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Quaternionic Speh representations

Yuanqing Cai

Abstract. For a central division algebra D, we study a family of representations of GLk;D (both
locally and globally), which can be viewed as analogs of the Speh representations. At the non-
Archimedean places, we show that these representations support unique models of degenerate type.
Globally, we show that these representations support certain non-vanishing Fourier coefficients. We
also obtain some partial results regarding unique models at the Archimedean places.

1. Introduction

The uniqueness of Whittaker models is a fundamental result in the study of automorphic
representations and has many important applications. For example, it leads to the proof of
the functional equations of certain automorphic L-functions via the Langlands–Shahidi
method and several Rankin–Selberg integrals. Unfortunately, this important property does
not hold for non-quasi-split groups. As a result, it seems rather difficult to develop a theory
of L-functions for these groups. The purpose of this paper is to study a family of repre-
sentations with unique models of GLk;D (both locally and globally) for a central division
algebra D over a local or global field F .

We first start with a simple example to get some basic ideas of this problem. Let D
be a central division algebra over a local field F of dimension d2. Then the only nilpo-
tent orbit of the group D� is the trivial orbit. As a consequence, only one-dimensional
representations of D� have unique models and most of the representations do not support
unique models.

Similarly, for GLk;D , it is not difficult to see that most representations do not have
unique models, either. In this article, we would like to search for representations of GLk;D
with unique models.

A natural method of constructing representations of GLk;D is the Jacquet–Langlands
correspondence. The Jacquet–Langlands correspondence (as in [12]) for discrete series
representations says that there is a bijection between discrete series representations of
GLk;D and GLkd satisfying a character identity. This correspondence was later extended
in [4, 5] to allow unitary representations as well. For our purpose, we would like to take
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the latter version for the following two reasons. First, it does produce more representations
than the discrete series version. Second, it is also local-to-global compatible and is more
suitable if we are aiming for some global applications.

For an admissible representation � of a p-adic group, a result of Mœglin–Waldspurger
[27] says that the dimension of a certain generalized Whittaker models for � is related to
the leading coefficients of the local character expansion of � . As a result, one hope that the
Jacquet–Langlands transfer of appropriate representations of GLkd (with suitable unique
generalized Whittaker models) might give some desired representations of GLk;D as the
Jacquet–Langlands transfer satisfies a character identity. It turns out that, at least in the
non-Archimedean case, this idea works for the Speh representations of GLkd .

The Speh representations were first studied in the real case and later this construc-
tion was also extended to the p-adic case. Locally, we view the construction of the Speh
representations as the following:

� 7! Speh.�; n/

where � is an irreducible generic unitary representation of GLk and Speh.�;n/ is the “small-
est” piece of a highly reducible induced representation defined using � (see Remark 4.6).
A key property of the Speh representations is that the maximal nilpotent orbit that sup-
ports generalized Whittaker models is .kn/. Moreover, the dimension of such generalized
Whittaker models is 1. We now observe that if n D dn0 for some n0, then the nilpotent
orbit .kn/ is an orbit that “comes from” GLkn0;D .

Our attempt is to define

SpehD.�; n/ WD jLJj
�
Speh.�; nd/

�
:

Here jLJj is the Jacquet–Langlands transfer for unitary representations in [4, 5]. Note
that SpehD.�; n/ is a representation of GLkn;D . This definition works both locally and
globally.

Our main theorem is the following.

Theorem 1.1 (Corollary 6.15 and Theorems 4.13, 5.8, and 5.9). For the representation
SpehD.�; n/ of GLkn;D , we have the following:

(1) (Local vanishing result) For any nilpotent orbit O greater than or not comparable
with .kn/D , the representation Speh.�; n/ does not have generalized Whittaker
models associated to O.

(2) (Local multiplicity one result) The Archimedean case is based on certain natural
hypotheses (Hypotheses 6.8 and 6.14). Then

dim HomN.kn/D

�
SpehD.�; n/;  .kn/D

�
� 1:

Here, the pair .N.kn/D ;  .kn/D / is the unipotent subgroup and character used in
the definition of the generalized Whittaker models associated to the nilpotent orbit
.kn/D . Moreover, in the non-Archimedean case, this dimension is exactly 1.
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(3) (Global result) The maximal nilpotent orbit that supports a nonzero global gener-
alized Whittaker coefficient for SpehD.�; n/ is .kn/D .

In the real case, the Speh representations originally refer to SpehR.�; 2/, where � is a
discrete series representation of GL2.R/. The representation SpehH.�; 1/ can be viewed
as quaternionic analogs of the Speh representations. We call them quaternionic Speh rep-
resentations.

Let us now say a few words regarding the proofs. As we indicated above, the non-
Archimedean case can be done using the character identity without too much trouble. The
more difficult part is deal with the Archimedean and global theory.

The Archimedean version of the result of Mœglin–Waldspurger is not known at the
moment. Partial results can be found in [14, 17] and these allow us to settle the vanishing
part. For the multiplicity one part, we need two natural hypotheses (Hypotheses 6.8 and
6.14). The idea is as follows. The definition of Speh representations is given by induction.
Thus we first use Hypothesis 6.14 to reduce to the case when � is a discrete series. In the
case of discrete series, we use a global method in [22]. In this paper, Kazhdan–Patterson
used a global method to prove that the local components of the theta representations at
bad primes support unique Whittaker models if the same holds for unramified places.
This method can be adapted to our case, under certain natural hypothesis (Hypothesis 6.8)
on the Kirillov models for representations of GLk;D . This only treats representations that
can be realized as local components of global representations, but should be sufficient for
applications.

Hang Xue suggested to us that in the minimal case, � 7! SpehD.�; 1/ can be realized
using the theta correspondence. Thus, in this particular case, the desired unique model is
a consequence of a result by Gomez–Zhu [16]. We will explain this in Section 4.9.

The global correspondence is proved using the method of the trace formula. As a
result, it seems difficult to gain information regarding the Fourier coefficients. In [22],
another method was used to show that theta representations in certain cases are globally
generic. This is again adaptable to our case to prove a base case, and we prove the general
case using an induction-by-stages argument.

We end this introduction by saying a few words regarding some potential applications
of our results. Here, we assume that F is a global field and A is the ring of adeles of F .
The first application is the twisted doubling integrals [10]. The twisted doubling method
is a generalization of the doubling method. It gives a family of Rankin–Selberg integrals
that represents the tensor product L-function L.s; � � �/ for � of a classical group, and �
of a general linear group GLk . A key ingredient in the construction is the use of the Speh
representations, which can be viewed as

� 2 DScusp
�

GLk.A/
�
7! Speh.�; n/ 2 DS

�
GLkn.A/

�
for every positive integer n. Here, DS.GLk.A// denotes the set of discrete series rep-
resentations of GLk.A/ and the subscript cusp indicated cuspidal representations. The
unfolding argument and the Eulerian property rely on the fact that the representation
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Speh.�; n/ is supported on a sufficiently small nilpotent orbit and admits unique mod-
els of degenerate type at every local place. To extend the twisted doubling integrals to the
quaternion unitary groups (see [9]), we need an analogous construction

� 2 DScusp
�

GLk.A/
�
7! SpehD.�; n/ 2 DS

�
GLkn;D.A/

�
for a positive integer n and a central division algebra D over F . We also have to prove
analogous properties for these representations. This is what we are seeking for in this
paper.

Another application is related to Lapid–Mao [24]. In this paper, a local version of the
Rankin–Selberg convolution of two Speh representations is given and several properties
are studied. It is also mentioned that a global version is possible by convolving two global
Speh representations modulo some regularization problem. We would like to suggest that,
one can take convolution of two representations of the form SpehD.�; 1/ and its local
integrals will also be the ones studied by Lapid–Mao. It is possible for SpehD.�; 1/ to be
cuspidal so that no regularization is necessary.

The rest of the paper is organized as follows. In Section 2 we recall some preliminary
results. In particular, we review the classification of unitary representations of GLk;D . We
review the extended Jacquet–Langlands correspondence, following [4, 5], in Section 3.
In Section 4, we define the Speh representations over central division algebras locally
and study some properties. In particular, the non-Archimedean part of Theorem 1.1 is
proved and Section 4.8 treats the vanishing part in the Archimedean case. We start the
global investigation in Section 5. Section 6 proves the global non-vanishing statement.
Moreover, the uniqueness part in the Archimedean case is studied using global methods
in Section 6.5. In Appendix A, we prove a result related to Kirillov models for GLk;D in
the non-Archimedean case.

2. Preliminaries

Let F be a local field of characteristic zero. Let D be a central division algebra over F of
dimension d2. For a positive integer k, set Gk D GLk.F / and G0

k
D Gk;D D GLk.D/.

From now on we identify a smooth representation of finite length with its equivalence
class, so we consider two equivalent representations as being equal.

We introduce the following notation:

• For an admissible representation � , we denote �� the function character of � . This is
a map which is stable under conjugation and defined on the set of regular semisimple
elements of Gk .

For all positive integers k, we fix the following notations:

• Irrk;D: the set of irreducible smooth representations of Gk;D
• Dk;D: the subset of essentially square integrable representations in Irrk;D
• DD D tk�1Dk;D
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• Ck;D: the subset of cuspidal representations in Dk;D

• Irru
k;D

(resp. Du
k;D

, Cu
k;D

): the subset of unitary representations in Irrk;D (resp. Dk;D ,
Ck;D)

• Irreu
k;D

: the subset of essentially unitary representations in Irrk;D
• Rk;D: the Grothendieck groups of admissible representations of finite length of Gk;D
• � D �k;D: the character of Gk;D , defined by the absolute value of the reduced norm of

the determinant

• �: the standard notation for normalized parabolic induction; see also [8].

Moreover, all the induced representations are normalized.
Let gk;D be the Lie algebra of Gk;D . The coadjoint nilpotent orbits in g�

k;D
are clas-

sified by partitions of k. A typical orbit is denoted by .kn11 � � � k
nm
m /D with k1n1 C � � � C

kmnm D k.
WhenD D F , we usually drop the subscript in the above notations. For example, .1k/

is the trivial orbit in g�
k

.
We introduce the following observation which may be useful when considering local-

to-global questions. LetD0 DMn.D/. Then Gk;D0 ' Gkn;D . We can fix such an isomor-
phism and the nilpotent orbit .k1 � � �km/D0 corresponds to the nilpotent orbit .kn1 � � �k

n
m/D .

For nilpotent orbits O D .kd1 � � � k
d
m/ of GLkd and O0 D .k1 � � � km/D of GLk;D , we

say that they correspond to each other and write O $ O0.

2.1. Unitary dual

In this section, we review the classification of the unitary dual of Gk;D . The case of Gk is
also included and this case is originally proved in [33, 36]. The reader is referred to [4, 5]
for more details.

Let � 2 Dl;D (meaning: essentially square-integrable modulo center). Consider � �
�˛� with ˛ > 0. There exists a smallest number ˛0 > 0 such that � � �˛0� is reducible.

Definition 2.1. Let � 2 Dl;D . Set �� D �˛0 , where ˛0 is the smallest real number ˛ > 0
such that � � �˛� is reducible.

For � 2 Dl;D and a positive integer n, we define u.�; n/ to be the Langlands quotient
of

�.n�1/=2� � � �.n�3/=2� � � � � � � �.1�n/=2� �:

The representation u.�; n/ is an irreducible representation of Gln;D .
For � 2 Dl;D , a positive integer n and a real number ˛ 2 .0; 1=2/, we denote by

�.u.�; n/; ˛/ the induced representation

�˛�u.�; n/ � �
�˛
� u.�; n/:

The representation �.u.�; n/; ˛/ is also irreducible.
The unitary dual of Gk;D is given as follows.
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Theorem 2.2. Let UD be the set of all representations of type u.�; n/ or �.u.�; n/; ˛/
where l; n range over all positive integers, � 2 Du

l;D
and ˛ 2 .0; 1=2/. Then we have the

following:

(1) all the representations in UD are unitary;

(2) any product of representations in UD is irreducible and unitary;

(3) every irreducible unitary representation � of Gk;D is a product of representations
in UD .

We refer the reader to [5, Section 7] for a comprehensive history of this result.

2.2. Classification of the generic unitary dual

The generic unitary dual of Gk is given as follows.

Theorem 2.3. Let Ugen be the set of all representations of type u.�; 1/ or �.u.�; 1/; ˛/
where l range over all positive integers, � 2 Du

l
and ˛ 2 .0; 1=2/. Then we have the

following:

(1) all the representations in Ugen are unitary and generic;

(2) any product of representations in Ugen is irreducible generic and unitary;

(3) every irreducible generic unitary representation of Gk is a product of representa-
tions in Ugen.

We refer the reader to [5, Section 8] for more details.

2.3. The local Jacquet–Langlands correspondence

Let g 2 Gkd and g0 2 Gk;D . We say that g corresponds to g0 if both g and g0 are regular
semisimple and have the same characteristic polynomial. We shortly write g$ g0. Denote
Gkd;d the set of elements g 2 Gkd such that there exists g0 2 Gk;D with g $ g0. (Note
that this set is defined using the characteristic polynomial, so it depends on d only.)

The following theorem is proved in [12] if the characteristic of the base field F is zero
and [2] for the nonzero characteristic case.

Theorem 2.4. There is a unique bijection C WDkd !Dk;D such that for all � 2Dkd we
have

�� .g/ D .�1/
kd�k�C.�/.g

0/

for all g 2 Gkd and g0 2 Gk;D such that g$ g0.

We identify the centers of Gkd and Gk;D via the canonical isomorphism. Thus the
correspondence C preserves central characters. In particular, � 2 Du

kd
if and only if

C.�/ 2 Du
k;D

.

2.4. Classification of Dk;D

In this section, we review some necessary results on the classification of the discrete series
representations.



Quaternionic Speh representations 909

2.4.1. The case D D F , non-Archimedean. The classification of Dk is given in terms
of Cl , l jk.

Let l and n be two positive integers and set kD ln. Let � 2 Cl . Then the representation

� � �� � � � � � �n�1�

has a unique irreducible quotient � . The representation � is an essentially square inte-
grable representation ofGk . Notation: � D Z.�;n/. Every � 2Dk is obtained in this way
and l; n and � are determined by � . (See [37, Section 9].) Moreover, for � 2 Dk , �� D �.

We also define Zu.�; n/ to be the unique irreducible quotient of

�.1�n/=2� � �.3�n/=2� � � � � � �.n�1/=2�:

This is a unitary representation.

2.4.2. The case of general D, non-Archimedean. Let l be a positive integer and �0 2
Cl;D . Then � D C�1.�0/ is an essentially square integrable representation of Gdl . We
may write � D Z.�; p/ for some p and � 2 Cdl=p . Set s.�0/ D p. Then it is known that
��0 D �

s.�0/.
Let n be a positive integers and set k D ln. Then the representation

�0 � ��0�
0
� � � � � �n�1�0 �0

has a unique irreducible quotient � 0. The representation � 0 is an essentially square inte-
grable representation of Gk;D . Notation: � 0 D T .�0; n/. Every � 0 2 Dk;D is obtained in
this way and l; n and �0 are determined by � 0. We then set s.� 0/ D s.�0/. For � 0 2 Dk;D ,
we have �� 0 D �s.�

0/. (For this classification, see [34].)

2.4.3. Some notations. Let � 0 2Du
k;D

. For any positive integer n, recall that u.� 0; n/ the
Langlands quotient of the induced representation

�
.n�1/=2
� 0 � 0 � �

.n�3/=2
� 0 � 0 � � � � � �

.1�n/=2
� 0 � 0:

We denote by Nu.� 0; n/ the Langlands quotient of the induced representation

�.n�1/=2� 0 � �.n�3/=2� 0 � � � � � �.1�n/=2� 0:

Both u.� 0; k/ and Nu.� 0; k/ are irreducible representations.

2.4.4. The Archimedean case. We refer the reader to [5] for a comprehensive discussion.
We first discuss the real case. In this case, DR consists of the following representations:

• the unitary characters of R�;

• the Langlands quotient of the induced representation

��n � ���n

for a positive integer n.

For all � 2 DR, �� D �.
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In the case F D C, the set DC is the set of unitary characters of C�.
Finally, if D D H is the unique quaterion algebra over R, then DH consists of all the

irreducible finite-dimensional representations of H�. Moreover, �� D �2 if dim � D 1;
�� D � if dim � > 1.

2.5. The involution

We need the Aubert involution in the non-Archimedean case. We will use the notation
only and will not use any explicit calculation.

Aubert defined in [1] an involution of the Grothendieck group of smooth represen-
tations of finite length of a reductive group over a local non-Archimedean field. The
involution sends an irreducible representation to an irreducible representation up to a sign.
We specialize this involution toGk (resp.Gk;D) and denote it ik (resp. i 0

k
). We will write i

and i 0 when the index is not relevant or it is clearly understood. With this notation we have
the relation i.�1/� i.�2/D i.�1 � �2/, i.e., “the involution commutes with the parabolic
induction”. The same holds for i 0. The reader may find all these facts in [1].

If � 2 Irrk , then one of i.�/ and �i.�/ is an irreducible representation. We denote it
by ji.�/j. We denote ji j the involution of Irrk defined by � 7! ji.�/j. The same facts and
definitions also hold for i 0.

3. Local Jacquet–Langlands correspondence

In order to define a global Jacquet–Langlands correspondence for automorphic representa-
tions, it is not sufficient to transfer only square integrable representations as in the classical
theory (for example, see [12]). It would be necessary to transfer at least the local compo-
nents of global discrete series. This was achieved in [4, 5]. In these two papers, the local
transfer for all unitary representations is established. A global correspondence for discrete
series compatible with the local transfer is also proved.

In this section, we review the Jacquet–Langlands correspondence as proved in [4, 5].
The notations are C (for discrete series representations), LJ (for the Grothendieck ring)
and jLJj (for all unitary representations), respectively.

3.1. The extended correspondence

The correspondence C can be extended in a natural way to a correspondence between the
Grothendieck groups.

Theorem 3.1 ([3]). (1) For all positive integers k, LJk is the unique map from Rkd to
Rk;D such that for all � 2 Rkd , we have

��.g/ D .�1/
kd�k�LJk.�/.g

0/ (3.1)

for all g$ g0.

(2) The maps LJk commute with the parabolic induction.
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Remark 3.2. In [3], the correspondence C�1 was extended to a correspondence JL from
Rk;D to Rkd . As a result, the notation LJ was used in the reverse direction. We use the
same notation here.

We sometimes drop the subscript k in the notation LJk when it is clear from the
context. We say that � 2 Rkd is d -compatible if LJk.�/¤ 0. This means that there exists
g 2 Gkd;d such that ��.g/ ¤ 0.

In this paper, we only need to understand this correspondence for unitary representa-
tions. By the classification of unitary representations of Gk , it suffices to understand LJ
for representations of the form u.�; n/.

Remark 3.3. The convention in [5, Section 4] (the Archimedean case) is slightly different
from [4]. To unify the presentation, we also take the convention in [4] in the Archimedean
case.

Moreover, in the Archimedean case, the sign in (3.1) is not explicitly given in [5]. But
it is not difficult to see that the calculation can be done as in the non-Archimedean case.

3.2. Transfer of u.�; n/: non-Archimedean case

We now collect results regarding the transfer of u.�; n/ (see [4, Section 3.2]).
Let n; l; q be positive integers. Set k D lnq. Let � 2 Cu

q and � D Zu.�; l/ 2 Du
lq

,
� D Zu.�; n/ 2 Du

nq .
Let s be the smallest positive integer such that d j sq. We first define the transfer of

u.�; n/. This question has no meaning unless d j k (i.e., s j ln) which we shall assume.

Proposition 3.4 ([4, Proposition 3.7]). (1) If d j lq (i.e. s j l), then � 0 2 C.�/ is well
defined; we have s D s.� 0/ and

LJ
�
u.�; n/

�
D Nu.� 0; n/:

(2) If d j nq (i.e. s j n), then � 0 D C.�/ is well defined; we have s D s.� 0/ and

LJ
�
u.�; n/

�
D "

ˇ̌
i 0
�
Nu.� 0; l/

�ˇ̌
where " D 1 if s is odd and " D .�1/

ln
s if s is even.

(3) If d does not divide neither lq, nor nq (i.e. s does not divide neither l nor n), then
LJ.u.�; n// D 0.

Remark 3.5. It is easy to see that if q D 1, then s D d .

3.3. The Archimedean case

The above discussion can be carried out for the Archimedean case. We recall the necessary
results here. For more details, see [5].

Let XR be the set of unitary characters of R. For � 2 XR and a positive integer n, we
define �n WD � ı � and �0n WD � ı �n;H.
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The computation of LJ on representations of the form u.�; n/ is given as follows
[5, Theorem 13.8]. We remind the reader that the definition of LJ in [5, Section 4] is
slightly different from what we use here.

(1) LJ.�2n/ D �0n and LJ.�.�2n; ˛// D �.�0n; ˛/ for all � 2 XR and ˛ 2 .0; 1=2/.

(2) If ı 2 Du
2 is such that dim C.ı/ > 1, then

LJ
�
u.ı; n/

�
D .�1/nu

�
C.ı/; n

�
;

LJ
�
�
�
u.ı; k/; ˛

��
D �

�
u.C.ı/; k/; ˛

�
for all ˛ 2 .0; 1=2/.

(3) If ı 2 Du
2 is such that C.ı/ is a one-dimensional representation �01, then

• LJ.u.ı; n// D �.�0
n=2
; 1=2/ and LJ.�.u.ı; n/; ˛// D �.u.�0

n=2
; 1=2/; ˛/ if n

is even and ˛ 2 .0; 1=2/;

• LJ.u.ı;n//D.�1/n�0
.nC1/=2

��0
.n�1/=2

and LJ.�.u.ı;n/˛//D�.�0
.nC1/=2

; ˛/

� �.�0
.n�1/=2

; ˛/ if n ¤ 1 is odd and ˛ 2 .0; 1=2/;

• LJ.ı/ D �01 and jLJj.�.ı; ˛// D �.�01; ˛/ for ˛ 2 .0; 1=2/.

3.4. Transfer of unitary representations

An irreducible unitary representation � is written as a product of elements in UF . Note
that LJ commutes with parabolic induction. If � 2 Irru

kd
, then LJ.�/ D 0 or LJ.�/ is an

irreducible unitary representation � 0 of Gk;D up to a sign. We write � 0 D jLJj.�/. So we
have a map jLJj from the set of d -compatible irreducible unitary representations of Gkd
to the set of unitary representations of Gk;D .

As an immediate consequence, we have the following result.

Theorem 3.6 ([4, 5]). If � is a d -compatible irreducible unitary representation of Gkd ,
then there exists a unique irreducible unitary representation � 0 ofGk;D and a unique sign
"� 2 ¹�1; 1º such that

��.g/ D "��� 0.g
0/

for all g 2 Gnd;d and g$ g0.

Remark 3.7. The signs "� and � 0 can be computed explicitly. We refer the reader to
[4, Section 3.3] for more details. In this paper, we only need to calculate " for a special
class of representations.

4. Quaternionic Speh representations

The purpose of this section is to define a class of representation of Gk;D with unique
models. They are defined using the Jacquet–Langlands correspondence of the Speh repre-
sentations.
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4.1. The Speh representations

In this section we recall the construction of the Speh representations and discuss some of
their properties.

We now consider the local situation. Let F be a local field. Let � be an irreducible
unitary generic representation of Gk . We attach a representation Speh.�; n/ of Gkn induc-
tively as follows.

If � is a discrete series representation, then we define Speh.�; n/ WD u.�; n/.
Let � be an irreducible unitary generic representation of Gk . By the classification of

unitary representations [33, 36], there exist discrete series representations �1; : : : ; �m and
s1; : : : ; sd 2 .�1=2; 1=2/ such that

� D �1�
s1 � � � � � �m�

sm :

The order of 1; : : : ; m does not change the isomorphism class of � . We define

Speh.�; n/ D Speh.�1; n/�s1 � � � � � Speh.�m; n/�sm :

By [27, Section I.11], Speh.�;n/ is irreducible and thus well defined (i.e. the isomorphism
class of Speh.�; n/ does not depend on the order of 1; : : : ; m).

4.2. Digression on generalized Whittaker models

An important property of the Speh representations is that they are degenerate represen-
tations with unique models. We now briefly recall the theory of generalized Whittaker
models and related topics. This was originally studied in [27]. In this paper we use [14] as
the main reference. The reader is also referred to [18] for a more comprehensive discus-
sion on the history of the subject.

Let G be a reductive group over F . Let g denote the Lie algebra of G and g� denotes
its dual space. From now on, we fix a nontrivial unitary additive character

 W F ! C1

such that if F is Archimedean we have

 .x/ D exp
�
2�i<.x/

�
and if F is non-Archimedean, then Ker. / is the ring of integers.

A Whittaker pair is an ordered pair .S; '/ 2 g � g� such that S is semisimple and the
eigenvalues of the adjoint action ad.S/ are rational numbers, and that ad�.S/.'/ D �2'.
Given such a Whittaker pair, we define a degenerate Whittaker model for G as follows
(we refer the reader to [14, Section 2.5] for more details). Under the adjoint action ad.S/,
g can be written as a direct sum of eigenspaces. Let u � g be the sum of all eigenspaces
of ad.S/ with eigenvalues greater than or equal to 1. Then u is a nilpotent subalgebra. Let
U WD Exp.u/ � G be the corresponding unipotent subgroup. We now have the following
cases:

• If ' D 0, then we set WS;0 WD indGU .C/;
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• Assume now that ' ¤ 0. Then let n be the radical of the anti-symmetric form on u

given by
!'.X; Y / WD '

�
ŒX; Y �

�
and set N WD Exp.n/. Set n0 WD n \ Ker.'/ and let N 0 WD Exp.n0/. Then N 0 is a
normal subgroup of U and U=N 0 is a Heisenberg group whose center is N=N 0. The
element ' defines a character of N=N 0 given by

 '
�

exp.X/
�
WD  

�
'.x/

�
:

Let �' denote the oscillator representation of U=N 0 with central character  ' and
consider it as a representation of U . We now define

WS;' WD indGU .�'/:

The element ' determines a unique nilpotent element f' via the Killing form pairing.
If S is a neutral element for f' , then .S; '/ is called a neutral pair and WS;' is called a
neutral model or a generalized Whittaker model. The generalized Whittaker model WS;'

does not depend on the choice of a neutral S , and thus is always denoted W' . Moreover,
conjugate nilpotent elements give rise to isomorphic generalized Whittaker models, thus
for a nilpotent coadjoint orbit O, we also use the notation WO .

Let M.G/ denote the category of smooth admissible representations of G. For � 2
M.G/ and a nilpotent coadjoint orbit O � g�, we set

WO.�/ WD HomG.WO ; �
�/:

Here, �� denotes the dual representation of � . Let WO.�/ denote the set of all nilpo-
tent coadjoint orbits O with WO.�/ ¤ 0 and WS.�/ denote the set of maximal orbits in
WO.�/ with respect to the closure ordering. We call WS.�/ the Whittaker support of � .

The follow result explains the relation of WO.�/ and the usual definition of models
for representation.

Lemma 4.1 ([14, Lemma 2.5.2]). Let l � u be a maximal isotropic subalgebra and L WD
Exp.l/. We use the same notation  ' to denote its trivial extension of  ' to L. Let � 2
M.G/. Then

WO.�/ Š HomL.�;  �1' /:

This can also be done in the global situation using generalized Whittaker coefficients.
We use notation FO.f / for an automorphic form f to denote such generalized Whittaker
coefficients.

4.3. Explicit cases

In the main body of this paper, we only use the explicit definition of the generalized
Whittaker models for GLkn;D associated to the orbit .kn/D . We recall the construct it
here.
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Definition 4.2. The unipotent subgroup N.kn/D of GLkn;D is defined as follows:

N.kn/D D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
u j u D

0BBBBB@
In X12 � � � � � � �

In X23 � � � �

: : : � � � � � �

In Xk�1;k
In

1CCCCCA 2 GLkn;D

9>>>>>=>>>>>;
:

In other words, it is the set of upper triangular unipotent n � n block matrices. We define
a character  .kn/D W N.kn/D ! C� by

 .kn/D .u/ D  
�1
�

tr.X12 CX23 C � � � CXk�1;k/
�
:

When n D 1, this gives the usual “Whittaker” coefficient. (Note that we add an extra
�1 in the definition of  .kn/D just for ease of notations later.)

It is easy to see that

W.kn/D Š indGLkn;D
N.kn/D

 �1.kn/D ; W.kn/D .�/ Š HomN.kn/D
.�;  .kn/D /:

If W.kn/D .�/ ¤ 0, we sometimes say that � supports a non-vanishing .k; n/D-model.

Remark 4.3. Note that the above definition works when D is a central simple algebra as
well. Sometimes it is convenient to use this notation so we discuss it here.

Let D D Mm.D
0/ for a central division algebra D0 over F . Then

GLn;D D GLmn;D0 and .N.kn/D ;  .kn/D / D .N.kmn/D0 ;  .kmn/D0 /:

4.4. The Whittaker support of the Speh representations

The Whittaker support of the Speh representations is already calculated.

Theorem 4.4 (see [11] and references there). (1) We have

WS
�
Speh.�; n/

�
D
®
.kn/

¯
:

(2) dimW.kn/.Speh.�;n//D1. In other words, the Speh representation supports unique
models of degenerate type.

Remark 4.5. We emphasize that the first statement consists of the following two sub-
statements:

• For every nilpotent coadjoint orbit O larger than or not comparable with .kn/,

WO

�
Speh.�; n/

�
D 0I

• W.kn/.Speh.�; n// ¤ 0.

In some papers, it is said that the nilpotent orbit attached to Speh.�; n/ is .kn/.
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Remark 4.6. It is expected that Speh.�; n/ is the “smallest” piece of the highly reducible
induced representation

�.n�1/=2� � �.n�3/=2� � � � � � �.1�n/=2�: (4.1)

For example, when F is non-Archimedean and � is a supercuspidal representation,
using the theory of derivatives [37], one can show that .kn/ is the smallest orbit that
appears in the Whittaker supports of subquotients of (4.1).

4.5. The construction

Speh representations over D are defined as the Jacquet–Langlands transfer of the Speh
representations.

Definition 4.7. For � 2 Irreu
gen.Gk/ and a central division algebra D, we define

SpehD.�; n/ D jLJj
�
SpehF .�; nd/

�
;

where jLJj is the Jacquet–Langlands correspondence from GLknd to GLkn;D .

Remark 4.8. For a positive integer m, we also define

SpehMm.D/
.�; n/ D SpehD.�;mn/:

This is used in the global construction.

Remark 4.9. This construction is local-to-global compatible since the Jacquet–Langlands
correspondence in [4] is local-to-global compatible.

We observe that, from Proposition 3.4 and the definition of jLJj, SpehF .�; nd/ is
always d -compatible. Explicit constructions of SpehD.�;n/ can also be written done using
the Aubert involution.

We would like to understand the Whittaker support of SpehD.�; n/. In the non-Ar-
chimedean case, this can be done using the character identity and Theorem 4.11. In the
Archimedean case, we also prove some partial results. We will prove further results using
global methods in Section 6.5.

4.6. Sign in the character identity

From [4, Proposition 3.9], the representations SpehD.�; n/ and SpehF .�; nd/ satisfy a
character identity

�SpehF .�;nd/.g/ D "�SpehD.�;n/.g
0/

with " 2 ¹˙1º and g$ g0. We first show that " D 1.

Proposition 4.10. We have

�SpehF .�;nd/.g/ D �SpehD.�;n/.g
0/

for all g 2 GLnkd and g 2 GLnk;D such that g$ g0.
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Proof. We first treat the non-Archimedean case. Recall that " is the product of .�1/kn.d�1/

and the sign coming from the definition of LJ.
It suffices to prove the result when � is a discrete series representation. In this case, we

assume that � DZu.�; l/ for � 2 Cp where kDpl . We only need to use Proposition 3.4 (2)
to calculate LJ.Speh.�; nd// D LJ.u.�; nd//.

Let � D Zu.�; nd/. Let s be the smallest integer such that d j sp. Let � 0 D C.�/.
Then

LJ
�
u.�; nd/

�
D "

ˇ̌
i 0
�
Nu.� 0; l/

�ˇ̌
;

where " D 1 if s is odd and " D .�1/
ndl
s if s is even.

We now calculate the sign in the character relation. We first consider the case when s
is odd. We need to show that 2 j kn.d � 1/. We write

kn.d � 1/ D
sp

d

dnl

s
.d � 1/:

Note that both sp=d and d=s are integers. We now have two cases:

• d � 1 is even: then the result is true.

• d is even: since s is odd and d is even, dnl=s must be an even integer. The result is
true as well.

We now consider the case when s is even. We need to show that 2 j dnl
s
� kn.d � 1/.

Note that d must be even. Therefore, it suffices to show that

2 j
dn

s
� pn or 2 j

.d � sp/n

s
:

We now write sp D da. We claim that a must be odd. Otherwise, let a D 2a0. Then
d j sp=2. This contradicts with our choice of s. Therefore, a is an odd integer and

.d � sp/n

s
D
d

s
n.1 � a/

is an even integer. This completes the proof for the non-Archimedean case.
The Archimedean case is easier. It suffices to prove the result for the discrete series

representations. Recall that for � 2 Dk ,

�Speh.�;2n/.g/ D .�1/
2kn�kn�LJ.Speh.�;2n//.g

0/ D .�1/kn�LJ.Speh.�;2n//.g
0/:

By Section 3.3, we have the following:

• k D 1: we have that LJ.Speh.�; 2n// D .�1/njLJj.Speh.�; 2n//.

• k D 2: we have that LJ.Speh.�; 2n// D jLJj.Speh.�; 2n//.

This proves that if � is a discrete series representation of either GL1.R/ or GL2.R/, then

�Speh.�;2n/.g/ D �SpehH.�;n/
.g0/

for g$ g0.
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4.7. Whittaker supports in non-Archimedean case

In this section, we determine WS.SpehD.�; n// and the dimension of the corresponding
model in the non-Archimedean case. This is an easy consequence of the main result of
[29] and Proposition 4.10. The main idea is to use the character identity and a result of
Mœglin–Waldspurger [26] and Varma [35].

To proceed, we introduce another nilpotent coadjoint orbit associated to a representa-
tion. For � 2M.G/, its character �� admits the following character expansion at identity

��
�

exp.Y /
�
D

X
O

cOb�O.Y /

valid for all regular semisimple Y in the lie algebra g such that Y is close enough to 0
[6, 19]. Here, the sum is over the set of nilpotent coadjoint orbits O in g�; b�O is the
function that represents the distribution that is the Fourier transform of the orbital integral
�O associated to O; cO D cO.�/ 2 C; and exp is the exponential map, or some suitable
substitute. Denote by WF.�/ the set of maximal elements in the set of orbits with nonzero
coefficients.

Theorem 4.11 ([26, Proposition I.11, Theorem I.16, and Corollary I.17], [35]). Assume
that F is non-Archimedean and G is algebraic. Let � 2M.G/. Then

(1) WF.�/ DWS.�/.

(2) For any O 2WF.�/, cO.�/ D dim WO.�/.

In the Archimedean case, only partial results are known (see [14, Section 3.3]).

Proposition 4.12. Suppose that � 2 Irrkd and � 0 2 Irrk;D . We consider that the character
expansion at the identity:

�� D
X

O

cOb�O and �� 0 D
X
O0

cO0b�O0 :

If the characters satisfy the following character identity:

�� D "��� 0 ;

then for O $ O0,
cO D "� � cO0 :

Proof. The proof in [29] only uses the character identity and therefore applies to our case
as well.

We now prove the following result.

Theorem 4.13. We have

WS
�

SpehD.�; n/
�
D
®
.kn/D

¯
:

Moreover,
dim HomN.kn/D

�
SpehD.�; n/;  .kn/D

�
D 1:
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Proof. This is an application of Proposition 4.12 and Theorem 4.11. We first prove the
vanishing part. Assume that there is an orbit O0 that is greater than or not comparable with
.kn/D such that O0 2WS.SpehD.�; n//. By Theorem 4.11, cO0 ¤ 0. By Proposition 4.12,
cO ¤ 0 for O $ O0. Note that O is either greater than or not comparable with .knd /.
Theorem 4.11 implies that there exists zO 2WS.Speh.�; nd// such that zO is either greater
than or not comparable with .knd /. This contradicts with the fact that WS.Speh.�;nd//D
¹.knd /º.

We have proved that any element in WS.SpehD.�; n// is contained in the closure of
.kn/D . Now from Theorems 4.4 and 4.11, we deduce that c.knd / D 1. This shows that
.kn/D 2WS.SpehD.�; n// and therefore WS.SpehD.�; n// D ¹.k

n/Dº.
By Proposition 4.12, we deduce that c.kn/D D 1 since .knd /$ .kn/D . The result now

follows by applying Theorem 4.11 again.

Remark 4.14. The following example explains why the usual Jacquet–Langlands cor-
respondence C does not work properly. Assume D is the unique non-split quaternion
algebra over a local field F . Let St be the Steinberg representation. Then C.St/ D 1D� .
The character relation reads

�St.g/ D ��1D� .g
0/

for g$ g0. The character expansion of �St is

�St D y�.2/ � y�.12/:

Since the Steinberg representation has a unique Whittaker model, c.2/ D 1. But this is not
related to the fact that 1D� being one-dimensional.

The Steinberg representation is not in the domain of jLJj so this representation is
irrelevant to us. Under jLJj, the trivial representation of GL2.F / corresponds to the trivial
representation ofD�. In this case, the fact of 1GL2 being one-dimensional is related to the
nilpotent orbit of 1D� .

4.8. Partial results in the Archimedean case

The proof in the previous section does not work well in the Archimedean case. This is
because the Archimedean version of Theorem 4.11 is unknown (see the discussion of
[18]). However, one direction is shown in [17].

We first recall some basics. Let G be a reductive Lie group with maximal compact
subgroup K, and let GC and KC be the complexification of G and K. Denote g; k; gC

and kC be the Lie algebra of G; K; GC and KC , respectively. Let � be an irreducible
admissible representation � of G. We briefly recall the two invariants of cycles associated
with � , one defined analytically and the other algebraically.

For � , one has an asymptotic expansion for the character �� in a neighborhood of 0
in g of the form

�� �

1X
iD�r

Di
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with ¹Diº being a set of tempered distributions on g. The asymptotic support AS.��/ �
g� is defined to be the union of the supports of the Fourier transforms yDi . It is known that
AS.��/ is a union of nilpotent orbits. We can view AS.��/ as a subset of g by identifying
g and g� by the Cartan–Killing form. We set

Ntr.�/ WD
®
O 2 N j O � AS.��/

¯
;

and set N max
tr .�/ to be the subset of maximal elements.

For a smooth representation � of a real reductive group G, one can define another
invariant AV.�/ – the annihilator variety of � . It is sometimes called the associated variety
of the annihilator of � . It is defined to be the set of zeros in g�C of the ideal in the symmetric
algebra S.gC/, which is generated by the symbols of the annihilator ideal of � in the
universal enveloping algebra. A result of Kostant–Rallis [23] says that AV.�/ is a finite
union of nilpotent orbit .gC=kC/

�. Identifying coadjoint orbits with adjoint orbits, and
using the Sekiguchi correspondence to identify the nilpotent KC-orbits in .gC=kC/

� with
the nilpotent G-orbits in g�, we define the set

Nalg.�/ WD
®
O 2 N j O � AV.�/

¯
;

and let N max
alg .�/ be the subset of maximal elements. It follows from [31] that

N max
tr .�/ D N max

alg .�/:

Proposition 4.15. For O0 2WS.SpehD.�; n//, O0 is a contained in the closure of .kn/D .

Proof. Let us prove this result by contradiction. If O0 is not contained in the closure of
.kn/D , then O0 is either greater than or not comparable with .kn/D . In either case, O0 is
of the form .k1 � � � / with k1 > k. Recall that the definition of WS.SpehD.�; n// guaran-
tees that O0 is a maximal nilpotent orbit that support generalized Whittaker models for
SpehD.�; n/.

Corollary 4 of [25] states if WO0.�/¤ 0, then O0 �AV.�/. Without loss of generality,
we may assume that O0 2 N max

alg .�/. Then O0 2 N max
tr .�/ as well and therefore cO0 ¤ 0.

The Archimedean analogue of Prasad also holds. As a consequence, from the character
identity, we deduce that cO ¤ 0 when O $ O0. Here, cO are the coefficients appearing
in the character expansion for the representation Speh.�; 2n/. Now [17, Theorem B] or
[14, Section 3.3] implies that

O 2WO
�

Speh.�; 2n/
�
;

contradicting Theorem 4.4. This completes the proof.

Remark 4.16. The relation between the leading coefficient and the dimension of gener-
alized Whittaker models is not known yet. Moreover, in order to prove the non-vanishing
part, we need an extension of results in [17] to GLk;D .

In Section 6.5, we use global arguments to prove some partial results towards the non-
vanishing and multiplicity one.
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4.9. A special instance

Regarding the multiplicity one result, we now give a proof in the minimal case using the
theta correspondence. The following proof follows from a suggestion by Hang Xue.

In this section only, let D be the unique non-split quaternion algebra over a local
field F .

Proposition 4.17. For an irreducible admissible representation of D�,

dim HomN.2/D

�
SpehD.�; 1/;  .2/D

�
D 1:

Proof. We use the theta correspondence for the similitude pair�
GSp.2/;GSO.5; 1/

�
:

Observe that we have the following isomorphisms:

GL.2/ D GSp.2/;

GSO.5; 1/ D .GL2;D �GL1/=
®
.z � Id; z�2/ j z 2 GL.1/

¯
:

Via these isomorphisms, an irreducible representation of GSO.5; 1/ is of the form � � �
where � is a representation of GL2;D and � is a square root of the central character of � .

The theta correspondence from GL2 to GSO.5; 1/ for discrete series representations
is given as follows:

� 7! ‚.�/ D Lg
�
�1=2C.�/ � ��1=2C.�/

�
� !� :

Here, Lg denotes the Langlands quotient of the induced representation considered and !�
is the central character of � . Note that the above induced representation is reducible if and
only if dim C.�/ > 1. We have

‚.�/ D SpehD.�; 1/� !� :

To proceed, we use the result of Gomez–Zhu [16] to relate generalized Whittaker
models of � and ‚.�/. The result of Gomez–Zhu says that there is an isomorphism

WO.�/ ' WO0
�
‚.�/

�
for two nilpotent orbits O and O0 that correspond to each other under the moment map.
Both GL2 to GSO.5; 1/ have two nilpotent orbits: the trivial one and the nontrivial one.
Under the moment map, the nontrivial ones correspond to each other. As a result, we have
an isomorphism between the Whittaker model of � and W.2/D .Speh.�; 1//. Now our result
follows from the uniqueness of Whittaker models for GL.2/.

Remark 4.18. Prasad also pointed to us that Proposition 4.9 can be considered as a special
instance of the Gross–Prasad conjecture for orthogonal groups. When dimC.�/D 1, it can
be proved directly; when dim C.�/D 1, the argument can be found in [30, Consequence 4
of Conjecture 1].
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5. The global Speh representations

From now on, let F be a global field and A be its ring of adeles. Let  be a nontrivial
additive character of F nA. Let D be a central division algebra over F of dimension d2.
We work in this setup unless otherwise specified.

In this section, we define the global Speh representations. Denote DSk (resp. DSk;D)
the set of discrete series of Gk.A/ (resp. Gk;D.A/).

5.1. The residual spectrum of Gk

We now recall the construction of the Speh representations in the global setup. A theorem
of Mœglin–Waldspurger [27] says that these consist of the residual spectrum of Gk .

Let m be a positive integer and � 2 DSm be a cuspidal representation. For a positive
integer n, the induced representation

Qn�1
iD0.�

n�1
2 �i�/ has a unique constituent � which

is a discrete series (i.e. � 2 DSmn). One has �v D Speh.�v; n/. As a result, we write
� D Speh.�; n/.

Discrete series of the groupsGk.A/ are all of this type, and n and � are determined by
� . Moreover, � is cuspidal if and only if n D 1. (By [4, Section 5.2] and [5, Section 18],
the same classification also holds for Gk;D.A/.)

The Speh representations admit an automorphic realization. We now recall the con-
struction. Let � be an irreducible cuspidal representation of GLm.A/. Let s D .s1; : : : ; sn/
2 Cn. We consider the following normalized induced representation

IndGLmn.A/
Pm;n.A/

��s1 ˝ � � � ˝ ��sn :

Here, Pm;n is the standard parabolic subgroup of GLmn whose Levi part is GLm � � � � �
GLm where GLm appears n times. Let f .s/ be a holomorphic section in the induced
representation. Then we can form an Eisenstein series

E
�
f .s/

�
.g/ D

X

2Pm;n.F /nGLmn.F /

f .s/.
g/:

By a result of Jacquet, the poles of this Eisenstein series occur at

s1 � s2 D s2 � s3 D � � � D sn�1 � sn D 1; s1 C � � � C sn D 0:

The residues of E.f .s// at this point give an automorphic realization of Speh.�; n/.
As in the local case, given a nilpotent orbit, one can define generalized Whittaker

coefficients FO of an automorphic representation � . We define WS.�/ to the set of maxi-
mal nilpotent orbits that support nonzero generalized Whittaker coefficients for � . The set
WS.Speh.�; n// is determined by the following result.

Theorem 5.1 ([13, 21]). We have WS.Speh.�; n// D ¹.kn/º.

Sometimes, we also say that the nilpotent orbit attached to Speh.�; n/ is .kn/.
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5.2. Global Jacquet–Langlands correspondence

Recall that D is a central division algebra over F of dimension d2. Let m 2 N�. Set A D
Mm.D/. For each place v of F , let Fv be the completion of F at v and set Av D A˝ Fv .
For each place v of F , Av ' Mrv .Dv/ for some positive integer rv and some central
division algebra Dv of dimension d2v over Fv such that rvdv D md . We will fix once and
for all an isomorphism and identify these two algebras. We say that Mm.D/ is split at a
place v if dv D 1. The set V of places where Mm.D/ is not split is a finite. For each v, dv
divides d , and moreover d is the least common multiple of the dv over all the places v.

Let Gm;D.F / be the group A� D GLm.D/. For every place v 2 V , set .Gm;D/v D
A0v D GLrv .Dv/. If v … V , we have identified the group GLrv .Dv/ and GLmd .Fv/. For
every finite place v of F , we setKv D GLrv .Ov/, where Ov is the ring of integers ofDv .
We fix then a Haar measure dgv on G0v such that vol.Kv/ D 1. For every infinite place v,
we fix an arbitrary Haar measure dgv on G0v .

We consider the Haar measure dg on G0.A/ which is the restricted product of the
measure dgv . We consider G0.F / as a subgroup of G0.A/ via the diagonal embedding.

If � is a discrete series of Gkd .A/ or Gk;D.A/, and v is a place of F , we denote �v
the local component of � at the place v. If � is a discrete series of Gkd .A/, we say that �
is D-compatible if for all v, �v is dv-compatible. Then LJv.�v/ ¤ 0 and jLJjv.�v/ is an
irreducible representation of G0v .

We now recall the global theorem. In the local setup, we have a map jLJj W � 7!
� 0 from the set of irreducible unitary d -compatible representations of Gkd to the set of
irreducible unitary representations of Gk;D .

Theorem 5.2 ([4, Theorem 5.1] and [5, Theorem 18.1]). There exists a unique map G
from the set of discrete series of Gk;D.A/ into the set of discrete series of Gkd .A/ such
that G.� 0/ D � implies jLJjv.�v/ D � 0v for all places v 2 V and �v D � 0v for all v … V .
The map G is injective and onto the set of D-compatible discrete series of Gkd .A/.

We also have the multiplicity one and strong multiplicity one theorems for Gk;D.A/.

Theorem 5.3 ([5, Theorem 18.1]). The multiplicity of every discrete series of Gk;D.A/
in the discrete spectrum is one. If two discrete series of Gk;D.A/ have isomorphic local
components at almost every place, then they are equal.

Proposition 5.4 ([5, Proposition 18.2]). Let � 2 DSk be a cuspidal representation. Let
s�;D be the least common multiple of s�v ;dv , v 2 V (see Proposition 3.4).

(1) Speh.�; n/ is D-compatible if and only if s�;D j n. Moreover, s�;D j d .

(2) G�1.Speh.�; s�;D//D � 0 2DSms�;D=d;D is cuspidal. In particular, G�1 sends cus-
pidal representations to cuspidal representations.

(3) Let � 0 be a cuspidal representation of someGk;D.A/. Write G.� 0/D Speh.�; s�;D/
and set �� 0 D �s�;D . For every positive integer m, the induced representation

�
.m�1/=2
� 0 � 0 � �

.m�3/=2
� 0 � 0 � � � � � �

.1�m/=2
� 0 � 0 (5.1)
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has a unique irreducible quotient which we denote by Speh0.� 0;m/. It is a discrete
series, and all discrete series are obtained for some cuspidal � 0 in this way. If
G.� 0/ D Speh.�; s�;D/, then G.Speh0.� 0; m// D Speh.�;ms�;D/.

As a special instance of this proposition, the Speh representation Speh.�; nd/ is D-
compatible for all central division algebra D over F . (This is because Speh.�v; nd/ is
already d -compatible and therefore dv-compatible.)

We would like to note that, as in the construction of Speh.�; n/, the representation
Speh0.� 0; n/ can also be constructed using residues of Eisenstein series attached to (5.1)
[4, Lemma A.5]. We omit the details here.

5.3. The global quaternionic Speh representations

We can now define the Speh representations for Gkn;D.A/.

Definition 5.5. For an irreducible cuspidal representation � of GLk.A/ and a positive
integer n, we define

SpehD.�; n/ D G�1
�
Speh.�; nd/

�
:

Remark 5.6. Sometimes we understand the construction in the following way. Consider
the following family of representations:®

G�1
�
Speh.�;m/

�
j m D 1; 2; : : :

¯
:

Then we have the following:

(1) the first occurrence (the index for the first nonzero member) is s�;D;

(2) the first occurrence gives a cuspidal representation;

(3) G�1.Speh.�; m// ¤ 0 if and only if s�;D j m. These representations can be con-
structed from G�1.Speh.�; s�;D// using residues of Eisenstein series.

In some sense, this is similar to the theta correspondence.

Remark 5.7. We have three notations related to the Speh representations. So let us sum-
marize them here:

• Speh.�;n/2DSkn where � 2DSk : this can be constructed using residues of Eisenstein
series;

• Speh0.� 0; n/ 2 DSkn;D where � 0 2 DSk;D: this can also be constructed using residues
of Eisenstein series;

• SpehD.�; n/ 2 DSkn;D where � 2 DSk : this is defined using the Jacquet–Langlands
correspondence.

Observe that SpehD.�; n/ is cuspidal only if n D 1. The representation SpehD.�; 1/ is
cuspidal if and only if s�;D D d . It is easy to construct examples such that SpehD.�; 1/ is
not cuspidal.
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For a fixed � , it is easy to find D such that SpehD.�; 1/ is cuspidal. In fact, if there
exists a place w such that �w is unramified and D does not split at w, then s�;D D d and
therefore SpehD.�; 1/ is cuspidal. (As a result, SpehD.�; 1/ is cuspidal for almost all D.)

5.4. Fourier coefficients

In this section, we consider generalized Whittaker coefficients for SpehD.�; n/.

Theorem 5.8. For any nilpotent orbit O greater than or not comparable with .kn/D ,

FO.�/ D 0 for all � 2 SpehD.�; n/:

Proof. This is a consequence of the local vanishing result.

We now state the global non-vanishing result. Here we consider the generalized Whit-
taker coefficient

F.kn/D .�/ WD

Z
N.kn/D

.F /nN.kn/D
.A/
�.u/ x .kn/D .u/ du:

Theorem 5.9. There exists � 2 SpehD.�; n/ such that

F.kn/D .�/ ¤ 0:

We will give a proof in the next section. Now we can say that the nilpotent orbit
.kn/D is the maximal nilpotent orbit which supports nonzero Fourier coefficients for
SpehD.�; n/.

6. A global non-vanishing result

The purpose of this section is to prove Theorem 5.9. The strategy here is to adapt [22, proof
of Theorem II.2.5] to our setting. In the global setting, for an algebraic group G, we write
ŒG� for G.F /nG.A/ for ease of notations. We first make some preparations.

6.1. Some observations

We start with some simple observations. In this section, let � be an irreducible cuspidal
automorphic representation of GLk.A/ and letD be a central division algebra over F . By
Theorem 5.4, if s�;D D d , then SpehD.�; 1/ is a cuspidal representation.

Definition 6.1. For an irreducible automorphic representation � of GLk;D.A/, we write
 k;D D  .k/D and define the  k;D-Whittaker function of � 2 � as follows:

W�.g/ D

Z
ŒNk;D �

�.ug/ x k;D.u/ du:
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It is straightforward to see that

W�.g/ D F.k/D
�
�.g/�

�
:

We say that � is D-generic if
W�.g/ ¤ 0

for some � 2 � .

Lemma 6.2. If � is a cuspidal representation of GLk;D.A/, then it is D-generic.

Proof. As in the proof of the Fourier expansion when D D F [28, 32], we can similarly
prove the following Fourier expansion for ' in the cuspidal representation � :

�.g/ D
X


2Nk�1;D.F /nGLk�1;D.F /

W�

��

 0

0 1

�
g

�
:

Since � ¤ 0, there exists 
 and g such that W�
��

 0
0 1

�
g
�
¤ 0. This proves the result.

We now move to the second observation. Let us fix a local place v0 of F and let Dv0
be a central division algebra over Fv0 . Let �v0 be the local component of � at v0.

Lemma 6.3. For any n, the local Speh representation SpehDv0 .�v0 ; n/ admits a non-
vanishing .k; n/Dv0 -model.

Proof. This is already known when v0 is non-Archimedean (see Theorem 4.13). The proof
here works for all places and uses global properties.

We can choose a central division algebra D over F such that its localization at v0 is
Mn.Dv0/ and it is nonsplit for an unramified place (this holds for almost all D). Then s�;DD
d and therefore, SpehD.�; 1/ is cuspidal. Moreover, the local component of SpehD.�; 1/

at v0 is SpehDv0 .�v0 ; n/.
By Lemma 6.2, SpehD.�; 1/ is D-generic since it is cuspidal. This implies that all

the local components support the local functional. In particular, SpehDv0 .�v0 ; n/ admits a
non-vanishing .k; n/Dv0 -model.

6.2. Kirillov models

We need the following two results related to the Kirillov models. We only states the
results here. The proofs in the non-Archimedean case will be given in Appendix A. The
Archimedean case is listed as a working hypothesis and the proofs will be considered in a
forthcoming article.

Let F be a local field. Let D be a simple division algebra over F . (This gives some
generality and includes degenerate cases.)

Let Pk;D be the “mirabolic” subgroup of GLk;D defined by

Pk;D WD
®
g 2 GLk;D j .0; : : : ; 0; 1/g D .0; : : : ; 0; 1/

¯
:
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Let Uk;D be the subgroup

Uk;D WD

²
u j u D

�
Ik�1 x

0 1

�
2 Pk;D

³
:

The restriction of  k;D to Uk;D is still denoted as  k;D .
Let .D�/� be the image of the diagonal embeddingD�!GLk;D . Let zPk;D D Pk;D �

.D�/�. This is the standard parabolic subgroup of GLk;D of type .k � 1; 1/.

Remark 6.4. When D D F and k D 1, Pk;D the usual mirabolic subgroup.

We first treat the non-Archimedean case.

Proposition 6.5. For � 2 Irr.GLk;D/, there is an embedding of representations of Pk;D

J W indPk;DNk;D

�
JNk;D ; k;D .�/ Ë  k;D

�
,! � (6.1)

such that for any � 2 W.k/D .�/ and f 2 indPk;DNk;D
.JNk;D ; k;D .�/ Ë  k;D/,˝

�;J.f /
˛
D
˝
J�.�/; f .1/

˛
:

Here J�.�/ W JNk;D ; k;D .�/! C is the map obtained from � W � ! C. Moreover, the
embedding (6.1) is also .D�/�-equivariant and hence zPk;D-equivariant.

We need the fact that indPk;DPk�1;DUk;D
.ˆ�.�/ Ë  k;D/ is “cuspidal”. For the partition

.a;b/ of k, we have a standard parabolic subgroupQ0
a;b
DM 0

a;b
U 0
a;b

ofGk;D . The restric-
tion of  k;D to U 0

a;b
is denoted  k;D as well. Let P 0

a;b
be the stabilizer of  k;D in M 0

a;b
.

Definition 6.6. Let � be an admissible representation of Pk;D . We say that � is D-
cuspidal if the Jacquet module

JU 0
a;b
.�/ D 0

for all k D aC b where a; b > 0.

Proposition 6.7. The representation indPk;DNk;D
.JNk;D ; k;D .�/ Ë  k;D/ is D-cuspidal.

In the Archimedean case, we only consider unitarizable representations. We need the
following hypothesis.

Hypothesis 6.8. For � 2 Irru.GLk;D/, there exist a vector space �1, an embedding

J W indPk;DNk;D
.�1 Ë  k;D/ ,! �;

and an isomorphism
J� W W.k/D .�/! �_1

such that ˝
�;J.f /

˛
D
˝
J�.�/; f .1/

˛
for all � 2 W.k/D .�/ and f 2 indPk;DNk;D

.�1 Ë  k;D/.
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In fact, we only need a much weaker result, as can be seen from later sections. When
D D R, this result follows from the proof of [20, Proposition 3.8].

6.3. Proof of Theorem 5.9: Case n D 1

We first consider the case nD 1. This proof here is inspired by Piatetski-Shapiro’s proof of
the strong multiplicity one theorem. The proof presented here is adapted from [22, proof
of Theorem II.2.5].

We show that SpehD.�; 1/ is D-generic. We know that � 0 WD jLJj.Speh.�; s�;D// is a
cuspidal representation. If s�;D D d , then this representation isD-generic by Lemma 6.2.
We only have to treat the case s�;D < d .

The representation SpehD.�;1/ can be constructed from � 0 using residues of Eisenstein
series. With this automorphic realization, it comes with a Gkn;D.F /-invariant functional

` W SpehD.�; 1/! C:

For simplicity, we temporarily write � D SpehD.�; 1/. We now fix a local non-Archi-
medean place v0. From Proposition 6.7, the restriction SpehD.�; 1/jPk;Dv0 contains aDv0 -
cuspidal representation Kv0 . We construct the following Pk;D.A/-subspace

T WDKv0 ˝ .˝
0
v¤v0

�v/ � �v0 ˝ .˝
0
v¤v0

�v/:

By our construction, any � 2 T the function

zPk;D.A/! C; p 7! `
�
�.p/�

�
is cuspidal with respect to any unipotent subgroup of Pk;D . Therefore, it has a Fourier
expansion

`
�
�.p/�

�
D

X

2Nk�1;D.F /nGLk�1;D.F /

W�

��

 0

0 1

�
p

�
for p 2 zPk;D.A/.

Since � is irreducible, we see that � is generated by the subspaces

�.g/T
�
g 2 Gk;D.A/

�
:

From this we know that there exists g 2 Gk;D.A/ such that `j�.g/T ¤ 0. In other words,
there exists g 2 Gk;D.A/ and � 2 T such that `.�.g/�/ ¤ 0. Let us fix such a �. By the
strong approximation theorem, Œ zPk;D� is a dense subset of ŒGLk;D�. Therefore, `.�.p/�/
¤ 0 for some p 2 zPk;D . From the Fourier expansion of `.�.p/�/, we deduce that

W�

��

 0

0 1

�
p

�
¤ 0

for some 
 . This completes the proof.

Remark 6.9. A similar argument shows that, for an automorphic representation of GLn,
genericity at a local non-Archimedean place implies global genericity.
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6.4. Proof of Theorem 5.9: General case

We now treat the case of general n. This is based on the so-called induction-by-stages
argument and the result when n D 1. We recall that SpehD.�; n/ can be constructed from
� 0 using residues of Eisenstein series and SpehD.�; n/ D Speh0.� 0; nd=s�;D/.

Let P.kn/D DMV be the standard parabolic subgroup of GLkn;D with Levi part

GLk;D � � � � � GLk;D;

where GLk;D appears n times. We have the following result concerning the constant terms
of SpehD.�; n/.

Lemma 6.10. For � 2 SpehD.�; n/, there is a section

f 2 IndGLkn;D.A/
P.kn/D

.A/

�
�

d.1�n/
2s�;D
� SpehD.�; 1/˝ �

d.3�n/
2s�;D
� SpehD.�; 1/˝ � � � ˝ �

d.n�1/
2s�;D
� SpehD.�; 1/

�
(6.2)

such that the constant term �V of � along V is

�V .g/ D f .g/.Ik;D � � � � � Ik;D/:

Moreover, for any

' 2 �

d.1�n/
2s�;D
� SpehD.�; 1/˝ �

d.3�n/
2s�;D
� SpehD.�; 1/˝ � � � ˝ �

d.n�1/
2s�;D
� SpehD.�; 1/;

there is � 2 SpehD.�; n/ such that

�V .Ikn;D/ D ':

Proof. The proof of [21, Lemma 4.1] can be easily adapted to this case. The last part is
straightforward.

We want to show that SpehD.�; n/ has a non-vanishing .kn/D Fourier coefficient. We
now introduce a slight different Fourier coefficient.

We define the following character  0
.kn/D

on Nkn;D as follows. We first write u 2
Nkn;D as the product of

u0 D diag.u1; : : : ; un/ 2M D GLk;D � � � � � GLk;D; ui 2 Nk;D

and u00 2 V . We define

 0.kn/D .u/ D  .k/D .u1 C � � � C un/:

In other words,  0
.kn/D

is the extension of the .k/D � � � � � .k/D-coefficients of the Levi
part to Nkn;D . We then set

F 0.kn/D .�/ D

Z
ŒNkn;D �

�.u/ x 0.kn/D .u/ du:
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Lemma 6.11. The Fourier coefficient F.kn/D .�/ ¤ 0 for some � 2 SpehD.�; n/ if and
only if F 0

.kn/D
.�/ ¤ 0 for some � 2 SpehD.�; n/.

Proof. This is a special case of [15, Theorem 8.2.1].

We now show that F 0
.kn/D

.�/ ¤ 0 for some � 2 SpehD.�; n/. Note that this Fourier
coefficient can be written as the composition of a constant term along V and a Fourier
coefficient for a Levi subgroup M . In other words,

F 0.kn/D .�/ D

Z
ŒNkn;D\M�

Z
ŒV �

�.u00u0/ du00 x 0kn;D.u
0/ du0:

By Lemma 6.10, it is enough to show thatZ
ŒNkn;D\M�

f .u0/.Ik;D � � � � � Ik;D/ x 
0
kn;D.u

0/ du0

is nonzero for some f in (6.2). This is a .k/D � � � � � .k/D Fourier coefficient for the
representation

�

d.1�n/
2s�;D
� SpehD.�; 1/˝

d.3�n/
2s�;D SpehD.�; 1/˝ � � � ˝

d.n�1/
2s�;D SpehD.�; 1/:

We already know that this is nonzero for some choice of ' from the base case nD 1. This
completes the proof of Theorem 5.9.

6.5. An Archimedean result

In this section, we treat the Archimedean case. We first prove that SpehD.�; n/ has a
unique .k; n/D-model when � appears as the local component of a global cuspidal rep-
resentation. This proof here is also inspired by Piatetski-Shapiro’s proof of the strong
multiplicity one theorem. See also [22, proof of Theorem II.2.5].

Theorem 6.12. Let �1 be an irreducible unitary generic representation of GLk.R/,
which can be realized as the local component of an irreducible cuspidal representation
of GLk.A/. Then under Hypothesis 6.8,

dim HomN.kn/H

�
SpehH.�1; n/;  .kn/H

�
D 1:

Proof. Let � be a cuspidal representation of GLk.A/ which has �1 as its local component
�v1 at a real place. We first choose a central division D of dimension .2n/2 over F such
thatDv1 DMn.H/ and is non-split (at least) at another non-Archimedean place where � is
unramified. We also assume that D splits over all other Archimedean place other than v1.
With this choice, SpehD.�;1/ is a cuspidal representation of GLk;D.A/ and SpehH.�1;n/

appears as the local component of SpehD.�; 1/ at v1.
We now factor

GLk;D.A/ D GLk;D.Fv1/ � GLk;D.Av¤v1/:
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Again, for ease of notations, let us write � D SpehD.�; 1/. We can decompose the repre-
sentation SpehD.�; 1/ as

� D SpehD.�; 1/ D �v1 ˝ �v¤v1 :

Since SpehD.�; 1/ is a cuspidal representation, we now have the Fourier expansion:

`.x ˝ y/ D
X


2Nk�1;D.F /nGLk�1;D.F /

Wx˝y

��

 0

0 1

��
;

where x ˝ y 2 �v1 ˝ �v¤v1 .
For ease of notations, we temporarily write V to be representation space of SpehD.�;1/

and decompose V as V D Vv1 ˝ Vv¤v1 . We already know that the .k; 1/Dv -models for
Vv is unique for every place v ¤ v1. Thus we can choose �v¤v1 to be a generator of
W.k/D .Vv¤v1/. Then there exists a �v1 2 W.k/D .Vv1/ such that for all x0 2 Vv1 and y0 2
Vv¤v1 one has

Wx0˝y0.1/ D �v1.x
0/ � �v¤v1.y

0/:

We now apply to Hypothesis 6.8 to �v1 . Then there is a representation �1 of the trivial
group with a Pk;Dv1 -homomorphism

J W ind
Pk;Dv1
Nk;Dv1

.�1 Ë  k;Dv1 /! Vv1

and an isomorphism
J� W W.k/Dv1

.Vv1/! �_1

such that ˝
J.f /; f �

˛
D
˝
f .1/;J�.f �/

˛
for all f 2 ind

Pk;Dv1
Nk;Dv1

.�1 Ë  k;Dv1 / and f � 2 W.k/Dv1
.Vv1/.

Assume that
dim W.k/D .Vv1/ D dim�_1 > 1:

Considering the kernel of J�.�v1/, we see that there exists a Pk;D.Fv1/-subspace Uv1 of
Vv1 such that

�v1.u/ D 0; for all u 2 Uv1 :

We now set UA WD Vv¤v1 ˝ Uv1 . This is a Pk;D.Fv1/ � GLk;D.Av¤v1/-subspace.
From the Fourier expansion we also have

`.u/ D 0; for all u 2 UA:

For u 2 UA, we consider the following function on GLk;D.F /nGLk;D.A/:

g 7! `
�
�.g/u

�
:
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Let us fix u and consider its set of zeros Y . Then we know the following:

• Pk;D.Fv1/ � GLk;D.Av¤v1/ � Y ;

• Y is left-invariant under GLk;D.F / and the center Z.GLk;D.A//.

By the strong approximation theorem, we see that Y contains SLk;D.A/ as it contains
SLk;D.F / � SLk;D.FS / as a dense subset for a sufficiently large set of places S .

We can now deduce that Y contains Pk;D.Fv1/SLk;D.Fv1/ �GLk;D.Av¤v1/. Now it
is easy to see that

Z
�

GLk;D.Fv1/
�
Pk;D.Fv1/SLk;D.Fv1/ D GLk;D.Fv1/:

This implies that Y D GLk;D.A/.
From this, we deduce that for u 2 UA, one has `.�.g/u/ D 0 for all g 2 GLk;D.A/.

Thus UA generates a proper GLk;D.A/-subspace of V . This is impossible since V is
irreducible. This completes the proof.

Remark 6.13. It is easy to see that the same argument proves the following statement: if
the Speh representation has unique .k; n/Dv -functional at every non-Archimedean local
place, then so does every Archimedean place.

We now state another working hypothesis.

Hypothesis 6.14. For i D 1; 2, let �i be an irreducible representation of GLkin;H such
that WS.�i / D ¹.kni /Hº and

dim W.kni /H
.�i / � 1:

Set k D k1 C k2. Then
dim W.kn/H.�1 � �2/ � 1:

As a corollary, we have the following.

Corollary 6.15. Assuming Hypotheses 6.8 and 6.14, we have that

dim W.kn/H

�
SpehH.�; n/

�
� 1:

A. Kirillov models

In this section, we prove some results regarding the representation theory of the local
groups. Recall that an important result in the representation theory of GLk.F / is that
every generic representation admits a Kirillov model [8,20]. In this section, we would like
to prove similar results for representations of Gk;D .

A.1. Basic setup

Let F be a local field. To include the “degenerate” case, here we allow D to be a central
simple algebra (instead of a central division algebra) over F .
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Let Pk;D be the “mirabolic” subgroup of Gk;D defined by

Pk;D WD
®
g 2 Gk;D j .0; : : : ; 0; 1/g D .0; : : : ; 0; 1/

¯
:

Let Uk;D be the subgroup

Uk;D WD

²
u j u D

�
Ik�1 x

0 1

�
2 Pk;D

³
:

The restriction of  k;D to Uk;D is still denoted as  k;D .

A.2. The non-Archimedean case

We first treat the non-Archimedean case since the argument is much easier. We introduce
several functors. For an algebraic representation � of Pk;D , we define a functor using the
twisted Jacquet module

ˆ� W Alg.Pk;D/! Alg.Pk�1;D/; � 7! JUk;D ; k;D .�/:

For an algebraic representation � of Pk�1;D , we define

ˆC W Alg.Pk�1;D/! Alg.Pk;D/; � 7! indPk;DPk�1;DUk;D
.� Ë  k;D/:

Lemma A.1. For an algebraic representation � of Pk;D , there is a natural homomor-
phism

j W ˆCˆ�.�/! �:

Proof. The argument in the proof of [7, Proposition 5.12 (b)] works here as well. We
describe it briefly here.

The representation �jUk;D can be viewed as a representation of the Hecke algebra
.C1c .Uk;D/;�/, where � is the convolution. Using the Fourier transform, �jUk;D becomes
a representation of .C1c .bU k;D/; �/, where � denotes the pointwise multiplication. As a
result, we view � as an l-sheaf F � on bU k;D .

The action of Gk�1;D acts on bU k;D with only one open dense orbit, and  k;D is a
representative for this orbit. We now restrict the sheaf F � to the open orbit. Since the
stabilizer of  k;D in Pk;D is Pk�1;DUk;D , the restriction sheaf corresponds to an induced
representation from Pk�1;DUk;D to Pk;D . The inducing data is given by the stalk of this
sheaf at  k;D , which is ˆ�.�/. This completes the proof.

Lemma A.2. Any � 2 W.k/D .�/ factors through x� W ˆ�.�/! C. Moreover,˝
�; j.f /

˛
D
˝
x�; f .1/

˛
for any f 2 indPk;DPk�1;DUk;D

.ˆ�.�/ Ë  k;D/.

Proof. This is a consequence of Lemma A.1.
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Similarly, any � 2 W.k/D .�/ factors through

J�.�/ W JNk;D ; k;D .�/! C:

We have the following result.

Corollary A.3. We have a natural homomorphism

J W indPk;DNk;D

�
JNk;D ; k;D .�/ Ë  k;D

�
! �

such that ˝
�;J.f /

˛
D
˝
J�.�/; f .1/

˛
for all f 2 indPk;DNk;D

.JNk;D ; k;D .�/ Ë  k;D/.

Proof. This is a consequence of Lemma A.2 and induction.

Finally, we show that indPk;DPk�1;DUk;D
.ˆ�.�/ Ë  k;D/ is “cuspidal”. For the partition

.a;b/ of k, we have a standard parabolic subgroupQ0
a;b
DM 0

a;b
U 0
a;b

ofGk;D . The restric-
tion of  k;D to U 0

a;b
is denoted  k;D as well. Let P 0

a;b
be the stabilizer of  k;D in M 0

a;b
.

Proposition A.4. Let � be a smooth representation of P 0
a;b

. Then indPk;D
P 0
a;b
Ua;b

.� Ë  k;D/
is D-cuspidal, in the following sense: for any partition .a; b/ of k, the Jacquet module

JU 0
a;b

�
indPk;D

P 0
a;b
U 0
a;b

.� Ë  k;D/
�
D 0:

Proof. Let X D P 0
a;b
U 0
a;b
nPk;D . Then the representation indPk;D

P 0
a;b
U 0
a;b

.� Ë  k;D/ corre-

sponds to an l-sheaf F on X . To prove the result, it suffices to show there is no U 0
a;b

-
equivariant functional F .X/! C.

We apply Bernstein’s localization principle to prove this statement. Note that the action
of U 0

a;b
on X is trivial. Thus it is enough to show that there is no U 0

a;b
-equivariant func-

tional on each stalk of F . Notice that the action of U 0
a;b

on the stalk Fx is through a
conjugation of  k;D , which is nontrivial. Thus, it is impossible for the stalks to have
U 0
a;b

-equivariant functionals. This proves the result.

Corollary A.5. The representation indPk;DNk;D
.JNk;D ; k;D .�/ Ë  k;D/ is D-cuspidal.

Proof. By induction-by-stages, we can write

indPk;DNk;D

�
JNk;D ; k;D .�/ Ë  k;D

�
D indPk;D

P 0
a;b
Ua;b

��
ind

P 0
a;b

Nk;D
JNk;D ; k;D .�/ Ë  k;D

�
Ë  k;D

�
:

Now the result follows from Proposition A.4.
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