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Green function for linearized Navier–Stokes around
a boundary shear layer profile for long wavelengths

Emmanuel Grenier and Toan T. Nguyen

Abstract. This paper is the continuation of a program, initiated in Grenier and Nguyen [SIAM J.
Math. Anal. 51 (2019); J. Differential Equations 269 (2020)], to derive pointwise estimates on the
Green function of Orr–Sommerfeld equations. In this paper we focus on long wavelength pertur-
bations, more precisely horizontal wave numbers ˛ of order �1=4, which correspond to the lower
boundary of the instability area for monotonic profiles.

1. Introduction

We are interested in the study of linearized Navier–Stokes around a given fixed profile
Us D .U.z/; 0/ in the inviscid limit � ! 0. Namely, we consider the set of equations

@tv C Us � rv C v � rUs Crp � ��v D 0; (1.1)

r � v D 0; (1.2)

where 0 < � � 1, posed on the half-plane x 2 R, z > 0, with the no-slip boundary con-
ditions

v D 0 on z D 0: (1.3)

The linear problem (1.1)–(1.3) is a very classical problem that has led to a huge
physical and mathematical literature, focussing in particular on the linear stability, on
the dispersion relation, on the study of eigenvalues and eigenmodes, and on the onset of
nonlinear instabilities and turbulence [1, 15]. We also mention several efforts in proving
linear to nonlinear stability and instability around shear flows in the small viscosity limit
[2–5, 9].

Throughout this paper, we will assume that U.z/ is holomorphic near z D 0, that
U.0/D 0, that U 0.0/ > 0, that U.z/ > 0 for any z > 0, and that U converges exponentially
fast at1, to some positive constant UC,

0 < UC D lim
z!1

U.z/ <1;
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as well as all its derivatives (which converge to 0). Note in particular that this class of
profiles includes for instance the exponential profile

U.z/ D UC.1 � e
�ˇz/;

where ˇ > 0. As such a profile has no inflection point, according to Rayleigh’s inflection
criterion, it is stable with respect to linearized Euler equations. However, strikingly, a
small viscosity has a destabilizing effect. That is, all such shear profiles are unstable for
large enough Reynolds numbers ��1 [6, 7].

More precisely, for such shear flows there exist lower and upper marginal stability
branches ˛low.�/� �

1=4 and ˛up.�/� �
1=6, so that whenever the horizontal wave number

˛ belongs to Œ˛low.�/; ˛up.�/�, the linearized Navier–Stokes equations about this shear
profile have an eigenfunction and a corresponding eigenvalue �� with

<�� � �
1=2: (1.4)

Heisenberg [11,12], then Tollmien and Lin [13,14] were among the first physicists to use
asymptotic expansions to study this spectral instability. We refer to Drazin and Reid [1]
and Schlichting [15] for a complete account of the physical literature on the subject, and
to [6, 7] for a complete mathematical proof of this instability.

To study the linear stability of Us we first introduce the vorticity of the perturbation

! D r � v D @zv1 � @xv2;

which leads to
.@t C U@x/! C v2U

00
� ��! D 0; (1.5)

together with v D r?� and �� D !, where � is the related stream function. The no-slip
boundary condition (1.3) becomes � D @z� D 0 on ¹z D 0º.

We then take the Fourier transform in the tangential variables with Fourier variable
˛ and the Laplace transform in time with dual variable �i˛c, following the traditional
notation. In other words, we study solutions of linearized Navier–Stokes equations which
are of the form

v D r?.ei˛.x�ct/�˛.z//:

This leads to the classical Orr–Sommerfeld equation,

Orr˛;c.�˛/ WD �"�2˛�˛ C .U � c/�˛�˛ � U
00�˛ D 0; (1.6)

where
" D

�

i˛
;

together with the boundary conditions

�˛ jzD0 D @z�˛ jzD0 D 0; lim
z!1

�˛.z/ D 0; (1.7)



Green function for Navier–Stokes around a boundary layer 1459

and where
�˛ D @

2
z � ˛

2:

The aim of this paper is to give bounds on the Green function of the Orr–Sommerfeld
equation when ˛ is of order �1=4 and c is of the same order, which correspond to one
of the boundaries of the instability area. This restricted study appears to be sufficient to
construct linear and nonlinear instabilities for the full nonlinear Navier–Stokes equations
[8–10].

We first observe that since U 00.z/ decays exponentially fast to zero as z!C1, equa-
tion (1.6) “converges” to the constant-coefficient equation

OrrC.�/ D �"�2˛�˛ C .UC � c/�˛�˛ D 0; (1.8)

which has four independent solutions, with two slow modes e˙�sz and two fast modes
e
˙�C

f
z , where

�s WD j˛j; �f .z/ WD

r
U � c C "˛2

"
; �C

f
D lim
z!1

�f .z/: (1.9)

Here, we take the positive real part of the square root. Note in particular that

j�f .z/j �
ˇ̌̌r
=c C �˛

"

ˇ̌̌
D

ˇ̌̌r˛ =c C �˛2

�

ˇ̌̌
D O.��1=4/ (1.10)

for ˛ D O.�1=4/, and let c D O.�1=4/, with j=cj � �0�1=4. That is, slow and fast modes
have distinct behavior at z D1.

In order to construct the Green function of the Orr–Sommerfeld equations, we need
to construct all four independent solutions. In previous joint work with Guo [6], we were
able to construct two exact slow and fast decaying solutions using an exact Rayleigh–Airy
iterative scheme. The scheme is rather delicate to construct the remaining two grow-
ing solutions. In this paper, we provide a much simplified iterative scheme to construct
both decaying and growing modes to (1.6). The simplification is due to the fact that we
only need to construct approximate solutions and approximate Green functions. The exact
Green function follows by the standard iteration.

The slow approximate solutions will be solutions of the Rayleigh equation

.U � c/�˛� � U
00� D 0 (1.11)

with boundary condition �.0/ D 0. They will be constructed by perturbation of the case
˛ D 0 where the Rayleigh equation degenerates in

Ray0.�/ D .U � c/@
2
z� � U

00�: (1.12)

The main observation is that �1;0 D U � c is a particular solution of (1.12). Let �2;0 be
the other solution of this equation such that the Wronskian W Œ�1;0; �2;0� equals 1. We
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will construct approximate solutions to the Orr–Sommerfeld equation which satisfy

�app
s;�.0/ D U.0/ � c C ˛U

2
C�2;0.0/CO.˛2/; (1.13)

@z�
app
s;�.0/ D U

0.0/CO.˛/: (1.14)

The “fast approximate solutions” will emerge in the balance between �"�2˛� and
.U � c/�˛�. Keeping in mind that ˛ is small, they will be constructed starting from
solutions of the simplified equation

�"@4z� C .U � c/@
2
z� D 0:

As c is small, and as U 0.0/ ¤ 0, there exists a unique zc 2 C near 0 such that

U.zc/ D c: (1.15)

Such a zc is called a “critical layer” in the physics literature. It turns out that all the
instability is driven by what happens near this critical layer. Near zc , equation (1.15) is a
perturbation of the Airy equation

� "@2z C U
0.0/.z � zc/ D 0 (1.16)

posed on  D @2z�. The fast approximate solutions are thus constructed as perturbations
of second primitives of classical Airy functions. This construction will be detailed in Sec-
tion 2, where we will construct two approximate solutions �app

f;˙
to the Orr–Sommerfeld

equation, with fast behavior and with

�
app
f;�
.0/ D Ai.2;�
zc/CO.�1=4/; (1.17)

@z�
app
f;�
.0/ D 
 Ai.1;�
zc/CO.1/; (1.18)

where


 D
� i˛U 0.zc/

�

�1=3
D O.��1=4/; (1.19)

and where Ai.1; :/ and Ai.2; :/ are the first and the second primitives of the classical Airy
function Ai. We now introduce the Tietjens function, defined by

Ti.z/ D
Ai.1; z/
Ai.2; z/

:

The Tietjens function is a classical special function in physics, precisely known and tabu-
lated. Then

@z�
app
f;�
.0/

�
app
f;�
.0/

D 
 Ti.�
zc/CO.1/: (1.20)

In this paper we will bound the Green function of the Orr–Sommerfeld equations. More
precisely, for each fixed ˛ 2 RC and c 2 C, we let G˛;c.x; z/ be the corresponding
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Green kernel of the Orr–Sommerfeld problem. By definition, for each x 2 R and c 2 C,
G˛;c.x; z/ solves

Orr˛;c.G˛;c.x; �// D ıx.�/

on z � 0, together with the boundary conditions

G˛;c.x; 0/ D @zG˛;c.x; 0/ D 0; lim
z!1

G˛;c.x; z/ D 0:

That is, for z 6D x, the Green functionG˛;c.x; z/ solves the homogenous Orr–Sommerfeld
equations, together with the following jump conditions across z D x:

Œ@kzG˛;c.x; z/�jzDx D 0; Œ"@3zG˛;c.x; z/�jzDx D �1

for k D 0; 1; 2. Here, the jump Œf .z/�jzDx across z D x is defined to be the value of the
right limit subtracted from that of the left limit as z ! x.

The main result in this paper is as follows.

Theorem 1.1. Let U.z/ be a smooth monotone shear profile so that U.0/ D 0, U 0.0/ >
0, and U.z/ converges exponentially fast to a nonzero constant at z D 1. Let �0 be
arbitrarily small and positive, ˛ D O.�1=4/, and c D O.�1=4/, with j=cj � �0�1=4, such
that

jW Œ�app
s;�; �

app
f;�
�j � �0: (1.21)

Let G˛;c.x; z/ be the Green function of the Orr–Sommerfeld problem. Then there exists a
smooth function P.x/ and there are universal positive constants �0, C0 so thatˇ̌̌

G˛;c.x; z/ �
P.x/�s;�.z/

�1=4

ˇ̌̌
�

C0

"�2
f
.x/

�
e��0j˛j jx�zj C

1

j�f .x/j
e��0j

R z
x <�f .y/ dyj

�
(1.22)

uniformly for all x; z � 0. Similarly,ˇ̌̌
@zG˛;c.x; z/ �

P.x/@z�s;�.z/

�1=4

ˇ̌̌
�

C0

"�2
f
.x/

�
e��0j˛j jx�zj

C
j�f .z/j

j�f .x/j
e��0j

R z
x <�f .y/ dyj

�
;ˇ̌̌

@2zG˛;c.x; z/ �
P.x/�s;�.z/

�1=4.U � c/

ˇ̌̌
�

C0

"�2
f
.x/

� 1

jU � cj
e��0j˛j jx�zj

C
j�f .z/j

2

j�f .x/j
e��0j

R z
x <�f .y/ dyj

�
:

(1.23)

Let us comment (1.21). We have

W Œ�app
s;�; �

app
f;�
� D 
 

app
s;0 .0/Ti.�
zc/�

app
f;�
.0/ � @z�

app
s;�.0/�

app
f;�
.0/

D �.
c Ti.�
zc/C U 0.0//Ai.2;�
zc/CO.�1=4/:
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Note that both terms under the brackets are of order O.1/, since 
c is of order O.1/. The
Wronskian vanishes if there exists a linear combination of �app

s;� and �app
f;�

which satisfies the
boundary conditions, namely if there exists an approximate eigenmode of Orr˛;c (recalling
that �app

s;� and �app
f;�

are only approximate solutions of Orr˛;c). We have to remain away
from such approximate modes, since nearby there exist true eigenmodes where Orr˛;c is
no longer invertible. Note that �1 may be taken arbitrarily small.

Note that in this theorem we are at a distance O.�1=4/ from a simple eigenmode  0.
It is therefore expected that Orr˛;c is of order O.��1=4/ and that

Orr�1˛;c. / D �
�1=4

�Z C1
0

P.z/ .z/ dz

�
 0 CO.1/: (1.24)

As  0 D �s;� CO.�1=4/, G˛;c is only bounded by O.��1=4/, and its main component is
��1=4P�s;�.

2. The Airy operator

In this section we construct two approximate solutions of the Orr–Sommerfeld equation,
called �f;˙ D �

app
f;˙

, with fast increasing or decreasing behaviors. For these approximate
solutions, it turns out that the zeroth-order term U 00�f;˙ may be neglected. Moreover, as
˛ is small, ˛2 terms may also be neglected. This simplifies the Orr–Sommerfeld operator
in the so-called modified Airy operator defined by

Airy D A@2z ; (2.1)
where

A WD �"@2z C .U � c/: (2.2)

Note that
Orr˛;c D AiryC OrrAiry; (2.3)

where
OrrAiry D 2"˛2@2z � "˛

4
� ˛2.U � c/ � U 00:

Note also that U � c behaves like U 0.zc/.z � zc/ for z near zc , hence A is very similar
to the classical Airy operator @2z � z when z is close to zc . The main difficulty lies in
the fact that the “phase” U.z/ � c almost vanishes when z is close to <zc , hence we
have to distinguish between two cases: z � �1 and z � �1 for some small �1. The first
case is handled through a Langer transformation, which reduces (2.1) to the classical Airy
equation. The second case may be treated using a classical WKB expansion.

We will prove the following proposition.

Proposition 2.1. Let N be an arbitrarily large number. There exist two smooth functions
�

app
˙
.z/, depending on N , to the Orr–Sommerfeld equations such that

jA@2z�
app
˙
j � C�N j�

app
˙
j; (2.4)

jOrr˛;c.�
app
˙
/j � C j�

app
˙
j: (2.5)
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Moreover, for z � �1=4 and for k D 1; 2; 3, as � ! 0,

@kz�
app
� .z/

�
app
�

.z/ � .�1/k�kf .z/;
@kz�

app
C .z/

�
app
C

.z/ � �kf .z/; (2.6)

and for any x1 < x2, there holdsˇ̌̌�app
˙
.x2/

�
app
˙
.x1/

ˇ̌̌
� C exp

�
˙

Z x2

x1

<�f .y/ dy

�
: (2.7)

To prove this proposition we construct  app
˙
D @2z�

app
˙

for z < zc in Section 2.2 using
Langer’s transformation introduced in (2.1) and for z > zc in Section 2.3 using the clas-
sical WKB method. We then match these two constructions in Section 2.4, integrate them
twice in Section 2.5, and detail the Green function of the Airy operator in Section 2.7.

2.1. A primer on Langer’s transformation

The first step is to construct approximate solutions to A D 0, starting from solutions
of the genuine Airy equation " 00 D y , thanks to the so-called Langer transformation
that we will now detail. Let B.x/ and C.x/ be two smooth functions. In 1931, Langer
introduced the following method to build approximate solutions to the varying coefficient
Airy-type equation

� "�00 C C.x/� D 0; (2.8)

starting from solutions to the similar Airy-type equation

� " 00 C B.x/ D 0: (2.9)

We assume that both B and C vanish at some point x0, and that their derivatives at x0 do
not vanish. Let  be any solution to (2.9). Let f and g be two smooth functions, to be
chosen later. Then

�.x/ D f .x/ .g.x//

satisfies

�"�00 C C.x/� D �"f 00 � 2"f 0 0g0 � B.g.x//.g0/2f  � "f  0g00 C C.x/f  :

Note that f may be seen as a modulation of amplitude and g as a change of phase. If we
choose g such that

B.g.x//.g0/2 D C.x/ (2.10)

and f such that
2f 0g0 C fg00 D 0; (2.11)

we then have
�"�00 C C.x/� D �"f 00 :

Hence � may be considered as an approximate solution to �"�00 C C.x/� D 0.
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Note that (2.11) may be solved, yielding

f .x/ D
1p
g0.x/

: (2.12)

As a consequence, the link between solutions to (2.8) and (2.9) is given by

�.x/ D
1p
g0.x/

 .g.x//: (2.13)

Now, as for the choice of the function g.x/, let B1 be the primitive of
p
B which vanishes

at x0 and let C1 be the primitive of
p
C which vanishes at x0. Then the square root of

(2.10) may be rewritten as
B1.g.x// D C1.x/: (2.14)

Note that both B1 and C1 behave like C0.x � x0/3=2 near x0. Hence (2.14) may be solved
for x near x0. This defines a smooth function g which satisfies g.x0/ D x0. Moreover, if
B 0.x0/ D C

0.x0/ then g0.x0/ D 1.

2.2. Airy critical points

In this section we use Langer’s transformation to construct approximate solutions to
A D 0 starting from solutions of the genuine Airy equation.

Let c be of order �1=4. Then there exists a unique zc 2 C near 0 such that U.zc/ D c.
Note that zc is also of order �1=4 since U 0.0/ ¤ 0. Expanding U near zc to first order we
get the approximate equation

� "@2z C U
0.zc/.z � zc/ D 0; (2.15)

which is the classical Airy equation. Let us assume that <U 0.zc/ > 0, the opposite case
being similar. A first solution to (2.15) is given by

A.z/ WD Ai.
.z � zc//; (2.16)

where Ai is the classical Airy function, solution of Ai00 D xAi, and where "
3 D U 0.zc/,
namely


 D
� i˛U 0.zc/

�

�1=3
:

Note that since ˛ is of order �1=4, 
 is of order ��1=4, and that

arg.
/ D
�

6
CO.��1=4/:

Moreover, as x goes to˙1, with argument i�=6,

Ai.x/ �
1

2
p
�

e�2x
3=2=3

x1=4
.1CO.jxj�3=2//:
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In particular, Ai0.x/=Ai.x/ � �x1=2 for large x. Hence, as 
.z � zc/ goes to infinity,
A.z/ goes to 0 and

A0.z/

A.z/
� �
3=2.z � zc/

1=2
D �

� i˛U 0.zc/
�

�1=2
.z � zc/

1=2

� �
p
B.z/; (2.17)

with
B.z/ D "�1U 0.zc/.z � zc/:

More precisely, using the next order expansion for A.z/, we get

A0.z/

A.z/
D �

p
B.z/.1CO.�3=8jz � zc j

�3=2// (2.18)

for j
.z � zc/j � 1. Here, we have used the fact that 
 is of order ��1=4.
Another independent solution to (2.15) is given by Ci.
.z � zc//, where

Ci D �i�.AiCiBi/;

with Bi.�/ being the other classical Airy function. In this case jCi.
.z � zc//j goes toC1
as z � zc goes to C1, with a plus instead of the minus in the corresponding formula
(2.17). Precisely,


 Ci0.
.z � zc//
Ci.
.z � zc//

D
p
B.z/.1CO.�3=8jz � zc j

�3=2//: (2.19)

We now use Langer’s transformation introduced in the previous section. As U.z/ and
U 0.zc/.z � zc/ vanish at the same point with the same derivative at that point, we use
Langer’s transformation with

C.z/ D "�1.U.z/ � c/

and
B.z/ D "�1U 0.zc/.z � zc/:

Then, introducing g.z/ in accordance with (2.10), we have that g.z/ is locally well defined
for z in a neighborhood of zc , independent of small ". Since zc is of order �1=4, g.z/ is thus
defined for 0 � z � �1 for some positive �1, independent of �. Moreover, g.zc/ D zc and
g0.zc/ D 1. Now we use the two independent solutions Ai.
.z � zc// and Ci.
.z � zc//
to (2.15) to construct the two approximate solutions to A� D 0, which reads

� "@2z C .U.z/ � c/ D 0: (2.20)

Indeed, through Langer’s transformation (see (2.13)) we set

�Ai.z/ WD
1p
g0.z/

Ai
�

.g.z/ � zc/

�
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and �Ci.z/ WD
1p
g0.z/

Ci
�

.g.z/ � zc/

�
:

It follows that �Ai.z/ and �Ci.z/ are two approximate solutions of A� D 0 in the sense that

A �Ai D �"f 00 Ai
�

.g.z/ � zc/

�
; A �Ci D �"f 00 Ci

�

.g.z/ � zc/

�
;

recalling that f .z/ D 1=
p
g0.z/. Note that the error term is of order " � �3=4. Note also

that to first order, for z of order �1=4, �Ai.z/ equals Ai.
.z � zc// since g0.zc/ D 1.
Moreover, for 
.z � zc/� 1, or equivalently, jz � zc j � �1=4, using (2.18), we get

@z �Ai.z/�Ai.z/
� g0.z/

A0.g.z//

A.g.z//
� �g0.z/

p
B.g.z// � �

p
C.z/ � ��f .z/; (2.21)

and more precisely,

@z �Ai.z/�Ai.z/
� ��f .z/.1CO.�3=8jz � zc j

�3=2//: (2.22)

Note in particular that when jz � zc j & 1, the above error of approximation is of order
�3=8. Similarly, for higher derivatives in jz � zc j � �1=4, we get

@kz
�Ai.z/�Ai.z/

� .�1/k�kf .z/: (2.23)

Similarly, using (2.19), we have

@z �Ci.z/�Ci.z/
� �f .z/.1CO.�3=8jz � zc j

�3=2//: (2.24)

The higher derivatives also satisfy similar bounds to (2.23).

2.3. Away from the critical layer

If z � zc is small then g is well defined, precisely on Œ0; �1� for some small �1 as in the
previous section. However, if z > �1, then Langer’s transformation is no longer useful,
and we may directly use a WKB expansion. We look for solutions  of the form

 .z/ D e�.z/="
1=2

(2.25)

to the equation A D "@2z � .U � c/ D 0. Note that

"@2z D .�
02
C "1=2� 00/ :

Hence we look for � such that

� 02 C "1=2� 00 D .U � c/: (2.26)

Note that as z is away from the critical layer zc , U.z/� c is of order 1 and never vanishes.
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We shall solve (2.26) in an approximate way by looking for � of the form

� D

MX
iD0

"i=2�i

for some arbitrarily large M . The profiles �i may be constructed by iteration, starting
from

� 00 D ˙
p
U.z/ � c: (2.27)

Indeed, plugging the ansatz for � into (2.26) and matching the order in ", we are led to
define �i inductively through the relation

� 00�
0
i D ��

00
i�1 �

X
jCkDi�1

� 0j �
0
k

for i � 1, noting that � 00 never vanishes on z > �1 (since c is of order �1=4). In
(2.27), we take the positive real part of the square root (of the complex number). The
� choice in (2.27) leads to an approximate solution  app

f;�
of (2.25) that tends to 0 at z D

C1 and the C choice gives an approximate solution  app
f;C

of (2.25) that tends to C1 at
z D C1.

In addition, by construction, we have

� 02 C "1=2� 00 D .U � c/CO.�N /;

where N can be chosen arbitrarily large, provided M is sufficiently large. Therefore, the
approximate solutions  app

f;˙
satisfy

jA 
app
f;˙
j � �N j 

app
f;˙
j:

Note that
@z 

app
f;˙
.�1/ D ˙�f .�1/.1CO.�1=4// 

app
f;˙
.�1/: (2.28)

More generally,

@kz 
app
f;˙
.z/ D .�1/k�kf .z/ 

app
f;˙
.z/.1CO.�1=4// (2.29)

for any z � �1 and any k.

2.4. Matching at z D zc

It remains to match, at z D zc , the solutions constructed with the WKB method for z � �1
with the solutions constructed thanks to Langer’s transformation for z � �1. We look for
constants a and b such that

a
�Ai.z/�Ai.�1/

C b
�Ci.z/�Ci.�1/
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and  app
f;�
= 

app
f;�
.�1/ and their first derivatives match at z D �1, which leads to

aC b D 1;

a
@z �Ai.�1/�Ai.�1/

C b
@z �Ci.�1/�Ci.�1/

D
@z 

app
f;�
.�1/

 
app
f;�
.�1/

:

We now use (2.22), (2.24), and (2.28) to get a � 1 and b D O.�f .�1/
�1/. We then mul-

tiply a and b by  app
f;�
.�1/ to get an extension of  app

f;�
from z > �1 to the whole line. The

construction is similar to extend  app
f;C

.

2.5. From A to Airy

We have now constructed global approximate solutions  app
f;˙

to the equation A D 0 that
satisfy

jA 
app
f;˙
j � C�N j 

app
f;˙
j:

Recall from (2.1) that Airy D A@2z . It thus remains to solve

@2z�
app
f;˙
.z/ D  

app
f;˙
.z/: (2.30)

Let us focus on the � case, the other being similar. For z � �1, we look for solutions �app
f;˙

of the form
�

app
f;˙
D h.z/ 

app
f;˙
D h.z/e�.z/="

1=2

; (2.31)

which leads to

h00 C 2h0� 0.z/"�1=2 C h� 00.z/"�1=2 C h� 02.z/"�1 D 1:

Hence h may be expanded as a series in "1=2, namely

h.z/ D

MX
iD0

"i=2hi .z/

for some arbitrarily large M . The first two terms h0.z/, h1.z/ are defined by

h0.z/ D
"

� 02.z/
; h1.z/ D �

1

� 02.z/
.2h00.z/�

0.z/C h0�
00.z//;

while the remaining terms hi .z/, i � 2 are inductively defined by

hi .z/ D �
1

� 02.z/

�
h00i�2.z/C 2h

0
i�1.z/�

0.z/C hi�1�
00.z/

�
:

We note that for z � �1 (i.e. away from the critical layer zc), by definition (2.27), the
function �.z/ is bounded away from zero, and so hi .z/ are well defined and uniformly
bounded.
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As a consequence, we may write a complete WKB expansion for �app
f;˙

given by (2.31).
In particular, we note that

h.y/

h.x/
�
� 02.x/

� 02.y/
�
U.x/ � c

U.y/ � c
� 1

for y > x � �1 (i.e. away from the critical layer zc). Hence,

�
app
f;˙
.y/

�
app
f;˙
.x/

. e˙
R y
x <�f .z/ dz ; (2.32)

provided y > x � �1.
For z < �1, we integrate (2.30) once, which gives

@z�
app
f;�
.z/ D @z�

app
f;�
.�1/ �

Z �1

z

 
app
f;�
.t/ dt:

Now  
app
f;�

is a combination of �Ai and �Ci for z < �1. Let us focus on the �Ai term. We have
to study Z �1

z

�Ai.t/ dt D
Z �1

z

1p
g0.t/

Ai
�

.g.t/ � zc/

�
dt:

Let s D 
.g.t/ � zc/. Then ds D 
g0.t/ dt , henceZ �1

z

1p
g0.t/

Ai
�

.g.t/ � zc/

�
dt D 
�1

Z 
.g.�1/�zc/


.g.z/�zc/

1

g0.t/3=2
Ai.s/ ds:

As 
 is large, the integral term is equivalent to


�1

g0.z/3=2

Z 
.g.�1/�zc/


.g.z/�zc/

Ai.s/ds �

�1

g0.z/3=2

�
Ai
�
1;
.g.�1/� zc/

�
�Ai

�
1;
.g.z/� zc/

��
;

where we introduced the primitive Ai.1; x/ of Ai. This leads to

@z�
app
f;�
.z/ �


�1

g0.z/3=2
Ai
�
1; 
.g.z/ � zc/

�
: (2.33)

We integrate @z�
app
f;�

once again and introduce Ai.2; x/, the second primitive of Ai, and
obtain

�
app
f;�
.z/ �


�2

g0.z/5=2
Ai
�
2; 
.g.z/ � zc/

�
: (2.34)

The study of �f;C is similar. As the asymptotic expansion of Ai.z/ is known, we can com-
pute the asymptotic expansions of Ai.1; z/ and Ai.2; z/; see, for instance, [1, Appendix]
or [6, Section 4]. For instance, there hold

jAi.k; z/j � C hzi�k=2�1=4e�2z
3=2=3;

jCi.k; z/j � C hzi�k=2�1=4e2z
3=2=3;

(2.35)

for k 2 Z and z � 1.
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2.6. End of proof of Proposition 2.1

By construction, we have approximate solutions �app
˙

to the equation A@z� D 0. Namely,

jA@2z�
app
˙
j � C�N j�

app
˙
j;

which is (2.4). As @z�
app
f;C
.z/ is bounded by C��1=4�app

f;C
.z/, (2.4) combined with (2.3)

gives (2.5). We now check the estimates stated in Proposition 2.1.
In fact, we first normalize �app

f;˙
by multiplying it with 
2, again denoted by �app

f;˙
,

giving the expansions (1.17) and (1.18) at z D 0. Note in particular that

�
app
f;˙
.0/ D O.1/: (2.36)

Next, the bounds in (2.6) follow directly from the construction and the estimates (2.23)–
(2.24) and (2.29) for z near and away from the critical layers, respectively.

It remains to prove (2.7). For �1=4 � z � z0, estimate (2.32) is exactly (2.7). We thus
focus on the case when z . �1=4. For z0 � �1=4, in view of (2.28) we have

�
app
f;˙
.z0/ . C exp

�
˙

Z z0

0

<�f .s/ ds

�
:

As �f .z/ is of order O.��1=4/ for z of order �1=4, we obtain for any 0 � z � z0,ˇ̌̌�app
f;C
.z0/

�
app
f;C
.z/

ˇ̌̌
� C exp

ˇ̌̌̌Z z0

z

<�f .s/ ds

ˇ̌̌̌
(2.37)

for some constant C , and similarly for �f;�, which gives (2.7).

2.7. Green function for Airy

We will now construct an approximate Green function for the Airy operator. We first
construct an approximate Green function for the operator A D �"@2x C .U.x/ � c/. Let

GAi.x; y/ D
1

"W Ai.x/

8̂̂̂<̂
ˆ̂:
 

app
C .y/

 
app
C .x/

if y < x;

 app
� .y/

 
app
� .x/

if y > x;

whereW Ai is the Wronskian determinant of app
˙
.x/. Note that the Wronskian determinant

is independent of x, since there is no first derivative term in A. In addition, we have

W Ai.x/ � 
 D O.��1=4/:

In particular, we have

GAi.x; y/ D O.��1=2/ exp
�
�C

ˇ̌̌̌Z y

x

<�f .z/ dz

ˇ̌̌̌�
I
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therefore GAi is rapidly decreasing in y on both sides of x, within scales of order �1=4.
By construction,

AGAi.x; y/ D ıx CO.�3=4/GAi.x; y/:

We then integrate GAi twice in y to get an approximate Green function for the Airy oper-
ator. More precisely, let

GAi;1.x; y/ D

Z C1
y

GAi.x; z/ dz

and similarly forGAiry DGAi;2, the primitive ofGAi;1, so that @2yG
Ai;2.x;y/DGAi.x;y/.

We have

GAi;1.x; y/ D O.��1=4/ exp
�
�C

ˇ̌̌̌Z y

x

<�f .z/ dz

ˇ̌̌̌�
CO.��1=4/1y<x ;

and similarly for GAi;2,

GAi;2.x; y/ D O.1/ exp
�
�C

ˇ̌̌̌Z y

x

<�f .z/ dz

ˇ̌̌̌�
CO.��1=4/1y<xx:

Note that, taking into account the fast decay of GAi near x,

Airy.GAi;2/ D ıx CO.�3=4/GAi.x; y/

D ıx CO.�1=4/ exp
�
�C

ˇ̌̌̌Z y

x

<�f .z/ dz

ˇ̌̌̌�
D ıx CO.�1=4/: (2.38)

We define the AirySolve operator by

AirySolve.f /.y/ D
Z C1
0

GAi;2.x; y/f .x/ dx (2.39)

and the associated error term,

ErrorAiry.f /.y/ D
Z C1
0

O.�3=4/GAi.x; y/f .x/ dx; (2.40)

the Airy operator acting on the y variable. These operators will be used in Section 3.5.

3. Rayleigh solutions near critical layers

In this section we construct two approximate solutions �app
s;˙.z/ to the Orr–Sommerfeld

equation, with slow behaviors as z ! C1. This together with the approximate solu-
tions �f;˙ D �

app
f;˙

with fast behaviors constructed in the previous section forms a basis
of approximate solutions, which are sufficient for the next section to construct the Green
function to the Orr–Sommerfeld problem. More precisely, in this section we prove the
following lemma.
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Lemma 3.1. For � small enough, there exist two independent functions �app
s;˙ such that

W Œ�
app
s;C; �

app
s;��.z/ D 1C o.1/;

Orr˛;c.�
app
s;C/ D O.�1=2/; Orr˛;c.�app

s;�/ D O.�1=2 log �/:

Furthermore, we have the following expansions in L1:

�app
s;�.z/ D e

�˛z.U � c CO.�1=4//;

�
app
s;C.z/ D e

�˛zO.1/;

as z !1. At z D 0, there hold

�app
s;�.0/ D �c C ˛

U 2C

U 0.0/
CO.�1=2/;

�
app
s;C.0/ D �

1

U 0.0/
CO.�1=2/;

where UC D limz!1 U.z/.

The construction of approximate solutions for the Orr–Sommerfeld equation starts
with the construction of approximate solutions for the Rayleigh operator. For small ˛, the
construction of solutions to the Rayleigh equation is a perturbation of the construction for
˛ D 0, which is explicit. We will now detail the construction of an inverse of Ray0 and
then of an approximate inverse of Ray˛ for small ˛. For convenience, we recall that

Orr˛;c.�˛/ D �"�2˛�˛ C .U � c/�˛�˛ � U
00�˛;

Ray˛.�˛/ D .U � c/�˛�˛ � U
00�˛:

In particular, Ray0.�/ denotes the Rayleigh operator Ray˛.�/ for ˛ D 0. Note that

Orr˛;c.�˛/ D Ray˛.�˛/ � "�
2
˛�˛: (3.1)

3.1. Function spaces

In the next sections we will denote

X� D L1� D
®
f j supz�0 jf .z/je

�z < C1
¯
:

The highest derivative of the Rayleigh equation vanishes at z D zc , since U.zc/ D c. To
handle functions which have large derivatives when z is close to <zc , we introduce the
space Y � defined as follows. Note that in our analysis, zc is never real, so z � zc never
vanishes. We are close to a singularity but never reach it.

Precisely, we say that a function f lies in Y � if for any z � 1,

jf .z/j C j@zf .z/j C j @
2
zf .z/j � Ce

��z
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and if for z � 1,
jf .z/j � C.1C jz � zc j jlog.z � zc/j/;

j@zf .z/j � C.1C jlog.z � zc/j/;

j@2zf .z/j � C.1C jz � zc j
�1/:

The best constant C in the previous bounds defines the norm kf kY � . Note that Y � � X� .

3.2. Rayleigh equation when ˛ D 0

In this section we study the Rayleigh operator Ray0. More precisely, we solve

Ray0.�/ D .U � c/@
2
z� � U

00� D f: (3.2)

The main observation is that
Ray0.U � c/ D 0:

Therefore,
�1;0 D U � c

is a first explicit solution. The second one is obtained through the Wronskian equation

W Œ�1;0; �2;0� D 1:

This leads to the following lemma, whose proof is given in [6, Lemma 3.2].

Lemma 3.2 ([6, 7]). Assume that =c 6D 0. There exist two independent solutions �1;0 D
U � c and �2;0 of Ray0.�/ D 0 with unit Wronskian determinant

W.�1;0; �2;0/ WD @z�2;0�1;0 � �2;0@z�1;0 D 1:

Furthermore, there exist smooth functions P.z/ andQ.z/ with P.zc/¤ 0 andQ.zc/ 6D 0,
so that, near z D zc ,

�2;0.z/ D P.z/CQ.z/.z � zc/ log.z � zc/: (3.3)

Moreover,

�2;0.0/ D �
1

U 0.0/

and
@z�2;0.z/C

1

UC
2 Y �1 (3.4)

for some �1 > 0.

Let �1;0, �2;0 be constructed as in Lemma 3.2. Then the Green function GR;0.x; z/ of
the Ray0 operator can be explicitly defined by

GR;0.x; z/ D

´
.U.x/ � c/�1�1;0.z/�2;0.x/ if z > x;

.U.x/ � c/�1�1;0.x/�2;0.z/ if z < x:
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The inverse of Ray0 is explicitly given by

RaySolver0.f /.z/ WD
Z C1
0

GR;0.x; z/f .x/ dx: (3.5)

Note that the Green kernel GR;0 is singular at zc . The following lemma asserts that the
operator RaySolver0.�/ is in fact well defined from X� to Y 0, which in particular shows
that RaySolver0.�/ gains two derivatives, but loses the fast decay at infinity. It transforms
a bounded function into a function which behaves like .z � zc/ log.z � zc/ near zc .

Lemma 3.3. Assume that =c 6D 0. For any f 2 X� , RaySolver0.f / is a solution to the
Rayleigh problem (3.2). In addition, RaySolver0.f / 2 Y

0, and there holds

kRaySolver0.f /kY 0 � C.1C jlog=cj/kf kX�

for some constant C .

Proof. Using (3.4), it is clear that �1;0.z/ and �2;0.z/=.1 C z/ are uniformly bounded.
Thus, considering the cases x < 1 and x > 1, we obtain

jGR;0.x; z/j � C max
®
.1C x/; jx � zc j

�1
¯
: (3.6)

That is,GR;0.x; z/ grows linearly in x for large x and has a singularity of order jx � zc j�1

when x is near zc . As jf .z/j � e��zkf kX� , the integral (3.5) is well defined and we have

jRaySolver0.f /.z/j � Ckf kX�
Z 1
0

e��x max
®
.1C x/; jx � zc j

�1
¯
dx

� C.1C jlog=cj/kf kX� ;

in which we used the fact that =zc � =c.
To bound the derivatives, we need to check the order of the singularity for z near zc .

We note that
j@z�2;0j � C.1C jlog.z � zc/j/;

and hence

j@zGR;0.x; z/j � C max
®
.1C x/; jx � zc j

�1
¯
.1C jlog.z � zc/j/:

Thus, @z RaySolver0.f /.z/ behaves as 1C jlog.z � zc/j near the critical layer. In addi-
tion, from the Ray0 equation we have

@2z.RaySolver0.f // D
U 00

U � c
RaySolver0.f /C

f

U � c
: (3.7)

This proves that RaySolver0.f / 2 Y
0 and gives the desired bound.
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3.3. Approximate Green function when ˛� 1

Let �1;0 and �2;0 be the two solutions of Ray0.�/ D 0 that are constructed above, in
Lemma 3.2. We now construct an approximate Green function to the Rayleigh equation
for ˛ > 0. To proceed, let us introduce

�1;˛ D �1;0e
�˛z ; �2;˛ D �2;0e

�˛z : (3.8)

A direct computation shows that their Wronskian determinant equals

W Œ�1;˛; �2;˛� D @z�2;˛�1;˛ � �2;˛@z�1;˛ D e
�2˛z :

Note that the Wronskian vanishes at infinity since both functions have the same behavior
at infinity. In addition,

Ray˛.�j;˛/ D �2˛.U � c/@z�j;0e
�˛z : (3.9)

We are then led to introduce an approximate Green function GR;˛.x; z/, defined by

GR;˛.x; z/ D

´
.U.x/ � c/�1e�˛.z�x/�1;0.z/�2;0.x/ if z > x;

.U.x/ � c/�1e�˛.z�x/�1;0.x/�2;0.z/ if z < x:

Again, like GR;0.x; z/, the Green function GR;˛.x; z/ is “singular” near zc . By a view of
(3.9),

Ray˛.GR;˛.x; z// D ıx CER;˛.x; z/ (3.10)

for each fixed x, where the error kernel ER;˛.x; z/ is defined by

ER;˛.x; z/ D

´
�2˛.U.z/ � c/.U.x/ � c/�1e�˛.z�x/@z�1;0.z/�2;0.x/ if z > x;

�2˛.U.z/ � c/.U.x/ � c/�1e�˛.z�x/ �1;0.x/@z�2;0.z/ if z < x:

We then introduce an approximate inverse of the operator Ray˛ defined by

RaySolver˛.f /.z/ WD
Z C1
0

GR;˛.x; z/f .x/ dx (3.11)

and the related error operator

ErrR;˛.f /.z/ WD 2˛.U.z/ � c/
Z C1
0

ER;˛.x; z/f .x/ dx: (3.12)

Lemma 3.4. Assume that=c > 0. For any f 2X� with ˛ <�, the function RaySolver˛.f /
is well defined in Y ˛ , and satisfies

Ray˛.RaySolver˛.f // D f C ErrR;˛.f /:

Furthermore, there hold

kRaySolver˛.f /kY ˛ � C.1C jlog=cj/kf kX� (3.13)
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and
kErrR;˛.f /kY � � C j˛j.1C jlog.=c/j/kf kX� (3.14)

for some universal constant C .

Proof. The proof follows that of Lemma 3.3. Indeed, since

GR;˛.x; z/ D e
�˛.z�x/GR;0.x; z/;

the behavior near the critical layer z D zc is the same for these two Green functions, and
hence the proof of (3.13) and (3.14) near the critical layer identically follows from that of
Lemma 3.3.

Let us check the behavior at infinity. We can normalize to assume kf kX� D 1. Using
(3.6), we get

jGR;˛.x; z/j � Ce
�˛.z�x/ max

®
.1C x/; jx � zc j

�1
¯
:

Hence, by definition,

jRaySolver˛.f /.z/j � Ce
�˛z

Z 1
0

e˛xe��x max
®
.1C x/; jx � zc j

�1
¯
dx;

which is bounded by C.1C jlog=cj/e�˛z , upon recalling that ˛ < �. This proves the right
exponential decay of RaySolver˛.f /.z/ at infinity, for all f 2 X� .

The estimates on ErrR;˛ are the same, once we notice that .U.z/ � c/@z�2;0 has the
same bound as that for �2;0, and similarly for �1;0.

Remark 3.5. For f .z/ D .U � c/g.z/ with g 2 X� , the same proof as done for Lemma
3.4 yields

kRaySolver˛.f /kY ˛ � CkgkX� ;

kErrR;˛.f /kY � � C j˛jkgkX� ;
(3.15)

which are slightly better estimates than (3.13) and (3.14).

3.4. Construction of �app
s;�

Let us start with the decaying solution �s;�. We note that

 0 D e
�˛z.U � c/

is only an O.˛/ smooth approximate solution to the Rayleigh equation, leaving an error
of approximation

e0 WD Ray˛. 0/ D �2˛.U � c/U
0e�˛z ;

which is of order ˛. Similarly, a direct computation (see (3.1)) shows that

Orr˛;c. 0/ D e0 � "�2˛ 0 D O.˛ C j"j/ D O.�1=4/
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upon recalling " D �=i˛; with ˛ D O.�1=4/. This is not sufficient for our purposes, and
we have to go to the next order. We therefore introduce

 1 D �RaySolver˛.e0/:

Note that  1 is of order O.˛/ in Y � , and behaves like ˛.z � zc/ log.z � zc/ near zc . In
particular,  1 is not a smooth function near zc . Its fourth-order derivative behaves like
˛=.z � zc/

3 in the critical layer. We have

Orr˛;c. 1/ D �".@2z � ˛
2/2 1 C Ray˛. 1/;

hence
Orr˛;c. 0 C  1/ D �".@2z � ˛

2/2 1 � "�
2
˛ 0 C ErrR;˛.e0/: (3.16)

Note that, using (3.14), we have

ErrR;˛.e0/ D O.˛2jlog.˛/j/Y � ; (3.17)

where log ˛ corresponds to the log loss of log=c, with j=cj � �0�1=4. Moreover, using
the Rayleigh equation,

.@2z � ˛
2/ 1 D

Ray˛. 1/ � U
00 1

U � c
;

hence we compute

".@2z � ˛
2/2 1 D ".@

2
z � ˛

2/
°Ray. 1/ � U 00 1

U � c

±
: (3.18)

In view of Remark 3.5, Ray˛. 1/ and U 00 1 are of order O.˛/ in X� . We thus have

"˛2
ˇ̌̌Ray. 1/ � U 00 1

U � c

ˇ̌̌
� C

"˛2

jz � zc j
� C

"˛2

j=cj
� C"˛ D O.�/X� :

Next we expand @2z in (3.18) which gives the three terms

"
@2z Ray. 1/ � @2z.U

00 1/

U � c
� 2"U 0

@z Ray. 1/ � @z.U 00 1/
.U � c/2

C ".Ray. 1/ � U 00 1/@2z
1

U � c
:

We start with the first term. As Ray˛. 1/ and  1 are of order O.˛/ in Y � , this first
quantity is bounded by

C"
�
1C

˛jlog=cj
jz � zc j

C
˛

jz � zc j2

�
� C

"˛

j=cj2
D O.˛2/: (3.19)

The second term is treated similarly, while the third term in the expansion of (3.18) is

"
�
Ray. 1/ � U 00 1

�
.z � zc/

�3;



E. Grenier and T. T. Nguyen 1478

which is bounded by O.˛/. Thus, putting these into (3.16), we get

Orr˛;c. 0 C  1/ D E; (3.20)

in which we can write the error term as

E D E1 CE2; E1 D O.˛2/; E2 � C"˛jz � zc j
�3:

This error term E2 is therefore too large for our purposes. However, it is located near
z D zc , namely in the critical layer. We therefore correct 0C 1 by 2 by approximately
inverting the Airy operator in this layer. More precisely, let

 2 D �AirySolve.E2/;

which will create an error term

E3 D Orr˛;c. 2/CE2
D Airy. 2/C OrrAiry. 2/CE2
D OrrAiry. 2/C ErrorAiry.E2/:

Let us now bound  2. Using (2.39), we have

j 2.y/j � C"˛

Z C1
0

jx � zc j
�3
�
e�j

R y
x <�f .z/ dzj CO.��1=4/1y<xx

�
dx:

Writing 1y<xx D 1y<x.x � zc/C 1y<xzc , we thus have

j 2.y/j � C"˛

Z C1
0

�
jx � zc j

�3
C ��1=4jx � zc j

�2
�
dx

� C"˛
�
j=cj�2 C ��1=4j=cj�1

�
D O.˛2/:

This together with (2.3) yields OrrAiry. 2/ D O.˛2/. Similarly, using (2.38), we get

ErrorAiry.E2/.z/ � C"˛
Z C1
0

jx � zc j
�3O.�1=4/ dx D O.˛3/:

Therefore, we have
Orr˛;c. 0 C  1 C  2/ D O.˛2/:

We define
�app
s;� D  0 C  1 C  2:

To end this section we compute  .0/. By definition,

 1.0/ D �RaySolver˛.e0/.0/ D ��2;˛.0/
Z C1
0

e2˛x�1;˛.x/
e0.x/

U.x/ � c
dx

D �2˛�2;0.0/

Z C1
0

U 0.U � c/ dz D ˛�2;0.0/
�
.U � c/2

�C1
0

D �˛�2;0.0/
�
.UC � c/

2
� c2

�
D ˛

UC

U 0.0/
.UC � 2c/:
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From the definition we have

�s;�.0/ D U0 � c C  1.0/CO.˛2/:

This proves the lemma, using that U0 � c D O.zc/.

3.5. Construction of �app
s;C

We first start with �2;˛ D �2;0e
�˛z , which is an approximate solution of the Rayleigh

equation, up to an O.˛/ error term. Precisely, noting Ray0.�2;0/ D 0, we compute the
error of approximation

e1 D Ray˛.�2;˛/ D �2˛.U � c/@z�2;0e
�˛z
D O.˛/;

in which there is no logarithmic loss @z�2;0, since U � c vanishes at z D zc . Next we
introduce

�3 D �RaySolver˛.e1/:

Then, using (3.14),

Ray˛.�2;˛ C �3/ D �ErrR;˛.e1/ D O.˛2/: (3.21)

Let us set
�

app
s;C D �2;˛ C �3:

By construction, �2;0 is bounded in Y � , and so is �2;˛ D �2;0e�˛z . On the other hand,
using Lemma 3.4 and the bound (3.13), the function �3 D �RaySolver˛.e1/ is of order
˛ in Y � . That is, �app

s;C is bounded in Y � , and thus behaves like .z � zc/ log.z � zc/ near
zc , due to �2;0.z/. In addition, using (3.21) we have

Orr˛;c.�
app
s;C/ D �".@

2
z � ˛

2/2�
app
s;C CO.˛2/:

Note that away from z D zc , the right-hand side is of order O.j"j C ˛2/ D O.�1=2/. Near
z D zc , we again use the Rayleigh equation (3.21) to get

.@2z � ˛
2/�

app
s;C D

U 00

U � c
�

app
s;C CO.˛2/;

which gives

.@2z � ˛
2/2�

app
s;C D .@

2
z � ˛

2/
� U 00

U � c
�

app
s;C

�
:

The worst term in the right-hand side ish
@2z

� 1

U � c

�i
U 00�

app
s;C;

which is of order .=zc/�3 times �app
s;C, near z D zc . Hence, recalling j=cj � �0�1=4,

Orr˛;c.�
app
s;C/ is of order

"

.=zc/3
�

app
s;C �

�

˛

1

�3=4
�

app
s;C � �

app
s;C D �2;˛ C �3;



E. Grenier and T. T. Nguyen 1480

which is of order .z � zc/ log.z � zc/, coming from �2;0.z/. That is, similarly to (3.20),
we obtain

Orr˛;c.�
app
s;C/ D E1 CE2

with E1 D O.˛2/, while E2 D O."/.z � zc/
�3�2;0, which is a log˛ loss as compared to

(3.20) for the construction of �app
s;�. The remaining construction to correct the approxima-

tion near the critical layer by approximately inverting the Airy operator follows identically
to the previous section.

4. Green function for the Orr–Sommerfeld equations

Having constructed slow and fast approximate modes �app
s;˙ and �app

f;˙
in the previous two

sections, we are now ready to construct an approximate Green function Gapp. We will
decompose this Green function into two components

Gapp
D G

app
i CG

app
b
;

where Gapp
i takes care of the source term ıx and where Gapp

b
takes care of the boundary

conditions.

4.1. Interior approximate Green function

We look for Gapp
i .x; y/ of the form

G
app
i .x; y/ D aC.x/�

app
s;C.y/C bC.x/

�
app
f;C
.y/

�
app
f;C
.x/

for y < x;

G
app
i .x; y/ D a�.x/�

app
s;�.y/C b�.x/

�
app
f;�
.y/

�
app
f;�
.x/

for y > x;

where �app
f;˙
.x/ play the role of normalization constants. Let

F˙ D �
app
f;˙
.x/

and let
v.x/ D .�a�.x/; aC.x/;�b�.x/; bC.x//:

By definition of a Green function, Gapp, @yGapp, and @2yG
app are continuous at x D y,

whereas �"@3yG
app has a unit jump at x D y. Let

M D

0BBBB@
�s;� �s;C �f;�=F� �f;C=FC

@y�s;�=�f @y�s;C=�f @y�f;�=.F��f / @y�f;C=.FC�f /

@2y�s;�=�
2
f

@2y�s;C=�
2
f

@2y�f;�=.F��
2
f
/ @2y�f;C=.FC�

2
f
/

@3y�s;�=�
3
f

@3y�s;C=�
3
f

@3y�f;�=.F��
3
f
/ @3y�f;C=.FC�

3
f
/

1CCCCA ; (4.1)
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where the functions �s;˙ D �
app
s;˙ and �f;˙ D �

app
f;˙

and their derivatives are evaluated at
y D x, and where the various factors �f are introduced to renormalize the lines of M .
Then

Mv D .0; 0; 0;�1=."�3f //: (4.2)

We will evaluate M�1 using the following block structure. Let A, B , C , and D be the
two-by-two matrices defined by

M D

�
A B

C D

�
:

We will prove that C is small, that D is invertible, and that A is related to Rayleigh
equations. This will allow the construction of an explicit approximate inverse, and by
iteration, of the inverse of M . Let us detail these points.

Let us first study D. Following (2.6), for z � �1=4,

D D

�
1 1

�1 1

�
C o.1/;

hence D is invertible and

D�1 D

�
1 �1

1 1

�
C o.1/:

For z of order �1=4, we note that FC and F� are of order O.1/,

@2y�f;� D 

2 1

.g0/2.x/

Ai.
g.x//
Ai.2; 
g.x//

CO.
/;

and similarly for @y�f;� and @y�f;C. Note that 
2=�2
f

, 
3=�3
f

, Ai.2; 
g.x//, and
Ci.2; 
g.x// are of order O.1/. As g0.zc/ D 1, up to normalization of lines and columns,
D is close to �

Ai Ci
Ai0 Ci0

�
;

which is invertible by definition of the special Airy functions Ai and Ci.
Let us turn to C . The worst term in C is that involving �s;C because of its logarithmic

singularity. More precisely, @ky�s;C behaves like .z � zc/1�k and is bounded by j=cj1�k �
�.1�k/=4 for k D 2, 3. Hence, as ��1

f
D O.�1=4/,

C D

�
O.�1=2/ O.�1=2.z � zc/

�1/

O.�3=4/ O.�3=4.z � zc/
�2/

�
:

Note that A D A1A2 with

A1 D

 
1 0

0 ��1
f

!
; A2 D

�
�

app
s;� �

app
s;C

@y�
app
s;� @y�

app
s;C

�
:
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We have

A�12 D
1

det.A2/

�
@y�

app
s;C ��

app
s;C

�@y�
app
s;� �

app
s;�

�
:

The determinant A2 is the Wronskian of �app
s;˙ and hence a perturbation of the Wronskian

of �1;˛ and �2;˛ , which equals e�˛x . We distinguish between x < ˛1=2 and x > ˛1=2.
In the second case, Orrc;˛ is a small perturbation of a constant-coefficient fourth-order
operator. The Green function may therefore be explicitly computed. We will not detail the
computations here and focus on the case where x < ˛1=2. In this case the Wronskian is of
order O.1/. As a consequence,

A�12 D

�
O.log jz � zc j/ O.1/

O.1/ O.z � zc/

�
and

A�1 D

�
O.log jz � zc j/ O.�f /

O.1/ O.�f .z � zc//

�
:

We now observe that the matrix M has an approximate inverse

�M D �A�1 �A�1BD�1

0 D�1

�
in the sense that M �M D IdCN , where

N D

�
0 0

CA�1 �CA�1BD�1

�
:

Now a direct calculation shows that

CA�1 D O.�1=4/

since =zc DO.�1=4/. AsD�1 and B are uniformly bounded,N DO.�1=4/. In particular,
.IdCN/�1 is well defined and

M�1 D �M.IdCN/�1

D �MX
n�0

N n
D �MX

n�0

O.�n=4/:

Note that the two first lines of N n vanish. The other lines are at most of order O.�1=4/.
Therefore,

.IdCN/�1.0; 0; 0; 1=��3f / D
�
0; 0;O.1=��4f /; 1=��

3
f

�
:

As D�1 is bounded and A�1BD�1 is of order O.�f /, we obtain that a˙ and b˙ are
respectively bounded by C=��2

f
and C=��3

f
.
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4.2. Boundary approximate Green function

We now add to Gapp
i another Green function Gapp

b
to handle the boundary conditions. We

look for Gapp
b

in the form

G
app
b
.y/ D ds�s;�.y/C df

�f;�.y/

�f;�.0/
;

where �f;�.0/ in the denominator is a normalization constant, and look for ds and df such
that

G
app
i .x; 0/CG

app
b
.0/ D @yG

app
i .x; 0/C @yG

app
b
.0/ D 0: (4.3)

Let

M D

�
�s;� �f;�=�f;�.0/

@y�s;� @y�f;�=�f;�.0/

�
;

the functions being evaluated at y D 0. Then (4.3) can be rewritten as

Md D �.G
app
i .x; 0/; @yG

app
i .x; 0//;

where d D .ds; df /. Note that

.G
app
i .x; 0/; @yG

app
i .x; 0// D Q.aC; bC/;

where

Q D

�
�s;C.0/ 1

@y�s;C.0/ @y�f;C.0/=�f;C.0/

�
D

�
O.1/ 1

O.log.�// O.��1=4/

�
:

By construction,
d D �M�1Q.aC; bC/: (4.4)

We have

M�1 D
1

det.M/

�
@y�f;�.0/=�f;�.0/ �1

�@y�s;�.0/ �s;�.0/

�
:

The determinant of M equals

detM D
W Œ�s;�; �f;��.0/

�f;�.0/

and does not vanish by assumption. Therefore

M�1 D

�
O.��1=4/ �1

O.1/ O.�1=4/

�
:

As a consequence,

M�1Q D

�
O.��1=4/ O.��1=4/

O.1/ O.1/

�
:
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4.3. Exact Green function

Once we have an approximate Green function, we obtain the exact Green function by
a standard iterative scheme, following the strategy developed in [8]. The stated bounds
follow from those obtained for the approximate Green function.

Funding. TN’s research was supported by the NSF under grant DMS-1764119 and an
AMS Centennial Fellowship.
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