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Global rigid inner forms vs isocrystals

Tasho Kaletha and Olivier Taïbi

Abstract. We compare the cohomology of the global Galois gerbes constructed by Kottwitz in
arXiv:1401.5728 and by the first author in [Invent. Math. (2018), 271–369], respectively, and give
applications to the theory of endoscopy.
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1. Introduction

The statement of the refined local and global Arthur–Langlands conjectures for non-quasi-
split reductive groups involves the cohomology of certain Galois gerbes [9], where the
notion of a Galois gerbe is that of [26]. In summary, every such group G is an inner form
of its quasi-split form G�, but it was observed by Vogan [35] that this relationship does
not suffice for the normalization of various objects involved in the statement of the local
Langlands conjecture. The cohomology of a local gerbe is used to provide the necessary
additional data. The cohomology of a global gerbe is used to organize the local data at all
places coherently, so that the local conjecture can be used in global applications.

The gerbes constructed in [20] can be used for this purpose. However, not all local
inner forms can be treated when G� does not have connected center, and not all global
inner forms can be treated when G� does not satisfy the Hasse principle. We shall refer
to the formulation of the local and global conjectures involving the gerbes of [20] as the
isocrystal version. The gerbes constructed in [10, 11] can be used without these technical
hypotheses on G�, but they are at the moment available only in characteristic zero. We
shall refer to the resulting local and global conjectures as the rigid version.

Assume first that the ground field F is a finite extension of Qp and that G� has con-
nected center. Then both the isocrystal and the rigid version of the refined local Langlands
conjecture are available forG. It was shown in [12] that these two versions are equivalent.
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Moreover, it was shown that the validity of the isocrystal version for all connected reduc-
tive groups with connected center is equivalent to the validity of the rigid version for all
connected reductive groups without assumption on the center. These results were derived
from a comparison theorem for the cohomology of the two local gerbes.

The current paper provides a comparison theorem for the cohomology of the two
global gerbes. We give two applications to this comparison. First, when the ground field
F is a finite extension of Q andG� has connected center and satisfies the Hasse principle,
so that both the isocrystal version and the rigid version of the global multiplicity formula
are available, it is natural to ask if these two versions are equivalent. A formal argument,
based on the canonicity of global transfer factors, gives an affirmative answer, but sheds
no light on the relation between the normalized local pairings at each place of F . Our
cohomological result allows for this finer comparison.

Second, we generalize [11, Proposition 4.4.1], which states that the product of local
normalized transfer factors equal the canonical adelic transfer factor. In [11] this was
proved under the assumption that there exists a pair of related F -points in the group and
its endoscopic group. While this assumption was also made in [27], where transfer factors
were originally defined, it was later dropped in [21] and replaced with the weaker assump-
tion on the existence of an F -point in the endoscopic group that is related to an A-point
in the group. We use the results of the current paper to show that [11, Proposition 4.4.1] is
valid under this weaker hypothesis.

We hope that the comparison of the cohomology of the two global gerbes will be useful
beyond these applications, in light of Scholze’s recent conjecture [30, Conjecture 9.5] on
the existence of a Weil cohomology theory for varieties over xFp valued in the category of
representations of the global gerbe of [20].

Before we outline the comparison theorem in the global case, let us review it in the
local case. Let F be a finite extension of Qp and � the absolute Galois group of F .
The local gerbe of [20], which we shall denote by E iso here, is bound by the pro-torus T iso

whose character module is the trivial �-module Q. The local gerbe of [10], which we shall
denote by E rig here, is bound by the pro-finite algebraic group P rig whose character mod-
ule is the group of smooth functions � ! Q=Z, endowed with the obvious action of � .
The map X�.T iso/! X�.P rig/ sending q 2 Q to the constant function with value q pro-
vides a homomorphism P rig ! T iso defined over F . One proves that the push-out of E rig

along this homomorphism equals E iso. The resulting map of gerbes E rig ! E iso induces a
map between their cohomology. For example, when T is an algebraic torus defined overF ,
we obtain a homomorphism of abelian groupsH 1.E iso; T /!H 1.E rig; T /. Both of these
abelian groups have a description in terms of linear algebra. In the first case, we have the
functorial isomorphismH 1.E iso;T /!X�.T /� , whereX�.T / is the co-character module
of T . In the second case, we have the functorial isomorphism

H 1.E rig; T /!
X�.T /˝Q

IX�.T /
Œtor�;

where I � ZŒ�� is the augmentation ideal, and Œtor� refers to the torsion subgroup. Let
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E=F be any finite Galois extension splitting T . Let N \ denote the normalized norm map

ŒE W F ��1
X

�2�E=F

� W X�.T /˝Q! X�.T /˝Q:

Then the map X�.T /� !
X�.T /˝Q
IX�.T /

Œtor� given by � 7! � � N \.�/ makes the following
diagram commute

H 1.E iso; T / //

��

X�.T /�

��

H 1.E rig; T / // X�.T /˝Q
IX�.T /

Œtor�

We now come to the global case treated in this paper. Let F be a finite extension of Q.
The global gerbe of [20], which we shall denote by E iso here, is bound by a pro-torus T iso,
while the global gerbe of [11], which we shall denote by E rig here, is bound by a pro-
finite algebraic group P rig. The description of the character modules is more technical
and we will not discuss it in the introduction. Unlike in the local case, we do not know of
a natural map P rig ! T iso. In fact, there is good reason to believe that one cannot expect
a natural map like that to exist. The comparison of the cohomology of the two gerbes
E iso and E rig proceeds via an intermediary. We define a new pro-torus T mid and natural
maps T iso ! T mid  P rig. We prove that the classes in H 2.�;T iso/ and H 2.�; P rig/ of
the gerbes E iso and E rig meet in H 2.�;T mid/. This leads to a gerbe Emid bound by T mid

and equipped with homomorphisms E iso ! Emid  E rig. We then prove that, for every
algebraic torus T defined over F , the two diagrams

H 1.Emid; T / //

��

HomF .T mid; T /

��

H 1.Emid; T / //

��

HomF .T mid; T /

��

H 1.E iso; T / // HomF .T iso; T / H 1.E rig; T / // HomF .P
rig; T /

are Cartesian and the vertical arrows in the left diagram are surjective.
An analogous discussion holds locally at each place v of F : There are maps of gerbes

E iso
v ! Emid

v  E
rig
v over Fv that are compatible with the analogous global maps via local-

ization maps E�v ! E� �F Fv . The Cartesian square relating E iso
v to Emid

v shows that there
is a functorial isomorphism from H 1.Emid

v ; T / to the group ¹.�; �/ j � 2 X�.T /� ; � 2
X�.T /˝Q; N \.�/ D N \.�/º.

Recalling the comparison map E
rig
v ! E iso

v constructed in [12] and reviewed above,
we now obtain the following triangle

Emid
v

E
rig
v

<<

// E iso
v

bb

(1.0.1)

This triangle does not commute. In order to relate the global comparison results of this
paper, which concern (via the localization maps) the two diagonal arrows, to the local
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comparison results of [12], which concern the bottom horizontal arrow, we need to under-
stand the failure of commutativity.

We construct a canonical splitting Emid
v ! E iso

v of the map E iso
v ! Emid

v and show that
composing this splitting with E

rig
v ! Emid

v equals the bottom horizontal map in (1.0.1),
i.e., the comparison map E

rig
v ! E iso

v of [12]. The non-commutativity of the above trian-
gle is then encoded in the difference between the left diagonal map E

rig
v ! Emid

v and the
composition

E rig
v ! Emid

v ! E iso
v ! Emid

v :

We show that the difference between the two homomorphisms

H 1.Emid
v ; T /! H 1.E rig

v ; T /

induced by these two maps E
rig
v ! Emid

v is given on the linear algebraic side by the map
that sends .�; �/ to � �N \.�/ 2 X�.T /˝Q

IX�.T /
Œtor�.

These cohomological results allow us to compare the two isocrystal and rigid versions
of the multiplicity conjecture for discrete automorphic representations. More precisely,
let G� be a quasi-split connected reductive group defined over F and let G be an inner
form of G�. Assuming the existence of the global Langlands group LF , as well as the
validity of the rigid version of the refined local Langlands correspondence, we constructed
in [11, Section 4.5] a pairing between the group �' associated to a discrete generic global
parameter ' W LF ! LG and the adelic L-packet …'.G/. This pairing is an ingredient
in the conjectural multiplicity formula [16, (12.3)]. Its construction uses the cohomology
of E rig, but the result is independent of the cohomology classes used.

Assuming thatG� has connected center and satisfies the Hasse principle, another such
pairing can be constructed if one assumes the isocrystal version of the refined local Lang-
lands correspondence and uses the cohomology of E iso. This construction does not yet
appear in the literature. It is fairly analogous to that in [11, Section 4.5] and we give the
details in Section 4.6.

As an application of our cohomological results, we show that the two constructions
– using E rig and E iso, respectively – produce the same pairing between �' and …'.G/.
More precisely, given an inner twist  W G� ! G we fix a cocycle zmid 2 Z1.Emid; G�/

that lifts the cocycle � 7!  �1�. / and use it to produce cocycles ziso 2 Z1.E iso; G�/

and zmid 2 Z1.Emid; G�/. The two global pairings are constructed as products of local
pairings, each normalized by the localization ziso

v and zrig
v , respectively. At each place v,

the local pairings do depend on the choice of zmid, but the resulting global pairings do
not. Even though conjectural, the local pairings are related by an explicit non-conjectural
factor that is a result of the normalized character identities the pairings are required to
satisfy. This follows from the local comparison results of [12]. However, due to the non-
commutativity of (1.0.1) the local comparison map H 1.E iso

v ; G
�/! H 1.E

rig
v ; G

�/ does
not map Œziso

v � to Œzrig
v �. Thus the local comparison results of [12] need to be supplemented

with the quantification of the non-commutativity of (1.0.1) discussed above. Combining
these results, we obtain an explicit factor relating the two local pairings at a given place v.
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The global comparison results of this paper imply that the product over all v of these
factors equals 1 and therefore the two global pairings are equal.

Alongside this comparison result, we introduce in this paper a simplification of the
construction of the global gerbe E rig. In [11] this construction involved choosing a se-
quence .Ei ; Si ; PSi /, where Ei is an exhaustive tower of finite Galois extensions of F ,
Si is an exhaustive tower of finite sets of places of F , and PSi is a set of lifts of Si to
places of Ei . Each triple .Ei ; Si ; PSi / was required to satisfy a list of four conditions [11,
Conditions 3.3.1]. In this paper we show that the resulting gerbe depends only on the set
PV of lifts to xF of the places of F that is defined by PV D lim

 �
PSi . That is, E rig is independent

of the choices of Ei and Si . Furthermore, we show that [11, Conditions 3.3.1] for each
triple .Ei ; Si ; PSi / are equivalent to one simple condition on PV , namely Condition 3.3.1
stating that

S
v2V � Pv is dense in � , where V is the set of all places of F .

2. Definition of some local and global Galois modules

In this section we shall define some modules for the Galois group of a finite Galois exten-
sion of a ground field F that is either a number field or a local field. Taking colimits over
all finite extensions of F we shall obtain modules for the absolute Galois group of a num-
ber field or a local field. These will be the character modules of T iso, T mid, and P rig. We
shall also discuss the transition maps with respect to which we take these colimits – we
call these inflation maps. We shall also discuss localization maps, which relate the global
Galois modules to their local counterparts.

2.1. The local modules

Let F be a local field, xF an algebraic closure of F and � the corresponding absolute
Galois group. Let E=F be a finite Galois subextension of xF=F , with Galois group �E=F .
Let N be natural number. We define the following �E=F -modules:

(1) M iso
E WD Z.

(2) Mmid
E;N consists of maps f W �E=F ! 1

N
Z satisfying

P
� f .�/ 2 Z.

(3) M rig
E;N consists of maps f W �E=F ! 1

N
Z=Z satisfying

P
� f .�/ D 0.

The module M iso
E is the module X of [20, Section 5], while M rig

E;N is the module
X�.uE=F;N / of [10, Section 3.1].

We define �E=F -equivariant maps

M iso
E

ciso

 ��Mmid
E;N

crig

��!M
rig
E;N (2.1.1)

via the formulas

f iso
D

X
�

f mid.�/; f rig.�/ D �f mid.�/ mod Z:

Fact 2.1.1. The maps ciso and crig are surjective. The kernel of crig is induced.
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Proof. Immediate.

If N is divisible by ŒE W F �, there is a canonical splitting of ciso defined by

siso
WM iso

E !Mmid
E;N ; siso.f iso/ D f mid; f mid.�/ D ŒE W F ��1f iso: (2.1.2)

The image of siso is precisely .Mmid
E;N /

� .

2.2. Local inflation maps

We continue with the notation of Section 2.1. Let K=F be another finite Galois extension
with E � K, M a natural number divisible by N .

We define three maps, which we refer to as inflation maps:

(1) M iso
E !M iso

K , given by multiplication by ŒK W E�.

(2) Mmid
E;N !Mmid

K;M , given by f mid;K.�/ D f mid;E .�/.

(3) M rig
E;N !M

rig
K;M , also given by f rig;K.�/ D f rig;E .�/.

These inflation maps fit into the commutative diagram

M iso
E

��

Mmid
E;N

ciso
E;N
oo

c
rig
E;N
//

��

M
rig
E;N

��

M iso
K Mmid

K;M
ciso
K;M

oo

c
rig
K;M

// M
rig
K;M

Using these inflation maps we can take in each case the colimit over all finite Galois
extensionsE=F and all natural numbersN . Denoting byRŒ�� the set of smooth functions
� ! R, we obtain the following:

M iso
WD lim
�!

M iso
E D

8̂̂<̂
:̂

Q if F is non-Archimedean,

Z if F ' C;
1
2
Z if F D R

Mmid
WD lim
�!

Mmid
E;N D

8̂̂<̂
:̂

QŒ�� if F is non-Archimedean,

ZŒ�� D Z if F ' C;®
f W � ! Q j

P
�2� f .�/ 2 Z

¯
if F D R

M rig
WD lim
�!

M
rig
E;N D

8̂̂<̂
:̂

Q=ZŒ�� if F is non-Archimedean,

0 if F ' C;®
f W�!Q=Z j

P
�2�f .�/D0

¯
if F D R

The local comparison maps splice together to maps

M iso ciso

 ��Mmid crig

��!M rig;
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the left being given by integrating over � with respect to the normalized Haar measure,
and the right being induced by the negative of the natural projection Q!Q=Z. The map
ciso has a canonical splitting siso whose image consists of constant functions �!Q in the
non-Archimedean case (resp. �! Z in the complex case, resp. �! 1

2
Z in the real case).

In the non-Archimedean case the composition crig ı siso equals the map X�.�/, where
� is the map defined in [12, (3.13)], as we see by dualizing Lemma 3.1 loc. cit. In the
Archimedean case we take this equality as the definition of �.

2.3. A discussion of M
mid;_

E;N

We now describe the �E=F -module Mmid;_
E;N D HomZ.M

mid
E;N ;Z/ and record some of its

properties.
The obvious inclusions ZŒ�E=F �!M

mid
E;N!N

�1ZŒ�E=F � fit into the exact sequences

0!Mmid
E;N ! N�1ZŒ�E=F �

P
�
��! N�1Z=Z! 0 (2.3.1)

and
0! ZŒ�E=F �!Mmid

E;N ! N�1Z=ZŒ�E=F �0 ! 0: (2.3.2)

Here the subscript 0 denotes the subset of functions f on �E=F satisfying the conditionP
�2�E=F

f .�/ D 0. In fact N�1Z=ZŒ�E=F �0 equals M rig
E;N and the map is just �crig

E;N ,
but we do not want to emphasize this here because it distracts.

We can identify ZŒ�E=F � with its own dual via the pairing .x; y/ 7!
P
� x.�/y.�/.

ThenNZŒ�E=F � dualizes toN�1ZŒ�E=F �, the inclusion ZŒ�E=F �!N�1ZŒ�E=F � dual-
izes to the inclusionNZŒ�E=F �!ZŒ�E=F �. For a finite Galois extensionK ofF contain-
ing E, the inflation map ZŒ�E=F �! ZŒ�K=F � dualizes to the map ZŒ�K=F �! ZŒ�E=F �
given by summing over �K=E -cosets.

The inclusions ZŒ�E=F �!Mmid
E;N ! N�1ZŒ�E=F � dualize to the inclusions

NZŒ�E=F �!M
mid;_
E;N ! ZŒ�E=F �

and describeMmid;_
E;N as the submodule of ZŒ�E=F � given by NZŒ�E=F �CZ, where ZD

ZŒ�E=F �
� is the subgroup consisting of constant functions. Note that ZŒ�E=F �

� coincides
with ŒMmid;_

E;N �� .
In terms of this description of Mmid;_

E;N the exact sequences dual1 to (2.3.1) and (2.3.2)
are described as follows. The dual of (2.3.1) is

0! NZŒ�E=F �!M
mid;_
E;N ! Z=NZ! 0;

with the map Mmid;_
E;N ! Z=NZ given by the natural projection on Z and trivial on

1By dual of a short exact sequence 0! A! B! C ! 0 where B is a finite free Z-module we mean
the short exact sequence 0! HomZ.B;Z/! HomZ.A;Z/! HomZ.C;Q=Z/! 0.
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NZŒ�E=F �. The dual of (2.3.2) is

0!M
mid;_
E;N ! ZŒ�E=F �!

Z=NZŒ�E=F �

Z=NZ
! 0; (2.3.3)

where now the last map is the natural projection.
The map ciso WMmid

E;N ! Z defined in (2.1.1) dualizes to the inclusion map

Z D ŒMmid;_
E;N �� !M

mid;_
E;N :

If ŒE W F � divides N then its splitting siso W Z ! Mmid
E;N defined in (2.1.2) dualizes to

M
mid;_
E;N ! Z given by y 7! ŒE W F ��1

P
� y.�/.

The inflation map
Mmid
E;N !Mmid

K;M

dualizes to the map sending yK 2Mmid;_
K;M � ZŒ�K=F � to yE 2Mmid;_

E;N � ZŒ�E=F � given
by yE .�/ D

P
� 7!� y

K.�/.

2.4. The global modules

Let F be a number field, E=F finite Galois extension, S a (finite or infinite) set of places
of F . We denote by SE the set of places of E above those in S . Let PSE � SE be a set of
lifts of the places in S to places of E. We recall that of the triple .E=F; S; PSE / one can
require [11, Conditions 3.3.1], which we recall here for convenience.

Conditions 2.4.1. (1) S contains all archimedean places and all places that ramify in E.
(2) Every ideal class of E contains an ideal with support in SE .
(3) For every place w of E there exists w0 2 SE such that the stabilizers in �E=F of

w and w0 coincide.
(4) For every � 2 �E=F there exists w 2 PSE satisfying �w D w.

For now, only condition (4). will be useful to us, and we will explicitly require it when
it is needed. Starting with Section 3.3, we will make active use of these conditions.

We define the following �E=F -modules:

(1) M iso
E;S WD ZŒSE �0 consists of finitely supported functions f W SE ! Z satisfyingP
w f .w/ D 0.

(2) Mmid
E; PSE

consists of finitely supported functions f W �E=F � SE ! 1
ŒE WF �

Z satis-

fying
P
w f .�;w/ D 0,

P
� f .�;w/ 2 Z, ��1w … PSE ) f .�;w/ D 0.

(3) M rig
E; PSE

consists of finitely supported functions f W �E=F � SE ! 1
ŒE WF �

Z=Z sat-

isfying
P
w f .�;w/ D 0,

P
� f .�;w/ D 0, ��1w … PSE ) f .�;w/ D 0.

We shall write f iso or f iso;E in the first case if we want to be more precise, and use
the analogous notation in the other two cases.

The module M iso
E;S was defined by Tate [34], and later by Kottwitz in [20, Section 6],

where it was denoted byX3. The moduleM rig
E; PSE

was defined in [11], where it was denoted
by ME; PSE ;ŒE WF �

.
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We define �E=F -equivariant maps

M iso
E;S

ciso

 ��Mmid
E; PSE

crig

��!M
rig
E; PSE

(2.4.1)

by the formulas

f iso.w/ D
X
�

f mid.�; w/; f rig.�; w/ D �f mid.�; w/ mod Z:

Proposition 2.4.2. The map crig is surjective.

Proof. We can assume that S ¤;. Let f rig 2M
rig
E; PSE

. For each � 2�E=F choosew� 2 SE
such that ��1w� 2 PSE . Define f mid as follows:

(1) For .�; w/ such that ��1w 62 PSE , f mid.�; w/ D 0.

(2) For .�;w/ such that ��1w 2 PSE butw¤w� , choose an arbitrary lift f mid.�;w/ 2

Q of �f rig.�; w/ 2 Q=Z.

(3) Finally for � 2 �E=F let f mid.�; w� / D �
P
w2SEX¹w� º

f mid.�; w/ 2 Q.

Then f mid 2Mmid
E; PSE

and crig.f mid/ D f rig.

Fact 2.4.3. The kernel of crig is an induced �E=F -module.

Proof. After making the change of variables �.�; w/ D f .�; �w/ we see that this kernel
is given by the set of functions � W �E=F � SE ! Z satisfying

P
w �.�; w/ D 0 and

w … PSE ) �.�; w/ D 0, with �E=F acting by left translation on the first factor. This

�E=F -module is isomorphic to Ind
�E=F
¹1º

ZŒS�0.

For a ZŒ�E=F �-module Y denote IE=F .Y / D
P
�2�E=F

.� � 1/.Y /.

Lemma 2.4.4. Assume that for any � 2 �E=F there exists w 2 PSE such that �w D w.
Consider the functor F1 (resp. F2) from the category of ZŒ�E=F �-modules to the category
of Z-modules which maps Y to Y ŒSE �0 (resp. Y Œ PSE �0, considered as the subgroup of
Y ŒSE �0 consisting of functions supported on PSE ). There exists a morphism of functors
˛ W F1 ! F2 such that for any ZŒ�E=F �-module Y and any f 2 Y ŒSE �0 we have

f � ˛Y .f / 2 IE=F
�
Y ŒSE �0

�
:

In particular we have Y ŒSE �0 D Y Œ PSE �0 C IE=F .Y ŒSE �0/ for any ZŒ�E=F �-module Y .

Proof. For each w 2 SE X PSE choose �w 2 �E=F such that �ww 2 PSE and Pvw 2 PSE
such that �w Pvw D Pvw . Let Y be a ZŒ�E=F �-module and f 2 Y ŒSE �0. Define

˛Y .f / D f C
X

w2SEX PSE

.�w � 1/
�
f .w/ıw � f .w/ı Pvw

�
It is supported on PSE .

Proposition 2.4.5. Assume that for any � 2 �E=F there existsw 2 PSE such that �wDw.
The morphism ciso of ZŒ�E=F �-modules splits.
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Proof. The ZŒ�E=F �-module M iso
E;S is the direct limit of its submodules of finite type,

which are free over Z. Thus it is enough to construct for any �E=F -module X that is a
finitely generated free abelian group, a section sX of the map Hom.X;Mmid

E; PSE
/�E=F !

Hom.X; M iso
E;SE

/�E=F induced by ciso, such that sX is functorial in X . Choose a mor-
phism of functors ˛ as in Lemma 2.4.4. Writing Y D HomZ.X; Z/ we have a natu-
ral identification of Hom.X;M iso

E;S /
�E=F with Y ŒSE �

�E=F
0 and a natural identification of

Hom.X;Mmid
E;SE

/�E=F with the set of functions f mid W �E=F �SE! ŒE W F ��1Y satisfying

• for any � 2 �E=F we have
P
w2SE

f mid.�; w/ D 0,

• for any w 2 SE we have
P
�2�E=F

f mid.�; w/ 2 Y ,

• f mid is supported on the set of .�; w/ satisfying ��1w 2 PSE .

For f iso 2 Y ŒSE �0 we define a function

sX .f
iso/.�; w/ W �E=F � SE ! ŒE W F ��1Y

by the formula
sX .f

iso/.�; w/ D ŒE W F ��1�
�
˛Y .f

iso/.��1w/
�
:

It satisfies the three conditions above and thus defines a �E=F -equivariant map X !
Mmid
E; PSE

: the first and third conditions are clear, the second follows from the equality

NE=F
�
˛Y .f

iso/
�
D NE=F .f

iso/ D ŒE W F �f iso: (2.4.2)

Thus we have defined a map

sX W Hom
�
X;M iso

E;S

��E=F
! Hom

�
X;Mmid

E; PSE

��E=F :
Functoriality in X is clear. The fact that sX is a section of the map induced by ciso also
follows from (2.4.2).

Corollary 2.4.6. Under the assumption of the proposition the map ciso is surjective.

2.5. Global inflation maps

We keep the notation of Section 2.4. Let K=F be a finite Galois extension with E � K,
S 0 a set of places of F containing S , PS 0K a set of lifts of S 0 to places of K such that for
each v 2 S with lift Pv 2 PS 0K , the image of Pv in SE lies in PSE .

We define three inflation maps. First assume S D S 0.

(1) ZŒSE �0 ! ZŒS 0K �0 by f iso;K.u/ D ŒKu W Ew �f
iso;E .w/, where w 2 SE is the

unique place under u 2 SK .

(2) Mmid
E; PSE

! Mmid
K; PSK

by f mid;K.�; u/ D f mid;E .�; w/ provided ��1u 2 PSK , and

f mid;K.�; u/ D 0 otherwise.

(3) M rig
E; PSE

! M
rig
K; PSK

by f rig;K.�; u/ D f rig;E .�; w/ provided ��1u 2 PSK , and

f rig;K.�; u/ D 0 otherwise.
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We now drop the assumption S D S 0 and extend all maps defined above from SK to
S 0K by zero outside of SK .

These maps are well-defined and fit in the following commutative diagram

M iso
E;S

��

Mmid
E; PSE

ciso
E;S
oo

c
rig
E;S
//

��

M
rig
E; PSE

��

M iso
K;S 0 Mmid

K; PS 0Kciso
K;S 0

oo

c
rig
K;S 0

// M
rig
K; PS 0K

The commutativity of the right square is immediate. The commutativity of the left square
follows from the condition that if .�; w/ is in the support of f E then ��1w 2 PSE .

2.6. Localization maps

Continue with the notation of Section 2.4. Fix w 2 PSE . For each of the three global mod-
ules we define localization maps locw W f 7! fw as follows:

(1) locw WM iso
E;S !M iso

Ew
, defined by fw WD f .w/.

(2) locw WMmid
E; PSE

!Mmid
Ew ;ŒE WF �

, defined by fw.�/ WD f .�;w/.

(3) locw WM
rig
E; PSE

!M
rig
Ew ;ŒE WF �

, defined by fw.�/ WD f .�;w/.

These maps fit into the following commutative diagram

M iso
E;S

��

Mmid
E; PSE

oo //

��

M
rig
E; PSE

��

M iso
Ew

Mmid
Ew ;ŒE WF �

oo // M
rig
Ew ;ŒE WF �

The commutativity of the right square is immediate, while that of the left is implied by the
support condition and the assumption w 2 PSE .

Fact 2.6.1. The localization maps are compatible with the local and global inflation maps,
i.e., in the setting of Section 2.5, for ‹ 2 ¹iso;mid; rigº and w 2 PS 0K \ SK , the following
diagram commutes.

M ‹

E; PSE

//

��

M ‹

K; PS 0K

��

M ‹
Ew ;ŒE WF �

// M ‹
Kw ;ŒKWF �

Proof. Immediate.
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3. Cohomology

3.1. Preliminary discussion

Let F be a local or global field of characteristic zero. Let xF be an algebraic closure of F .
Let � be the Galois group of xF=F . Assume given an inverse system .Dn/n2N of diago-
nalizable groups defined over F , with surjective transition maps, and an inverse system of
classes inH 2.�;Dn/. LetD D lim

 �
Dn. We endowDn. xF / with the discrete topology and

D. xF / D lim
 �

Dn. xF / with the inverse limit topology. The continuous cohomology groups
Hn.�;D/ are then the cohomology groups of the complex of continuous cochains of �
valued in the topological group D. xF /. This complex is the inverse limit of the complexes
of continuous cochains of � valued in the discrete groups Dn. xF /. Therefore [36, Theo-
rem 3.5.8] gives the exact sequences

1! R1 lim
 �

H 0.�;Dn/! H 1.�;D/! lim
 �

H 1.�;Dn/! 1

and
1! R1 lim

 �
H 1.�;Dn/! H 2.�;D/! lim

 �
H 2.�;Dn/! 1:

If R1 lim
 �

H 1.�;Dn/ vanishes, the inverse system of classes in H 2.�;Dn/ gives an ele-
ment of H 2.�;D/.

Assume now that we have a class � 2 H 2.�;D/ and let

1! D. xF /! E ! � ! 1

be an extension belonging to the corresponding isomorphism class. To be more precise, E

is a topological group, both maps are continuous group morphisms, the topology onD. xF /
induced by the embedding in E coincides with the pro-discrete one defined above, and the
map E ! � admits a continuous section (not required to be a group morphism)2. This is
a slight generalization of a well-known interpretation of second cohomology groups (see
[29, Theorem 1.2.4] or [4, Section XIV.4]). Explicitly, start from a continuous 2-cocycle
� that we assume to be normalized for simplicity, i.e., the restrictions of � to � � ¹1º
and ¹1º � � are trivial. We may construct an extension E D D. xF /�� � by defining the
topological space E as D. xF / � � and defining the multiplication by the formula

.x; �/ � .y; �/ D
�
x�.y/�.�; �/; ��

�
where x; y 2 D. xF / and �; � 2 � . We will denote a pair .x; �/ as above by x � � to
emphasize that it should be understood as an element of D. xF /�� � . For simplicity we
will abusively denote D ! E instead of D. xF /! E . A morphism of extensions E ! E 0

is a morphism of topological groups making the obvious diagram commute.

2It would be equivalent to require that the continuous bijection E=D ! � is a homeomorphism, i.e.,
this condition implies that a continuous section exists: this follows from the same argument as in [29,
Exercise I.1.4].
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For a linear algebraic groupG overF we let E act onG. xF / via the map E!� and the
usual action of � onG. xF /. Following Kottwitz we define the setZ1alg.E;G/ to be the set of
those continuous 1-cocycles E ! G. xF / whose restriction to D. xF /, which by continuity
factors through some projection D. xF / ! Dn. xF / for some n, is given by an algebraic
homomorphism Dn ! G. In general this homomorphism is only defined over xF , but its
G. xF /-conjugacy class is invariant under � . Further, for any central algebraic subgroup
Z � G we define Z1.D! E;Z! G/ to consist of those elements of Z1alg.E;G/ whose
restriction to D takes image in Z. In that case the resulting homomorphism D ! Z is
defined over F . Finally, we set

Z1bas.E; G/ D Z
1
�
D ! E; Z.G/! G

�
:

Realizing E as D. xF /�� � as above, an element Qc of Z1bas.E; G/ is concretely described
by a pair .�; c/ where � W D ! Z.G/ is the morphism which on xF -points gives the
restriction of Qc to D. xF / and c 2 C 1.�; G. xF // is the composition of the section � ! E ,
� 7! 1� � with Qc. The cocycle condition for Qc is equivalent to the condition that � be
defined over F and the equality d.c/D � ı �. We also define the corresponding cohomol-
ogy sets

H 1.D ! E; Z ! G/ � H 1
bas.E; G/ � H

1
alg.E; G/

to be the quotients by the action of G. xF / by coboundaries, i.e., g sends z 2 Z1alg.E;G/ to
e 7! g�1z.e/�e.g/, where �e 2 � is the image of e 2 E .

A priori the set H 1
alg.E; G/ depends on the choice of the particular extension E in its

isomorphism class. Indeed, if E 0 is another extension in the same class, then choosing an
isomorphism of extensions i W E 0! E provides an isomorphismZ1alg.E;G/!Z1alg.E

0;G/

by pulling back along i . The induced isomorphism H 1
alg.E; G/! H 1

alg.E
0; G/ depends

only on the D-conjugacy class of i . The D-conjugacy classes of automorphisms of the
extension E are parameterized by H 1.�; D/, by associating to ˛ 2 Z1.�; D/ the auto-
morphism e 7! ˛.�e/e of E (see [1, Section XIII.1] for a discussion of morphisms of
extensions in the case of discrete groups, similar arguments work for topological groups).
Therefore, the isomorphism H 1

alg.E; G/! H 1
alg.E

0; G/ is well-defined up to the action of
H 1.�;D/ on H 1

alg.E; G/ that is given by the formula .z � ˛/.e/ D z.˛.�e/e/.
It is thus clear that whenH 1.�;D/D 1 the setH 1

alg.E;G/ is independent of the choice
of extension E in its isomorphism class. In fact, the weaker condition lim

 �
H 1.�;Dn/ D

1 turns out to be sufficient. Indeed, by assumption for any z 2 Z1alg.E; G/ the restric-
tion zjD factors through the projection D ! Dn for some n and therefore z.˛.�e/e/ D
zn.˛n.�e//z.e/, where zn W Dn ! G composed with D ! Dn equals zjD , and ˛n 2
Z1.�;Dn/ is the image of ˛ 2 Z1.�;D/.

Assume now that D0n is another inverse system of diagonalizable groups defined over
F with surjective transition maps and that we are given homomorphisms D0n ! Dn
compatible with the transition maps. These splice to a homomorphism D0 ! D, where
D0 D lim

 �
D0n. Assume that we are given a class � 0 2 H 2.�;D0/ and let E 0 be the corre-

sponding extension. If � 0 maps to � under the homomorphism D0 ! D then there exists
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a homomorphism of extensions E 0 ! E , as above uniquely determined up to Z1.�;D/.
This homomorphism induces a map H 1

alg.E; G/ ! H 1
alg.E

0; G/. As above, this map is
well-defined if lim

 �
H 1.�;Dn/ D 1.

We have thus seen that the vanishing of Ri lim
 �

H 1.�;Dn/ for i D 0; 1 has desirable
consequences. A sufficient condition for the vanishing of both of these is the following:
For any n there exists m > n such that the map H 1.�;Dm/! H 1.�;Dn/ is zero.

Fact 3.1.1. Let D ! E be an extension of � as considered above, whose isomorphism
class corresponds to � 2 H 2.�;D/. Let G be a linear algebraic group over F and Z a
central subgroup. We have the inflation-restriction exact sequence of pointed sets (abelian
groups if G is abelian)

1! H 1.�;G/! H 1.D ! E; Z ! G/! HomF .D;Z/! H 2.�;G/;

where H 2.�; G/ is considered only when G is abelian and in this case the last arrow is
� 7! � ı �.

Proof. See [10, (3.5) and Lemma 3.3].

Fact 3.1.2. For any torus T with co-character module Y we have isomorphisms�
Y ˝X�.D/

��
! HomZ

�
HomZ.Y;Z/; X

�.D/
��
! HomF .D; T /; (3.1.1)

where the second map is the usual duality and the first map is the restriction of the �-
equivariant isomorphism

Y ˝X�.D/! HomZ

�
HomZ.Y;Z/; X

�.D/
�

y ˝ a 7!
�
' 7! '.y/a

�
:

Fact 3.1.3. Let E 0 ! E be a morphism of extensions of � as considered above. For any
algebraic group G and any central algebraic subgroup Z the square

H 1.D ! E; Z ! G/ //

��

HomF .D;Z/

��

H 1.D0 ! E 0; Z ! G/ // HomF .D
0; Z/

is Cartesian.

Proof. This follows directly from the fact that E is generated by D and the image of E 0

which have intersection the image of D0.

3.2. Definition of T iso, T mid, and Prig in the local case

Let F be a local field of characteristic zero, E=F a finite Galois extension, N a natural
number.
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Let T iso
E and T mid

E;N be the tori with character modules M iso
E and Mmid

E;N . Let P rig
E;N

be the finite multiplicative group with character module M rig
E;N . The torus T iso

E is simply
Gm. The finite multiplicative group P rig

E;N was defined in [10, Section 3.1], where it was
denoted by uE=F;N .

Let T iso and T mid be the pro-tori obtained as inverse limits of the systems T iso
E and

T mid
E;N respectively, where the transition maps are induced by the inflation maps defined in

Section 2.2. Let P rig be the pro-finite multiplicative group obtained as the inverse limit of
P

rig
E;N in the same manner. The pro-torus T iso was denoted by D in [17, Section 3], while

the group P rig was denoted by u in [10, Section 3.1].

3.3. Definition of T iso, T mid
PV

, and P
rig
PV

in the global case

Let F be a global field, E=F a finite Galois extension, S a finite set of places of S ,
PSE � SE a set of lifts for the elements of S . Let T iso

E;S and T mid
E; PSE

be the tori over F
with character modules M iso

E;S and Mmid
E; PSE

. Let P rig
E; PSE

be the finite multiplicative group
with character module M rig

E; PSE
. In [11] this was denoted by PE; PSE ;ŒE WF �. Note that in [11]

PE; PSE was used to denote
lim
 �
N

PE; PSE ;N

where PE; PSE ;ŒE WF � is the finite multiplicative group denoted by P rig
E; PSE

in the present
paper. Since for comparison with ‹mid we usually impose that this integer N equal ŒE W F �
in the present paper, we hope that this will not cause confusion.

We now choose as in [11, Section 3.3, p. 306] an exhaustive tower .Ei /i�0 of finite
Galois extensions of F , exhaustive tower of finite sets of places of F , PSi � Si;Ei a choice
of lifts of Si to places of Ei so that PSiC1 � . PSi /EiC1 and each .Ei=F; Si ; PSi / satisfies
Conditions 2.4.1. Let PV be the set of places of xF defined as the inverse limit of the sets PSi .
Thus, PV is a set of lifts to xF of the set V of all places of F . It is natural to ask if it is
possible to formulate a condition on PV that is equivalent to the fact that it arises as an
inverse limit of a sequence .Ei ; Si ; PSi / all of whose terms satisfy Conditions 2.4.1. This
is indeed possible. For v 2 V denote by Pv 2 PV its unique lift, and by � Pv the stabilizer of
Pv in � , i.e., the decomposition subgroup at Pv.

Condition 3.3.1.
S
v2V � Pv is dense in � .

Lemma 3.3.2. Let .Ei /i�0 be an exhaustive tower of finite Galois extensions of F as in
[11, Section 3.3, p. 306].

(1) Let .Si /i�0 be an exhaustive tower of finite sets of places of F , PSi � Si;Ei a choice
of lifts of Si to places of Ei so that PSiC1 � . PSi /EiC1 and each .Ei=F; Si ; PSi /
satisfies Conditions 2.4.1. Let PV be the set of places of xF defined as the inverse
limit of the sets PSi . Then Condition 3.3.1 holds for PV .

(2) If PV is a set of lifts to xF of the set V of all places of F , and PV satisfies Condi-
tion 3.3.1, we can choose a finite increasing sequence .Si /i�0 of subsets of V such
that letting PSi be the intersection of .Si /Ei with the image of PV in VEi , the tower
.Ei ; Si ; PSi /i�0 satisfies Conditions 2.4.1.
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Proof. If .Ei=F; Si ; PSi / satisfies Conditions 2.4.1 then for any i the image of
S
v2V � Pv

in �Ei=F contains
S
v2Si

�Ei; Pv=Fv D �Ei=F by the third point of Conditions 2.4.1. Since
� xF =Ei is a basis of neighbourhoods of 1 in � , this means that

S
v2V � Pv is dense in � .

The proof of the converse is similar: since all �Ei=F are finite any sufficiently large Si
works.

In particular, this shows that sets PV that satisfy Condition 3.3.1 do exist. This condition
is however not automatic. Furthermore, two sets PV and PV 0 that both satisfy Condition 3.3.1
need not be conjugate under � . We illustrate both of these points in the following example.

Example 3.3.3. Take F D Q and let E=F be the extension generated by all roots of the
polynomial P D X3 � X2 C 1. Then �E=F ' S3 and E=F is ramified only at 23, in
fact A WD ZŒ1=23�ŒX�=.P / is finite étale over ZŒ1=23�: P 0 D 3X2 � 2X D .3X � 2/X ,
X is obviously invertible in A and .9X2 � 3X � 2/.3X � 2/ D 27P � 23. Modulo 23
we have P.�1=3/ D 0 and P 0.�1=3/ ¤ 0 and so P has a root in Q23. In particular all
decomposition subgroups of �E=F are Abelian. Fix an isomorphism �E=F ' S3. One can
choose PV such that every decomposition group is either trivial, or generated by .12/, or
generated by .123/, and thus .23/ does not belong to any decomposition group.

Using the same extension E, we can give an example of two sets PV and PV 0 both
satisfying Condition 3.3.1 but which are not in the same �-orbit. Namely, choose two
places v1; v2 of F such that the decomposition groups in �E=F both have order two. Then
we can choose PVE and PV 0E such that �E Pv1=Fv1 D �E Pv01=Fv1

D �E Pv2=Fv2
but �E

Pv02
=Fv2
¤

�E Pv2=Fv2
, so that even after conjugating by �E=F we cannot have �E Pvi =Fvi D�E Pv0i =Fvi

for
i D 1; 2 simultaneously.

For the rest of the paper we fix PV satisfying Condition 3.3.1.
Let T iso be the pro-torus over F obtained as the inverse limits of T iso

E;S over all pairs
.E; S/ as above. In the other two cases the result depends on PV . For each finite Galois
extension E=F and each finite set of places S of F we let PSE D ¹PvjE j v 2 Sº. Consider
the pro-torus

T mid
PV
D lim
 �
E;S

T mid
E; PSE

and the pro-finite group scheme P rig
PV
D lim
 �E;S

P
rig
E; PSE

. Note that

Mmid
PV
D X�.T mid

PV
/ D lim
�!
E;S

Mmid
E; PSE

is identified with the �-module of functions � W� � V !Q continuous in the first variable
and with finite support in the second variable such that for any � 2 � ,

P
v2V �.�; v/ D 0

and for any Archimedean place v 2 V ,
P
�2� Pv

�.��;v/2Z. This identification is obtained
by mapping f 2 Mmid

E; PSE
to � defined by �.�; v/ D f .�; � Pv/. This description is similar

to [11, Lemma 3.4.1].
The set of lifts PV being fixed, for v 2 V we simply denote �v D � Pv . Denote Fv D

lim
�!E

E Pv where we take the limit over all finite extensions of F in xF . This is an algebraic
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closure of Fv , strictly smaller than the completion of xF for Pv if v is non-Archimedean. It
is easy to check that the localization maps defined in Section 2.6 induce localization maps
at infinite level

T iso
v ! .T iso/Fv ; T mid

v ! .T mid
PV
/Fv ; and P rig

v ! .P
rig
PV
/Fv

where T iso
v (resp. T mid

v , P rig
v ) denotes the pro-torus (resp. pro-torus, pro-finite group

scheme) over Fv defined in Section 3.2 for the local field Fv together with its algebraic
closure Fv , and a subscript Fv denotes base change from F to Fv . We will denote these
three localization maps by locv .

3.4. The maps T iso ! T mid  Prig

The maps crig and ciso defined in the local case in Section 2.1 and in the global case in
Section 2.4 splice together to define Cartier dual maps ciso W T iso! T mid and crig W P

rig
PV
!

T mid
PV

.
Let F be a local or global field.

Proposition 3.4.1. Let T be an algebraic torus defined over F .

(1) The map ciso W T iso ! T mid
PV

is injective. The homomorphism HomF .T mid
PV
; T /!

HomF .T iso; T / is surjective.

(2) The map crig W P
rig
PV
! T mid

PV
is injective. The homomorphism HomF .T mid

PV
; T /!

HomF .P
rig
PV
; T / is surjective.

Proof. In the local case the injectivity claims follow from Fact 2.1.1, while in the global
case they follow from Corollary 2.4.6 and Proposition 2.4.2.

We prove the surjectivity of HomF .T mid
PV
; T /! HomF .T iso; T /. In the local case, it

follows immediately from the existence of the splitting (2.1.2). In the global case, Proposi-
tion 2.4.5 implies that HomF .T mid

E; PSE
; T /! HomF .T iso

E;S ; T / is surjective for any E; PSE .

The surjectivity of HomF .T mid
PV
; T /! HomF .T iso; T / follows by taking the colimit over

E, PSE .
We prove the surjectivity of HomF .T mid

PV
; T /! HomF .P

rig
PV
; T /. Consider first the

global case. LetX DX�.T /. We claim that every ZŒ��-homomorphism f WX !M
rig
E; PSE

lifts to a homomorphism Pf W X ! Mmid
E; PSE

. Since X is Z-free we can choose a lift Rf W

X ! Mmid
E; PSE

that is a homomorphism of Z-modules, but not necessarily �-equivariant.

Then � 7! Rf � �. Rf / is a 1-cocycle of � in HomZ.X;Ker.crig
E; PSE

//. By Fact 2.4.3 and

[31, Chapter IX, Section 3, Proposition] this is an induced �-module, so � 7! Rf � �. Rf /

is a coboundary, implying that there exists a �-equivariant lift Pf of f . This completes
the proof in the global case. The proof in the local case is the same, but now based on
Fact 2.1.1 in place of Fact 2.4.3.

Proposition 3.4.2. In the global case, the map ciso W T iso ! T mid
PV

splits.



T. Kaletha and O. Taïbi 782

Proof. We seek a compatible family of splittings of ciso W T iso
Ei
! T mid

Ei ; PVEi
. As we saw

in the proof of Proposition 2.4.5, giving such a splitting is equivalent to giving, for any
torus T defined over F and split by Ei , a splitting si of

.Y ˝Mmid
Ei ; PVEi

/� D Hom.T mid
Ei ; PVEi

; T /! Hom.T iso; T / D
�
Y ŒVEi �0

��
;

where Y D X�.T /, which is functorial in T .
It is convenient to letE�1DF . For k�0 and v2V choose Rk;v��xF =Ek�1 representing

�Ek=Ek�1=�Ek; Pv=Ek�1; Pv . Forw 2 VEk X PVEk such thatwEk�1 2 PVEk�1 , let r.k;w/ 2Rk;wF
be the element such that r.k;w/�1w 2 PVEk , and choose Pv.k;w/2 PV such that the image of
r.k;w/ in �Ek=Ek�1 belongs to the decomposition subgroup for Pv.k;w/Ek . For i � k � 0
denote PVi;k D ¹w 2 VEi j wEk 2 PVEk º. For f 2 Y Œ PVi;k�1� let

�i;k.f / D f C
X

w2 PVi;k�1X PVi;k

�
r.k; w/ � 1

��
f .w/ıw � f .w/ı Pv.k;w/Ei

�
:

It is clear that �i;k.f / is supported on PVi;k and that �i;k.f / � f 2 I.Y ŒVEi �0/. Define

�i WD �i;i ı �i;i�1 ı � � � ı �i;0 W Y ŒVEi �! Y Œ PVEi �:

As in [20, Section 8.3] we denote p W Y ŒSEi �! Y ŒSEiC1 � for the inflation map and
j W Y ŒSEjC1 �! Y ŒSEj � defined by j.f /.w/ D

P
ujw f .u/, i.e., j.ıu/ D ıuEi . They are

both �EiC1=F -equivariant and satisfy j ı p D ŒEiC1 W Ei �. It is easy to check that for
f 2 Y Œ PViC1;k�1� we have

j
�
�iC1;k.f /

�
D

´
�i;k

�
j.f /

�
if k � i

j.f / if k D i C 1

and thus j ı �iC1 D �i ı j . Now �iC1p.f / is supported on PVEiC1 and satisfies

j�iC1p.f / D ŒEiC1 W Ei ��i .f /;

and so for w 2 VEiC1 we have

�iC1p.f /.w/ D ŒEiC1 W Ei ��i .f /.wEi /: (3.4.1)

Now we can resume the proof of Proposition 2.4.5 with Pf D �i .f / for f 2 .Y ŒVEi �0/
� ,

defining si .f / 2 .Y ˝Mmid
Ei ; PVEi

/� by

si .f /.�; w/ D

´
ŒEi W F �

�1�
�
�i .f /.�

�1w/
�

if ��1w 2 PVEi
0 otherwise

for � 2 �Ei=F and w 2 VEi . Now (3.4.1) implies that siC1.p.f // 2 .Y ˝Mmid
EiC1; PVEiC1

/�

is the inflation of si .f / 2 .Y ˝Mmid
Ei ; PVEi

/� .
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Remark 3.4.3. Composing such a splitting T mid
PV
! T iso with crig, we obtain a map

P
rig
PV
! T iso. Unfortunately, this splitting is not canonical, since we had to choose sets

of representatives Rk;v . Therefore we cannot use it to compare ‹iso and ‹rig directly, as in
the local case, which is why ‹mid was introduced.

3.5. Review of the Tate–Nakayama isomorphism

Let E=F be a Galois extension of local fields of characteristic zero, T an algebraic torus
defined over F and split over E, Y D X�.T /. We have the Tate–Nakayama isomorphism
yH i .�E=F ; Y / ! yH iC2.�E=F ; T .E// defined by cup product against the fundamental

class inH 2.�E=F ;E
�/. Combining with the inflationH i .�E=F ; T .E//!H i .�; T / we

obtain the isomorphism
yH�1.�E=F ; Y /! H 1.�; T /

and the inclusion yH 0.�E=F ; Y /! H 2.�; T /.
Given a finite multiplicative group Z defined over F and split over E, we let A D

X�.Z/ and A_ D Hom.A;Q=Z/, and then have the injective map yH�1.�E=F ; A_/!
H 2.�;Z/ denoted by ‚E;v in [11, Section 3.2].

If 1! Z ! T ! xT ! 1 is an exact sequence of diagonalizable groups defined over
F and split over E, where Z is finite and T and xT are tori, then these maps fit in the
following commutative diagram, which is the local analog of Lemma [11, Lemma 3.2.5]
whose proof is easier and shall be omitted:

yH�1.�E=F ; Y /
Š

TN
//

��

H 1
�
�E=F ; T .E/

� Š //

��

H 1
�
�; T . xF /

�
��

yH�1.�E=F ; xY /
Š

TN
//

��

H 1
�
�E=F ; xT .E/

� Š // H 1
�
�; xT . xF /

�
��

yH�1.�E=F ; A
_/

‚E //

��

H 2
�
�;Z. xF /

�
��

yH 0.�E=F ; Y /
Š

�TN
//

��

H 2
�
�E=F ; T .E/

� � � //

��

H 2
�
�; T . xF /

�
��

yH 0.�E=F ; xY /
Š

�TN
// H 2

�
�E=F ; xT .E/

� � � // H 2
�
�; xT . xF /

�
Let E=F be a Galois extension of number fields, S a finite set of places of F con-

taining all Archimedean places and all finite places ramifying in E=F and such that
every ideal class of E contains an ideal with support in S (i.e., [11, Conditions 3.1.1]).
Given an algebraic torus T defined over F and split over E we let Y D X�.T / and
Y ŒSE �0 D Y ˝ ZŒSE �0. We have the Tate–Nakayama isomorphism

yH i
�
�E=F ; Y ŒSE �0

�
! yH iC2

�
�E=F ; T .OE;S /

�
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defined by cup product against the fundamental class in

H 2
�
�E=F ;HomZ

�
ZŒSE �0; O

�
E;S

��
defined in [34]. Combining with the inflation H i .�E=F ; T .OE;S //! H i .�S ; T .OS //

we obtain the isomorphism

yH�1.�E=F ; Y /! H 1
�
�S ; T .OS /

�
and the inclusion yH 0.�E=F ; Y /! H 2.�S ; T .OS //, see [11, Lemma 3.1.9].

Given a finite multiplicative group Z defined over F and split over E, we let A D
X�.Z/ and A_ D Hom.A;Q=Z/, and then have the injective map

yH�1
�
�E=F ; A

_ŒSE �0
�
! H 2.�;Z/

denoted by ‚E;S in [11, Section 3.2].
If 1! Z ! T ! xT ! 1 is an exact sequence of diagonalizable groups defined over

F and split over E, where Z is finite and T and xT are tori, and the order of Z is an
S -unit, then these maps fit in the following commutative diagram according to Lemma
[11, Lemma 3.2.5]:

yH�1
�
�E=F ; Y ŒSE �0

� Š

TN
//

��

H 1
�
�E=F ; T .OE;S /

� Š //

��

H 1
�
�S ; T .OS /

�
��

yH�1
�
�E=F ; xY ŒSE �0

� Š

TN
//

��

H 1
�
�E=F ; xT .OE;S /

� Š // H 1
�
�S ; xT .OS /

�
��

yH�1
�
�E=F ; A

_ŒSE �0
� ‚E;S

//

��

H 2
�
�S ; Z.OS /

�
��

yH 0
�
�E=F ; Y ŒSE �0

� Š

�TN
//

��

H 2
�
�E=F ; T .OE;S /

� � � //

��

H 2
�
�S ; T .OS /

�
��

yH 0
�
�E=F ; xY ŒSE �0

� Š

�TN
// H 2

�
�E=F ; xT .OE;S /

� � � // H 2
�
�S ; xT .OS /

�
Consider now a morphism Z ! T from a finite multiplicative group Z to a torus T ,

not assumed injective. It induces a homomorphism H 2.�; Z/! H 2.�; T / in the local
case, and H 2.�S ; Z.OS //! H 2.�S ; T .OS // in the global case. We shall now define a
homomorphism

H�1T .�E=F ; A
_/! H 0

T .�E=F ; Y /

in the local case, and H�1T .�E=F ; A
_ŒSE �0/! H 0

T .�E=F ; Y ŒSE �0/ in the global case,
that intertwines the respective Tate–Nakayama homomorphisms.

We first consider the local case. Let xT be the cokernel of Z ! T , an algebraic torus
that is a quotient of T . We consider the complex X�. xT / ! X�.T / ! X�.Z/. Given
� W X�.Z/! Q=Z we compose to obtain �T W X�.T /! Q=Z. Since X�.T / is a free
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Z-module there exists a lift P�T W X�.T / ! Q whose restriction to X�. xT / necessarily
takes image in Z and thus is an element of X�. xT /, well-defined modulo X�.T /. Consider

N P�T D
X

�2�E=F

�. P�T / 2 X�. xT /
� :

If we assume that N� D 0 then we see that N P�T belongs to the sublattice Y D X�.T / �
X�. xT /. This defines a map H�1T .�E=F ; A

_/! H 0
T .�E=F ; Y /.

In the global case, the definition of H�1T .�E=F ; A
_ŒSE �0/ ! H 0

T .�E=F ; Y ŒSE �0/

is analogous. Now instead of � W A ! Q=Z we have � W A � SE ! Q=Z that is a
homomorphism in the first variable, and with

P
w �.a; w/ D 0. We can choose a lift

P�T W X
�.T / � SE ! Q which is also a homomorphism in the first variable and withP

w
P�T .x; w/ D 0, i.e., P�T 2 QY ŒSE �0. Again P�T is well-defined modulo Y ŒSE �0, and

if N� D 0 then N P�T 2 Y ŒSE �0.
The fact that these maps are compatible with the Tate–Nakayama homomorphisms

is proved as follows. Define Z0 � T to be the image of Z and write Z ! T as the
composition of the surjective homomorphism Z ! Z0 and the injective homomorphism
Z0! T . ForZ!Z0 one applies the functoriality of the Tate–Nakayama homomorphism
for finite multiplicative groups, and for Z0 ! T one uses [11, Lemma 3.2.5] and its local
analog.

3.6. The local gerbes E iso, Emid, Erig

Let F be a local field of characteristic zero, E=F a finite Galois extension, N a natural
number.

There is a canonical element � iso
E 2 H

2.�;T iso
E .
xF //: it is the element that, under the

identification T iso
E D Gm and the invariant map of local class field theory H 2.�; xF �/

�
�!

Q=Z corresponds to ŒE W F ��1, i.e., the inflation of the canonical class inH 2.�E=F ;E
�/.

There is also a canonical element � rig
E;N 2 H

2.�; P
rig
E;N /. It is obtained by taking

�1 2 Z, using the identification yZ D H 2.�; u/ of [10, Theorem 3.1], and mapping this
class under the map u! uE=F;N .

Proposition 3.6.1. The images of the canonical classes � iso
E and � rig

E;N under

H 2
�
�;T iso

E .
xF /
�
! H 2

�
�;T mid

E;N .
xF /
�
 H 2

�
�;P

rig
E;N .

xF /
�

are equal. We denote this common image by �mid
E;N .

Proof. We use Tate–Nakayama duality to describe the canonical elements. For any alge-
braic torus T defined over F and split over E we have the isomorphism

yH 0
�
�E=F ; X�.T /

�
! H 2

�
�E=F ; T .E/

�
of [34], which is cup-product with the canonical class, and the inclusion

H 2
�
�E=F ; T .E/

�
! H 2

�
�; T . xF /

�
:
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We apply this with T D T iso
E and T D T mid

E;N . For a finite multiplicative groupD we write
X�.D/ D HomZ.X

�.D/;Q=Z/. Then we have the injective homomorphism

yH�1
�
�E=F ; X�.D/

�
! H 2.�;D/

denoted by ‚E;v in [11, Section 3.2]. We apply this with D D P rig
E;N .

We now have the following elements:

(1) 1 2 Z, representing an element of Z=ŒE W F �Z D yH 0.�E=F ;Z/.

(2) The constant function with value 1 in Mmid;_
E;N , representing an element of

yH 0.�E=F ;M
mid;_
E;N /.

(3) The function ıe 2
Z=NZŒ�E=F �

Z=NZ representing an element of yH�1.�E=F ;�/.

The image of the first element is the canonical class � iso
E 2 H

2.�;T iso
E /, while the image

of the third element is the canonical class � rig
E;N 2 H

2.�; P
rig
E;N /.

It is clear that the maps Z! M
mid;_
E;N ! Z identify the first two elements. As for the

second and third element, we consider the exact sequence (2.3.3) that is dual to (2.3.2)
and see that the .�1/-cocycle ıe in Z=NZŒ�E=F �

Z=NZ lifts to the .�1/-cochain ıe in ZŒ�E=F �,
whose differential, i.e. �E=F -norm, is the constant function 1 in Mmid;_

E;N . Since the map

M
mid;_
E;N ! N�1Z=ZŒ�E=F �0

in (2.3.2) is the negative of crig, the claim now follows from the functoriality of the Tate–
Nakayama isomorphism and its anticommutativity between degrees �1 and 0, i.e., the
discussion of Section 3.5.

Since F is local, the cohomology group H 1.�;T mid
E;N / is finite. Therefore, the sys-

tem of these groups, as E; N varies, trivially satisfies the Mittag–Leffler condition, and
its R1 lim

 �
vanishes. According to [36, Theorem 3.5.8] we then have H 2.�; T mid/ D

lim
 �

H 2.�;T mid
E;N /. The same argument also holds for T iso and P rig. We therefore have a

unique class � iso 2H 2.�;T iso/ (resp. � rig 2H 2.�;P rig/) lifting .� iso
E /E (resp. .� rig

E;N /E;N ).

Corollary 3.6.2. .1/ LetK=E=F be a tower of finite Galois extensions andN jM natural
numbers. The inflation map H 2.�;T mid

K;M .
xF //! H 2.�;T mid

E;N .
xF // maps �mid

K;M to �mid
E;N

and therefore yields a canonical class �mid 2 H 2.�;T mid/.
.2/ The images of the canonical classes � iso and � rig under

H 2
�
�;T iso. xF /

�
! H 2

�
�;T mid. xF /

�
 H 2

�
�;P rig. xF /

�
are equal to �mid.

Proof. Both points follow from Proposition 3.6.1 and the compatibility of the canonical
classes for the tori T iso

E .

Lemma 3.6.3. We have Ri lim
 �

H 1.�;T mid
E;N / D 0 for i D 0; 1.
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Proof. It is enough to show that for eachE;N we can findM such that the map T mid
E;M !

T mid
E;N induces the zero map on H 1. Let T ıE;N be the cokernel of the injective map
ciso W T iso

E ! T mid
E;N , so that M ıE;N WD X

�.T ıE;N / is the group of maps f W �E=F ! 1
N

Z
satisfying

P
� f .�/ D 0. The vanishing of H 1.�; T iso

E / implies that H 1.�; T mid
E;N / !

H 1.�;T ıE;N / is injective, so it is enough to prove the statement with T mid replaced by T ı.
Choose M D ŒE W F �N . Then the inflation map M ıE;N !M ıE;M can be factored as

M ıE;N !M ıE;N !M ıE;M

where the first map is multiplication by ŒE W F � and the second map is division by ŒE W F �.
The torus T ıE;N splits over E, so it follows from Hilbert’s Theorem 90 and the inflation-
restriction exact sequence that H 1.�;T ıE;N / is killed by multiplication by ŒE W F �.

We define the gerbes E iso, Emid, and E rig to be the extensions of � by T iso, T mid,
and P rig, respectively, given by the canonical classes � iso, �mid and � rig. According to
Corollary 3.6.2 there exist maps of gerbes

1 // T iso

ciso
��

// E iso //

ciso
��

� // 1

1 // T mid // Emid // � // 1

1 // P rig

crig

OO

// E rig

crig

OO

// � // 1

(3.6.1)

These dotted maps are not unique. In both cases, the set of T mid-conjugacy classes of
such maps is a torsor underH 1.�;T mid/, which by Lemma 3.6.3 and [36, Theorem 3.5.8]
equalsR1 lim

 �
H 0.�;T mid

E;N /. This group is uncountable by Lemma 3.6.4. Nonetheless, the
discussion of Section 3.1 and Lemma 3.6.3 shows that both the set H 1

alg.E
mid; G/ and the

maps H 1
alg.E

iso; G/ H 1
alg.E

mid; G/! H 1
alg.E

rig; G/ are independent of the choice of
Emid within its isomorphism class and of the dotted maps ciso and crig, and similarly for
H 1.T mid ! Emid; Z ! G/ etc.

Thanks to the canonical splitting siso W T mid ! T iso of ciso, which tautologically maps
�mid to � iso, there is also a map of gerbes siso W Emid ! E iso, well-defined up to
Z1.�; T iso/. As above, this ambiguity disappears when considering H 1

alg groups. If F
is non-Archimedean then the composition siso ı crig W E

rig ! E iso is the morphism (3.13)
of [12].

Lemma 3.6.4. The groups H 1.�; T mid/ D R1 lim
 �

H 0.�; T mid
E;N / and H 1.�; T iso/ D

R1 lim
 �

H 0.�;T iso
E / are uncountable.

Proof. We treat the case of T mid, that of T iso being analogous but simpler. Consider the
Kottwitz homomorphism [19, Section 7]

1! T mid
E;N .F /0 ! T mid

E;N .F /! .M
mid;_
E;N /Fr

I ! 0:
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Using that R1 lim
 �

is right-exact and [28, Proposition 1.1] our claim is equivalent to the
uncountability of R1 lim

 �
.M

mid;_
E;N /Fr

I . The latter is a system of countable groups, so we
apply [28, Proposition 1.4] and reduce to showing that this system fails the Mittag–Leffler
condition.

We fix a finite Galois extension E=F and let K traverse a co-final sequence of finite
Galois extensions of F containingE. We also fixN and letM traverse a co-final sequence
of multiples of N . If the image of the inflation map

.M
mid;_
K;M /Fr

I ! .M
mid;_
E;N /Fr

I

stabilizes, so would the image of its composition with the norm map for the action of
�E=F . Recall from Section 2.3 that the inflation map is induced by the map ZŒ�K=F �!
ZŒ�E=F � defined to send yK to yE .�/ D

P
� 7!� y

K.�/. Composing this with the norm
map ZŒ�E=F � ! Z we obtain the norm map ZŒ�K=F � ! Z, i.e. the map sending yK

to
P
�2�K=F

yK.�/. Thus we are studying whether the image of this map, restricted to

M
mid;_
K;M D MZŒ�K=F �C Z � ZŒ�K=F �, stabilizes. But the norm map sends MZŒ�K=F �

to MZ and Z onto ŒK W F �Z. Thus, as K and M grow the image of Mmid;_
K;M in Z shrinks

to ¹0º.

3.7. Global canonical classes at finite levels

Let F be a number field, E=F a finite Galois extension, S a finite set of places of F ,
PSE a set of lifts of the places in S to places of E. We assume that .E; PSE / satisfies

Conditions 2.4.1.
Given a torus T over F split over E with cocharacter module Y , the Tate–Nakayama

isomorphism reviewed in Section 3.5 is

yH i�2
�
�E=F ; Y ŒSE �0

�
! yH i

�
�E=F ; T .OE;S /

�
:

We can apply this to i D 2 and Y D HomZ.ZŒSE �0;Z/. Then the identity element in
Y ŒSE �0 D EndZ.ZŒSE �0/ maps to Tate’s class H 2.�E=F ;T

iso
E;S .OE;S //, which we shall

denote by � iso
E;S (it is denoted by ˛3 in [34] and [20, Section 6]).

We now consider a finite multiplicative group Z with A D X�.Z/ and jAj invertible
away from S and have the injection (introduced as ‚E;S in [11, Section 3.2])

yH�1
�
�E=F ; A

_ŒSE �0
�
! H 2

�
�S ; Z.OS /

�
:

We haveA_ŒSE �0DHomZ.A;Maps.SE ; 1N Z=Z/0/ for anyN multiple of jAj. Assuming
that jAj divides ŒE W F �, we have

HomZ

�
A;Maps

�
SE ;

1

ŒE W F �
Z=Z

�
0

�NE=F
D HomZ.A;M

rig
E; PSE

/� :

We can apply this to ADM rig
E; PSE

, in which case the image of the identity is the canon-

ical class � rig
E; PSE ;N

2 H 2.�S ; P
rig
E; PSE

.OS //, denoted by �E PSE ;N in [11, Section 3.3].
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Proposition 3.7.1. The images of � iso
E;S and � rig

E; PSE ;N
under

H 2
�
�S ;T

iso
E;S .OS /

�
! H 2

�
�S ;T

mid
E; PSE

.OS /
�
 H 2

�
�S ; P

rig
E; PSE

.OS /
�

are equal.

Proof. This is the global analogue of Proposition 3.6.1, and the proof is analogous, again
based on the discussion in Section 3.5.

3.8. Global canonical classes at infinite level

The canonical classes are compatible under the transition maps in all three cases. That is,
the transition maps

(1) H 2.�;T iso
K;S 0/! H 2.�;T iso

E;S /,

(2) H 2.�;T mid
K; PS 0K

/! H 2.�;T mid
E; PSE

/, and

(3) H 2.�; P
rig
K; PS 0K

/! H 2.�; P
rig
E; PSE

/

identify the canonical classes. In the first case the compatibility is [20, (8.18)], in the third
case it is [11, Lemma 3.3.5]. The middle case follows by Proposition 3.7.1.

We now want to define a canonical class in each of these three cases. We use the exact
sequence

1! R1 lim
 �

H 1.�;T iso
E;S /! H 2.�;T iso/! lim

 �
H 2.�;T iso

E;S /! 1

and its analogs in the “mid” and “rig” cases.

Lemma 3.8.1. Assume that for each place w 2 VE there exists a place w0 2 SE s.t.
Stab.w; �E=F / D Stab.w0; �E=F /. Then H 1.�;T iso

E;S / D 0.

Proof. We have the Tate–Nakayama isomorphism

yH�1
�
�E=F ; X�.T

iso
E;S /ŒVE �0

�
! H 1.�;T iso

E;S /

reviewed in Section 3.5. We compute

X�.T
iso
E;S /ŒVE �0 D HomZ

�
ZŒSE �0;ZŒVE �0

�
:

In the proof of [11, Lemma 3.1.10] a �E=F -equivariant section VE ! SE of the natural
inclusion

SE ! VE

was constructed under the assumptions of S that are in place here. Then [20, Lemma
A.11 (3)] shows that the vanishing of yH�1.�E=F ;HomZ.ZŒSE �0;ZŒVE �0// is implied by
the vanishing, for all intermediate fields E=F 0=F , of yH�1.�E=F 0 ;ZŒVE �0/. That in turn
follows from [20, Lemma 6.1], as discussed in the proof of [20, Lemma 6.5].
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According to this Lemma we have a canonical class � iso 2 H 2.�;T iso/. For T mid
PV

we
need the following global analogue of Lemma 3.6.3.

Proposition 3.8.2. If K=F is a finite Galois extension containing E and s.t. ŒE W F �
divides ŒK W E�, then the map

H 1.�;T mid
K; PS 0K

/! H 1.�;T mid
E; PSE

/

is zero. For every place v of F , the map

H 1.�v;T
mid
K; PS 0K

/! H 1.�v;T
mid
E; PSE

/

is also zero.

Proof. The proofs for � and �v are the same, so we only treat the first case. Let T ı
E; PSE

denote the cokernel of the injective morphism T iso
E;S ! T mid

E; PSE
dual to ciso. The vanishing

ofH 1.�;T iso
E;S / implies thatH 1.�;T mid

E; PSE
/!H 1.�;T ı

E; PSE
/ is injective. It thus suffices

to prove the statement with T mid replaced by T ı.
The character moduleM ı

E; PSE
of T ı

E; PSE
is equal to the kernel ofMmid

E; PSE
!M iso

E;S and
hence is the ZŒ�E=F �-module consisting of functions

f W �E=F � SE !
1

ŒE W F �
Z

that satisfy the conditionsX
w

f .�;w/ D 0;
X
�

f .�;w/ D 0; and ��1w … PSE ) f .�;w/ D 0:

The restriction of the inflation map f mid;E 7! f mid;K toM ı
E; PSE

factors as the compo-
sition

M ı
E; PSE

!M ı
E; PSE

!M ı
K; PS 0K

;

where the first map is just multiplication by ŒK W E�, while the second map is given by
f mid;E 7! ŒK W E��1 � f mid;K . Note that, since f mid;K takes values in ŒE W F ��1Z, the
function ŒK W E��1 � f mid;K takes values in ŒK W F ��1Z and is thus a well-defined element
of M ı

K; PS 0K
. On cohomology we obtain the composition

H 1.�;T ı
K; PS 0K

/! H 1.�;T ı
E; PSE

/! H 1.�;T ı
E; PSE

/:

The second map is just multiplication by ŒK W E�. Since the torus T ı
E; PSE

splits over E the
inflation map H 1.�E=F ;T

ı

E; PSE
/! H 1.�;T ı

E; PSE
/ is an isomorphism, but its source is

killed by multiplication by ŒE W F �.

Corollary 3.8.3. The three abelian groups lim
 �

H 1.�;T mid
Ei ; PSi

/, lim
 �

H 1.�v;T mid
Ei ; PSi

/, and

R1 lim
 �

H 1.�;T mid
Ei ; PSi

/ vanish.
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Proof. This follows immediately Proposition 3.8.2.

The vanishing of R1 lim
 �

H 1.�; T mid
E; PSi

/ asserted in Corollary 3.8.3 implies that the
natural map

H 2.�;T mid
PV
/! lim
 �

H 2.�;T mid
Ei ; PSi

/

is an isomorphism, so we obtain a unique class �mid
PV
2H 2.�;T mid

PV
/mapping to .�mid

Ei ; PSi
/i�0.

The case of P rig is the most delicate, since R1 lim
 �

H 1.�; P
rig
Ei ; PSi

/ is known not to
vanish by [33, Section 6.3]. Nonetheless, in [11, Section 3.5] a canonical class � rig

PV
2

H 2.�; P PV / is constructed that maps to the inverse system .�
rig
Ei ; PSi

/i�0. Its construction is
briefly reviewed in the proof of the following lemma.

As in Section 3.3 we have not recorded the tower .Ei ; Si ; PSi /i in the notation � rig
PV

and
�mid
PV

. Again the reason is that this choice does not matter, as the following lemma shows.
Note that to be precise one should also choose a co-final sequence .Ni /i�0 as introduced
in the proof of [11, Corollary 3.3.8], but it is clear that increasing Si or replacing Ni by a
multiple yields the same objects in the inverse limit.

Lemma 3.8.4. If two sequences .Ei ; Si ; PSi / lead to the same PV , then they lead to the
same class � rig

PV
2 H 2.�; P

rig
PV
/.

Proof. In order to obtain the statement about the class � rig
PV

we need to review its construc-
tion given in [11, Section 3.5]. First, an element x 2 H 2.�; P PV .

xA// is constructed from
the local canonical classes � rig

v 2 H
2.�v; P

rig
v . xFv//, with the help of Shapiro maps PS2v W

C 2.�v; P. xFv//! C 2.�;P.xAv// (for a suitable choice of continuous section �vn� ! �

as in [11, Appendix B]). These Shapiro maps can be obtained by splicing finite-level
Shapiro maps PS2v W C

2.�v; PEi ; PSi .
xFv//! C 2.�; PEi ; PSi .

xAv//. However, taking another
continuous section yields the same map

H 2
�
�v; P. xFv/

�
! H 2

�
�;P.xAv/

�
(see Lemma B.4 loc. cit.). From this and the fact that for a given pair .E;S/ the projection
to C 2.�; P rig

v .xA// of the 2-cocycle Px 2 C 2.�; P rig
PV
.xA// introduced in [11, Section 3.5] is

trivial for any v 62 S we see that the class x is independent of the chosen tower. Since x
and the inverse system .�

rig
Ei ; PSi

/ uniquely determine � rig
PV

, the class � rig
PV

is itself independent
of the chosen tower.

The argument for �mid
PV

is analogous. However, both classes do depend on PV D lim
 �
PSi .

Remark 3.8.5. Let us briefly discuss the choice of PV . It is formal to check that the for-
mation of T rig

PV
, T mid
PV

and � rig
PV

is functorial in .F; xF ; PV /, i.e., any isomorphism between
two such triples induces an isomorphism between the corresponding objects. In particular
for � 2 � , denoting PV 0 D �. PV / we have canonical isomorphisms T rig

PV
' T rig

PV 0
etc. Note

that in this case � is uniquely determined by PV and PV 0 thanks to the Čebotarev density
theorem.
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Consider for a moment the local case, where F is a p-adic field. As in the global case
the formation of the gerbe E rig is functorial in .F; xF /. In particular any � 2 � induces
an automorphism of E rig, which stabilizes P rig and acts on the quotient E rig=P rig D � by
conjugation by � , but the action on P rig is not the obvious one (action of an element of
� on xF -points of a scheme). This is essentially due to the fact that finite extensions of
F in xF occur in the definition of P rig. Thus automorphisms of xF induce a priori non-
trivial automorphisms of cohomology groups for E rig, unlike usual Galois cohomology
([31, Section VII.5, Proposition 3]). This is reflected by the fact that for a connected
reductive group G over F and Z a finite central subgroup, the natural action of � on the
finite abelian group xYC;tor.Z!G/ defined in [10, Section 4] (see Proposition 5.3 loc. cit.)
which is the source of the Tate–Nakayama isomorphism for E rig, is not trivial in general.

The existence of non-trivial automorphisms in the local case has a global conse-
quence. Consider a global field F and two arbitrary sets of lifts PV and PV 0 satisfying
Condition 3.3.1. In general there does not seem to be any natural isomorphism between
the corresponding gerbes E

rig
PV

and E
rig
PV 0

. Here “natural” means at least compatible with
localization. For example assume that there is a finite place v0 2 V such that for any
v 2 V X ¹v0º the two lifts of v in PV and PV 0 coincide but the two lifts Pv0 and Pv00 do not
coincide, say with Pv00 D Pv0 ı � for some � 2 � . Let G be ResE=F SL2 for some quadratic
extension E=F . Let Z ' ResE=F�2 be the center of G. We have an identification of
H 1.P

rig
PV
! E

rig
PV
;Z! G/ with the subset of

L
v2V H

1.P
rig
v ! E

rig
v ;Z! G/ consisting

of classes .cv/v such that cv is trivial for almost all v and the corresponding characters
�v W Z. yGsc/! C� are such that

Q
v �v D 1. Assume that v0 is not split in E. The natural

isomorphism betweenH 1.P
rig
Pv0
! E

rig
Pv0
;Z!G/ andH 1.P

rig
Pv00
! E

rig
Pv00
;Z!G/maps �v0

to �v0 ı � . But in general this ruins the product condition
Q
v �v D 1: there is an isomor-

phismZ. yGsc/'Z=2�Z=2 such that �E=F exchanges the two factors, so if �v0.1;1/¤ 1
then the product condition fails.

We thus see that the dependence of the global gerbe on PV is necessitated by the prop-
erties of the local gerbe.

Corollary 3.8.6. The natural maps T iso ! T mid
PV
 P PV map the canonical classes � iso

and � rig
PV

to �mid
PV

.

Proof. This can be checked on finite levels, where it is the content of Proposition 3.7.1.

3.9. The global gerbes E iso, Emid, Erig

The choice of a 2-cocycle in the canonical class � iso (resp. �mid
PV

, � rig
PV

) gives an extension

E iso (resp. Emid
PV

, E
rig
PV

) of � by T iso. xF / (resp. T mid
PV
. xF /, P rig

PV
. xF /). Using these, we define

functors

H 1
alg.T

iso
! E iso;Z! G/; H 1

alg.T
mid
PV
! Emid

PV
;Z! G/; and H 1.P PV ! E

rig
PV
;Z! G/;

where G is a linear algebraic group defined over F and Z � G is a central diagonalizable
group. Note that in the first two cases replacing Z by the central torus T D Zı has no
effect.
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By the discussion in Section 3.1 these functors are well-defined, independently of the
choice of 2-cocycles:

(1) For E
rig
PV

we use the vanishing of H 1.�; P
rig
PV
/.

(2) For E iso, we use the vanishing of H 1.�;T iso
E;S / for all finite levels.

(3) For Emid
PV

, we use the eventual vanishing of H 1.�;T mid
E; PSE

/ at finite levels (Propo-
sition 3.8.2).

Next we fix morphisms of extensions E iso ! Emid
PV

and E
rig
PV
! Emid

PV
extending the mor-

phisms T iso ! T mid
PV

and P rig
PV
! T mid

PV
. These exist by Proposition 3.7.1. For an affine

algebraic group G defined over F and a central subgroup Z � G we have the cohomol-
ogy pointed sets defined in Section 3.1, and comparison maps between them induced by
ciso and crig

H 1
alg.T

iso
! E iso; Z ! G/ H 1

alg.T
mid
PV
! Emid

PV
; Z ! G/

! H 1.P
rig
PV
! E

rig
PV
; Z ! G/: (3.9.1)

The morphisms of extensions E iso ! Emid
PV

and E
rig
PV
! Emid

PV
are well defined only

up to multiplication by H 1.�; T mid
PV
/. According to Corollary 3.8.3 this group equals

R1 lim
 �

H 0.�;T mid
PV
/ and thus all maps H 1.�;T mid

PV
/! H 1.�;T mid

Ei ; PSi
/ vanish. It follows

that the maps on cohomology (3.9.1) are independent of the morphisms of extensions used
to define them.

3.10. The relationship between the cohomology of E iso, Emid, and Erig

In this subsection F is either local or global. We omit the subscript PV when F is global in
order to state the following result uniformly.

Corollary 3.10.1. Let G be an algebraic group and T � G a central torus. Then the
squares

H 1.T mid ! Emid; T ! G/ //

��

HomF .T mid; T /

��

H 1.T iso ! E iso; T ! G/ // HomF .T iso; T /

and
H 1.T mid ! Emid; T ! G/ //

��

HomF .T mid; T /

��

H 1.P rig ! E rig; T ! G/ // HomF .P
rig; T /

are Cartesian and the vertical arrows are surjective.

Proof. This follows from Fact 3.1.3 and Proposition 3.4.1.
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Remark 3.10.2. In the first square, the same is true even if T is a diagonalizable central
subgroup of G, since replacing T by T ı does not change any of the four corners of the
square. In the second square however, the surjectivity does not remain true when T is
disconnected. In particular, if Z D T is finite, then the top left corner becomes H 1.�;G/

and the top right corner becomes zero, while the bottom left corner is usually strictly larger
than H 1.�;G/, and the bottom right corner is always larger than zero.

Remark 3.10.3. In the first square, we even have a splitting

H 1.T mid
! Emid; T ! G/ ' H 1.T iso

! E iso; T ! G/ � Hom.T mid=T iso; T /

by the splitting (2.1.2) in the local case, and by Proposition 3.4.2 in the global case. In the
global case, the splitting is not canonical.

3.11. Localization

In this section v denotes a place of F .

Fact 3.11.1. The image of the local canonical class under the map H 2.�v; T mid
v / !

H 2.�v; T mid
PV
/ induced by locv coincides with the image of the global canonical class

under the restriction map H 2.�;T mid
PV
/! H 2.�v;T mid

PV
/.

Proof. This follows from Propositions 3.7.1, 3.6.1, and [11, Corollary 3.3.8].

This implies the existence of the dotted arrow in the commutative diagram

1 // T mid
v . xFv/ //

��

Emid
v

//

��

�v // 1

1 // T mid
PV
. xFv/ // �2 // �v // 1

1 // T mid
PV
. xF / //
?�

OO

�1 //

��

OO

�v //
� _

��

1

1 // T mid
PV
. xF / // Emid

PV
// � // 1

Here �1 is the pullback of Emid
PV

via the embedding of �v in � and �2 is the pushout of
�1 via the map T mid

PV
. xF /! T mid

PV
. xFv/. From this diagram we obtain a localization map

H 1
alg.E

mid
PV
; G/! H 1

alg.E
mid
v ; GFv /

for any algebraic group G over F . The vanishing of lim
 �i

H 1.�v;T mid
Ei ; PSi

/ shown in Corol-

lary 3.8.3 implies that the map H 1
alg.�v;T

mid
PV
/! H 1.�v;T mid

Ei ; PSi
/ is zero for every i � 0.
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Thus, even though the dotted arrow above is not unique, the localization map on cohomol-
ogy that it induces is unique. To be more precise, this argument shows that for any central
torus Z � G we have a localization map

Z1.T mid
PV
! Emid

PV
; Z ! G/! Z1.T mid

v ! Emid
v ; Z ! G/

which is uniquely determined up to coboundaries taking values in Z.Fv/.
Similarly we have localization maps for “iso”. For “rig”, see [11, Section 3.6]. It is

formal to check that the localization maps for “mid”, “iso”, and “rig” are compatible, i.e.,
that the following diagram is commutative.

H 1
alg.E

iso; G/

��

H 1
alg.E

mid
PV
; G/oo //

��

H 1
alg.E

rig
PV
; G/

��

H 1
alg.E

iso
v ; G/ H 1

alg.E
mid
v ; G/oo // H 1

alg.E
rig
v ; G/

Lemma 3.11.2. Let G be a connected reductive group over F and Z a central torus in
G. Choose a model G of G over OF Œ1=N � for some integer N > 0. For any

z 2 Z1.T iso
! E iso; Z ! G/;

there exists a finite Galois extension E=F and a finite set S of places of F containing
all Archimedean places and all finite places dividing N or ramifying in E, such that for
all v 2 V X S the localization locv.z/ 2 Z1.T iso

v ! E iso
v ; Z ! G/ is the product of an

element inflated from Z1.�E Pv=Fv ; G.OE Pv // with an element inflated from a co-boundary
�v ! Z.Fv/.

Proof. The restriction of z to T iso is defined over F sinceZ is central, and factors through
T iso
E;S for some pair .E; S/ where E is a finite Galois extension of F and S satisfies the

conditions of [34]. Up to enlarging S we can assume that Z ! G comes from a closed
embeddingZ!G whereZ is the canonical model over OF;S of the torusZ, and that the
restriction of z W T iso

E;S ! Z comes from a (uniquely determined) morphism T iso
E;S ! Z.

Let � iso
E;S 2 Z

2.�E=F ;T
iso
E;S .OE;S // be a representative of the canonical class. Consider a

finite Galois extension E 0=F containing E and S 0 � V finite, containing S and satisfying
Tate’s conditions. Let E be the extension of �E 0=F by T iso

E;S .OE 0;S 0/ built using � iso
E;S . We

have a well-defined map

Z1
�
T iso
E;S .OE 0;S 0/! E; Z.OE 0;S 0/! G.OE 0;S 0/

�
B1
�
�E 0=F ; Z.OE 0;S 0/

�
! Z1.T iso

! E iso; Z ! G/=B1
�
�;Z. xF /

�
which exists because the images of � iso

E;S (by inflation) and of � iso (by T iso ! T iso
E;S ) in

H 2.�;T iso
E;S / coincide, and is uniquely determined because H 1.�;T iso

E;S / D 0. By conti-
nuity of z, up to enlarging E 0 and S 0 the class of z modulo B1.�; Z. xF // belongs to the
image of this map.
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Now for any v 2 V X S 0 we have a commutative diagram

Z1.T iso
E;S .OE 0;S 0 /!E;Z.OE 0;S 0 /!G.OE 0;S 0 //

B1.�E 0=F ;Z.OE 0;S 0 //
//

��

Z1
�
�E 0

Pv
=Fv ; G.OE 0Pv

/
�
=B1

�
�E 0

Pv
=Fv ; Z.OE 0Pv

/
�

��

Z1.T iso ! E iso; Z ! G/=B1
�
�;Z. xF /

�
//Z1.T iso

v ! E iso
PV
; Z ! G/=B1

�
�v; Z.Fv/

�
The top horizontal map exists becauseH 2.�E 0

Pv
=Fv ;T

iso
E;S .OE 0Pv

//D 0 and is uniquely deter-
mined because

H 1
�
�E 0

Pv
=Fv ;T

iso
E;S .OE 0Pv

/
�
D 0:

Commutativity follows from H 1.�v;T iso
E;S / D 0.

Remark 3.11.3. This is much easier than [33, Proposition 6.1.1] (see also [11, Sec-
tion 3.9]) thanks to vanishing of H 1 at finite level. A similar ramification property could
be proved for “mid” using Proposition 3.8.2, with an extra step.

3.12. The cohomology of E iso and B.G/

Let F be a local or global field. For E a finite Galois extension of F , Kottwitz intro-
duced in [20] an extension E iso

E (simply denoted E.E=F / loc. cit.) of �E=F by T iso
E .E/,

where T iso
E is the protorus lim

 �S
T iso
E;S . Note that the transition maps are surjective mor-

phisms having connected kernel between tori split by E, so that they induce surjective
maps between groups of E-points.

For a linear algebraic group G defined over F , he defined the pointed set

B.G/ WD lim
�!
E

H 1
alg

�
E iso
E ; G.E/

�
in Section 10 loc. cit. The transition maps exist thanks to the compatibility of canonical
classes with inflation maps T iso

K ! T iso
E , and are well defined thanks to the vanishing of

H 1.�K=F ;T
iso
E .K//. Define xZ1alg.E

iso
E ; G.E// as the quotient of Z1alg.E

iso
E ; G.E// by the

following equivalence relation: z � z0 if and only if there exists t 2 T iso
E .E/ such that

z0.w/ D z.twt�1/ for all w 2 E iso
E . Note that z.twt�1/ D z.t/z.w/�w.z.t//

�1 where
�w 2 �E=F is the image of w, so that we have a surjective map

xZ1alg

�
E iso
E ; G.E/

�
! H 1

alg

�
E iso
E ; G.E/

�
:

The inflation maps are well defined at the level of xZ1 and letting

zB.G/ WD lim
�!
E

xZ1alg

�
E iso
E ; G.E/

�
;

we obtain a pointed set mapping onto B.G/.

Lemma 3.12.1. The natural map zB.G/! xZ1alg.E
iso; G/, defined similarly to the infla-

tion maps, is an isomorphism. In particular we have a natural isomorphism B.G/ !

H 1
alg.E

iso; G/.
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Proof. Surjectivity is essentially the first part of the proof of Lemma 3.11.2. Injectivity is
clear.

Note that since the inflation maps T iso
K ! T iso

E do not have connected kernel, there is
no reason why there should exists � iso 2 Z2.�;T iso. xF // such that for some E ¤ F its
image in Z2.�;T iso. xF // belongs to Z2.�E=F ;T iso

E .E//.
It is not difficult to check that the isomorphisms in Lemma 3.12.1 are compatible with

localization. In fact this is the second step of the proof of Lemma 3.11.2.

3.13. A Tate–Nakayama description of H 1
alg.Emid

PV
; T /

The main goal of this subsection is to describe the failure of commutativity of (1.0.1). For
this, we shall give a linear algebraic description of the groupH 1

alg.E
mid
PV
;T / for an algebraic

torus T , both in the local and in the global case. The local description will be used to give
a precise formula for the failure of commutativity of (1.0.1). The global description will
be used to show that this failure of commutativity satisfies a product formula.

We first begin with the local case. Let F be local. Let T be an algebraic torus defined
over F and write Y D X�.T /. In all three cases we have the inflation-restriction exact
sequence of Fact 3.1.1

1! H 1.�; T /! H 1
alg.E; T /! HomF .D; T /! � � �

with D being one of T mid, T iso, or P rig. We have the Tate–Nakayama isomorphism
Y�;tor ! H 1.�; T / and the isomorphism�

Y ˝X�.D/
��
! HomF .D; T /

of Fact 3.1.2. Compatible with these two isomorphisms is a third isomorphism whose
target is H 1

alg.E; T /. In the case of E iso its source is Y� according to [20, (13.2)]. In the
case of E rig its source is the torsion subgroup of Y ˝Q=IY according to [10, Section 4].
We shall write Y iso WD Y� and Y rig WD .Y ˝Q=IY /Œtor� and see both of these as functors
from the category of tori to the category of �-modules.

Define

Y mid
WD Y mid.T / WD

®
.�; �/ j � 2 Y� ; � 2 Y ˝Q; N \.�/ D N \.�/

¯
;

where N \ is the normalized norm map, i.e. N \ D ŒE W F ��1
P
�2�E=F

� for any finite
Galois extension E=F splitting T . We have a natural map Y mid ! Y iso, .�; �/ 7! �.

Fact 3.13.1. The right square in the commutative diagram

0 // Y�;tor // Y mid //

��

.Y ˝Mmid/�

��

0 // Y�;tor // Y iso // .Y ˝M iso/�
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is Cartesian. Here Y mid ! .Y ˝Mmid/� maps .�; �/ to
P
� �.�/˝ � 2 Y ˝QŒ��,

Y iso
! .Y ˝M iso/�

is given by N \ via the natural embedding M iso � Q, and .Y ˝Mmid/� ! .Y ˝M iso/�

is idY ˝ ciso, i.e., via the isomorphisms (3.1.1) it is the “pre-composition by ciso” map
Hom.T mid; T /! Hom.T iso; T /.

Remark 3.13.2. Note that the �-invariant map

Y ˝Mmid
! Y ˝M iso

given by idY ˝ ciso has the �-equivariant splitting idY ˝ siso. This gives a canonical iso-
morphism between Y mid and Y iso ˚ ker.idY ˝ ciso/� .

Proposition 3.13.3. There exists a unique isomorphism Y mid ! H 1
alg.E

mid; T / that is
functorial in T and fits into the commutative diagrams

Y�;tor //

o

��

Y mid //

o

��

�
Y ˝QŒ��

��
o

��

H 1.�; T / // H 1
alg.E

mid; T / // HomF .T mid; T /

and
Y mid //

o

��

Y iso

o

��

H 1
alg.E

mid; T / // H 1.E iso; T /

Proof. This follows from Fact 3.13.1 and Corollary 3.10.1 which realize both Y mid and
H 1

alg.E
mid; T / as fiber products, and from the functoriality of the isomorphisms Y iso !

H 1
alg.E

iso; T /, HomF .T iso; T /! .Y ˝Q/� , and HomF .T mid; T /! .Y ˝QŒ��/� .

Corollary 3.13.4. LetZ � T be a subtorus defined over F . The isomorphism Y mid.T /!

H 1
alg.E

mid; T / identifies

Y mid.Z ! T / WD
®
.�; �/ j � 2 Y�.T /; � 2 Y.Z/˝Q; N \.�/ D N \.�/

¯
� Y mid.T /

with H 1.T mid ! Emid; Z ! T /.

Proposition 3.13.5. For any torus T over F , the composition

Y iso
' H 1

alg.E
iso; T /! H 1.Emid; T / ' Y mid

where the middle map is pullback along siso W E
mid ! E iso, maps � 2 Y iso to .�;N \.�//.
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Proof. The image of � is of the form .�;�/ since siso ı ciso D idE iso up toZ1.�;T iso/. We
can compute � 2 Y ˝Q as the image of � by the composition

Y iso
! .Y ˝Q/�

idY˝siso
�����!

�
Y ˝QŒ��

��
' Y ˝Q

where the last map is evaluation at 1 2 � .

Proposition 3.13.6. The composition

Y mid �
�! H 1

alg.E
mid; T /! H 1.P rig; T /

�
�! Y rig;

where the middle map is induced by a map of gerbes crig as in (3.6.1), is given by .�;�/ 7!
� � �.

Proof. This composition, as well as the map .�; �/ 7! � � �, are functorial homomor-
phisms that fit into the commutative diagram with exact rows

0 // Y�;tor // Y mid //

��

Y ˝Q

��

0 // Y�;tor // Y rig // Y˝Q
Y

where the right vertical map is � 7! ��C Y . If T is induced, that is if T ' ResA=FGL1
for some finite étale F -algebra A, then Y�;tor ' H

1.�; T / D 0 by Shapiro’s lemma and
Hilbert’s theorem 90 and so our two maps Y mid! Y rig are equal in this case. In general we
realize T as a quotient of an induced torus zT , by realizing Y as a quotient of an induced
ZŒ�E=F �-module zY for some finite Galois extension E=F . Let K D ker. zY ! Y /. To
conclude it is enough to show that zY mid ! Y mid is surjective. Let .�; �/ 2 Y mid, choose
z� 2 zY� lifting � and z�0 2 zY ˝Q lifting �. Then " WD N \.z�/�N \.z�0/ 2 .K ˝Q/� and
thus N \."/ D ". Setting z� D z�0 C ", we obtain that .z�; z�/ 2 zY mid lifts .�; �/.

Recall that in the non-Archimedean case, the morphism of extensions siso ı crig WE
rig!

E iso equals [12, (3.13)] up to Z1.�;T iso/. Note that Proposition 3.2 loc. cit. (as well as
its Archimedean analogue) follows from Propositions 3.13.5 and 3.13.6 above. This is not
surprising since the proof of Proposition 3.13.6 is very similar to that of Proposition 3.2
loc. cit. For later use in Section 4 we also record the following consequence.

Corollary 3.13.7. Consider the two homomorphisms H 1
alg.E

mid; T /! H 1.E rig; T / ob-
tained by pulling back along

(1) A homomorphism crig W E
rig ! Emid,

(2) The composition of a morphism siso ı crig W E
rig ! E iso with ciso W E

iso ! Emid.

Their difference, when pre-composed with the Tate–Nakayama isomorphism

Y mid
! H 1

alg.E
mid; T /
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and post-composed with the inverse of the Tate–Nakayama isomorphism

Y rig
! H 1.E rig; T /;

is given by the map
Y mid

! Y rig; .�; �/ 7! � �N \.�/:

Proof. This follows immediately from Propositions 3.13.5 and 3.13.6 and the equality
N \.�/ D N \.�/.

Now turn to the global case: Let F be global. Let T be a torus defined over F and
Z � T a subtorus defined over F . As before we write Y D X�.T /. Denote Y iso

E;S WD

.Y ŒSE �0/� and Y iso
E D lim

�!S
Y iso
E;S . ForK=F a finite Galois extension containing E define

j W Y iso
K ! Y iso

E by
j.f /.v/ D

X
w2VK
w 7!v

f .w/ for v 2 VE :

It turns out that this map is an isomorphism. Choose a section s of VK ! VE whose
image contains PVK , then by [11, Lemma 3.1.7] the unique right inverse sŠ W Y ŒVE �0 !
Y Œs.VE /�0 � Y ŒVK �0 to Y ŒVK �0 ! Y ŒVE �0 induces a well-defined map Š W Y iso

E ! Y iso
K

which does not depend on the choice of s (in fact PV is irrelevant here) and of course is
injective. It is also surjective thanks to Lemma 2.4.4, and so j is an isomorphism with
inverse Š. Denote

Y iso
D lim
�!
E

Y iso
E D lim

 �
E

Y iso
E :

By [20, Lemma 4.1] we have a Tate–Nakayama isomorphism Y iso ' H 1
alg.E

iso; T /. Note
that [20, Lemma 8.4] also shows a posteriori that the maps j are isomorphisms. For any
.E; S/ such that E splits T and S satisfies Tate’s axioms the following diagram is com-
mutative:

0 //
�
Y ŒSE �0

�
�;tor

//

��

Y iso
E;S

NE=F
//

��

�
Y ŒSE �0

��
��

0 // H 1.F; T / // H 1
alg.E

iso; T / // Hom.T iso; T /

where the left vertical arrow is the usual Tate–Nakayama map and the right vertical arrow
is the obvious map. For a subtorus Z of T defined over F denote YT D X�.T / and
YZ D X�.Z/ and let

Y mid.Z ! T /E; PSE WD

²
.�; �/ j � 2 Y iso

E;S .T /; � 2 .M
mid
E; PSE

˝ YZ/
� ;X

�2�E=F

�
�
�.��1w/

�
D

X
�

�.�;w/

³
;

Y mid
PV
.Z ! T / WD lim

�!
E;S

Y mid.Z ! T /E; PSE
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where the transition maps are given by Š D j�1 on � and using the inflation maps defined
in Section 2.5 on �. It is easy to see that one could also define Y mid

PV
.Z ! T / as the set of

pairs .�;�/ with � 2 Y iso.T / and � 2 .Mmid
PV
˝ YZ/

� satisfying the above relation at any
level E. More concretely, using the description of Mmid

PV
given in Section 3.3 we may also

see � as a function V ! Q˝ YZ with finite support such that
P
v2V �.v/ D 0 and for

any Archimedean place v of F , NFv=Fv .�.v// 2 YZ .

Fact 3.13.8. The right square below is Cartesian

0 // Y iso
tor .T /

// Y mid
PV
.Z ! T / //

��

.Mmid
PV
˝ YZ/

�

��

0 // Y iso
tor .T /

// Y iso.Z ! T / // .M iso ˝ YZ/
�

Proof. This follows directly from the definition.

Remark 3.13.9. Using the same argument as in the proof of Proposition 3.4.2 one can
show that the natural transformation Y mid

PV
! Y iso admits a splitting, but as we already

observed in Remark 3.4.3 this splitting is not canonical.

As in the local case we simply write Y mid
PV
.T / for Y mid

PV
.T ! T /.

Proposition 3.13.10. There is a unique functorial isomorphism

Y mid
PV
.T /! H 1

alg.E
mid
PV
; T /

that fits into the commutative diagrams

Y iso
tor

//

��

Y mid
PV

//

��

.Mmid
PV
˝ Y /�

��

H 1.�; T / // H 1.Emid
PV
; T / // HomF .T mid

PV
; T /

and
Y mid
PV

//

��

Y iso

��

H 1.Emid
PV
; T / // H 1.E iso; T /:

Proof. Analogous to the proof of Proposition 3.13.3, but with Fact 3.13.1 now replaced
by its global analog Fact 3.13.8.

Corollary 3.13.11. LetZ�T be a subtorus defined overF . The isomorphism Y mid
PV
.T /!

H 1
alg.E

mid
PV
; T / identifies Y mid

PV
.Z ! T / with H 1

alg.E
mid
PV
; Z ! T /.
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Corollary 3.13.12. For Z ! T an injective map between tori over F both maps

H 1.T mid
PV
! Emid

PV
; Z ! T /! H 1.T iso

! E iso; Z ! T /! H 1.�; T=Z/

are surjective.

Proof. By Corollary 3.10.1 the map

H 1.T mid
PV
! Emid

PV
; Z ! T /! H 1.T iso

! E iso; Z ! T /

is surjective, and it is clear that the map

H 1.T iso
! E iso; Z ! T / ' Y iso.Z ! T /! Y iso.T=Z/tor ' H

1.�; T=Z/

is surjective.

Corollary 3.13.13. For G a connected reductive group over F and Z a central torus in
G both maps

H 1.T mid
PV
! Emid

PV
; Z ! G/! H 1.T iso

! E iso; Z ! G/! H 1.�;G=Z/

are surjective.

Proof. Lemma A.1 in [11] reduces this to the previous Corollary.

Proposition 3.13.14. Let v 2 S . Denote by w its lift in PSE . Denote Y mid
v D Y mid.TFv / for

simplicity. The composition

Y mid
E; PSE

! H 1.Emid
PV
; T /

locv
��! H 1.Emid

v ; T / ' Y mid
v ;

where the middle localization map was defined in Section 3.11 and the last map is the
inverse of the Tate–Nakayama isomorphism in Proposition 3.13.3, sends .�; �/ 2 Y mid

E; PSE

to .�v; �v/ 2 Y mid
v where

�v D
X

�Ew=Fv n�E=F

��.��1w/; �v D �.1;w/:

Proof. The element �v 2 Y�v is the image of the pair .�v; �v/ under the natural map
Y mid
v ! Y�v . Therefore the formula for �v follows from the commutativity of

Y mid
E; PSE

//

��

H 1
alg.E

mid
PV
; T /

locv //

��

H 1
alg.E

mid
v ; T / //

��

Y mid
v

��

Y iso
E;S

// H 1
alg.E

iso; T /
locv // H 1

alg.E
iso
v ; T /

// Y iso
v

and the formula for the bottom horizontal map described in [20, Section 7.7].
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Analogously, the element �v 2 Y ˝ Q is the image of the pair .�v; �v/ under the
natural map Y mid

v .T /! Y ˝Q. The formula for �v follows from the commutativity of

Y mid
E; PSE

//

��

H 1
alg.E

mid
PV
; T /

locv //

��

H 1
alg.E

mid
v ; T / //

��

Y mid
v

��

.Mmid
E; PSE

˝ Y /� // HomF .T mid
PV
; T /

locv // HomF .T mid
v ; T / // Y ˝Q

and the formula for �v follows from the formula for the bottom horizontal map obtained
by composing the localization map Mmid

E; PSE
! Mmid

Ew ;ŒE WF �
described in Section 2.6 with

the evaluation at 1 map Mmid
Ew ;ŒE WF �

!
1

ŒE WF �
Z ,! Q.

Although we will not need it in the paper, there is a global analogue of Proposi-
tion 3.13.6.

Proposition 3.13.15. For any torus T defined over F , the composition

Y mid
PV

�
�! H 1

alg.E
mid
PV
; T /! H 1.P

rig
PV
; T /

�
�! Y

rig
PV
;

where the middle map is induced by a map of gerbes crig as discussed in Section 3.9, is
given by .�; �/ 7! � � �.

Proof. The proof is similar to the local case (Proposition 3.13.6), except that we cannot
take z� D z�0 C " since " is not supported on PV , but thanks to Lemma 2.4.4 we may find
"0 2 .K ˝Q/Œ PV �0 such thatN \."0/D " and set z�D z�0C "0. Details are left to the reader.

4. The global multiplicity formula

4.1. An obstruction

Let G� be a quasi-split connected reductive group over a global field F ,  W G� ! G an
inner twist. We consider a strongly regular semi-simple element ı 2 G.A/ with the prop-
erty that there is an element of G�.F / stably conjugate to ı. In this situation, Langlands
has defined a cohomological obstruction to the existence of an F -point in the G.A/-
conjugacy class of ı. We shall now review its definition and properties, following material
from [18, 27]. We will then reinterpret this obstruction in terms of the global gerbes.

We shall first assume that G satisfies the Hasse principle, as the obstruction takes a
more transparent form in that case.

The condition on ı is that there exists ı� 2 G�.F / and g 2 G�.xA/ so that ı D
 .gı�g�1/. Let T � be the centralizer of ı�. Let u 2 C 1.�; G�. xF // be a lift of the ele-
ment of Z1.�; G�ad.

xF // corresponding to  . For � 2 � the element g�1u.�/�.g/ lies
in T �.xA/. Its image in T �.xA/=T �. xF / is independent of the choice of u and this gives
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a 1-cocycle � ! T �.xA/=T �. xF /. Its cohomology class is independent of the choice of
g and will be denoted by obs.ı/ 2 H 1.�; T �.xA/=T �. xF //. Denote by T the centralizer
of ı in GA, a maximal torus defined over A (but generally not over F ). The composition
 ıAd.g/ induced an isomorphism 'ı�;ı W T

�
A! T of tori over A which does not depend

on the choice of g.
Let ı0 2 G.A/ be stably conjugate to ı. That is, there exists g 2 G.xA/ s.t. ı0 D gıg�1.

We can define inv.ı; ı0/ 2 H 1.�; T .xA// just as in the local case, namely as the class
of � 7! g�1�.g/, and inv.ı; ı0/ D inv.ı; ı00/ if ı0 and ı00 are conjugate in G.A/. Under
the isomorphism H 1.�; T .xA// D

L
vH

1.�v; T . xFv// the class inv.ı; ı0/ corresponds toP
v inv.ıv; ı0v/ where inv.ıv; ı0v/ 2 H

1.�v; T . xFv// is the class of � 7! h�1v �.hv/ for any
hv 2 G. xFv/ such that ı0v D hvıvh

�1
v (we may take hv D gv).

Lemma 4.1.1. .1/ For h 2 G.A/ we have obs.hıh�1/ D obs.ı/.
.2/ The class obs.ı/ is independent of the choice of ı� in the following sense. If ı�� 2

G�.F / is another choice then there exists h 2 G�. xF / for which hı��h�1 D ı�, then the
isomorphism 'ı��;ı� W T

��! T � induced by Ad.h/ is defined over F , it does not depend
on the choice of h and it identifies the two versions of obs.ı/ obtained from ı�� and ı�,
respectively.

.3/ If ı0 2 G.A/ is stably conjugate to ı 2 G.A/, then

obs.ı0/ D obs.ı/ � '�1ı�;ı
�
inv.ı; ı0/

�
:

Proof. The first claim is immediate. For the second, the version of the obstruction obtained
from ı�� is represented by the 1-cocycle

h�1g�1u.�/�.gh/ D Ad.h�1/
�
g�1u.�/�.g/

�
� h�1�.h/;

and h�1�.h/ lies in Z1.�; T ��. xF //. The third claim follows from a similar direct com-
putation.

Proposition 4.1.2. The class obs.ı/ vanishes if and only if the G.A/-conjugacy class of
ı contains an F -point.

Proof. If the G.A/-conjugacy class of ı contains an F -point, Lemma 4.1.1 allows us to
replace ı by that F -point without changing obs.ı/. Then g can be chosen in G�. xF / and
so g�1u.�/�.g/ 2 T �. xF /, showing that obs.ı/ vanishes.

Conversely, if the class of g�1u.�/�.g/ in H 1.�; T �.xA/=T �. xF // is trivial there
exists t 2 T �.xA/ s.t. .gt/�1u.�/�.gt/ 2 T �. xF / for all � 2 � . We may replace g by
gt and drop t from the notation. Now z.�/ WD  .g�1u.�/�.g/u.�/�1/ is an element
of Z1.�; G. xF // whose image in Z1.�; G.xA// is cohomologically trivial, namely the
coboundary of  .g/. By the Hasse principle for G there exists h 2 G�. xF / s.t.

 
�
.gh�1/�1u.�/�.gh�1/u.�/�1

�
D 1:

This means  .gh�1/ 2 G.A/. Therefore ı0 D  .gh�1/�1ı .gh�1/ lies in the G.A/-
conjugacy class of ı. At the same time, ı0 D  .hı�h�1/ 2 G.F /.
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We now drop the condition that G satisfies the Hasse principle. Then it turns out that
H 1.�; T �.xA/=T �. xF // is not a suitable home for the obstruction any more. By work
of Kneser, Harder, and Chernousov, Gsc does satisfy the Hasse principle. This will lead
to a slight modification of H 1.�; T �sc.

xA/=T �sc.
xF // that will serve as a replacement for

H 1.�; T �.xA/=T �. xF //.

Lemma 4.1.3. Let ı� 2 G�.F /. There exists g 2 G�.xA/ s.t. ı D  .gı�g�1/ if and only
if there exists gsc 2 G

�
sc.
xA/ s.t. ı D  .gscı

�g�1sc /.

Proof. This is not immediate because the map G�sc.
xA/! G�.xA/ need not be surjective.

However, letting T � be the centralizer of ı�, we have G�sc.
xA/ � T �.xA/ D G�.xA/. Indeed,

letting E be a sufficiently large finite Galois extension of F , for almost all places w of E
we have

G�sc.OEw / � T
�.OEw / D G

�.OEw /

by [15, (3.3.4)].

Let gsc 2 G
�
sc.
xA/ be so that ı D  .gscı

�g�1sc /. Let usc 2 C
1.�; G�sc.

xF // be a lift of
the element of Z1.�; G�ad.

xF //. For � 2 � the element g�1sc usc.�/�.gsc/ lies in T �sc.
xA/.

Its image in T �sc.
xA/=T �sc.

xF / is independent of the choice of usc and is a 1-cocycle. Its
cohomology class is independent of the choice of gsc and will be denoted by

obssc.ı/ 2 H
1
�
�; T �sc.

xA/=T �sc.
xF /
�
:

As we shall remark below, obssc.ı/ is a refinement of the element obs.ı/ defined above.
We can also refine the invariant inv.ı; ı0/ 2 H 1.�; T .xA// of two stably conjugate ı; ı0 2
G.A/ to an element invsc.ı; ı

0/ 2 H 1.�; Tsc.xA// whose class is represented by � 7!
g�1sc �.gsc/ for any gsc 2 Gsc.xA/ conjugating ı to ı0 (the existence of such an element
gsc is explained [18, Section 6.2]). Then we have

Lemma 4.1.4. .1/ For h 2 Gsc.A/ we have obssc.hıh
�1/ D obssc.ı/.

.2/ The class obssc.ı/ is independent of the choice of ı� in the following sense. If
ı�� 2 G�. xF / is another choice then the isomorphism 'ı��;ı� W T

��
sc ! T �sc defined as in

Lemma 4.1.1 identifies the two versions of obssc.ı/ obtained from ı�� and ı�, respectively.
.3/ If ı0 2 G.A/ is stably conjugate to ı 2 G.A/ then

obssc.ı
0/ D obssc.ı/ � '

�1
ı�;ı

�
invsc.ı; ı

0/
�
:

Proof. The same as for Lemma 4.1.1.

Proposition 4.1.5. The class obssc.ı/ vanishes if and only if the Gsc.A/-conjugacy class
of ı contains an F -point.

Proof. The same as for Proposition 4.1.2, but now the assumption that Gsc satisfies the
Hasse principle is automatically satisfied by the work of Kneser, Harder, and Chernousov
[5–7, 14].
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We now define

(1) � to be the image of ker.H 1.�;T �sc.
xA//!H 1.�;T �.xA/// under the natural map

H 1
�
�; T �sc.

xA/
�
! H 1

�
�; T �sc.

xA/=T �sc.
xF /
�

(4.1.1)

(2) K.T=F /D to be the quotient of H 1.�; T �sc.
xA/=T �sc.

xF // by �

(3) obs.ı/ D obs.ı/sc C � � H
1.�; T �sc.

xA/=T �sc.
xF //, or equivalently the image of

obs.ı/sc in K.T=F /D .

Remark 4.1.6. Note that � lies in the kernel of the map

H 1
�
�; T �sc.

xA/=T �sc.
xF /
�
! H 1

�
�; T �.xA/=T �. xF /

�
and obssc.ı/ maps to the element that we denoted by obs.ı/ when the Hasse principle
holds. Thus, the new definition of obs.ı/ is a refinement of the old definition. When the
Hasse principle holds the following lemma shows that � is precisely the kernel of this
map, so the two definitions agree.

Lemma 4.1.7. Assume thatG� satisfies the Hasse principle. Then� is equal to the kernel
of the map

H 1
�
�; T �sc.

xA/=T �sc.
xF /
�
! H 1

�
�; T �.xA/=T �. xF /

�
:

Note thatG satisfies the Hasse principle if and only ifG� satisfies the Hasse principle,
by [16, (4.2.2)] (by [5] the assumption on E8 factors may be removed).

Proof. It remains to prove that the kernel of the map

H 1
�
�; T �sc.

xA/=T �sc.
xF /
�
! H 1

�
�; T �.xA/=T �. xF /

�
contains �. First we assume that the derived subgroup G�der of G� is simply connected.
DenoteD D G�=G�der D T

�=T �sc . The following diagram is commutative and its rows are
exact.

D.A/ //

��

H 1
�
�; T �sc.

xA/
�

//

��

H 1
�
�; T �.xA/

�
���

D.xA/=D. xF /
�� // H 1

�
�; T �sc.

xA/=T �sc.
xF /
�

// H 1
�
�; T �.xA/=T �. xF /

�
By [16, Lemma 4.3.1 (b)], in which the case of E8 factors does not need to be excluded
by [5], the torus D also satisfies the Hasse principle, i.e., the map

D.A/!
�
D.xA/=D. xF /

��
is surjective.

In general, without assuming that G�der is simply connected, we choose a z-extension
zG� ! G� with kernel an induced torus S and zG�der simply connected. By [16, Lemma
4.3.2 (b)] zG� also satisfies the Hasse principle. Let zT � be the preimage of T � in zG�.
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Because S is induced both H 1.�; S. xF // and H 1.�; S.xA/=S. xF // vanish and so the short
exact sequence

1! S ! zT � ! T � ! 1

yields injective maps

H 1
�
�; zT �.xA/

�
,! H 1

�
�; T �.xA/

�
H 1

�
�; zT �.xA/= zT �. xF /

�
,! H 1

�
�; T �.xA/=T �. xF /

�
and so the lemma for zG� implies it for G�.

Proposition 4.1.8. The element obs.ı/ depends only on the G.A/-conjugacy class of ı. It
is independent of the choice of ı�. It vanishes if and only if the G.A/-conjugacy class of
ı contains an F -point.

Proof. The independence of ı� is immediate from the second point in Lemma 4.1.4. For
the other two statements we note that all elements in the G.A/-conjugacy class of ı are
Gsc.xA/-conjugate to each other by Lemma 4.1.3. Therefore the set of Gsc.A/-conjugacy
classes inside of the G.A/-conjugacy class of ı is in bijection with the set

S D ker
�
H 1

�
�; Tsc.xA/

�
! H 1

�
�;Gsc.xA/

��
\ ker

�
H 1

�
�; Tsc.xA/

�
! H 1

�
�; T .xA/

��
;

namely via ı0 $ invsc.ı; ı
0/.

Note that S may only be a subset, and not a subgroup, of H 1.�; Tsc.xA//. The third
point in Lemma 4.1.4 and Proposition 4.1.5 reduce the outstanding two statements of this
proposition to showing that the image of '�1

ı�;ı
.S/ under (4.1.1) equals �.

Let S� be the subgroup

ker
�
H 1

�
�; Tsc.xA/

�
! H 1

�
�; T .xA/

��
;

so that � is the image of '�1
ı�;ı

.S�/ under (4.1.1). Evidently S � S� and our goal is to
show that the images of '�1

ı�;ı
.S/ and '�1

ı�;ı
.S�/ under (4.1.1) coincide. The abelian group

H 1.�; Tsc.xA// is isomorphic to
L
vH

1.�v; Tsc. xFv// and this isomorphism translates the
subgroup S� to

L
S�v , where S�v is the analogous subgroup at the place v, and it translates

the set S to
L
v Sv , where Sv is the analogous set at the place v. Each Sv is a pointed

set and the symbol
L
v has the same meaning as for groups, so that

L
v Sv consists

of tuples of elements indexed by v, and in each tuple all but finitely many terms are
neutral. When v is finite H 1.�v; Gsc. xFv// D ¹1º by Kneser’s theorem, so that Sv D S�v .
Let S�1 D

L
vj1 S

�
v and S1 D

L
vj1 Sv . We may have S1 ¨ S�1. Since the group

ker
�
H 1

�
�; T �sc.

xF /
�
! H 1

�
�; T �. xF /

��
maps to '�1

ı�;ı
.S�/ and vanishes under (4.1.1) it will be enough to show that it maps

surjectively onto

'�1ı�;ı.S
�
1/ D ker

�
H 1

�
�1; T

�
sc.
xF1/

�
! H 1

�
�1; T

�. xF1/
��
:
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For this we consider the commutative diagram

H 1
�
�; T �sc.

xF /! T �. xF /
�

//

��

ker
�
H 1

�
�; T �sc.

xF /
�
! H 1

�
�; T �. xF /

��
��

H 1
�
�1; T

�
sc.
xF1/! T �. xF1/

�
// ker

�
H 1

�
�1; T

�
sc.
xF1/

�
! H 1

�
�1; T

�. xF1/
��

The horizontal maps are the connecting homomorphisms in the corresponding long exact
sequences for the cohomology of complexes of tori. They are surjective. Applying restric-
tion of scalars F=Q to T � and T �sc we can reduce the base field to Q and then use [21,
Lemma C.5.A] to see that the image of the left vertical map is dense. Since the target of
the right vertical map is finite the proof is complete.

We now assume again that G satisfies the Hasse principle. It is clear from the defini-
tions that if G D G� then obs.ı/ is simply the image of inv.ı�; ı/ under

H 1
�
�; T �.xA/

�
! H 1

�
�; T �.xA/=T �. xF /

�
:

When G ¤ G� then inv.ı�; ı/ doesn’t make sense. However, using the cohomology of
the global gerbe E iso we can make sense of it. More precisely, we need the versions
of E iso with A-coefficients and A=F -coefficients. These are denoted by E2.K=F / and
E1.K=F / respectively in [20, Section 1.5]. Here K=F is any sufficiently large finite
Galois extension. We shall write H 1

alg.E
iso
2 ; T .

xA// for lim
�!K

H 1
alg.E

iso
2 .K=F /; T

�.AK//

and H 1
alg.E

iso
1 ; T

�.xA/=T �. xF // for lim
�!K

H 1
alg.E

iso
1 .K=F /; T

�.AK/=T �.K//.
Assume that the element of Z1.�;G�ad/ corresponding to  has a lift

ziso
2 Z1bas.E

iso; G�/:

Define invŒziso�.ı�; ı/ to be the class in H 1
alg.E

iso
2 ; T

�.xA// of the 1-cocycle

e 7! g�1ziso.e/�e.g/:

Fact 4.1.9. The image inH 1
alg.E

iso
1 ;T

�.xA/=T �. xF // of invŒziso�.ı�; ı/ lies in the subgroup
H 1.�; T �.xA/=T �. xF // and equals obs.ı/.

Proof. Immediate from the fact that ziso takes values in T �. xF /.

This image can be computed in terms of Tate–Nakayama isomorphisms.

Proposition 4.1.10. Denote Y D X�.T �/. The compositions

H 1
alg

�
E iso
2 ; T

�.xA/
�
!

M
v2V

H 1
alg.E

iso
v ; T

�/ '
M
v2V

Y=Iv.Y /! Y=IY;

where the isomorphism is Kottwitz’ local Tate–Nakayama isomorphism and the last map
is “sum over all places”, and

H 1
alg

�
E iso
2 ; T

�.xA/
�
! H 1

�
�; T �.xA/=T �. xF /

�
' .Y=IY /Œtor� � Y=IY

where the isomorphism is the Tate–Nakayama isomorphism defined in [34], are equal.
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Proof. This is a special case of a more general compatibility. In [20] Kottwitz defined a
generalization

H 1
�
E iso
1 ; T

�.xA/=T �. xF /
�
' Y=IY

of Tate’s isomorphism, and proved local-global compatibility ((6.6) loc. cit.): the compo-
sitions

H 1
alg

�
E iso
2 ; T

�.xA/
�
!

M
v2V

H 1
alg.E

iso
v ; T

�/ '
M
v2V

Y=Iv.Y /! Y=IY

and
H 1

alg

�
E iso
2 ; T

�.xA/
�
! H 1

alg

�
E iso
1 ; T

�.xA/=T �. xF /
�
' I=IY

are equal.

4.2. Global transfer factors

We continue with  W G� ! G from the previous subsection. Let .H;H ; s; �/ be an
endoscopic datum for G and .H1; �1/ a z-pair as in [21, Section 2.2]. We assume that for
every place v of F there exists a pair of related stronglyG-regular elements 
H0;v 2H.Fv/
and ı0;v 2 G.Fv/.

Lemma 4.2.1. Under this assumption there exists a pair of related strongly G-regular
elements 
H0 2 H.F / and ı0 2 G.A/.

Proof. The assumption is equivalent to the following one: for every place v of F , there
exists a maximal torus TH;v of HFv and an admissible embedding TH;v ,! GFv , i.e.,
an isomorphism of TH;v with a maximal torus of GFv as in [21, Lemma 3.3.B]. Note
that this assumption is automatically satisfied at every place v such that GFv is quasi-
split, by essentially the same argument as in the proof of this lemma. By [2, Exp. XIV,
Theorem 6.1] the functorX parametrizing maximal tori inH is representable by a smooth
affine scheme X over H and X is rational, in particular it satisfies weak approximation.
Let S be the finite set of places v such thatGFv is not quasi-split. For any v 2S theH.Fv/-
conjugacy class of TH;v is a neighborhood of TH;v in X.Fv/ (for the natural topology)3.
Therefore there exists a maximal torus TH ofH , that is an element of X.F /, such that for
every v 2 S the maximal tori .TH /Fv and TH;v of HFv are conjugate under H.Fv/.

Take any G-regular semisimple 
H0 2 TH .F /. Since G� is quasi-split over F there
exists a strongly regular ı�0 2 G

�.F / that is related to 
H . We have arranged that for any
place v of F , there exists a strongly regular element ı0;v of G.Fv/ that is stably conjugate
to ı�0;v , and we are left to show that we may take ı0;v 2 G.OFv / for almost all places v,
where G is any model of G over OF Œ1=N � for some integer N > 0.

3Let N be the normalizer of the universal maximal torus, i.e., N is the obvious subgroup scheme of
H �F X ! X . Then the morphism of X -schemes H �F X ! X �F X which on points maps .g; T /
to .Ad.g/T; T / is a right N -torsor for the étale topology by [2, Exp. XIV, Theorems 3.9 and 3.18]. In
particular this morphism, likeN ! X , is smooth. So for a given maximal torus TH;v ofHFv the morphism
HFv ! XFv mapping g to Ad.g/TH;v is smooth, and the induced map of analytic manifolds (in the sense
of [32, Part II, Chapter III]) is submersive.
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We can find N > 0 and models G� and G over OF Œ1=N � s.t.  extends to a map over
OŒ1=N �, where O is the ring of integers of the maximal extension of F unramified at all
places prime to N . For a place v prime to N the element of Z1.�v; G�/ corresponding
to  lies in Z1.�v=Iv; G�.Ov//, so there is an element gv 2 G�.Ov/ s.t.  ı Ad.gv/ is
an isomorphism defined over OFv . We let ı0;v D  .gvı�0g

�1
v / 2 G.OFv /. For the finitely

many places v that are not prime to N we choose ı0;v 2 G.Fv/ to be stably conjugate
to  .ı0/ 2 G. xF /. That is, there is gv 2 G�. xFv/ s.t. ıv D  .gvı0g

�1
v /. The resulting

collection ı0 of local elements lies in G.A/.

Under that assumption an adelic transfer factor �0A.

H1 ; ı/ is defined for all pairs of

stronglyG-regular elements 
H1 2H1.A/ and ı 2G.A/. It is defined in [27, Section 6.3]
and [21, Section 7.3] without the prime decoration, and is discussed in [22, Section 5.4]
with the prime decoration.

By the construction in [21, Section 7.3] the factor �0A.

H1 ; ı/ is a product of local

transfer factors over all places. Since at each place the local transfer factor is canonical up
to a scalar multiple, their product is also. What makes the global transfer factor completely
canonical is the following property: If 
H 2 H.F / and ı 2 G.A/ are related, then

�0A.

H1 ; ı/ D

˝
obs.ı/; y'�1


H ;ı�
.s/
˛
: (4.2.1)

To explain the notation, note first that the condition 
H 2 H.F / implies the existence
of ı� 2 G�.F / in the G�.xA/ conjugacy class of  �1.ı/, which was assumed in the
definition of obs.ı/ that was reviewed in Section 4.1. Let T � � G� be the centralizer
of ı� and let TH � H be the centralizer of 
H . There is a unique admissible isomor-
phism '
H ;ı� W T

H ! T � sending 
H to ı�. It induces an isomorphism yTH ! yT via
which we transport s 2 ŒZ. yH/=Z. yG/�� to an element of Œ yT =Z. yG/�� . Then we use the
Tate–Nakayama pairing h�;�i between H 1.�; T �sc.

xA/=T �sc.
xF // and �0.Œ yT �=Z. yG/��/.

Even though the obstruction obs.ı/ was not just an element of H 1.�; T �sc.
xA/=T �sc.

xF //,
but rather a set of elements there, the pairing is well-defined, because s has the property
that its image under the connecting homomorphism�

Z. yH/=Z. yG/
��
! H 1

�
�;Z. yG/

�
is everywhere locally trivial. The subgroup of ŒZ. yH/=Z. yG/�� of all elements with this
property is denoted by K.T �=F / and is dual to the quotient K.T �=F /D recalled in Sec-
tion 4.1.

Remark 4.2.2. We need to be careful with the normalizations of the various pairings
we are using. Equation (4.2.1) appears optically compatible with [21, Corollary 7.3.B].
However, the latter is stated for the transfer factor �A constructed as in [27], rather than
the factor�0A that we are using here, whose construction differs from�A by inverting the
element s, see [22, Section 5.1]. The reason for preferring �0 over � is that � itself does
not properly generalize to the twisted setting, see [22].
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Thus now (4.2.1) would seem optically at odds with the �0-version of [21, Corol-
lary 7.3.B], which is the last displayed equation in [22] before Section 5.5 there. This
discrepancy stems from yet another clash of conventions between [27] and [21]. First
we recall that in the twisted setting obs.ı/ is an element of a hypercohomology group
H 1.A=F; T �sc ! T �/, while the element � lies in H 1.WF ; yT

� ! yT �=Z. yG//. The maps
in the two complexes are 1 � �� and 1 � y�� respectively, where �� is the twisting auto-
morphism. In the untwisted setting �� D 1 and the two hypercohomology groups each
break up into direct products

H 1.A=F; T �sc ! T �/ D H 1.A=F; T �sc/˚H
0.A=F; T �/

and
H 1

�
WF ; yT

�
! yT �=Z. yG/

�
D H 1.WF ; yT

�/˚H 0
�
WF ; yT

�=Z. yG/
�
:

The pairing between the two hypercohomology groups becomes the product of the stan-
dard normalization of the Tate–Nakayama pairing between

H 1.A=F; T �sc/ and H 0
�
WF ; yT

�=Z. yG/
�

and the negative of the standard normalization of the Langlands pairing between

H 0.A=F; T �/ and H 1.WF ; yT
�/:

The occurrence of this negative is forced by the anti-commutativity of the cup product.
The reason why the �0-version of [21, Corollary 7.3.B] is compatible with (4.2.1)

is that the projection of the element obs.ı/ 2 H 1.A=F; T �sc ! T �/ constructed in [21]
onto the direct factor H 1.A=F; T �sc/ is the inverse of the element obs.ı/ constructed in
Section 4.1 above. For this we direct the reader to [21, pp. 82–83] and point out that the
element v.�/ constructed there is the 1-cocycle that represents our element obs.ı/ here
(despite the element g there being the inverse of our element g here), yet the class obs.ı/
constructed there contains the inverse of v.�/. The conventions we have used here are
those used in [27, (3.4)] in the quasi-split case, which are the opposite of those used in
[21, Section 5.3] in the quasi-split case.

Finally, we remark that the same issue occurs with the local and adelic invariant
inv.ı; ı0/ used in this paper – it follows the quasi-split convention in [27], and is the oppo-
site of the quasi-split convention in [21], so any equation involving inv.ı; ı0/ in this paper
will contain an inverse when compared to the �0-version of the corresponding equation
of [22], and would thus appear optically identical to the corresponding equation in [21]
for the factor � in place of �0.

4.3. Global transfer factors in terms of isocrystals

In this subsection we assume that Z.G/ is connected and G satisfies the Hasse principle.
We will show how the canonical adelic transfer factor reviewed in Section 4.2 can be
written as a product of local transfer factors that are normalized using zB.G/.
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Let again .H;H ; s; �/ be an endoscopic datum for G and .H1; �1/ a z-pair as in [21,
Section 2.2]. By assumption s 2 ŒZ. yH/=Z. yG/�� and the image of s inZ1.�;Z. yG// under
the connecting homomorphism has cohomologically trivial localization at each place ofF .
The Hasse principle for G, reinterpreted as [16, Lemma 11.2.2], implies that the image
of s in Z1.�; Z. yG// is already cohomologically trivial and thus s lifts to an element
s\ 2 Z. yH/� . We shall refer to .H;H ; s\; �/ as an isocrystal-refined endoscopic datum.
An isomorphism of such data is required to identify the two elements s\, and not simply
their images s.

By Corollary 3.13.13 we can choose ziso 2 Z1bas.E
iso; G�/ such that  �1�. / D

Ad. Nz� /, where Nz 2 Z1.�;G�ad/ is the image of ziso. Let w be a global Whittaker datum for
G�. At each place v of F we now have the normalized local transfer factor �Œwv; z

iso
v � W

H1.Fv/sr �G.Fv/sr ! C, defined as

�Œwv; z
iso
v �.


H1 ; ı/ D �Œwv�.

H1 ; ı�/ �

˝
invŒziso

v �.ı
�; ı/; y'ı�;
H .s

\/
˛
: (4.3.1)

We need to explain the notation. On the left we have 
H1 2H1.Fv/sr and ı 2G.Fv/sr. We
choose arbitrarily ı�2G�.Fv/ that is conjugate inG�. xFv/ to �1.ı/. For�Œwv�.


H1 ; ı�/

to be non-zero it is necessary that 
1 be a norm of ı, so we make this assumption. Let
T � � G� be the centralizer of ı�, a maximal torus of G�. Given any g 2 G�. xF / with
ı D  .gı�g�1/, the element g�1ziso.e/�e.g/ of G�. xFv/ belongs to T �. xFv/, for all e 2
E iso
v , where �e 2 �v denotes the image of e under E iso

v ! �v . For formal reasons the
map e 7! g�1ziso.e/�e.g/ is an element of Z1alg.E

iso
v ; T

�/ and its cohomology class is
independent of the choice of g. We denote by invŒziso

v �.ı
�; ı/ this cohomology class.

The element 
H 2H.Fv/sr is the image of 
H1 underH1!H . Letting TH �H be
its centralizer, a maximal torus of H , there is a unique admissible isomorphism 'ı�;
H W

T � ! TH mapping ı� to 
H . Its dual, when composed with the canonical embedding
Z. yH/! yTH , transports s\ 2 Z. yH/�v into yT �;�v . The pairing h�;�i W H 1

alg.E
iso
v ; T

�/ �
yT �;�v is given by [20, Lemma 8.1].

The transfer factor�Œwv� WH1.Fv/sr �G
�.Fv/sr is the Whittaker normalization of the

factor �0, as defined in [22, (5.5.2)].

Proposition 4.3.1. The function �Œwv; z
iso
v � is an absolute transfer factor.

Proof. This is proved in [8, Proposition 2.2.1], under the assumption that the z-pair is
trivial, and with the inverse of the pairing used here. Nonetheless, the proof given there
carries over to this situation with trivial modifications.

Proposition 4.3.2. Let 
H1 2 H1.A/sr and ı 2 G.A/sr. Let V denote the set of all places
of F . For almost all v 2 V the factor �Œwv; z

iso
v �.


H1
v ; ıv/ is equal to 1 and the productY

v2V

�Œwv; z
iso
v �.


H1
v ; ıv/

is equal to the canonical adelic transfer factor �0A.

H1 ; ı/.
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Proof. The adelic transfer factor was reviewed in Section 4.2. By construction it is a
product of local transfer factors, and so is the product in this proposition. Therefore one
is a scalar multiple of the other. It is enough to show that they give the same value on one
pair .
H1 ; ı/ of related elements. We choose the pair so that 
H1 2H1.F /. The existence
of such an element is assumed in the definition of the global transfer factor. Then we can
choose ı� 2 G.F / related to 
H1 .

We first claim that almost all factors in the product
Q
v �Œwv�.


H1 ; ı�/ are equal to
1 and the product itself is equal to 1. For this we recall that this factor is the product of
terms "v � �I � �II � �III1 � �III2 � �IV . The terms "v are the local components of a
global root number of an orthogonal Artin representation of degree 0. Therefore almost
all terms are equal to 1 and their product is equal to 1. For the remaining terms we apply
Theorem 6.4.A and Corollary 6.4.B of [27].

This reduces to showing that almost all factors in the productY
v

˝
invŒziso

v �.ı
�; ı/; y'ı�;
H .s

\/
˛

are equal to 1 and this product equals �0A.

H1 ; ı/. This follows from Fact 4.1.9 and the

equality Y
v

˝
invŒziso

v �.ı
�; ı/; y'ı�;
H .s

\/
˛
D

DX
v

invŒziso
v �.ı

�; ı/; y'ı�;
H .s
\/
E

D
˝
invŒziso�.ı�; ı/; y'ı�;
H .s

\/
˛

where the pairings in the first term are the local pairings

H 1
alg

�
E iso
v ; T

�. xFv/
�
�X�. yT �;�v /! C;

the pairing in second term is the pairing

H 1
alg

�
E iso
2 ; T

�.xA/
�
�
�
X�. yT �/˝ ZŒV �

�
�
! C;

and that in the third term is

H 1
alg

�
E iso
1 ; T

�.xA/=T �. xF /
�
�X�. yT �;�/! C:

The last equality follows from Proposition 4.1.10.

Remark 4.3.3. Every f 2C1c .G.A// has a canonical transfer f H1 2C1c .H1.A//, up to
functions having identically vanishing stable orbital integrals. Namely, choose an arbitrary
decomposition �0A D

Q
v �
0
v of the canonical adelic transfer factor as a product of local

transfer factors, such that at almost all places �0v is unramified. Assume without loss of
generality that f is a decomposable function f D ˝vfv . Let f H1v 2 C1c .H1.Fv// be
the transfer of fv relative to the factor �0v and let f H1 D ˝vf

H1
v . Each individual local

component f H1v depends on the choice of �0v , which is well-defined up to a complex
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scalar, but the formula �0A D
Q
v �
0
v implies that f H1 is independent of these choices.

Note that, due to the Fundamental Lemma, the function f H1v is the unit in the unramified
Hecke algebra for almost all v, and therefore˝vf

H1
v is well-defined.

In particular, Proposition 4.3.2 implies that if we take f H1v to be the transfer relative to
�Œwv; z

iso
v �, then ˝vf

H1
v will be the canonical adelic transfer. Analogously, [11, Propo-

sition 4.4.1] implies the same statement with �Œwv; z
iso
v � replaced by the transfer factor

normalized using E rig in place of E iso.

Remark 4.3.4. According to [23, Section 2.4] the product formula proved in Proposition
4.3.2 generalizes from the case of strongly regular pairs .ı; 
H1/ to the case of .G;H/-
regular pairs, i.e., the assumption of [18, Section 6.10] holds. The reader is encouraged to
consult [3, Section 3.4], where a detailed argument of this claim has been provided.

4.4. Global transfer factors in the rigid setting

In this section we do not assume that the connected reductive group G over F satisfies
the Hasse principle, nor that Z.G/ is connected. The analogue of Proposition 4.3.2 in
the rigid setting was proved in [11, Section 4.4], under the assumption that there exists
a pair of related elements 
H 2 H.F / and ı 2 G.F /. Note that this is stronger than the
assumption on the existence of pair of related elements 
H 2 H.F / and ı 2 G.A/. The
reason this stronger assumption was made in [11, Section 4.4] is that it is also made on
[27, p. 268], where the authors declare that the global adelic transfer factors should vanish
if this stronger assumption is not satisfied.

On the other hand, the constructions in [21] operate under the weaker assumption
on the existence of related elements 
H 2 H.F / and ı 2 G.A/. It is clear to us that
if the weaker assumption is not satisfied then the endoscopic datum is not needed for
the stabilization of the trace formula and its transfer factors can be declared zero, see
Lemma 4.2.1. However, it is not clear to us that this is true if the stronger assumption is not
satisfied. It could be that a Hasse principle for this assumption holds, but we do not know
if it holds, let alone of any published proof. It may be possible to approach this problem
using the classification of Dynkin diagrams (similar to [24]), after reducing to the case
where G is absolutely simple and simply connected and the endoscopic datum is elliptic.

Instead, we have decided to generalize here the proof of [11, Proposition 4.4.1] by
dropping the stronger assumption and only keeping the weaker assumption. To repli-
cate the proof of Proposition 4.3.2 in the rigid setting, we want an analogue of Propo-
sition 4.1.10. The natural strategy would be to introduce extensions of � bound by xA- and
“xA= xF -points” of certain projective limits of finite multiplicative groups over F (analo-
gous to the gerbes E1 and E2 of [20]), prove Tate–Nakayama isomorphisms and local-
global compatibility (analogous to [20, (6.6)]). This is certainly possible and was in fact
mostly done in the preparations to [11]. However, it takes a fair amount of pages to set
up. We have thus chosen an alternative approach here, which uses the result in the “iso”
setting (Proposition 4.1.10) and the comparison with “rig” via “mid” to deduce the result
in the rigid setting (Proposition 4.4.3).



Global rigid inner forms vs isocrystals 815

Lemma 4.4.1. Let T be a torus over F , Z � T a finite multiplicative subgroup. Then the
diagram of Abelian groups

H 1
�
P

rig
PV
! E

rig
PV
; Z. xF /! T .xA/

�
//

��

L
v2V H

1.P
rig
v ! E

rig
v ; Z ! T /

��

Hom.P rig
PV
; Z/ //

L
v2V Hom.P rig

v ; Z/

is Cartesian.

Proof. We have to prove that the map from H 1.P
rig
PV
! E

rig
PV
; Z. xF /! T .xA// to the fiber

product is injective and surjective. Injectivity follows easily from the well-known isomor-
phism

H 1
�
�; T .xA/

�
'

M
v2V

H 1
�
�v; T .Fv/

�
:

To prove surjectivity, let

� 2 Hom.P rig
PV
; Z/ and

�
Œzv�

�
2

M
v2V

H 1.P rig
v ! E

rig
Pv
; Z ! T /

be such that for any v 2 V , the restriction of zv to P
rig
v equals � composed with

locv W P
rig
v ! P

rig
PV

. Recall from [11, Corollary 3.3.8] that for any v 2 V there is �v 2
C 1.�v; P

rig
PV
/ unique up to Z1.�v; P

rig
PV
/ D B1.�v; P

rig
PV
/ such that

�
rig
PV
j�2v
D .locv ı � rig

v / � d.�v/:

Let S be a finite set of places of F containing all Archimedean places and such that
Œzv� D 1 for v 2 V X S , so that in particular � ı locv is trivial. Recall from Section 3.1
that for any v 2 V the cocycle zv may be seen as an element of C 1.�v; T .Fv// satisfying
d.zv/ D � ı locv ı �

rig
v . There exists a finite Galois extension E=F satisfying

• the action of � on X�.Z/ factors through �E=F ,

• E contains all roots of unity of order dividing the exponent ofZ (in particularZ.E/D
Z. xF /), and

• for all v 2 S the cochain zv is inflated from an element of C 1.�E Pv=Fv ; T .E Pv// and
� ı �v is inflated from an element of C 1.�E Pv=Fv ; Z.E Pv//.

For v 2 S let Qz.0/v D PS1.zv � .� ı �v// 2 C 1.�E=F ; T .E ˝F Fv// where PS1 is a Shapiro
corestriction map associated to a section of �E=F ! �E Pv=Fvn�E=F as explained in [11,
Appendix B]. We have�

d. Qz.0/v /
�
D ��Œ�

rig
PV
� in H 2

�
�E=F ; Z.E ˝F Fv/

�
' H 2

�
�E Pv=Fv ; Z.E Pv/

�
(Shapiro isomorphism), therefore there exists av 2 C 1.�E=F ; Z.E ˝F Fv// such that
Qzv WD Qz

.0/
v � d.av/ satisfies d. Qzv/ D ��.�

rig
PV
/ (via the embedding Z.E/ � Z.E ˝F Fv/).
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For v 2 V X S we have ��.Œ�
rig
PV
�/ D 1 in H 2.�E=F ; Z.E ˝F Fv//, thanks to

• the Shapiro isomorphism H 2.�E=F ; Z.E ˝F Fv// ' H
2.�E Pv=Fv ; Z.E Pv//,

• the compatibility between the local and global canonical classes which implies that
the image of ��.Œ�

rig
PV
�/ in H 2.�v; Z/ equals .� ı locv/�.�

rig
v /,

• the fact that � ı locv W P
rig
v ! Z is trivial because Œzv� D 1,

• the local analogue of [11, Lemma 3.2.7] (similar proof) which says that the inflation
map H 2.�E Pv=Fv ; Z.E Pv//! H 2.�v; Z/ is injective.

So for v 2 V X S we can find Qzv 2 C 1.�E=F ;Z.E ˝F Fv// satisfying d. Qzv/D ��.�
rig
PV
/.

Now . Qzv/v2V represents an element ofH 1.P
rig
PV
! E

rig
PV
;Z. xF /! T .xA//whose restriction

to P rig
PV

is � and mapping to .Œzv�/v .

Corollary 4.4.2. In the same setting, denote Y D X�.T / and xY D X�.T=Z/. Then there
is a unique Tate–Nakayama isomorphism between

Y rig
sa .Z ! T / WD

°
.�v/v 2

M
v2V

�
xY =I Pv.Y /

�
Œtor� j

X
v2V

.�v C IY / 2 .Y=IY /Œtor�
±

andH 1.P
rig
PV
! E

rig
PV
;Z. xF /! T .xA// which is compatible with the local Tate–Nakayama

isomorphisms and the identification

Hom.P rig
PV
; Z/ ' lim

�!
E

�
. xY =Y /Œ PVE �0

�NE=FD0:
Proof. We have an obvious Cartesian diagram

Y
rig

sa .Z ! T / //

��

L
v2V

�
xY =I Pv.Y /

�
Œtor�

��

lim
�!E

�
. xY =Y /Œ PVE �0

�NE=FD0 //
L
v2V .

xY =Y /N PvD0

and comparing with the Cartesian diagram in the previous lemma gives the sought iso-
morphism.

Proposition 4.4.3. We have a commutative diagram

Y
rig

sa .Z ! T /
� //

��

H 1
�
P

rig
PV
! E

rig
PV
; Z. xF /! T .xA/

�
��

.Y=IY /Œtor� � // H 1
�
�; T .xA/=T . xF /

�
where the top horizontal isomorphism was defined in the previous corollary, the bottom
isomorphism was defined in [34], the left vertical map is .�v/v 7!

P
v2V .�v C IY / and

the right vertical map is the obvious one.
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Proof. The kernel of the right vertical map is the image of H 1.P
rig
PV
! E

rig
PV
; Z ! T / and

by the local and global Tate–Nakayama isomorphisms for “rig” and their compatibility,
we have an embedding �rig from the cokernel C rig of

H 1.P
rig
PV
! E

rig
PV
; Z ! T /! H 1

�
P

rig
PV
! E

rig
PV
; Z. xF /! T .xA/

�
into .Y=IY /Œtor�, mapping .�v/v to

P
v2V .�v C IY /. To prove that the diagram in the

proposition is commutative we have to show that �rig coincides with the composition

C rig
! H 1

�
�; T .xA/=T . xF /

�
' .Y=IY /Œtor�:

For the rest of this proof we take the inductive limit over all finite multiplicative subgroups
Z of T , as we may since all morphisms in sight are compatible with the transition maps
induced by any inclusion Z � Z0. This has the effect of replacing xY by QY .

Lemma 4.4.1 and Corollary 4.4.2 admit “iso” and “mid” analogues, with similar proofs
and with

Y iso
sa D

°
.�v/v 2

M
v2V

Y=I Pv.Y / j NE=F

�X
v2V

�v

�
D 0

±
and

Y mid
sa D

°�
.�v/v; .�v/v

�
j .�v/v 2 Y

mid
sa ; .�v/v 2

M
v2V

QY;
X
v2V

�v D 0

and 8v 2 V; NE Pv=Fv .�v � �v/ D 0
±

where E=F is any finite Galois extension splitting T . We also have an embedding �iso

(resp. �mid) from C iso (resp. Cmid) into .Y=IY /Œtor�, mapping the class of .�v/v (resp.
..�v/v; �/) to

P
v2V �v C IY . We have natural maps between cokernels

C iso
 � Cmid

! C rig

compatible with �iso, �mid, �rig thanks to the compatibility of local Tate–Nakayama isomor-
phisms in the three settings. It follows from Proposition 3.4.1 (or a direct argument) that
the natural map Y mid

sa ! Y iso
sa is surjective, thus Cmid! C iso is bijective. It is obvious that

�iso is surjective, and by Proposition 4.1.10 it coincides with the composition

C iso
! H 1

�
�; T .xA/=T . xF /

�
' .Y=IY /Œtor�:

Therefore �mid and �rig are also bijective and coincide with the compositions

C ‹ ! H 1
�
�; T .xA/=T . xF /

�
' .Y=IY /Œtor�:

Corollary 4.4.4. Proposition 4.4.1 of [11] holds without the assumption that there exists
a pairs of related elements in H1.F /sr �G.F /sr.

Proof. Similar to the proof of Proposition 4.3.2, applying Proposition 4.4.3 to T �sc instead
of Proposition 4.1.10 to T �. Details are left to the reader.
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4.5. Isocrystal local Langlands correspondence in the Archimedean case

In order to formulate the isocrystal version of the conjectural multiplicity formula for a
connected reductive group over a number field we will need the isocrystal version of the
refined local Langlands conjecture at all places. In the non-archimedean case this was
formulated in [12]. Fortunately the Archimedean case is similar, and we shall formulate it
here, as well as the comparison between the isocrystal and rigid versions.

The complex case F ' C is very simple: the group P rig is trivial and so is E rig. For
any connected reductive group G over F and any tempered parameter ' W F � ! yG the
group S \' defined as in [12, Section 4.1] is canonically isomorphic to yG= yGder D yC where
C D Z.G/0. Since Z. yG/! yC is an isogeny, if we fix ziso 2 B.G/bas D X�.C / then the
set of characters of S \' whose restriction to Z. yG/ is Œziso� D zisoj

Z. yG/
is just ¹zisoº. Thus

the isocrystal version of the local Langlands correspondence for G is simply the usual
correspondence with the extra datum of an element of X�.C /.

We are left to consider the real case F D R. Recall that the analogue of the mor-
phism of extensions E rig ! E iso of [12, (3.13)] is the composition siso ı crig as defined
in Section 3.6. Note that the analogue of [12, Proposition 3.2] is a direct consequence
of Propositions 3.13.5 and 3.13.6. Recall that Kottwitz defined a map �G W B.G/bas !

X�.Z. yG/�/, whose image was characterized in [20, Proposition 13.4] as®
�j
Z. yG/�

j � 2 X�.Z. yG//; NC=R.�/ 2 X
�. yG/

¯
;

where we are using the facts that restriction induces an injective mapX�. yG/!X�.Z. yG//
as well as a surjective map X�.Z. yG//! X�.Z. yG/�/. The analogue of [12, Proposition
3.3] is that the following diagram commutes, although the horizontal maps are not bijec-
tive in general.

B.G/bas �G
//

��

X�
�
Z. yG/�

�
��

H 1
alg.E

rig; G/ // Hom
�
�0
��
Z. yGsc/ �Z. yG/

0
1

�C�
;C�

�
Here the left vertical map is induced by siso ı crig W E rig ! E iso, the bottom horizontal
map is obtained as the composition of [10, Theorem 4.8 and Proposition 5.3] and the right
vertical map is as in [12, Proposition 3.3], i.e., it is dual to the map

�0
��
Z. yGsc/ �Z. yG/

0
1

�C�
! Z. yG�/ (4.5.1)�

a; .bn/n>0
�
7! ab1NC=R.b2/

�1

Note that this maps NC=R.�0.Z. yGsc/ � Z. yG/
0
1// to NC=R.Z. yGder//. The proof of [12,

Proposition 3.3] applies almost verbatim, replacing “elliptic torus” by “fundamental torus”
and using [20, Lemma 13.2] instead of [17, Proposition 5.3]. Note that the first argument
of the proof, showing that B.S/ maps to B.G/bas, does not hold in the real case but this is
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not necessary if one uses

B.S/G�bas ' H
1.T iso

! E; C ! S/

instead of B.S/ as in [20, Section 13.5].
For ' W WF ! LG a Langlands parameter denote by S' its centralizer in yG and

define its quotient S \' (a complex reductive group) as in [12, Section 4.1]. We can define
�0.S

C
' /! S

\
' similarly to (4.5.1). The proof of [12, Lemma 4.1] does not use anything

specific to the non-Archimedean case, so it still holds.
Now let G� be a quasi-split connected reductive group over F . Fix a Whittaker datum

w. Consider an inner form .G; / of G�. Let z 2 zB.G/bas ' xZ
1
alg.T

iso! E iso; C ! G�/

be a lift of the cocycle � ! Gad. xF /, � 7!  �1�. /. Note that in general such a lift may
not exist.

Theorem 4.5.1. Fix a connected reductive quasi-split group G� over R and a Whit-
taker datum w. There is a unique bijection between isomorphism classes of quadruples
.G;  ; z; �/, where � is an irreducible admissible tempered representation of G.R/, and
isomorphism classes of pairs .'; �/ where ' is a tempered Langlands parameter and � is
an algebraic irreducible representation of S \' , such that

• for given .G;  ; z/ and ' the L-packet …' of isomorphism classes of � such that
.G;  ; z; �/ corresponds to .'; �/ for some � equals the one defined by Langlands
in [25], and

• the endoscopic character relations [12, (4.3)] hold with respect to the transfer fac-
tor (4.3.1).

This correspondence is compatible with the rigid version proved in [10, Section 5.6], in
the same sense as in [12, Section 4.2].

Proof. This is deduced from the rigid version of the local Langlands correspondence
exactly as in [12, Section 4.2].

If w, .G; ; z/ and ' are fixed we will denote, for � 2…' , h�; �i ;z;w for the character
� of S \' corresponding to � .

4.6. Multiplicity formula in the isocrystal setting

We return to considering a global field F and write V for its set of places and A for its
adele ring. Let G be a connected reductive F -group which satisfies the Hasse principle,
and whose center is connected. We shall formulate a version of the formula [16, (12.3)]
for the multiplicity of an irreducible admissible representation of G.A/ in the discrete
automorphic spectrum of G using Kottwitz’s global set B.G/.

Assume the existence of a global Langlands group LF , and consider a continuous
semi-simple global tempered parameter ' W LF ! LG. For simplicity we do not consider
more general Arthur parameters (which would involve adding a factor of SL2 to LF ),
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although they do not present additional difficulty for the following discussion, only requir-
ing a slightly more complicated formulation. Recall from [16, Section 10.2] the group S'
of self-equivalences of ' is defined as®

g 2 yG j 8x 2 LF W g
�1'.x/g'.x/�1 DW z.x/ 2 Z. yG/

and 8v 2 V; 0 D Œzv� 2 H 1
�
LFv ; Z.

yG/
�¯
:

Note that z is an element of Z1.LF ; Z. yG// for formal reasons. The Hasse principle,
reinterpreted as [16, (4.2.2)], together with [16, Lemma 11.2.2] imply S' D C' � Z. yG/,
where

C' D
®
g 2 yG j g�1'.x/g'.x/�1 D 1

¯
:

We conclude that, if ' is discrete, then the finite group

�' D �0
�
S'=Z. yG/

�
equals C'=Z. yG/� .

Assume from now on that ' is discrete. For each place v we assume the isocrystal
version of the refined local Langlands conjecture, as stated in [12, Section 4.1] when
v is finite, and in Section 4.5 when v is infinite. In particular at each place we have
the L-packet …'v . Choose a reductive model G of G over OF Œ1=N � for some integer
N > 0. For almost all finite places v of F , the L-packet…'v contains a unique unramified
representation (with respect to G.O.Fv//). Given a collection of �v 2 …'v .G/, unram-
ified for almost all v so that the restricted tensor product � D ˝0v�v is well-defined, we
now define the class-function h�;�i on �' as follows. Let G� be the quasi-split inner
form of G and let  W G� ! G be an inner twist. By Corollary 3.13.13 we can choose
ziso 2 Z1bas.E

iso; G�/ such that  �1�. / D Ad. Nz� /, where Nz 2 Z1.�; G�ad/ is the image
of ziso. The choice of  gives an identification L W LG ! LG� and hence a parameter
'� D L ı ' for G�. Choose also a global Whittaker datum w for G�. For each place v
we have the complex number h�v; s�i v ;ziso

v ;wv
for s� 2 C'� . For almost all finite places

v this complex number equals one: this follows from the endoscopic character relations
[12, (4.3)] and Lemma 3.11.2 by the same argument as in [11, Lemma 4.5.1]. Given s 2C'
define

h�; siiso D
Y
v

˝
�v;

L .s/
˛
 v ;z

iso
v ;wv

:

Lemma 4.6.1. The complex number h�; siiso is independent of the choice of w, ziso and
 and the map

C' ! C; s 7! h�; siiso

is invariant under Z. yG/� .

Proof. The parameter ' and s induce an elliptic endoscopic datum .H;H ; s; �/ with
�. yH/D Cent.s; yG/0 and �.H /D '.LF /�. yH/. Choose a z-extensionH1 ofH and an L-
embedding �1 WH ! LH1 as in [21, Lemma 2.2.A]. Denote '0 D �1��1' W LF ! LH1.
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Fix a maximal compact subgroupK1 ofG.R˝Q F /. For f .g/dg a smooth bi-K1-finite
compactly supported distribution onG.A/, there exists a transfer f 0.h/dh onH.A/ in the
sense of [21, (5.5)]. Note that the global transfer factors for .H;H ; s;H1; �1/ are canoni-
cal, and functorial under isomorphisms of endoscopic data. As discussed in Remark 4.3.3,
the canonical adelic transfer f 0 of f satisfies the endoscopic character identities at each
place v with respect to the normalized transfer factor �Œwv; z

iso
v �. Therefore, taking the

product of the local endoscopic character relations [12, (4.3)] at all places, we haveX
�2…'

h�; siiso tr�
�
f .g/dg

�
D

X
� 02…'0

tr�
�
f 0.h/dh

�
and since distributions f .g/dg as above separate elements of …' this shows that h�; siiso

does not depend on any choice, and by functoriality of global transfer factors invariant
under translation of s by Z. yG/� .

Independence of  : Note first that we can replace  by  ı Ad.g/ and ziso by
g�1ziso�.g/ for any g 2G�. xF /without changing the numbers h�v; s�iziso

v
. Let 0 WG�!

G be another inner twist. Consider the automorphism � D �1 ı 0 ofG�. Changing by
 ı Ad.g/ if necessary we may assume that � fixes an F -pinning of G�. For any � 2 �
the automorphism ��1�.�/ is inner and fixes an F -pinning, hence trivial, and we con-
clude that � is defined over F . Thus replacing  by  0 D  ı � has the effect of replacing
L by L ı L� , '� by L� ı '�, and s� by L�.s�/. The functoriality of the refined local
Langlands conjecture [13, Appendix A] implies that h�v; s�iziso

v
remains unchanged.

We thus obtain a function h�;�iiso on �' DC'=Z. yG/
� that depends only on the Lang-

lands parameter '. The conjectural multiplicity formula [16, (12.3)] can now be stated
using that function.

4.7. Comparison between the global pairings

In the last subsection we defined the pairing h�;�iiso under the assumptions that G has
connected center and satisfies the Hasse principle, using the cohomology of E iso. On the
other hand, in [11, Section 4.5] we defined a pairing h�;�i without assumptions on G,
using the cohomology of E rig. In [11, Section 4.5] we did not discuss the independence of
the pairing defined in [11, Proposition 4.5.2] of the choice of . The proof of Lemma 4.6.1
applies verbatim to the rigid version, and the following proposition follows.

Proposition 4.7.1. Assume that the connected reductive group G has connected center
and satisfies the Hasse principle. Then the pairings h�; �iiso and h�; �i are equal.

Using the Galois gerbe Emid
PV

introduced in this paper, we can obtain a finer comparison
result. Namely, we can see how the local pairings are related at each place v. This also
implies Proposition 4.7.1, as follows.

Alternate proof of Proposition 4.7.1. By Corollary 3.13.13 (or Remark 3.10.3) we can
choose zmid 2 Z1.Emid

PV
; Z.G�/! G�/ lifting ziso. Up to pre-composing  with an inner

automorphism of G�
xF

we can assume that there exists a maximal torus T � of G� such
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that zmid 2 Z1.Emid
PV
; Z.G�/! T �/. Let .�;�/ 2 Y mid.Z.G�/! T �/ be its linear alge-

braic description given by Proposition 3.13.10 and Corollary 3.13.11. Thus there is a
finite level .E;S; PSE / such that � 2 Y ŒSE �0=IY ŒSE �0 and � 2 .Mmid

E; PSE
˝X�.Z.G

�///�

satisfy
P
�2�E=F

�.�.��1w// D
P
� �.�; w/. Note that � depends only on zmidjT mid 2

HomF .T mid; Z.G�// and is thus independent of the choice of T �.
Let Ns 2 �' . Choose a semi-simple lift s 2 C' and furthermore a lift Ps 2 SC' . We use

the images ziso 2 Z1bas.E
iso; G�/ and zrig 2 Z1.E rig; G�/ of zmid and a global Whittaker

datum w for G� to write as products over all places the complex numbers h�; Nsiiso DQ
vh�v; si v ;ziso ;wv and h�; Nsirig D

Q
vh�v; Psi v ;zrig;wv

.
By Lemma 4.8.1 below we have

h�; Nsiiso � h�; Nsi
�1
rig D

Y
v2V

h�v; Psi;

where for each place v the localization �v 2 X�.Z.G�//˝Q of � is given by �.1; Pv/ if
v 2 S and equals 0 if v … S , according to Proposition 3.13.14. We are thus pairing Ps withP
Pv2 PSE

�.1; Pv/ D
P
w2SE

�.1;w/ D 0.

4.8. Comparison between local pairings

In this subsection we will compare the pairings between the local compound L-packet of
a tempered Langlands parameter and the centralizer of that parameter that are guaranteed
to exist by the isocrystal and rigid versions of the refined local Langlands correspondence.
Let G be a connected reductive group defined over a local field F , G� its quasi-split
inner form,  W G� ! G an inner twist, ' W LF ! LG a tempered Langlands parameter.
These local pairings are normalized by choices of elements ziso 2Z1bas.E

iso;G�/ and zrig 2

Z1bas.E
rig; G�/ that lift the element  �1�. / 2 Z1.�;G�ad/, and of a Whittaker datum w

for G�.
When ziso 7! zrig under the comparison homomorphism [12, (3.14)] the two pairings

were compared in [12, Section 4.2]. The global setting of Proposition 4.7.1 imposes a
different relationship between ziso and zrig – they are the images of a an element zmid

under the maps ciso and cmid, respectively. Thus we will now combine the results of [12,
Section 4.2] with the analysis of the non-commutativity of (1.0.1) that was quantified in
Corollary 3.13.7.

Choose an arbitrary maximal torus S �G� such that the class of zmid is in the image of
H 1.Emid;Z.G�/! S/! H 1.Emid;Z.G�/! G�/. Let .�;�/ 2 Y mid denote the Tate–
Nakayama element corresponding to Œzmid� under the isomorphism of Proposition 3.13.3.
Thus � 2 Y� , � 2 Y ˝Q, andN \.�/D N \.�/. Since zmid sends T mid into C WD Z.G�/,
we have � 2 X�.C /˝Q � Y ˝Q, and this is independent of the choice of S .

Denote by p W yG ! yC the surjection dual to C � G.

Lemma 4.8.1. For any semi-simple element Ps 2 SC' and � 2 …'.G/ we have

h�; si ;ziso;w D
˝
�; p.Ps/

˛
h�; Psi ;zrig;w:

where p.Ps/ is the image of Ps in Œ yxC �C.
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Proof. In the proof we suppress  and w from the notation since they are fixed. The
local pairings are conjectural. However, we know from [12, Section 4.2] that the following
identity is implied by the assumed validity of the isocrystal and rigid versions of the refined
local Langlands conjecture:

h�; tiziso D h�; Psixrig ;

where t 2 S' is equal to the image of Ps under the map �0.SC' /! S' of [12, (4.7)], and xrig

is the image of ziso under the map Z1bas.E
iso; G�/! Z1bas.E

rig; G�/ of [12, (3.14)]. This
reduces the question to comparing h�; tiziso with h�; siziso and h�; Psixrig with h�; Psizrig .

For the first comparison, we use the notation of [12, Section 4.2] and represent Ps
as .asc; .bn/n/ with asc 2 yGsc and bn 2 Z. yG/ı, b

m=n
m D bn. Then s D aderb1 while t D

aderb1NE=F .bŒE WF �/
�1 for E any finite Galois extension of F such that � xF =E acts triv-

ially on Z. yG/. Thus h�; siziso D h�; tiziso � h�;NE=F .bŒE WF �/iziso . Now NE=F .bŒE WF �/ 2

Z. yG/ı;� , and the restriction of h�;�iziso toZ. yG/� is the character hŒziso�;�i, so we obtain

h�; siziso D h�; tiziso �
˝
Œziso�; NE=F .bŒE WF �/

˛
:

For the second comparison, we remind ourselves that zrig is pulled back from zmid via

1 // T rig //

��

E rig //

��

� // 1

1 // T mid // Emid // � // 1

while xrig is pulled back from zmid via

1 // T rig //

��

E rig //

��

� // 1

1 // T iso //

��

E iso //

��

� // 1

1 // T mid // Emid // � // 1

Since the maps on � are all the identity, both zrig and xrig map to the same element of
Z1.�;G�ad/, so their difference xrig=zrig lies inZ1.E rig;Z.G�//, and in fact inZ1.E rig;Z/

for some finite Z � Z.G�/. Then we have

h�; Psixrig D
˝
xrig=zrig; .�d/Ps

˛
h�; Psizrig D

˝
xrig=zrig; p.Ps/

˛
h�; Psizrig :

The first equality is due to [12, Lemma 6.2], where d W SC' !Z1.�; yZ/ is the differential,
and we are using the pairing Z1.�; yZ/˝H 1.E rig; Z/! C� of [12, Section 6.2]. The
second equality is due to the commutative diagrams (6.1) and (6.2) in [12], applied to the
torus C D Z.G�/, and we are using the pairing between H 1.E rig; C / and �0.Œ yxC �C/.



T. Kaletha and O. Taïbi 824

We now combine the comparisons and arrive at

h�; siziso D
˝
Œziso�; NE=F .bŒE WF �/

˛˝
xrig=zrig; p.Ps/

˛
h�; Psizrig :

Recall the Tate–Nakayama element .�;�/ corresponding to zmid. We can see � 2 Y� as an
element ofX�. yS�/, which via restriction toZ. yG/� maps to Œziso�. Form>0 a sufficiently
divisible integer we have that NE=F � D NE=F� belongs to m�1X�.C /, and so˝

Œziso�; NE=F .bŒE WF �/
˛
D hNE=F �; bŒE WF �i D

˝
mNE=F�; p.bmŒE WF �/

˛
where we have used the isogeny pj

Z. yG/0
W Z. yG/0 ! yC .

Consider now the factor hxrig=zrig; p.Ps/i. According to Corollary 3.13.7 it equals
h��N \.�/;p.Ps/i. To evaluate this pairing, choose an integer n > 0 divisible bymŒE W F �
so that � 2 n�1X�.C /. Note that N \.�/ 2 n�1X�.C / also. Then hxrig=zrig; p.Ps/i D

hn.� �N \.�//; p.bn/i. We have˝
nN \.�/; p.bn/

˛
D
˝
mNE=F .�/; bmŒE WF �

˛
:

Thus
h�; siziso D h�; Psih�; Psizrig

and the lemma is proved.
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