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Global regularity of 2D Navier-Stokes free boundary
with small viscosity contrast

Francisco Gancedo and Eduardo Garcia-Juarez

Abstract. This paper studies the dynamics of two incompressible immiscible fluids in two dimen-
sions modeled by the inhomogeneous Navier—Stokes equations. We prove that if initially the vis-
cosity contrast is small then there is global-in-time regularity. This result has been proved recently
in Paicu and Zhang [Comm. Math. Phys. 376 (2020)] for H 5/2 Sobolev regularity of the inter-
face. Here we provide a new approach which allows us to obtain preservation of the natural C 117
Holder regularity of the interface for all 0 < y < 1. Our proof is direct and allows for low Sobolev
regularity of the initial velocity without any extra technicalities. It uses new quantitative harmonic
analysis bounds for C¥ norms of even singular integral operators on characteristic functions of
C 117 domains [Gancedo and Garcia-Judrez, J. Funct. Anal. 283 (2022)].

1. Introduction

In this paper we consider incompressible flows in the whole space R?,
V.ou=0, 1.1

of inhomogeneous fluids
dp+u-Vp=0, (1.2)

driven by the Navier—Stokes equations
pDiu =V .- (uDu —1,P). (INS)

Above, u, p, u and P are the velocity field, the density, viscosity and pressure of the
fluids. The operator D, is the total derivative

Diu = 0u+u-Vu,
the tensor Du denotes the symmetric part of the gradient

Du = Vu + Vu*, ]D),ju = 3,'1/!]' + Z)ju,-,
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and I, is the identity matrix in R2. The viscosity depends smoothly on the density, yu =
[L(p) with ft smooth, so that in particular it is also preserved along trajectories,

dp+u-Vu =0. (1.3)

We deal with a moving fluid occupying a bounded domain D () C R? and a second fluid
occupying the complement of it D(t)¢ = R?\ D(t). They evolve with the velocity field
through the particle trajectories

dX
E(yvl) = M(X(y,l),l),
X(».0)=y.

The fluids are immiscible, having different characteristics, principally different densities
and viscosities, so that

(1.4)

(Min,pin,ﬂin, Pi")(x,t), x e D(l),

N 1.5
(uout’pout”uout’ POU[)(X,[), x e D([)c — RZ \ D([) ( )

wmwm@ﬂ={

A main interest is the dynamics and the regularity of the common boundary between
the fluids dD(¢). The system is assumed to have initial finite kinetic energy

/ p(x, 0)u(x, 0)2dx < oo,
RZ

providing the physically relevant scenario. The classical free boundary physical conditions
without capillarity [15],

[u] = 0 on aD(¢), (1.6)
[uDu — I, Pn = 0 on 0D(¢), 1.7)

are recovered by considering equations (1.1)-(1.3) in a weak sense, together with the
regularity obtained for the solution [20].

1.1. Previous results

Free boundary Navier—Stokes problems have a long history in mathematical science.
The one-fluid case (vacuum—fluid interaction where u®" = 0 = p°) was first consid-
ered, where global-in-time existence with gravity for near planar initial data was proved.
Recently, low-regularity results for inhomogeneous Navier—Stokes equations in the whole
space have given new approaches for the two-fluid case (fluid—fluid interaction). They con-
sider u > 0, giving global regularity for different scenarios. We describe first the classical
vacuum—fluid case and later the fluid—fluid interaction.

The first study of the free boundary Navier—Stokes equations goes back to [37], where
fluid—vacuum interaction was studied for closed contours with no gravity (g = 0) using
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Holder spaces with the appropriate parabolic scale [38,39]. Local well-posedness in Sobo-
lev spaces was given next for the horizontally flat geometry, where the fluid lies essentially
on top of a fixed bottom with nonslip boundary condition and below vacuum [2]. See [1]
for similar results in L? Sobolev spaces.

The long time behavior of solutions was studied in [2], giving existence up to time 7’
depending on the size of the initial, near horizontally flat, data. The first global-in-time
existence result for small initial data was given for the surface tension case [3]. This result
was extended to the case without surface tension [40,41]. After those results, sharp decay
rates of the solution were given in the case of surface tension for asymptotically flat [4]
and horizontally periodic geometries [32]. More recently, the results were extended with
different approaches without the help of surface tension for both geometries [22,23]. See
the recent paper [10], where global well-posedness is shown for this free boundary value
problem with the initial domain the half-space and the initial velocity small with respect
to a scaling-invariant norm. Contrarily, large size initial data produce finite-time singular-
ities. The Navier—Stokes free boundary blows up in finite time for the two-dimensional
vacuum—fluid interaction case [7]. The result considers closed contours producing splash
singularities (particle collision on the evolving boundary) in finite time. See [9] for the
extension of the blow-up to the three-dimensional case.

The techniques in [37] were extended to the case of two fluids to study the global-
in-time well-posedness of problems for small initial velocity [16]. See [35], where the
low-regularity case is considered. In [42], decay estimates are obtained for the internal
waves case with gravity.

A different approach to studying the interface evolution between immiscible fluids
is to use inhomogeneous Navier—Stokes for low-regularity solutions. Parabolicity can be
exploited to gain enough regularity for the velocity in the two-fluid case even when the
functions defining the fluid properties are given as in (1.5). The approaches with no vis-
cosity jump (u = 1) are explained first. In two dimensions, there is global regularity for
the system (1.1)—(1.2)—(INS) for general smooth positive initial density [27]. In the three-
dimensional case, global regularity for large initial data is open as it contains Navier—
Stokes as a particular case [18]. If 0 < p(x,0) € L™ is allowed and /p(x,0)u(x,0) €
L?(R%), d = 2,3, there exist global-in-time weak solutions satisfying

/,o(x,t)|u(x,t)|2dx+2/t/|Vu(x,s)|2dxds < /p(x,O)lu(x,0)|2dx,
0

with p € L®((0, T) x R?), pu € L*®(0, T; L2(R?)) and u € L2(0, T; H'(R%)) [36].
Throughout the paper, we will use the convention that spaces with a dot denote their homo-
geneous counterpart. Considering fluids of different constant densities, domains evolving
by the fluid velocity were proved to preserve their volume [31]. On the other hand, the
propagation of regularity for the free boundary dD(¢) was proposed as a challenging open
question in the same book (1996, P. L. Lions’ density patch problem).

Recently, global regularity results in two dimensions, and with smallness assumptions
in three dimensions, have been obtained for low-regularity positive density and constant
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viscosity. Global well-posedness was shown for initial discontinuous densities with suffi-
ciently small jumps and small initial velocities [11, 12]. The case of more regular velocity
was considered in [25]. Finally, in [34] the smallness conditions of the density jump were
removed. After the results above, global-in-time regularity for fluids of different den-
sities (density patch problem) has been studied. Persistence of C2"7 regularity of the
free boundary results was shown in two dimensions for 0 < y < 1, using paradifferential
calculus and striated regularity techniques. The works consider positive densities with a
small jump first [29] and later without the smallness assumption [30]. Using the approach
in [11], propagation of C!*7 regularity was given for a small density jump and small
initial velocity [14]. The size restriction was removed in [20], providing global-in-time
regularity for C!*7 two-dimensional contours. This approach does not use paradifferen-
tial calculus but bootstrapping arguments, getting propagation of regularity from weak
solutions to C'*7. It uses an elliptic approach inspired by previous results obtained for
two-dimensional Boussinesq temperature fronts [19]. See [28] for the three-dimensional
extension with high regularity and smallness in velocity and density jump. In the bounded
or periodic case, a new approach has been used to allow the case of possibly vanishing
density, with no restriction on the jump size, no gravity and constant viscosity [13]. In this
density-zero scenario, the interface evolution would be driven by a Stokes/Navier—Stokes
interaction, dealing with a linear Stokes flow for one of the fluids.

For the more singular case of variable viscosity, with density merely bounded, under
the additional assumptions that uy € H'(T?) and sufficiently small viscosity variation
in L, the weak solutions constructed in [31] satisfy that u € L>®(0, T; H'), A PU; €
L2(0,T;L?), p, € L%°(0,T; L) forall T > 0[17]. However, uniqueness and regularity
of these solutions was not known, unless the initial density and viscosity satisfy certain
smoothness (at least slightly more than continuity, see [6] and the references therein).
Recently, [33] global-in-time regularity for positive density and small viscosity jump is
obtained in R? under the additional assumption of certain striated regularity for the initial
viscosity. In particular, they showed global-in-time propagation of the H>/? regularity of
the moving interface for the density and viscosity patch problem. The strategy of the proof
uses paradifferential calculus together with striated regularity estimates. The approach is
in the spirit of the global regularity result for the two-dimensional vortex patch problem
shown in [8].

Main result

In this paper we prove global-in-time well-posedness for the two-dimensional density and
viscosity patch problem. We study the evolution of two fluids with different densities and
viscosities evolving according to inhomogeneous Navier—Stokes (1.1)—(1.3). The initial
density and viscosity functions are bounded from below and from above as follows:

0<p™ <po(x) <pM. 0<pu™ < po(x) <uM.
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The initial interface between the fluids is assumed to be a closed C'*7 regular curve in
the plane. Specifically, we prove the following result.

Theorem 1.1. Let Dy C R? be a bounded domain whose boundary dDg is non-self-
intersecting and of class C'77,0 <y < 1. Let pif € C7(Dy), o™ € CY(R?\ Do), with
Pt — p>°, where p>° € Ry, and . = fi(p) with L smooth. Let the initial density be given
by

po(x) = pg (x)1p, (x) + p§" (x) 1 pg (x) > O,

where 1p, is the characteristic function of Dy, and let ug € L™ N HYTe 0<e< min{y,

l—-y}<ll<r< min{ﬁ, %} be a divergence-free vector field. Then there exists

8 > 0 such that if

w4+ pM
> ,

there exists a unique global solution (u, p, ) of (1.1)=(1.3) with u(x,0) = ug(x),

p(x,0) = po(x) and u(x,0) = po(x) such that

Hl —%Hm <8, withfi = (1.8)

ue CRyH™)NLI R W) N LY Ry CH(D(1) U CHY(R?\ D(1))),
0D € CRy;C1Y),

where D(t) = X(Dy,t), with X the particle trajectories (1.4) associated to the velocity
field and

,O(X,l) = pin(x’t)lD(t)(x) + pom(xvt)lD(t)c(x)’ IO(X(y’t)’t) = IOO(y)

Moreover, for any t > 0,

t
I /AulZ2 () + /0 | JAEDuZ, dt < || /Aouo| .
t
e V2, + / 7= JBD s < C(ll/Fauole, 1™, a™ . )luol?,, ..
0

t
78| Doullz, +/0 PV D w7 < ClVpouollL2, a™ a8 uo 3, .

and , .
[ 19l e+ [ 19lenompuermn e 47 < €.
0 0

with C = C(a™, llaollcy (py)ncr ®2\poy: 18™" —a*llL2. 8. luollLr. luoll gry+e), and a =
p. L.

Given that & = fi(p), throughout the paper we will use the notation u™™ = fi(p™),

pot = a(p™), u> = [a(p>), and we will have u(X(y,1),1) = po(y) = [i(po(y)), and
therefore

p(x.1) = p"(x. 0)1pey (x) + ™ (x, 1) 1pge (x).
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The first part of the proof consists in getting a priori estimates which are sharp in Sobolev
regularity for the initial velocity to propagate C ! regularity. This is achieved by intro-
ducing time weights and interpolation. Then a key step in the proof will be to obtain the
L'-in-time Lipschitz-in-space estimate for the velocity. This is difficult as the gradient of
the velocity is given implicitly by a higher-order Riesz transform applied to a discontinu-
ous function on the moving interface. That is, this function depends itself on the gradient
of the velocity multiplied by the viscosity jump scalar (2.34). We will overcome this diffi-
culty by propagating further regularity on each domain separately. As part of the argument,
we will use the following new quantitative estimate. Consider higher-order Riesz trans-
form operators of even order 2/, [ > 1, given by

R(/)(x) = lim e K(x =y)f(y)dy, (1.9)
x—y|>¢
h
where o Par() o
(x) = NEER (1.10)

and P,;(x) is a homogeneous polynomial of degree 2/ in R%. Then we have the following
result.

Theorem 1.2 ([21]). Assume D C R? is a bounded domain of class C177, 0 < y < 1.
Then the Calderon—Zygmund operator (1.9) with kernel (1.10) applied to the characteris-
tic function of D, 1p, defines a piecewise C? function,

R(1p) € C7(D) U CY(R?\ D).
Moreover, it satisfies the bound

IRAD)erprocr@py < CPUDI + 1D Iup) I Dl iy -

Above, || - ||« measures the arc-chord condition of the boundary of the domain, || - ||Lip
is the Lipschitz norm, | - || &1+, is the homogeneous Holder norm and & is a polynomial
function. If we denote y(«), o € [0,27) = T, the parametrization of the boundary 9D,
these quantities are defined as follows

la — Bl
Dl = _
1Pl = s @ =y @)l
_ |y (@) — y(B)]
D Lip = jl;él; B
o |y () = y'(B)]
IDll¢14o = 5171&% B T

Remark 1.3. By the boundary condition (1.7), one cannot expect to obtain global-in-
space further regularity than Vu € L% (R?). Indeed, if we denote by 7 and # the tangent
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and normal vectors to the boundary, we have

[pn -Du-n] = [P],

D;ju — Pdijn; =0 =
LDy uln; {[/M-]D)u-n]] =0;

thus, if Vu were continuous, then we would obtain [u] = 0.

Outline of the paper. The rest of the paper is structured as follows. The proof of the main
Theorem 1.1 is divided into existence and uniqueness. For the existence, we proceed to
obtain the necessary a priori estimates. We separate the process into six steps, bootstrap-
ping the regularity obtained from one to the next. Steps 1-3 consist of energy estimates
with time weights, which allow us to obtain high regularity for the velocity despite the
low regularity of the density, viscosity and initial velocity. Step 4 bounds the crucial L!-
in-time Lipschitz regularity of the velocity in terms of the higher Holder regularity on
each side, which is studied in Step 5. The previous steps are combined with quantitative
estimates of even singular integral operators acting on C 77 domains in Step 6. This con-
cludes the proof of existence. Next, the uniqueness of solutions is shown. The proof is
done in Lagrangian variables, due to the discontinuity jumps of the density and viscosity
across the fluid interface.

2. Proof of Theorem 1.1

2.1. Existence

The proof of existence follows a standard mollifier and compactness argument (see e.g.
[13,33]). Once the initial data are smoothed out, we show the a priori estimates for the
corresponding unique smooth solution. The L !-in-time Lipschitz-in-space estimate for the
velocity implies that the solution exists globally in time. The fact that all these estimates
will be uniform in the mollifying parameter gives the necessary compactness to pass to
the limit. We proceed to obtain the a priori estimates.

Step 1: /pu € L*®(0,T;L?), /uDu € L?(0,T; L?).
We first obtain the L? energy balance

1d
sar el dx == [ty @ + b d
24t Jo o PO -

1
=2 [ (@ + Gaua)? + 5@z + 01 )?) dix
- 2

1
—3 I /D] .

which after integration in time reads

t
I /AullZ. (1) + /0 | /ADul22(2) d= < || /Bouol . @1
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1—y—¢ 1-y—¢
Step2: ¢t 2 Vu e L®(0,T;L?),t 2 D,ue L0, T;L?).
To obtain the result with low-regularity initial data, we use an interpolation argument
and time-weighted energy estimates [34]. Consider the linearized problem

p(v; +u-Vv)=V.(uDv -1, P),
pr = —u-Vp.

It holds that ;
I/Avl2a () + /0 | EDY|2 () dt < | /AovollZs. 2.2)

Next we take the inner product of (INS) with D;v := v, 4+ u - Vv and then integrate by
parts to obtain

/ o|Dv|*dx = —[ 0j Dsv; (uD;jv — Pd;;) dx.
R2 R2

By the commutator
[Dt, aj]f = —8]'1/[ . Vf

and the incompressibility condition, it follows that
/ p|Dv|* dx
R2
= _/Rz D;0;v;(uD;jv — Péj) dx — /Rz Uk g vi (WD v — P8;j) dx
= —/ Dydjv;iuDjjv dx —/ 0juk Ik vi (uDjjv — P8;;) dx.
R2 R2

Noticing that D, = 0, we introduce a time weight ¢ followed by integration in time,

t

t
SIVADUE 0+ [ ol /aDw (o ds
1 t t
= —/ ||ﬂ1D)v||iz dt —/ r[ wojurdxviDijvdxdr
2 Jo o Jr2
t
+/ ‘L’/ djupdrv; Pdxdr. 2.3)
0 R2
We take the divergence of (INS) to obtain the following expression for the pressure:
P =(=A)"'V.(pD;v) =V V- (=A)"(uDv). (2.4)
Substituting (2.4) in (2.3) we have

t t
SIVADUE 0+ [ el VDl dr

1 t
=5 [ WD dr 1+ b I 2.5)
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where ,
I = —/ ‘L’/ wojurdrv;Djjvdx dr,
0 R?2

t
12=/ r/ 0updxvi (—A) "IV - (pD;v) dx d,
o Jr2

t
I3 = _/ Tf Jiupdv; V-V - (=A) " (uDv) dx d.
o Jr2

We need estimates for the gradient of v in terms of D,v. Notice that the following identity
holds:
V. (uDv) = jiAv + V- (uDv — aDv),

where /i can be taken as i = (u™ + p™)/2. Then

Vo = LVA-IPY . (uDv) — VA~ PV - ((E - 1)1D>v),

m

where P denotes the Leray projector,
Pf=f—-VAlV.f

Therefore, given condition (1.8), the boundedness of singular integrals in L7, 1 < g < oo,
gives

2
l—y—¢ y—s¢

IVollzr < @) IVATPY - (uDv) s, 2 < p < max] bo@e

Applying the Leray projector to (INS) we find the relationship between Du and D, u:
P(pD;v) =PV - (uDv). 2.7

Recalling the following Gagliardo—Nirenberg inequality in R2,

2 1-2
Ifllee = cll fULNV f N7 (2.3)

followed by (2.7), one can find from (2.6) that

1— 2

2 B 2 2 1—
IVollLr < @Dl /> IVVATIP(pD)ll. " < c@) Dol llpDevll, " (2.9)

In particular,
IVolize < @Dl llpD o] (2.10)
Thus, the terms /; and /3 are readily bounded as

t

L+ 15 < 6/ t[Vul 2 Vo4 Dol s d T
0

[ t
< Z/o f||x/5Dtv||izdt+c(8)/; || Vull2, | D2, d.
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Then, denoting by J#! the Hardy space, we get for I, (2.5) the estimate

t
I = C/ )13 g vi | ger [ (=2) "'V - (0D v)lpmo d .
0

Since for each i the term 0;u - Vv; is the product of a divergence-free function and a
curl-free one, we can apply the div-curl lemma to get

0iurdxvillger < ClIVullL2[Vo| L2,

which together with the embedding H! < BMO gives

t
I <c / oI Vullz2 Vol 2 oD vll2 d e
0

1 t t
<5 [ alvEpoitar+e [ avuitipol de
0 0

Therefore, we have that (2.5) becomes
t

r||¢ﬁm>v||iz(r)+/o T /AD v IRa(r) d

t
< 1ol + e ) [ el VADuIE | Dl d.

Gronwall’s lemma followed by (2.1) yields the balance

t
t]viDvllz +/0 tllV/pDrvl|72 (1) dT < c(u™, 8, [|/porollL2) | V/Povollz2-  (2.11)

We can repeat the steps above without the time weight to obtain

t
| JADYIZ: + [0 IVADv 120 dT < (™, 5, | /Pottoll2) /o Dvo 25 (2.12)

Thus, the linear operator Tvg = Vv satisfies the bounds ||Tvgllz2 < ¢||Vvellz2 and
| Tvollz2 < ct™2 llvollz2, and hence we conclude that

—1+y+e

IVullLz < e(u™. 8, lloouollL2)t ™2 llvoll gy

Using Stein’s interpolation theorem similarly to [34] for the terms with time integrals, we
close the balance in HY 1,

t
Va2 + [ 7| oD Pa(r) d T
0

< (™8, [ /porollL2)lluol?, .- (2.13)

Notice that we can combine (2.11) and (2.13) to obtain
t
max{t! 777, t}||Vu||]242 + / max{t!7V7¢ 1} \/ﬁDtquz(r) dt <C. (2.14)
0

We will need further time decay. We use the following theorem:
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Theorem 2.1 ([24]). For 1 <r <2, and 0 <a < 1, letug € L" N H%, ag —a™ € L?
and 0 < a™ < ag € L*® with a = p, i. Then, under the assumption of small viscosity
contrast, the inhomogeneous Navier—Stokes with initial data (po, Lo, Uo) has a global
weak solution and there exists a constant Cy which depends on ||po — p=||2, |[uollLr
and ||\ug ||, such that there hold

—2
lu@)l7> < Calt + )77+,

IVu(@)|2, < Calt +¢)7 %,

[T o s + 1 avpwl
+ [|(Iz = P) div(uDu) — VP |7, dt < Co,
withany 0 < e < 1and0 < k < «.
Notice that by (2.9) and Young’s inequality we have
IDulZ> < clurlZ + lullZ2 1 Vullzs).

Hence by (2.13), the estimates in Theorem 2.1 above and (2.1) it is possible to get
¢
/ max{t' "¢, t 7~} Dyu|3,(r) dT < C,
0

with C = C(a™,aM, |ag — a®® |12, 8. |uollLr» ol zv+e)- Thus, since 2/r —e > 1, we
can improve (2.14) for large times,

t
max{t' 7778 17| V|2, +/ max{t' 77 ~¢, ¢ ~#}|| /pDsu| 2, (x) dT < C. (2.15)
0

Step 3: 112" Du € L®(0,T; L?), '~ 2"VDu € L2(0,T; L?),u € C(R; H'+%).
We proceed to obtain higher-regularity estimates for D;u. We take D; in (INS) and
then the inner product with D;u to obtain

D,u-thzudx = / D,u-D,V-(/L]D)u)dx—/ D;u-D;VPdx,
R2 R2 R2
which after multiplication by the time weight 1277 ~¢ gives

1 d 2—y— 2
- — € p|lD dx
2 dt (t /1;2 | tul

2—y—c¢
= L=t pD s + L+ Is + L. (2.16)

with
1y = t2—y—s/ Dtuiath(/,L]D)iju) dx,
]RZ
Is = —tz_y_“"/ Dyu; 0jurdr (uDjju) dx,
R2

16 = —lz_y_S/ Dtu . DtvP dx.
R2
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Integration by parts in /4 provides that

Iy = —tz_y_g/ i DsuipuDDjjudx
R2
= —[2_)’_6/ athu,'/,L(athui + a,'D,uj)dx
R2

+ zz_y_af 3 Doui p(9ju dgu; + diugdguy) dx
R2

2—y—¢
< —

=-— /D Dyull7, + 26277 7¢ | uD Deull 2 | Vul 74,

which by (2.10) (taking v equal to u) gives

2—y—e¢
4
Integration by parts in term /5 yields

Iy = — IV/rD Deull72 + c(@)> =8| uDullzl|pDeul|7.

Is < 2uM 2778 |V Doutl| 2| Ve |-

The identity
O fi = O AT Dy f — V- AT1OR0; f
and the fact that
V-Du=Vu-Vu,
imply that

IVDwul. = IDDeull7> + Vi - Vul7,.
Therefore, applying Young’s inequality we obtain
2—y—e
Is < 3
s0, using (2.10) again, we have

IVEDD w2, + c(u™) 2™ || Vul ..

2—y—¢
g IVED D72 + c(u™, 8)e> 7 ~* | uDul . llpDeull3

For the I¢ term, we first split it as

Is+ 15 < —

I :—tz_”_""/ Du-VD;P dx—tz_”_S/ Du;0;updi P dx
R2 R2

=J1+J2.

1330

2.17)

(2.18)

We proceed with J, first. We substitute expression (2.4) for the pressure and integrate by

parts to obtain
J = zZ—H/ O Dyu; djup (—A)"'V .V . (uDu) dx
R2
—tz_y_g/ Duidiugdp (—A)"IV - (oD yu) dx
R2

= K; + K>.
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The first term K is bounded as the previous term /5,

t2—y—£
K, <
64

IVED D72 + c(u™, 8)e> 7 =8 | uDu| 2 llpDeull7
For the second one, we integrate by parts twice to get
Ky =1t>777¢ /1;2 0;u puug 0k (—A) 1V - (pDu) dx
— e /Rz Ok Duiugd; (—=A)"'V - (pDyu) dx.
Then,
Kz < et 7 75(|VulZallullLsllpDeull s + 1V Dol L2 lullallpDeul L),
s0, using (2.8) and (2.10) repeatedly, we can bound it by

3 1 3 1
K> < e (IDeull £, IV Dol 71Vl £ lull 7

3 1 1 1
+ VDl 21Dl ul 75 1 Vullf)

1331

(2.19)

2—y—e¢ 2
<~ IWED Dl + (™ )7 U Dl Fa I VullFa (lull > + 7).
thus
2—y—¢
Ja < VD D72 4 c(u™, 8)7 | Dyull7, | Vul 7.

- 32

We proceed with J; (2.18). After integration by parts, the term J; can be written as

J1 = [2—)/—6/ Oijuroru; Dy P dx
R2

d
= _(tz—y—e 0jupdru; P dx) —[2_7_8/ D;(0;urdru;)P dx
dt R2 R2
-Q2-y-— e)tl_"_sf djugdgu; P dx
R2
= K3 + K4 + Ks.

Commuting the time derivative, the term K4 is given by

K4 = —2[2_y_8/ 0; Dsuydpu; P dx + 212_1/_8/ 0iu;0jupdxu; P dx
R2 R2
=L+ Ls.

The term L is bounded as J, (2.18),

[2—]/—8
Ly =<
64

IVADDeul7 + c(u™, )67 ~¢ | Doullzo | Vul 7.

(2.20)

2.21)
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Next we substitute the pressure (2.4) in L, to obtain
Ly < ct®> V78| Vu|f, +202777F /Rz diuj0jupdpu; (—A) 'V - (pDyu) dx.
Then we note that by integrating by parts twice, the second term can be written as

2 /];{2 diu;0jugdgui (—=A) "'V - (pDu) dx

[2—]/—8

[ Oguj 3juku,-8,-(—A)_1V -(pDsu) dx,
R2

and therefore it is bounded as the first term in K, above. We conclude that

t2r e o s
Ly=—¢ | VD Deul2, + (™, ) = | Do) [ Vae |22 (1 + [lu]l ).
and thus
t2-r—e 5 . e , .
Ki=—3 VD Deullz, + c(u™, 8)t D711 Vul7 .. (2.22)

Substitution of expression (2.4) for the pressure in K5 (2.20) and integration by parts gives
Ks=Q2—y—ept7re /RZ diurdpu; V- V- (—=A)" L (uDv) dx
+ @y =o' [ D (2)1V (oD d
so using (2.10), (2.8),

3 1
Ks < )" (|Vull72lpDsull 2 + llpDoull 2, | Vull 2wl 22)
<@t TE(lpDul1Z, + |Vullfa (1 + [ul2,))
<c® " (I/pDeulz + [ Vull7,). (2.23)

Going back to (2.20), bounds (2.22) and (2.23) provide

d o tz—y—s
J1 < E(IZ 4 S/RZ diug dgu; P dX) +—53 I /D Dul7,

+ (™, )PV E D7 IVullZ 2 4+ (@) (| Deull7 . + [ Vull7,).
Recalling the bound for J, (2.19), we obtain, for I (2.18),

d 2—y—¢ [2—]/—8 2
Ie < —|1t Ojudgu; P dx | + VD Dull7,
dt R2 16

(™ O Dul 22 I VulZ + @) T (1 DaullZ, + [ Vullzz). (2.24)
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Finally, we go back to the balance (2.16) with (2.17) and (2.24):

d 2—y—¢ 2 tz—)’—a 2
(e [ oDl dx) + =1 yED DI,
dt R2 8
< @D + [Vulds) + cu™ )~ [VulZa Dol

d
+ —(12_"_8 8,-uk8kuide),
dt R2

and integrate in time to obtain
1 t
e [ pDaPdx+ g [ | JED Dl dr
R2 8 Jo
t
S(%pm»um,S,H¢pouoHLﬂHuoH§7+g*-C(Mm,S)[;IQ_V_EHVuHizHDtuﬂizdf

—i—tz_”_s/ 0;urdru; P dx,
R2

where we have used the previous energy estimate (2.13). Notice that the last term on the
right-hand side is like K5 (2.20) but with an additional factor of ¢ on the time weight.
Therefore, from (2.23) and (2.14), we have the bound

tz_V_s/ Ojugdru; P dx
R2
127rE
T IV/PDaul}s + @7 | Vul,
[2—)/—6 2 2 [2—1’—8
m
2 ” \/—thM”LZ + C(/’L ’ 89 ” v p0u0||L2)||u0||Hy+8 (maX{tl_y_s7 t})z 7

=

=

and thus
1 t
2r-e /ﬂ; oD dx + 5 [ DDl de
0

t
< c(u™.8) /0 2|V | Dyul2, d v

+c(™ 1™ 8, | /porollL2) luoll 3y, 4. (1 min{e? T2, 17775},

Gronwall’s lemma then allows us to conclude that
t
12_"_5||Dtu||]2d2 +/ 12_"_8||VDtu||]2d2 dt
0
< c(p™ W™ 8. lIV/pouollL2) luol 3y, - (2.25)

Repeating the steps but with the weight 17 ¢in (2.16) and using (2.15) instead of (2.14),
it is analogous to check that the following balance also holds:

t
D2, + / PV Dul2, d < C. (226)
0
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and hence
t
max{r>7 %, (8 D2, +/ max{r>77 %, Y| VD2, dT < C, (2.27)
0

where C = C(a™,a™ ,||ag —a®| 2.8, |uollLr. |uoll grr+e), @ = p. ju. Next, to show that
u € C(Ry; H”T¢), we write (INS) as a forced heat equation,
ur — Au = —P(pu - Vu) + P((1 — pu;) + PV - ((n — 1)Du),

and hence the velocity is given by

=
Il

e Pug + /Ot UM (P (pu - Vu) + P((1 — p)us) + PV - ((u — HDu))(r) dt
=v1 + V2 + v3 + V4. (2.28)
Ladyzhenskaya’s inequality followed by (2.9) gives
low- Vullzz < e@lull 221 Vull 2] Dl .
so estimates (2.13) and (2.25) provide
IP(ou - Va)ll2 < c(p™. ™. 5. |lutol gryee)t ' FHOF).

Similarly,
g vEe
IP((1 = pyur)llzz < (o™, 1™ 8 Nuollgrr+e)t ™2

Hence, by Young’s inequality for convolutions and the decay properties of the heat kernel,
we obtain

10l se ey < Clitol e

llv2 + v3||L‘%°(HV+a)

! _yte i rte 144
< C(pm,/Lm,S, o |l gv+e) / (t—1) s (t 1+4 +t 1+3()/+£))
0

Ly
<c(p™ w8, luoll mv+e).

Estimate (2.13), integration by parts and the arguments above give

t
_Ityt+e 1, yte
/(t—r) >t
0

||U4||L%0(Hy+e) = C(Mm» 87 “uO”HV"'E)

Ly
<c(u™, 8, luollgr+e)-
Therefore, we conclude that
ull ooy s mr+ey < c(p™, ™, 8, ol fry+e).

The integration in time in (2.28) provides the continuity, following the estimates above.
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L?-in-time estimates

We summarize here the L? (0, T') estimates that will be needed in Steps 4 and 5. It should
be noticed that there are different constraints for short and long times. From estimate
(2.15), we get that for 2r/(2+r(1 —¢)) < p <2/2—y —¢),

! 1 g 1 p(-y—e) 2 2771)
/||Dtu||£2dr§(/ Tl—y—a||D,u||izdt) (/ = df)
0 0 0
t g t Z’Tp
([ omigad) ([ o) T
1 1

and thus

t
/ IDul?, d
0

2r 2
< C(", u™, 8, uollLr, lluoll gy+e). 2+r(—o <p< 2=y (2.29)
Similarly, we obtain from (2.27) that
t
/ ||VD,u||i2 dt
0
2
<c(p™. um.8, ||\/P0u0||L2)||M0||Zy+sv 3 <p< Epupy (2.30)

and from Theorem 2.1 we have

t

IVu@)|2 < C(t + e)_%+%, / ||Vu||{2 dt <C, 5 <p<2. (2.31)
0 —re

Additionally, we have the estimate

2r

—_— . 2.32
2—r(l—i-8)<p<Oo 2.32)

t
/ IVullzr dt < C,
0

In fact, by interpolation followed by (2.15) and (2.27),
t t 2 1-2
[ 1Vl v <o) [ 19l 1Dl e
0 0

1 t
dt dt
< C(/ — +/ —1+1_€_1) <C. (233
0 T 2 P 1 gr'2 2 »p

For clarity in notation, in Steps 4 and 5 we will suppress the dependence on the initial
data from the constants.
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Step4: Vu € L1(0,T; L™®).
We first use (2.7) to write the gradient of u as

Vi = —-VA~'PV. ((% — I)Du) + %VA_I]P’(,OD,u) =17 + I. (2.34)

We proceed first with /5. Sobolev embedding and (2.7) provide that

|5 < cIVATP(eDan)l| i 2

<c(|VATIPV. (uDw 2 +IIVVA™
thus the boundedness of singular integrals in L? followed by (2.9), (2.8), gives
15| < c@) (I Vull 2" 1Dl + 1Dl 57 [V Do} ). (2.35)

Holder’s inequality with p = m on the second term yields

1] < c@)(IVull 2" I Deull}, + IIDtulleV + VDl ),

so that (2.29)—(2.30) guarantee that the L' (0, T') norm of the last two the terms is bounded
uniformly in 7. The L!(0, T') norm of the first term is controlled by (2.33), and hence for
any r > 0,

t
/|Ig|dt§C. (2.36)
0
Next, the term 77 is given in index notation by
—1 N _ 1 _ 1 "
(VA PV (;1 I)Du)i,j 0 AT (814 — 0; A1) 0 <(u I)kau)

= (RiRbj i — RiR; RkRm)<(; - 1>]D>k ,,,u)

where § ; k denotes the Kronecker delta, R; the Riesz transform and Einstein’s summation
convention is used. Define the corresponding kernels

_1(§i5m8. B Siéj5k5m>(x)’

Ko tem () = 7 g b = g

so that

(vaT'pv. ((% - I)ID)u))i }

— [ Kigrnte =0 (2 1))

oul(

y)

+/ Ki jiem(x —y)( =
R2\D(t) 22

— 1) D (y) dy.
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In the following we shall use the notation
VA_IPV-(ID(t)Du) = / K(x —y)-Du(y)dy,
D(t)
so we have

h=[ K=y (“m;y ! 1)Du(y) dy

out
+[ K- (B2 ) Dudy = 171 + 2.
R2\D(t) "

1337

(2.37)

We focus on [7,; first. Consider first x € D(¢). In the following, whenever x € dD(t) we

will define f(x) as the limit from inside D(t). Then,

1 4 .
I71n=— K(x—y)-(u"(y) — u"(x))Du(y) dy
M JD()
in X 1n X
+(L()—1) K(x—y)- Du(y)dy—J3+< ) 1)J4.

Hn D(@) o
Therefore,
where

e< A<y
By interpolation,
A

. 12

1[1”

|J3] < cllu

and applying Young’s inequality we obtain
in
/ aldr < clp ||Lwcy(D(t)) / IDul 2 d
Y

vz A *

The last term is bounded in (2.32), thus

[ 1lde <R o + €

(2.38)

(2.39)

We proceed with J4. Without loss of generality, let ¢o(x) be a defining function for the
domain Dy, Do = {x € R? : @o(x) > 0} (see for example [26, p. 119]), and ¢(x,1) =
©o(X~1(x, 1)) the corresponding defining function for D(t). Define 5(¢) as the cut-off

radius

NS
n(0) :mm{(%)u},

(2.40)
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where we use the notation
| |mt el | ( )|

Then, we split J4 as
= K(x =) Du() + [ K(x = y) - Du(y)
D@)N{|lx—yl<n} D@)N{|x—y|=n}

= J41 + Jap.
Since the kernel K is even, the second term on the right below is bounded using [5] (see

the geometric lemma) as
/ K(x =) (u(y) = Dutx)
D@)N{lx—yl=<n}

[J41] <

K(x—y)a’y'

+ Du(x) -

D@)N{lx—yl<n}
m dr
= clVulley by = + c()IVul Lo

< clVull gy ) + ¢ I Vallzoo.

The term Jy4 » is bounded by

2—y

*® dr\ 2z —y
al =e( [ ) T Ival, g = en v, ;.

@) r2—v
Thus, joining the bounds for J4,; and J4 » we find that

sl < eIVl + | Vull gy, +en? 1Vull 3,

and going back to (2.38) with the bound (2.39) we have

A t

y—A
R v 00

v ) [ 1Vulis dr

t
A
/|17,1|drsc+8(—y )
0 Y

t t
I —y
+c/0 ||Vu||C},(D(Z))dr+c/0 n ||Vu||L% dr). (2.41)

Notice that if x ¢ D(t), we can define X as a point on the boundary with minimum distance
to x, X = argd(x,dD(t)) € dD(t). Then, by adding and subtracting
pE) = lim ()
X—>X,
xeD(t)

in (2.38) instead of pi"(x),
Du(xX) = lim Du(x)
x—>X,
xeD(t)
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for the J4,1 term instead of Du(x), and using the triangle inequality, we obtain the same
bounds for J3 and J4,;. Since the bound for J4 » holds equally for x ¢ DTI), we have that
estimate (2.41) holds for any x € R2.

The term 7 (2.37) is decomposed further: 17, = J5 + Jo, with

1 (y)
= K- - (5= D)puG) ay
R2AD)N{lx—y|>1} M

and out
K(x—y)- (“T(y) - l)]D)u(y) dy.

Lw/ IVul 3 d

<c8/ 7 IVl 3 d

The term J is handled as /7,1 (2.37) to get the estimate

Jo = /
R2A\D@)N{|x—y|<1}
At this point, it is direct to bound J5:

out
[ madr = € (LR iy + <00 [ 101

t
+c/ ||Vu||c~y(R2\D(t))dr+c/ | Vu| % )
0

Going back to (2.37), the above estimate and (2.41) allow us to get

[ 11 =€+ 5( LR e oy + <0 [ 1Vl do

t
+C[0 ||V”||c'y(m>mc'v(n§2\b(z))d’+C/ Va2 d )

Splitting (2.34), the above estimate together with (2.36) provides

cé
1—c(y)s (”“ |5 er d@ner @by

T
+ [ a0 v, d

T
/ Vil d < C +
0

T
=+ /(; ”VMHCV(W)HCV(RZ\D(L‘)) dl) (2.42)

Step 5: Vu e L'(0,T:CY(D(r)) N CY(R2\ D(1))).
Recalling expression (2.34) for Vu, we write

Vu(x +h) = Vu(x) = Io,1 + Io 2 + Iho, (2.43)
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where

= [ ket - k-2 - puoay
D(t)

0ut(y)

bz = [ K =) = K= ) (552 =)Dt dy

and
1
ho = 7 (VATP (D) (x + ) = VAP (pD ) ().
We deal first with the term 7. Classical Sobolev embedding together with the Gagliardo—
Nirenberg inequality (2.8) gives
(10l = c[VAT P (D)l o 2, 14
= cl|Deull, 2, |hl”
< C||Dzu||L2y||VDtu||Lz|h|y (2.44)

so repeating the steps for (2.35) we conclude that I, is uniformly bounded in L' (0, T).
Next we deal with 1o ; and 19 ». Assume that x and x + & belong to D(¢). We proceed
first with the term 9 ;. We decompose Ig 1 as

Iog =Ly+ Ly+ L3+ Ls+ Ls, (2.45)
with
= /D<z>m<|x—y|<z|h|} K= |
x (((”7 - )]D)u)(y) . ((”7 - I)Du)(x + h)) dy.
fz= /D(t)ﬂ{IX—y|<2|h|} K= y)(((% = 1)Du)) - «%ﬂ - 1)Du)(y)) .
Ly= /D(t)ﬂ{lx—y|<2|h|} K(x — y)(((“7 — 1)]D)u)(x +h)— ((“‘7 — 1)]D)u>(x)) dy,
L4=[ (K(x +h— y) = K(x = y))
D@)N{|x—y[=2|hl} ‘ '
x (((“7 - I)Du)(y) - ((“7 — I)Du)(x + h)) dy,
Ls = (%”) ~1)Du(x +h) /;)(t)(K(x +h—y)—K(x — y))dy.

The terms L; and L, are directly bounded by

in
\Ly| + | La| 54](%-1)1@;“ .

Cr(D@®)
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Choosing 2|h| < minepo 7] n(), we have (see [5])

Ll < e (5 = )u ,, jhr.
I ¢ (D))
By the mean value theorem we also have
|L4 SCH<—M_ —1)]D>u‘ . |h|.
I C7(D())

The term L 5 is more singular and we have to use contour dynamics to control it. According
to Theorem 1.2,

Min
Ls| < H(——l)D H — PUDOlLs + 1DONNDE | 41 1],
|Ls| <c i u LB D@ Lip + DO D @) 1.y 1A

where & is a polynomial. Let zo(cr) be a C1¥ parametrization of the initial domain Dy,
so that its evolution via the particle trajectories (1.4),

z(a,t) = X(zo(@), 1),
gives the parametrization of D(¢). Then, since
lazlley < (Bazoller + DIV llevmm):

we obtain

PIVellLe + |V‘P|mr)||VX||CV(D(t))|h|

in
|Ls| < cH(“T - 1)DuH .
i L(D®)

where the constant ¢ only depends on the initial domain. Then we notice that

(5 -

The same approach is taken to control 9, but using the decomposition Ly — Ls,
where the domain D(t) is replaced by R? \ D(¢) and using ((“
((“— — 1)Du)(xy,) instead, where X, = argd(x + h, dD(¢)). In fact since for y € R?\
D(t) one has that |y — X| < 2|y — x|, |y — X| < 2|x + h — y|, we obtain

™ e iy I VHll + 81Vl ey

CV(D(I))

out
Ll + L2l < o (5 hlY.
il

)]D)u H .
Cv(R2\D(t))

The term L* is done analogously. For L3, notice that the only nontrivial case happens
when d(x, dD(t)) < 2|h| (otherwise L3 = 0). Also, since the domain is restricted to a
ball, the integral of the kernel is bounded in the same way ([5]). We thus have

— I)Du} — 1)Du‘

oul out

|Ls] <C”

=]

A",

C7(R2\D(1)) C7(R2\D(1))
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where in the last step we use that |X; — X| < |X — (x + h)| + |(x + h) — Xp| < 6]h|. The
term L5 follows directly from Theorem 1.2,

out
L5l = (% PUDOlip + DO DOl 1, A1

1)]D>u H
LoR2\D(1))

The case x, x + h € R?\ D(t) is done analogously. It yields all the desired estimates to
control the Holder norm for Vu. In order to gather them all, we will denote

Cp = C7(D() N CY(R*\ D(1))

for clarity in notation, and analogously for C Dy, to be used in the following. Therefore,
from splitting (2.43) and the above estimates it is possible to get

cé -
IVulley < 75 IVl P (Ve e + VeIV X ey

c c 52 2=
eI Vulle + (1Dl + VDl 7). (246)

Step 6: Closing all estimates.
We now introduce the bound (2.46) back into (2.42) to obtain

t t
[ 1vutiar <5 [ ||VM||L0<><7°(||V§0||L°°+|V</)|i_nf1)||VX||cgdf
*“8/ (IDeull 27 + VDl ") d + st IVl d

€0||cy
+ 5/ IVul| 2 dt + C. (2.47)
¥ olur IVul, 2

Above we have used the definition of 1 (2.40) and that w is transported by the flow:

v d
lulley < lnollgye? ol Vel dx,

We denote

t
V) = /0 IVl d.

and notice that
IVX|lzoe < [V Xollzoe”®,

IV@llLe < [ VeollLee”®, (2.48)
IV@lint > |Veolinre ™.

Furthermore, recalling the definition ¢ (x,7) = @o(X ~!(x,1)), we have

Vo(X(x,1).1) = (VX(x,1)) "' Vo (x),
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Vo(X(x.1).1) —Vo(X(y.1).1)
|X(x.0) = X(y.0))

(VX — (VX)) oyl v
= T Yoz —xo )
_1 Voo(x) = Voo (y) |x —y| v
+ VXG0 = (e o)

and hence,
IVeler = V)70 IVX D¢z IV@ollLoe + 1(VX) ™ Lo Vol IV X I -
Using (2.48), we conclude that
IVelley < c(IVX ¢y + Dec@>®. (2.49)
Next, we propagate further regularity,
d
27 IV Xllzee = [Vullzee [V X Lo
L VXl < IV VX VX2Vl
ZIVX ey < [Vullew VX lley + IVX I 1 Vuley.
and substitute estimate (2.46) to obtain
d
ZIVXlicy < IVull= VX
+ 8| Vullo P (I Vel + [Velah VXL VX o
+cllulley I VullL= | VX [ .&
2 2
+ | VXN (1Dl 72 + IV D]l 727).
We denote
(1) = VX[,
a(t) = [|Vullze + 8| VullL= P (| Vel + [Vl VX[ (2.50)
2 2
d(t) = cllplley IVullw VXN + eI VXN (1Dl 77 + IV Deull ")
so that the above inequality can be rewritten as
x(t) = a(n)x@) +d(),

and after integration,

t
(1) < g(0) + /0 a(s)x(s) ds,
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where

g() = x(0) + /Ot d(s)ds. (2.51)
Hence, applying Gronwall’s lemma, we find that
xX(1) < lgllpgpelo @, (2.52)
Next, the terms a(t) and g(¢) are estimated using (2.48) and (2.29)—(2.30),

lgllLs < c||u||L%O(C.Ly))y(T)e(1+y)y(T) + C(1 + 0¥ (D)
< C(1 + y(T))e?D

< Cecy(T)’
t
/ a(s)ds < y(t) + c8y(1)e”®.
0

Thus, by (2.52), we have
x(t) < Cecy(T)ecSy(t)efy(f). (2.53)

We introduce the bound (2.53) in (2.47), together with (2.29)—(2.32) and(2.48), to get
(1) < e82y(T)e? M0 L 50e3M 4 (1 4 5),

that is,

Cyy(T)

y(T) < 8C1eCZY(T)eC38y(T)e L s

Assume that
€_2C4C5 Cse—2C2C5—l

2C3Cs 2C, }

Then we proceed by contradiction. If there exists a first time 7 such that y(T') = 2Cs, we
would then have

5 < min{ (2.54)

c 3
2Cs < Cs(c—lseZCZCS“ + 1) < 3Cs.
5

Therefore, we conclude that there exists a § > 0 satisfying (2.54) such that for any 7 > 0
it holds that

T
Y0 = [ 1l de < 265,
0
and hence, from (2.48), (2.53) and (2.46), for all t > 0,

n(t) = Ce 41 >0,
IVXley = C.

t
/0 ||Vu||c~£ dt <C. m
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2.2. Uniqueness

As in the case of constant viscosity [11-13], the uniqueness of solutions is proved in
Lagrangian variables. This is due to the low regularity of the density and viscosity, pro-
duced by their jumps across the interface.

We denote by (pg, (Lo, v, Q) the solution to (INS) in Lagrangian coordinates,

po(y) = p(X(y,1).1),  po(y) = u(X(y.1),1),
v(y,t) =u(X(y,1),1), Qy,t) = P(X(y,1),1),

where X is the flow defined by (1.4). Note that

t

VX(y,t) =1, +/ Vu(y, 1) dr,
0

and denote
A(t) = (VX))

Then, in Lagrangian variables the operators V, V- are given as follows. If we denote

f(r.t) = f(X(,1).1), then

Vuf(3.1) = (VOX(y,1),1) = A*V f (1),
V- f.t) = (V- )X .1),0) = V- (Af (y,1)),

and furthermore, since det A(¢) = 1 due to the incompressibility condition, the following
identity holds for vector fields (see e.g. [11]):

V.-(Af) = A*: V], (2.55)
Hence, (INS)in y € R%,0 < t < T, is rewritten as

P00 v =V, - (nolDyv — Ql),
Vy-v=0.

The equivalence of these formulations is guaranteed assuming that
T
/ IVv|pedt <c¢ < 1. (2.56)
0

In that case, one can write

A =Y (1) ([t V(. f)dz)j. (2.57)
j=0 0

Let (o', pt,ul, P1, XY, (02, u?,u?, P2, X?) be two solutions as in Theorem 1.1 for the
same initial data. In Lagrangian coordinates, we denote their difference by

Sv=1v2-v', §0=0?-0",
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so that

008V = V1 - (uoDy18v — 8015) + V2 - (noDy20? — 0215)
— Vit - (oDy1v* — 0%1),
Vit =80 = (Vi1 = Vy2) - 0%,
8v|s=¢ = 0.

We will now prove that for 7 > 0 small enough,

T
/ / |Vév|? dy dt = 0. (2.58)
o JRr2
First, let 5v = w + z, where w is assumed to be the solution to the equation
Vi -w= (V1 —V,2) v =V-(84v?). (2.59)
Then the equations for z become

poze — Vi - (oDy12) = =V,180 + V2 - (,uO]D)u2v2 - Q2H2)
— Vi1 - (oDy1v” — 0°15)
— pows + Vy1 - (oDy1w),

Vul -z =0,
and thus we have
1d , 1 , =
577 IVPoz e + S IV Dzl e = 3 1y, (2.60)
=1

with
B= [ 2 (T GuoDyar) = Vi oDy ) .
2 =/RZZ-(VMIQ2—VMZQ2)dy,
13 =—A;2p0w,~zdy,

Iy = / Vi - (woDiw) - z dy,
R2

where we have used that V,;1 - z = 0. We proceed to estimate each of these terms. Notice
first that if v!, v? satisfy (2.56), then from (2.57) we obtain

184(0) 112 < CrZ|| V6] 12,. (2.61)

Next, we integrate by parts to obtain

|I] < /2 1ol Vz||(BAAS + A18A*)Vv? + SA(Vv?)*As + A1(Vv?)*84| dy,
R
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and therefore
1 1
|11] < C|Vzll222 | Vo || Lot ™2 | 8A] 2.

Thus, using (2.61) and integrating in time,
! 2 L7212 n" 2
[0 I1ldi = V8012, 1l Vo212, o+ S V2R, o

Similarly, integration by parts and identity (2.55) provide that

I, = / SA* :VzQ?dy.
R2
Now we substitute the pressure by its expression in (2.4) to get

L= | §4":Vz(V-V-ATH(PDu?)(X*(y)) dy
R2

_/ SA* : Vz(ATIVY(0*Du?)(X2(y)) dy,
R2

and using (2.55) again we integrate by parts back in the second term,

L= [ 84*:Vz(V-V-A H(u*Du?)(X?(y)) dy
RZ

+ /R 84z (VAT V) (02 D) (X2 () VX3 (v) dy.
Therefore,
L] < Clr28A] 2162 (V- V- AT (2Du?) | oo | V2] 2
+ Cll28A] 2 VATV - (02 D) o2 V21,

where we have used (2.8). The Calderon—Zygmund and Young inequalities provide
! 2 ! (1,210,212 w 2
| 1alar = CUvsulz, et V-V ATYGD I, o + IV

1o o 3 3
+ ClIV8vlipz z2)lle p™Dru ”L§L6||Z”L3‘%°L2”VZ”ZZTL2

< 2 Lo . v, A1\, 2T)0,2) 12 1 2 22
< ClIVévlizs 12 (122 (V- V- ATH DU oo + 122 p* Dyu ||L§L6)

| u 2
+ Z”Z”L%OLZ + ?”VZ”L%Lz'

We are left to show that t%(V -V - ATH(u?Du?) € L?(0, T; L™) and I%Dtuz €
LS 0, T; L6). The latter follows from (2.8) and the regularity estimates in Theorem 1.1.
For the first, it is enough to define y(T) = fOT 7||Vu||2  d T and repeat Steps 4 and 5, by
noticing that instead of (2.35) now we would have

VUl o+t Dl o < e(T),
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which follows by the regularity estimates in Theorem 1.1. The constant ¢(7") above is
continuous, increasing and such that ¢(0) = 0. We are done with I; and I,. To deal with
I3 and 14, we need to study w first.

Lemma 2.2. Let A(t) be a matrix-valued function on [0, T] x R? satisfying
detA = 1.
There exists a constant ¢ such that if

T2 — AllLge Lo + ||At||L7%L6 =c,
then for all functions g in L>(0, T'; L?) satisfying
6
g=V-R, ReLPL> R, elLil3,

the equation
V-(Aw) =g in[0,T] x R?

has a solution w in the space

6
Wr ={weLFL?, Vwe L3L% w, € LiL3),

that satisfies
lwlirgerz = ClR|Lg L
IVwlizz 2 = Cligllzz 22
il g, 5 = CIRIzzz2 + IR g 5.
Proof. The proof follows as in [13, Lemma A.2] with minor modifications. [

Lemma 2.3. The solution w to (2.59) given by Lemma 2.2 satisfies
lwllzgerz + IVwllz2 2 + IIwzlngL% < c(MVévllLz L2, (2.62)

where ¢(T) is a continuous increasing function of T with c(0) = 0.

Proof. Using (2.9) and the estimates in Theorem 1.1, we have Vv € L%(O, T; L®), and
thus there exists a constant ¢ such that if

IV g + 190" g < C.

<
L6

Nuloy

then, by Lemma 2.2 and identity (2.55),
lwlizgers < ClI8AV? 1 12,
||Vw||L2TL2 <C|sA*: V112||L2TL2,

[[we || < Cl184v?||pger2 + C (84|

6 3 6 3.
515 515
Ly L2 LpL2
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Using Holder’s inequality and (2.61) repeatedly, we obtain
1
184 [[Lge 2 < Clle2v?||Lgereo VSl 2 12

< Cllt2v?|

LW

vz V80l 2.

1
184 : VU2||L2TL2 = C||V8U||L2TL2||“VU2||L2TL°°’

2 2
140071 g 3 = CoAlL 2210 o
< CIIV80ll 12 1% N5 16,
1
§Av? < || V8v? t2v? ,
” t ”LEL% = || ||L2TL2|| t ”L?LG
s0, by the regularity provided in Theorem 1.1, the proof is concluded. ]

Now we go back to estimate the terms /3, /4 in (2.60). Holder’s inequality and Lemma
2.3 provide that

1

T 2
[O [Isldt = Cllwell ¢ sllzligrs = e(DIVEVILz 21zl L2V 2N 2 1

$03
< e IV80IZ; o + ol + 121
=¢ Ulipa e ™ 3 1E g2 T —gm IV EIL2 12
and
T Mm ) )
| tslar = By9a o+ e,

Hence, joining the estimates for /; to /4 and going back to (2.60), we obtain that for small
T >0,

T T
sup (12122 + / IVz]12, di < e(T) / IV8ul2, dt. 2.63)
t€l0,T] 0 0

Recalling that §u = w + z and the estimate for w (2.62), we obtain

T T
[ IV8v|2, dt < c(T)f IVévIZ. dt.
0 0

and hence we conclude (2.58), i.e. that for T > 0 small enough, ||VSv ||L%Lz = 0. Plugging
this back into (2.63) and (2.62) allows us to conclude that

v! =02 on|0, 7] x R2.

One can now go back to Eulerian coordinates, while the passage to arbitrary 7' > 0 follows
from standard connectivity arguments. ]
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