition 7.4;

qhA.�2u/ � .1 � Ch
ıC�/.‚0 C c1h

ı/h

Z
�

j�2uj
2 dx �Mh.u/h

4
3C&0 by Step 1;

2X
iD1

h2


jr�i ju

2 D O.h2�2�/ D o.h1Cı/;

where in the last step we used that 0 < � < 1
4

and 1
4
< ı < 1

3
.

8. Lower bound

8.1. Another model

The model in (5.1) corresponds to the quadratic form in (7.13) when �g.x0/ D 0. How-
ever, when �g.x0/ 6D 0, the situation is similar to [17, Sec. 15]. The model compatible
with (7.13) can still be reduced to the one in (5.1) with appropriate choices of the para-
meters �; �; 
 (see (8.10)).
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8.1.1. A new model quadratic form. Let us fix a boundary point x0 2 � and denote the
model quadratic form near x0 by

u 7! qm.u/ WD qA00.u/; (8.1)

where qA00 is given in (7.13), u 2 H 1. zQh.x0; R0// and zQh.x0; R0/ D zQh.x0; R0; ı; �2/
is the set introduced in (7.4). Furthermore, we assume that the metric is flat at x0 and the
coordinates of x0 in the .r; s; t/ frame are .0; s0 D 0; 0/, after performing a translation
with respect to the s variable.

Following the proof of [17, Lem. 15.1], we are led to the analysis of the model quad-
ratic form (see Lemma 8.1)

qhm;0.u/ D

Z
zQh.x0;R0/

�
h2jDtuj

2
C jtu � Lh1uj

2
C jLh2uj

2
�
dr ds dt; (8.2)

where
Lh1 D a1hDr C a

0
2hDs �

1

2
cos ��n;B.x0/r2;

Lh2 D a
1
2hDr C a

1
1hDs C

1

2
sin ��n;B.x0/r2;

(8.3)

and, with � D �.s0/ the angle defined by (2.5), we introduce the following functions

a1.r; s/ D sin � C cos �.�r C L�s/;

a2.r; s/ D � cos � C �g.x0/ cos � r C sin �.�r C L�s/;

a02.r; s/ D � cos � � �g.x0/ cos � r C sin �.�r C L�s/;

a12.r; s/ D cos � � sin �.�r C L�s/;

a11.r; s/ D sin � C sin ��g.x0/r C cos �.�r C L�s/;

˛.r/ D 1C 2�g.x0/r:

(8.4)

We will consider the form qm;0 on the following class of functions

D0 D
®
u 2 H 1.�h/ W uj.@Qh/��0;hı Œ D 0; ujQh�¹hı º D 0

¯
;

where
�h D Qh

� �0; hı Œ ; Qh
D � �R0h

ı ; R0h
ı Œ2:

The precise relation between the model quadratic forms in (8.1) and (8.2) is given in the
following lemma.

Lemma 8.1. For any ı 2 . 5
18
; 1
3
/ and �1 > 0, there exists C > 0 such that, for any u 2D0

and h 2 .0; 1/,

.1C Ch2ı/qhm.u/ � .1 � Ch
�1/qhm;0.u/ � C

�

.h2ı C h�1/tu

2 C h6ı��1kuk2�:
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Proof. The proof follows that of Lemma 15.1 in [17] with some adjustments in the for-
mulas (15.9), (15.16) and (15.17) in [17].

We have indeed ˇ̌
1 � .a1/

2
� ˛.a2/

2
ˇ̌
� Ch2ı ;

where we used that
˛.r/1=2 D 1C �g.x0/r CO.h2ı/

on the support of u, which follows by (8.4).
We also observe that:

j˛a2 � a
0
2j C j˛

1=2a2 C a
1
2j C j˛

1=2a1 � a
1
1j � C.r

2
C s2/;

j˛1=2a1 � sin � j C j˛a2 C cos � j � C.r2 C s2/1=2:

Later on, we will choose ı and �1 in a convenient way (see Remark 8.3).

8.1.2. Linearizing change of variable. In order to reduce to the case �g D 0 and elim-
inate the slightly variable coefficients of Dr and Ds in (7.13), we argue as [17, Sec. 15.2]
by performing a change of variables. The argument does not work in our case in the same
way as [17, Sec. 15.2], but it leads to the fact that for our lower bound the only relevant
parameters are � WD L� � �g and � (see (7.13)).

The below computations are essentially the same as in [17, Sec. 15.2] but we have to
do them carefully in order to capture the correct � and � appearing in (5.1).

Let us follow, what this change of variable was doing. We introduce

� WD �g.x0/: (8.5)

Let us make the change of variables .r; s/ D ˆ�.p; q/ with

r D sin �p C cos �q �
�

2
Œ� cos �p C sin �q�2;

s D � cos �p C sin �q �
�

2

�
sin.2�/.p2 � q2/C 2 cos.2�/pq

�
;

(8.6)

where � D �.s0/ is the angle defined by (2.5).
The map ˆ� is a perturbation of a rotation and, by the local inversion theorem, it is

easily seen as a local diffeomorphism sending a fixed neighborhood of .0; 0/ onto another
neighborhood of .0; 0/.

Then, for h small enough, Qh WD � � R0h
ı ; R0h

ı Œ2 is transformed by ˆ�1� to the set
Qh
0 satisfying:

Qh
0 D ˆ

�1
� .Q

h/ � � �R00h
ı ; R00h

ı Œ � � �R00h
ı ; R00h

ı Œ :

Let us write
Dp D c11Dr C c12Ds; Dq D c21Dr C c22Ds :
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We can express the functions cij in terms of the .p; q/ variables, by using (8.6). In fact,
we introduce cij .r; s/ D Lcij .p; q/, and observe that

Lc11.p; q/ D
@r

@p
D sin � C � cos �.� cos �p C sin �q/I

Lc12.p; q/ D
@s

@p
D � cos � � �

�
sin.2�/p C cos.2�/q

�
I

Lc21.p; q/ D
@r

@q
D cos � � � sin �.� cos �p C sin �q/I

Lc22.p; q/ D
@s

@q
D sin � � �

�
� sin.2�/q C cos.2�/p

�
:

Then we return back to the .r; s/ variables, by using (8.6). Noticing that, as .p;q/! .0;0/,

r D sin �p C cos �q CO.p2 C q2/; s D � cos �p C sin �q CO.p2 C q2/; (8.7)

we get
c11.r; s/ D sin � C � cos �s CO.r2 C s2/I

c12.r; s/ D � cos � � �.cos � r � sin �s/CO.r2 C s2/I

c21.r; s/ D cos � � � sin �s CO.r2 C s2/I

c22.r; s/ D sin � C �.sin � r C cos �s/CO.r2 C s2/:

Let us now control the measure in the change of variable. By an easy computation, we get:

dr ds D L̨1dpdq; L̨1.p; q/ D 1C �.sin �p C cos �q/CO.p2 C q2/:

By using (8.7), ˛1.r; s/ D L̨1.p; q/ satisfies

j˛1 � 1 � �r j � C.r
2
C s2/;

where r D r.p; q/ is defined in (8.6).
Similarly to Lemma 8.1 we get also that one can go from the control of qhm;0.u/ to the

control of the new quadratic form3

qhm;1.u/ D

Z
�h0

�
h2jDtuj

2
C jtu �M h

1 uj
2
C jM h

2 uj
2
�
L̨1 dp dq dt;

with

�h0 WD Qh
0 � �0; h

ı Œ ;

M h
1 D hDp C h

�
. L� � �/s C �r

�
Dq �

1

2
cos ��n;B.x0/.sin �p C cos �q/2;

M h
2 D hDq � h

�
. L� � �/s C �r

�
Dp C

1

2
sin ��n;B.x0/.sin �p C cos �q/2;

where .r; s/ D .sin �p C cos �q;� cos �p C sin �q/.

3We express Lh1 and Lh2 (see (8.3)) in terms of the .p; q/ variables introduced in (8.6) and neglect the
terms of order O.r2 C s2/ D O.p2 C q2/.
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More precisely, we have the following comparison lemma (see Lemma 8.1 and [17,
Lem. 15.4]).

Lemma 8.2. For any �1 > 0, there exists C > 0 such that, for any u 2 D0,

.1C Ch2ı/qhm;0.u/ � .1 � Ch
�1/qhm;1. Qu/ � C

�

.h2ı C h�1/tu

2 C h6ı��1kuk2�;
where Qu D u ıˆ�1� is associated with u by the transformation ˆ� .

By a unitary transformation, and after control of a commutator, we can reduce to a flat
measure (dp dq instead of L̨1 dp dq) and obtain the new quadratic form defined as follows

qhm;2.v/ D

Z
�h0

�
h2jDtvj

2
C jtv �M h

1 vj
2
C jM h

2 vj
2
�
dp dq dt; (8.8)

with v associated to u by v D L̨1=21 Qu. In fact, we have [17, (15.29)]

.1C Ch1=2/qm;1. Qu/C Ch
3=2
kuk2 � qhm;2.v/: (8.9)

Let us consider the new model associated with the quadratic form in (8.8). We first
observe that the result depends only on L� � � and on �. The proof is moreover uniform
with respect to these parameters. As a consequence, if ˆ D ˆ� was the transforma-
tion introduced in (8.5), the inverse (for � D 0) ˆ�10 , more explicitly the transformation
.p; q/ 7! . Qr D sin�pC cos�q; Qs D� cos�pC sin�q/ will bring us (in the new variables
. Qr; Qs; t/) to the initial model with �g replaced by 0, and L� replaced by L� � �g.x0/. This
can also be done by explicit computations.

Doing the transformations backwards, we are led to a magnetic Laplacian computed
with a trivial metric �g D 0 but with a new magnetic potential

a1.r; s/
new
D sin � C cos �

�
�r C

�
L� � �g.x0/

�
s
�
;

a2.r; s/
new
D � cos � C sin �

�
�r C

�
L� � �g.x0/

�
s
�
:

So the new model is not as simple as in the uniform magnetic field case (where L�D �g )
but it is the model in (5.1), which we have studied in the previous section with

� D L� � �g.x0/; 
 D �n;B.x0/: (8.10)

In fact, since v is supported in �h0 , we have,

qhm;2.v/ D hP
h;�;�

0I
;�
v; vi; (8.11)

where P h;�;�
0I
;�

is the operator in (5.1).

Remark 8.3. We will choose �1 in such a manner that 1
3
< �1 < 6ı �

4
3

. This choice is
possible when ı satisfies 5

18
< ı < 1

3
.



Helical magnetic fields and semi-classical asymptotics of the lowest eigenvalue 891

8.1.3. Conclusion. We can now write a lower bound for the quadratic form qhA00.u/ in
(7.13), assuming that u 2 H 1. zQh.x0; R0// and zQh.x0; R0/ is the set introduced in (7.4).
Let 5

18
< ı < 1

3
and 1

3
< �1 < 6ı � 4

3
. Collecting Lemmas 8.1, 8.2, (8.9), (8.11) and

Proposition 5.5, we get the existence of positive constants C and &0, such that

qhA00.u/ �
�
h‚0 C h

4
3 cconj��; �n;B.x0/� � Ch 43C&0�kuk2

� Ch
1
3C&0ktuk2 � C



.h2ı C h�1/tu

2 (8.12)

where cconj.
; �/ is introduced in Proposition 5.2 with � D �.s0/ the angle in (2.5).

8.2. The general case

We return now to the proof of the asymptotics of the lowest eigenvalue, �N1 .A; h/, of the
operator P hA in (1.3). Under Assumptions 1.1 and 1.2, we will prove the following lower
bound:

�N1 .A; h/ � ‚0hC y
0;Bh
4
3 CO.h

4
3C��/; (8.13)

for some constant �� > 0, where y
0;B is introduced in (1.6).
Let uh be a normalized ground state of P hA , i.e.

�N1 .A; h/ D q
h
A.uh/ D



.hr � iA/uh

2:
Consider 5

18
< ı < 1

3
and the following neighborhood of the curve � ,

�hı D
®
x 2 � W dist.x; @�/ < hı ; dist@�.x; �/ < hı=2

¯
:

In terms of the .r; s; t/ coordinates introduced in Section 2.1,

�hı D ¹0 < t < h
ı ; hı=2 < r < hı=2º:

Let �h 2 C1c .�
h
ı
I Œ0; 1�/ be a smooth function such that

�h D 1 on �hı;0 D
²
x 2 � W dist.x; @�/ <

1

2
hı ; dist@�.x; �/ <

1

2
hı=2

³
and

jr�hj D O.h�ı=2/:

We introduce the function
wh D �huh:

By Proposition 6.3, the eigenfunction uh is exponentially small outside �h
ı

, since by our
choice of ı we have hı=2 � h1=4 and hı � h1=2. So we have

�N1 .A; h/ D q
h
A.uh/ D q

h
A.wh/CO.h1/; kuhk D kwhk CO.h1/: (8.14)



B. Helffer and A. Kachmar 892

Consider now a partition of unity of R3X
j2Z3

j�j j
2
D 1;

X
j2Z3

jr�j j
2 <1; supp�j � j C Œ�1; 1�3;

and introduce the following functions

wh;j D �j;ı.x/wh.x/; �j;ı.x/ D �j .h
�ıx/:

We can decompose the quadratic form qhA.wh/ as follows

qhA.wh/ D
X
j2Jh

qhA.wh;j /CO.h2�2ı/; (8.15)

where
Jh D ¹j 2 Z3 W supp�j;ı \� 6D ;º:

Let C1 > 0 be a fixed constant that we will choose later to be sufficiently large. We will
estimate the energy qhA.wh;j / when the support of wh;j is near the curve � , or away
from � , independently. So we introduce the sets of indices

J1h D
®
j 2 Jh W dist.supp�
;ı ; �/ � C1hı

¯
;

J2h D
®
j 2 Jh W dist.supp�
;ı ; �/ � C1hı

¯
:

By Proposition 7.5,X
j2J2

h

qhA.wh;j / �
X
j2J2

h

�
.‚0hC c�h

1Cı/kwh;j k
2
� Ch

4
3C&0Mh.wj;h/

�
; (8.16)

where Mh.wj;h/ is introduced in (7.5). Notice that

Mh.wj;h/ �

6X
nD0

h�n=2
Z
�

t .x/n
�
j�j;huhj

2
C 2h�1

ˇ̌
�j;h.hr � iA/uh

ˇ̌2
C 2h

ˇ̌
r.�h�j;h/

ˇ̌2
juhj

2
�
dx:

Since
P
j�j;hj

2 � 1 and
P
jr.�j;h�h/j

2 D O.h�2ı/, Proposition 6.3 together with (6.5)
and (6.6) yield X

j2Jh

Mh.wj;h/ D O.1/:

Consequently, we infer from (8.16),X
j2J2

h

qhA.wh;j / � .‚0hC c�h
1Cı/

� X
j2J2

h

kwh;j k
2
�
� C 0h

4
3C&0 : (8.17)

For j 2 J1
h

, we estimate qhA.wh;j / by collecting (8.12) and the estimates in Lemmas 7.1
and 7.3. We start by picking R0 > 0 and xj0 2 � , so that

suppwh;j � Qh.x
j
0 /
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where Qh.x
j
0 / is introduced in (7.2). Eventually, we findX

j2J1
h

qhA.wh;j / �
X
j2J1

h

�
‚0hC h

4=3cconj��j ; �n;B.x0j /��kwh;j k2 � Ch 43C&� ;
for some constant &� > 0, where

�j D �.s
j
0 /

and .0; sj0 ; 0/ denote the coordinates of xj0 in the .r; s; t/-frame (see Section 2 and equa-
tion (2.2)). Note that we used Proposition 6.3 to control the term

P
j2J1

h
ktwh;j k

2 appear-
ing in (8.12); in fact

P
j2J1

h
ktwh;j k

2 D O.h/.
Since cconj.�j ; �n;B.x

0
j // is bounded from below by y
0;B (see (1.6)), we getX

j2J1
h

qhA.wh;j / � .‚0hC y
0;Bh
4=3/

X
j2J1

h

kwh;j k
2
� Ch

4
3C&� : (8.18)

Inserting (8.17) and (8.18) into (8.15), and using (8.14), we deduce the lower bound
in (8.13), since 5

18
< ı < 1

3
.

9. Upper bound

Fortunately, the same quasi-mode constructed in [17, Sec. 12] (see also [27] for a different
formulation) yields an upper bound of the lowest eigenvalue �1.A; h/ matching with the
asymptotics in Theorem 1.4. More precisely, under Assumptions 1.1 and 1.2, we will
prove that:

�N1 .A; h/ � ‚0hC y
0;Bh
4
3 CO.h

4
3C�

�

/; (9.1)

for some constant �� > 0, where y
0;B is introduced in (1.6).
However, while computing the energy of the quasi-mode, we observe additional terms

(not present in [17]) due to the non-homogeneity of the magnetic field. These terms are
treated in Section 9.2.

9.1. The quasi-mode

The construction of the quasi-mode in [17] is quite lengthy and involves many auxiliary
functions related to the de Gennes and Montgomery models (see (4.1) and (4.4)). We
present here the definition of the quasi-mode along with a useful result from [17, Sec. 12].

9.1.1. Geometry and normal form. Select a point x0 2 @� such that the function in (1.7)
satisfies

z
0;B.x0/ D y
0;B:

Let us assume that the coordinates of x0 in the .r; s; t/-frame are .0; s0 D 0; t0/. The
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normal form of the effective magnetic potential in Lemma 7.2 now becomes

A00 D

0B@A
00
1

A002

A003

1CA D
0B@ t sin � C t .�r C L�s/ cos �
�t cos � C rt� cosCt .�r C L�s/ sin � C 1

2

r2

0

1CA ; (9.2)

where
� D �.s0/; � D �g.s0/; 
 D �n;B.x0/: (9.3)

9.1.2. Structure of the quasi-mode. Consider two positive constants C0 and ı such that
5
18
< ı < 1

3
. Let � be a smooth even function, valued in Œ0; 1�, equal to 1 on Œ�1

4
; 1
4
� and

supported in Œ�1
2
; 1
2
�. We set

�h.s/ D c1h
�ı=2�.C�10 h�ıs/;

where c1 D C
�1=2
0 .

R
R �.�/

2d�/1=2, so that �h is normalized as follows,Z
R

ˇ̌
�h.s/

ˇ̌2
ds D 1:

Our quasi-mode, u, is supported in the set Qh.x0; R0; ı; �2/ introduced in (7.2) and is of
the form

u D ei Lp=h.1 � r�/�1=2 Qu; (9.4)

where .r; s; t/ 7! Lp.r; s; t/ is the function from Lemma 7.2 and the function Qu is of the
form

Qu.r; s; t/ D exp
�
�
i�
s

h1=3

�
exp

�
i
r sin � � s cos �

h1=2
�0

�
�h.s/v.r; t/; (9.5)

where �0 D
p
‚0 is given by (4.2), � and � are introduced in (9.3).

The choice of � and v will be specified later4 so that, for some constants C; &� > 0,
we have [17, (12.8)]

qh
M 00.v/ �

�
‚0hC y
0;Bh

4
3 C Ch

4
3C&�

�
kvk2

L2.R�RC/
: (9.6)

Here qM 00.v/ arises while computing the quadratic form of the quasi-mode in (9.4). It is
defined as follows [17, (12.9)],

qh
M 00.v/ D

Z
R�RC

�ˇ̌
.hDr �M

00
1 /v

ˇ̌2
C jM 00

2 vj
2
C jhDtvj

2
�
dr dt; (9.7)

where

M 00
1 .r; t/ D sin �.t � h1=2�0/;

M 00
2 .r; t/ D .1C2�r/

1=2
�
� cos �.t � h1=2�0/C � cos � rt � b




2
.r2 � h2=3�/

�
:

(9.8)

Notice that, by our normalization of �h, we haveZ
R2�RC

ˇ̌
Qu.r; s; t/

ˇ̌2
dr ds dt D kvk2

L2.R�RC/
: (9.9)

4� is defined in (9.2). For the definition of v, see (9.10), (9.11), and (9.12).
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9.1.3. Definition of the auxiliary objects. Let us recall the definition of the function v
and the parameter � given in [17, Sec. 12]. The function v depends on h and is selected in
the following form (see [17, (12.14)])

v.r; t/ D h�5=12v0. Or; Ot /; (9.10)

where
. Or; Ot / D .h�1=3r; h�1=2t /:

The function v0 is selected as in [17, (12.28)]:

v0. Or; Ot / D �.C
�1
0 h�ıC

1
3 Or/�.C�10 h�ıC

1
2 Ot /wh. Or; Ot /: (9.11)

In the sequel, we skip the hats from the notation. The function wh is defined as follows5

[17, (12.22)]

wh.r; t/ D '0.t/ .r/C h
1=6'1.t/L

0
1.r;Dr / .r/

C h1=3'2.t/
�
L01.r;Dr /

�2
 .r/; (9.12)

where '0 is the positive normalized ground state of the harmonic oscillator in (4.1),

'1.t/ D 2R0

�
.t � �0/'0

�
; '2.t/ D 2R0

�
.t � �0/'1 � h.t � �0/'1; '0i'0

�
and R0 is the regularized resolvent introduced in (4.3). Notice that '0; '1 and '2 are
Schwartz functions (i.e. in �.RC/, see [3, App. A]). The definition of wh involves the
differential operator

L01.r;Dr / D sin �Dr �
1

2
cos �
.r2 � �/ (9.13)

and a function 2 �.R/ defined via the ground state 0 of the Montgomery model in (4.4)
and the following phase function

'.r/ D 
˛.�/
�r3
6
C
�r

2

�
;

where

˛.�/ D
sin � cos �.1 � ı0/
ı0 sin2 � C cos2 �

;

and ı0 the constant introduced in (4.2). We define now the function  .r/ as follows

 .r/ D
� c
d

��1=12
exp

�
i'.r/

�
 0

�� c
d

��1=6
r
�
;

5For the convenience of the reader, we will recall the heuristics behind the construction of wh in
Section 9.1.4.
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where

c D cos2 � C ı0 sin2 �; d D
ı20


2

ı0 sin2 � C cos2 �
;

and we choose (see (4.4))

� D
� c
d

�1=3
�0:

We conclude by mentioning some estimates which follow easily from the definitions of v
and v0 in (9.10) and (9.11):

kvk2
L2.R�RC/

D 1CO.h1=6/;Z
R�RC

rktnjvj2 dr dt D O.h
k
3C

n
2 / .k; n � 0/;Z

R�RC

jhDrvj
2 dr dt D O.h5=3/;

Z
R�RC

jhDtvj
2
D O.h/:

(9.14)

9.1.4. Heuristics on the construction of wh. Starting from the definition of the func-
tion v in (9.11), the quadratic form in (9.6) becomes (after neglecting error terms in the
magnetic potential)

qh
M 00.v/ � h Qq

h.wh/;

where

Qqh.wh/ WD

Z
R2
C

�
jDtwhj

2
C
ˇ̌�
t � �0 � h

1=6L01.r;Dr /
�
wh
ˇ̌2
Ch1=3

ˇ̌
L02.h;Dr /wh

ˇ̌2�
dr dt;

L01.r;Dr / is introduced in (9.13) and

L02 D cos �Dr C
1

2
sin �
.r2 � �/:

The construction of wh is based on minimizingZ
R

�Z
RC

�
jDtwhj

2
C
ˇ̌�
t � �0 � h

1=6L01.r;Dr /
�
wh
ˇ̌2�
dt

�
dr;

which amounts to finding the lowest eigenvalue of the operator

Th WD D
2
t C

�
t � �0 � h

1=6L01.r;Dr /
�2
:

Writing

Th D D
2
t C .t � �0/

2
� 2h1=6.t � �0/

2L01.r;Dr /C h
1=3
�
L01.r;Dr /

�2
;

it is natural to search for wh in the form in (9.12) and satisfying

Thwh �
�
�0 C �1h

1=6L01.r;Dr /C �
1=3
2

�
L01.r;Dr /

�2�
wh � 0
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in the following sense (after taking the coefficients of hi=6 to be 0, for i D 0; 1; 2)�
D2
t C .t � �0/

2
� �0

�
'0 D 0;�

D2
t C .t � �0/

2
� �0

�
'1 D �1'0;�

D2
t C .t � �0/

2
� �0

�
'2 D �2'0 C �1'1:

Eventually, this leads to �0 D ‚0, �1 D 0, �2 D 1
2
�00.�0/ and '0, '1, '2 as in (9.12).

9.2. Energy estimates

We will estimate the following energy arising from Lemma 7.3:

qhA00. Qu/D

Z
R2�RC

�ˇ̌
.hDr �A

00
1 / Qu

ˇ̌2
C .1C 2�r/

ˇ̌
.hDs �A

00
2 / Qu

ˇ̌2
C jhDt Quj

2
�
dr ds dt;

where A001 ; A
00
2 are introduced in (9.2).

Actually, qhA00. Qu/ is bounded from above by qM 00.v/ modulo error terms, where
qM 00.v/ and v are introduced in (9.7) and (9.5) respectively. Due to the non-homogeneity
of the magnetic field, the error terms involve a quantity6 introduced in (9.16) which has to
be controlled carefully.

Due to the phase terms in the definition of Qu in (9.5), we have

qhA00. Qu/ D

Z
R2�RC

�
jhDt Quj

2
C
ˇ̌
.hDs � A

00
2;new/ Qu

ˇ̌2
C
ˇ̌
.hDr � A

00
1;new/ Qu

ˇ̌2�
dr ds dt;

where  
A001;new

A002;new

!
D

 
M 00
1;�

M 00
2;�

!
C

 
L� cos �st

L� sin �st

!
;

and

M 00
1;� .r; t/ D sin �.t � h1=2�0/C � cos � rt;

M 00
2;� .r; t/ D .1C 2�r/

1=2
�
� cos �.t � h1=2�0/

C .� cos � C � sin �/rt �



2
.r2 � h2=3�/

�
:

Since the function s 7! �h.s/ is even, we have˝
.hDs � L� sin �st/u;M 00

2;�u
˛
L2.R2�RC/

D 0

and ˝
L� cos �stu; .hDr �M 00

1;� /u
˛
L2.R2�RC/

D 0:

6This is A.v/C B.v/ appearing in (9.16), which would vanish if the magnetic field were constant.
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Moreover, we have the estimates

.hDs � L� sin �st/ Qu



L2.R2�RC/

� C

Z
R�RC

.h2�2ı C h2ı t2/jvj2 dr dt

D O.h2�2ı C h2ıC1/;

kL� cos �stukL2.R2�RC/ � Ch
2ı

Z
R�RC

t2jvj2 dr dt D O.h2ıC1/:

Notice that we used (9.14) and also that jsj � C0hı in the support of Qu. Consequently, we
get

qhA00. Qu/ �

Z
R�RC

�ˇ̌
.hDr �M

00
1;� /v

ˇ̌2
C jM 00

2;�vj
2
C jhDtvj

2
�
dr dt

CO.h2�2ı C h2ıC1/: (9.15)

Let us now reduce the computations to the potentialsM 00
1 andM 00

2 in (9.8) which amount
to M 00

1;�
and M 00

2;�
with � D 0. A straightforward computation yields,

.hDr �M 00

1;� /v


2
L2.R�RC/

C kM 00
2;�vk

2
L2.R�RC/

D


.hDr �M 00

1 /v


2
L2.R�RC/

C kM 00
2 vk

2
L2.R�RC/

C �
�
A.v/C B.v/

�
; (9.16)

where

A.v/ WD � cos2 �krtvk2
L2.R�RC/

� 2 cos � Re
˝
.hDr �M

00
1 /v; rtv

˛
L2.R�RC/

;

B.v/ WD � sin2 �krtvk2
L2.R�RC/

C 2 sin � RehM 00
2 v; rtviL2.R�RC/

and by (9.14)

krtvk2
L2.R�RC/

D O.h5=3/; hhDrv; rtviL2.R�RC/ D O.h5=3/:

So, we end up with estimating

F.v/ WD
˝
.cos �M 00

1 C sin �M 00
2 /v; rtv

˛
L2.R�RC/

:

Notice that

cos �M 00
1 .r; t/C sin �M 00

2 .r; t/ D cos � sin �
�
1 � .1C 2�r/2

�
.t � h1=2�0/

C .1C 2�r/2 cos �
�
� cos � rt �




2
.r2 � h2=3�/

�
:

By expanding

.1C 2�r/1=2 D 1C �r CO.r2/ .r ! 0/;

we observe that, for jr j � r0 and r0 sufficiently small,ˇ̌
cos �M 00

1 .r; t/C sin �M 00
2 .r; t/

ˇ̌
� C.r2 C t2 C h2=3/;
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so we get by (9.14) and the Cauchy–Schwarz inequality that

F.v/ D O.h3=2/:

Therefore, A.v/C B.v/ D O.h3=2/ and we deduce from (9.16) and (9.15) that

qhA00. Qu/ � q
h
M 00.v/CO

�
h2�2ı C h2ıC1 C h3=2

�
; (9.17)

where qh
M 00.v/ is introduced in (9.7).

9.3. Conclusion

Collecting (9.17) and (9.6), we get

qhA00. Qu/ �
�
‚0hC y
0;Bh

4
3 C Ch

4
3C�

�
kvk2

L2.R�RC/
CRh.v/;

where
Rh.v/ D O

�
h2�2ı C h2ıC1 C h3=2

�
D O.h

4
3Cy�/

for some y� > 0, thanks to the condition 5
18
< ı < 1

3
.

We insert this into Lemma 7.3 with u given in (9.4). Notice that u satisfies (7.6) with
Mh.u/ D O.1/. So by Lemma 7.3 and (9.9), we get for some �� > 0

qhA.u/ �
�
‚0hC y
0;Bh

4
3 C Ch

4
3C��

�
kvk2

L2.R�RC/
:

Comparing (9.9) and (9.4), we get by (2.15),

kuk2 D
�
1CO.h2ı/

�
kvk2

L2.R�RC/
:

Applying the min-max principle, and noticing that 1C 2ı > 4
3

for 5
18
< ı < 1

3
, we

finish the proof of (9.1).
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