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Trialitarian triples

Demba Barry and Jean-Pierre Tignol

Abstract. Trialitarian triples are triples of central simple algebras of degree 8with orthogonal invo-
lution that provide a convenient structure for the representation of trialitarian algebraic groups as
automorphism groups. This paper explicitly describes the canonical “trialitarian” isomorphisms
between the spin groups of the algebras with involution involved in a trialitarian triple, using a
rationally defined shift operator that cyclically permutes the algebras. The construction relies on
compositions of quadratic spaces of dimension 8, which yield all the trialitarian triples of split alge-
bras. No restriction on the characteristic of the base field is needed.
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1. Introduction

Trialitarian triples were introduced by Knus et al. [13, §42.A] to provide the groundwork
for the study of algebraic groups of trialitarian type D4 as automorphism groups of triali-
tarian algebras. They consist in three central simple algebras of degree 8 with orthogonal
involution .A;�A/, .B;�B/, .C;�C / over a fieldF of characteristic different from 2 related
by the property that the Clifford algebra of .A; �A/ is isomorphic to the direct product of
.B;�B/ and .C; �C /. Trialitarian algebras over F are defined in [13, §43] as algebras with
orthogonal involution of degree 8 over a cubic étale F -algebra that are isomorphic after
scalar extension of F to the direct product of the algebras in a trialitarian triple.

The main goal of this work is to elucidate the trialitarian isomorphisms that arise
canonically between the spin groups of algebras with quadratic pair involved in a tri-
alitarian triple and also between the groups of projective similitudes of these algebras,
see [13, (42.5)]. The basic tool is a shift operator @ of period 3 on trialitarian triples,
which accounts for all the trialitarian features of the theory. The cohomological approach
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in [13, (42.3)] reveals the existence of @ but does not provide any explicit description. By
contrast, the definition of @ in Section 4.3 below is entirely explicit and cohomology-free,
and the definition of the trialitarian isomorphisms follows easily in Section 4.4. A note-
worthy feature of our discussion is that the restriction on the characteristic of the base field
is made obsolete thanks to the ground-breaking paper [7] of Dolphin–Quéguiner-Mathieu,
in which a canonical quadratic pair is defined on Clifford algebras (and where the cohomo-
logical approach to the definition of @ in arbitrary characteristic is given [7, Th. 4.11]).1

Thus, all the structures considered in this paper are (unless explicitly mentioned) over
fields of arbitrary characteristic.

To prepare for the discussion of trialitarian triples in Section 4, we found it necessary
to consider first trialitarian triples of split algebras. These triples arise from compositions
of quadratic spaces, which are studied in Section 3. Compositions of quadratic spaces pro-
vide a new perspective on the classical theory of composition algebras by triplicating their
underlying vector space. They also demonstrate more diversity, because—in contrast with
compositions arising from composition algebras—the three quadratic spaces involved in
a composition need not be isometric; this accounts for the interpretation in Section 4.5 of
the mod 2 cohomological invariants of Spin8, since compositions of quadratic spaces of
dimension 8 are torsors under Spin8.

Compositions of three different quadratic spaces of equal dimension have been con-
sidered earlier, for instance in Knus’ monograph [12, V(7.2)], in [13, (35.18)] and in the
papers [3, 5.3] and [2, §3] by Alsaody–Gille and Alsaody respectively. However, the shift
operator @ on compositions of quadratic spaces, briefly mentioned in [13, (35.18)], seems
to have been mostly ignored so far. By attaching to every composition on quadratic spaces
.V1; q1/, .V2; q2/, .V3; q3/ two cyclic derivatives, which are compositions on .V2; q2/,
.V3; q3/, .V1; q1/ and on .V3; q3/, .V1; q1/, .V2; q2/ respectively, the shift operator pro-
vides the model for the operator @ on trialitarian triples.

Compositions of quadratic spaces of dimension 8 also afford a broader view of the
classical principle of triality for similitudes of the underlying vector space of an octonion
algebra, as discussed by Springer–Veldkamp [19, §3.2], and also of the local version of
this principle in characteristic 2 described by Elduque [8, §3, §5], see Corollaries 4.24
and 4.25. Automorphisms of the compositions of quadratic spaces arising from compo-
sition algebras are by definition the related triples of isometries defined in [19, §3.6],
[8, §1] and [3, §3] (see Remark 3.18); they are closely related to autotopies of the alge-
bra, which form the structure group defined for alternative algebras by Petersson [15], see
Sections 3.5 and 4.6.

The first section reviews background information on Clifford groups and their Lie
algebras, notably on extended Clifford groups, which play a central rôle in subsequent
sections.

More detail on the contents of this work can be found in the introduction of each
section.

1Prior to [7], examples of trialitarian triples in characteristic 2 were given by Knus–Villa [14].
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2. Clifford groups and Lie algebras

The purpose of the first subsections of this section is to recall succinctly the Clifford
groups of even-dimensional quadratic spaces and their twisted analogues (in the sense of
Galois cohomology), which are defined in arbitrary characteristic through central simple
algebras with quadratic pair. Most of the material is taken from [13], but we incorporate a
few complements that are made possible by the definition of canonical quadratic pairs on
Clifford algebras by Dolphin–Quéguiner-Mathieu [7].

A detailed discussion of the corresponding Lie algebras is given in Sections 2.4 and
2.5. For a central simple algebra with quadratic pair A, we emphasize the difference
between the Lie algebra o.A/ of the orthogonal group and the Lie algebra pgo.A/ of the
group of projective similitudes, which are canonically isomorphic when the characteristic
is different from 2 but contain different information in characteristic 2.

The last subsection provides a major tool for the definition of homomorphisms

C.A/! A0

from the Clifford algebra of a central simple algebra with quadratic pair A to a central
simple algebra with quadratic pair A0. These homomorphisms are shown to be uniquely
determined by Lie algebra homomorphisms pgo.A/! pgo.A0/; see Theorem 2.21.

2.1. Quadratic forms and quadratic pairs

Let .V;q/ be a (finite-dimensional) quadratic space over F . The polar form bWV � V ! F

is defined by
b.x; y/ D q.x C y/ � q.x/ � q.y/ for x, y 2 V .

We only consider quadratic spaces whose polar form b is nonsingular. This restriction
entails that dimV is even if charF D 2, for b is then an alternating form. Nonsingularity
of b allows us to define the adjoint involution �b on EndV by the condition

b
�
x; a.y/

�
D b

�
�b.a/.x/; y

�
for a 2 EndV and x, y 2 V .

Moreover, we may identify V ˝ V with EndV by mapping x ˝ y 2 V ˝ V to the oper-
ator z 7! xb.y; z/. Under the identification V ˝ V D End V , the involution �b and the
(reduced) trace Trd are given by

�b.x ˝ y/ D y ˝ x and Trd.x ˝ y/ D b.x; y/ for x, y 2 V ,

see [13, §5.A]. Moreover, for a 2 EndV and x, y 2 V we have

a ı .x ˝ y/ D a.x/˝ y and .x ˝ y/ ı a D x ˝ �b.a/.y/:

The identification V ˝ V D EndV , which depends on the choice of the nonsingular polar
form b, will be used repeatedly in the sequel. It will be referred to as a standard identifi-
cation.
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Let
Sym.�b/ D

®
a 2 EndV j �b.a/ D a

¯
:

To the quadratic form q on V we further associate a linear form fq on Sym.�b/ defined
by the condition

fq.x ˝ x/ D q.x/ for x 2 V ,

see [13, (5.11)]. Linearizing this condition yields fq.x ˝ y C �b.x ˝ y// D b.x; y/ for
x, y 2 V , hence

fq
�
aC �b.a/

�
D Trd.a/ for a 2 EndV .

The pair .�b; fq/ determines the quadratic form q up to a scalar factor by [13, (5.11)],
which is sufficient to define the orthogonal group O.q/ of isometries of .V; q/, as well
as the group of similitudes GO.q/ and the group of projective similitudes PGO.q/, as
follows:

O.q/ D
®
a 2 EndV j q

�
a.x/

�
D q.x/ for all x 2 V

¯
D
®
a 2 EndV j �b.a/a D 1 and fq.asa

�1/ D fq.s/ for all s 2 Sym.�b/
¯
;

GO.q/ D
®
a 2 EndV j there exists � 2 F � such that q

�
a.x/

�
D�q.x/ for all x 2 V

¯
D
®
a 2 EndV j �b.a/a 2 F � and fq.asa

�1/ D fq.s/ for all s 2 Sym.�b/
¯
;

PGO.q/ D GO.q/=F �:

In the equivalent definitions of GO.q/, the scalar � such that q.a.x// D �q.x/ for all
x 2 V is �b.a/a. It is called the multiplier of the similitude a.

Isometries and similitudes are also defined between different quadratic spaces: if .V;q/
and . zV ; Qq/ are quadratic spaces over a field F , a similitude uW .V; q/! . zV ; Qq/ is a linear
bijection V ! zV for which there exists a scalar � 2 F � such that Qq.u.x// D �q.x/ for
all x 2 V . The scalar � is called the multiplier of the similitude, and similitudes with
multiplier 1 are called isometries. Abusing notation, for every linear bijection uWV ! zV
we write

Int.u/WEndV ! End zV for the map a 7! u ı a ı u�1:

It is readily verified that for every similitude u the isomorphism Int.u/ restricts to group
isomorphisms

O.q/
�
�! O. Qq/; GO.q/

�
�! GO. Qq/; PGO.q/

�
�! PGO. Qq/:

The groups O.q/, GO.q/ and PGO.q/ are groups of rational points of algebraic groups
(i.e., smooth affine algebraic group schemes) which are denoted respectively by O.q/,
GO.q/ and PGO.q/, see [13, §23]. As pointed out in [13], twisted forms (in the sense of
Galois cohomology) of these groups can be defined through a notion of quadratic pair on
central simple algebras, which is recalled next.

Let A be a central simple algebra over an arbitrary field F . An F -linear involution �
on A is said to be orthogonal (resp. symplectic) if after scalar extension to a splitting field
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of A it is adjoint to a symmetric nonalternating (resp. to an alternating) bilinear form. For
any involution � on A we write

Sym.�/ D
®
a 2 A j �.a/ D a

¯
:

Definition 2.1. A quadratic pair .�; f/ on a central simple algebra A consists of an invo-
lution � on A and a linear map fWSym.�/! F subject to the following conditions:

(i) � is orthogonal if charF ¤ 2 and symplectic if charF D 2;

(ii) f.x C �.x// D TrdA.x/ for x 2 A, where TrdA is the reduced trace.

The map f is called the semitrace of the quadratic pair .�; f/. This terminology is moti-
vated by the observation that when char F ¤ 2 every x 2 Sym.�/ can be written as
x D 1

2
.x C �.x//, hence f.x/ D 1

2
TrdA.x/. Thus, the semitrace of a quadratic pair .�; f/

is uniquely determined by the orthogonal involution � if charF ¤ 2.

To simplify notation, when possible without confusion we use a single letter to denote
a central simple algebra with quadratic pair, and write

A D .A; �; f/:

The twisted forms of orthogonal groups are defined as follows: for A as above,

O.A/ D
®
a 2 A j �.a/a D 1 and f.asa�1/ D f.s/ for all s 2 Sym.�/

¯
;

GO.A/ D
®
a 2 A j �.a/a 2 F � and f.asa�1/ D f.s/ for all s 2 Sym.�/

¯
;

PGO.A/ D GO.A/=F �:

The group of similitudes GO.A/ can be alternatively defined as the group of elements
a 2 A� such that Int.a/ is an automorphism of A. Therefore, by the Skolem–Noether
theorem the group PGO.A/ can be identified with the group of automorphisms of A.
The groups O.A/, GO.A/ and PGO.A/ are groups of rational points of algebraic groups
denoted respectively by O.A/, GO.A/ and PGO.A/, see [13, §23].

For a 2 GO.A/, the scalar �.a/a 2 F � is called the multiplier of the similitude a. We
write �.a/ D �.a/a and thus obtain a group homomorphism

�WGO.A/! F �

whose kernel is O.A/. Thus, for every quadratic space .V; q/ we have by definition

O.EndV; �b; fq/ D O.q/;

GO.EndV; �b; fq/ D GO.q/;

PGO.EndV; �b; fq/ D PGO.q/:

The following statement is given without detailed proof in [13, (12.36)].

Proposition 2.2. Let .V; q/ and . zV ; Qq/ be quadratic spaces over an arbitrary field F . If
uW .V;q/! . zV ; Qq/ is a similitude, then Int.u/ is an isomorphism of algebras with quadratic
pair

Int.u/W .EndV; �b; fq/
�
�! .End zV ; � Qb; f Qq/:
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Conversely, every isomorphism .EndV; �b; fq/
�
�! .End zV ; � Qb; f Qq/ has the form Int.u/ for

some similitude uW .V; q/! . zV ; Qq/ uniquely determined up to a scalar factor.

Proof. Observe that for every linear bijection uW V ! zV there exists a map OuW V ! zV
such that

Qb
�
Ou.x/; Qy

�
D b

�
x; u�1. Qy/

�
for all x 2 V and Qy 2 zV ;

since the polar forms b and Qb are nonsingular. Under the standard identifications EndV D
V ˝ V and End zV D zV ˝ zV afforded by b and Qb, we have

Int.u/.x ˝ y/ D u.x/˝ Ou.y/ for all x, y 2 V .

If u is a similitude with multiplier �, then OuD ��1u, hence Int.u/ ı �b D � Qb ı Int.u/ and

f Qq
�
Int.u/.x ˝ x/

�
D ��1 Qq

�
u.x/

�
D q.x/ D fq.x ˝ x/ for all x 2 V :

Since Sym.�b/ is spanned by elements of the form x ˝ x, it follows that Int.u/ is an
isomorphism of algebras with quadratic pair.

For the converse, note that the Skolem–Noether theorem shows that every F -algebra
isomorphism EndV

�
�! End zV has the form Int.u/ for some linear bijection uWV ! zV . If

Int.u/ is an isomorphism of algebras with quadratic pair, then Int.u/.x ˝ x/ 2 Sym.� Qb/
for every x 2 V , hence OuD��1u for some� 2F �. Since f Qq.Int.u/.x˝ x//D fq.x˝ x/

for all x 2 V , it follows that Qq.u.x// D �q.x/ for all x 2 V , hence u is a similitude.
To complete the proof, suppose that u, u0W .V; q/! . zV ; Qq/ are similitudes such that

Int.u/ D Int.u0/. Then Int.u�1u0/ D IdV , hence u�1u0 lies in the center of EndV , which
is F . Therefore, u and u0 differ by a scalar factor.

2.2. Clifford algebras

For any quadratic space .V; q/ over F we let C.V; q/ denote the Clifford algebra of
.V; q/ and C0.V; q/ its even Clifford algebra. We will only consider even-dimensional
quadratic spaces; if dimV D 2m, then the algebra C.V; q/ is central simple of degree 2m

and C0.V; q/ is semisimple with center a quadratic étale F -algebra Z given by the dis-
criminant or Arf invariant of q, see [17, Ch. 9]. In most cases considered through this text,
the algebra Z is split, i.e., Z ' F � F . We may then define a polarization of .V; q/ as
follows:

Definition 2.3. If .V; q/ is an even-dimensional quadratic space with trivial discriminant
or Arf invariant, a polarization of .V; q/ is a designation of the primitive central idem-
potents of C0.V; q/ as zC and z�. Given a polarization of .V; q/, we let CC.V; q/ D
C0.V; q/zC and C�.V; q/ D C0.V; q/z�, so

C0.V; q/ D CC.V; q/ � C�.V; q/:

Each even-dimensional quadratic space of trivial discriminant or Arf invariant thus has
two possible polarizations.
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The algebra C.V; q/ carries an involution � such that �.x/ D x for all x 2 V . This
involution preserves C0.V; q/ and restricts to an involution �0 on C0.V; q/. The type of
the involutions � and �0 is determined in [13, (8.4)] as follows:

• If dim V � 2 mod 4 the involution �0 does not leave Z fixed; we will not need to
consider this case.

• If dimV � 4 mod 8, then the involutions � and �0 are symplectic. When Z ' F � F ,
this means that �0 restricts to symplectic involutions on each of the simple components
of C0.V; q/.

• If dimV � 0 mod 8 and charF ¤ 2, then the involutions � and �0 are orthogonal.

• If dimV � 0 mod 8 and charF D 2, then the involutions � and �0 are symplectic.

Following Dolphin–Quéguiner-Mathieu [7, Prop. 6.2], a canonical quadratic pair .�;g/
can be defined on C.V; q/ when2 dim V � 0 mod 8 by associating to � the following
semitrace:

g.s/ D TrdC.V;q/.ee0s/ 2 F for s 2 Sym.�/;

where e, e0 2 V are arbitrary vectors such that b.e; e0/ D 1. If charF ¤ 2, then for any
such vectors e, e0 and for every s 2 Sym.�/ we have

TrdC.V;q/.ee0s/ D TrdC.V;q/
�
�.ee0s/

�
D TrdC.V;q/.se0e/ D TrdC.V;q/.e0es/:

Therefore,

TrdC.V;q/.ee0s/ D 1
2

TrdC.V;q/
�
.ee0 C e0e/s

�
D

1
2

TrdC.V;q/.s/;

as expected.
Likewise, Dolphin–Quéguiner-Mathieu show in [7, Prop. 3.6] that a canonical quad-

ratic pair .�0;g0/ can be defined on C0.V; q/ when dimV � 0 mod 8 by associating to �0
the following semitrace:

g0.s/ D TrdC0.V;q/.ee
0s/ 2 Z for s 2 Sym.�0/;

where e, e0 2 V are arbitrary vectors such that b.e; e0/ D 1. If Z ' F � F , then

C0.V; q/ ' CC.V; q/ � C�.V; q/

for the central simple F -algebras CC.V; q/, C�.V; q/ defined in Definition 2.3, and the
quadratic pair .�0;g0/ defined above is a pair of quadratic pairs .�C;gC/ on CC.V; q/ and
.��;g�/ on C�.V; q/.

Every similitude of quadratic spaces uW .V; q/! . zV ; Qq/ with multiplier � defines an
F -isomorphism C0.u/WC0.V; q/

�
�! C0. zV ; Qq/ such that

C0.u/.x � y/ D �
�1u.x/ � u.y/ for x, y 2 V .

2Dolphin–Quéguiner-Mathieu only assume dimV even, dimV � 6, but they restrict to charF D 2.
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It is clear from the definition that C0.u/ preserves the canonical involutions �0 and z�0 on
C0.V; q/ and C0. zV ; Qq/. If dim V � 0 mod 8, then C0.u/ also preserves the semitraces
g0 and Qg0. To see this, observe that the images u.e/, u.e0/ of vectors e, e0 2 V such
that b.e; e0/ D 1 satisfy Qb.u.e/; u.e0// D �. We may therefore use ��1u.e/ and u.e0/ to
compute the semitrace Qg0: for s 2 Sym.�0/,

Qg0
�
C0.u/.s/

�
D TrdC0. zV ; Qq/

�
��1u.e/u.e0/C0.u/.s/

�
:

Now, ��1u.e/u.e0/ D C0.u/.ee
0/, hence by substituting in the preceding equation and

using the property that algebra isomorphisms preserve reduced traces, we obtain

Qg0
�
C0.u/.s/

�
D TrdC0. zV ; Qq/

�
C0.u/.ee

0s/
�
D C0.u/

�
TrdC0.V;q/.ee

0s/
�
D C0.u/

�
g0.s/

�
:

Thus, C0.u/ is an isomorphism of algebras with involution

C0.u/W
�
C0.V; q/; �0

� �
�!

�
C0. zV ; Qq/; z�0

�
and an isomorphism of algebras with quadratic pair if dimV D dim zV � 0 mod 8

C0.u/W
�
C0.V; q/; �0;g0

� �
�!

�
C0. zV ; Qq/; z�0; Qg0

�
:

Among auto-similitudes u 2 GO.q/ we may distinguish proper similitudes by consid-
ering the restriction of C0.u/ to the center Z of C0.V; q/: the similitude u is said to be
proper if C0.u/ fixes Z and improper if C0.u/ restricts to the nontrivial F -automorphism
of Z, see [13, §13.A]. The proper similitudes form a subgroup GOC.q/ of index 2 in
GO.q/, and we let

OC.q/ D O.q/ \ GOC.q/; PGOC.q/ D GOC.q/=F �:

Twisted forms. Following ideas of Jacobson and Tits, an analogue of the even Clifford
algebra for a central simple algebra with quadratic pair A D .A; �; f/ of even degree is
defined in [13, §8.B]. The Clifford algebra C.A/ is obtained by a functorial construction
such that for every quadratic space .V; q/ of even dimension, the identification End V D
V ˝ V set up in Section 2.1 yields an identification

C.EndV; �b; fq/ D C0.V; q/:

This property implies that C.A/ is a semisimple algebra with center a quadratic étale
F -algebra given by the discriminant of the quadratic pair .�; f/.

Definition 2.4. If the discriminant of .�; f/ is trivial, a polarization of A is a designation
of the primitive central idempotents of C.A/ as zC and z�. A polarization induces the
labeling of the simple components of C.A/ as CC.A/D C.A/zC and C�.A/D C.A/z�,
so

C.A/ D CC.A/ � C�.A/:
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The algebra C.A/ comes equipped with a canonical linear map

cWA! C.A/

whose image generates C.A/ as an F -algebra. In the split case A D EndV , the map c is
given by multiplication in C.V; q/:

cWV ˝ V ! C0.V; q/; x ˝ y 7! x � y:

The algebra C.A/ carries a canonical involution � characterized by the condition that
�.c.a// D c.�.a// for a 2 A. If degA � 0 mod 8, Dolphin–Quéguiner-Mathieu show
that a canonical quadratic pair .�; f/ is defined on C.A/ by associating to � the following
semitrace:

f.s/ D TrdC.A/
�
c.a/s

�
for s 2 Sym.�/,

where a 2 A is any element such that TrdA.a/ D 1, see [7, Def. 3.3]. These constructions
are compatible with the corresponding definitions in the split case, in the sense that for
every even-dimensional quadratic space .V;q/ the standard identification EndV D V ˝ V
of Section 2.1 yields identifications of algebras with involution or quadratic pair:�

C.EndV; �b; fq/; �
�
D
�
C0.V; q/; �0

�
if dimV � 0 mod 4;�

C.EndV; �b; fq/; �; f
�
D
�
C0.V; q/; �0;g0

�
if dimV � 0 mod 8:

By functoriality of the Clifford algebra construction, every isomorphism of algebras
with quadratic pair 'WA

�
�! zA induces an isomorphism of algebras with involution or with

quadratic pair

C.'/W
�
C.A/; �

� �
�!

�
C.zA/; z�

�
or

�
C.A/; �; f

� �
�!

�
C.zA/; z�; Qf

�
such that

C.'/
�
c.a/

�
D c

�
'.a/

�
for a 2 A.

As in the split case, we may distinguish between proper and improper similitudes:
every similitude u 2 GO.A/ induces an F -automorphism Int.u/ of A, hence an F -auto-
morphism C.Int.u// of C.A/. The similitude u is said to be proper if C.Int.u// leaves
the center of C.A/ elementwise fixed; otherwise it is said to be improper. This defi-
nition agrees with the previous definition of proper similitude in the case where A D

.EndV; �b; fq/ for a quadratic space .V; q/, because C.Int.u// D C0.u/ for every simili-
tude u 2 GO.q/, see [13, (13.1)].

Proper similitudes form a subgroup GOC.A/ of index 1 or 2 in GO.A/, and we let

OC.A/ D O.A/ \ GOC.A/; PGOC.A/ D GOC.A/=F �:

These groups are groups of rational points of linear algebraic groups OC.A/, GOC.A/
and PGOC.A/, which are the connected components of the identity in O.A/, GO.A/ and
PGO.A/, see [13, §23.B].
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2.3. Clifford groups

Let .V; q/ be a quadratic space of even dimension. The multiplicative group of C0.V; q/
acts onC.V;q/ by conjugation. The special Clifford group �C.q/ is defined in [13, p. 349]
as the normalizer of the subspace V . Thus, for every commutative F -algebra R, letting
VR D V ˝F R,

�C.q/.R/ D
®
� 2 C0.V; q/

�
R j � � VR � �

�1
D VR

¯
:

For � 2 �C.q/.R/, the map
Int.�/jVR WVR ! VR

is a proper isometry. The map carrying � to Int.�/jVR is a morphism of algebraic groups �
known as the vector representation, which fits in an exact sequence

1! Gm ! �C.q/
�
�! OC.q/! 1;

where Gm is the multiplicative group, see [13, p. 349].
Mapping � 2 �C.q/.R/ to �0.�/� defines a morphism

�W�C.q/! Gm:

Its kernel is the Spin group Spin.q/. It is an algebraic group to which we may restrict the
vector representation to obtain the following exact sequence:

1! �2 ! Spin.q/
�
�! OC.q/! 1;

where �2 is the algebraic group scheme defined by

�2.R/ D ¹� 2 R j �
2
D 1º for every commutative F -algebra R:

Note that �2 is not smooth if charF D 2.

Extended Clifford groups. Let Z be the center of C0.V; q/. Henceforth, we assume
dimV � 0 mod 4, so the canonical involution �0 acts trivially on Z.

Let Sim.�0/ be the group of similitudes of .C0.V; q/; �0/, whose rational points over
any commutative F -algebra R is

Sim.�0/.R/ D
®
� 2 C0.V; q/

�
R j �0.�/� 2 Z

�
R

¯
:

The multiplier map � 7! �0.�/� is a morphism

�WSim.�0/! RZ=F .Gm/;

whereRZ=F .Gm/ is the corestriction (or Weil’s restriction of scalars) of the multiplicative
group. Mapping x 2C.V;q/R and � 2 Sim.�0/.R/ to �0.�/x� defines an action of Sim.�0/
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on C.V; q/ (on the right). The extended Clifford group�.q/ is defined3 as the normalizer
of V . Thus, for every commutative F -algebra R,

�.q/.R/ D
®
� 2 Sim.�0/.R/ j �0.�/ � VR � � D VR

¯
:

We proceed to show that �C.q/ is a subgroup of�.q/ by reformulating the condition that

�0.�/ � VR � � D VR:

Let �WZ ! Z denote the nontrivial F -automorphism of Z. Note that xz D �.z/x for
all x 2 V and z 2 Z.

Lemma 2.5. LetR be a commutative F -algebra. For � 2 Sim.�0/.R/ and u2GL.V /.R/
the following are equivalent:

(a) �0.�/x� D �b.u/.x/ for all x 2 VR;

(b) u.y/ D �.�.�//�y��1 for all y 2 VR.

When these conditions hold, then u 2 GOC.q/.R/, C0.u/ D Int.�/ and

�.u/ D NZ=F
�
�.�/

�
:

Proof. Suppose (a) holds. Squaring each side of the equation yields

�0.�/x�.�/x� D q
�
�b.u/.x/

�
for all x 2 VR

hence, since �0.�/x�.�/x� D �0.�/x2��.�.�// D q.x/NZ=F .�.�//,

q
�
�b.u/.x/

�
D NZ=F

�
�.�/

�
q.x/ for all x 2 VR.

It follows that �b.u/2GO.q/.R/ and�.�b.u//DNZ=F .�.�//, hence also u 2GO.q/.R/
and �.u/ D NZ=F .�.�//.

On the other hand, multiplying each side of (a) on the left by � and on the right by ��1

yields
�.�/x D ��b.u/.x/�

�1:

Letting y D �b.u/.x/, we have u.y/D �.u/x. By substituting in the last displayed equa-
tion we obtain

�.u/�1�.�/u.y/ D �y��1:

As �.u/ D NZ=F .�.�//, condition (b) follows.
Now, suppose (b) holds. Squaring each side of the equation yields

q
�
u.y/

�
D �

�
�.�/

�
�.�/�y2��1 D NZ=F

�
�.�/

�
q.y/ for all y 2 VR,

3For a more general definition covering the case where dimV � 2 mod 4, see [13, §13.B].
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hence u 2 GO.q/.R/ and �.u/D NZ=F .�.�//. On the other hand, multiplying each side
of (b) by �0.�/ on the left and by � on the right yields

�0.�/u.y/� D NZ=F
�
�.�/

�
y D �.u/y for all y 2 VR.

Letting x D u.y/, we have �b.u/.x/D �.u/y, hence by substituting in the last displayed
equation we obtain (a).

To complete the proof, we computeC0.u/ using (b). For x, y 2VR, taking into account
that �.u/ D NZ=F .�.�// we find

C0.u/.xy/ D �.u/
�1u.x/u.y/ D �.u/�1�

�
�.�/

�
�x��1�

�
�.�/

�
�y��1 D �xy��1:

Since � 2 C0.V; q/R, it follows that C0.u/ restricts to the identity on ZR, hence u is a
proper similitude.

For � 2 �.q/.R/, the map x 7! �0.�/x� is an invertible linear operator on VR. If
u 2 GL.V /.R/ is the image of this operator under �b , then condition (a) of Lemma 2.5
holds for this u. We write u D �0.�/, so �0.�/ 2 GOC.q/.R/ is equivalently defined by
any of the two equations

�0.�/x� D �b
�
�0.�/

�
.x/ and �0.�/.x/ D �

�
�.�/

�
�x��1 for all x 2 VR: (2.1)

The map �0 is a morphism
�0W�.q/! GOC.q/:

Lemma 2.5 yields

Intj�.q/ D C0 ı �0 2 Aut
�
C0.V; q/

�
and NZ=F ı � D � ı �0W�.q/! Gm: (2.2)

Proposition 2.6. The special Clifford group �C.q/ is a subgroup of �.q/. More pre-
cisely,

�C.q/ D ��1.Gm/ � �.q/:

Moreover, �0j�C.q/ D � � �W�
C.q/! OC.q/, hence �0 and � coincide on Spin.q/.

Proof. As pointed out in the definition of Spin.q/ above, for every commutative F -
algebra R the multiplier �.�/ of any � 2 �C.q/.R/ lies in R�. Therefore, Lemma 2.5
shows that �VR��1 D VR implies �0.�/VR� D VR, hence �C.q/.R/ � �.q/.R/. Con-
versely, if � 2 �.q/.R/ and �.�/ 2 R�, Lemma 2.5 shows that �0.�/VR� D VR implies
�VR�

�1 D VR, hence � 2 �C.q/.R/. Therefore �C.q/.R/ is the subgroup of elements in
�.q/.R/ whose multiplier lies in R�.

Moreover, for � 2 �C.q/.R/ we have �.�/.x/ D �x��1 and �0.�/.x/ D �.�/�x��1

for all x 2 VR, hence
�0.�/ D �.�/�.�/:
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Twisted forms. Twisted forms of �C.q/ and �.q/ are defined in [13, §13.B and §23.B]
by using a Clifford bimoduleB.A/ associated to any central simple algebra of even degree
with quadratic pair A D .A; �; f/. This bimodule is defined in [13, (9.5)] in such a way
that for every even-dimensional quadratic space .V;q/ the standard identification EndV D
V ˝ V yields

B.EndV; �b; fq/ D V ˝ C1.V; q/;

where C1.V; q/ is the odd part of the Clifford algebra C.V; q/. The left action � and the
right action � of C.A/ on B.A/ are given in the split case by

� � .x ˝ �/ D x ˝ .��/ and .x ˝ �/ � � D x ˝ .��/

for � 2C0.V;q/, � 2C1.V;q/ and x 2 V . The bimoduleB.A/ also carries a leftA-module
structure and a canonical left A-module homomorphism bWA! B.A/ (for which we use
the exponential notation) given in the split case by

a.x ˝ �/ D a.x/˝ � and .x ˝ y/b D x ˝ y 2 V ˝ C1.V; q/

for a 2 EndV , x, y 2 V and � 2 C1.V; q/.
The multiplicative group of C.A/ acts onB.A/ on the right as follows: � 7! ��1 � � � �

for � 2 C.A/� and � 2 B.A/. The Clifford group �.A/ is the normalizer of the subspace
Ab � B.A/, hence for every commutative F -algebra R

�.A/.R/ D
®
� 2 C.A/�R j �

�1
� AbR � � D A

b
R

¯
:

On the same model, when degA� 0 mod 4, we define4 the extended Clifford group�.A/
as the normalizer ofAb under the action on B.A/ of the group of similitudes of the canon-
ical involution � by

� 7! .� 7! �.�/ � � � �/:

Thus, letting Z denote the center of C.A/,

�.A/.R/ D
®
� 2 C.A/�R j �.�/� 2 Z

�
R and �.�/ � Ab � � D Ab

¯
for every commutative F -algebra R. Let � denote the multiplier map

�W�.A/! RZ=F .Gm/; � 7! �.�/�

and define morphisms

�W�.A/! OC.A/ and �0W�.A/! GOC.A/

by
��1 � 1b � � D �.�/b and �.�/ � 1b � � D �0.�/

b;

4An alternative definition, which also covers the case where degA � 2 mod 4, is given in [13, §23.B].
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see [13, (13.11) and (13.29)]. In the split case where .�; f/ D .�b; fq/ for some quadratic
space .V; q/, the standard identification yields

�.EndV; �b; fq/ D �
C.q/ and �.EndV; �b; fq/ D �.q/;

and the maps � and �0 are identical respectively to the vector representation and to the
map �0 defined in (2.1). We next show that they satisfy analogues of (2.2) and Proposi-
tion 2.6.

Proposition 2.7. Let A D .A; �; f/ be an F -algebra with quadratic pair of degree divisi-
ble by 4. The Clifford group �.A/ is a subgroup of�.A/. More precisely,

�.A/ D ��1.Gm/ � �.A/:

Moreover, RZ=F .Gm/ � �.A/ and �0jRZ=F .Gm/ D NZ=F WRZ=F .Gm/! Gm,

Intj�.A/ D C ı Int ı�0 2 Aut
�
C.A/

�
and NZ=F ı � D � ı �0W�.A/! Gm;

and
�0j�.A/ D � � �W�.A/! OC.A/:

Proof. The first part is proved in [13, (13.25)]. (Alternatively, it follows from Proposi-
tion 2.6 by Galois descent from a Galois splitting field of A.)

Let R be a commutative F -algebra. For z 2 Z�R we have �.z/ D z and z � 1b D 1b �
�.z/, hence z 2 �.A/.R/ with �0.z/ D NZ=F .z/. The rest follows from Proposition 2.6
by scalar extension to a splitting field of A.

Define �0W�.A/! PGOC.A/ by composing �0 with the canonical map GOC.A/!
PGOC.A/. Recall from [13, p. 352] the following commutative diagram with exact rows,
whose vertical maps are canonical:

1 // Gm //

��

�.A/
�
//

��

OC.A/

��

// 1

1 // RZ=F .Gm/ // �.A/
�0
// PGOC.A/ // 1

(2.3)

The exact rows of this diagram show that �.A/ and �.A/ are connected, since Gm,
OC.A/, RZ=F .Gm/ and PGOC.A/ are connected.

In the next proposition, we write R1
Z=F

.Gm/ for the kernel of the norm map

NZ=F WRZ=F .Gm/! Gm:

Proposition 2.8. Let A D .A; �; f/ be an algebra with quadratic pair of degree divisible
by 4. The following sequence is exact:

1! R1Z=F .Gm/! �.A/
�0
�! GOC.A/! 1:
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Proof. Since ker�0 � ker�0, it follows from the exactness of the lower row in (2.3) that
ker�0 � RZ=F .Gm/. Moreover, the following diagram is commutative with exact rows:

1 // RZ=F .Gm/ //

NZ=F

��

�.A/
�0
//

�0

��

PGOC.A/ // 1

1 // Gm // GOC.A/ // PGOC.A/ // 1

Since we already know that ker�0 � RZ=F .Gm/, it follows that ker�0 D R1Z=F .Gm/.
As GOC.A/ is smooth, to prove that �0 is onto it suffices by [13, (22.3)] to see that

�0 defines a surjective map on the group of rational points over an algebraic closure. This
is clear from the last commutative diagram above, because the norm NZ=F is surjective
when F is algebraically closed.

As in the split case, we define the Spin group

Spin.A/ D ker.�W�.A/! Gm/ D ker
�
�W�.A/! RZ=F .Gm/

�
and we have an exact sequence (see [13, p. 352]):

1! �2 ! Spin.A/
�
�! OC.A/! 1:

We may also restrict the map �0 to Spin.A/ to obtain a morphism

�0WSpin.A/! PGOC.A/:

This morphism is surjective since the vector representation � is surjective and the canoni-
cal map OC.A/! PGOC.A/ is surjective. Its kernel is

RZ=F .Gm/ \ Spin.A/ D RZ=F .�2/;

hence the following sequence is exact:

1! RZ=F .�2/! Spin.A/
�0

�! PGOC.A/! 1: (2.4)

The last proposition refers to the canonical quadratic pair .�; f/ on C.A/ defined
by Dolphin–Quéguiner-Mathieu (see Section 2.2). Assuming degA � 0 mod 8, we write
C.A/ for the Clifford algebra of A with its canonical quadratic pair:

C.A/ D .C.A/; �; f/:

Proposition 2.9. Let AD .A;�; f/ be an algebra with quadratic pair. If degA� 0 mod 8,
then�.A/ � GOC.C.A//.

Proof. LetR be a commutative F -algebra and let �2�.A/.R/. Since �0.�/2GO.A/.R/,
it follows that Int.�0.�// is an automorphism of AR, hence C.Int.�0.�/// is an auto-
morphism of C.A/R. But Proposition 2.7 shows that C.Int.�0.�/// D Int.�/, hence � 2
GO.C.A//.R/. We thus see that �.A/ � GO.C.A//. Since �.A/ is connected, it actu-
ally lies in the connected component GOC.C.A//.
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2.4. Lie algebras of orthogonal groups

Throughout this subsection, A is a central simple algebra of even degree n D 2m over an
arbitrary fieldF , and .�;f/ is a quadratic pair onA. We discuss several Lie algebras related
to the algebra with quadratic pair A D .A; �; f/, and obtain different results depending on
whether the characteristic is 2 or not. The discrepancies derive from the observation that
the Lie algebra of the algebraic group scheme �2 is F when char F D 2, whereas it
vanishes when charF ¤ 2.

The bracket Œa; b� D ab � ba turns A into a Lie algebra denoted by L.A/. As usual,
for a 2 A we let adaWA! A denote the linear operator defined by

ada.x/ D Œa; x� for x 2 A.

The following are subalgebras of L.A/ associated with the quadratic pair .�; f/; they
are the Lie algebras of the algebraic group schemes O.A/ and GO.A/ respectively, see
[13, §23.B]:

o.A/ D Alt.�/ D ¹a � �.a/ j a 2 Aº

go.A/ D
®
g 2 A j �.g/C g 2 F and f.Œg; s�/ D 0 for all s 2 Sym.�/

¯
:

Note that o.A/ depends only on � and not on f . Clearly, F � go.A/. We let

pgo.A/ D go.A/=F

and define
P�Wgo.A/! F by P�.g/ D �.g/C g:

This map is the differential of the multiplier morphism �WGO.A/!Gm, hence it is a Lie
algebra homomorphism.

Proposition 2.10. Let ` 2 A be such that f.s/ D TrdA.`s/ for all s 2 Sym.�/. Then

go.A/ D
®
g 2 A j adg ı� D � ı adg and .f ı adg/.s/ D 0 for all s 2 Sym.�/

¯
D
®
g 2 A j TrdA.gs/ D .�.g/C g/ f.s/ for all s 2 Sym.�/

¯
D o.A/C `F (2.5)

and the following sequence is exact:

0! o.A/! go.A/
P�
�! F ! 0: (2.6)

Moreover,

dim o.A/ D dim pgo.A/ D m.2m � 1/ and dim go.A/ D m.2m � 1/C 1:

If charF ¤ 2, the inclusion o.A/ ,! go.A/ is split by the map 1
2
.Id��/Wgo.A/! o.A/,

and it induces a canonical isomorphism

o.A/
�
�! pgo.A/:
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If charF D 2, the map P� induces a map pgo.A/! F for which we also use the notation
P�, and the map o.A/ ! pgo.A/ induced by the inclusion o.A/ ,! go.A/ fits into an
exact sequence

0! F ! o.A/! pgo.A/
P�
�! F ! 0:

Proof. For g, x 2 A,

.adg ı � � � ı adg/.x/ D
�
g; �.x/

�
� �

�
Œg; x�

�
D
�
g C �.g/; �.x/

�
:

Therefore, adg ı� D � ı adg if and only if g C �.g/ 2 F , and the definition of go.A/

readily yields

go.A/ D
®
g 2 A j adg ı� D � ı adg and .f ı adg/.s/ D 0 for all s 2 Sym.�/

¯
:

Now, suppose g 2 A satisfies �.g/C g 2 F , and let � D �.g/C g. For s 2 Sym.�/
we have

TrdA.gs/ D f
�
gs C �.gs/

�
D f

�
gs C s�.g/

�
D f

�
gs C s.� � g/

�
D f.Œg; s�/C � f.s/: (2.7)

Therefore, TrdA.gs/ D � f.s/ for g 2 go.A/ and s 2 Sym.�/, hence

go.A/ �
®
g 2 A j TrdA.gs/ D .�.g/C g/ f.s/ for all s 2 Sym.�/

¯
:

To prove the reverse inclusion, suppose g 2 A satisfies TrdA.gs/ D .�.g/C g/ f.s/

for all s 2 Sym.�/. We first show that �.g/C g 2 F . If x 2 A is such that TrdA.x/ D 1,
then

f.�.x/C x/ D 1;

hence the hypothesis on g yields TrdA.g.�.x/ C x// D �.g/ C g, which shows that
�.g/C g 2 F . Letting � D �.g/C g, we have by (2.7) above TrdA.gs/ D f.Œg; s�/C

� f.s/ for all s 2 Sym.�/. On the other hand, TrdA.gs/ D � f.s/ by the hypothesis on g,
hence f.Œg; s�/ D 0, proving g 2 go.A/.

The first two equations in (2.5) are thus proved. The second one shows that ` 2 go.A/

since TrdA.`s/ D f.s/ for all s 2 Sym.�/ and �.`/C ` D 1. This last equation also reads
P�.`/ D 1, hence the map P�W go.A/! F is onto. The second characterization of go.A/

in (2.5) also shows that

ker. P�Wgo.A/! F / D
®
g 2 A j TrdA.gs/ D 0 for all s 2 Sym.�/

¯
;

which means that ker. P�/ is the orthogonal complement of Sym.�/ for the bilinear form
TrdA.XY /. This orthogonal complement is known to be Alt.�/ by [13, (2.3)]. As o.A/D

Alt.�/, it follows that o.A/ � go.A/ and the sequence (2.6) is exact.
From the above observations it follows that

o.A/C `F � go.A/:
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We use dimension count to show that this inclusion is an equality, completing the proof
of (2.5). Note that ` … o.A/ since o.A/ D ker. P�/ whereas P�.`/ D 1. Therefore,

dim
�
o.A/C `F

�
D 1C dim o.A/:

On the other hand, the exact sequence (2.6) yields dim go.A/ D 1C dim o.A/, hence the
proof of (2.5) is complete. Since dim Alt.�/ D m.2m � 1/ by [13, (2.6)], we obtain

dim o.A/ D m.2m � 1/ and dim go.A/ D m.2m � 1/C 1:

It follows that dim pgo.A/ D m.2m � 1/ because pgo.A/ D go.A/=F .
If charF ¤ 2, then we may take `D 1

2
in the discussion above, so go.A/D o.A/˚F

and pgo.A/ ' o.A/ canonically.
If charF D 2, then F � Alt.�/ because the involution � is symplectic, and the map

P�Wgo.A/! F vanishes on F . Therefore, P� induces a map pgo.A/! F whose kernel is
the image of o.A/.

When the algebra A is split, we may represent it as A D End V for some F -vector
space V of dimension n. The quadratic pair .�; f/ is then the quadratic pair .�b; fq/ adjoint
to a nonsingular quadratic form q on V (see Section 2.1), and we write simply go.q/ for
go.EndV; �b; fq/.

Proposition 2.11. Let g 2 End V and � 2 F . We have g 2 go.q/ and P�.g/ D � if and
only if

b.g.u/; u/ D �q.u/ for all u 2 V . (2.8)

Proof. We use the standard identification V ˝ V D End V set up in Section 2.1. For
s D u˝ u 2 Sym.�b/ we have gs D g.u/˝ u, hence Trd.gs/D b.g.u/;u/. On the other
hand fq.s/ D q.u/, hence if g 2 go.q/ and P�.g/ D � then the second characterization of
go.EndV; �b; fq/ in (2.5) shows that (2.8) holds.

Conversely, if (2.8) holds, then Trd.gs/ D � fq.s/ for all s 2 Sym.�b/ of the form
s D u˝ u with u 2 V . Applying this to s D .uC v/˝ .uC v/ with u, v 2 V yields

Trd
�
g.u˝ v C v ˝ u/

�
D � fq.u˝ v C v ˝ u/ D �Trd.u˝ v/;

hence b.g.u/; v/ C b.u; g.v// D �b.u; v/. Since �b is the adjoint involution of b, it
follows that �b.g/C g D �. We thus see that Trd.gs/ D .�b.g/C g/ fq.s/ for all s 2
Sym.�b/, which proves g 2 go.q/ by the second characterization of go.End V; �b; fq/
in (2.5).

Returning to the general case, where the algebra A is not necessarily split, let C.A/
denote the Clifford algebra of A D .A; �; f/, and write cWA! C.A/ for the canonical
map. Every g 2 go.A/ defines a derivation ıg of C.A/ such that

ıg
�
c.a/

�
D c

�
Œg; a�

�
for a 2 A; (2.9)
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this can be checked directly from the definition of C.A/ or by viewing the map g 7! ıg
as the differential of the morphism GO.A/! Aut.C.A// defined on rational points by
mapping g 2 GO.A/ to C.Int.g//. The derivation ıg is uniquely determined by (2.9),
because c.A/ generates A as an associative algebra.

Recall from [13, §8.C] that c.A/ is a Lie subalgebra of L.C.A//. By [13, p. 351],
c.A/ is the Lie algebra of the algebraic group �.A/, whose group of rational points is the
Clifford group �.A/, hence we call it the Clifford Lie algebra of A and write


.A/ D c.A/ � L
�
C.A/

�
:

The kernel of the map cWA! 
.A/ is ker.f/ � Sym.�/ by [13, (8.14)], hence

dim
.A/ D m.2m � 1/C 1:

Let � be the canonical involution on C.A/, which is characterized by the condition
that �.c.a// D c.�.a// for a 2 A. We have

�
�
c.a/

�
C c.a/ D c

�
�.a/C a

�
D f

�
�.a/C a

�
D TrdA.a/;

hence �.�/C � 2 F for � 2 
.A/, and we may define a Lie algebra homomorphism

P�W
.A/! F by P�.�/ D �.�/C �;

so P�.c.a// D TrdA.a/ for a 2 A. We let spin.A/ denote the kernel

spin.A/ D ker P� D
®
c.a/ j TrdA.a/ D 0

¯
� 
.A/;

which is the Lie algebra of the algebraic group Spin.A/ defined in Section 2.3. By defini-
tion of spin.A/, the following sequence is exact:

0! spin.A/! 
.A/
P�

�! F ! 0;

and therefore
dim spin.A/ D m.2m � 1/: (2.10)

Recall from [13, (8.15)] the Lie homomorphism

P�W
.A/! o.A/; c.a/ 7! a � �.a/ for a 2 A,

which fits in the following exact sequence

0! F ! 
.A/
P�
�! o.A/! 0: (2.11)

That sequence is the Lie algebra version of the following exact sequence of algebraic
groups from [13, p. 352]:

1! Gm ! �.A/
�
�! OC.A/! 1:
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We let
so.A/ D P�

�
spin.A/

�
D
®
a � �.a/ j TrdA.a/ D 0

¯
� o.A/:

If charF ¤ 2, then o.A/ D Skew.�/, hence every a 2 o.A/ satisfies TrdA.a/ D 0 and
a D 1

2
a � �.1

2
a/, hence

so.A/ D o.A/:

Moreover, in 
.A/ we have F \ spin.A/ D 0 because P�.�/ D 2� for � 2 F , hence the
restriction of P� is an isomorphism

P�W spin.A/
�
�! o.A/: (2.12)

By contrast, if charF D 2 we may define a map

TrpW o.A/! F by Trp
�
a � �.a/

�
D TrdA.a/;

because TrdA.Sym.�// D 0. (The map Trp is the pfaffian trace, see [13, (2.13)].) For a,
b 2 A we have�

a � �.a/; b � �.b/
�
D
�
a � �.a/; b

�
� �

��
a � �.a/; b

��
;

hence
Trp

��
a � �.a/; b � �.b/

��
D TrdA

��
a � �.a/; b

��
D 0:

Therefore, Trp is a Lie algebra homomorphism. Note also that F � spin.A/ because
P�.�/ D 2� D 0 for � 2 F . Therefore, there is a commutative diagram with exact rows
and columns:

0

��

0

��

F

��

F

��

0 // spin.A/ //

P�

��


.A/
P�
//

P�

��

F // 0

0 // so.A/ //

��

o.A/
Trp

//

��

F // 0

0 0

2.5. Extended Clifford Lie algebras

Throughout this subsection A is a central simple algebra of degree n D 2m over an arbi-
trary field F , and we assume m is even. Let .�; f/ be a quadratic pair on A, and let
A D .A; �; f/. Recall from Section 2.3 the Clifford bimodule B.A/ with its canonical left
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A-module homomorphism bWA! B.A/. We write Z for the center of C.A/ and � for the
nontrivial F -automorphism of Z.

Since the left A-module action on B.A/ commutes with the left and right C.A/-
module actions, the condition �.�/�AbR � �DA

b
R in the definition of the extended Clifford

group �.A/ is equivalent to �.�/ � 1b � � 2 AbR. The Lie algebra of �.A/ is therefore as
follows:

Definition 2.12. The extended Clifford Lie algebra of A is

!.A/ D
®
� 2 C.A/ j �.�/C � 2 Z and �.�/ � 1b C 1b � � 2 Ab

¯
:

It is shown in [13, p. 352] that the algebraic group scheme �.A/ is smooth, because
RZ=F .Gm/ and PGOC.A/ are smooth and the lower row of the diagram (2.3) is exact.
Since dimRZ=F .Gm/ D 2 and dim PGOC.A/ D m.2m � 1/, it follows that

dim�.A/ D dim!.A/ D m.2m � 1/C 2:

For � 2 !.A/ we write
P�.�/ D �.�/C � 2 Z:

Since the map b is injective, for each � 2 !.A/ there is a uniquely determined element
P�0.�/ 2 A such that

�.�/ � 1b C 1b � � D P�0.�/
b :

Thus, letting F Œ"� denote the algebra of dual numbers, where "2 D 0, we have

�.1C "�/ � 1b � .1C "�/ D
�
1C " P�0.�/

�b for � 2 !.A/.

This shows that P�0 is the differential of �0W�.A/! GOC.A/.

For the next statement, recall from (2.9) that every g 2 go.A/ defines a derivation ıg
of C.A/ such that ıg.c.a// D c.Œg; a�/ for all a 2 A.

Proposition 2.13. The Lie algebra !.A/ is a subalgebra of L.C.A// containing Z and

.A/, and P�0, P� are Lie algebra homomorphisms

P�0W!.A/! go.A/ and P�W!.A/! Z:

Moreover, P�0.z/ D TrZ=F .z/ 2 F for z 2 Z,

ad� D ı P�0.�/ and P�
�
P�0.�/

�
D TrZ=F

�
P�.�/

�
for � 2 !.A/,

and
P�0.�/ D P�.�/C P�.�/ for � 2 
.A/.

Proof. That !.A/ is a Lie subalgebra of L.C.A// and P�0, P� are Lie algebra homomor-
phisms is clear because !.A/ is the Lie algebra of �.A/ and P�0, P� are the differentials
of �0 and �W�.A/! RZ=F .Gm/ respectively.
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Over the algebra F Œ"� of dual numbers, Proposition 2.7 yields

Int.1C "�/ D C
�
Int
�
�0.1C "�/

��
for � 2 !.A/:

Hence for � 2 !.A/ and a 2 A

.1C "�/c.a/.1 � "�/ D c
��
1C " P�0.�/

�
a
�
1 � " P�0.�/

��
:

Comparing the coefficients of " yields Œ�; c.a/�D c.Œ P�0.�/; a�/. Therefore, the derivations
ad� and ı P�0.�/ coincide on c.A/, hence ad� D ı P�0.�/ because c.A/ generates C.A/ as an
associative algebra.

The other equations similarly follow by taking the differentials of �0.z/ D NZ=F .z/
for z 2 Z�, �.�0.�// D NZ=F .�.�// for � 2�.A/ and �0.�/ D �.�/�.�/ for � 2 �.A/
(see Proposition 2.7).

Corollary 2.14. If charF ¤ 2, then !.A/ D 
.A/CZ.

Proof. If charF ¤ 2, thenZ \
.A/DF , while Proposition 2.13 shows that 
.A/CZ�
!.A/. Dimension count then shows that !.A/ D 
.A/CZ.

Note thatZ � 
.A/ if charF D 2 (see [13, (8.27)]), hence 
.A/CZD 
.A/¨!.A/
in that case.

The following Lie algebra versions of the commutative diagram (2.3) and of Proposi-
tion 2.8 can be derived from their algebraic group scheme versions. We give a direct proof
instead.

Proposition 2.15. Let Z0 D ker.TrWZ ! F / and let P�0W!.A/! pgo.A/ be defined by
P�0.�/ D P�0.�/C F for � 2 !.A/. The following sequence is exact:

0! Z0 ! !.A/
P�0
�! go.A/! 0: (2.13)

The following diagram is commutative with exact rows and canonical vertical maps:

0 // F //

��


.A/

��

P�
// o.A/ //

��

0

0 // Z // !.A/
P�0
// pgo.A/ // 0

(2.14)

Moreover,


.A/ D
®
� 2 !.A/ j P�.�/ 2 F

¯
and spin.A/ D ker. P�W!.A/! Z/:

Proof. We first show Z0 D ker P�0. The inclusion Z0 � ker P�0 follows from Proposi-
tion 2.13. To prove the reverse inclusion, let � 2 ker P�0. Proposition 2.13 yields Œ�; c.a/�D
0 for all a 2 A. As c.A/ generates C.A/, we conclude that � 2 Z. But then Proposi-
tion 2.13 shows that P�0.�/ D TrZ=F .�/, hence � 2 Z0.
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Dimension count now shows that P�0 is surjective, hence (2.13) is an exact sequence.
The upper sequence of diagram (2.14) is (2.11). We have just seen that P�0 is surjective,

hence P�0 also is surjective. By Proposition 2.13, its kernel contains Z. Dimension count
then yields ker P�0 D Z, hence the lower sequence of the diagram is exact. Commutativity
of the diagram follows from Proposition 2.13, since P�.�/ 2 F for � 2 
.A/.

This last observation shows that 
.A/ lies in the kernel of the map

P~W!.A/! Z=F; � 7! P�.�/C F:

We have to prove that 
.A/D ker P~. To see this, it suffices to show that P~ is onto, because
dim
.A/ D .dim!.A// � 1 and dim.Z=F / D 1.

If charF ¤ 2, surjectivity is clear because P�.z/D 2z for all z 2 Z. If charF D 2, we
pick an element ` 2 go.A/ such that P�.`/ D 1. Since P�0 is onto, we may find � 2 !.A/
such that P�0.�/D `. Then by Proposition 2.13 we have TrZ=F . P�.�//D 1, hence P�.�/…F .
This shows P~ is onto.

To complete the proof, it suffices to observe that spin.A/ D ker. P�W 
.A/! F / by
definition.

When charF D 2 we have P�.Z/ D 0, hence Z � spin.A/ and we may define a Lie
algebra homomorphism PS Wpgo.A/! Z by

PS.g C F / D P�.�/ for any � 2 !.A/ such that P�0.�/ D g C F .

Corollary 2.16. If charF ¤ 2, then P�0 yields an isomorphism spin.A/
�
�! pgo.A/.

If charF D 2, the restriction of P�0 fits in the exact sequence

0! Z ! spin.A/
P�0

�! pgo.A/
PS
�! Z ! 0:

Proof. If charF ¤ 2we saw in (2.12) that P� yields an isomorphism spin.A/' o.A/, and
in Proposition 2.10 we saw that the canonical map is an isomorphism o.A/

�
�! pgo.A/,

hence P�0 is an isomorphism spin.A/ ' pgo.A/.
For the rest of the proof, assume charF D 2. Since P�0W!.A/! pgo.A/ is onto and

spin.A/ D ker P� by Proposition 2.15, it is clear from the definition of PS that ker PS D
P�0.spin.A//. As PS.pgo.A// � Z, it follows that

dim pgo.A/ � dim P�0
�
spin.A/

�
� 2: (2.15)

On the other hand we have Z � spin.A/ because P�.Z/ D 0, and Z � ker P�0 by Propo-
sition 2.15, hence

dim P�0
�
spin.A/

�
� dim spin.A/ � 2: (2.16)

As dimpgo.A/Dm.2m� 1/D dimspin.A/ by Proposition 2.10 and (2.10), the inequal-
ities (2.15) and (2.16) cannot be strict. Therefore, Z D ker P�0 D PS.pgo.A// and the
corollary is proved.
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Finally, we consider the case where m is divisible by 4; then C.A/ carries a canonical
quadratic pair .�; f/ defined by Dolphin–Quéguiner-Mathieu: see the end of Section 2.2.
As in Proposition 2.9, we let

C.A/ D
�
C.A/; �; f

�
:

Proposition 2.17. If degA � 0 mod 8, then !.A/ � go.C.A//.

Proof. The definition of!.A/ entails that �.�/C � 2Z for all � 2!.A/, hence it suffices
to prove f.Œ�; s�/ D 0 for � 2 !.A/ and s 2 Sym.�/. By the definition of f , this amounts
to showing that if a 2 A is such that TrdA.a/ D 1, then

TrdC.A/
�
c.a/Œ�; s�

�
D 0 for � 2 !.A/ and s 2 Sym.�/.

For this, observe that

TrdC.A/
�
c.a/.�s � s�/

�
D TrdC.A/

��
�c.a/ � c.a/�

�
s
�
:

Now, by Proposition 2.13 we have Œ�; c.a/� D c.Œ P�0.�/; a�/. As TrdA.Œ P�0.�/; a�/ D 0, it
follows that c.Œ P�0.�/; a�/ 2 spin.A/. Now, spin.A/ � Alt.�/ by [7, Lemma 3.2], hence

TrdC.A/
�
c
��
P�0.�/; a

��
s
�
D 0 for all s 2 Sym.�/.

Remark 2.18. When charF D 2, the Lie algebra L.A/ has an additional structure given
by the squaring map a 7! a2, which turns it into a restricted Lie algebra. It can be ver-
ified that the Lie algebras o.A/, so.A/, go.A/, pgo.A/, 
.A/, spin.A/, !.A/ are all
restricted (i.e., preserved under the squaring map), and the maps P�, P�, P�, Trp, P�0, PS are
homomorphisms of restricted Lie algebras (i.e., commute with the squaring map). The
proof is omitted, as the restricted Lie algebra structure will not be used in this work.

2.6. Homomorphisms from Clifford algebras

Throughout this subsection, A D .A; �; f/ is an algebra with quadratic pair of degree 2m
over an arbitrary field F . We assumem� 0 mod 4 and the discriminant of .�; f/ is trivial,
which implies that the Clifford algebraC.A/ decomposes as an algebra with quadratic pair
into a direct product of two central simple F -algebras with quadratic pair of degree 2m�1.
We further choose a polarization of A (see Definition 2.4), which provides a designation
of the primitive central idempotents of C.A/ as zC and z�. The simple components of
C.A/ are then

CC.A/ D C.A/zC and C�.A/ D C.A/z�:

We write �CWC.A/! CC.A/ and ��WC.A/! C�.A/ for the projections:

�C.�/ D �zC; ��.�/ D �z� for � 2 C.A/,

and let
C.A/ D

�
C.A/; �; f

�
:
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Given another central simple F -algebra with quadratic pair A0 D .A0; � 0; f 0/ of degree
2m�1, we define a homomorphism of algebras with quadratic pair

'WC.A/! A0 (2.17)

to be an F -algebra homomorphism 'WC.A/! A0 such that

' ı � D � 0 ı ' and '
�
f.s/

�
D f 0

�
'.s/

�
for all s 2 Sym.�/.

Since we assume dimA0 D 1
2

dimC.A/, such a homomorphism factors through one of
the projections �C or ��, and maps the center Z of C.A/ to F . It readily follows that '
defines a morphism GO.C.A//! GO.A0/ and maps go.C.A// to go.A0/.

Definition 2.19. We say that ' has the C sign if it factors through �C (i.e., '.zC/ D 1
and '.z�/ D 0), and that ' has the � sign if it factors through �� (i.e., '.zC/ D 0 and
'.z�/ D 1).

Since �.A/ � GOC.C.A// by Proposition 2.9, we may restrict ' to �.A/ to obtain
the following commutative diagram with exact rows, where˙ is the sign of ':

1 // RZ=F .Gm/ //

�˙

��

�.A/

'

��

�0
// PGOC.A/ //

x'

��

1

1 // Gm // GOC.A0/ // PGOC.A0/ // 1

(2.18)

We also consider the corresponding diagram with exact rows involving the differentials:

0 // Z //

�˙

��

!.A/
P�0
//

'

��

pgo.A/ //

�

��

0

0 // F // go.A0/ // pgo.A0/ // 0

(2.19)

Since ' ı � D � 0 ı ', it follows that ' ı � D � ı ' on�.A/, hence ' maps Spin.A/
to OC.A0/. Restricting the morphism ' to Spin.A/, we obtain from (2.18) the following
commutative diagram of algebraic group schemes with exact rows:

1 // RZ=F .�2/
//

�˙

��

Spin.A/
�0
//

'

��

PGOC.A/ //

x'

��

1

1 // �2
// OC.A0/ // PGOC.A0/ // 1

Our goal in the rest of this subsection is to show that the map � in (2.19) determines
the homomorphism ' in (2.17) uniquely.
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Definition 2.20. Given ' as in (2.17), of sign˙, the Lie algebra homomorphism

� Wpgo.A/! pgo.A0/

in diagram (2.19) is said to be induced by '. Changing the perspective, a Lie algebra
homomorphism � Wpgo.A/! pgo.A0/ is said to be liftable if it is induced by some homo-
morphism of algebras with quadratic pair ', which is then called a lift of � . If � is induced
by a homomorphism ', the sign of � is defined to be the same as the sign of '.

The following theorem shows that the latter definition is not ambiguous:

Theorem 2.21. If a Lie algebra homomorphism � W pgo.A/! pgo.A0/ is liftable, then
its lift is unique.

Proof. It suffices to prove the theorem after scalar extension. We may therefore assume
AD .EndV; �b; fq/ for some hyperbolic quadratic space .V; q/ of dimension 2m. We use
the standard identification V ˝ V D EndV set up in Section 2.1.

Since q is hyperbolic, by decomposing V into an orthogonal sum of hyperbolic planes
we may find a base .ei ; e0i /

m
iD1 of V such that

q.ei / D q.e
0
i / D b.ei ; ej / D b.e

0
i ; e
0
j / D 0 for all i , j D 1; : : : ; m

and

b.ei ; e
0
j / D

´
1 if i D j ;

0 if i ¤ j .

The products eiej , eie0j , e0iej , e0ie
0
j for i , j D 1; : : : ;m span V � V � C0.V; q/, hence they

generate C0.V; q/ as an F -algebra. Since q.ei / D q.e0i / D 0 for all i , we do not need to
count eiej nor e0ie

0
j among the generators if i D j . Moreover, ej e0j C e

0
j ej D b.ej ; e

0
j /D 1

for all j , hence if i ¤ j

eie
0
i D ei .ej e

0
j C e

0
j ej /e

0
i D .eiej /.e

0
j e
0
i /C .eie

0
j /.ej e

0
i /

and similarly

e0iei D e
0
i .ej e

0
j C e

0
j ej /ei D .e

0
iej /.e

0
j ei /C .e

0
ie
0
j /.ej ei /:

These equations show that eie0i and e0iei lie in the subalgebra of C0.V; q/ generated by
eke`, eke0`, e

0
k
e`, e0ke

0
`

for all k ¤ ` in ¹1; : : : ; mº. Therefore, these elements generate
C0.V; q/.

Consequently, if '1, '2WC0.V; q/! A0 are two lifts of a given � Wpgo.A/! pgo.A0/,
it suffices to prove that '1 and '2 coincide on eke`, eke0`, e

0
k
e`, e0ke

0
`

for all k ¤ ` in
¹1; : : : ; mº to conclude that '1 D '2. This is what we proceed to show.

The condition that '1 and '2 induce the same � means that '1.�/ � '2.�/ 2 F for all
� 2 !.q/, hence

'1
�
Œ�1; �2�

�
D '2

�
Œ�1; �2�

�
for all �1, �2 2 !.q/:
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We apply this to �1 D c.u1 ˝ v1/ D u1v1 and �2 D c.u2 ˝ v2/ D u2v2 2 
.q/ � !.q/
for u1, u2, v1, v2 2 V . If i ¤ j , we have

Œeiej ; e
0
j ej � D eiej e

0
j ej � e

0
j ej eiej :

Since ei and ej anticommute and e2j D 0, the second term on the right side vanishes. In
the first term, we may substitute 1 � e0j ej for ej e0j and use e2j D 0 to obtain

Œeiej ; e
0
j ej � D ei .1 � e

0
j ej /ej D eiej :

Similar computations yield for all i ¤ j in ¹1; : : : ; mº

Œeie
0
j ; ej e

0
j � D eie

0
j ; Œe0iej ; e

0
j ej � D e

0
iej ; Œe0ie

0
j ; ej e

0
j � D e

0
ie
0
j :

Since '1 and '2 take the same value on each Œ�1; �2� for �1, �2 2 !.q/, it follows that '1
and '2 coincide on each eiej , eie0j , e0iej and e0ie

0
j for i ¤ j , hence '1 D '2.

Corollary 2.22. Let � W pgo.A/! pgo.A0/ be a homomorphism of Lie algebras and let
K be a Galois field extension of F . If �K W pgo.A/K ! pgo.A0/K is liftable, then � is
liftable.

Proof. Let 'WC.A/K ! A0K be the lift of �K , and let � be an element of the Galois group
of K=F . Then

.IdA0 ˝�/ ı ' ı .IdC.A/˝��1/WC.A/K ! A0K

is a lift of .Idpgo.A0/˝�/ ı �K ı .Idpgo.A/˝�
�1/ D �K , hence, by uniqueness of the lift,

.IdA0 ˝�/ ı ' ı .IdC.A/˝��1/ D ':

Therefore, 'jC.A/ maps C.A/ to A0; it lifts � since ' lifts �K .

3. Compositions of quadratic spaces

This section introduces the notion of a composition of quadratic spaces. We emphasize
an important feature of compositions, which will be central to the definition of trialitarian
automorphisms in the next section: each composition gives rise to two other compositions
on the quadratic spaces cyclically permuted. Restricting to the case where the quadratic
spaces have the same finite dimension, we show that this dimension is 1, 2, 4 or 8, the
comparatively trivial case of dimension 1 arising only when the characteristic of the base
field is different from 2. In order to prove this fairly classical result along the same lines
as in [18, Cor. 1.12] we set up isomorphisms of algebras with involution or with quadratic
pair involving Clifford algebras. In dimension 8, these isomorphisms will provide in the
next section examples of trialitarian triples of split algebras. In Section 3.3 we investigate
similitudes and isometries of compositions of quadratic spaces, which define algebraic
groups that are close analogues of those attached to quadratic spaces.
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Even though the quadratic spaces in a composition are not necessarily isometric, it
is easy to see that every composition of quadratic spaces is similar to a composition of
isometric quadratic spaces (see Proposition 3.16). The focus in the last two subsections is
on this type of compositions. Using a related notion of composition of pointed quadratic
spaces, we show in Section 3.4 that every composition of isometric quadratic spaces is
isomorphic to its derivatives and also to a composition that is its own derivative, and in
Section 3.5 we discuss compositions of quadratic spaces arising from the classical notion
of composition algebra. To each composition algebra is associated a composition of iso-
metric quadratic spaces, and isotopies of composition algebras are shown in Theorem 3.34
to be similitudes of the associated compositions of quadratic spaces.

Throughout this section, F is an arbitrary field. Unless explicitly specified, there is no
restriction on its characteristic charF .

3.1. Composition maps and their cyclic derivatives

Let .V1; q1/, .V2; q2/, .V3; q3/ be (finite-dimensional) quadratic spaces over F . Write b1,
b2, b3 for the associated polar bilinear forms

bi WVi � Vi ! F; bi .xi ; yi / D qi .xi C yi / � qi .xi / � qi .yi / for i D 1, 2, 3:

We assume throughout that the forms b1, b2, b3 are nonsingular, hence each dim Vi is
even if charF D 2, and we may use the polar forms to identify each Vi with its dual V �i .
Bilinear maps V1 � V2 ! V3 are then identified with tensors in V3 ˝ V2 ˝ V1, so that for
vi 2 Vi the tensor v3 ˝ v2 ˝ v1 is regarded as the bilinear map

V1 � V2 ! V3; .x1; x2/ 7! v3b2.v2; x2/b1.v1; x1/:

Let

@WV3 ˝ V2 ˝ V1 ! V1 ˝ V3 ˝ V2 and @2WV3 ˝ V2 ˝ V1 ! V2 ˝ V1 ˝ V3

be the isomorphisms that permute the tensor factors cyclically. These maps allow us to
derive bilinear maps V2 � V3 ! V1 and V3 � V1 ! V2 from a given bilinear map V1 �
V2 ! V3. In our notation, bilinear maps are adorned with the same index as the target
space.

Proposition 3.1. Let �3WV1 � V2 ! V3 be a bilinear map, and let �1 D @.�3/ and �2 D
@2.�3/ be the derived maps

�1WV2 � V3 ! V1; �2WV3 � V1 ! V2:

The maps �1 and �2 are uniquely determined by the following property: for all x1 2 V1,
x2 2 V2, x3 2 V3,

b1.x1; x2 �1 x3/ D b2.x2; x3 �2 x1/ D b3.x3; x1 �3 x2/: (3.1)
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Proof. Uniqueness is clear because the forms b1 and b2 are nonsingular. By linearity, it
suffices to prove (3.1) in the case where �3 D v3 ˝ v2 ˝ v1 for some v1 2 V1, v2 2 V2,
v3 2 V3. Then �1 D v1 ˝ v3 ˝ v2 and �2 D v2 ˝ v1 ˝ v3, and each of the terms in (3.1)
is equal to b1.v1; x1/b2.v2; x2/b3.v3; x3/.

The bilinear maps of interest in this work satisfy the following multiplicativity condi-
tion:

Definition 3.2. A composition map �3WV1 � V2 ! V3 is a bilinear map subject to

q3.x1 �3 x2/ D q1.x1/q2.x2/ for x1 2 V1 and x2 2 V2. (3.2)

Even though this notion makes sense—and is studied for instance in [18, Chap. 14]—
when the dimensions of V1, V2 and V3 are not the same, we will always assume in the
sequel that dimV1 D dimV2 D dimV3.

Proposition 3.3. Let �3WV1 � V2 ! V3 be a composition map, with dimV1 D dimV2 D

dimV3. The derived bilinear maps �1 and �2 are composition maps, i.e., for all x1 2 V1,
x2 2 V2, x3 2 V3,

q1.x2 �1 x3/ D q2.x2/q3.x3/ and q2.x3 �2 x1/ D q3.x3/q1.x1/: (3.3)

Moreover, the following relations hold for all x1, y1 2 V1, x2, y2 2 V2, x3, y3 2 V3:

b3.x1 �3 x2; x1 �3 y2/ D q1.x1/b2.x2; y2/; (3.4)

b3.x1 �3 x2; y1 �3 x2/ D b1.x1; y1/q2.x2/; (3.5)

b1.x2 �1 x3; x2 �1 y3/ D q2.x2/b3.x3; y3/; (3.6)

b1.x2 �1 x3; y2 �1 x3/ D b2.x2; y2/q3.x3/; (3.7)

b2.x3 �2 x1; x3 �2 y1/ D q3.x3/b1.x1; y1/; (3.8)

b2.x3 �2 x1; y3 �2 x1/ D b3.x3; y3/q1.x1/; (3.9)

.x1 �3 x2/ �2 x1 D x2q1.x1/ and x2 �1 .x1 �3 x2/ D x1q2.x2/; (3.10)

.x2 �1 x3/ �3 x2 D x3q2.x2/ and x3 �2 .x2 �1 x3/ D x2q3.x3/; (3.11)

.x3 �2 x1/ �1 x3 D x1q3.x3/ and x1 �3 .x3 �2 x1/ D x3q1.x1/; (3.12)

.x1 �3 x2/ �2 y1 C .y1 �3 x2/ �2 x1 D x2b1.x1; y1/; (3.13)

x2 �1 .x1 �3 y2/C y2 �1 .x1 �3 x2/ D x1b2.x2; y2/; (3.14)

.x2 �1 x3/ �3 y2 C .y2 �1 x3/ �3 x2 D x3b2.x2; y2/; (3.15)

x3 �2 .x2 �1 y3/C y3 �2 .x2 �1 x3/ D x2b3.x3; y3/; (3.16)

.x3 �2 x1/ �1 y3 C .y3 �2 x1/ �1 x3 D x1b3.x3; y3/; (3.17)

x1 �3 .x3 �2 y1/C y1 �3 .x3 �2 x1/ D x3b1.x1; y1/: (3.18)

Proof. First, (3.4) and (3.5) are obtained by linearizing (3.2). By (3.1) and (3.4) we have
for x1 2 V1 and x2, y2 2 V2

b2
�
.x1 �3 x2/ �2 x1; y2

�
D b3.x1 �3 x2; x1 �3 y2/ D q1.x1/b2.x2; y2/:
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Since b2 is nonsingular, it follows that .x1 �3 x2/ �2 x1 D x2q1.x1/. Similarly, (3.1)
and (3.5) yield

b1
�
y1; x2 �1 .x1 �3 x2/

�
D b3.y1 �3 x2; x1 �3 x2/D b1.y1; x1/q2.x2/ for all y1 2 V1;

hence x2 �1 .x1 �3 x2/ D x1q2.x2/. We thus obtain (3.10); then (3.13), (3.14) follow by
linearization.

The main part of the proof consists in proving (3.3). For this, fix an anisotropic vector
x2 2V2. The map rx2 WV1!V3 defined by rx2.x1/D x1 �3 x2 is injective, for x1 �3 x2D 0
implies x1 D 0 by (3.10). Since dim V1 D dim V3 the map rx2 is also surjective, hence
every x3 2 V3 can be written as x3 D x1 �3 x2 for some x1 2 V1. Then by (3.10)

x2 �1 x3 D x2 �1 .x1 �3 x2/ D x1q2.x2/;

hence
q1.x2 �1 x3/ D q1.x1/q2.x2/

2:

But since x3 D x1 �3 x2 it follows from (3.2) that q3.x3/D q1.x1/q2.x2/, hence the right
side of the last displayed equation can be rewritten as q2.x2/q3.x3/. We have thus proven
q1.x2 �1 x3/D q2.x2/q3.x3/ when x2 is anisotropic. Moreover, by (3.10) we have for all
z2 2 V2

b1.x2 �1 x3; z2 �1 x3/ D b1
�
x2 �1 .x1 �3 x2/; z2 �1 .x1 �3 x2/

�
D q2.x2/b1

�
x1; z2 �1 .x1 �3 x2/

�
:

By (3.1) and (3.4),

b1
�
x1; z2 �1 .x1 �3 x2/

�
D b3.x1 �3 z2; x1 �3 x2/ D q1.x1/b2.z2; x2/;

hence, as q1.x1/q2.x2/ D q3.x3/,

b1.x2 �1 x3; z2 �1 x3/ D b2.x2; z2/q3.x3/: (3.19)

Now, assume x2 is isotropic. Pick anisotropic vectors y2; z2 2 V2 such that x2 D
y2 C z2. (If dim V2 > 2, we may pick any anisotropic y2 orthogonal to x2 and let z2 D
x2 � y2.) By the first part of the proof we have

q1.y2 �1 x3/ D q2.y2/q3.x3/ and q1.z2 �1 x3/ D q2.z2/q3.x3/:

Moreover, (3.19) yields

b1.y2 �1 x3; z2 �1 x3/ D b2.y2; z2/q3.x3/:

Therefore,

q1.x2 �1 x3/ D q1.y2 �1 x3/C b1.y2 �1 x3; z2 �1 x3/C q1.z2 �1 x3/

D q2.y2/q3.x3/C b2.y2; z2/q3.x3/C q2.z2/q3.x3/ D q2.x2/q3.x3/:
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Thus, equation q1.x2 �1 x3/ D q2.x2/q3.x3/ is proved for all x2 2 V2 and x3 2 V3. The
proof of q2.x3 �2 x1/D q3.x3/q1.x1/ for all x3 2 V3, x1 2 V1 is similar, using bijectivity
of the map

`x1 WV2 ! V3

carrying x2 to x1 �3 x2 for x1 anisotropic. This completes the proof of (3.3), and (3.6),
(3.7), (3.8), (3.9) follow by linearization.

The same arguments that gave (3.10) from (3.4) and (3.5) yield (3.11) from (3.6)
and (3.7), and also (3.12) from (3.8) and (3.9). The relations (3.15) and (3.16) (resp. (3.17)
and (3.18)) are derived by linearizing (3.11) (resp. (3.12)).

Remark 3.4. The derived maps of a composition map between quadratic modules of
constant rank 8 over a commutative ring are defined by Alsaody in [2, p. 886] using the
equations (3.1). From the proof of [2, Prop. 3.7], it follows that these derived maps are
composition maps.

Our main object of study in this section is defined next.

Definition 3.5. A composition of quadratic spaces over F is a 4-tuple

C D
�
.V1; q1/; .V2; q2/; .V3; q3/;�3

�
where .V1; q1/, .V2; q2/, .V3; q3/ are nonsingular quadratic spaces of the same dimension
over F and �3W V1 � V2 ! V3 is a composition map. We write dim C D n if dim V1 D

dimV2 D dimV3 D n.
In view of Proposition 3.3, each composition of quadratic spaces C yields derived

compositions of quadratic spaces @C and @2C defined by

@C D
�
.V2; q2/; .V3; q3/; .V1; q1/;�1

�
and

@2C D
�
.V3; q3/; .V1; q1/; .V2; q2/;�2

�
:

The composition maps �1 and �2 are called the derived composition maps of �3. Since @
is a cyclic operation of period 3, we have

@.@C/ D @2C ; @2.@C/ D C D @.@2C/; @2.@2C/ D @C :

Examples 3.6. (1) LetA be either F , a quadratic étale F -algebra, a quaternion F -algebra
or an octonion F -algebra, and let nAWA!F be (respectively) the squaring map, the norm,
the quaternion (reduced) norm or the octonion norm. Assuming charF ¤ 2 if A D F , we
know from the properties of these algebras that multiplication in A defines a composition
of quadratic spaces

C D
�
.A; nA/; .A; nA/; .A; nA/;�3

�
:

This particular type of composition is discussed in Section 3.5 in relation with composition
algebras. Note that ifA¤ F the derived composition maps �1 and �2 are not simply given
by the multiplication in A; see Proposition 3.29.



D. Barry and J.-P. Tignol 970

(2) Let U be an F -vector space of dimension 4 and let U � be its dual space. Let also
sW
V4

U ! F be an F -linear isomorphism. Define

• V1 D U
� ˚ U and q1WV1 ! F the (hyperbolic) quadratic form defined by

q1.' C u/ D '.u/

for ' 2 U � and u 2 U ;

• V2 D U ˚
V3

U and q2WV2 ! F the (hyperbolic) quadratic form defined by

q2.uC �/ D s.u ^ �/

for u 2 U and � 2
V3

U ;

• V3 D F ˚
V2

U ˚
V4

U and q3WV3! F the (hyperbolic) quadratic form defined by

q3.˛ C � C �/ D s
�
˛� � P.�/

�
for ˛ 2 F , � 2

V2
U and � 2

V4
U , where P W

V2
U !

V4
U is the “divided square”

map uniquely determined by the conditions that P.u1 ^ u2/ D 0 for u1, u2 2 U and
that its polar bilinear form satisfies bP .�1; �2/ D �1 ^ �2 for �1, �2 2

V2
U .

For ' 2 U �, let also d' W
V3

U !
V2

U be the linear map such that

d'.u1 ^ u2^3/ D '.u1/u2 ^ u3 � '.u2/u1 ^ u3 C '.u3/u1 ^ u2

for u1, u2, u3. Then the map �3WV1 � V2 ! V3 given by

.' C u/ �3 .u
0
C �/ D '.u0/C d'.�/C u ^ u

0
C u ^ �

for u, u0 2 U , ' 2 U � and � 2
V3

U is a composition of quadratic spaces of dimen-
sion 8. This follows from straightforward computations left to the reader. (This example is
inspired by the description of the Clifford algebra of a hyperbolic quadratic space in [13,
(8.3)].)

The following examples are obtained in relation with a Galois F -algebra L with ele-
mentary abelian Galois group ¹1; �1; �2; �3º, i.e., an étale biquadratic F -algebra.

(3) Assume charF ¤ 2, and for i D 1, 2, 3 let Vi denote the following 1-dimensional
subspace of L:

Vi D
®
xi 2 L j �j .xi / D �xi for j ¤ i

¯
:

Define qi W Vi ! F by qi .xi / D x2i . For x1 2 V1 and x2 2 V2 we have x1x2 2 V3 and
.x1x2/

2 D x21x
2
2 , hence multiplication in L defines a composition map �3WV1 � V2! V3.

The derived composition maps �1 and �2 are also given by the multiplication in L.
(4) Let A be a central simple F -algebra of degree 4 containing L. Assume charF ¤ 2

and F contains an element � such that �2 D �1. For i D 1, 2, 3, define

Vi D
®
xi 2 A j xi` D �i .`/xi for all ` 2 L

¯
:



Trialitarian triples 971

The F -vector space Vi has dimension 4 and carries a quadratic form qi given by qi .xi /D
TrdA.x2i /, where TrdA is the reduced trace. It is shown in [16] that the following formula
defines a composition map �3WV1 � V2 ! V3:

x1 �3 x2 D .1C �/x1x2 C .1 � �/x2x1:

The derived maps are given by similar formulas:

x2 �1 x3 D .1C �/x2x3 C .1 � �/x3x2 for x2 2 V2 and x3 2 V3;

x3 �2 x1 D .1C �/x3x1 C .1 � �/x1x3 for x3 2 V3 and x1 2 V1:

A characteristic 2 version of these composition maps is given in [20].
(5) Compositions of dimension 8 from central simple algebras with symplectic invo-

lution of degree 8 are given in a similar way in [4].

3.2. Canonical Clifford maps

Our goal in this subsection is to obtain structural information on the quadratic spaces
for which a composition exists. This information will be derived from algebra homomor-
phisms defined on Clifford and even Clifford algebras.

Throughout this subsection, we fix a composition of quadratic spaces

C D
�
.V1; q1/; .V2; q2/; .V3; q3/;�3

�
and we let �1 and �2 denote the derived composition maps of �3, as per Definition 3.5.
For each x1 2 V1 we may consider two linear maps

`x1 WV2 ! V3; x2 7! x1 �3 x2 and rx1 WV3 ! V2; x3 7! x3 �2 x1:

By (3.10) and (3.12) we have

`x1 ı rx1 D q1.x1/ IdV3 and rx1 ı `x1 D q1.x1/ IdV2 :

Therefore, the linear map

˛WV1 ! End.V2 ˚ V3/; x1 7!

�
0 rx1
`x1 0

�
extends to an F -algebra homomorphism defined on the Clifford algebra C.V1; q1/:

C.˛/WC.V1; q1/! End.V2 ˚ V3/:

The image of the even Clifford algebra C0.V1; q1/ lies in the diagonal subalgebra, hence
C.˛/ restricts to an F -algebra homomorphism

C0.˛/WC0.V1; q1/! .EndV2/ � .EndV3/:

We write �1 for the involution on C.V1; q1/ that leaves every vector in V1 fixed, and �01
for the restriction of �1 to C0.V1; q1/. We let �b2?b3 (resp. �b2 , resp. �b3 ) denote the
involution on End.V2 ˚ V3/ (resp. End V2, resp. End V3) adjoint to b2 ? b3 (resp. b2,
resp. b3).
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Theorem 3.7. The mapsC.˛/ andC0.˛/ are homomorphisms of algebras with involution

C.˛/W
�
C.V1; q1/; �1

�
!
�
End.V2 ˚ V3/; �b2?b3

�
;

C0.˛/W
�
C0.V1; q1/; �01

�
! .EndV2; �b2/ � .EndV3; �b3/:

Moreover, dim C D 1, 2, 4 or 8.

Proof. For the first part, it suffices to show that for x1 2 V1,

�b2?b3

�
0 rx1
`x1 0

�
D

�
0 rx1
`x1 0

�
:

This amounts to proving that for x1 2 V1, x2, y2 2 V2 and x3, y3 2 V3

b2.x3 �2 x1; y2/C b3.x1 �3 x2; y3/ D b2.x2; y3 �2 x1/C b3.x3; x1 �3 y2/;

which follows from (3.1).
To determine the various options for dim C , observe that the map C.˛/ endows V2 ˚

V3 with a structure of left C.V1; q1/-module; similarly, V2 and V3 are left modules over
C0.V1; q1/ through C0.˛/. This observation yields restrictions on the dimensions of V2
and V3, because the dimension of a left module over a central simple algebra A is a mul-
tiple of .degA/.indA/, where degA is the degree of A and indA is its (Schur) index.

Let n D dim C . If n is even, then C.V1; q1/ is a central simple F -algebra, and V2 ˚
V3 is a left module over C.V1; q1/ through C.˛/, hence .degC.V1; q1//.indC.V1; q1//
divides 2n. Since degC.V1; q1/ D 2n=2, it follows that 2n=2 divides 2n, hence n D 2, 4
or 8.

If n is odd, the even Clifford algebra C0.V1; q1/ is central simple over F , and V2
is a left module over C0.V1; q1/ through C0.˛/, hence .degC0.V1; q1//.indC0.V1; q1//
divides dim V2. As deg C0.V1; q1/ D 2.n�1/=2, this means that 2.n�1/=2 ind C0.V1; q1/
divides n. As n is assumed to be odd, we must have n D 1.

Mimicking the construction above, we attach to the derived compositions @C and @2C
linear maps

˛0WV2 ! End.V3 ˚ V1/; x2 7!

�
0 rx2
`x2 0

�
and

˛00WV3 ! End.V1 ˚ V2/; x3 7!

�
0 rx3
`x3 0

�
:

These maps yield homomorphisms

C.˛0/W
�
C.V2; q2/; �2

�
!
�

End.V3 ˚ V1/; �b3?b1
�
;

C0.˛
0/W
�
C0.V2; q2/; �02

�
! .EndV3; �b3/ � .EndV1; �b1/

(3.20)

and
C.˛00/W

�
C.V3; q3/; �3

�
!
�

End.V1 ˚ V2/; �b1?b2
�
;

C0.˛
00/W
�
C0.V3; q3/; �03

�
! .EndV1; �b1/ � .EndV2; �b2/:

(3.21)
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We next take a closer look at compositions of the various degrees. If dim C D 1, then
charF ¤ 2 since odd-dimensional quadratic forms are singular in characteristic 2. If q1
represents �1 2 F � and q2 represents �2 2 F �, then by multiplicativity q3 represents
�1�2 2 F

�, hence also .�1�2/�1. Thus in this case there exist �1, �2, �3 2 F � such that
�1�2�3 D 1 and

q1 ' h�1i; q2 ' h�2i; q3 ' h�3i;

and h1i ? q1 ? q2 ? q3 is a 2-fold Pfister form. We will mostly ignore this easy case.
(See however Example 3.6 (3).)

Proposition 3.8. Let dim C D 2. There exists a 1-fold Pfister form nC , uniquely deter-
mined up to isometry, and scalars �1, �2, �3 2 F � such that �1�2�3 D 1 and

q1 ' h�1inC ; q2 ' h�2inC ; q3 ' h�3inC :

The form nC ? q1 ? q2 ? q3 is a 3-fold Pfister form canonically associated to C up to
isometry.

Proof. Since dim V1 D 2, we have q1 ' h�1inC for some �1 2 F � and some uniquely
determined 1-fold Pfister form nC . For any anisotropic y2 2 V2, the map ry2 WV1! V3 car-
rying x1 to x1 �3 y2 is a similitude with multiplier q2.y2/ by (3.2), hence q3'hq2.y2/iq1.
Similarly, for any anisotropic y1 2 V1 the map `y1 WV2! V3 is a similitude with multiplier
q1.y1/, hence q3 ' hq1.y1/iq2. Therefore,

q3 '
˝
�1q2.y2/

˛
nC and q2 '

˝
q1.y1/

˛
q3 '

˝
�1q1.y1/q2.y2/

˛
nC :

Now, �1q1.y1/ is represented by nC since q1 ' h�1inC , hence h�1q1.y1/inC ' nC .
Letting �2 D q2.y2/ and �3 D .�1q2.y2//�1, we then have �1�2�3 D 1 and

q1 ' h�1inC ; q2 ' h�2inC ; q3 ' h�3inC :

Proposition 3.9. Let dim C D 4. There exists a 2-fold quadratic Pfister form nC , uniquely
determined up to isometry, and scalars �1, �2, �3 2 F � such that �1�2�3 D 1 and

q1 ' h�1inC ; q2 ' h�2inC ; q3 ' h�3inC :

The form nC ? q1 ? q2 ? q3 is a 4-fold Pfister form canonically associated to C up to
isometry.

Proof. Consider the homomorphisms of algebras with involution induced by C0.˛/:

'2W
�
C0.V1; q1/; �01

�
! .EndV2; �b2/ and '3W

�
C0.V1; q1/; �01

�
! .EndV3; �b3/:

If Z is a field, then C0.V1; q1/ is simple and its image under '2 is the centralizer in
EndV2 of a separable quadratic subfield fixed under �b2 . But the restriction of �b2 to such
a centralizer is an orthogonal involution (see [13, (4.12)]), whereas �01 is symplectic, so
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this case is impossible. Therefore, Z is not a field, which means that the discriminant (or
Arf invariant) of q1 is trivial. It follows that q1 is a multiple of some uniquely determined
2-fold Pfister form nC . The same arguments as in the proof of Proposition 3.8 show that
there exist �1, �2, �3 2 F � such that qi ' h�i inC for i D 1, 2, 3.

Finally, we consider the case where dim C D 8. Recall from Section 2.2 that in this
case the Clifford algebra C.V1; q1/ and the even Clifford algebra C0.V1; q1/ carry canon-
ical quadratic pairs. We use for these quadratic pairs the notation .�1; g1/ and .�01; g01/
respectively.

Proposition 3.10. Let dimC D 8. The canonical maps C.˛/ and C0.˛/ are isomorphisms
of algebras with quadratic pair

C.˛/W
�
C.V1; q1/; �1;g1

� �
�!

�
End.V2 ˚ V3/; �b2?b3 ; fq2?q3

�
;

C0.˛/W
�
C0.V1; q1/; �01;g01

� �
�! .EndV2; �b2 ; fq2/ � .EndV3; �b3 ; fq3/:

Moreover, there exists a 3-fold quadratic Pfister form nC , uniquely determined up to isom-
etry, and scalars �1, �2, �3 2 F � such that �1�2�3 D 1 and

q1 ' h�1inC ; q2 ' h�2inC ; q3 ' h�3inC :

The form nC ? q1 ? q2 ? q3 is a 5-fold Pfister form canonically associated to C up to
isometry.

Proof. In this case we have

dimC.V1; q1/ D dim End.V2 ˚ V3/:

Since the algebra C.V1; q1/ is simple, it follows that C.˛/ is an algebra isomorphism,
hence C.V1; q1/ is split. Moreover, C0.˛/ also is an isomorphism, hence the center of
C0.V1; q1/ is isomorphic to F � F , and therefore the discriminant (or Arf invariant) of q1
is trivial. It follows that q1 is a multiple of some uniquely determined 3-fold Pfister form
nC , and the existence of �1, �2, �3 2 F � such that qi ' h�i inC for i D 1, 2, 3 is proved
as in the case where dim C D 2 (see Proposition 3.8).

Since we already know from Theorem 3.7 that C.˛/ and C0.˛/ are homomorphisms
of algebras with involution, it only remains to see that these maps also preserve the semi-
traces.

The arguments in each case are similar. For C.˛/ we have to show that

fq2?q3
�
C.˛/.s/

�
D g1.s/ for all s 2 Sym.�1/.

Fix e1, e01 2 V1 such that b1.e1; e01/ D 1. By definition, g1.s/ D TrdC.V1;q1/.e1e
0
1s/.

Since isomorphisms of central simple algebras preserve reduced traces, we have for all
s 2 Sym.�1/

g1.s/ D TrdEnd.V2˚V3/
�
C.˛/.e1e

0
1s/
�
D TrdEnd.V2˚V3/

�
C.˛/.e1e

0
1/ ı C.˛/.s/

�
:
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Now, C.˛/.Sym.�1// D Sym.�b2?b3/ because C.˛/ is an isomorphism of algebras with
involution. Therefore, we may rewrite the equation we have to prove as

fq2?q3.s
0/ D TrdEnd.V2˚V3/

�
C.˛/.e1e

0
1/ ı s

0
�

for all s0 2 Sym.�b2?b3/:

Using the standard identification

End.V2 ˚ V3/ D .V2 ˚ V3/˝ .V2 ˚ V3/

set up in Section 2.1, we see that Sym.�b2?b3/ is spanned by elements of the form .x2 C

x3/˝ .x2 C x3/ with x2 2 V2 and x3 2 V3, and that for s0 D .x2 C x3/˝ .x2 C x3/

C.˛/.e1e
0
1/ ı s

0
D
�
C.˛/.e1e

0
1/.x2 C x3/

�
˝ .x2 C x3/

D
�
re1`e01.x2/C `e1re

0
1
.x3/

�
˝ .x2 C x3/:

Therefore, it suffices to show that for all x2 2 V2 and x3 2 V3

fq2?q3
�
.x2 C x3/˝ .x2 C x3/

�
D TrdEnd.V2˚V3/

��
re1`e01.x2/C `e1re

0
1
.x3/

�
˝ .x2 C x3/

�
: (3.22)

The right side is

.b2 ? b3/
�
.e01 �3 x2/ �2 e1 C e1 �3 .x3 �2 e

0
1/; x2 C x3

�
D b2

�
.e01 �3 x2/ �2 e1; x2

�
C b3

�
e1 �3 .x3 �2 e

0
1/; x3

�
:

Now, by (3.1) and (3.4) we have

b2
�
.e01 �3 x2/ �2 e1; x2

�
D b3.e

0
1 �3 x2; e1 �3 x2/ D b1.e

0
1; e1/q2.x2/

and, similarly,

b3
�
e1 �3 .x3 �2 e

0
1/; x3

�
D b2.x3 �2 e

0
1; x3 �2 e1/ D q3.x3/b1.e

0
1; e1/:

As b1.e1; e01/ D 1, it follows that

TrdEnd.V2˚V3/
��
re1`e01.x2/C `e1re

0
1
.x3/

�
˝ .x2 C x3/

�
D q2.x2/C q3.x3/:

On the other hand, by definition of fq2?q3 we have

fq2?q3
�
.x2 C x3/˝ .x2 C x3/

�
D .q2 ? q3/.x2 C x3/ D q2.x2/C q3.x3/:

We have thus checked (3.22).
The proof that C0.˛/ also preserves the semitraces is obtained by a slight variation of

the preceding arguments. We have to show that

.fq2 ; fq3/
�
C0.˛/.s/

�
D C0.˛/

�
g01.s/

�
for all s 2 Sym.�01/.
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Since C0.˛/ is an isomorphism of algebras with involution, this amounts to showing�
fq2.s

0
2/; fq3.s

0
3/
�
D
�
TrdEndV2.re1`e01s

0
2/;TrdEndV3.`e1re01s

0
3/
�

(3.23)

for all s02 2 Sym.�b2/, s
0
3 2 Sym.�b3/. It suffices to consider s02, s03 of the form x2 ˝

x2, x3 ˝ x3 for x2 2 V2, x3 2 V3 under the standard identifications End V2 D V2 ˝ V2,
EndV3 D V3 ˝ V3. For s02 D x2 ˝ x2 we have

re1`e01s
0
2 D

�
.e01 �3 x2/ �2 e1

�
˝ x2;

hence

TrdEndV2.re1`e01s
0
2/ D b2

�
.e01 �3 x2/ �2 e1; x2

�
D b3.e

0
1 �3 x2; e1 �3 x2/ D q2.x2/:

On the other hand f2.x2 ˝ x2/ D q2.x2/ by definition. Likewise, for s03 D x3 ˝ x3

TrdEndV3.`e1re01s
0
3/ D q3.x3/ D fq3.s

0
3/;

hence (3.23) is proved.

Remark 3.11. The map C0.˛/ in Proposition 3.10 yields an isomorphism between the
center of C0.V1; q1/ and F � F , hence also a polarization of .V1; q1/ (see Definition 2.3):
the primitive central idempotents zC and z� of C0.V1; q1/ are such that C0.˛/.zC/ D
.1; 0/ and C0.˛/.z�/ D .0; 1/, so that C0.˛/ induces homomorphisms

CC.˛/WC0.V1; q1/! EndV2 and C�.˛/WC0.V1; q1/! EndV3:

Similarly, the maps C0.˛0/ and C0.˛00/ of (3.20) and (3.21) attached to @C and @2C yield
polarizations of .V2; q2/ and .V3; q3/, so that

CC.˛
0/WC0.V2; q2/! EndV3 and C�.˛

0/WC0.V2; q2/! EndV1;

and
CC.˛

00/WC0.V3; q3/! EndV1 and C�.˛
00/WC0.V3; q3/! EndV2:

Corollary 3.12. For any composition of quadratic spaces C , the following are equivalent:

(i) q1 ' q2 ' q3;

(ii) q1, q2 and q3 are Pfister forms;

(iii) q1, q2 and q3 represent 1.

Proof. According to Propositions 3.8, 3.9, and 3.10, there exist a quadratic Pfister form
nC and scalars �1, �2, �3 such that �1�2�3 D 1 and q1 ' h�1inC , q2 ' h�2inC and
q3 ' h�3inC . This also holds when dim C D 1, with nC D h1i.

(i))(ii) If q1 ' q2, then h�1�2inC ' nC , hence h�3inC ' nC . Therefore, q3 ' nC .
(ii))(iii) This is clear since Pfister quadratic forms represent 1.
(iii))(i) For i D 1, 2, 3, if qi represents 1, then nC represents �i , hence

h�i inC ' nC :
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3.3. Similitudes and isomorphisms

Consider two compositions of quadratic spaces C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ and
zC D .. zV1; Qq1/; . zV2; Qq2/; . zV3; Qq3/; Q�3/ over an arbitrary field F . As in Definition 3.5, we
write �1 and �2 (resp. Q�1, Q�2) for the derived composition maps of �3 (resp. Q�3).

Definition 3.13. For i D 1, 2, 3, let gi W .Vi ; qi /! . zVi ; Qqi / be a similitude with multiplier
�.gi / 2 F

�. The triple .g1; g2; g3/ is a similitude of compositions C ! zC if there exists
�3 2 F

� such that

�3g3.x1 �3 x2/ D g1.x1/ Q�3g2.x2/ for all x1 2 V1, x2 2 V2. (3.24)

Proposition 3.14. If g D .g1; g2; g3/ is a similitude C ! zC , then @g WD .g2; g3; g1/ is a
similitude @C ! @ zC and @2g WD .g3; g1; g2/ is a similitude @2C ! @2 zC . Moreover, the
scalars �1, �2, �3 2 F � such that for all x1 2 V1, x2 2 V2, x3 2 V3

�1g1.x2 �1 x3/ D g2.x2/ Q�1g3.x3/;

�2g2.x3 �2 x1/ D g3.x3/ Q�2g1.x1/;

�3g3.x1 �3 x2/ D g1.x1/ Q�3g2.x2/

are related to the multipliers of g1, g2, g3 by

�.g1/ D �2�3; �.g2/ D �3�1; �.g3/ D �1�2: (3.25)

Proof. For the first part, we have to prove the existence of �1 2 F � such that

�1g1.x2 �1 x3/ D g2.x2/ Q�1g3.x3/ for all x2 2 V2 and x3 2 V3.

Multiplying each side of (3.24) on the left by g2.x2/, we obtain for all x1 2 V1 and x2 2 V2

�3g2.x2/ Q�1g3.x1 �3 x2/ D Qq2
�
g2.x2/

�
g1.x1/ D �.g2/q2.x2/g1.x1/:

If x2 is anisotropic, then rx2 WV1 ! V3 is bijective with inverse q2.x2/�1`x2 , hence every
x3 2 V3 can be written as x3 D x1 �3 x2 with x1 D q2.x2/�1x2 �1 x3. Substituting in the
last displayed equation, we obtain for x2 2 V2 anisotropic and x3 2 V3

g2.x2/ Q�1g3.x3/ D �.g2/�
�1
3 g1.x2 �1 x3/:

Since anisotropic vectors span V2, this relation holds for all x2 2 V2 and x3 2 V3. There-
fore, .g2; g3; g1/ is a similitude of compositions, with scalar �1 D �.g2/��13 .

Applying the same arguments to @g instead of g, we see that @.@g/ D @2g is a simil-
itude @2C ! @2 zC , with scalar �2 D �.g3/��11 . Applying the arguments one more time,
we obtain that g is a similitude C ! zC with scalar �.g1/��12 , hence

�3 D �.g1/�
�1
2

and the proof is complete.
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Definition 3.15. In the situation of Proposition 3.14, the triple .�1; �2; �3/ 2 F � � F � �
F � is said to be the composition multiplier of the similitude of compositions gWC ! zC ,
and we write

�.g/ D .�1; �2; �3/;

hence �.@g/D .�2; �3; �1/ and �.@2g/D .�3; �1; �2/. Writing �.g/D �1�2�3, we thus
have by (3.25)

�.g/D
�
�.g/�.g1/

�1; �.g/�.g2/
�1; �.g/�.g3/

�1
�

and �.g1/�.g2/�.g3/D �.g/
2:

Similitudes with composition multiplier .1; 1; 1/ are called isomorphisms of composi-
tions.

Proposition 3.16. Every composition of quadratic spaces is similar to a composition of
isometric quadratic spaces.

Proof. Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ be an arbitrary composition of quadratic
spaces. Let �1 2 F � (resp. �2 2 F �) be a value represented by q1 (resp. q2) and let
�3 D �

�1
1 �

�1
2 2 F

�. Then �3 is represented by q3; define quadratic forms Qq1, Qq2, Qq3 on
V1, V2, V3 by

Qq1.x1/ D �
�1
1 q1.x1/; Qq2.x2/ D �

�1
2 q2.x2/; Qq3.x3/ D �

�1
3 q3.x3/

for x1 2 V1, x2 2 V2 and x3 2 V3. Depending on the dimension of C , Proposition 3.8,
3.9 or 3.10 shows that the forms Qq1, Qq2 and Qq3 are isometric Pfister forms. Define a map
Q�3WV1 � V2 ! V3 by

x1 Q�3x2 D �3x1 �3 x2 for x1 2 V1 and x2 2 V2.

Straightforward computations show that zC D .. zV1; Qq1/; . zV2; Qq2/; . zV3; Qq3/; Q�3/ is a compo-
sition, and that .IdV1 ; IdV2 ; IdV3/WC! zC is a similitude of compositions, with composition
multiplier .�1; �2; �3/.

Auto-similitudes of compositions of quadratic spaces define algebraic groups which
we discuss next.

For every composition C D ..V1; q1/; .V2; q2/; .V3; q3/; �3/, we associate to each
similitude .g1; g2; g3/WC ! C with multiplier .�1; �2; �3/ the 4-tuple .g1; g2; g3; �3/,
from which �1 and �2 can be determined by the relations (3.25). We may thus consider the
group of similitudes of C as the subgroup of GO.q1/ � GO.q2/ � GO.q3/ � F � defined
by the equations

�3g3.x1 �3 x2/ D g1.x1/ �3 g2.x2/ for all x1 2 V1, x2 2 V2.

These equations define a closed subgroup of GO.q1/ �GO.q2/ �GO.q3/ �Gm, hence
an algebraic group scheme, for which we use the notation GO.C/. From Proposition 3.14
it follows that @ and @2 yield isomorphisms

@WGO.C/! GO.@C/ and @2WGO.C/! GO.@2C/
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defined as follows: for every commutative F -algebraR and .g1; g2; g3;�3/ 2GO.C/.R/,

@.g1; g2; g3; �3/ D .g2; g3; g1; �1/ and @.g1; g2; g3; �3/ D .g3; g1; g2; �2/;

with
�1 D �.g2/�

�1
3 and �2 D �.g1/�

�1
3 :

The Lie algebra go.C/ of GO.C/ consists of 4-tuples

.g1; g2; g3; �3/ 2 go.q1/ � go.q2/ � go.q3/ � F

satisfying the following condition:

g3.x1 �3 x2/

D g1.x1/ �3 x2 C x1 �3 g2.x2/ � �3x1 �3 x2 for all x1 2 V1, x2 2 V2. (3.26)

The following is the Lie algebra version of Proposition 3.14:

Proposition 3.17. For g D .g1; g2; g3; �3/ 2 go.C/, there are scalars �1, �2 2 F such
that

P�.g1/ D �2 C �3; P�.g2/ D �3 C �1; P�.g3/ D �1 C �2

and for all x1 2 V1, x2 2 V2, x3 2 V3

g1.x2 �1 x3/ D g2.x2/ �1 x3 C x2 �1 g3.x3/ � �1x2 �1 x3;

g2.x3 �2 x1/ D g3.x3/ �2 x1 C x3 �2 g1.x1/ � �2x3 �2 x1;

g3.x1 �3 x2/ D g1.x1/ �3 x2 C x1 �3 g2.x2/ � �3x1 �3 x2:

Thus, @g WD .g2; g3; g1; �1/ lies in go.@C/ and @2g WD .g3; g1; g2; �2/ in go.@2C/.

The composition multiplier map �C yields a morphism of algebraic group schemes

�C WGO.C/! G3
m

defined as follows: for every commutative F -algebraR and .g1; g2; g3;�3/ 2GO.C/.R/,

�C .g1; g2; g3; �3/ D
�
�.g2/�

�1
3 ; �.g1/�

�1
3 ; �3

�
2 R� �R� �R�: (3.27)

Its differential P�C Wgo.C/! F � F � F is given by

P�C .g1; g2; g3; �3/ D
�
P�.g2/ � �3; P�.g1/ � �3; �3

�
:

We let O.C/ D ker �C and o.C/ D ker P�C , so O.C/ is the algebraic group scheme of
automorphisms of C and o.C/ is its Lie algebra.

Remark 3.18. For every commutative F -algebra R and .g1; g2; g3; �3/ 2 O.C/.R/ we
have �3 D 1 and �.g1/D �.g2/D 1, hence also �.g1/D 1 by (3.25). Thus, .g1; g2; g3/
is a related triple of isometries according to the definition given by Springer–Veldkamp
[19, §3.6], Elduque [8, §1] or Alsaody–Gille [3, §3.1] for some specific compositions of
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quadratic spaces arising from composition algebras. In Section 4.4 below we establish
isomorphisms O.C/' Spin.q1/' Spin.q2/' Spin.q3/, which are the analogues of the
isomorphisms given in [19, Prop. 3.6.3], [8, Th. 1.1] and [3, Th. 3.12] in terms of related
triples.

Proposition 3.19. The algebraic group schemes O.C/ and GO.C/ are smooth, and the
following sequences are exact:

1! O.C/! GO.C/
�C
��! G3

m ! 1 (3.28)

and

0! o.C/! go.C/
P�C
��! F 3 ! 0: (3.29)

Proof. Step 1: We show that �C is surjective. Since G3
m is smooth, it suffices by [13,

(22.3)] to show that �C is surjective on points over an algebraic closure Falg of F . For
this, we consider the homotheties: if �1; �2; �3 2 F �alg, then

�i Id.Vi /Falg
W .Vi ; qi /Falg ! .Vi ; qi /Falg

is a similitude with multiplier �2i , and�
�1 Id.V1/Falg

; �2 Id.V2/Falg
; �3 Id.V3/Falg

�
WCFalg ! CFalg

is a similitude with multiplier .�2�3��11 ; �3�1�
�1
2 ; �1�2�

�1
3 /. Therefore, the image of the

map �C in .F �alg/
3 contains .�2�3��11 ; �3�1�

�1
2 ; �1�2�

�1
3 / for all �1, �2, �3 2 F �alg. Given

�1, �2, �3 2 F �alg, we may find �1, �2, �3 2 F �alg such that �22 D �1�3, �23 D �1�2 and
�1 D �

�1
1 �2�3. Then

.�2�3�
�1
1 ; �3�1�

�1
2 ; �1�2�

�1
3 / D .�1; �2; �3/;

proving surjectivity of �C .
Step 2: We show that P�C is surjective. For u1, v1 2 V1, consider the maps

g1WV1 ! V1; x1 7! u1b1.v1; x1/ � v1b1.u1; x1/;

g2WV2 ! V2; x2 7! .v1 �3 x2/ �2 u1;

g3WV3 ! V3; x3 7! u1 �3 .x3 �2 v1/:

For x1 2 V1,

b1
�
g1.x1/; x1

�
D b1.u1; x1/b1.v1; x1/ � b1.v1; x1/b1.u1; x1/ D 0;

hence g1 2 go.q1/ with P�.g1/ D 0 by Proposition 2.11. Moreover, (3.1), (3.5) and (3.8)
yield for x2 2 V2 and x3 2 V3

b2
�
g2.x2/; x2

�
D b3.v1 � x2; u1 �2 x2/ D b1.v1; u1/q2.x2/;

b3
�
g3.x3/; x3

�
D b2.x3 �2 v1; x3 �2 u1/ D q3.x3/b1.v1; u1/:

Therefore, g2 2 go.q2/ and g3 2 go.q3/ with P�.g2/ D P�.g3/ D b1.v1; u1/.
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Now, for x1 2 V1 and x2 2 V2 we compute

g3.x1 �3 x2/ D u1 �3
�
.x1 �3 x2/ �2 v1

�
by using (3.18) twice in succession to interchange first x1 and v1, and then x1 and u1:

g3.x1 �3 x2/ D .u1 �3 x2/b1.v1; x1/ � u1 �3
�
.v1 �3 x2/ �2 x1

�
D .u1 �3 x2/b1.v1; x1/�.v1 �3 x2/b1.u1; x1/Cx1 �3

�
.v1 �3 x2/ �2 u1

�
D g1.x1/ �3 x2 C x1 �3 g2.x2/:

It follows that .g1;g2;g3; 0/ lies in go.C/, and the computation of P�.g2/ and P�.g1/ above
yields

P�C .g1; g2; g3; 0/ D .b1.v1; u1/; 0; 0/:

Thus, taking u1, v1 such that b1.v1; u1/ D 1, we see that .1; 0; 0/ lies in the image of P�C .
Similarly, we may find g0 2 go.@C/ and g00 2 go.@2C/ such that P�@C .g0/ D P�@2C .g

00/ D

.1; 0; 0/. Then @2.g0/, @.g00/ 2 go.C/ satisfy P�@2C .@
2.g0// D .0; 0; 1/ and P�@C .@.g00// D

.0; 1; 0/, hence P�C is surjective.
Steps 1 and 2 establish the exactness of the sequences (3.28) and (3.29). Step 2 shows

that the surjective map �C is separable,5 hence O.C/ is smooth by [13, (22.13)]. Since
G3

m is also smooth, it follows that GO.C/ is smooth by [13, (22.12)].

Step 1 of the proof of Proposition 3.19 introduces the subgroup of homotheties of
GO.C/: this subgroup H.C/ is the image of the closed embedding G3

m ! GO.C/ given
by

.�1; �2; �3/ 7! .�1 IdV1 ; �2 IdV2 ; �3 IdV3 ; �1�2�
�1
3 /:

The algebraic group H.C/ lies in the center of GO.C/, hence we may consider the quo-
tient algebraic group

PGO.C/ D GO.C/=H.C/:

This is a smooth algebraic group since GO.C/ is smooth. Let also

Z.C/ D H.C/ \O.C/:

This group is the kernel of the canonical map O.C/! PGO.C/. For every commutative
F -algebra R,

Z.C/.R/ D
®
.�1; �2; �3; 1/ j �

2
1 D �

2
2 D �

2
3 D �1�2�3 D 1

¯
� R� �R� �R� �R�;

hence Z.C/ is isomorphic to the kernel of the multiplication mapmW�2 ��2 ��2! �2
carrying .�1; �2; �3/ to �1�2�3. It is thus also isomorphic to �2 ��2, hence it is a smooth
algebraic group if and only if charF ¤ 2.

5Following [13, p. 341], a surjective homomorphism of group schemes is said to be separable if its
differential is a surjective Lie algebra homomorphism.
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Proposition 3.20. The following diagram is commutative with exact rows and columns:

1

��

1

��

1 // Z.C/ //

��

O.C/ //

��

PGO.C/ // 1

1 // H.C/ //

�C

��

GO.C/ //

�C

��

PGO.C/ // 1

G3
m

��

G3
m

��

1 1

Proof. Commutativity of the diagram is clear, and the lower row is exact by definition of
PGO.C/. Step 1 of the proof of Proposition 3.19 shows that �C WH.C/!G3

m is surjective,
hence the left column is exact. Moreover, the right column is exact by Proposition 3.19;
therefore it only remains to prove that the canonical map O.C/ ! PGO.C/ is surjec-
tive. Since PGO.C/ is smooth, it suffices to consider the group of rational points over
an algebraic closure Falg of F . We know �C WH.C/! G3

m is surjective, hence for every
g 2 GO.C/.Falg/ there exists h 2 H.C/.Falg/ such that �C .g/ D �C .h/. Then gh�1 lies
in O.C/.Falg/ and has the same image in PGO.C/.Falg/ as g, hence the canonical map
O.C/.Falg/! PGO.C/.Falg/ is surjective.

Let h.C/ and pgo.C/ be the Lie algebras of H.C/ and PGO.C/ respectively. By
definition,

h.C/ D
®
.�1 IdV1 ; �2 IdV2 ; �3 IdV3 ; �1 C �2 � �3/ j �1; �2; �3 2 F

¯
' F � F � F:

On the other hand, since H.C/ is smooth, the canonical map GO.C/! PGO.C/ is sep-
arable by [13, (22.13)], hence its differential is surjective. Therefore,

pgo.C/ D go.C/= h.C/:

The following result yields an explicit description of pgo.C/ for use in Section 4.3:

Proposition 3.21. Mapping .g1; g2; g3; �3/Ch.C/2pgo.C/ to .g1CF; g2CF; g3CF /
2pgo.q1/�pgo.q2/�pgo.q3/ identifies pgo.C/ with the subgroup of pgo.q1/�pgo.q2/

� pgo.q3/ consisting of triples .g1CF;g2CF;g3CF /where g1 2 go.q1/, g2 2 go.q2/

and g3 2 go.q3/ satisfy (3.26) for some �3 2 F .

Proof. It suffices to show that h.C/ is the kernel of the map

go.C/! pgo.q1/ � pgo.q2/ � pgo.q3/



Trialitarian triples 983

carrying .g1; g2; g3; �3/ to .g1 C F; g2 C F; g3 C F /. Clearly, h.C/ lies in the kernel of
this map. Conversely, if .g1; g2; g3; �3/ lies in the kernel, then there are scalars �1, �2,
�3 2 F such that gi D �i IdVi for i D 1, 2, 3. Then (3.26) yields �3 D �1C �2 � �3, hence
.g1; g2; g3; �3/ lies in h.C/.

Remark 3.22. If charF ¤ 2, the upper row of the diagram in Proposition 3.20 shows that
the canonical map o.C/! pgo.C/ is an isomorphism, for then Z.C/ is smooth and its
Lie algebra is 0. This canonical map is not bijective if charF D 2, even though o.C/ and
pgo.C/ have the same dimension.

3.4. Compositions of pointed quadratic spaces

Fixing a representation of 1 in a quadratic space yields a new structure:

Definitions 3.23. A pointed quadratic space over an arbitrary field F is a triple .V; q; e/
where .V;q/ is a quadratic space with nonsingular polar form over F and e 2 V is a vector
such that q.e/D 1. Each pointed quadratic space is endowed with a canonical isometry
of order 2, defined by

Nx D eb.e; x/ � x for x 2 V ,

where b is the polar form of q. Isometries of pointed quadratic spaces are required to
preserve the distinguished vector representing 1.

A composition of pointed quadratic spaces over F is a 4-tuple

C� D
�
.V1; q1; e1/; .V2; q2; e2/; .V3; q3; e3/;�3

�
(3.30)

where .V1; q1; e1/, .V2; q2; e2/, .V3; q3; e3/ are pointed quadratic spaces over F and the 4-
tuple C WD ..V1; q1/.V2; q2/; .V3; q3/;�3/ obtained by forgetting the distinguished vectors
is a composition of quadratic spaces such that

e1 �3 e2 D e3:

It follows from the definition that q1, q2 and q3 represent 1, hence these forms are
isometric Pfister forms, by Proposition 3.8, 3.9 or 3.10 (depending on the dimension).
Note that (3.10) readily yields

e2 �1 e3 D e1 and e3 �2 e1 D e2:

Therefore, the following are compositions of pointed quadratic spaces:

@C� D
�
.V2; q2; e2/; .V3; q3; e3/; .V1; q1; e1/;�1

�
;

@2C� D
�
.V3; q3; e3/; .V1; q1; e1/; .V2; q2; e2/;�2

�
:

Let C� and zC� be compositions of pointed quadratic spaces, and let C and zC be the
compositions of quadratic spaces obtained from C� and zC� by forgetting the distinguished
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vectors. Every similitude f WC ! zC that preserves the distinguished vectors must be an
isometry, because the equations

�1f1.x2 �1 x3/ D f2.x2/ Q�1f3.x3/;

�2f2.x3 �2 x1/ D f3.x3/ Q�2f1.x1/;

�3f3.x1 �3 x2/ D f1.x1/ Q�3f2.x2/

for x1 2 V1, x2 2 V2, x3 2 V3 imply �1 D �2 D �3 D 1 if f .ei / D Qei for i D 1, 2, 3.
Therefore, between compositions of pointed quadratic spaces the only type of maps we
consider are isomorphisms.

Definition 3.24. An isomorphism f W C� ! zC� of compositions of pointed quadratic
spaces is an isomorphism f WC ! zC of compositions of quadratic spaces that maps the
distinguished vectors of C� to the distinguished vectors of zC�. The automorphisms of C�

define an algebraic group scheme O.C�/, which is a closed subgroup of O.C/.

Our goal in this subsection is to show that every composition of pointed quadratic
spaces C� carries a canonical isomorphism �W C� ! @C� and is isomorphic to a com-
position S.C�/ such that @S.C�/ D S.C�/. For this, we will use the following identities
relating the canonical isometry and multiplication by the distinguished vectors:

Lemma 3.25. Let C� be a composition of pointed quadratic spaces as in (3.30).

(a) For every x1 2 V1, x2 2 V2, x3 2 V3,

e1 �3 x2 D e1 �3 x2; x1 �3 e2 D x1 �3 e2;

e2 �1 x3 D e2 �1 x3; x2 �1 e3 D x2 �1 e3;

e3 �2 x1 D e3 �2 x1; x3 �2 e1 D x3 �2 e1:

(b) For every x1 2 V1, x2 2 V2, x3 2 V3,

e1 �3 .x3 �2 x1/ D x1 �3 .x3 �2 e1/; .x1 �3 x2/ �2 e1 D .e1 �3 x2/ �2 x1;

e2 �1 .x1 �3 x2/ D x2 �1 .x1 �3 e2/; .x2 �1 x3/ �3 e2 D .e2 �1 x3/ �3 x2;

e3 �2 .x2 �1 x3/ D x3 �2 .x2 �1 e3/; .x3 �2 x1/ �1 e3 D .e3 �2 x1/ �1 x3:

(c) For every x1 2 V1, x2 2 V2, x3 2 V3,

e2 �1
�
e1 �3 .e3 �2 x1/

�
D x1 D

�
.x1 �3 e2/ �2 e1

�
�1 e3;

e3 �2
�
e2 �1 .e1 �3 x2/

�
D x2 D

�
.x2 �1 e3/ �3 e2

�
�2 e1;

e1 �3
�
e3 �2 .e2 �1 x3/

�
D x3 D

�
.x3 �2 e1/ �1 e3

�
�3 e2:

(d) For every x1 2 V1, x2 2 V2, x3 2 V3,

x1 �3 x2 D .x2 �1 e3/ �3 .e3 �2 x1/ D
�
.e3 �2 x1/ �1 .e1 �3 x2/

�
�3 e2;

x2 �1 x3 D .x3 �2 e1/ �1 .e1 �3 x2/ D
�
.e1 �3 x2/ �2 .e2 �1 x3/

�
�1 e3;

x3 �2 x1 D .x1 �3 e2/ �2 .e2 �1 x3/ D
�
.e2 �1 x3/ �3 .e3 �2 x1/

�
�2 e1:
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Proof. To avoid repetitions, we just prove the first formulas in each case.
(a) By definition,

e1 �3 x2 D e3b3.e3; e1 �3 x2/ � e1 �3 x2:

Substituting e1 �3 e2 for e3 and using b3.e3; e1 �3 x2/ D b2.e3 �2 e1; x2/ D b2.e2; x2/
yields

e1 �3 x2 D e1 �3
�
e2b2.e2; x2/ � x2

�
D e1 �3 x2:

(b) By (3.18) and (3.12),

e1 �3 .x3 �2 x1/ D x3b1.e1; x1/ � x1 �3 .x3 �2 e1/ and x3 D e1 �3 .x3 �2 e1/;

hence

e1 �3 .x3 �2 x1/ D
�
e1b1.e1; x1/ � x1

�
�3 .x3 �2 e1/ D x1 �3 .x3 �2 e1/:

(c) Using (b) and (3.10), we have

e2 �1
�
e1 �3 .e3 �2 x1/

�
D e2 �1

�
x1 �3 .e3 �2 e1/

�
D e2 �1 .x1 �3 e2/ D x1:

(d) We compute .x2 �1 e3/ �3 .e3 �2 x1/ by using (3.18) to exchange the factors x2 �1
e3 and x1:

.x2 �1 e3/ �3 .e3 �2 x1/ D e3b1.x2 �1 e3; x1/ � x1 �3
�
e3 �2 .x2 �1 e3/

�
:

Since e3 �2 .x2 �1 e3/ D x2 by (3.11) and b1.x2 �1 e3; x1/ D b3.e3; x1 �3 x2/ by (3.1),
it follows that

.x2 �1 e3/ �3 .e3 �2 x1/ D e3b3.e3; x1 �3 x2/ � x1 �3 x2 D x1 �3 x2:

On the other hand, (b) yields

x2 �1 e3 D x2 �1 .e1 �3 e2/ D e2 �1 .e1 �3 x2/;

hence, using (b) again together with (a),

.x2 �1 e3/ �3 .e3 �2 x1/ D
�
e2 �1 .e1 �3 x2/

�
�3 .e3 �2 x1/

D
�
e3 �2 x1 �1 .e1 �3 x2/

�
�3 e2

D
�
.e3 �2 x1/ �1 .e1 �3 x2/

�
�3 e2:

For a composition of pointed quadratic spaces C� as in (3.30), we define a composition
of pointed quadratic spaces S.C�/ as follows:

S.C�/ D
�
.V3; q3; e3/; .V3; q3; e3/; .V3; q3; e3/;~3

�
where

x ~3 y D .e2 �1 Nx/ �3 . Ny �2 e1/ for x, y 2 V3. (3.31)

We also define linear maps �1W V1 ! V2, �2W V2 ! V3, �3W V3 ! V1 as follows: for
x1 2 V1, x2 2 V2 and x3 2 V3,

�1.x1/ D e3 �2 x1; �2.x2/ D e1 �3 x2; �3.x3/ D e2 �1 x3:
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Theorem 3.26. With the notation above,

(a) the triple � D .�1; �2; �3/ is an isomorphism �WC� ! @C�;

(b) the triple .�3; ��12 ; IdV3/ is an isomorphism S.C�/! C�;

(c) @S.C�/ D S.C�/.

Proof. (a) It is clear that each �i is an isometry of pointed quadratic spaces, so it suffices
to prove �3.x1 �3 x2/ D �1.x1/ �1 �2.x2/ for x1 2 V1 and x2 2 V2, which amounts to

e2 �1 x1 �3 x2 D .e3 �2 x1/ �1 .e1 �3 x2/:

This readily follows from (d) of Lemma 3.25.
(b) For y 2 V3 we have �2. Ny �2 e1/ D e1 �3 Ny �2 e1 D y, hence by definition

x ~3 y D �3.x/ �3 ��12 .y/;

which proves (b).
(c) It suffices to prove

b3.x ~3 y; z/ D b3.x; y ~3 z/ for x, y, z 2 V3.

For this, we first compute using Lemma 3.25

y ~3 z D .e2 �1 Ny/ �3 .z �2 e1/

D
�
.e3 �2 e2 �1 Ny/ �1 .e1 �3 z �2 e1/

�
�3 e2

D
��
e3 �2 .e2 �1 y/

�
�1

�
e1 �3 .z �2 e1/

��
�3 e2

D
�
. Ny �2 e1/ �1 z

�
�3 e2:

Since and multiplication on the left by e2 are isometries, it follows that

b3.x; y ~3 z/ D b1.e2 �1 Nx; . Ny �2 e1/ �1 z/:

By definition of �1, the right side is

b3
�
.e2 �1 Nx/ �3 . Ny �2 e1/; z

�
D b3.x ~3 y; z/:

For compositions of (unpointed) isometric spaces, a result similar to Theorem 3.26
easily follows:

Corollary 3.27. For every composition of isometric quadratic spaces C , there is an iso-
morphism C ' @C . Moreover, C is isomorphic to a composition S.C/ such that @S.C/D
S.C/.

Proof. Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ be a composition of isometric quadratic
spaces. By Corollary 3.12, we know that q1, q2 and q3 represent 1. We may therefore use
the same constructions as in Theorem 3.26, after choosing e1 2 V1 and e2 2 V2 such that

q1.e1/ D q2.e2/ D 1
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and letting e3 D e1 �3 e2, for ..V1; q1; e1/; .V2; q2; e2/; .V3; q3; e3/;�3/ is then a composi-
tion of pointed quadratic spaces. Define the maps �1WV1 ! V2, �2WV2 ! V3, �3WV3 !
V1 as in Theorem 3.26. The proof of that theorem shows that .�1; �2; �3/ is an isomor-
phism C ! @C . Moreover, letting

S.C/ D
�
.V3; q3/; .V3; q3/; .V3; q3/;~3

�
with~3 as in (3.31), we see from the proof of Theorem 3.26 that @S.C/ D S.C/ and that
.�3; �

�1
2 ; IdV3/ is an isomorphism S.C/

�
�! C .

Note that, in contrast with Theorem 3.26, the constructions in Corollary 3.27 are not
canonical, since they depend on the choice of distinguished vectors.

3.5. Composition algebras

The purpose of this subsection is to briefly review the classical notion of composition
algebras, in order to underline its connections with compositions of quadratic spaces.

Definitions 3.28. A composition algebra over F is a triple A D .A; q;˘/ where .A; q/
is a (finite-dimensional) quadratic space over F with nonsingular polar bilinear form and
˘WA � A! A is a bilinear map such that

q.x ˘ y/ D q.x/q.y/ for all x, y 2 A.

The definition can be rephrased as follows: the 4-tuple

C.A/ D
�
.A; q/; .A; q/; .A; q/;˘

�
(3.32)

is a composition of quadratic spaces. Theorem 3.7 shows that the dimension of a com-
position algebra is 1, 2, 4 or 8, with dimension 1 occurring only when charF ¤ 2, and
Corollary 3.12 shows that q is a Pfister form.

A unital composition algebra6 is a 4-tuple

A� D .A; q; e;˘/;

where .A; q; e/ is a pointed quadratic space and ˘WA �A! A is a bilinear map such that

q.x ˘ y/ D q.x/q.y/ and e ˘ x D x ˘ e D x for all x, y 2 A.

In any unital composition algebra we have e ˘ e D e, hence

C�.A�/ D
�
.A; q; e/; .A; q; e/; .A; q; e/;˘

�
(3.33)

is a composition of pointed quadratic spaces.

6Unital composition algebras are called Hurwitz algebras in [13], see [13, (33.17)].
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As with more general compositions of quadratic spaces, the multiplication law ˘ of
a composition algebra A induces derived composition maps ˘1 and ˘2 of .A; q/, .A; q/,
.A; q/, defined by the conditions

b.x; y ˘1 z/ D b.x ˘ y; z/ and b.x ˘2 y; z/ D b.x; y ˘ z/ for x, y, z 2 A. (3.34)

We may therefore define derived composition algebras @A and @2A by

@A D .A; q;˘1/ and @2A D .A; q;˘2/:

Composition algebras A such that @A D A are called symmetric composition algebras.
They are characterized by the condition that

b.x ˘ y; z/ D b.x; y ˘ z/ for all x, y, z 2 A.

By contrast with compositions of pointed quadratic spaces, the derivation procedure
does not preserve unitality of composition algebras. To make this point clear, we deter-
mine below the derived composition maps of a unital composition algebra, using results
from [19, Ch. 1]. Note that unital composition algebras carry a canonical involutory isom-
etry derived from their pointed quadratic space structure as in Definitions 3.23.

Proposition 3.29. Let A� D .A; q; e;˘/ be a unital composition algebra.

(a) The derived composition maps ˘1 and ˘2 defined in (3.34) are given by

x ˘1 y D y ˘ Nx and x ˘2 y D Ny ˘ x for x, y 2 A.

(b) For the bilinear map �WA � A! A defined by

x � y D Nx ˘ Ny for x, y 2 A,

the triple S.A�/ D .A; q;�/ is a symmetric composition algebra.

Proof. (a) Lemma 1.3.2 in [19] yields b.x; y ˘ z/ D b.z; Ny ˘ x/, hence

b.x ˘2 y; z/ D b. Ny ˘ x; z/ for all x, y, z 2 A.

Since b is nonsingular, it follows that x ˘2 y D Ny ˘ x.
Since is an isometry, [19, Lem. 1.3.2] also yields b.x ˘ y; z/ D b. Ny; Nx ˘ z/. Now,

[19, Lem. 1.3.1] shows that x ˘ y D Ny ˘ Nx, hence the definition of ˘1 yields

b. Ny ˘ Nx; z/ D b. Ny; Nz ˘ x/ D b. Nz; x ˘1 Ny/ for all x, y, z 2 A.

Since b is nonsingular, it follows that x ˘1 Ny D Ny ˘ Nx.
(b) Since q. Nx/ D q.x/ for all x 2 A, it is clear that S.A�/ is a composition algebra.

To prove that the derived maps �1, �2 associated to � are identical to �, it suffices to prove
that b.x � y; z/ D b.x; y � z/ for all x, y, z 2 A, which amounts to

b. Nx ˘ Ny; z/ D b.x; Ny ˘ Nz/ for all x, y, z 2 A. (3.35)
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From the definition of ˘1 in (3.34) and its determination in (a), it follows that

b. Nx ˘ Ny; z/ D b. Nx; Ny ˘1 z/ D b. Nx; z ˘ y/ for all x, y, z 2 A.

Now, z ˘ y D Ny ˘ Nz by [19, Lem. 1.3.1], and is an isometry, hence the rightmost side
in the last displayed equation is equal to b.x; Ny ˘ Nz/, which proves (3.35).

Note that in the context of Proposition 3.29, x ˘1 e D Nx D e ˘2 x for all x 2 A. Hence
.A; q; e;˘1/ and .A; q; e;˘2/ are not unital composition algebras, unless D IdV , which
occurs only if dimA D 1.

Symmetric composition algebras S.A�/ derived from unital composition algebras A�

as in Proposition 3.29 are called para-unital composition algebras (para-Hurwitz algebras
in the terminology of [13]). They are characterized by the property that they contain a
para-unit, see [13, (34.8)].

Between algebras, maps that are more general than homomorphisms are considered,
following Albert [1].

Definition 3.30. Let .A;˘/ and . zA; z̆/ be F -algebras (i.e., F -vector spaces with a bilin-
ear multiplication). An isotopy f W .A;˘/! . zA; z̆/ is a triple f D .f1; f2; f3/ of linear
bijections fi WA! zA such that

f3.x ˘ y/ D f1.x/z̆f2.y/ for all x, y 2 A.

An autotopy is an isotopy of an algebra to itself. Under the composition of maps, auto-
topies of an algebra form a group Str.A;˘/ known as the structure group of .A;˘/. This
group is the set of F -rational points of an algebraic group scheme Str.A;˘/, which is a
closed subgroup of GL.A/ �GL.A/ �GL.A/.

For example, in the construction S of Proposition 3.29, which yields the symmetric
composition algebra S.A�/ from the unital composition algebra A�, the algebra .A; �/
is isotopic to .A; ˘/. The following construction, due to Kaplansky [11], shows that the
algebra of every composition algebra is isotopic to the algebra of a unital composition
algebra.

Proposition 3.31. Let A D .A; q; ˘/ be a composition algebra. There exists a bilinear
map �WA � A! A and a vector e 2 A for which

(a) .A; q; e;�/ is a unital composition algebra, and

(b) there exists an isotopy

f D .f1; f2; f3/W .A;˘/! .A;�/

which is also an isomorphism f WC.A/! C.A; q;�/ of the associated composi-
tions of quadratic spaces as in (3.32).

Proof. Since A is a composition algebra, Corollary 3.12 shows that there exists u 2 A
such that q.u/ D 1. The maps `uWA! A and ruWA! A defined by `u.x/ D u ˘ x and
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ru.x/ D x ˘ u are isometries of .A; q/, hence they are invertible. Define �WA � A! A

by
x � y D r�1u .x/ ˘ `�1u .y/ for x, y 2 A;

hence x ˘ y D ru.x/ � `u.y/ for x, y 2 A. It is clear from the definitions that .IdA; ru; `u/
is an isotopy .A;˘/! .A; �/ and also a similitude C.A/! C.A; q; �/ with multiplier
of the form .�1; �2; 1/ for some �1, �2 2 F �. Since

�.`u/ D �.ru/ D q.u/ D 1;

it follows from (3.25) that �1 D �2 D 1, hence f is an isomorphism of compositions of
quadratic spaces. Moreover for e D u ˘ u we have r�1u .e/ D u D `�1u .e/, hence

e � x D u ˘ `�1u .x/ D `u
�
`�1u .x/

�
D x D ru

�
r�1u .x/

�
D r�1u .x/ ˘ u D x � e;

hence .A; q; e;�/ is a unital composition algebra.

Corollary 3.32. Every composition of isometric quadratic spaces is isomorphic to a
composition C.A/ as in (3.32) for some unital composition algebra A, and also to a
composition C.�/ for some symmetric composition algebra � . Up to isomorphism, there
is a unique composition of hyperbolic quadratic spaces of dimension n, for nD 2, 4 and 8.

Proof. Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ be a composition of isometric quadratic
spaces, and let S.C/ D ..V3; q3/; .V3; q3/; .V3; q3/;~3/ be the composition of quadratic
spaces constructed in Corollary 3.27, which is isomorphic to C . Clearly, S.C/ D C.�/

for � the composition algebra � D .V3; q3;~3/. This composition algebra is symmetric
since @S.C/ D S.C/. Now, Proposition 3.31 yields a unital composition algebra A D

.V3; q3; e; �/ and an isomorphism C.�/ ' C.A/. Thus, C is isomorphic to C.�/ and
to C.A/.

For n D 2, 4 and 8, there is up to isomorphism a unique unital composition algebra of
dimension n with hyperbolic quadratic form, namely the split quadratic étale algebra, the
split quaternion algebra and the split octonion algebra, see [13, (33.19)]. Therefore, there
is a unique composition of hyperbolic quadratic spaces up to isomorphism.

By contrast with the last argument, note that there exist more than one symmetric
composition algebra of dimension 8 with hyperbolic quadratic form, see [13, (34.37)]; but
their associated compositions of quadratic spaces are isomorphic.

Remark 3.33. For quadratic modules over a commutative ring, Alsaody establishes in [2,
Prop. 3.7] the following result closely related to Corollary 3.32: every composition of
quadratic modules of constant rank 8 is isomorphic after a faithfully flat scalar extension
to the composition of quadratic spaces associated to a para-octonion algebra. The proof
uses the same construction as Theorem 3.26.

We next relate isotopies of composition algebras with similitudes of the associated
compositions of quadratic spaces.
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Theorem 3.34. Let A D .A; q; ˘/ and zA D . zA; Qq; z̆/ be composition algebras and let
C.A/ and C. zA/ be the associated compositions of quadratic spaces as in (3.32). A triple
f D .f1; f2; f3/ of bijective linear maps fi WA! zA is an isotopy .A;˘/! . zA; z̆/ if and
only if it is a similitude f WC.A/! C. zA/ with composition multiplier .�.f2/; �.f1/; 1/.

Proof. It is clear by comparing Definitions 3.13 and 3.30 that similitudes f W C.A/ !
C. zA/ with composition multiplier of the form .�1; �2; 1/ for some �1, �2 2 F � are
isotopies .A;˘/! . zA; z̆/. To prove the converse, it suffices to show that for every isotopy

f D .f1; f2; f3/W .A;˘/! . zA; z̆/

the maps fi are similitudes. The isotopy condition then shows that f is a similitude of
compositions C.A/!C. zA/with multiplier of the form .�1;�2;1/ for some �1, �2 2F �.
Then (3.25) shows that �1 D �.f2/ and �2 D �.f1/.

By Proposition 3.31 we can find a bilinear map �WA�A! A and a vector e 2 A such
that .A; q; e; �/ is a unital composition algebra and there exists an isotopy gW .A; ˘/!
.A;�/ whose components are isometries of .A; q/. The map f ı g�1W .A;�/! . zA; z̆/ is
then an isotopy, which means that for f ı g�1 D .h1; h2; h3/

h3.x � y/ D h1.x/z̆h2.y/ for all x, y 2 A. (3.36)

In particular, it follows that for all x 2 A

h1.e/z̆h2.x/ D h3.e � x/ D h3.x/ D h3.x � e/ D h1.x/z̆h2.e/:

Since zA is a composition algebra, these equations imply

Qq
�
h3.x/

�
D Qq

�
h1.e/

�
Qq
�
h2.x/

�
D Qq

�
h1.x/

�
Qq
�
h2.e/

�
for all x 2 A. (3.37)

Corollary 3.12 shows that the form Qq represents 1; as h3 is bijective, there exist vectors
x 2A such that Qq.h3.x//D 1, hence Qq.h1.e// and Qq.h2.e// belong to F �. Equation (3.37)
yields Qq.h3.e// D Qq.h1.e// Qq.h2.e//, hence Qq.h3.x// 2 F �. Define q0WA! F by

q0.x/ D Qq
�
h3.e/

��1
Qq
�
h.x/

�
for x 2 A,

so q0.e/ D 1. Since zA is a composition algebra, we obtain from (3.36)

Qq
�
h3.x � y/

�
D Qq

�
h1.x/

�
Qq
�
h2.y/

�
for all x, y 2 A,

hence by (3.37)

Qq
�
h3.x � y/

�
D Qq

�
h1.e/

��1
Qq
�
h2.e/

��1
Qq
�
h3.x/

�
Qq
�
h3.y/

�
D Qq

�
h3.e/

��1
Qq
�
h3.x/

�
Qq
�
h3.y/

�
:

Therefore,
q0.x � y/ D q0.x/q0.y/ for all x, y 2 A.



D. Barry and J.-P. Tignol 992

Thus, .A; q0; e; �/ is a unital composition algebra, just like .A; q; e; �/. But the quadratic
form in a unital composition algebra is uniquely determined as the “generic norm” of the
algebra (see [13, (33.9)] or [19, Cor. 1.2.4]), hence q0 D q, which means that

Qq
�
h3.x/

�
D Qq

�
h3.e/

�
q.x/ for all x 2 A.

Thus, h3W .A; q/! . zA; Qq/ is a similitude with multiplier Qq.h3.e//. Equation (3.37) then
yields

Qq
�
h1.x/

�
D Qq

�
h2.e/

��1
Qq
�
h3.e/

�
q.x/ and Qq

�
h2.x/

�
D Qq

�
h1.e/

��1
Qq
�
h3.e/

�
q.x/;

hence h1 and h2 also are similitudes. Now, f D h ı g and all the components of g are
isometries, hence all the components of f are similitudes.

Note that the construction in the proof of Theorem 3.34 is functorial: it also applies to
isotopies f W .AR;˘/! . zAR; z̆/ for R any commutative F -algebra. Therefore, in the case
where zA D A Theorem 3.34 has the following group scheme interpretation:

Corollary 3.35. For any composition algebra A D .A; q; ˘/, let �0WGO.C.A//! Gm

be the third component of the composition multiplier map �C.A/WGO.C.A//! G3
m, and

let �0W Str.A; ˘/ ! G2
m be the map defined on rational points by mapping every auto-

topy .f1; f2; f3/ to the pair of multipliers .�.f1/; �.f2//. The algebraic group scheme
Str.A;˘/ is smooth and fits in the following exact sequences:

1! Str.A;˘/! GO
�
C.A/

� �0

�! Gm ! 1

and

1! O
�
C.A/

�
! Str.A;˘/

�0

�! G2
m ! 1:

Proof. Theorem 3.34 identifies Str.A;˘/ as the kernel of �0. Proposition 3.19 shows that
�C.A/ is a separable morphism, hence �0 also is separable, and it follows by [13, (22.13)]
that Str.A;˘/ is smooth. Theorem 3.34 also shows that the kernel of �0 is the kernel of
the restriction of �C.A/ to Str.A; ˘/, which is O.C.A// by definition. To complete the
proof, observe that �0 is surjective because �C.A/ is surjective.

We next turn to automorphisms of an algebra .A; ˘/, which are linear bijections
f WA! A such that f .x ˘ y/ D f .x/ ˘ f .y/ for all x, y 2 A. They form an algebraic
group scheme Aut.A; ˘/, which can be viewed as a closed subgroup of Str.A; ˘/ since
every automorphism f yields an autotopy .f; f; f / of .A;˘/. To relate the condition that
f1 D f2 D f3 in an autotopy .f1; f2; f3/ with the shift isomorphism @WGO.C.A//!
GO.@C.A//, we view O.C.A//, O.@C.A// and O.@2C.A// as subgroups of GL.A/ �
GL.A/ �GL.A/ and define

xO
�
C.A/

�
D O

�
C.A/

�
\O

�
@C.A/

�
\O

�
@2C.A/

�
:

The shift isomorphism @ clearly restricts to an automorphism of xO.C.A//.
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Proposition 3.36. For every composition algebra A D .A; q;˘/, the group Aut.A;˘/ is
the subgroup of xO.C.A// fixed under @.

Proof. Let R be a commutative F -algebra. For every automorphism f of .A; ˘/R the
triple .f; f; f / is an autotopy of .A;˘/R, hence by Theorem 3.34 a similitude of C.A/R
with composition multiplier .�.f /; �.f /; 1/. The relations (3.25) between composition
multipliers and the multipliers of the components of similitudes yield �.f / D �.f /2,
hence �.f / D 1 and .f; f; f / is an automorphism of C.A/R. By Proposition 3.14 we
then see that .f; f; f / is also an automorphism of @C.A/ and of @2C.A/, hence

.f; f; f / 2 xO
�
C.A/

�
.R/;

and this triple is fixed under @.
On the other hand, if .f1; f2; f3/ 2 xO.C.A//.R/ is fixed under @, then f1 D f2 D f3,

hence f1 is an automorphism of .A;˘/R because .f1; f2; f3/ 2 O.C.A//.R/.

When A D .A; q; ˘/ is a symmetric composition algebra, then @C.A/ D C.A/ by
definition, hence xO.C.A// D O.C.A// and Proposition 3.36 shows that Aut.A;˘/ is the
subgroup of O.C.A// fixed under @. When dimA D 8, an alternative description is given
in [6, Th. 6.6]: Aut.A;˘/ is shown to be isomorphic to the subgroup of PGOC.q/ fixed
under an outer automorphism of order 3, which is the analogue of @.

For a unital composition algebra A� D .A; q; e; ˘/ with associated para-unital sym-
metric composition algebra S.A�/ D .A; q; �/ as in Proposition 3.29, it follows from
functoriality of the S construction that Aut.A;˘/�Aut.A;�/. The reverse inclusion holds
when dimA � 4 by [13, (34.4)]. However, the group Aut.A;˘/ can also be described as
follows:

Proposition 3.37. Let A� D .A; q; e;˘/ be a unital composition algebra, and let C�.A�/

be the associated composition of pointed quadratic spaces as in (3.33). There is a canon-
ical identification Aut.A;˘/ D O.C�.A�//.

Proof. LetR be a commutativeF -algebra. Every automorphism f 2Aut.A;˘/.R/ leaves
e fixed, hence the triple .f; f; f / is an automorphism of C�.A�/R. Therefore, mapping f
to .f; f; f / defines an embedding Aut.A;˘/ � O.C�.A�//.

For the reverse inclusion, let .f1; f2; f3/ 2 O.C�.A�//.R/. Substituting e for x or for
y in the equation

f3.x ˘ y/ D f1.x/ ˘ f2.y/ for all x, y 2 A

yields f3.y/ D f2.y/ and f3.x/ D f1.x/ for all x, y 2 A, hence f3 2 Aut.A;˘/.R/.

4. Trialitarian triples

The focus in this section is on central simple algebras with quadratic pair of degree 8 over
an arbitrary field F . Altering slightly the definition in [13, §42.A] (and extending it to
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characteristic 2), we define a trialitarian triple over F to be a 4-tuple (!)

T D
�
.A1; �1; f1/; .A2; �2; f2/; .A3; �3; f3/; '0

�
where .Ai ; �i ; f i / is a central simple F -algebra with quadratic pair of degree 8 for i D 1,
2, 3, and '0 is an isomorphism of algebras with quadratic pair

'0W
�
C.A1; �1; f1/; �1; f1

� �
�! .A2; �2; f2/ � .A3; �3; f3/:

To simplify notation, we denote by a single letter algebras with quadratic pair, as in Sec-
tion 2, and write Ai D .Ai ; �i ; f i / and C.A1/ D .C.A1/; �1; f1/.

If zT D .zA1; zA2; zA3; z'0/ is also a trialitarian triple, an isomorphism of trialitarian
triples 
 W T ! zT is a triple 
 D .
1; 
2; 
3/ of isomorphisms of algebras with quadratic
pair


i WAi ! zAi i D 1; 2; 3;

such that the following diagram commutes:

C.A1/
'0 //

C.
1/
��

A2 �A3


2�
3
��

C.zA1/
z'0 // zA2 � zA3

We show in Section 4.1 that every composition C of quadratic spaces of dimension 8
yields a trialitarian triple End.C/, and that every trialitarian triple of split algebras has the
form End.C/ for some composition C of dimension 8. In Section 4.2 we discuss the group
scheme of automorphisms of a trialitarian triple T : we show that Aut.T / is smooth (hence
an algebraic group) and introduce algebraic groups O.T /, GO.T /, PGO.T /, extending
to the context of trialitarian triples the group schemes O.C/, GO.C/, PGO.C/ defined
in Section 3.3 for a composition C of quadratic spaces. A main result of the section is the
construction of derived trialitarian triples in Section 4.3: to each trialitarian triple T we
canonically associate trialitarian triples @T and @2T , in such a way that for split trialitarian
triples End.C/

@End.C/ D End.@C/ and @2 End.C/ D End.@2C/:

This construction is used in Section 4.4 to define for each trialitarian triple

T D .A1;A2;A3; '0/

isomorphisms
O.T / ' Spin.A1/ ' Spin.A2/ ' Spin.A3/

and
PGO.T / ' PGOC.A1/ ' PGOC.A2/ ' PGOC.A3/;
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which we call the trialitarian isomorphisms canonically attached to the trialitarian triple
T . The trialitarian isomorphisms Spin.A1/ ' Spin.A2/ ' Spin.A3/ restrict on the cen-
ters to isomorphisms RZ1=F .�2/ ' RZ2=F .�2/ ' RZ3=F .�2/ that do not preserve the
subgroups �2 � RZi=F .�2/: see Proposition 4.21. In the particular case where A1 D

A2 D A3 (where A1 D A2 D A3 is split, since the sum of the Brauer classes of A1, A2
and A3 vanishes in the Brauer group of F , see [13, (42.7)]), the trialitarian isomorphisms
are therefore outer automorphisms. The close connection between trialitarian automor-
phisms of PGOC8 and symmetric compositions is discussed in [6].

We return in Section 4.5 to the study of compositions of quadratic spaces, building on
the theory of trialitarian triples developed in the previous subsections to obtain a few more
results about the 8-dimensional case. Specifically, we establish criteria for the similarity
or the isomorphism of compositions of quadratic spaces, which yield an analogue of the
classical principle of triality, and we give an explicit description of the cohomological
invariants of Spin8.

In the final Section 4.6 we show that the constructions of Section 4.2 readily yield a
canonical isomorphism between the structure group of a composition algebra of dimen-
sion 8 and the extended Clifford group of its quadratic form.

4.1. The trialitarian triple of a composition of quadratic spaces

Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ be a composition of quadratic spaces of dimen-
sion 8 over F . Recall from Proposition 3.10 the isomorphism of algebras with quadratic
pair

C.˛/W
�
C.V1; q1/; �1;g1

� �
�!

�
End.V2 ˚ V3/; �b2?b3 ; fq2?q3

�
induced by the map

˛W x1 2 V1 7!

�
0 rx1
`x1 0

�
2 End.V2 ˚ V3/

where `x1 W V2 ! V3 carries x2 2 V2 to x1 �3 x2 2 V3 and rx1 W V3 ! V2 carries x3 2 V3
to x3 �2 x1 2 V2. Its restriction to the even Clifford algebra also is an isomorphism of
algebras with quadratic pair

C0.˛/W
�
C0.V1; q1/; �01;g01

� �
�!

�
End.V2/; �b2 ; fq2

�
�
�

End.V3/; �b3 ; fq3
�
;

see Proposition 3.10. Therefore, the following is a trialitarian triple:

End.C/ D
��

End.V1/; �b1 ; fq1
�
;
�

End.V2/; �b2 ; fq2
�
;
�

End.V3/; �b3 ; fq3
�
; C0.˛/

�
:

We next show that the construction of trialitarian triples from compositions of quad-
ratic spaces is functorial.

Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ and zC D .. zV1; Qq1/; . zV2; Qq2/; . zV3; Qq3/; Q�3/ be
compositions of quadratic spaces of dimension 8. Recall that for every linear isomorphism
gi WVi ! zVi , we define

Int.gi /WEnd.Vi /! End. zVi / by f 7! gi ı f ı g
�1
i .
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Proposition 4.1. For every similitude .g1; g2; g3/WC ! zC , the triple

Int.g1; g2; g3/ WD
�
Int.g1/; Int.g2/; Int.g3/

�
WEnd.C/! End. zC/

is an isomorphism of trialitarian triples. Moreover, for every isomorphism of trialitarian
triples .
1; 
2; 
3/WEnd.C/! End. zC/, there exists a similitude .g1; g2; g3/WC ! zC such
that

.
1; 
2; 
3/ D Int.g1; g2; g3/:

Proof. Suppose that .g1; g2; g3/W C ! zC is a similitude. For i D 1, 2, 3, Int.gi / is an
isomorphism of algebras with quadratic pairs

Int.gi /W
�

End.Vi /; �bi ; fqi
� �
�!

�
End. zVi /; � Qbi ; f Qqi

�
:

Note that under the identification C.End.V1/; �b1 ; fq1/ D C0.V1; q1/ the isomorphism
induced by Int.g1/ is the isomorphism C0.g1/WC0.V1; q1/! C0. zV1; Qq1/ such that

C0.g1/.x1y1/ D �
�1
1 g1.x1/g1.y1/ for x1, y1 2 V1,

where�1 is the multiplier of g1. Therefore, in order to show that .Int.g1/; Int.g2/; Int.g3//
is an isomorphism of trialitarian triples End.C/ ! End. zC/, we have to show that the
following diagram commutes:

C0.V1; q1/

C0.g1/
��

C0.˛/ // End.V2/ � End.V3/

Int.g2/�Int.g3/
��

C0. zV1; Qq1/
C0.z̨/ // End. zV2/ � End. zV3/

(4.1)

Let .�1; �2; �3/ be the composition multiplier of .g1; g2; g3/. For x1, y1 2 V1 we have

C0.z̨/ ı C0.g1/.x1 � y1/ D �
�1
1

 
rg1.x1/`g1.y1/ 0

0 `g1.x1/rg1.y1/

!
and �

Int.g2/ � Int.g3/
�
ı C0.˛/.x1 � y1/ D

 
g2rx1`y1g

�1
2 0

0 g3`x1ry1g
�1
3

!
:

By Proposition 3.14, .g3; g1; g2/ is a similitude of @2C , hence for x1 2 V1 and x2 2 V2

g2rx1`y1.x2/ D g2
�
.y1 �3 x2/ �2 x1

�
D ��12 g3.y1 �3 x2/ �2 g1.x1/

D ��12 �
�1
3

�
g1.y1/ �3 g2.x2/

�
�2 g1.x1/:

Since �2�3 D �1 by (3.25), it follows that g2rx1`y1 D �
�1
1 rg1.x1/`g1.y1/g2. Similarly,

g3`x1ry1 D `g1.x1/rg1.y1/g3;

hence diagram (4.1) commutes. The first part of the proposition is thus proved.
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Now, assume .
1; 
2; 
3/WEnd.C/! End. zC/ is an isomorphism of trialitarian triples.
Each 
i is an isomorphism


i W
�
End.Vi /; �bi ; fqi

� �
�!

�
End. zVi /; � Qbi ; f Qqi

�
I

Proposition 2.2 shows that 
i D Int.gi / for some similitude gi W .Vi ; qi /! . zVi ; Qqi /. We
may then also consider the isomorphism

Int
�
g2 0

0 g3

�
WEnd.V2 ˚ V3/! End. zV2 ˚ zV3/;

which makes the following diagram, where the vertical maps are the diagonal embeddings,
commute:

End.V2/ � End.V3/
Int.g2/�Int.g3/ //

� _

��

End. zV2/ � End. zV3/� _

��

End.V2 ˚ V3/
Int
�
g2 0
0 g3

�
// End. zV2 ˚ zV3/

From the hypothesis that .
1; 
2; 
3/ is an isomorphism of trialitarian triples, it follows
that the diagram (4.1) commutes. Write �1 for the multiplier of g1 and consider the linear
map

ˇWV1 ! End. zV2 ˚ zV3/; x1 7!

�
0 rg1.x1/

��11 `g1.x1/ 0

�
:

For Qx2 2 zV2 and Qx3 2 zV3, we have by (3.10) and (3.12)

��11
�
g1.x1/ Q�3 Qx2

�
Q�2g1.x1/ D �

�1
1 Qq1

�
g1.x1/

�
Qx2

and
��11 g1.x1/ Q�3

�
Qx3 Q�2g1.x1/

�
D ��11 Qq1

�
g1.x1/

�
Qx3:

Since ��11 . Qq1.g1.x1/// D q1.x1/, it follows that ˇ.x1/2 D q1.x1/ Id zV2˚zV3 for x1 2 V1.
Therefore, ˇ induces an F -algebra homomorphism

C.ˇ/WC.V1; q1/! End. zV2 ˚ zV3/:

Since C.V1; q1/ is a simple algebra, dimension count shows that C.ˇ/ is an isomorphism.
For x1, y1 2 V1,

C.ˇ/.x1y1/ D

 
��11 rg1.x1/`g1.y1/ 0

0 ��11 `g1.x1/rg1.y1/

!
D C0.z̨/

�
C0.g1/.x1y1/

�
;

hence C.ˇ/jC0.V1;q1/ D C0.z̨/ ı C0.g1/. Since the diagram (4.1) commutes, it follows
that

C.ˇ/jC0.V1;q1/ D Int
�
g2 0

0 g3

�
ı C.˛/jC0.V1;q1/:
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Therefore, Int. g2 0
0 g3

/ ı C.˛/ ı C.ˇ/�1 is an automorphism of End. zV2 ˚ zV3/ whose re-
striction to C.ˇ/.C0.V1; q1// is the identity. This automorphism is inner by the Skolem–
Noether theorem. Since C.ˇ/.C0.V1; q1// D End. zV2/ � End. zV3/ we must have

Int
�
g2 0

0 g3

�
ı C.˛/ ı C.ˇ/�1 D Int

�
�2 0

0 �3

�
for some �2, �3 2 F �,

hence

Int
�
g2 0

0 g3

�
ı C.˛/.x1/ D

�
�2 0

0 �3

�
C.ˇ/.x1/

�
��12 0

0 ��13

�
for x1 2 V1,

which means that 
0 g2rx1g

�1
3

g3`x1g
�1
2 0

!
D

 
0 �2�

�1
3 rg1.x1/

��12 �3�
�1
1 `g1.x1/ 0

!
:

The equation g3`x1g
�1
2 D �

�1
2 �3�

�1
1 `g1.x1/ implies that for x2 2 V2

g3.x1 �3 x2/ D �
�1
2 �3�

�1
1 g1.x1/ Q�3g2.x2/:

Therefore, .g1; g2; g3/ is a similitude C ! zC .

We next show that every trialitarian triple of split algebras has the form End.C/ for
some composition C of quadratic spaces of dimension 8.

Theorem 4.2. Let T D .A1;A2;A3; '0/ be a trialitarian triple over an arbitrary field
F , where Ai D .Ai ; �i ; f i / for i D 1, 2, 3. If A1, A2 and A3 are split, then there is a
composition C of quadratic spaces of dimension 8 over F such that T ' End.C/. The
composition C is uniquely determined up to similitude.

Proof. For i D 1, 2, 3, let Ai D End.Vi / for some F -vector space Vi of dimension 8.
Let also qi be a quadratic form on Vi to which .�i ; f i / is adjoint. The map '0 is thus an
isomorphism of algebras with quadratic pairs (with the notation of Section 2.2):

'0W .C0.V1; q1/; �01;g01/
�
�! .EndV2; �b2 ; fq2/ � .EndV3; �b3 ; fq3/:

The idea of the proof is to extend '0 (after scaling q1 and q2 or q3 if necessary) into an
isomorphism of algebras with involution preserving the Z=2Z-grading:

'W
�
C.V1; q1/; �1

� �
�!

�
End.V2 ˚ V3/; �b2?b3

�
:

For x12V1, we then have '.x1/D
� 0 rx1
`x1 0

�
for some maps `x1 WV2!V3 and rx1 WV3 ! V2.

The last part of the proof consists in showing that .x1; x2/ 7! `x1.x2/ is a composition
map.

First, we extend '0 into an F -algebra isomorphism '. Since q1 is determined only up
to a scalar factor, we may assume q1 represents 1 and pick e1 2 V1 such that q1.e1/ D 1.
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The inner automorphism Int.e1/ of the full Clifford algebraC.V1;q1/ preservesC0.V1;q1/
and is of order 2. It transfers under the isomorphism '0 to an automorphism of End.V2/�
End.V3/ that interchanges the two factors. Viewing End.V2/ � End.V3/ as a subalgebra
diagonally embedded in End.V2 ˚ V3/, we may find an inner automorphism of End.V2 ˚
V3/ which restricts to '0 ı Int.e1/ ı '�10 by (a slight generalization of) the Skolem–
Noether Theorem, see [5, Prop. 1, p. A VIII.253]. This inner automorphism is conjugation
by an operator of the form

�
0 u0

u 0

�
since it interchanges

� IdV2 0
0 0

�
and

�
0 0
0 IdV3

�
. Since

'0 ı Int.e1/ ı '�10 has order 2, it follows that uu0 D u0u 2 F �, hence Int
�
0 u�1

u 0

�
has

the same restriction to End.V2/ � End.V3/ as Int
�
0 u0

u 0

�
. Representing C.V1; q1/ and

End.V2 ˚ V3/ as (generalized) crossed products

C.V1; q1/ D C0.V1; q1/˚ e1C0.V1; q1/;

End.V2 ˚ V3/ D
�
End.V2/ � End.V3/

�
˚

�
0 u�1

u 0

� �
End.V2/ � End.V3/

�
;

we may extend '0 to an isomorphism of F -algebras

'WC.V1; q1/! End.V2 ˚ V3/

by mapping e1 to
�
0 u�1

u 0

�
. Let �1 be the involution on C.V1; q1/ that fixes every vector

in V1 and let � 0 D ' ı �1 ı '�1 be the corresponding involution on End.V2 ˚ V3/. The
restriction of �1 to C0.V1; q1/ is the canonical involution �01, and '0 ı �01 D .�2 � �3/ ı
'0, hence � 0 restricts to �2 and �3 on End.V2/ and End.V3/. This means that�

End.V2 ˚ V3/; � 0
�
2
�

End.V2/; �2
�
�
�

End.V3/; �3
�
;

i.e., that � 0 is adjoint to a symmetric bilinear form that is the orthogonal sum of a multiple
of b2 and a multiple of b3. Scaling q2 or q3, we may assume � 0 D �b2?b3 is the adjoint
involution of b2 ? b3.

Under the isomorphism ', the odd part C1.V1; q1/ D e1C0.V1; q1/ is mapped to the
odd part of End.V2˚ V3/ for the checkerboard grading, hence for each x1 2 V1 there exist
`x1 2 Hom.V2; V3/ and rx1 2 Hom.V3; V2/ such that

'.x1/ D

�
0 rx1
`x1 0

�
2 End.V2 ˚ V3/:

Our next goal is to show that `x1 W V2 ! V3 is a similitude with multiplier q1.x1/. Since
�1.x1/ D x1, it follows that '.x1/ is �b2?b3 -symmetric, hence for all x2, y2 2 V2 and x3,
y3 2 V3

.b2 ? b3/

��
0 rx1
`x1 0

��
x2
x3

�
;

�
y2
y3

��
D .b2 ? b3/

��
x2
x3

�
;

�
0 rx1
`x1 0

��
y2
y3

��
:

This means that for all x2, y2 2 V2 and x3, y3 2 V3,

b2
�
rx1.x3/; y2

�
D b3

�
x3; `x1.y2/

�
and b3

�
`x1.x2/; y2

�
D b2

�
x2; rx1.y3/

�
: (4.2)
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Moreover, the relations x21 D q1.x1/ and x1y1 C y1x1 D b1.x1; y1/ yield for all x1,
y1 2 V1

`x1rx1 D rx1`x1 D q1.x1/ and `x1ry1 C `y1rx1 D rx1`y1 C ry1`x1 D b1.x1; y1/: (4.3)

Recall that the two components '˙ of '0 are homomorphisms of algebras with quad-
ratic pair

'CW
�
C0.V1; q1/; �01; f1

�
! A2; '�W

�
C0.V1; q1/; �01; f1

�
! A3:

As observed in Definition 2.20, 'C.!.q1// � go.q2/ and '�.!.q1// � go.q3/, hence

'C.x1y1/ 2 go.q2/ and '�.x1y1/ 2 go.q3/ for all x1, y1 2 V1.

The definition of ' yields 'C.x1y1/ D rx1`y1 and '�.x1y1/ D `x1ry1 , hence by (4.3)

P�
�
'C.x1y1/

�
D 'C.x1y1/C 'C.y1x1/ D b1.x1; y1/

and

P�
�
'�.x1y1/

�
D '�.x1y1/C '�.y1x1/ D b1.x1; y1/:

Since rx1`y1 2 go.q2/ and `x1ry1 2 go.q3/, it follows from Proposition 2.11 that for x1,
y1 2 V1, x2 2 V2 and x3 2 V3

b2
�
rx1`y1.x2/;x2

�
Db1.x1;y1/q2.x2/ and b3

�
`x1ry1.x3/;x3

�
Db1.x1;y1/q3.x3/: (4.4)

If x1 2 V1 is nonzero, there exists y1 2 V1 such that b1.x1; y1/ D 1. From (4.2) and (4.3)
we derive for all x2 2 V2

b3
�
`x1.x2/; `x1ry1`x1.x2/

�
D b2

�
rx1`x1.x2/; ry1`x1.x2/

�
D q1.x1/b2

�
x2; ry1`x1.x2/

�
:

But (4.4) yields

b3
�
`x1.x2/; `x1ry1`x1.x2/

�
D q3

�
`x1.x2/

�
and b2

�
x2; ry1`x1.x2/

�
D q2.x2/;

hence

q3
�
`x1.x2/

�
D q1.x1/q2.x2/ for all x1 2 V1, x2 2 V2 with x1 ¤ 0:

This equation obviously also holds for x1 D 0. Therefore, defining

�3WV1 � V2 ! V3 by x1 �3 x2 D `x1.x2/ for x1 2 V1 and x2 2 V2,

we see that �3 is a composition of .V1; q1/, .V2; q2/ and .V3; q3/. Let also

x3 �2 x1 D rx1.x3/ for x3 2 V3 and x1 2 V1.

From (4.2) it follows that b2.x3 �2 x1; x2/ D b3.x3; x1 �3 x2/ for x1 2 V1, x2 2 V2 and
x3 2 V3, hence Proposition 3.1 shows that �2 is the derived composition of .V3; q3/,
.V1; q1/ and .V2; q2/. Therefore, '0 D C0.˛/ for ˛WV1! End.V2˚ V3/mapping x1 2 V1
to
� 0 rx1
`x1 0

�
. We thus see that T D End.C/ for C D ..V1; q1/; .V2; q2/; .V3; q3/; �3/.

Proposition 4.1 shows that the composition C is uniquely determined up to similitude.
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4.2. Similitudes of trialitarian triples

Throughout this subsection, we fix a trialitarian triple

T D .A1;A2;A3; '0/

with Ai D .A1; �i ; f i / a central simple algebra with quadratic pair of degree 8 over an
arbitrary field F for i D 1, 2, 3. The algebraic group scheme Aut.T / of automorphisms
of T is defined as follows: for any commutative F -algebra R, the group Aut.T /.R/ con-
sists of the triples .
1; 
2; 
3/ 2 Aut.A1/.R/�Aut.A2/.R/�Aut.A3/.R/ that make the
following square commute:

C.A1/R
'0 //

C.
1/

��

A2R � A3R


2�
3

��

C.A1/R
'0 // A2R � A3R

(4.5)

Thus,
Aut.T / � Aut.A1/ � Aut.A2/ � Aut.A3/:

Now, recall from [13, §23.B] that the map IntWGO.Ai /! Aut.Ai / defines an isomor-
phism PGO.Ai /

�
�! Aut.Ai /. Therefore, we may consider the inverse image of Aut.T /

under the surjective morphism of algebraic group schemes

IntWGO.A1/ �GO.A2/ �GO.A3/! Aut.A1/ � Aut.A2/ � Aut.A3/:

Definition 4.3. The algebraic group scheme of similitudes of the trialitarian triple T is

GO.T / D Int�1
�
Aut.T /

�
� GO.A1/ �GO.A2/ �GO.A3/:

From this definition, it follows that the map Int restricts to a surjective morphism of alge-
braic group schemes (see [13, (22.4)])

IntWGO.T /! Aut.T /:

Its kernel is the algebraic group of homotheties H.T / D G3
m, which lies in the center of

GO.T /. We may therefore consider the quotient

PGO.T / D GO.T /=H.T / � PGO.A1/ � PGO.A2/ � PGO.A3/;

and the map Int yields an isomorphism

IntWPGO.T /
�
�! Aut.T /:

Our goal in this subsection is to define a subgroup O.T /�GO.T / on the same model
as the subgroup O.C/ of the group GO.C/ of similitudes of a composition of quadratic
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spaces, so that when T D End.C/ for some composition C of quadratic spaces of dimen-
sion 8 we may identify

O.T / D O.C/; GO.T / D GO.C/ and PGO.T / D PGO.C/I

see Proposition 4.10. Moreover, for an arbitrary trialitarian triple T , we relate GO.T / to
the extended Clifford group�.A1/ to obtain canonical isomorphisms

Spin.A1/
�
�! O.T / and PGO.T /

�
�! PGOC.A1/;

see Theorems 4.4 and 4.12.
A key tool is the following construction: let 'CWC.A1/! A2 and '�WC.A1/! A3

be the two components of the isomorphism '0WC.A1/! A2 � A3, which is part of the
structure of T . Recall from (2.18) that 'C and '� restrict to morphisms

'CW�.A1/! GOC.A2/ and '�W�.A1/! GOC.A3/:

Combine 'C and '� with the morphism �0W�.A1/!GOC.A1/ of Section 2.3 to obtain
a morphism

 T W�.A1/! GO.T / (4.6)

as follows: for every commutative F -algebra R and � 2 �.A1/.R/, let

 T .�/ D
�
�0.�/; 'C.�/; '�.�/

�
2 GOC.A1/.R/ �GOC.A2/.R/ �GOC.A3/.R/:

Proposition 2.7 shows that C.Int.�0.�/// D Int.�/, hence

'0 ı C
�
Int
�
�0.�/

��
ı '�10 D Int

�
'0.�/

�
D Int

�
'C.�/

�
� Int

�
'�.�/

�
;

which means that .Int.�0.�//; Int.'C.�//; Int.'�.�/// lies in Aut.T /.R/, and therefore
 T .�/ 2 GO.T /.R/. Note that  T is injective, since .'C.�/; '�.�// D '0.�/ and '0 is
an isomorphism.

We first use the map  T to prove:

Theorem 4.4. Projection on the first component �T W PGO.T /! PGO.A1/ defines an
isomorphism

PGO.T /
�
�! PGOC.A1/:

Proof. Let R be a commutative F -algebra and .
1; 
2; 
3/ 2 Aut.T /.R/. Since '0 is an
isomorphism, 
2 and 
3 are uniquely determined by 
1 and commutativity of the dia-
gram (4.5). Therefore, �T is injective. Moreover, commutativity of the diagram (4.5)
shows that C.
1/ leaves the center of C.A1/ fixed, which means that 
1 lies in the
connected component of the identity AutC.A1/.R/. It follows that the image of �T lies
in PGOC.A1/.

To complete the proof, we show that �T is surjective on PGOC.A1/. Since PGOC.A1/
is smooth, it suffices to consider rational points over an algebraic closure Falg of F , by [13,
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(22.3)]. Recall from Proposition 2.8 that �0 is surjective. For every g1 2 GOC.A1/.Falg/,
we may therefore find �2�.A1/.Falg/ such that �0.�/D g1. Then T .�/2GO.T /.Falg/,
and its image x T .�/ in PGO.T /.Falg/ satisfies

�T

�
x T .�/

�
D g1F

�
alg:

We have thus found an element in PGO.T /.Falg/ that maps under �T to any given
g1F

�
alg 2 PGOC.A1/.Falg/, hence �T is surjective.

Corollary 4.5. The algebraic group schemes GO.T / and PGO.T / are smooth and con-
nected.

Proof. That PGO.T / is smooth and connected readily follows from the theorem, since
PGOC.A1/ is smooth and connected by [13, §23.B]. Then GO.T / is also smooth and
connected because PGO.T /DGO.T /=H.T /with H.T / smooth and connected, see [13,
(22.12)].

We next use T to determine the structure of GO.T /. LetZ1'F �F denote the cen-
ter of C.A1/, and recall thatRZ1=F .Gm/ lies in the center of�.A1/ (see (2.3)). For every
commutative F -algebra R and z 2 .Z1/�R, Proposition 2.7 yields �0.z/ D NZ1=F .z/,
while 'C.z/, '�.z/ 2 R�. Therefore,

 T .z/ D
�
NZ1=F .z/; 'C.z/; '�.z/

�
2 R� �R� �R� D H.T /.R/: (4.7)

Proposition 4.6. The morphism  T and the inclusion i WH.T /! GO.T / combine with
the multiplication in GO.T / into a surjective morphism of algebraic group schemes

 T � i W�.A1/ �H.T /! GO.T /:

This morphism fits in the exact sequence

1! RZ1=F .Gm/! �.A1/ �H.T /
 T �i
����! GO.T /! 1

where RZ1=F .Gm/ is embedded into the product canonically in the first factor and by the
inversion followed by  T in the second.

Proof. It is clear from the definition of the embedding of RZ1=F .Gm/ that RZ1=F .Gm/ �

ker. T � i/. To prove the reverse inclusion, consider an arbitrary commutative F -algebra
R and pick � 2 �.A1/.R/ and � D .�1; �2; �3/ 2 H.T /.R/ such that  T .�/ � � D 1 in
GO.T /.R/, i.e.,

�0.�/ D �
�1
1 ; 'C.�/ D �

�1
2 and '�.�/ D �

�1
3 :

The last two equations show that '0.�/ D .��12 ; ��13 / in .A2/R � .A3/R. Since '0 is an
isomorphism, it follows that � lies in .Z1/�R, hence .�; �/ belongs to the image of .Z1/�R,
for � D  T .�/

�1.
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To complete the proof, it remains to show that  T � i is surjective. Since GO.T / is
smooth by Corollary 4.5, it suffices to consider the groups of rational points over an alge-
braic closure Falg of F . Let g D .g1; g2; g3/ 2 GO.T /.Falg/. Note that g1, g2 and g3 are
proper similitudes, because GO.T / is connected by Corollary 4.5. We know from Propo-
sition 2.8 that �0W�.A1/! GOC.A1/ is surjective, hence we may find � 2�.A1/.Falg/

such that �0.�/ D g1. Then
 T .�/ D .g1; g

0
2; g
0
3/

for some g02 2 GOC.A2/.Falg/ and g03 2 GOC.A3/.Falg/. As g and  T .�/ belong to
GO.T /.Falg/, the following diagrams commute:

C.A1/Falg

'0 //

C.Int.g1//

��

.A2/Falg � .A3/Falg

Int.g2/�Int.g3/

��

C.A1/Falg

'0 // .A2/Falg � .A3/Falg

C.A1/Falg

'0 //

C.Int.g1//

��

.A2/Falg � .A3/Falg

Int.g 02/�Int.g 03/

��

C.A1/Falg

'0 // .A2/Falg � .A3/Falg

Therefore, Int.g2/ D Int.g02/ and Int.g3/ D Int.g03/, which implies that g2 D g02�2 and
g3 D g

0
3�3 for some �2, �3 2 F �alg. With � D .1; �2; �3/ 2 H.T /.Falg/ we then have

 T .�/ � � D .g1; g
0
2�2; g

0
3�3/ D .g1; g2; g3/ D g:

Surjectivity of  T � i follows.

Corollary 4.7. Let mWH.T /! Gm denote the multiplication map carrying .�1; �2; �3/
to �1�2�3. There is a morphism �T WGO.T /! Gm uniquely determined by the condition
that the following diagram commutes:

�.A1/ �H.T /
 T �i //

.�ı�0/�m
&&

GO.T /

�T
{{

Gm

Proof. Proposition 4.6 identifies GO.T / as a quotient of�.A1/�H.T / byRZ1=F .Gm/,
hence to prove the existence and uniqueness of �T it suffices to show that .� ı �0/ and
m coincide on the images of RZ1=F .Gm/ in �.T / by inclusion and in H.T / by  T . For
every commutative F -algebra R and z 2 .Z1/�R we have �0.z/ D NZ1=F .z/ by Proposi-
tion 2.7, hence

.� ı �0/.z/ D NZ1=F .z/
2:
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On the other hand NZ1=F .z/ D 'C.z/'�.z/, hence

.m ı  T /.z/ D m
�
NZ1=F .z/; 'C.z/; '�.z/

�
D NZ1=F .z/

2:

Thus, .� ı �0/ and m coincide on the images of RZ1=F .Gm/.

Definition 4.8. The morphism �T WGO.T /! G3
m is defined as follows: for every com-

mutative F -algebra R and g D .g1; g2; g3/ 2 GO.T /.R/, set

�T .g/ D
�
�T .g/�.g1/

�1; �T .g/�.g2/
�1; �T .g/�.g3/

�1
�
2 R� �R� �R�:

From the definition of �T , it follows that for � D .�1; �2; �3/ 2 H.T /.R/

�T .�/ D m.�/ D �1�2�3;

hence
�T .�/ D .�2�3�

�1
1 ; �3�1�

�1
2 ; �1�2�

�1
3 /: (4.8)

The definition of �T also yields �T . T .�// D �.�0.�// for � 2 �.A1/.R/. Letting

�W�.A1/! RZ1=F .Gm/

denote the multiplier map, we have by Proposition 2.7

�
�
�0.�/

�
D NZ1=F

�
�.�/

�
D 'C

�
�.�/

�
� '�

�
�.�/

�
:

As '0 is an isomorphism of algebras with quadratic pair, we also have�
'C
�
�.�/

�
; '�

�
�.�/

��
D '0

�
�.�/

�
D
�
�
�
'C.�/

�
; �
�
'�.�/

��
: (4.9)

Therefore, the definition of �T yields

�T

�
 T .�/

�
D
�
1; �

�
�0.�/

�
�
�
'C.�/

��1
; �
�
�0.�/

�
�
�
'�.�/

��1�
D
�
1; �

�
'�.�/

�
; �
�
'C.�/

��
: (4.10)

Definition 4.9. Let
O.T / D ker.�T WGO.T /! G3

m/:

As in the proof of Proposition 3.19, it follows from (4.8) that the map �T WH.T /! G3
m,

hence also �T WGO.T /! G3
m, is surjective. Therefore, the following sequence is exact:

1! O.T /! GO.T /
�T
��! G3

m ! 1

Now, let Z.T / be the kernel of the canonical map O.T /! PGO.T /, which is the
composition of the inclusion O.T / � GO.T / and the canonical epimorphism GO.T /!
PGO.T /. Thus, letting m be the multiplication map .�1; �2; �3/ 7! �1�2�3,

Z.T / D H.T / \O.T / D ker.mW�2 � �2 � �2 ! �2/ ' �2 � �2:
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The same arguments as in Proposition 3.20 yield the following commutative diagram with
exact rows and columns:

1

��

1

��

1 // Z.T / //

��

O.T / //

��

PGO.T / // 1

1 // H.T / //

�T

��

GO.T / //

�T

��

PGO.T / // 1

G3
m

��

G3
m

��

1 1

(4.11)

Now, we show that the definitions above are compatible with the corresponding defi-
nitions for compositions of quadratic spaces in Section 3.3.

Proposition 4.10. For C any composition of quadratic spaces of dimension 8 and T D

End.C/, canonical isomorphisms yield identifications

H.C/ D H.T /; O.C/ D O.T /; GO.C/ D GO.T /; PGO.C/ D PGO.T /:

Moreover, the following diagram commutes:

GO.C/

�C

��

GO.T /

�T

��

G3
m G3

m

(4.12)

Proof. Let R be a commutative F -algebra. For every .g1; g2; g3; �3/ 2 GO.C/.R/ the
triple .g1; g2; g3/ lies in GO.T /.R/, as seen in the first part of the proof of Proposi-
tion 4.1. Since �3 is uniquely determined by g1, g2 and g3, mapping .g1; g2; g3; �3/
to .g1; g2; g3/ defines an injective map GO.C/! GO.T /. Proposition 4.1 also shows
that for Falg an algebraic closure of F the map GO.C/.Falg/ ! GO.T /.Falg/ is sur-
jective. This is sufficient to prove that the map GO.C/ ! GO.T / is surjective, since
GO.T / is smooth by Corollary 4.5. We have thus obtained a canonical isomorphism
GO.C/

�
�! GO.T /. This isomorphism maps H.C/ to H.T /, hence it induces an iso-

morphism PGO.C/
�
�! PGO.T /.

In order to prove that the isomorphism GO.C/ D GO.T / also maps O.C/ to O.T /,
it suffices to prove that the diagram (4.12) is commutative. For this, we use the description
of GO.T / in Proposition 4.6 as a quotient of the product of �.A1/ and H.T /. It is clear
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from (4.8) that �C and �T coincide on the image of H.C/D H.T / in GO.C/D GO.T /.
Therefore, it suffices to consider the image of�.A1/ under  T .

Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/, so '0 D C0.˛/, A1 D EndV1 and�.A1/D
�.q1/. Let R be a commutative F -algebra and let � 2 �.q1/.R/. To simplify notation,
write g1 D �0.�/ 2GOC.q1/.R/, g2 D CC.˛/.�/ 2GOC.q2/.R/ and g3 D C�.˛/.�/ 2
GOC.q3/.R/, so

 T .�/ D .g1; g2; g3/:

Now, (4.9) yields
C0.˛/

�
�.�/

�
D
�
�.g2/; �.g3/

�
;

and by (2.1), we have

g1.x1/ D �
�
�.�/

�
�x1�

�1 for every x1 2 V1R.

By taking the image of each side of the last equation under C.˛/, we obtain�
0 rg1.x1/

`g1.x1/ 0

�
D

�
�.g3/ 0

0 �.g2/

��
g2 0

0 g3

��
0 rx1
`x1 0

��
g�12 0

0 g�13

�
:

This equation yields

rg1.x1/g3 D �.g3/g2rx1 and `g1.x1/g2 D �.g2/g3`x1 for all x1 2 V1R;

which means that for all x1 2 V1R, x2 2 V2R and x3 2 V3R

g3.x3/ �2 g1.x1/D �.g3/g2.x3 �2 x1/ and g1.x1/ �3 g2.x2/D �.g2/g3.x1 �3 x2/:

These equations show that .g1; g2; g3; �.g2// 2 GO.C/.R/, hence by (3.25)

�C

�
 T .�/

�
D
�
1; �.g3/; �.g2/

�
:

Therefore, �C . T .�// D �T . T .�// by (4.10), and the proof is complete.

Corollary 4.11. For every trialitarian triple T , the algebraic group scheme O.T / is
smooth.

Proof. Over an algebraic closure Falg of F the trialitarian triple T is split, hence by The-
orem 4.2 we may find a composition C of quadratic spaces of dimension 8 over Falg such
that TFalg ' End.C/. Then O.TFalg/ is isomorphic to O.C/, which is smooth by Proposi-
tion 3.19, hence O.T / is smooth by [13, (21.10)].

The final result in this subsection elucidates the structure of O.T /.

Theorem 4.12. For every trialitarian triple T , the morphism  T restricts to an isomor-
phism

 T WSpin.A1/
�
�! O.T /:
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Proof. When defining  T , we already observed that this morphism is injective. Recall
from Section 2.3 that Spin.A1/ is the kernel of�W�.A1/!RZ1=F .Gm/. Therefore, (4.9)
and (4.10) show that  T map Spin.A1/ to O.T /.

To prove that  T maps Spin.A1/ onto O.T /, it suffices to consider the groups of
rational points over an algebraic closure Falg of F , because we know by Corollary 4.11
that O.T / is smooth. Proposition 4.6 shows that

 T � i W�.T /.Falg/ �H.T /.Falg/! GO.T /.Falg/

is surjective, hence for any g 2 O.T /.Falg/ we may find � 2 �.T /.Falg/ and

� D .�1; �2; �3/ 2 H.T /.Falg/

such that  T .�/ � � D g. Taking the image of each side under �T and using (4.8) and
(4.10), we obtain

.1; �2; �3/ � .�2�3�
�1
1 ; �3�1�

�1
2 ; �1�2�

�1
3 / D .1; 1; 1/

for some �2, �3 2 F �alg, hence �1 D �2�3. Therefore, � D  T .z/ for z 2 .Z1/�Falg
such that

'0.z/ D .�2; �3/, and  T .�z/ D g. Since �T .g/ D .1; 1; 1/, (4.9) and (4.10) show that
�.�z/ D 1, hence �z 2 Spin.A1/.Falg/. Thus,  T maps Spin.A1/ onto O.T /.

Corollary 4.13. The following diagram, in which the vertical maps are isomorphisms, is
commutative with exact rows:

1 // RZ1=F .�2/

 T

��

// Spin.A1/
�0
//

 T

��

PGOC.A1/ // 1

1 // Z.T / // O.T / // PGO.T / //

�T

OO

1

(4.13)

Proof. The upper sequence is (2.4), and the lower sequence is from (4.11). Commutativity
of the right square follows from the definition of �0 as the composition of �0 with the
canonical map GOC.A1/! PGOC.A1/, and bijectivity of the vertical maps is proved in
Theorems 4.4 and 4.12.

4.3. Derived trialitarian triples

To every trialitarian triple T D .A1;A2;A3; '0/ we attach in this subsection two derived
trialitarian triples

@T D .A2;A3;A1; '
0
0/ and @2T D .A3;A1;A2; '

00
0 /

in such a way that for every composition C of quadratic spaces of dimension 8

@End.C/ D End.@C/ and @2 End.C/ D End.@2C/:
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The two components of the isomorphisms

'00WC.A2/! A3 �A1 and '000 WC.A3/! A1 �A2

are determined as lifts (in the sense of Definition 2.20) of Lie algebra homomorphisms

� 0CWpgo.A2/! pgo.A3/ and � 00CWpgo.A3/! pgo.A1/;

� 0�Wpgo.A2/! pgo.A1/ and � 00�Wpgo.A3/! pgo.A2/:

Our main result is the following:

Theorem 4.14. Let T D .A1;A2;A3;'0/ be a trialitarian triple over an arbitrary fieldF ,
and let

�CWpgo.A1/! pgo.A2/ and ��Wpgo.A1/! pgo.A3/

denote the Lie algebra homomorphisms induced (as per Definition 2.20) by the two com-
ponents of '0:

'CWCC.A1/! A2 and '�WC�.A1/! A3:

The homomorphisms �C and �� are isomorphisms, and the following Lie algebra homo-
morphisms are liftable:

� 0C D �� ı �
�1
C ; � 0� D �

�1
C ; � 00C D �

�1
� ; � 00� D �C ı �

�1
� :

Moreover, � 0C and � 0� on one hand, and � 00C and � 00� on the other hand, are of opposite signs
(see Definition 2.20).

Corollary 2.22 shows that we may extend scalars to a Galois extension of F in order
to show that a Lie algebra homomorphism is liftable. We may thus reduce to split triali-
tarian triples, i.e., triples of the form End.C/. We investigate this case first. The proof of
Theorem 4.14 will quickly follow after (4.17).

Let
C D

�
.V1; q1/; .V2; q2/; .V3; q3/;�3

�
be a composition of quadratic spaces of dimension 8 over an arbitrary field F . Recall
from Proposition 3.21 that the Lie algebra pgo.C/ can be described as a subalgebra of
pgo.q1/ � pgo.q2/ � pgo.q3/. Let

�1Wpgo.C/! pgo.q1/; �2Wpgo.C/! pgo.q2/; �3Wpgo.C/! pgo.q3/

denote the projections on the three components, and let

�CWpgo.q1/! pgo.q2/ and ��Wpgo.q1/! pgo.q3/

be the Lie algebra homomorphisms induced by the two components of C0.˛/,

CC.˛/WCC.V1; q1/! End.V2/ and C�.˛/WC�.V1; q1/! End.V3/:
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Lemma 4.15. The following diagram, where all the maps are isomorphisms, is commu-
tative:

pgo.q1/
�C

//

��

��

pgo.q2/

pgo.C/

�1

ee
�2

99

�3

��

pgo.q3/

(4.14)

Proof. First, observe that �1 is the differential of the morphism �End.C/ under the iden-
tification PGO.C/ D PGO.End.C// of Proposition 4.10. The morphism �End.C/ is an
isomorphism by Theorem 4.4, hence �1 is an isomorphism. Similarly, �2 is the differen-
tial of the isomorphism obtained by the composition

PGO.C/
@
�! PGO.@C/

�End.@C/
�����! PGOC.q2/;

hence �2 is an isomorphism. Likewise, �3 is an isomorphism.
Now, recall from (2.19) that �C and �� are defined by the following commutative

diagrams, where CC.˛/ and C�.˛/ are obtained by composing CC.˛/ and C�.˛/ with
the canonical homomorphisms go.q2/! pgo.q2/ or go.q3/! pgo.q3/:

!.q1/
P�0
//

CC.˛/

��

pgo.q1/

�Cyy

pgo.q2/

!.q1/
P�0
//

C�.˛/

��

pgo.q1/

��yy

pgo.q3/

Therefore,
CC.˛/ D �C ı P�

0 and C�.˛/ D �� ı P�
0: (4.15)

Next, define a Lie algebra homomorphism

‰C W!.q1/! pgo.C/

by composing the differential P End.C/W!.q1/! go.C/ of the morphism  End.C/ of Sec-
tion 4.2 with the canonical map go.C/! pgo.C/. Explicitly,

‰C .�/ D
�
P�0.�/C F; CC.˛/.�/C F; C�.˛/.�/C F

�
for � 2 !.q1/,

or, since Proposition 2.15 shows that P�0.�/ D P�0.�/C F ,

‰C .�/ D
�
P�0.�/; CC.˛/.�/; C�.˛/.�/

�
for � 2 !.q1/.
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It follows from the definitions that the following diagrams are commutative:

!.q1/

‰C

%%

P�0
//

CC.˛/

��

pgo.q1/

pgo.q2/ pgo.C/

�1

OO

�2
oo

!.q1/

‰C

%%

P�0
//

C�.˛/

��

pgo.q1/

pgo.q3/ pgo.C/

�1

OO

�3
oo

Therefore,

CC.˛/ D �2 ı‰C ; P�0 D �1 ı‰C ; C�.˛/ D �3 ı‰C :

Substituting in (4.15) yields

�2 ı‰C D �C ı �1 ı‰C and �� ı �1 ı‰C D �3 ı‰C :

We know from Proposition 2.15 that P�0 is surjective, hence ‰C also is surjective since
�1 is an isomorphism. Therefore, the last displayed equations yield �2 D �C ı �1 and
�3 D �� ı �1, proving the commutativity of diagram (4.14). Bijectivity of �C and ��
follows, since �C D �2 ı ��11 and �� D �3 ı ��11 .

We next apply Lemma 4.15 to the derived compositions @C and @2C . Recall the trial-
itarian triples obtained from (3.20) and (3.21):

End.@C/ D
��

End.V2/; �b2 ; fq2
�
;
�
End.V3/; �b3 ; fq3

�
;
�
End.V1/; �b1 ; fq1

�
; C0.˛

0/
�

and

End.@2C/ D
��

End.V3/; �b3 ; fq3
�
;
�
End.V1/; �b1 ; fq1

�
;
�
End.V2/; �b2 ; fq2

�
; C0.˛

00/
�
:

Let
� 0CWpgo.q2/! pgo.q3/ and � 0�Wpgo.q2/! pgo.q1/

be the Lie algebra isomorphisms induced by CC.˛0/ and C�.˛0/ respectively, and

� 00CWpgo.q3/! pgo.q1/ and � 00�Wpgo.q3/! pgo.q2/

those induced by CC.˛00/ and C�.˛00/. Let also

� 01Wpgo.@C/! pgo.q2/; � 02Wpgo.@C/! pgo.q3/; � 03Wpgo.@C/! pgo.q1/

and

� 001 Wpgo.@2C/! pgo.q3/; � 002 Wpgo.@2C/! pgo.q1/; � 003 Wpgo.@2C/! pgo.q2/

be the projections on the various components of pgo.@C/ and pgo.@2C/. Lemma 4.15
yields

� 0C D �
0
2 ı �

0
1
�1
; � 0� D �

0
3 ı �

0
1
�1
; � 00C D �

00
2 ı �

00
1
�1
; � 00� D �

00
3 ı �

00
1
�1
: (4.16)
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Proposition 4.16. The following equations hold:

� 0C D �� ı �
�1
C ; � 0� D �

�1
C ; � 00C D �

�1
� ; � 00� D �C ı �

�1
� :

Proof. The switch maps @ fit in the following commutative diagrams:

pgo.C/
@ //

�1

%%

pgo.@C/
� 03

xx

@

��

pgo.q1/

pgo.@2C/

� 002

OO

@

XX
pgo.C/

@ //

�2

%%

pgo.@C/
� 01

xx

@

��

pgo.q2/

pgo.@2C/

� 003

OO

@

XX

and
pgo.C/

@ //

�3

%%

pgo.@C/
� 02

xx

@

��

pgo.q3/

pgo.@2C/

� 001

OO

@

XX

Substituting � 01 D �2 ı @
2, � 02 D �3 ı @

2, � 03 D �1 ı @
2 and � 001 D �3 ı @, � 002 D �1 ı @,

� 003 D �2 ı @ in (4.16) yields

� 0C D �3 ı �
�1
2 ; � 0� D �1 ı �

�1
2 ; � 00C D �1 ı �

�1
3 ; � 00� D �2 ı �

�1
3 :

The proposition follows by Lemma 4.15.

The maps �˙, � 0
˙

, � 00
˙

thus fit in the following commutative diagram, in which all the
maps are isomorphisms:

pgo.q1/

�C
--

��

��

pgo.q2/
� 0�

oo

� 0C

��

pgo.C/

�1

ee
�2

99

�3

��

pgo.q3/

� 00C

UU

� 00�

FF

(4.17)
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Proof of Theorem 4.14. Corollary 2.22 shows that it suffices to prove the claim after a
Galois scalar extension that splits the trialitarian triple T . We may thus assume that
T D End.C/ for some composition C of quadratic spaces of dimension 8. Then Propo-
sition 4.16 shows that �� ı ��1C and ��1C (resp. ��1� and �C ı ��1� ) are the Lie algebra
homomorphisms induced by the isomorphisms CC.˛0/ and C�.˛0/ (resp. CC.˛00/ and
C�.˛

00/) of the trialitarian triple End.@C/ (resp. End.@2C/), hence they are liftable by
definition. Moreover, �� ı ��1C and ��1C (resp. ��1� , �C ı ��1� ) are of opposite signs, hence
the proof is complete.

Definition 4.17. Given any trialitarian triple T D .A1;A2;A3; '0/ with Lie algebra iso-
morphisms

�CWpgo.A1/! pgo.A2/ and ��Wpgo.A1/! pgo.A3/

induced by the components 'CWC.A1/! A2 and '�WC.A1/! A3 of '0, the pair of
opposite Lie algebra isomorphisms

.� 0C; �
0
�/ D .�� ı �

�1
C ; ��1C /

�
resp. .� 00C; �

00
�/ D .�

�1
� ; �C ı �

�1
� /

�
lifts by Theorem 4.14 to an isomorphism

'00WC.A2/! A3 �A1
�
resp. '000 WC.A3/! A1 �A2

�
that defines a trialitarian triple

@T D .A2;A3;A1; '
0
0/

�
resp. @2T D .A3;A1;A2; '000 /

�
:

The trialitarian triples @T and @2T are called the derived trialitarian triples of T .
Note that � 0� ı �

0
C

�1
D � 00C and � 0C

�1
D � 00�, hence @.@T /D @2T . Similarly, @2.@T /D

T D @.@2T / and @2.@2T / D @T .
From the proof of Theorem 4.14, it is clear that for every composition C of quadratic

spaces of dimension 8,

@End.C/ D End.@C/ and @2 End.C/ D End.@2C/:

We next establish the functoriality of the @ operation.

Proposition 4.18. If 
 D .
1; 
2; 
3/W T ! zT is an isomorphism of trialitarian triples,
then @
 WD .
2; 
3; 
1/ is an isomorphism of trialitarian triples @T ! @ zT .

Proof. Let .�C; ��/ (resp. .z�C; z��/) be the pair of liftable homomorphisms attached to T

(resp. zT ). The hypothesis that 
 is an isomorphism means that


2 ı �C D z�C ı 
1 and 
3 ı �� D z�� ı 
1:

It then follows that


3 ı .�� ı �
�1
C / D z�� ı 
1 ı �

�1
C D .

z�� ı z�
�1
C / ı 
2 and 
1 ı �

�1
C D

z��1C ı 
2:
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Since .�� ı ��1C ; ��1C / and .z�� ı z��1C ; z��1C / are the pairs of liftable homomorphisms at-
tached to @T and @ zT respectively, it follows that .
2; 
3; 
1/ is an isomorphism @T !@ zT .

For the next corollary, observe that each trialitarian triple T D .A1;A2;A3; '0/ yields
a polarization of A1 in the sense of Definition 2.4: the primitive idempotents in the center
of C.A1/ are designated as z1C and z1� according to the following convention:

'0.z1C/ D .1; 0/ and '0.z1�/ D .0; 1/;

so that the two components of '0 are 'CWCC.A1/
�
�! A2 and '�WC�.A1/

�
�! A3. Simi-

larly, the maps '00 and '000 of the derived trialitarian triples @T and @2T yield polarizations
of A2 and A3 so that

'00.z2C/ D .1; 0/; '00.z2�/ D .0; 1/; '000 .z3C/ D .1; 0/; '000 .z3�/ D .0; 1/;

just as in the case of compositions of quadratic spaces: see Remark 3.11.

Corollary 4.19. Let T D .A1;A2;A3; '0/ and zT D .zA1; zA2; zA3; z'0/ be trialitarian
triples. There are canonical one-to-one correspondences between the following sets:

(i) isomorphisms of trialitarian triples T ! zT ;

(ii) isomorphisms of algebras with quadratic pair A1 ! zA1 preserving the polar-
izations induced by T and zT ;

(iii) isomorphisms of algebras with quadratic pair A2 ! zA2 preserving the polar-
izations induced by @T and @ zT ;

(iv) isomorphisms of algebras with quadratic pair A3 ! zA3 preserving the polar-
izations induced by @2T and @2 zT .

Proof. By definition, an isomorphism 
 W T ! zT is a triple .
1; 
2; 
3/ where each 
i is
an isomorphism Ai ! zAi and the following square commutes:

C.A1/
'0 //

C.
1/
��

A2 �A3


2�
3
��

C.zA1/
z'0 // zA2 � zA3

(4.18)

Commutativity of this square implies that 
1 preserves the polarizations of A1 and zA1
induced by T and zT .

Conversely, if 
1WA1! zA1 is an isomorphism of algebras with quadratic pair preserv-
ing polarizations, then there are isomorphisms 
2WA2 ! zA2 and 
3WA3 ! zA3 uniquely
determined by the condition that the square (4.18) commute. The triple .
1; 
2; 
3/ is then
an isomorphism T ! zT . Thus, the sets described in (i) and (ii) are in bijection under
the map carrying 
 D .
1; 
2; 
3/ to 
1. Similarly, the set in (iii) is in bijection with the
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set of isomorphisms @T ! @ zT , hence, by Proposition 4.18, with the set of isomorphisms
T ! zT : to each isomorphism 
 WT ! zT corresponds the second component 
2WA2! zA2.
Likewise, mapping 
 to 
3 defines a one-to-one correspondence between (i) and (iv).

In the particular case where zT D T , Corollary 4.19 yields isomorphisms between the
group of automorphisms of T and the groups of polarization-preserving automorphisms
of A1, A2 and A3, which are PGOC.A1/, PGOC.A2/ and PGOC.A3/. We discuss this
case in detail in the next subsection.

4.4. Trialitarian isomorphisms

Throughout this subsection, we fix a trialitarian triple

T D .A1;A2;A3; '0/:

We show how to attach to T canonical isomorphisms, which we call trialitarian isomor-
phisms:

Spin.A1/ ' Spin.A2/ ' Spin.A3/ and PGOC.A1/ ' PGOC.A2/ ' PGOC.A3/:

Proposition 4.18 shows that the switch map @ yields an isomorphism

@WGO.T /! GO.@T /:

This isomorphism maps H.T / to H.@T /, hence it induces a switch isomorphism

@WPGO.T /! PGO.@T /:

The following proposition shows that @ also maps O.T / to O.@T /:

Proposition 4.20. The following diagram is commutative:

GO.T / @ //

�T

��

GO.@T /

�@T
��

G3
m

@ // G3
m

Proof. When T D End.C/ for some composition C of quadratic spaces of dimension 8,
then GO.T / D GO.C/ and GO.@T / D GO.@C/ by Proposition 4.10, and commutativ-
ity of the diagram is clear from (4.12). Commutativity for an arbitrary trialitarian triple
follows by scalar extension to a splitting field.

Recall from Corollary 4.13 the diagram (4.13) relating Spin.A1/ and PGOC.A1/ to
O.T / and PGO.T /. Substituting @T for T in that diagram, we obtain another commuta-
tive diagram, which involves A2 and @T instead of A1 and T . We may connect this new
diagram to (4.13) by means of the shift map to obtain the following commutative diagram
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with exact rows, where all the vertical maps are isomorphisms and Z2 denotes the center
of C.A2/:

1 // RZ1=F .�2/

 T

��

// Spin.A1/
�0
//

 T

��

PGOC.A1/ // 1

1 // Z.T / //

@
��

O.T / //

@
��

PGO.T / //

@
��

�T

OO

1

1 // Z.@T / // O.@T / // PGO.@T / //

�@T
��

1

1 // RZ2=F .�2/

 @T

OO

// Spin.A2/
�0
//

 @T

OO

PGOC.A2/ // 1

Define

†T WSpin.A1/
�
�! Spin.A2/ and ‚T WPGOC.A1/

�
�! PGOC.A2/

by composing the vertical isomorphisms:†T D  
�1
@T
ı @ ı T and‚T D �@T ı @ ı �

�1
T

.
Forgetting the two central lines of the last diagram, we obtain a commutative diagram with
exact rows:

1 // RZ1=F .�2/

†T

��

// Spin.A1/
�0
//

†T

��

PGOC.A1/ //

‚T

��

1

1 // RZ2=F .�2/
// Spin.A2/

�0
// PGOC.A2/ // 1

Applying the construction above to @T and @2T instead of T , we obtain isomorphisms
†@T WSpin.A2/

�
�! Spin.A3/ and †@2T WSpin.A3/

�
�! Spin.A1/ such that †@2T ı†@T ı

†T D Id, which make the following diagram with exact rows commute:

:::

��

:::

��

:::

��

1 // RZ1=F .�2/
//

†T

��

Spin.A1/
�0
//

†T

��

PGOC.A1/ //

‚T
��

1

1 // RZ2=F .�2/
//

†@T
��

Spin.A2/
�0
//

†@T
��

PGOC.A2/ //

‚@T
��

1

1 // RZ3=F .�2/
//

†@2T
��

Spin.A3/
�0
//

†@2T
��

PGOC.A3/ //

‚@2C
��

1

1 // RZ1=F .�2/
//

��

Spin.A1/
�0
//

��

PGOC.A1/ //

��

1

:::
:::

:::
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Letting �i WPGO.T /! PGOC.Ai / denote the projection on the i -th component, we
have

�1 D �T ; �2 D �@T ı @; �3 D �@2T ı @
2;

hence the following diagram, in which all the maps are isomorphisms, is commutative:

PGOC.A1/
‚T // PGOC.A2/

‚@T

��

PGO.T /

�1

gg
�2

77

�3

��

PGOC.A3/

‚@2T

ZZ

(4.19)

Similarly, defining  i WSpin.Ai /! O.T / for i D 1, 2, 3 by

 1 D  T ;  2 D @
�1
ı  @T ;  3 D @

�2
ı  @2T ;

we obtain the following commutative diagram similar to (4.19), where all the maps are
isomorphisms:

Spin.A1/
†T //

 1

&&

Spin.A2/

†@T

��

 2

xx

O.T /

Spin.A3/

†@2T

YY

 3

OO

Restricting to the central subgroups, we also obtain a commutative diagram of isomor-
phisms:

RZ1=F .�2/
†T //

 1

''

RZ2=F .�2/

†@T

��

 2

ww

Z.T /

RZ3=F .�2/

†@2T

ZZ

 3

OO
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The action of the trialitarian isomorphism †T on RZ1=F .�2/ is easy to determine
from the definition of  T :

Proposition 4.21. For i D 1, 2, 3, let ziC and zi� denote the primitive idempotents of Zi
(according to the polarization). Then for every commutative F -algebraR and aC, a� 2R
such that a2C D a

2
� D 1,

†T .aCz1C C a�z1�/ D a�z2C C aCa�z2�; (4.20)

†@T .aCz2C C a�z2�/ D a�z3C C aCa�z3�; (4.21)

†@2T .aCz3C C a�z3�/ D a�z1C C aCa�z1�: (4.22)

Proof. From (4.7) it follows that  T .aCz1C C a�z1�/ D .aCa�; aC; a�/, hence

@ ı  T .aCz1C C a�z1�/ D .aC; a�; aCa�/ D  @T .a�z2C C aCa�z2�/:

Equation (4.20) follows, since †T D  �1
@T
ı @ ı  T . Equations (4.21) and (4.22) are

proved similarly.

Proposition 4.21 shows that †T does not map the subgroup �2 of RZ1=F .�2/ to the
subgroup �2 of RZ2=F .�2/; this is a characteristic feature of trialitarian isomorphisms.

4.5. Compositions of 8-dimensional quadratic spaces

Let C D ..V1; q1/; .V2; q2/; .V3; q3/;�3/ and zC D .. zV1; Qq1/; . zV2; Qq2/; . zV3; Qq3/; Q�3/ denote
compositions of quadratic spaces of dimension 8 over F throughout this subsection.
Recall from Remark 3.11 that C and zC induce polarizations of .V1; q1/ and . zV1; Qq1/
respectively. Our goal is to establish criteria for the existence of a similitude or an isomor-
phism between C and zC .

Theorem 4.22. For every similitude g1W .V1; q1/! . zV1; Qq1/ preserving the polarizations
induced by C and zC , there exist similitudes g2W .V2; q2/! . zV2; Qq2/ and g3W .V3; q3/!
. zV3; Qq3/ such that the triple .g1; g2; g3/ is a similitude C ! zC . The similitudes g2 and g3
are uniquely determined up to a scalar factor.

Proof. The similitude g1 defines an isomorphism of algebras with quadratic pair

Int.g1/W .EndV1; �b1 ; fq1/! .End zV1; � Qb1 ; f Qq1/;

see Proposition 2.2. Since g1 preserves the polarizations of .V1;q1/ and . zV1; Qq1/, it follows
that Int.g1/ preserves the polarizations of .EndV1;�b1 ;fq1/ and .End zV1;� Qb1 ;f Qq1/ induced
by the trialitarian triples End.C/ and End. zC/ respectively, hence Corollary 4.19 yields
uniquely determined isomorphisms


2W .EndV2; �b2 ; fq2/! .End zV2; � Qb2 ; f Qq2/

and

3W .EndV3; �b3 ; fq3/! .End zV3; � Qb3 ; f Qq3/
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such that .Int.g1/; 
2; 
3/ is an isomorphism End.C/! End. zC/. Proposition 2.2 shows
that there exist similitudes g2W .V2; q2/! . zV2; Qq2/ and g3W .V3; q3/! . zV3; Qq3/, uniquely
determined up to a scalar factor, such that 
2 D Int.g2/ and 
3 D Int.g3/. It follows from
Proposition 4.1 that .g1; g2; g3/ is a similitude C ! zC .

Corollary 4.23. Let nC and n zC denote the 3-fold Pfister forms associated to C and zC by
Proposition 3.10. The following conditions are equivalent:

(i) C is similar to zC ;

(ii) nC ' n zC .

Proof. Recall that q1 ' h�1inC and Qq1 ' hz�1in zC for some �1, z�1 2 F �. If C is similar
to zC , then q1 is similar to Qq1, hence nC ' n zC because similar Pfister forms are isometric.
Conversely, if nC ' n zC , then there is a similitude g1W .V1; q1/! . zV1; Qq1/. Composing g1
with an improper isometry if necessary, we may assume g1 preserves the polarizations of
.V1; q1/ and . zV1; Qq1/. Then Theorem 4.22 yields a similitude C ! zC .

In the particular case where zC D C , Theorem 4.22 is a direct generalization of the
principle of triality discussed by Springer–Veldkamp [19, Th. 3.2.1], as follows:

Corollary 4.24. For every proper similitude g1 2 GOC.q1/, there exist similitudes g2 in
GO.q2/ and g3 in GO.q3/ such that

g1.x2 �1 x3/ D g2.x2/ �1 g3.x3/ for all x2 2 V2 and x3 2 V3.

Proof. Theorem 4.22 yields similitudes g02 2GO.q2/ and g03 2GO.q3/ such that the triple
.g1; g

0
2; g
0
3/ lies in GO.C/.F /. Letting �C .g1; g

0
2; g
0
3/D .�1; �2; �3/, we have by Propo-

sition 3.14

�1g1.x2 �1 x3/ D g
0
2.x2/ �1 g

0
3.x3/ for all x2 2 V2 and x3 2 V3.

Then g2 D ��11 g
0
2 and g3 D g03 satisfy the requirement.

In the special case where �1 is the multiplication in an octonion algebra, Corollary 4.24
is (the main part of) [19, Th. 3.2.1].

Corollary 4.24 also has a “local” version:

Corollary 4.25. For every g1 2 go.q1/, there exist g2 2 go.q2/ and g3 2 go.q3/ such
that

g1.x2 �1 x3/

D g2.x2/ �1 x3 C x2 �1 g3.x3/C P�.g1/x2 �1 x3 for all x2 2 V2 and x3 2 V3.

Proof. Lemma 4.15 shows that projection on the first component �1Wpgo.C/! pgo.q1/

is bijective, hence there exist g02 2 go.q2/ and g03 2 go.q3/ such that .g1 C F; g02 C F;
g03 C F / lies in pgo.C/, which means that there exists �3 2 F such that

g03.x1 �3 x2/D g1.x1/�3 x2C x1 �3 g
0
2.x2/��3x1 �3 x2 for all x1 2 V1 and x2 2 V2.
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By Proposition 3.17, there also exists �1 2 F such that

g1.x2 �1 x3/D g
0
2.x2/�1 x3C x2 �1 g

0
3.x3/��1x2 �1 x3 for all x2 2 V2 and x3 2 V3.

Then g2 D g02 � �1 and g3 D g03 C P�.g1/ satisfy the required condition.

Specializing �1 to be the multiplication in an octonion algebra (resp. the multiplication
in a symmetric composition algebra of dimension 8) yields Elduque’s Principle of Local
Triality [8, Th. 3.2] (resp. [8, Th. 5.2]).

By contrast with similitudes in Theorem 4.22, isometries .V1; q1/! . zV1; Qq1/ do not
necessarily extend to isomorphisms C ! zC since .Vi ; qi /may not be isometric to . zVi ; Qqi /
for i D 2, 3. Nevertheless, we will obtain in Theorem 4.29 below an isomorphism criterion
for compositions of quadratic spaces by using the following construction of similitudes.

For C as above, define a new composition of quadratic spaces C 0 as follows:

C 0 D
�
.V2; q2/; .V1; q1/; .V3; q3/;�

0
3

�
where

x2 �
0
3 x1 D x1 �3 x2 for x2 2 V2 and x1 2 V1.

To every anisotropic vector u3 2 V3, we associate the map

�u3.x3/ D u3q3.u3/
�1b3.u3; x3/ � x3 for x3 2 V3.

Computation shows that �u3 is an isometry fixing u3.

Proposition 4.26. For every anisotropic vector u3 2V3, the triples .`u3 ; ru3 ;�u3/WC!C 0

and .ru3 ; `u3 ; �u3/WC
0 ! C are similitudes with composition multiplier .1; 1; q3.u3//.

Proof. Since �.ru3/D�.`u3/D q3.u3/, to prove .`u3 ; ru3 ; �u3/ is a similitude with com-
position multiplier .1; 1; q3.u3// it suffices to show

q3.u3/�u3.x1 �3 x2/ D `u3.x1/ �
0
3 ru3.x2/ for all x1 2 V1, x2 2 V2.

Likewise, to prove .ru3 ; `u3 ; �u3/ is a similitude with composition multiplier .1; 1;q3.u3//
it suffices to show

q3.u3/�u3.x2 �
0
3 x1/ D ru3.x2/ �3 `u3.x1/ for all x2 2 V2, x1 2 V1.

Each of these equations amounts to

u3b3.u3; x1 �3 x2/ � .x1 �3 x2/q3.u3/ D .x2 �1 u3/ �3 .u3 �2 x1/:

By (3.18), we may rewrite the right side as

.x2 �1 u3/ �3 .u3 �2 x1/ D u3b1.x2 �1 u3; x1/ � x1 �3
�
u3 �2 .x2 �1 u3/

�
:

Since b1.x2 �1 u3; x1/ D b3.u3; x1 �3 x2/ by (3.1), and u3 �2 .x2 �1 u3/ D x2q3.u3/

by (3.11), the proposition follows.



Trialitarian triples 1021

Proposition 4.26 allows us to describe the group

G.C/ D �C

�
GO.C/.F /

�
� F � � F � � F �

of composition multipliers of auto-similitudes of C . In the next corollary, we write G.nC /

for the group of multipliers of similitudes of the Pfister form associated to C , which is
also the set of represented values of this form because Pfister forms are round (see [9,
Cor. 9.9]).

Corollary 4.27. G.C/ D ¹.�1; �2; �3/ 2 F � � F � � F � j �1 � �2 � �3 mod G.nC /º.

Proof. If .�1; �2; �3/ D �C .g1; g2; g3; �3/ for some .g1; g2; g3; �3/ 2 GO.C/.F /, then
by definition of �C (see (3.27))

�1 D �.g2/�
�1
3 and �2 D �.g1/�

�1
3 :

Since q1 and q2 are multiples of nC , multipliers of similitudes of q1 and of q2 lie in
G.nC /, hence �1�3 2 G.nC / and �2�3 2 G.nC /. Therefore, �1 � �2 � �3 mod G.nC /.

For the converse, we first establish:

Claim: .1; 1; �/ 2 G.C/ for every � 2 G.nC /. To see this, pick any anisotropic vector
u3 2 V3, and let v3 2 V3 be the image of u3q3.u3/�1 under any similitude of .V3; q3/
with multiplier �, so that q3.v3/ D �q3.u3/�1. By Proposition 4.26, the composition of
maps .rv3 ; `v3 ; �v3/ ı .`u3 ; ru3 ; �u3/ is an auto-similitude of C with multiplier�

1; 1; q3.v3/
��
1; 1; q3.u3/

�
D .1; 1; �/:

This proves the claim.
Since for the derived composition @C we have n@C ' nC , it follows that .1; 1; �/ 2

G.@C/ for every � 2 G.nC /, hence .�; 1; 1/ 2 G.C/ for every � 2 G.nC /.
Now, suppose .�1; �2; �3/ 2 F � � F � � F � is such that �1��12 , ��12 �3 2 G.nC /.

The previous observations show

.�1�
�1
2 ; 1; 1/; .1; 1; ��12 �3/ 2 G.C/:

Moreover, .�2 IdV1 ; �2 IdV2 ; �2 IdV3 ; �2/ 2 GO.C/.F / is a similitude with composition
multiplier .�2; �2; �2/. Therefore, the group G.C/ also contains the product

.�1�
�1
2 ; 1; 1/ � .1; 1; �

�1
2 �3/ � .�2; �2; �2/ D .�1; �2; �3/:

Remark 4.28. Proposition 4.26 and Corollary 4.27 also hold, with the same proof, for
compositions of quadratic spaces of dimension 2 or 4.

Theorem 4.29. The compositions C and zC are isomorphic if and only if .Vi ; qi / and
. zVi ; Qqi / are isometric for i D 1, 2 and 3.

Proof. If g D .g1; g2; g3/WC ! zC is an isomorphism, then from the relations between
the multipliers of g1, g2, g3 and the composition multiplier �.g/ in (3.25) it follows that
g1, g2 and g3 are isometries, hence .Vi ; qi / ' . zVi ; Qqi / for all i .
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For the converse, assume .Vi ; qi / is isometric to . zVi ; Qqi / for i D 1, 2, 3, and pick
an isometry g1W .V1; q1/! . zV1; Qq1/. Composing it with an improper isometry if needed,
we may assume g1 preserves the polarizations induced by C and zC . Theorem 4.22 then
yields a similitude g D .g1; g2; g3/W C ! zC . Let �.g/ D .�1; �2; �3/. From the rela-
tions (3.25) between �.g/ and the multipliers of g1, g2, g3 it follows that �.g1/ D �2�3,
hence �2�3 D 1 since g1 is an isometry. The triple .g1; �2g2; g3/ also is a similitude
C ! zC , and

�.g1; �2g2; g3/ D �.g/ � .�2; �
�1
2 ; �2/ D .�1�2; 1; 1/ D .�.g3/; 1; 1/:

Since . zV3; Qq3/' .V3; q3/, the multiplier�.g3/ is the multiplier of a similitude of q3, hence
also of nC . Corollary 4.27 then shows that there exists an auto-similitude .g01; g

0
2; g
0
3/ of C

such that �.g01;g
0
2;g
0
3/D .�.g3/

�1;1;1/. Then .g1 ı g01;�2g2 ı g
0
2;g3 ı g

0
3/ is a similitude

C ! zC with composition multiplier .1; 1; 1/, i.e., it is an isomorphism.

Corollary 4.23 and Theorem 4.29 can be given a cohomological interpretation: over
a separable closure of F , Corollary 3.32 (or Theorem 4.29) shows that all the composi-
tions of quadratic spaces of dimension 8 are isomorphic. Therefore, if C0 is a composition
of hyperbolic quadratic spaces of dimension 8 over F (such as the composition associ-
ated to the split para-octonion algebra or the composition in Examples 3.6 (2)), standard
arguments of nonabelian Galois cohomology (see for instance [13, §29]) yield canonical
bijections

H 1
�
F;O.C0/

�
$

isomorphism classes of compositions of
quadratic spaces of dimension n over F

and

H 1
�
F;GO.C0/

�
$

similarity classes of compositions of
quadratic spaces of dimension n over F

because O.C0/ (resp. GO.C0/) is the group of automorphisms (resp. auto-similitudes)
of C0. Since by Proposition 4.10 the group PGO.C0/ is the automorphism group of the
trialitarian triple End.C0/, there is an additional canonical bijection

H 1
�
F;PGO.C0/

�
$ isomorphism classes of trialitarian triples over F

Now, Corollary 4.23 yields a bijection between H 1.F;GO.C0// and the set of isom-
etry classes of 3-fold quadratic Pfister forms. Similarly, Theorem 4.29 yields a bijection
betweenH 1.F;O.C0// and the set of triples of quadratic forms .q1;q2;q3/ up to isometry,
subject to the condition that there exists a 3-fold quadratic Pfister form n such that q1, q2,
q3 are similar to n and the orthogonal sum n ? q1 ? q2 ? q3 is a 5-fold quadratic Pfister
form. This can also be viewed as a description of H 1.F; Spin8/ for Spin8 the spin group
of 8-dimensional hyperbolic quadratic forms, because Theorem 4.12 yields a canonical
isomorphism Spin8 ' O.C0/. We may use this description to give an interpretation of the
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mod 2 cohomological invariants of Spin8 determined by Garibaldi in [10, §18.1] under
the hypothesis that charF ¤ 2, as follows: for n D 3, 4, 5, let en denote the Elman–Lam
cohomological invariant of n-fold Pfister forms, defined by

en
�
h1;�a1i � : : : � h1;�ani

�
D .a1/ [ � � � [ .an/ 2 H

n.F;�2/;

where .ai / 2 H 1.F;�2/ is the cohomology class corresponding to the square class of
ai 2 F

� by Kummer theory, see [9, §16]. For every triple .q1; q2; q3/ as above, the coho-
mology classes

e3.n/; e4.n ? q1/; e4.n ? q2/; e4.n ? q3/; e5.n ? q1 ? q2 ? q3/

define cohomological invariants, which distinguish these triples up to isometry. According
to [10, §18.1], these invariants generate the H�.F;Z=2Z/-module of mod 2 invariants of
Spin8. Note that these invariants are not independent: since

.n ? q1/ ? .n ? q2/ ? .n ? q3/ D 2n ? .n ? q1 ? q2 ? q3/

and n ? q1 ? q2 ? q3 is a 5-fold Pfister form, it follows that

e4.n ? q1/C e4.n ? q2/C e4.n ? q3/ D e4.2n/ D .�1/ [ e3.n/:

4.6. The structure group of 8-dimensional composition algebras

Let A D .A; q;˘/ be a composition algebra of dimension 8. Recall from Definition 3.30
the structure group Str.A;˘/, which is the group of autotopies of .A;˘/. Corollary 3.35
identifies Str.A;˘/with a subgroup of GO.C.A//, for C.A/ the composition of quadratic
spaces associated to A as in (3.32).

In the trialitarian triple T D End.C.A// we have A1 D A2 D A3 D .EndA; �b; fq/.
Mimicking the construction in Section 4.2, we obtain a morphism

 @2T W�.A3/! GO.@2C/

as in (4.6). We use it to define a morphism of algebraic groups

 AW�.q/! GO
�
C.A/

�
by specializing to the case where T D End.C.A// the map @ ı  @2T W�.A3/! GO.T /,
where @ is the shift map. Thus, for any commutative F -algebra R and � 2 �.q/.R/,

 A.�/ D
�
CC.˛

00/.�/; C�.˛
00/.�/; �0.�/

�
(viewing GO.C.A// as a subgroup of GO.q/ � GO.q/ � GO.q/, as in the proof of
Proposition 4.10), where C˙.˛00/ are the canonical Clifford maps attached to @2C.A/,
see (3.21).

Theorem 4.30. The map  A is an isomorphism�.q/
�
�! Str.A;˘/.
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Proof. The map  A is injective because C.˛00/ is an isomorphism

C.A; q/! End.A˚ A/;

and the computation of �T ı  T in (4.10) together with Corollary 3.35 shows that  A

maps�.q/ to Str.A;˘/.
To complete the proof, we show that for any commutative F -algebra R the group

Str.A; ˘/.R/ is the image of �.q/.R/ under  A. Let .g1; g2; g3/ be an autotopy of
.A;˘/R, which means that

g3.x1 ˘ x2/ D g1.x1/ ˘ g2.x2/ for all x1, x2 2 AR.

By Proposition 3.14 it follows that for all x1, x2, x3 2 AR

�.g2/g1.x2 ˘1 x3/D g2.x2/ ˘1 g3.x3/ and �.g1/g2.x3 ˘2 x1/D g3.x3/ ˘2 g1.x1/:

Equivalently,

�.g2/g1 ı rx3 D rg3.x3/ ı g2 and �.g1/g2 ı `x3 D `g3.x3/ ı g1;

which can be reformulated as an equation in End.A˚ A/ as follows:�
0 rg3.x3/

`g3.x3/ 0

�
D

�
�.g2/ 0

0 �.g1/

��
g1 0

0 g2

��
0 rx3
`x3 0

��
g�11 0

0 g�12

�
: (4.23)

Since C.˛00/ is an isomorphism, there exists �2C0.A;q/R such that C0.˛00/.�/D.g1; g2/.
Then C0.˛00/.�.�// D .�.g1/; �.g2//, and (4.23) yields

C.˛00/
�
g3.x3/

�
D C.˛00/

�
�
�
�.�/

�
�x3�

�1
�

for all x3 2 AR.

Since C.˛00/ is an isomorphism, it follows from Lemma 2.5 that �0.�/x3� D �b.g3/.x3/
for all x3 2 AR, hence � 2 �.q/.R/ and g3 D �0.�/. Thus, .g1; g2; g3/ D  A.�/.

Recall from Proposition 2.8 the exact sequence

1! R1Z=F .Gm/! �.q/
�0
�! GOC.q/! 1: (4.24)

Since the discriminant of q is trivial, we have Z ' F � F , hence R1
Z=F

.Gm/ ' Gm and
the Galois cohomology exact sequence derived from (4.24) takes the form

1! F � ! �.q/.F /! GOC.q/! 1:

Substituting Str.A;˘/.F / for�.q/.F /, we recover the exact sequence obtained by Peters-
son [15, (4.13)] for A an octonion algebra.

Acknowledgments. The first author would like to thank the second author and UCLou-
vain for their hospitality during several visits while the work for this paper was carried



Trialitarian triples 1025

out. Both authors are grateful to the referee for their careful reading and for comments
that helped improve the wording in several places.

Funding. The first author gratefully acknowledges support from the Association pour la
Promotion Scientifique de l’Afrique through a grant “APSA Awards 2020”. This work
was partially supported by the Fonds de la Recherche Scientifique–FNRS under grant
J.0159.19.

References

[1] A. A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy. Ann. of Math.
(2) 43 (1942), 685–707 Zbl 0061.04807 MR 7747

[2] S. Alsaody, Albert algebras over rings and related torsors. Canad. J. Math. 73 (2021), no. 3,
875–898 Zbl 1510.17054 MR 4282019

[3] S. Alsaody and P. Gille, Isotopes of octonion algebras, G2-torsors and triality. Adv. Math. 343
(2019), 864–909 Zbl 1452.17031 MR 3891985

[4] K. Becher, N. Grenier-Boley, and J.-P. Tignol, The discriminant Pfister form of an algebra with
involution of capacity 4. 2020, arXiv:2008.08953

[5] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-
simples. Springer, Berlin, 2012 Zbl 1245.16001 MR 3027127

[6] V. Chernousov, M.-A. Knus, and J.-P. Tignol, Conjugacy classes of trialitarian automorphisms
and symmetric compositions. J. Ramanujan Math. Soc. 27 (2012), no. 4, 479–508
Zbl 1279.20061 MR 3027447

[7] A. Dolphin and A. Quéguiner-Mathieu, The canonical quadratic pair on a Clifford algebra and
triality. Israel J. Math. 242 (2021), no. 1, 171–213 Zbl 1480.16070 MR 4282080

[8] A. Elduque, On triality and automorphisms and derivations of composition algebras. Linear
Algebra Appl. 314 (2000), no. 1-3, 49–74 Zbl 1049.17003 MR 1769014

[9] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic
forms. Amer. Math. Soc. Colloq. Publ. 56, American Mathematical Society, Providence, RI,
2008 Zbl 1165.11042 MR 2427530

[10] S. Garibaldi, Cohomological invariants: exceptional groups and spin groups. Mem. Amer.
Math. Soc. 200 (2009), no. 937, xii+81 Zbl 1191.11009 MR 2528487

[11] I. Kaplansky, Infinite-dimensional quadratic forms admitting composition. Proc. Amer. Math.
Soc. 4 (1953), 956–960 Zbl 0052.11004 MR 59895

[12] M.-A. Knus, Quadratic and Hermitian forms over rings. With a foreword by I. Bertuccioni.
Grundlehren Math. Wiss. 294, Springer, Berlin, 1991 Zbl 0756.11008 MR 1096299

[13] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions. With a preface
in French by J. Tits. Amer. Math. Soc. Colloq. Publ. 44, American Mathematical Society,
Providence, RI, 1998 Zbl 0955.16001 MR 1632779

[14] M.-A. Knus and O. Villa, Quadratic quaternion forms, involutions and triality. In Proceedings
of the Conference on Quadratic Forms and Related Topics (Baton Rouge, LA, 2001). Doc.
Math. Extra Vol. (2001), 201–218 Zbl 1003.11013 MR 1869395

[15] H. P. Petersson, The structure group of an alternative algebra. Abh. Math. Sem. Univ. Hamburg
72 (2002), 165–186 Zbl 1014.17004 MR 1941552

[16] M. Rost, J.-P. Serre, and J.-P. Tignol, La forme trace d’une algèbre simple centrale de degré 4.
C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 83–87 Zbl 1110.16014 MR 2193651

https://doi.org/10.2307/1968960
https://zbmath.org/?q=an:0061.04807
https://mathscinet.ams.org/mathscinet-getitem?mr=7747
https://doi.org/10.4153/S0008414X20000218
https://zbmath.org/?q=an:1510.17054
https://mathscinet.ams.org/mathscinet-getitem?mr=4282019
https://doi.org/10.1016/j.aim.2018.12.003
https://zbmath.org/?q=an:1452.17031
https://mathscinet.ams.org/mathscinet-getitem?mr=3891985
https://arxiv.org/abs/2008.08953
https://doi.org/10.1007/978-3-540-35316-4
https://doi.org/10.1007/978-3-540-35316-4
https://zbmath.org/?q=an:1245.16001
https://mathscinet.ams.org/mathscinet-getitem?mr=3027127
https://zbmath.org/?q=an:1279.20061
https://mathscinet.ams.org/mathscinet-getitem?mr=3027447
https://doi.org/10.1007/s11856-021-2128-y
https://doi.org/10.1007/s11856-021-2128-y
https://zbmath.org/?q=an:1480.16070
https://mathscinet.ams.org/mathscinet-getitem?mr=4282080
https://doi.org/10.1016/S0024-3795(00)00105-1
https://zbmath.org/?q=an:1049.17003
https://mathscinet.ams.org/mathscinet-getitem?mr=1769014
https://doi.org/10.1090/coll/056
https://doi.org/10.1090/coll/056
https://zbmath.org/?q=an:1165.11042
https://mathscinet.ams.org/mathscinet-getitem?mr=2427530
https://doi.org/10.1090/memo/0937
https://zbmath.org/?q=an:1191.11009
https://mathscinet.ams.org/mathscinet-getitem?mr=2528487
https://doi.org/10.2307/2031837
https://zbmath.org/?q=an:0052.11004
https://mathscinet.ams.org/mathscinet-getitem?mr=59895
https://doi.org/10.1007/978-3-642-75401-2
https://zbmath.org/?q=an:0756.11008
https://mathscinet.ams.org/mathscinet-getitem?mr=1096299
https://doi.org/10.1090/coll/044
https://doi.org/10.1090/coll/044
https://zbmath.org/?q=an:0955.16001
https://mathscinet.ams.org/mathscinet-getitem?mr=1632779
https://doi.org/10.4171/dms/2/9
https://zbmath.org/?q=an:1003.11013
https://mathscinet.ams.org/mathscinet-getitem?mr=1869395
https://doi.org/10.1007/BF02941670
https://zbmath.org/?q=an:1014.17004
https://mathscinet.ams.org/mathscinet-getitem?mr=1941552
https://doi.org/10.1016/j.crma.2005.11.002
https://zbmath.org/?q=an:1110.16014
https://mathscinet.ams.org/mathscinet-getitem?mr=2193651


D. Barry and J.-P. Tignol 1026

[17] W. Scharlau, Quadratic and Hermitian forms. Grundlehren Math. Wiss. 270, Springer, Berlin,
1985 Zbl 0584.10010 MR 770063

[18] D. B. Shapiro, Compositions of quadratic forms. De Gruyter Exp. Math. 33, Walter de Gruyter,
Berlin, 2000 Zbl 0954.11011 MR 1786291

[19] T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups.
Springer Monogr. Math., Springer, Berlin, 2000 Zbl 1087.17001 MR 1763974

[20] J.-P. Tignol, La forme seconde trace d’une algèbre simple centrale de degré 4 de caractéristique
2. C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 89–92 Zbl 1110.16015 MR 2193652

Communicated by Ulf Rehmann

Received 24 January 2023; revised 6 July 2023.

Demba Barry
Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies
de Bamako, Bamako, Mali; barry.demba@gmail.com

Jean-Pierre Tignol
ICTEAM Institute, UCLouvain, avenue Georges Lemaître 4–6, Box L4.05.01,
1348 Louvain-la-Neuve, Belgium; jean-pierre.tignol@uclouvain.be

https://doi.org/10.1007/978-3-642-69971-9
https://zbmath.org/?q=an:0584.10010
https://mathscinet.ams.org/mathscinet-getitem?mr=770063
https://doi.org/10.1515/9783110824834
https://zbmath.org/?q=an:0954.11011
https://mathscinet.ams.org/mathscinet-getitem?mr=1786291
https://doi.org/10.1007/978-3-662-12622-6
https://zbmath.org/?q=an:1087.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=1763974
https://doi.org/10.1016/j.crma.2005.11.010
https://doi.org/10.1016/j.crma.2005.11.010
https://zbmath.org/?q=an:1110.16015
https://mathscinet.ams.org/mathscinet-getitem?mr=2193652
mailto:barry.demba@gmail.com
mailto:jean-pierre.tignol@uclouvain.be

	Contents
	1. Introduction
	2. Clifford groups and Lie algebras
	2.1. Quadratic forms and quadratic pairs
	2.2. Clifford algebras
	Twisted forms

	2.3. Clifford groups
	Extended Clifford groups
	Twisted forms

	2.4. Lie algebras of orthogonal groups
	2.5. Extended Clifford Lie algebras
	2.6. Homomorphisms from Clifford algebras

	3. Compositions of quadratic spaces
	3.1. Composition maps and their cyclic derivatives
	3.2. Canonical Clifford maps
	3.3. Similitudes and isomorphisms
	3.4. Compositions of pointed quadratic spaces
	3.5. Composition algebras

	4. Trialitarian triples
	4.1. The trialitarian triple of a composition of quadratic spaces
	4.2. Similitudes of trialitarian triples
	4.3. Derived trialitarian triples
	4.4. Trialitarian isomorphisms
	4.5. Compositions of 8-dimensional quadratic spaces
	4.6. The structure group of 8-dimensional composition algebras

	References

