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A rigorous framework for the mean field limit
of multilayer neural networks

Phan-Minh Nguyen and Huy Tuan Pham

Abstract. We develop a mathematically rigorous framework for multilayer neural networks in
the mean field regime. As the network’s widths increase, the network’s learning trajectory is
shown to be well captured by a meaningful and dynamically nonlinear limit (the mean field
limit), which is characterized by a system of ODEs. Our framework applies to a broad range of
network architectures, learning dynamics and network initializations. Central to the framework
is the new idea of a neuronal embedding, which comprises of a non-evolving probability space
that allows to embed neural networks of arbitrary widths. Using our framework, we prove sev-
eral properties of large-width multilayer neural networks. Firstly we show that independent and
identically distributed initializations cause strong degeneracy effects on the network’s learning
trajectory when the network’s depth is at least four. Secondly we obtain several global con-
vergence guarantees for feedforward multilayer networks under a number of different setups.
These include two-layer and three-layer networks with independent and identically distributed
initializations, and multilayer networks of arbitrary depths with a special type of correlated
initializations that is motivated by the new concept of bidirectional diversity. Unlike previous
works that rely on convexity, our results admit non-convex losses and hinge on a certain uni-
versal approximation property, which is a distinctive feature of infinite-width neural networks
and it is shown to hold throughout the training process. Aside from being the first known results
for global convergence of multilayer networks in the mean field regime, they demonstrate flex-
ibility of our framework and incorporate several new ideas and insights that depart from the
conventional convex optimization wisdom.
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1. Introduction

A major outstanding theoretical challenge in deep learning is the understanding of the
learning dynamics of multilayer neural networks. A precise characterization of the
learning trajectory is typically hard, primarily due to the highly nonlinear and complex
structure of deep learning architectures, which departs from convex optimization even
when the loss function is convex. Recent progresses tackle this challenge with one
simplification: they consider networks whose widths are very large, ideally approach-
ing infinity. In particular, under suitable conditions, as the width increases, the net-
work’s behavior during training is expected to be captured by a meaningful limit.

One such type of analysis exploits exchangeability of neurons. Recent works [9,
22,32,34] show that under a suitable scaling limit, the learning dynamics of wide two-
layer neural networks can be captured by a Wasserstein gradient flow of a probability
measure over weights. In this limit, which is usually referred to as the mean field
(MF) limit, the network weights evolve nonlinearly with time. The MF scaling of
two-layer networks requires a certain normalization to be applied to the last layer,
together with a learning rate that compensates for this normalization. The MF limit
under the Wasserstein gradient flow formulation has led to a fruitful line of research
that explains and uncovers interesting properties of two-layer networks, such as their
optimization efficacy. Let us delve into a few further high-level details of the two-layer
case, before discussing the interesting challenge in the multilayer case.

1.1. Two-layer MF network: a brief overview

Let us informally present a sampled subset of interesting results from this line of
works. To fix ideas, we consider the usual two-layer neural network:

5 I
YZ—layer(X; W) = ; Z W3,i O-((wl,i, X))

i=1
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Here x € R is the input, 0: R — R is a nonlinear activation function, and W =
{w1,i, Wai}ie[n) is the set of weights with wy; € R and wy,; € R, fori € [n], the
set of integers from 1 and n. This network has n neurons; r is also referred to as the
width of the network. The scaling factor 1/n is special to the MF scaling in two-layer
networks and we will see its role shortly.

An “infinite-width” representation. One key idea in this line of work is to introduce
the following representation:

Prtager (1) = / wy6 ((wr. X)) p(dwr, dwy),

where p is a probability measure on R¢*1. It is easy to see that by choosing u =
% Z?:l 8wl' ;.w, ; the empirical measure over the weights W, we have Vortayer (X3 1) =
92_]ayer (x; W). This identification is possible thanks to the previously mentioned scal-
ing factor n.

One way to rationalize this representation is as follows: there is a special symme-
try in the two-layer neural network, in which

yZ—layer(X; W) = 5’2—layer(x; {wl,l'[(i)s w2,H(i)}i€[n])

for any permutation IT on the set of integers [1]. The representation via yu is a neat way
to factor out this symmetry and capture the exchangeability of neurons. Of course, one
is not restricted to only empirical measures for . Therefore, this representation allows
one to reason about two-layer neural networks with arbitrary widths. In other words,
it gives us the ability to take the infinite-width limit # — oo. This is an important
observation that is central to this line of work.

The learning dynamics at infinite width: the MF limit. We are interested in under-
standing the learning dynamics of the network in the infinite-width limit. Consider
the continuous-time gradient descent learning rule (with respect to W) for the loss £:

d N

E W(t) = _an IEZ [E(Y, y2—1ayer(X; W(t)))]

Here ¢ denotes the time and Z = (X, Y') arandom variable that represents the training
data. Note that the scaling factor n compensates for the previously mentioned factor
1/n and therefore allows the learning update to be on the “correct” order. To see this,
we rewrite the learning rule:

d
77 Wi (t) = —Ez[02£(Y, Fraayer (X : W(1))) - w23 ()0 (w1,: (1), X)) X].

% W2 (1) = —E2[06(Y. §rtager(X: W(D)) - 0 (wrs (). XD)].
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where 0,/ is the derivative of £ with respect to the second variable. In this form of the
learning rule, one sees that if w; ;(¢) and w, ;(¢) all have magnitudes on order O(1)
independent of 7, then so are their updates %wl,i (t) and %wz,i (t). Hence, if they
are initialized to be on this order, one can expect to see the same order of weights and
weight movements at any finite time ¢. This is a feature of the MF scaling.

Suppose that the initialization is sampled (w1,;(0), w2,; (0)) ~ wo independently
for each i € [n], for a probability measure o on R4+, We would like to study the
empirical measure over the weights W(¢):

1 n
By = " Z(Swl,i(t)awz,i(t)'

i=1

Att = 0, itis a standard result that yuj — (o weakly as n — oo, under suitable regu-
larity conditions. We are interested in a similar statement for any time 7. To that end,
we recall the “infinite-width” representation y jayer(X; £) and introduce the following
distributional dynamics in the Wasserstein space of probability measures on RZ+!:

A e (w1, wa) = div(ps (W1, w2) Vi, wo) ¥ (W1, wai ir)),

in which W(wq, wa; ) = Ez[024(Y, Yrtayer(X; 1)) - w20 ({(w1, X))] and the initial-
ization is wo. This dynamics is a Wasserstein gradient flow. Prior works [9,22] prove
the following type of result.

Theorem 1.1 (Two-layer MF network with distributional representation, n — oo,
informal and simplified). Under suitable regularity conditions, for any finite con-
stant T, as n — oo, W} — p; weakly and uniformly overt € [0, T].

The precise statement includes a quantitative convergence rate and more realistic
learning rules, such as discrete-time stochastic gradient descent and other variations.
Theorem 1.1 formalizes the notion of an infinite-width limit: we call x; the MF limit.

An application of the MF limit: proving global convergence. Theorem 1.1 conveys
an interesting message: one can study the width-n neural network by analyzing the
MF limit w;. One success story is the study of optimization efficacy. In particular, [9]
proves the following type of result.

Theorem 1.2 (Two-layer MF network with distributional representation, ¢ — oo,
informal and simplified). Suppose that the support of o is R4*1 (i.e., it has full
support at initialization) and the loss £ is convex in the second variable. Under suit-
able regularity and convergence conditions, as t — oo,

//Lt — IEfEZ[E(Y, yQ—layer(X; /’L))]
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This global convergence result affirms positively the message that taking n — oo
under the MF limit can lead to meaningful learning. Similar global convergence
results have been established for different types of learning rules and, in special
occasions, with quantitative convergence rates. To understand the significance of this
result, we note a remarkable feature of the MF limit u,: it represents a genuinely
nonlinear dynamics. To contrast the situation, other works (e.g., [8, 17]) show that
under a different scaling, in the infinite-width limit, the neural network is equivalent
to a parameterized model which is linear in its parameter. In that scaling regime, the
learning dynamics hence simplifies into a linear dynamics, and consequently it is rel-
atively clear how to attain global convergence using the usual convex optimization
wisdom. The MF limit is distinct in this sense, but it also comes with a nontrivial
problem: insights from convex optimization may no longer apply. This is indeed the
case in the proof of the global convergence results of [9,22].

We refer to [5,24] for further overview discussions on two-layer MF neural net-
works. See also Section 9 for a partial list of works.

1.2. Multilayer MF network: the challenge and our contributions

Recall that an important milestone is to find a representation that allows to interpo-
late to an infinite-width limit. For two-layer networks, by exploiting exchangeability
among neurons, one can achieve this goal and use the representation to successfully
analyze properties of the neural networks in the infinite-width limit. In multilayer net-
works, exchangeability is, however, not a priori obvious and hence poses a highly
non-trivial challenge. In particular, the presence of intermediate layers exhibits multi-
ple symmetry groups with intertwined actions on the model. To illustrate the point, let
us consider a simple three-layer fully-connected neural network which assumes the
following form (modulo scaling factors):

ny n
Y3-layer (X) = Z w3, 0( Z wa,ij o ((wy,;, x))),
i=1 =1
for a set of parameters {w3 ;, Wa,ij, W1, }ien,], je[r,]- In the matrix notation,
Vitayer (¥) = w3 0 (W20 (Wrx)).
Under any two permutations I1y: [n1] — [n1] and I15: [n,] — [n2], we recognize

5’3—layer(-x) = w_;,rH;—O—(HZWZHIU(Hl Wlx))'

The fact that the weight matrix W, in the middle layer is under the simultaneous influ-
ence of both actions IT; and IT, is what makes the three-layer case specifically and
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the multilayer case in general different from the two-layer case, more challenging and
at the same time also a highly interesting problem. With this blocker on the strategy
to extend the two-layer case, even the goal of obtaining a representation that captures
networks with arbitrary widths becomes less approachable. Indeed, prior attempts in
[4,23,35] arrive at quite complex solutions or require a certain strong assumption that
leads to undesirable properties (see Section 9), and yet these attempts already have to
do away with the Wasserstein gradient flow formulation.

In short, finding a suitable formulation that is amenable to the infinite-width limit-
taking procedure, simultaneous at all layers, requires innovation beyond the Wasser-
stein gradient flow idea of the two-layer case. The formulation should faithfully des-
cribe settings where nonlinear and meaningful learning trajectories take place. To
compound the difficulty, a useful formulation should lend a way to analyze properties
of multilayer neural networks in the infinite-width limit, for instance, how well these
networks could be optimized despite the strong presence of nonlinearity and the lack
of convexity. These are the considerations one ought to keep in mind when tackling
the challenge.

This work responses to this challenge with the proposal of a mathematically rig-
orous framework for the MF limit of multilayer neural networks. The framework is
built on an innovative idea of a neuronal embedding. More importantly, using this
framework, we prove several properties of multilayer networks, which incorporate
new insights and ideas. Specifically, our key contributions can be summarized as
follows.

In Sections 2, 3 and 4, we develop a framework for the MF limit of multilayer
neural networks under stochastic gradient descent (SGD) training and suitable scal-
ings. We introduce the concept of a neuronal embedding, which comprises of a non-
evolving probability space that can embed neural networks of arbitrary widths. In this
framework, the MF limit is described by a system of ordinary differential equations
(ODEs), which govern the evolutions of different functions that represent the weights
at different layers and are adapted to the given neuronal embedding. The complete
framework is described in Section 2 and the well-posedness of the MF limit is proven
in Section 3. Our main result in this thread is stated in Section 4, where the MF limit
is proven to track closely characteristics of a wide multilayer network under SGD
training, with quantitative bounds on the required widths.

In fact, our framework is quite general, admits a broad variety of initialization
schemes (including, but not limited to, independent and identically distributed (i.i.d.)
initializations) and operates in Hilbert spaces. This allows for firstly describing the
MF behavior for generic multilayer setups (including fully-connected and convo-
lutional networks in Euclidean spaces that are common in practice), and secondly
obtaining dimension-free quantitative bounds.
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In Section 5, using the neuronal embedding framework, we uncover strong degen-
eracy properties caused by i.i.d. initializations. Specifically, we prove that with at least
four layers, the MF limits, and hence the neural networks, are substantially simplified
under i.i.d. initializations: at an intermediate layer, each weight evolves as a function
of only time, its own initialization and the initial biases associated with its connected
neurons. An implication is that when the initial biases are constant, different inter-
mediate layers evolve independently of each other. Remarkably, for common neural
network architectures, all weights (or biases) at each intermediate layer then evolve
by translation: they differ from their respective initializations by the same determin-
istic amount, and the effective number of parameters at each intermediate layer thus
collapses to only one.

Our framework allows to study the optimization efficacy of multilayer neural net-
works trained under SGD in the infinite-width limit.

In particular, in Section 6, we prove convergence to the global optimum for two-
layer and three-layer networks under i.i.d. initializations, with suitable regularity con-
ditions and convergence assumptions. Some of these assumptions are mild and natural
in neural network learning. The key convergence assumption in this section turns out
to be necessary for global convergence to hold, i.e., it is impossible to attain global
convergence if this convergence assumption fails.

In Section 7, avoiding the degeneracy effect of i.i.d. initializations, we prove
global convergence for multilayer networks of arbitrary depths under a special type of
correlated initializations and a similar set of assumptions. Here we introduce the new
concept of bidirectional diversity.

In Section 8, we also establish global convergence in the above settings under
Morse—Sard conditions that are usually assumed in the literature for MF two-layer
networks. This demonstrates flexibility of our framework: it can handle situations
where the two-layer Wasserstein gradient flow formulation works, as well as situations
where such formulation finds difficulty.

Two novel features that our global convergence results have in common are firstly
the role of a certain universal approximation property which is natural for nonlinear
neural networks, and secondly the admission of non-convex losses. Importantly, the
universal approximation property is shown to hold at any finite training time (but not
necessarily at infinite time) via topological invariance arguments. These new insights
signal the departure from conventional wisdoms of convex optimization.

The idea of bidirectional diversity that we introduce in Section 7 strikes directly
to the universal approximation insight. Roughly speaking, it helps “propagating” the
universal approximation property from the first layer to the second last layer. This is to
be contrasted with i.i.d.-initialized networks: universal approximation at the first layer
suffices when there are few layers, but as the number of layers increases, due to degen-
eracy by i.i.d. initializations, the middle layers become a bottleneck that generally
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prohibits universal approximation to be propagated. Bidirectional diversity aims to
break this bottleneck.

We defer a more technical discussion on the related literature to Section 9. Proofs
of several intermediate results are deferred to the appendices. Readers who are inter-
ested in global convergence of networks with more than three layers may skip directly
to Sections 7 and 8, which we have made relatively self-contained with minimal ref-
erences to the previous sections.

1.3. Notations

For an integer 1, we use [1] to denote the set {1,...,n}. We shall use (-,-) and | - | to
indicate, respectively, the inner product and its induced norm for a Hilbert space, and
| - | to indicate the absolute value for R. We use 0,,(U) to denote the sigma-algebra
generated by a random variable U. We write cl(S) to denote the closure of a set S in
a topological space. We use K to denote a generic absolute constant that may change
from line to line. For a probability space (2, ¥, P), we will suppress the presence of
the sigma-algebra ¥ wherever unimportant. Given two events & and &', we say that &’
occurs with probability at least 1 — § on the event & and write P(§;6) > 1 —§ if
P((—&)NE) <é.

2. A general framework

In this section, we describe our setup of a general multilayer neural network with a
generalized (stochastic) learning dynamics. In particular, it covers several common
neural network architectures as well as the SGD training dynamics. We then describe
the corresponding MF limit.

2.1. Multilayer neural network and generalized learning dynamics
We consider the following generalized neural network with L layers:
ylk,x) = y(x: W(k)) = pr+1(HL(k, x, 1)), 2.1
in which we define Hy, (k, x, 1) recursively:
Hi(k, x, j1) = Hi(x, j1: W(k)) = ¢1(wi(k, j1),x), J1 € [n1],
Hi(k’x’ ]l) = Hi(x’ ]lvw(k))
1 s
= Z ¢i(wi(k, ji—1, ji),bi(k, ji), Hi—1(k, x, ji-1)),
i—1

Ji—1=1
Jji€lnil,i=2,...,L.
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The above equations describe the forward pass in the neural network. We explain the

quantities in the following:

* x € X is the input, and X is the input space.

* k € Ny is the (discrete) time.

o W(k) ={wi(k,-),wi(k,-,-),bi(k,-), i =2,..., L} is the collection of neural
network parameters (weights and biases) at time k.

*  wi:Nsg X [n1] = W is the weight of the first layer (which also includes the bias).
Similarly fori =2,..., L, w;:Nso x [n;—1] X [#;] > W; and b;: N5 x [n;] = B;
are the weight and bias of the i-th layer. Here n; is the number of neurons at the
i-th layer, W; and B; are separable Hilbert spaces, and we take ny, = 1.

o d: Wy xX > Hy, ¢ W; xB; x Hj_y — H; fori =2,...,L,¢r41:Hy — Y,
where again H; and Y are separable Hilbert spaces.

In other words, the network y(k, x) is a state-dependent mapping that takes x as input
and it is dependent on the state W(k), which is allowed to vary with time k.

The network is trained by the following (discrete-time) stochastic learning dynam-
ics. At each time k, we draw independently a data sample z (k) = (x(k), y(k)) ~ P,
where J is the data distribution on X x Y and y(k) € Y, a separable Hilbert space.
Given an initialization W(0), we update W (k) into W(k + 1) as follows:

wi(k + 1. j1) = wi(k, j1) — €& (ke) AT (k. z(k). j1) forall j € [n1],
wi(k + 1, ji—1, ji) = wi(k, ji—1, ji) — €§" (k) Aj (k, z(k), ji-1, ji),
bi(k + 1, ji) = bi(k, ji) — €& (ke) AP (k, z(k), ji)
for all ji—l € [ni_l], jl‘ € [n,’], i=2,...,L.
Here € € R~ is the learning rate, and £ and E}’ are mappings from R to R, repre-
senting the different learning rate schedules for each of the weights and biases. Note
that we allow the learning rate schedules to take non-positive values.

To define the updates A} and A? requires additional definitions. Firstly, for z =
(x,y), we define

Ak, z.1) = ARz LW(K) = o (7. §(k. x). HL (k. x. 1)).
Then we define recursively
AY(k,z, ji-1. Ji) = A (z, ji-1, ji: W(k))

= o} (AP (k. z, i), wi(k, ji—1, ji), bi(k, ji),
Hi(k’x’ ji)’Hi_l(k?x’ ji-l))y
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AP(k,z, ji) = AP(z, ji; W(k))
1 nj—i

=0 Z ol (AP (k, z, ji). wik, jim1. ji).bi (k. ji),
T i=t . ,
l H; (k. x, ji),Hi—1 (k. x, ji—1)),
AR (k.2 jic) = A (2. jio: W)

1 & . o .
= — > ol (A k.2, i), Wik, i1, i), DK, i),
=1 _ . .
H; (k. x, ji),Hi_y(k,x, ji-1)), i=L,....2,

AY(k.z, j1) = AY (2. ju W) = oy (AT (k. 2, ji). wi (k. j1). x),

in which the functions are
G{IZYXYXHL%HL,

O’-WZH,' XW,' XB,’ XH,’ XHi_l —>Wi,

O'-bZHi XW,' XB,’ XH,’ XHi_l —)Bi,

O'iH_lZH,’XWiXBiXH,’XHi_l—)Hi_l, i=1L,...,2,

GY:HlXW1XX—>W1,

for separable Hilbert spaces ]I:]Ii. Note that the above equations describe the backward

pass in the neural network.

The introduced framework is quite general, while certain assumptions can be fur-

ther relaxed. We observe that several common network architectures and training
processes can be cast as special cases.

Example 2.1 (Fully-connected networks). We describe the simple setting of a fully-
connected network with 1-dimensional output and an activation function ¢;: R — R
at the i-th layer. Specifically, the network output assumes the form

i (s W ([} ])

. 1
y(x; W) =
n nrp—»

L—-1
inwhichx eR4, W={wz,Wr_1,...,Wy,bz,....bs}, wy e R"L~1 W; e R *"i~1
with ngo = d + 1, np, = 1 and b; € R" . This case fits into our framework with
X=R4 W, =R H=Rand W; =B, =H; =Y =Y =Rfor2<i < L.
We also have

¢1(w,x) = (wlzd’x> + Wg+1,
¢i(w.b,h) =we; (k) +b, 2<i<L,

pr+1(h) = h.
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Consider the regularized loss function

1 ni 1 np—i
Loss(W:2) = Ly S W)+ .= 37 @1(wi) + o 37 @r(wey,)
Lji=1 L— 1]L 1=1
nj—1 nj

L—-1
+ ’;(n"_llni Z > 0wy ) Z( pr (b, )

Ji—1=1 ji=1 Ji=1

where £:R x R — Rsg, ®;: R — Rsq fori > 1, ®1: R+ — Ry, ¥;: R — Rso,
wy,j, is the ji-th row of Wy, w; j;_,;; is the (ji—1, ji)-th entry of W; for 2 <i <
L—1,wg,j,_, isthe j;_i-thentry of wz, and b; ;; is the j;-th entry of b;. If we train
the network by SGD with respect to this loss, then H:I[,- = R and

ol (y.5.h) = 122(3.9).
o' (A, w,b, g, h) = Agi—1 (h) + @} (w),
oP(A,w,b,g.h) = A+ W(b),
ol (A, w,b,g,h) = Awg!_(h), 2<i<L,

o¥(A,w.x) = A[ ’1‘ ] VO ().

Observe that when there is no regularization (i.e., no ®; and ¥;), 0" (A, w, b, g, h) is
independent of w and b, and the same holds for 0} and o7}'.

Example 2.2 (Convolutional networks). Our framework can also describe networks
that are not of the fully-connected type. For illustration, we consider the first two
layers of a convolutional network with an activation ¢: R — R and pooling operation
pool(-); a description of the complete network (which may contain fully-connected
layers) can be done in a similar fashion to Example 2.1. Here X = (R?*P)"c_ where
in the context of a square image input, p is the number of pixels per row and n. is
the number of channels (which is 3 for RGB images and 1 for gray-scale images). We
take W; = R/1*/1X1c x R and W, = R/2%/2 where f1 and f5 are the filter sizes,
B, = R, H; = RP1*P1 and H, = RP2*P2_ Then

¢1((w,b),x) =w*xx+ blpl’
¢d2(w, b, h) = w % pool(p(h)) + blp,.

where * denotes (strided) convolution and 1,, is an all-one matrix in R?:*?i  The
dimensions p; and p, are determined by the actual convolution operation, its stride
size, its padding type and the input size. In this context, n; and n, are the numbers of
filters at the first and second layer, respectively. One can also specify the forms of 0}",
o} and o upon the choice of a loss function, with SGD training.
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The examples of fully-connected and convolutional neural networks serve as the
main motivation to study the generalized neural network model as described. In both
of these examples, the spaces are finite-dimensional Euclidean spaces, while in the
generalized model, the spaces are allowed to be infinite-dimensional. Similarly, while
SGD with respect to a loss function is the typical choice of learning dynamics for
these examples, in our framework, the learning dynamics is more general. We shall
see that the key ideas hold regardless of the specific details. In particular, the ultimate
goal is to understand the properties of W(k) in the limit of large n; and small €, via a
limiting object that is well-defined and has an explicit form. To this end, we introduce
the mean field limit in the next section.

2.2. Mean field limit

We now describe the mean field (MF) limit. Given a probability space (2, ¥, P) =
]_[iLzl(Qi, Fi, P;) with Qp = {1}, we independently sample C; ~ P;, 1 <i < L.
From here onwards, we hide the sigma-algebras &, ¥; wherever unimportant. In the
following, we use E; to denote the expectation with respect to the random variable
C; ~ P; and ¢; to denote a dummy variable c¢; € ;. The space (2, P) is key to
our MF formulation and is referred to as the neuronal ensemble. The choice of the
neuronal ensemble provides a bridge between the earlier described neural network and
the MF limit; this connection shall be established later in Section 4. For the moment
we treat the MF limit as an independent object from the neural network.

Given the neuronal ensemble, we obtain the MF limit as follows. It entails the
following quantity:

yA(va) = yA(x’ W(l)) = ¢L+1(HL(Z,X, 1))’
in which Hy (z, x, 1) is computed recursively:

Hi(t,x,c1) = Hi(x,c1; W(t)) = ¢p1(wy(t,c1),x) forall ¢y € 24,
Hi(t,x,c;) = Hi(x,ci; W(t))
=Ec¢;_,[¢i (wi(t, Ci1,¢:), bi(t, i), Hi—1(t, x, Ci—1))]
forallc; € Q;,i =2,...,L.

This corresponds to the forward pass of the neural network. We note the similarity
with the corresponding quantities of the neural network:

* x € Xistheinputand ¢t € R is the (continuous) time.

o W(t) ={wi(t,-), wi(t,-,-),bi(t,-), i =2,...,L} is the collection of the MF
parameters at time .
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e wiiRyox Q) = Wy,and fori =2,..., L, wi: Ry x 2,1 X Q; - W, and
biZRZQ X Qi — Bl’.

In correspondence with the neural network’s learning dynamics for W(k), the MF

limit also entails a continuous-time evolution dynamics for W(¢). This dynamics takes

the form of a system of ODEs, which we refer to as the MF ODEs, given an initial-
ization W(0):

ad
—wl(t,cl) = —SY([)EZ[AEU(I, Z,Cl)] forall c; € Q,

ot
D i) = ~E OB AL (. Z,eior.c0),
%bi (t.c;) = —EP(OEZ[AL(t, Z.¢;)]  forallci_y € Qi_1. ¢i € Q.
fori =2,..., L, where EZz denotes the expectation with respect to the data Z =

(X,Y) ~ &, and the update quantities are defined by the following recursion:

A2, 1) = Af (2, W) = of (v, (¢, %), Hp (¢, x, 1)),
AP(tz,cim1.¢ci) = AP (z,cim1.ci: W(1))
= aiw(AlH(t,z,ci),wi(t,ci_l,ci),bi(t,ci),
Hi(t,x,¢i), Hi—1(t, X, ci—1)),
A,z ¢0) = Al (z,ci; W(D))
=Ec,_, [o?(AF (t. 2. ci), wit, Cimr, i), bi(t. ci),
Hi(t,x.¢;). Hi—1(t,x, Ci—1))],
AL (.2, cim1) = AL (2, cimas WD)
=Ec, [0/ (AP (t.2.Ci), wit, ci—1, Ci). bi(t. Cy),
Hi(t,x,C;), Hi—(t,x,ci—1))], i=0L,....2,
AV(t,2,¢1) = AV (z,ci; WD) = o} (AT (2,2, ¢1), wi (2, ¢1), x).

This recursion corresponds to the backward pass of the neural network.

Remark 2.3. The definition of a MF limit model y(z, x) based on the neuronal
ensemble (€2, P) gives a way to define a large class of neural networks that encapsu-
lates networks of arbitrary sizes. More specifically, let us write W = {wy, w;, b; :i =
2,..., L} in place of W(¢) and y(x; W, 2, P) in place of y(z, x) to ignore the time ¢
and make explicit the dependency on the neuronal ensemble. Similarly, here let us
also write W = {wy,w;,b; :i =2,..., L} inplace of W(k) and y(x; W,ny,...,nr)
in place of y(k, x). Then, by defining the class NNo = {V(-; W, 2, P)}w,q,p that is
indexed by (W, 2, P) while fixing other parameters (such as the number of layers L),
one sees that any finite-sized neural network y(-; W, ny, ..., nz) belongs to NNeo.
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This correspondence can be seen by the following identification: £ = ]_[lL —1 §2; with
Q; =[ni], P = ]_[iL=1 P;, with P; a uniform measure on [r;], and

w;i (Ji—1, Ji) = Wi (ji—1, ji) forall ji_y € Qi—1 = [ni—1], ji € Qi = [ni],
bi(ji) = bi(ji) forall j; € Q; = [n;],
wi(j1) = wi(Jj1) forall j; € Q1 = [nq],

for 2 < i < L. In particular, there exists y(-; W, 2, P) € NNy such that
YW, Q, P)=3y(-:W,ny,...,np).

More generally one may observe that a similar correspondence holds for both the
forward pass and the backward pass, for example,

Hi(x,ji; W, Q, P) = Hi(x,j,-;W,nl, ce ,nL),

ARGz i w.Q, P)= ARz, jiiW.ny,....,ny) forall j; € Q; = [n;],
where the quantities are rewritten forms of H;(t, x, ¢;), AiH (t,z,ci), Hi(k, x, ji)
and AlH(k, z,¢;), respectively. As such, roughly speaking, the dynamics of any finite-
sized neural network can be identified with a MF dynamics, modulo the differences in

time discretization and stochastic sampling of the data. The same observation is made
in [13], which instead studies it from the function space approximation perspective.

2.3. Preliminaries

We describe several preliminaries that are necessary for the next steps. First we con-
sider several structural assumptions.

Assumption 2.4. The learning rate schedules are bounded and Lipschitz:

ma Y(@)|, ma b <K,
max [£7(0)]. max (€20 <

max [E"() = £, max [§7(1) = &'()] = K|t —1'].
Assumption 2.5 (Forward pass assumptions). The function ¢ satisfies
|$1(w. x) — 1 (W', x)| = Kw —wl,
for all w, w’ € W, and for #-almost every x. Fori = 2,..., L, ¢; satisfies

i (w. b, h)| = K(1 + [w[ + |b]),
i (w. b, h) — i (', b", h)| < K(1 + [w] + |[w'| + [b] + |67 — 1|
+ K(Jw —w'| + |b =),
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for all w, w’ € W;, b,b’ € B;, and h, i’ € H;_;. Finally, ¢1 4 satisfies
|pL+1(h) — L1 (h)| < K|h = 1|,
forall h,h' € Hy.
Assumption 2.6 (Backward pass assumptions). The function o7 satisfies
o} (A, w,x)| < K(1 + |A]),
o} (A, w,x) — 0P (A" w', )] < K(1A = A + |w—w')),

for all w, w’ € Wy, A, A’ € ]ﬁll and for #-almost every x. Fori =2,...,L, oV
and aib satisfy the following growth bounds:

max (|0 (A, w, b, g, h)|, |o>(A, w,b, g, h)]) < K(1+ |A]),
as well as the following perturbation bounds:
max (|0} (A, w, b, g, h) — o (A, w', b, g’ 1),
loP(A, w, b, g.h) — ol (A, w', b, g’ h)])
< KA+ A+ [ADh =1+ K(A = A+ Jw—w'|[ + b= + g — &']).
Fori =2,...,L, al.H_ , satisfies the growth bound
oL (A w.b.g. W) < K(1+ A+ |w]| + [b]),
and the perturbation bound
lo (A, w, b, g, h) —ofL (A, w', b, g/ )|
< K+ |w| + [w'| + 6] + [6'D]A — A

+ K(1+ |Al+|AD(w—w'| + |b—=b))
+ K(1+ |A] 4+ [AD)A + [w] + [w'| + [b] + [6')(1g — &'| + |h = R]).

Finally, o} satisfies

oL 0. 9. < K. o (v.§.h) = o (0.3 KOl < K(h = 1| +15 = 3

),
for J-almost every y.

Remark 2.7. We remark that these assumptions can be relaxed, e.g., ¢; (w, b, h) may
be allowed to grow super-linearly with the variables, at the expense of suitable addi-
tional assumptions.! Here we pay attention to a simpler setting, which covers neural
network setups of interest that are relevant to Sections 6 and 7.

'Indeed, this has been done in our previous iterate of the paper, posted on arXiv.
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We also equip the neural network and its MF limit with several norms. In particu-
lar, we define, for the neural network parameters,

1 ni—1 nj

/50

wille = (= 3= 3 suplwicls/elojimininf®)
1— [ 2
Ji

1—1]1_1 -

1 2 1/50
bille = (5 3 supbils/el jnl®) . i=2... L.
Pji=1°%

1 X ) 1/50
Iwille = (== D= supIwi(ls/el. jnI*)
ny 7/ s<t
J1=1
‘We also introduce the notation:
Wl = max( max, fjwi[lr._max, [Jb ] ).
We also have similarly for the MF limit:
1/50
llwill = E[sup [w; (s, Ci—y, C:)[%°]"*°,
s<t
0o .
16l = [sup|b (5,CHPO], i=2,...L,

lwillls = E[ sup |w1(s,C1)|50]1/50’
s<t

as well as

17 = max( max, |y

o max, [l [l )-
For convenience, let us define the quantities:

max;’ (W) = max sup|w, (s, Ci—1,Cy)|,

2<i<L s<

max; bawy = ,max  sup |bi (s, Ci)|,
<i<L s<¢

which are random variables. Note that max}’ (W) does not involve w.
For a set of MF parameters W, we define

IWl: = max( max fw;ll;, max [|b; Ie).,
1< < < <

1/2
Jwills = E[sup lwi(s. Ci-1. )] 212,

1/2

Ioille = E[sup (s, O], i =2, L

1/2
lwil; = E sup Jwi (s, C)2]">.
s<t
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Note that this defines a norm on the space of MF parameters. As such, we can define
the following distance for two sets of MF parameters W and W':
IW = W'|l; = max( max [w; —wjll;, max |b; —bill¢),
1<i<L 2<i<L

Jwi — w) e = E[ sup [wi (s, Ci_1. C;) — wl(s. Ci_y. Ci) 2],
s<t

”bl _bl/”l‘ = E[Sup|bi(s9ci) _bl{(s»ci)|2]l/2v I = 2s e 7L7
s<t

llwy —will; = E[ sup|wi(s. C1) — w)(s. C)2]>.

s<t

3. Existence and uniqueness of the solution of the MF ODEs

We study the well-posedness of the solution of the MF ODEs introduced in Sec-
tion 2.2. For this purpose specifically, we consider the following sub-Gaussian norm
for w;, 1 > 2:

1
[wily.: = V50 sup —E[sup|w,-(s,C,~_1,C,~)|m]1/m, i=2,...,L,
m>1 /M s<t

and accordingly we define

[WTys = max( max, Tulyee. ma, [[oc]le ).

2<i<L

The factor 4/30 is taken for convenience to guarantee that [w;]y., > |||w;|||; and
hence [W]y.. = Wl

Denote by 7 the space of MF parameters W such that ||W |7 < co. Given a ter-
minal time 7 > 0 and an initialization W(0), we define the mapping F that associates
W' e W with

F(W/)(t’ Clyevns CL) = {Flw (W/)(tv cl)’ sz (W/)(la C1, 02)’ FZb(W/)(t’ c2)s
o PP Wt ermrsen), FPOW)) (@t en)),s

in which
t
FIY (W) (t.er) = w1 (0, 1) — /0 EV()EZ[AY (Z.crs W (s))] ds,
t
FP W)t ciotoci) = wi O.cior.ci) — /0 EYEZ[AY (Z. ¢im.ci: W'(5))] ds.

FP(W')(t,¢;) = bi(0,¢;) —/ts}’(s)Ez[A{?(z,c,-; W'(s)]ds, i =2,....L.
0
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Observe that at initialization F(W’)(0,-,...,-) = W(0), whereas the quantities in
the above time integrals are computed with respect to W'. In the following, when
referring to a solution W to the MF ODEs on [0, T'], we mean an element of 27
satisfying F(W) = W. We say that W is a solution to the MF ODEs on ¢ € [0, 00) if
its restriction to [0, 7'] is a solution to the MF ODEs on [0, T'] for all T > 0.

Theorem 3.1. Assume the initialization W(0) of the MF ODEs satisfies [W ] y.0 < K.
Then under Assumptions 2.4-2.6, there exists a unique solution to the MF ODEs on
t €0, 00).

The rest of this section is devoted to the proof of this theorem. To prove the theo-
rem, we first collect a useful a priori estimate.
Lemma 3.2. Under Assumptions 2.4 and 2.6, given an initialization W(0), a solu-
tion W to the MF ODEzs, if exists, must satisfy that for any t € [0, 00),

| W] 130

+» max E[sup ess-sup |AT(Z, Ci; W(s))*°]
1<i<L s<t Z~P

< K (14 1)1+ [[W]llg5).

where k. = KL for some constant K > 1 sufficiently large.
A similar result holds for [-]y.: norm. Under Assumptions 2.4 and 2.6, given an
initialization W(0), for any t € [0, 00), there exists Ko(t) > 1 of the form

Ko(1) = K*=(1 4+ 1*5)(1 + [W] ).

where kg, = KL for some constant K > 1 sufficiently large, such that the following
holds. A solution W to the MF ODE:s, if exists, must satisfy that for any t € [0, 00),
Wl < [W]y: < Ko(t). Furthermore, by assuming [W]y.0 < oo, for any B > 0,

P(max? (W) > Ko(t)B) < 2Le' K187,
for some universal constant K1 > 0.

Recall the bounds in Lemma 3.2 are given by Ky(¢), which is a function of the
initialization W(0) and non-decreasing with . These a priori bounds lead us to con-
sider the following spaces, given an initialization W (0) and an arbitrary terminal time
T > 0:

* The space Wr of MF parameters

W/ = {W/(t)}ZST = {w/l(t")’wl/'(t"")’bl{(t7')v i = 27’L}

t<T

such that
[IWlllr < Ko(T).
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¢ The space W2 C Wr of MF parameters W’ € Wy such that
[W'Ty.r < Ko(T),
P (max2(W') > Ko(T)B) < 2Le' K18 forall B > 0,

and W’(0) = W(0) (and hence every elements W’ in ‘W2 share the same initial-
ization W(0)). It is easy to see that W2 C Wy is valid since |||W'|||7 < [W']y.7-

We equip these spaces with the metric (W/, W") — |W' — W”|r. By Lemma 3.2,
we know that any solution W to the MF ODEzg, if exists, must belong to Wg.

The proof of Theorem 3.1 follows from a Picard-type iteration. It is easy to see
that a solution to the MF ODE:s is a fixed point of F and vice versa. Also note that by
the same argument of Lemma 3.2, one can prove the following.

Lemma 3.3. Under Assumptions 2.4 and 2.6, for any W' € W2, F(W') € Wy.
We have the following key result.

Lemma 3.4. Fora given B >0, consider two collections of MF parameters W' ,W" €
Wr such that

P(max2(W') > Ko(T)B) < 2Le' K157,
P (max2(W") > Ko(T)B) < 2Le' K187,
Under Assumptions 2.4-2.6, forany t < T,

| FOW') = FOW")|l¢ < (KKo(T))*"*? /0 ((1+BY W =W+ ~/Le ™ 17°/2) ds.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We perform a Picard-type iteration argument. For an arbitrary
finite T > 0and W/, W" € 'W%, from Lemma 3.4, we have

IF(W") — F(W")ll:

t
< (KKO(T))2L+2((1 + B) / IW' = W" |y ds + T~/Le k1 32/2)
0
t
=k (1 + B)/ (W' — W5 ds + koe %38,
0

for any B > 0. By Lemma 3.3, F maps W2 to W2. As such, we can iterate this
inequality to obtain

I FD W) = F™ W)

T
<ki(1+ B) f IF™=D W’y — F=DW") |1, dTy + ke *358°
0
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T T
<k2(1 + B)? / f | EP=2 W) — FOD (W) |1, I(Ty < T)dTsd T
0 0

2

Tkik,(1 + B))¢!
+kzz( 12(€'+ ) o—k3B?

=1

T rT> Tm
5k;"(1+B>'"// / VW =Wy I(Tp << Ty <T) d Ty~ d T
1] 0 0

" (Tkiky(1 + B))¢ 1
+kzZ( 12(£'+ ) k3B

£=1

i' ka;n(l + B)m”W/ - W//“T + kzeTklk2(1+B)_k3Bz
m:

IA

1
_' kall’n(l + ﬂ)m”W/ . W//HT + kzeTklk2(1+ﬂ)_k3m,
m!

where we choose B = /m in the last display. Note that since |||W |||o < oo, Ko(T)
and hence k1, k; are finite for finite 7. By substituting W’ = F(W'), we obtain

00 o0
Y IETEO W) — FO Wl = YN W) = F W)z < oo.

m=1 m=1

Hence, as m — oo, F ™ (W') converges in || - ||z to a limit W € W, which is a fixed
point of F'. By Lemma 3.2, W belongs to 'W%.

The uniqueness of the fixed point comes from the above estimate, since if W’
and W" are fixed points of F, then they are both in ‘W2, and

W —W"|r = |F™ W' - F™W")|r

=< i' ka;n(l + \/%)m”W/ _ W//”T + kzeTk1k2(1+ﬁ)_k3m’
m:

and one can take m arbitrarily large. This proves that the solution exists and is unique
ont € [0, T]. Since T is arbitrary, we have existence and uniqueness of the solution
to the MF ODEs on the time interval [0, c0). ]

The proofs of the lemmas are in Appendix B.

4. Main result: connection between neural network and MF limit

4.1. Neuronal embedding and the coupling procedure

Neuronal embedding. To formalize a connection between the neural network and its
MF limit, we consider their initializations. In practical scenarios, to set the initial
parameters W(0) of the neural network, one typically randomizes W(0) according
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to some distributional law p. We note that since the neural network is defined with
respect to a set of finite integers n = {n1,...,ny} that represents its size, so is p. In
the context of infinite-width limits of neural networks, we would like to accommodate
a sequence of neural networks of diverging sizes n (where ny,...,np—; — oo and
nr = 1). As such, it is useful to also consider a family Init of initialization laws, each
of which is indexed by the set of finite integers n = {ny,...,np} (withny = 1):

Init = {p : p is the initialization law of a neural network of sizen = {ny,...,n.},

ni,....np € Nag, np = 1}.
We make the following crucial definitions.

Definition 4.1 (Unit neuronal embedding). Given an initialization law p of a neural
network of sizen={n1,...,np} (where ny =1), we call (Q, P,{w?};ie(r].{b?}2<i<L)
a unit neuronal embedding for this neural network if there exists a sampling rule

Py = ]_[iL:1 Py, such that the following hold:

1) (,P) = ]—[iLzl(Q,-, P;) is a product space and Q7 = {1}. We recall that
(2, P) is called a neuronal ensemble.

2) P, ; 1s a distribution over Q;” whose marginals are given by P;. Note it is not
necessary that P, is factored as a product of P;’s.

(3) The deterministic functions w : @y — Wy, w? : ;1 x Q; > W; and
b?: Q; —> B;, 2 <i < L are such that if — with an abuse of notations — we

sample (C; (ji))ie[L].j;eln;] ~ Pn, then

Law(w(C1(j1)), w(Ci—1(ji—1), Ci (ji)), b2 (C: (i),
j1 €[ml.ji €nili =2,....L) = p.

Definition 4.2 (Neuronal embedding). Given a family of initialization laws Init, we
call (2, P,{w}}ie[r]. {6} }2<i<1) a neuronal embedding for Init if it is a unit neuronal
embedding for any law p in Init.

On one hand, we concern chiefly with the notion of a neuronal embedding, which
carries the idea of infinite-width limits. On the other hand, the unit neuronal embed-
ding — as a standalone notion — is useful when one is to obtain a quantitative (finite-
width) result, such as Theorem 4.7 and Corollary 4.9 below. Note also that if the
family Init contains only one initialization law, then a unit neuronal embedding for
this law is obviously a neuronal embedding for Init. We shall thus routinely refer to
a unit neuronal embedding as a neuronal embedding, whenever there is no risk of
confusion.

n-independence. An important aspect of the neuronal embedding is the sampling
rule Py. The product structure P, = HiL=1 17,,1. implies layer-wise independence. At
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each layer i € [L], a canonical example of a sampling rule is one in which the samples
areii.d.,ie., Isnl. = P; x -+ x P; (n;-time product). In fact, we shall require a weaker
condition, given in the following.

Definition 4.3 (n-independence). We say that (X1, ..., X,) € Q{ are n-independent
if for all 1-bounded functions f that maps from 2 to a separable Hilbert space, for
any i € [n], almost surely,

[ELf(X:) [ {Xir.i" <i}] = E[f(XD)]] < n.

Assumption 4.4 (7j-independence for neuronal embedding). Letn = (n1,...,10L-1),
where n; = n; %-°°!. For the neuronal embedding in Definition 4.2 (or Definition 4.1),
for each index n in the family Init, the sampling rule P, satisfies that (C; (j));, efn;] ~
]sni are 1);_1-independent for all i € [L — 1]. In this case, we say the neuronal embed-
ding satisfies n-independence.

It is easy to see that in the canonical example where Isni = P; x ---x P; for all
i € [L — 1] and all indices n from Init, the above assumption is trivially satisfied; that
is, any n independent random variables are n~¢-independent with ¢ = oo.

Remark 4.5. When Init contains more than one law, if a neuronal embedding exists,
then Init must satisfy a certain consistency property. For instance, under the canonical
example where P,, = P; x -+ x P; forall i € [L — 1] and all indices n from Init, if
a neuronal embedding with this sampling rule exists, then the following must hold.
Suppose that p indexed by {ny,...,n} and p" indexed by {n},...,n} } are elements
of Init such that ny <n’,...,nz 1 <nj_,, and suppose that

Law (W} (0, j1), w; (0, ji—1, ji). bj(0, ji) : ji € [nj].i =1,...,L) = p'.
Then we must have that

Law(w} (0, j1). W; (0, ji—1. ji). b; (0. ji) : ji € Sii = 1,.... L) = p,
for any collection of L sets S;,i = 1,..., L, where each §; is a subset of [n;-] with
size |S;| = n;.

Coupling procedure. To proceed, we perform the following coupling procedure:

(1) Given a family of initialization laws Init, let (2, P, {w?},-e[L], {b?}zsisL) be
a neuronal embedding of Init.

(2) We form the MF ODEs’ initialization W(0) by setting w1(0,-) = w(-),
w;(0,-,-) = w?(~, -) and b;(0,-) = b?(~) for 2 < i < L. With this initial-
ization, we obtain the MF limit’s trajectory W(¢), for ¢t € R, according to
the neuronal ensemble (€2, P).
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(3) Givenn = {ny,...,nz}, we find a sampling rule P, = ]_[iL:1 }7,11.. For each
i € [L], wesample (C;(j1),...,Ci(jn;)) ~ 13,” . We then form the neural net-
work initialization W(0) by setting w1 (0, j1) = w?(C1(j1)), wi (0, ji—1, ji) =
w(Ci-1(ji-1), Ci(ji)) and b; (0, ji) = bY(Ci(ji)) for j1 € [n1], ji € [ni],
2 <i < L. With this initialization, we obtain the neural network’s trajec-
tory W(k) for k € N5, with the data z (k) being generated independently of
C;(j;)’s and hence of W(0).
Hence, we see that the connection is formalized on the basis of the initialization,
and in particular, the neuronal ensemble (€2, P). Note that W(¢) is a deterministic
trajectory for ¢ € R>¢ and itis independent of {n1,...,ny}, whereas W(k) is random
for all k € N5¢ due to the randomness of C;(j;) and the generation of the training
data z (k). We define a measure of closeness between W([¢/€]) and W(t) for the
whole interval ¢ € [0, T]:

Dr (W, W) = max(I, I, 13), 4.1

in which
ni—1 ni

b= max (Y > sup wiLr/e]. ji-a. )
2sisL i lnl]l 1=1ji= 1t< /2
0. i G GG)

2<i<L 11<T

b= ma (L ZSUpr (Le/el. o - bite GGE)

L= (o Z sup (wi(L¢ /). 1) —wn (1. CoG)P)

—11=T

Note that, by definition, D7 (W, W) is a random quantity due to the randomness of
{Ci(Ji)}ierr) and {W([7/€])}1ef0,11-

The idea of the coupling procedure is closely related to the “propagation of chaos”
argument [36]. Here, instead of playing the role of a proof technique, the coupling
serves as a vehicle to establish the connection between the neural network’s trajectory
and the MF trajectory on the basis of the neuronal embedding.

4.2. Main theorem

Let us consider an assumption on the initialization.

Assumption 4.6 (Initialization). The functions w? and b? of the neuronal embedding
satisfy

1
max  sup —mIE[|w (Ci—1, CHI™ ]1/’”§K,

2<i<L p;>1
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1
max  sup —IE[|b?(Ci)|m]l/m <K,

2§i§L m>1 m

1
sup —= E[Jw}(C)["]V™ < K.
m>1 /M

As such, following the coupling procedure, the initialization W(0) of the MF ODEs
satisfies |||[W ||lo < K < oo.

We are now ready to state the main theorem.

Theorem 4.7. Given a family nit of initialization laws and a tuple of positive integers
{n1,...,np} withny =1, perform the coupling procedure as described in Section 4.1.
Under Assumptions 2.4-2.6, 4.4 and 4.6, there exist constants ¢ € (0,0.5) and ¢, €
(0, 1/52) such that for any § > 0, L > 1 and T € €Ns, the following holds. There
existn®* =n*(T,L,c1,¢3) > land €* = €*(T, L,c1,c2) < 1 such that for any integer
Hmin > n* and any € € (0, €%),

min min/*

_ 1
P (DT(W, W) > K(n_ ! +€°1) log(g nZ.. +e)) < 28 4+ K LNy, exp(—Knt2

Here nyin = miny<j<—11; and Nmax = MaxXi<j<r Hj.

Roughly speaking, with n; = ®(n) fori € [L — 1] and € < 1/ log(n), we have
W(|t/€]) ~ W(t) for all t € [0, T] and large n. We note that the exponents ¢; and ¢,
are independent of the terminal time 7" and the number of layers L. It is an interesting
task to derive explicit constant values for ¢; and ¢, which we have not done given
the complex dependency of these exponents on other hidden constants in our current
analysis.

Remark 4.8. Under the stronger assumption of boundedness of the initial weight
distributions at all except the first layer, in our work’s previous preprint, we show that
a similar result to Theorem 4.7 holds with ¢; = 0.5. Therein an even stronger result
is achieved, in which we define D7 (W, W) via L® distance, instead of L? distance
as done in equation (4.1).

The theorem gives a connection between W(|¢ /€ |), which involves finitely many
neurons, and the MF limit W(¢), whose description is independent of the number of
neurons. It lends a way to extract properties of the neural network in the many-neurons
limit.

Corollary 4.9. Consider any test function : H; — S which is K-Lipschitz and K-
bounded, i.e.,

W () -y ()| = Klh=1'], |y(h)| <K,

where S is a separable Hilbert space. Under the same setting of Theorem 4.7, for
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any § > 0, we have, with probability at least 1 — 38 — K Ln . exp(—Kn¢>

min

Z Ez[yH;(t/e]. X, ji)] —EzEc, [y (Hi(t. X.Ci))]| = O(n ! +€),

t<T

where O hides the dependency on T, L and § as well as the logarithmic factors
log nmax and log(1/¢€). Furthermore, for any test function ¥:Y x Y — S which is
K-Lipschitz in the second variable, uniformly in the first variable,

sup [Ez[y (Y. 9(lt/e], X)) —Ez[y (Y. 5t X))]| = O(n, 5! + €,

with probability at least 1 — 26 — K Lny,x exp(—Kn

mm)

As per Remark 4.5, we note that the statements in Theorem 4.7 and Corollary 4.9
have explicit quantitative dependence on the hidden widths #n;, and hence one may
consider Init that contains only one initialization law.

We observe that while the MF trajectory W(t) is defined as per the choice of the
neuronal embedding (2, P, {w};cqr). {bY}2<i <1 ), which may not be unique. On the
other hand, the neural network’s trajectory W(z) depends on the randomization of
the initial parameters W(0) according to an initialization law from the family Init (as
well as the data z(¢)) and hence it is independent of this choice. Another corollary of
Theorem 4.7 is that given the same family Init, the MF trajectory is insensitive to the
choice of the neuronal embedding of Init.

Corollary 4.10. Consider a family Init of initialization laws such that it contains
a sequence of indices {{n1(n),...,np(n)} : n € N}, in which np,(n) - oo and

nt(n)lognmx(m) — 0asn — oofor any ¢ > 0, with npin(n) = minj<j<z—1 n; (n)
and Ny (n) = max<j<r—1 1; (n).

Let W(t) and W(t) be two MF trajectories associated with two choices of neu-
ronal embeddings of nit, say (Q, P,{w}}ier). {b?}2<i<1) and (Q, P, {02} ey,
{Elo }a<i<L), respectively. Suppose that both neuronal embeddings satisfy Assump-
tions 4.4 and 4.6. Let us also assume Assumptions 2.4-2.6.

For any T € R and any set ofposztlve integers {nl, ...,npywithnp =1, if
we independently sample U;(j;) ~ P; and U;(j;) ~ P; for j; € [n;] and i € [L],
then Law(W(ny,...,np,T)) = Law("W(nl, ...,np,T)), where W(ny,...,np,T)
denotes the following collection on W(t):

Wny,....np. T) = {wi(t. U1 (j1). wi (t. Ui—1 (i—1). Ui (ji)). bi (2. Ui (i) -
ji € [ni]vi € [L]’t € [0’ T]}7

and 'W(nl ...,nr, T) denotes a similar collection on W(t)
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In the case L =2, by looking at the induced distribution of (w; (¢, C1), w2 (z,Cq,1))
over C; ~ P, we immediately recover the distributional equation in [22] describing
the MF limit.

Corollary 4.11. Assume the same setting as Theorem 4.7, and let us consider L = 2.
For simplicity, let us disregard the bias of the second layer by considering 53() =0
and b5(0,-) = 0. Assume Wy = R4, W, = R% for some integers dy,d» > 0. Let p,
denote the law of (w1(t, C1), wa(t, Cy, 1)) over Cy ~ P1. Then p; satisfies the fol-
lowing distributional partial differential equation in the weak sense:

0 pr (U1, uz) = div[p, (1, u2)G(u1, u2; ps)],

in which

G(uy,uz;pr) = [EY(I)Ez[é}”(ul,uz; Z. ps)] :|’

§ (DEZ[AY (u1.u2: Z, py)]

and we define

Hy(x;p00) = /¢2(u2,0,¢1(u1,x)) dps(uy,uz),

X(X;,Oz) = ¢3(Ha(x; pr)),
AZ(z:p1) = 03 (v, (x: pr). Ha(x: pr)).
AY (u1,u2:2, pr) = 03 (A5 (23 1), u2, 0, Ha (x5 o), 1 (u1, X)),
A (uyuziz, pr) = o (AF (25 pr). u2. 0, Ha (x5 pr). 1 (1, ),

AY (uy,uz;z, pe) = oy (AT (ur,uz;z, pr), ur, x).

In particular, for any § > 0 and any K -Lipschitz and K -bounded test function yr: Wy x
W, — S, where S is a separable Hilbert space,

ni

sup |- 3 wme/el. o walle/el i) = [ W) dpstus )

<T'ny !
t<T ji=1

=0 + ).

with probability at least 1 — 38 — Kny exp(—Kn7?), where O hides the dependency
on T and § as well as the logarithmic factors logny and log(1/¢). Similarly, for any
test function ¥: Y x Y — S which is K -Lipschitz in the second variable, uniformly
in the first variable,

sup [Ez[y (Y. §(lt/e). X)) = Ez[¥ (Y, 3(X: p))]| = O, + ),

with probability at least 1 — 38§ — Kny exp(—Kn7?).
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4.3. Proof of Theorem 4.7

We construct an auxiliary trajectory, which we call the particle ODEs:

D ) = £ OBZ[ATZ, i W) forall j € ],

d ) ) w w ) -
ng (. Ji-1, Ji) = =& OEZ[AT(Z, ji-1, ji: W(D))],

%Bi([’ji) = —EP(OEZ[ANZ. ji; W ()] forall ji—1 € [ni—1]. ji € [nil.

fori = 2,...,L,in which W(¢) = {&1(¢,-), W; (t,-,-), bi(¢,-), i =2,...,L}, and
t € R>o. We specify the initialization W (0) as follows: w;(0, j;) = w(C1(j1)),
i (0, ji-1, ji) = w(Cim1(ji—1), Ci (i) and b; (0, ji) = b (C; (ji)). Thatis, it shares
the same initialization with the neural network one W(0), and hence it is coupled
with the neural network and the MF ODEs. Roughly speaking, the particle ODEs are
continuous-time trajectories of finitely many neurons, averaged over the data distribu-
tion. We note that W (¢) is random for all t € R due to the randomness of C; (j;)’s.

The existence and uniqueness of the solution to the particle ODEs follows from
the same proof as in Theorem 3.1, which we shall not repeat here.” We equip W(t)
with the norms

ni—1 nj

- 1 1/50
il = (;— 20 20 swpliits. ji j)l)
11— 1

Ji—1=1 ]1_1 -

- 1 & T 1/50
WBille = (= D" suplbits. j)™®) L i =2 L,
n; Ji=1 s<t

~ 1/50
gl = (- Zsup|w1<sm|°) .

J1=1

as well as

17 = max( ma, [ ma, 15 1 ).
One can also define the measures D7 (W, W) and D7 (W, W) similar to equation (4.1):

Dr (W, W) = max(Iy, I, 1),
Dy (W, W) = max(ly, Is, I),

20On a more technical note, we can view the particle ODEs as a new system of MF ODEs
whose neuronal ensemble (Qpew, Prew) = 1_[1'L=1(Qi,neW7 P; 1ew) takes the following specific
form: Q; pew = {C;(1),...,C;i(n;)} and P; py is a uniform probability measure on 2; pey. In
light of this view, the existence and uniqueness of the solution to the particle ODEs follows
from Theorem 3.1.
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in which
nj—1 nj /2
I = ( £, C; G L jio1, ) :
1 ZIsnieg(L P .‘2121 ]2_:1|wz( i-1(ji-1), Ci(ji)) — w; (¢, ji-1, i)l

n;

I N2
L= max (3 sup lbute, GGy — Bute. )
2=i=L \Nj = ¢<T

I3 =( Z sup |wy (¢, C1(j1)) — w1z, j1)| ) :
=11=T

nj—1 nj

Y Y wille/el i = i)

Ji—1=1 ji=1

I4 = max (
2<i<L

2<i<L

I = max (o Zsupnb (/e ~BrteioP)

ls = ( Z sup [wi([7/€]. j1) — w1z, j1)l )

—11=T

We have the following results.

Theorem 4.12. Under the same setting as Theorem 4.7, there exist constants ¢, €
(0,0.5) and ¢, € (0,1/52) such that for any § > 0, L > 1 and T > 1, the following
holds. There exists n* = n*(T, L, ¢y, c3) > 1 such that for any npyy, > n*,

1
(DT(W W) > Kn_{! \/log(8 ni. + e)) < § + KLnmaexp(—Kni2.).

Here nyin = miny<j<r—11; and hmax = MaxXi<;<r Hj.

Theorem 4.13. Under the same setting as Theorem 4.7, there exist constants c¢1 €
(0,0.5) and ¢, € (0,1/52) such that for any § > 0, L > 1 and T > 1, the following
holds. There exists €* = €*(T, L, c1,c2) < 1 such that for any € € (0, €*),

P(DT(W,W) > Ke®! \/10g( M+ e)) <8+ KLnpa exp(—Kn‘2).

Here nyin = miny<j<p—11; and Nmax = MaxXi<j<r Hj.
Proof of Theorem 4.7. Using the fact
Dr(W,W) < Dr(W,W) + Dr (W, W),

the thesis is immediate from Theorems 4.12 and 4.13. [
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4.4. Proof of Theorems 4.12 and 4.13

The proof of Theorem 4.12 rests in the following proposition, which is essentially a
version of Theorem 4.12 with an extra boundedness condition at initialization.

Proposition 4.14. Under the same setting as Theorem 4.7, for a given B > 0, further
assume that

ess-sup max¥ (W) = ess-sup max |w?(Ci—1, C;)| < B,
2<i<L

ess-sup maxg(W) = ess-sup max |h)(C;)| < B.
2<i<L

1/52)

min

Then for any § > 0, with probability at least 1 — § — K Lny,x exp(—Kn

8 1 2TL . :
D (W, W) < \/ log( ; n2  + e) exp(KX(1 + T%)(1 + B)),

n min

in which pin = MiNj<j<7—1 N, Nmax = MaXi< < N}, and K is a constant that
depends on L such that K < KT for some sufficiently large constant K.

Similar to Proposition 4.14, the following proposition is essentially a version of
Theorem 4.13 with an extra boundedness condition at initialization.

Proposition 4.15. Under the same setting as Theorem 4.7, for a given B > 0, further
assume that

ess-sup maxy (W) = ess-sup max |w} (Ci—1, C;)| < B,
2<i<L

ess-sup maxg(W) = ess-sup max |b?(C,-)| < B.
2<i<L

1/52)

min

Then for any § > 0 and € < 1, with probability at least | —§ — K Lnp,, exp(—Kn

_ 2L . .
Dy (W, W) < \/e 1og(T n2 -+ e) exp(KX(1 + TX)(1 + B)),

in which nmin = MiNi<j<z—171j, Nmax = MaX1<j<L N}, and K is a constant that
depends on L such that K < KT for some sufficiently large constant K.

The following proposition bridges the last two propositions with their respective
theorems.

Proposition 4.16. Assume the same setting as Theorem 4.7. Let W (t) = {w1(t, -),
w;(t,-,-),bi(t,), i =2,...,L} bethe MF ODEs’ solution for which its initialization
W (0) is a truncated version of W(0), for a given B > 0:

w1(0,c1) = wl(cr), wi(0,ci—1,¢;) = Truncg(w?(ci—1,¢i)),
bi(0,c;) = Truncg (b (c;)),
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for2 <i < L, where Truncg (1) = ul(|u| < B) + Bsign(u)l(|u| > B). Then
IW — Wit < K exp(—KB* + KX(1 + TX)(1 + B)),

for K a constant that depends on L such that K < K™ for some sufficiently large
constant K. Similarly, let W and W be the particle ODEs’ solution and the neural
network’s dynamics with a similarly truncated initialization:

w1 (0, j1) = wi(0, j1) = wi(Ci(j1)).
Wi (0, ji—1, ji) = Wi (0, ji—1, ji) = Truncg (W (Ci—1(ji-1), Ci (ji))),
bi(0. ji) =b;(0, ji) = Truncp (b (Ci (ji)))-

32 1/52
mm )’

Then, with probability at least 1 — K Lnyay exp(—Ke ™K
W =Wz, [W-Wl|r < Kexp(—-KB* + KX(1 + TX)(1 + B)).
Here ny, = max(ny,...,np), Byin = min(ny,...,n5—1),

W — W||; = max( max, wi —will,, max [[b; —b;lls, [wi —wil),
2< 2<i<L

nji—1 ng

Yo X suplwils/el:jivj)=wills/e) - i)

Ji— 1_111—1

uw—mm=(

—11; .

1 1/2
b =il = (; Z ililt)|bi(|_s/éjsji)_l_)i(Ls/GJ’ji)|2) , 1=2,...,L,

wi = will = (5 Z sup twi(1s/e]. j1) ~wi(Ls/e). )

| <t
and ||W — W ||; is defined similarly.

We can now prove Theorems 4.12 and 4.13.
Proof of Theorem 4.12. Let K1 = Kk(l + TIZ). For a given B > 0, let W and W
be the initialization-truncated versions of W and W, respectively, as per Proposi-

tion 4.16. Then Proposition 4.14 states that for any § > 0, with probability at least
1—6— KLnpax exp(—Knl/-SZ),

min

2TL
log( 3 n2.. —{—e) Kr(+8),

min

Dr(W. W) 5\/ :

In addition, by Proposition 4.16, the following holds:

W =Wz, |[W =W < Ke KB +Kr1+8)
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K32 1/52
mm

with probability at least 1 — K Lny,x exp(—Ke ). Also notice that

Dr(W,W) <Dr(W, W)+ |W —=W|r + W -W|r.

As such,

- 1 2TL
Dr(W, W) < (\/n : log( 5 n2.. + e) 4 e_KBz)eKT(l'f‘B),

with probability at least 1 — § — K Ly exp(—Ke K82 n1/52) ‘for any fixed B > 0.
Then upon choosing B = cg+/10g iy, for some suitable constant ¢y > 0 independent
of T, it is easy to see that there exist constants ¢; € (0,0.5) and ¢, € (0, 1/52) inde-

pendent of T and some n* = n*(T, L, c1,c2) > 1 such that for any np;, > n*, we

have

1
(DT(W W) > Knmm \/log(8 ni.. + e)) <6 4+ KLnp, exp(— Knmln [

Proof of Theorem 4.13. This comes from Propositions 4.15 and 4.16, similar to the
proof of Theorem 4.12. ]

Let us mention again the correspondence between Theorem 4.12 and Proposi-
tion 4.14, and that between Theorem 4.13 and Proposition 4.15. The truncation at
initialization allows for technical feasibility and it is then bridged by Proposition 4.16.
The proofs of Propositions 4.14 and 4.15 are necessarily lengthy, so let us defer them
(as well as missing proofs of other results) to Appendix C. Let us describe briefly the
argument for Proposition 4.14. Recall that w; (0, C;—1 (ji—1), Ci (ji)) = w; (0, ji—1, ji)
at initialization ¢ = 0, and hence one hopes to prove

w; (2, Ci—1(ji-1), Ci (ji)) =~ wi(t, ji-1, Ji)
at any finite ¢. In other words, we would like to show
Ez[AP(Z, Cim1(ji-1), Ci(ji); W) ~ EZ[AN(Z, ji-1, jis W ()],

Both of these quantities share very similar structures. Roughly speaking, the left-hand
side involves quantities that assume the form of an expectation Ec, [g(C;)] and the
right-hand side correspondingly involves quantities of the form of an empirical aver-
age (1/ny)- >0 ir=18(Cr(jr)), for some function g. An invocation of concentration
of measure bounds links the two sides, and if done correctly over the training horizon
(i.e., over t < T), the depth of the network (i.e., over index i < L) and the width at
each layer (i.e., over neuron j; < n;), it gives the desired estimation. One also rec-
ognizes that the neural network W is essentially a time discretization version of W
where the learning rate € plays the role of the discretization level. A martingale-type
argument then suffices to prove Proposition 4.15 for small €.
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5. Simplifications under independent and identically distributed
initialization

In this section, we prove that the MF limit under an independent and identically dis-
tributed (i.i.d.) initialization degenerates to a simple structured dynamics. Let us first
state the definition of i.i.d. initializations.

Definition 5.1. An initialization law p for a neural network of size {n,...,np} is
called (pL.....pE, pZ,..., pL)-ii.d. initialization (or i.i.d. initialization, for brevity),
where pi, is a probability measure over W; and pf, is a probability measure over B;,
if it satisfies the following:

o {w1(0, j1)}} e[, are generated i.i.d. according to pl,

e foreachi=2,...,L,{w;(0, ji-1.Ji)}j;_ eln;_,1,j: €ln;] are generated i.i.d. accord-
ing to pi, and {b; (0, Ji)}j;eln;] are generated i.i.d. according to p{,,

» all these generations are independent of each other, and plf is a single point mass.

Observe that, given (pvlv, e, ,ovl;, ,oﬁ, e, ,olf), one can build a family Init of i.i.d.
initialization laws that contains any index tuple {ny,...,np}.

In the following, we construct a canonical MF limit under i.i.d. initialization and
show that the MF dynamics can be significantly simplified. Our plan is as follows:

(1) We first construct a sequence (in increasing M) of neuronal embeddings,
which we call canonical neuronal embeddings. In particular, each of these
— indexed by M — allows to embed i.i.d.-initialized neural networks of sizes
at most M . Each canonical neuronal embedding is associated with a MF limit,
which we call a canonical MF limit.

(2) We present a dynamics which is shown to be the infinite- M limit of the canon-
ical MF limits. This dynamics displays the simplifying properties that we wish
to show. In particular, the dynamics of i.i.d.-initialized neural networks of
large widths are well-approximated by the infinite-M limit, and asymptoti-
cally displays the same simplifying properties.

This plan streamlines our studies of i.i.d.-initialized networks in the infinite-width
limit. As we shall see, the construction of the canonical neuronal embedding is quite
natural due to the cap at finite M. More importantly, on one hand, the fact that the
canonical MF limit tracks closely the neural network of size less than M demon-
strates flexibility of Theorem 4.7 from Section 4, in that its applicability is not limited
to abstract infinite-width limits. On the other hand, the fact that the simplifying prop-
erties are shown in the infinite-M limit demonstrates the advantage of working with
these abstract infinite-width dynamics: they reveal properties that are virtually invisi-
ble at the finite-width level.
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5.1. Neuronal embedding construction and main results

5.1.1. Canonical neuronal embeddings and canonical MF limits. We describe the
construction in three steps with a given positive integer M and a set of measures

(pvlv,...,va;,pg,...,plf).
Step 1. We first give a description of a o-finite measure space. Consider a probability

space (A, Py) of the random processes W;-valued p; (6;), W;-valued g; (6;—1, 6;) and
B;-valued p; (6;) for 2 <i < L. These processes are indexed by 6; € N~ and satisfy

the following property. Let mq, ..., mp_1 be L — 1 arbitrary finite positive integers
and, with these integers, let {Gi(ki) €Nsg:k;je[m;],i =1,...,L — 1} bean arbitrary
collection. Let my;, = 1 and 98) =1.Foreachi =1,..., L, let S; be the set of unique

elements in {Qi(ki): ki € [m;]}. Similarly, for eachi = 2,..., L, let R; be the set of
unique pairs in {(Qi(fffl), Hl.(kf)) tki—1 € [m;_1],k; € [m;]}. The space (A, Py) satisfies
that {p,-(@i): 0, eS;i=1,..., L} and {qi(Gi_l, 91')2 (9,'_1, 91) eR;,i=2,..., L}
are all mutually independent. In addition, we also have

Law(p1(61)) = p, Law(p;(6;)) = pi, Law(a;(6/_,,6)) = pl,

forany 6; € Sy, 6; € S; and (6;_,,0]) € R;,fori =2,..., L. Such aspace (A, Po)

1
exists by Kolmogorov’s extension theorem.

Step 2. With this space, given the integer M, for each i € [L — 1], we define QlM =
A x[M] equipped with the product measure PiM = Py xUnif([M]), where Unif([M])
is the uniform measure over the finite set [M]. We also let 2 2’[ = {1} and PLM = oM.
We construct QM =[], QM equipped with the product measure PM = M=, PM.

The space (QM, PM) gives a canonical neuronal ensemble.

Step 3. Let Q; = A x N5 and observe SZ,M C ; for any M. We define the deter-
ministic functions w?: Q; — Wy, w?: Qi x Q; > W; and b?: Q; — B;, fori =
2,...,L:

wl((A1.61) = p1(61)(A1). (5.1)
w((Aiz1.6i—1), (X, 61)) = i (=1, 0) (X)), i =2,....L—1, (5.2)
w((Ar—1.62-1).1) = q(61—1. D(Az-1). (5.3)
bY((Ai.6:)) = pi () (A, i=2,....L-1, (5.4)

b (1) = pr(1). (5.5)

These functions, together with (QM ,pM ) , give a canonical neuronal embedding.
Per Section 2.2, given this neuronal embedding, one obtains a canonical MF limit
WMty = {w{”(l, -), wiM(t, ), biM(t, ), i =2,...,L)}, defined on (QM, PM),
with initialization WM (0) = {w?,w?,b6? :i =2,...,L}. With (Cy,...,Cr) ~ PM,
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one observes that

L
Law(w{(C1), w3(C1. C2).bY(Ca). ... . wp (CLo1.1). bR (1)) = pl x [ | oy x ph-
i=2

We also consider the sampling rule P:f” , defined, for each n = (ny,...,ny) with
ni <M fori € [L —1]andn; = 1, by independently sampling {C; (j;)};, e[s;] from
(PiM )" conditioned on that {6;(j;)};, e[n,] are all distinct, for each i € [L], where
Ci(ji) = (X (ji), 0: (ji))-

The constructed embedding indeed gives a valid neuronal embedding for neural
networks of sizes at most M.

Proposition 5.2. Forn={ny,...,ny}withn; < M andny =1, the space (QM, PM)
together with the functions ({ w?}ie[L], {b?}zSiSL)form a neuronal embedding for the
neural network of size n under (pl, ..., p‘%, ,0%, ey ,olf)-i. i.d. initialization, in which
the associated sampling rule is PM. Furthermore, PM is (2nyx/ M )-independent,
where Ny = max(ny,...,ng).

The proof of the proposition is deferred to Appendix D. This result, together with
Theorem 4.7, suggests that for large M, the canonical MF limit tracks closely the tra-
jectory of an i.i.d.-initialized neural network, as long as its (large) size is much smaller
than M. Equivalently an i.i.d.-initialized large neural network can be closely tracked
by any canonical MF limit with sufficiently large M . This motivates the studies of the
canonical MF limits in the limit M — oo, which display simplified structures.

5.1.2. Infinite-M limit of canonical MF limits. Recall that the space (QM, PM)
depends on M and only gives an embedding of networks whose widths are at most M .
More specifically, while the space (A, Pp) is independent of M and QM can be
extended to infinite M, the measure P™ would become an improper probability mea-
sure for infinite M. Nevertheless, one can still define a dynamics that is independent
of M.

Let W*(t) = {wi(t,-), w/(t,-), b/ (t,-),i =2,..., L} be a dynamics to be
described shortly, which we shall prove to be the “infinite-M” limit of W™ . The
full description is lengthy and is deferred to Appendix D.1; let us give a snapshot
description for L > 5andi =3,...,L —2:

0

Ew?(tvui, Vi1, 0;) = =& (OEZ[AP*(t, Z, ui, vi—1,vi)],

9
o bY(t,vi) = —EP(EZ[AP* (1, Z)),

for all u; € supp(pl,), v; € Supp(p{)), with the initialization w} (0, u;,-,-) = u; and
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b7 (0,v;) = v;. Here the quantities are defined by

H(t,x,v;) = /¢i(w?(l,ui,vi—l,vi),bi*(h vi), H (1. x,vi1))
X pyy(dui) oy, (dvim),
AP*(t, z,u;, vie1, vi) = 07 (AF* (2, 2, 00), wi(t, ui, vier, vi), b (2, vy),

Hi*(t7x’ Ui), Hl*—](ta X, vi—l))’

AP*(t,z,v) = /0}’(Af{*(t,z,vi),w,-*(t,ui,vi—l,vi),bi*(t,vi),

HE(t,x,v;), HE (1, x,v-1)) % pk (du;) b~ (dvi—y),

A, z,02) = foiEl(A,H*(t,z,vi),wi*(t,ui,vi_l,vi),bi*(t,vi),
H(t,x,v:), HE (%, vi-1)) % ph(dui)ph(dvy).

The existence and uniqueness of such dynamics follow similarly to the proof of The-
orem 3.1. We state the main result of this section, which shows that the dynamics W*
is the infinite-M limit of W™ . (Again we refer to Appendix D.1, specifically Theo-
rem D.1, for the complete statement of this theorem.)

Theorem 5.3 (Snapshot statement). Given (pl, ..., pk, oE, .., p{;) and an inte-
ger M, construct the canonical neuronal ensemble (2™, PM), the random variables
(Cy,...,Cp) ~ pM — ]_[l-L=1 PiM and the canonical MF limit WM as described in
Section 5.1.1. Also construct the dynamics W* described in Section 5.1.2. Define the
following:

wo(t, ci—1, i) = wi(t, wi(ci—1, i), b1 (ci—1), by (ci)),

b (t,c;) = b} (t,bY(c;)) forallc; € Qi = AxNxg,i =3,...,L—2.
We also let W (t) = {w°(t,-), w(t,-,-),bX(t,-), i =2,...,L}. Let us consider

(WM _ W), = max ( lrélizlsXL(wlM — wfo),,zrsnizg(L(b;” — b)),

(W — w), = E[wM (1. Cio1. C) — wf(t. Cioy. €22,
(bM —b°), = E[IbM (1.C;) — b°(e. C) 2],

Then, under Assumptions 2.4-2.6 and 4.6, forany T > 0and L > 2,

Krp
sup(WM — ), < 2=
t<T I = 30.499

for sufficiently large M = M(T, L), where K, is a constant that depends on T
and L. Furthermore, for L > 4and?2 <i < L —2,

N 1/2 Kr,L
sup E[|Hy (X, Cis W (1)) ~ H; . X)) = s
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We give a sketch of the proof in Section 5.2. We now discuss the implications
of Theorem 5.3, and in particular, the simplifying properties induced by i.i.d. ini-
tializations. The complete proofs of this theorem and its corollaries are deferred to
Appendix D.

Tracking i.i.d.-initialized neural nets via W*. For large M, the canonical MF limit
WM is well approximated by W* (and equivalently by W as defined in Theo-
rem 5.3), while we recall from Theorem 4.7 that WM tracks closely the trajectory W
of a large-width i.i.d.-initialized neural network. As such, viewing the bridge through
WM as an intermediate step and taking M — oo, one can track W via W*. To be
precise, by combining Proposition 5.2 and Corollary 4.9 with Theorem 5.3, we imme-
diately obtain the following result.

Corollary 5.4. Under Assumptions 2.4-2.6 and for a set of probability measures
(pvlv,...,pvl;,plz), . ..,pb)such that

max sup —— [|u|m (du) <K, max sup —— /|v|m (dv) fK,
1<i<L p>1 2<i<L m>1

there exist constants c¢q € (0,0.5) and c; € (0,1/52) such that the following statements
hold.

Consider any positive integer L>2 and a tuple of positive integersn={nq,...,np}
with np=1. Let nyin = mMini<j<z—11j and Nmax = Maxi<j<r n;. Consider a neu-
ral network (2.1) of size n under (pvlv, cee Pva’ pﬁ, cee pb) i.i.d. initialization, and
let W be its trajectory. Also construct the dynamics W*, as well as the associated
quantities, described in Section 5.1.2. Then for any § > 0 and T € €Ns, there exist
n* =n*(T,L,cy,¢c3) > land €* = €*(T, L, cy,c2) < 1 such that if npy, > n* and
the learning rate € € (0,€*), for 3 <i < L — 2, for any K-Lipschitz and K-bounded
test function Y:H; — S (where S is a separable Hilbert space), for any § > 0, we
have, with probability at least 1 — 38 — K Ln pax exp(—Kn&2

min

sup |—
t<T

ZEZWH (Lt/e). X g - Ee[ [ werr . x. v))pbwlv)]'

= O(nm;l + €,

where O hides the dependency on T, L and § as well as the logarithmic factors
log nmax and log(1/€). A similar statement holds fori = 1,2, L — 1, L. In addition,
for any test function ¥:Y X Y — S which is K -Lipschitz in the second variable,
uniformly in the first variable,

sup Ez[y (Y. 3(lt/e]. X)) — Ez[¥ (Y. 5*(t. X))]| = O(nyg! + €M),

with probability at least 1 — 28 — K Ln oy exp(—Kn¢2

min
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Degeneracy of the dynamics. By looking closely at W*, we observe a simplify-
ing property. By Theorem 5.3, under i.i.d. initialization, for each intermediate layer
i =3,...,L—2,the weight w*(t,C;_y, C;) is a function of only the time ¢, its own
initialization w?(Ci_l, C;) and the initializations of the adjacent biases b?_l(Ci_l)
and b (C;), and the bias b (¢, C;) is a function of only the time ¢ and its own initial-
ization b?(Ci). When we further assume constant initial biases (i.e., b?(Ci) = B;isa
constant almost surely for all i > 2), w°(z, C;—1, C;) is a function of only the time ¢
and its own initialization, and 5°(z, C;) is almost surely only a function of time ¢,
regardless of C;. Consequently, in this scenario, because the initialization is indepen-
dent across layers, the weights of intermediate layers remain mutually independent at
all time, for depth L > 5, in the infinite-width limit.

The theorem in fact further asserts that degeneracy can already be observed for
L > 4. In particular, for 2 < i < L — 2, if the initial bias b?(-) = B, is a constant,

then

E[|Hi (X, C: WM (1)) — H (1. X, B))|2]"? < %
Note that H*(¢, X, B;) is independent of C;. This suggests that at any training time ¢,
the neurons of each intermediate layer i compute the same function of the data input
X = Hi* (¢, x, B;) in the infinite-width limit. This is formalized directly for the neural

network W in the following.

Corollary 5.5. Consider the same setting as Corollary 5.4 with L > 4. For2 <i <
L — 2, supposing that b?(Ci) = B; is a constant almost surely, then we have, for any
t < T, with probability at least 1 — 35 — K Ly, exp(—Knﬁﬁn ,

1 o . * 2 1/2 (., —C1 c
(- 2" Bz[IHi(lr/el X, ji) = HY (. X, B)P]) = Olmyi! + €.
L

Thus, by Markov’s inequality, if one is to pick at random a neuron j; € [n;] at
layer i from the neural network W at the training step [¢/€], for 2 <i < L — 2,
then with high probability, this neuron would compute the function x — H* (¢, x, B;)
which is independent of the index j;.

Collapse to effectively one parameter per layer. Further consideration to standard
neural network architectures reveals a stronger simplifying property. The next conse-
quence of Theorem 5.3 is that with i.i.d. initialization and constant initial biases, for
each intermediate layer i = 3,..., L — 2, the weight w°(¢, ¢;—1, ¢;) translates by a
quantity that is independent of ¢;—1 and ¢;, provided that 0," satisfies a certain condi-
tion. This condition holds for unregularized standard fully-connected or convolutional
neural networks (see Examples 2.1-2.2). So, for these networks, in the infinite-width
limit, with i.i.d. initialization and constant initial biases, the dynamics of the weight
at each intermediate layer reduces to a single deterministic translation parameter.
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Corollary 5.6. Under the same setting as Theorem 5.3 with L > 5, assume that
b)(C;) = B; is a constant almost surely for all i > 2. Further assume that for each
i €{3,...,L — 2}, there exists a function 0," that satisfies

o (A, w,b,g.h) =6"(A,b,g.h),

i.e., 0, doesnot depend on the second variable. Then there are differentiable functions
w#(t) such that for 3 <i < L — 2, almost surely, for any t > 0,

wi®(t, Ci—1, Ci) — w0, Ci—1, C;) = wi(t).

5.2. Proof sketch of Theorem 5.3

Sketch of proof for Theorem 5.3. We will use Kr,1, to denote a generic constant that
depends on T and L and may change from line to line. The main argument exploits
the construction in Section 5.1.1 of the canonical neuronal embedding in a suitable
way. To illustrate the idea, consider

Di(t) = E[|H; (X, Ci; W(1)) — H;* (¢, X, b2 (C;))*].

We aim to show that fort < T,

Kr1
D;(t) < YA

For brevity, define
g, vim1, vi) = @i (W) (1, ui, vim1, vi), b (1, vi), H (1. x, vi—1)).

We recall w)(Ci—1, Ci) = gi(6i—1,6:)(Xi), b (Ci) = pi (6;)(A;) and b)_, (Ci—1) =
pi—1(0i—1)(A;j—1) from the construction (5.1)—(5.5). To make use of the canonical
neuronal embedding’s construction, we consider a decomposition of the following
squared quantity:

Ec;[[Ec;_, [gw(Ci—1,Ci), b0 (Ci—1), b2 (C)]|*]

a)
2 B, ai0,0/_ A6 [{g(ai (Bi=1. 0:)(Ai). piz1(Bim1)(Xi=1). pi (6;) (A1),

g(aqi (0/_1. 6)(Ai). pi—1(6/_1) (A1), pi (6:) ()]

=Eo_,0/_, |:I[0,~_1=0{_1/<g(”i, vi—1.v;). (i vj_y. vi))ph (dvi1)ph  (dvj_y)
x ph (dv;) ok (du;)
Lo ey, [0 vim ). g o]y o)l @)l @)

x gl (dvg) ph (i)l () |
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1 - - . .
- / (2. i1, 1), £t v v (@i o))l ()
+ 2 ] [ stusviroauns | s,

where in (a), (6/_,, A;_;) ~ Unif([M]) x Py is an independent copy of (6;—1,A;—1)
and it is independent of (6;, A;), and (b) follows by the construction of p;_1, p; and q;.
We also notice that

Ec, [<]ECH [g(w(Ci—1,Ci), b1 (Ci—1),b)(C))].
[ v B i)
— [| [ st virvopb@us @i pytavn.
Putting the last two displays together, one easily arrives at the following:

Ec,[|Ec;,_, [g(w!(Ci—1. Ci). b)_(Ci—1).b)(Ci))] — H} (1. X, b,-O(Ci))|2]
= ]Ec,-[ Ec,_,[g(w?(Ci=1. Ci).b}_1(Ci—1). b (Cy))]

_/g(ui,Ui—l’b?(ci))piv(dui)p{’_l(dvi_l)‘ ]

K . . . K
<o / g (i, vimy, vi) 20 (duy) pi " (dvi—1) pl(dv;) < %.

This illustrates the main use of the canonical neuronal embedding’s construction. Now
from Assumption 2.5, one can show that

E[|Ec,, [g(w?(Ci-1,Ci), b2 (Ci—1),b%(Ci))] = Hi(X, Ci; W= (1)) |’]
< Kr1Di_1(2).

Therefore,
Di(t) =

i—1(2).

One arrives at the claim from this relation.
The rest of the proof involves similar estimates and Gronwall’s inequality. Let us
quickly describe the steps for completeness. Similar to the above argument, for

DH @) =E[|aAH(Z.C:w™ () — Al* (1. Z.2(C))|*).
we can show that fort < T,

logl/2 M

H
D;*(t) < Kt,L i
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With the previous two claims, one easily shows:

logl/2 M logl/2 M

b
D () < KT’LT’ D;(t) < KT,LT,

where we define

DY (t) = E[|AP(Z.Ci1. Ci: W™e(1))

— AP*(6, Z.wd(Cim1. i), By (Cim1). BY(C)[].

DE () = E[|AL(Z, Ci; W (1)) — AY* (1, Z,b2(C))[*]-

The next step is to show thatfor2 < < L,any ¢t < T and any B > 0,
E[[E2[AF(Z.Cio1. Cii WM (0) = AP(Z. Cimy, Ci W= ))][P]/?

< Kro((1+ BY (WM — W), + 7K,
With this, we then arrive at the following:
E[|AP(Z. Cit. Ci WM (1) — AP* (1, Z, w(Cir. C1). b4 (Cimy). BY(C))| ]

< [DP O + E[|AP(Z.Cior. Ci WM (1)) = AP(Z.Cio. Ci W) ]

logl/4 M

= KT,L(W

L1+ B(WM Wy, + e—KBz).

A similar result holds for A? . Hence, we obtain that forallt < T,

logl/4 M

t
M
(w —WOO)tEKT,L/O( YEE

L1+ BY(WM Wy, + e—KBZ) ds.
Since (WM — W), = 0, Gronwall’s inequality implies that

log'/* M 2 1

M _ yroo : —KB2?\ Kr,.(1+B)

tS;g(W W=k SKT’LI?;%[( w2 e )e o ]EKT’LMO-“”’
for sufficiently large M. This proves the main statement in Theorem 5.3; the other
statement follows easily. |

6. Convergence to global optimum: two-layer and three-layer
networks with i.i.d. initialization

In this section, we prove several global convergence guarantees for fully-connected
neural networks (without biases) with L < 3 and i.i.d. initializations. A key element
here is a certain universal approximation property that holds at any finite training time.
This is shown using a tool from algebraic topology.
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6.1. Warm-up: the case L =2

Our first result is that in the case of two-layer fully-connected neural networks, the
MF limit converges to the global optimum under some genericity assumptions on the
initialization distribution. Before we proceed, we specify the two-layer network under
consideration and its training:

y(k,x) = g2(Hz(k, x, 1)),

1 < 6.1
Hz(k,x, 1) = E Z Wz(k,jl, 1)(/)1((W1(k,j1),x>), ( )

J1=1

in which wy (k, j;1) e R?, x e R?, ¢1:R — R, wa(k, ji,1) € R and ¢2: R — R. We
train the network with SGD with respect to the loss £: R x R — R and the data
z(k) = (x(k), y(k)) drawn independently at time k:

wak + 1, j1,1) = wa(k, j1,1) = —€02L(y (k). (t, x (k))) @5 (Ha (2, x (k), 1))
x g1(wi(k, j1), x(k)),
wi(k 41, j1) = wi(k, j1) = —€02£(y(k), y(z, x(k))) 9y (Ha (2, x (k), 1))
x wa(k, j1, e ((wi(k, j1), x(k))x (k).

Here € € R+ is the learning rate. The corresponding MF ODEs are

D waltse1,1) = ~E2 [0 (Y. 5. X)) gh(Hat. X. D) st er). X)].

8 A

gwl(”cl) = —Ez[0,L(Y.7(1, X)) 5 (Ha (1, X, D)) wa(t.c1, 1)
x @i ((wi(z,c1), X)X ],

in which for f1: Q; — R and f2: Q21 — R, we define

V(x: f1. f2) = e2(Ha(x: f1, f2)),  Ha(x: f1, f2) = Ec [ /2(CD) o1 ({ f1(C1), x))],

and y(z, x) and H, (¢, x, 1) are short-hands notations when f; = w;(z,-) and f» =
wa(t, -, 1). It is easy to see that this network fits into our framework. In particular,
under the coupling procedure in Section 4.1, our framework allows to study the fol-
lowing initialization scheme:

{W100, j1), w20, ji, D)} g ~ P° 1

for suitable probability measure p° over R? x R. In this case, p°® = Law(w; (0, C;),
w>(0, Cy, 1)). To measure the training quality, we consider the population loss

L1, ) = EZ[L£(Y. y(X: f1. f2))].
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Assumption 6.1. Consider the MF limit corresponding to the network (6.1), such that
they are coupled together by the coupling procedure in Section 4.1. We consider the
following assumptions:

(1) Initialization: The initialization law p° satisfies

1 1
max( sup —= Ec, [[w1 (0. C1)[")" sup —= Ec, [lwa(0. €1, DI"Y") < K.

m>1 m>1

(2) Diversity: The support of p° contains the graph of a continuous function
F:R? — R such that |[F(u)| < K forallu € R4.

(3) Regularity: ¢ is K-bounded, ¢| and ¢} are K-bounded and K-Lipschitz, ¢}
is non-zero everywhere, 0, £(-, -) is K-Lipschitz in the second variable and
K-bounded,” and | X | < K with probability 1.

(4) Convergence: There exist limits wy and w, such that as t — oo, there exists
a coupling m; of P; and itself such that

Ex, [[02(CD[|lwi (2, C) — 01 (C1)| + [wa(t, Cf, 1) — w2 (C)|] — 0

for (Cy, C{) ~ m;. Furthermore, ess-sup |%w2(t, Cy, )| —0.

(5) Universal approximation: {¢;({u,-)) : u € R?} has dense span in L2(Py) (the
space of square integrable functions with respect to the measure Py, which is
the distribution of the input X).

Notice that if (wy(z, C1), wa(t, C1, 1)) converges to (w;(Cy), w2(Cy)) in the
Wasserstein-2 distance as t — oo, then one can prove the first part of the conver-
gence condition in Assumption 6.1 via the initialization and regularity conditions and
Lemma 3.2.

We state the main result.

Theorem 6.2. Consider the MF limit corresponding to the network (6.1), such that
they are coupled together by the coupling procedure in Section 4.1. Under Assump-
tion 6.1, the following hold:

* Case 1 (convex loss): If £ is convex in the second variable, then
lim L(W(t)) = inf L(f1, f2) = infEZz[£(Y, y(X))].
=00 J1./2 y

» Case 2 (generic non-negative loss): Suppose 0, £(y, y) = 0 implies £(y, y) = 0.
If y = y(x) is a function of x, then L(W(t)) =0ast — oc.

The proof is deferred to Appendix E. We refer the readers to Section 6.2.1 where
we present a high-level proof plan for the three-layer case, which is also applicable to

3We denote by d>£(-, ) the partial derivative of & with respect to the second variable.
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the present two-layer case. The following result is straightforward from Theorem 6.2
and Corollary 4.9.

Corollary 6.3. Consider the neural network (6.1). Under the same setting as Theo-
rem 6.2, in Case 1,

I—00 n1—>00 €—

lim lim lin})Ez[éﬁ(Y,y(Lt/eJ,X))] :fin}j L(f1, f2) =infEZ[£(Y, y(X))]
1,/2 y

in probability, and in Case 2, the same holds with the right-hand side being 0.

Let us make a remark on the setting. Examples of suitable ¢; include sigmoid/tanh
activation, sinusoids and the Gaussian pdf, whose universal approximation is known
[6, 10] (where we assume the convention that the last entry of the data input x is 1).
Examples of suitable ¢, include smoothened leaky-ReL.U, sigmoid/tanh and linear
activation. Examples of suitable (and convex) loss &£ include Huber loss and exponen-
tial loss. Importantly, &£ needs not be convex. Assumption 6.1 (4) is technical and does
not seem removable. Note that this assumption specifies the mode of convergence and
is not an assumption on the limits w; and w,. In particular, the first condition (conver-
gence in moment) of Assumption 6.1 (4) is a common assumption in the literature [9].
See also Section 9 where we further this discussion in the context of prior works.

Regarding the uniform convergence condition ess-sup |a%w2(t, Ci,1)] > 0in
Assumption 6.1 (4), there is a converse relation between global convergence and this
condition. Thus, this uniform convergence condition gives a sharp characterization of
global convergence.

Proposition 6.4. Consider the MF limit corresponding to the network (6.1), such
that they are coupled together by the coupling procedure in Section 4.1. Suppose
that the initialization and regularity assumptions (i.e., the first and third assumptions)
of Assumption 6.1 hold, and that £(y, y) — 00 as |y| — oo for each y. Then the
following hold:

* Case 1 (convex loss): If £ is convex in the second variable and L(W(t)) —
infr L(F) ast — oo, then it must be that

ad
sup |—wy(t,c1, )| >0 ast — oo.
C]EQ]
» Case 2 (generic non-negative loss): Suppose 0, £(y, y) = 0 implies £(y, V) =0,
and y = y(x) is a function of x. If L(W(t)) — 0 as t — oo, then the same
conclusion also holds.

Such a converse result was shown in the work [39] for two-layer neural networks.
It is also a special case of Proposition 7.3, which is a similar converse for multilayer
networks; hence, we shall omit the proof of Proposition 6.4.
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6.2. Thecase L =3

‘We now turn to the case of three-layer networks, L = 3. Our development here applies
insights already seen in the case L = 2, most notably the universal approximation
property at the first layer and the topology argument. Our present case is complicated
by the presence of a third layer, which requires extra conditions to ensure that the
same proof technique is applicable. We again stress that, similar to the case L = 2,
here we do not rely critically on any convexity property, and the same proof of global
convergence should extend beyond the specific network architecture to be considered
here (the network (6.2) below).

Before we proceed, we specify the three-layer network under consideration and
its training. We also follow the development for i.i.d. initialization in Section 5; in
particular, we work with the infinite-M MF limit.

Three-layer network. For n = {ny, n,}, we consider the following neural network:

y(kv )C) = (p3(H3(kvxv 1))7 (62)

1 &
Hs(k,x,1) = . Z wa(k, j2, 1) g2 (Ha(k, x, j2)),

J2=1
1 <

Hy(k, x, j2) = . Z wa(k, j1. j2) e1({wi(k, j1), x)),
J1=1

in which x € R?, wy(k, j1) € R, wa(k, j1. j2) € R, wa(k, j2,1) € R, ¢1:R — R,
02:R — R, ¢3:R — R and k € N5 indicating the discrete time. We train the network
with SGD with respect to the loss £:R x R — R and the data z (k) = (x(k), y(k))
drawn independently at time k:

wi(k + 1, j2. 1) = ws(k, j2. 1)

= —eb3(ke)0rL(y (k). Yk, x(k))) p3(Hz(k, x (k). 1)) 92 (Ha (k, x (k). j2)),
wa(k + 1, j1. j2) — wa(k, j1. jo) = —e AR (k. z(k). j2) o1 ((wi (k. j1). X)),
wi(k + 1, j1) —wi(k, j1)

na

= (o= 20 AL =0, oWtk 1. 206l (wa ., 1), x(R)x(R),

2 J2=1
in which
AN (k. z, j2) = 32£(y,§(k.x)) s (Hs(k, x, 1)w3(k, j2. 1) @5 (Ha(k, x, j2)).

Here € € R is the learning rate and £3: R>o > R is the learning rate schedule
for the third layer. Note that here we only consider non-negative £3. We consider the
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following (p', p2, p?)-i.i.d. initialization:
{wl (07 jl)}jle[nl] ~ pl lld, {WZ(O, jl’ j2)}]1 e["l],jzé[nz] ~ p2 lld,
{w3(09 jzy 1)}]26[;12] ~ p3 i.i.d.
all independently.

Infinite-M MF limit. Following Section 5.1.2, in the current context of the three-layer
neural network (6.2), we define the dynamics w}, w5 and wj} as follows:

w3 (¢, u3) = u3—/0§3(5)]EZ[32$(Y»)7*(S7 X)) @3 (Hy (s, X)) p2(H5 (s, X, u3))]ds,
t
ws (t, Uy, Uz, u3) = up —/0 Ez[Af*(s, Z,uz) o1 ((wy (s,u1), X)) ds,

wi(tur) = u; —/0 Ez[(/ Af*(s,Z,ug)w;“(s,ul,uz,u3)p2(du2)p3(du3))
X @} (W] (5.1), X)X ] ds,

for all u; € supp(p’), fori = 1,2, 3, in which
Vx5 S, fas 3) = 03(HS (x5 f1, f2, f3)),
H3 v fo o f2) = [ fatus) o2 (st i S ).

H (vouss fi. fo) = / Folurs iz ) @r (U ). )" (i) o2 (i),

Az uz: 1. fa. f3) = 0L, 9 (x: f1. fou f3) @5 (HF (x5 f1, fo. 13) f3(u3)
x @5 (Hy (x,u3; f1, f2)),
and $*(¢, x), H} (¢, x), H} (¢, x,u3) and AH*(¢, 2, u3) are their short-hand nota-
tions when f; = wi(¢,:), f2 = w;(t,-,-,+) and f3 = wj(t,-). Let us also define
W* () = {wi(, ), wi(t,-,-,-), wi(,-)}. To measure the training quality for W*(¢),
we consider the population loss £(W*(¢)) in which

L(f1. f2. 13) = EZ[£(X, " (X: f1. f2. f3)].
This gives the infinite-M MF limit for the neural network (6.2).

Assumption 6.5. Consider the infinite-M MF limit W*(¢) corresponding to the net-
work (6.2). We consider the following assumptions:
(1) Initialization: The initialization distributions satisfy

1 1/m 1 1/m
sup —</Iu1|mpl(du1)) =K, sup —(/|“2|m/02(d”2)) =K,

m>1 /M m=1 /M
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1 1/m
sup ([l o) " < K.
m>1 /M

(2) Diversity: The support of p! is R¥.

(3) Regularity: ¢1 and ¢ are K-bounded, ¢/, ¢} and ¢} are K-bounded and K-
Lipschitz, ¢} and ¢} are non-zero everywhere, d,&£(-,-) is K-Lipschitz in the
second variable and K-bounded, and | X| < K with probability 1.

(4) Convergence: There exist functions wj, w, and w3 such that as t — oo, there
exists a coupling 7; of p! x p? x p> and itself such that

/(1 + W3 (u3)) w3 (us)|[w2 (w1, uz, us)||wi (¢, u}) — wi(ur)| dme(u,u’) — 0,
/(1 + W3 (u3) w3 (ua)[lws (1, uy, uh, us) — Waur, uz, us)| dme(u,u’) — 0,
[+ Dl ) — Baa) ) o

foru = (uy,uz,u3) and u’ = (v, u), u%). Furthermore,

0
ess-sup | —w, (¢, Uy, Uz, Uz)| — 0.
Ui~pi 10

(5) Universal approximation: {¢1 ((u,-)) :u € R} has dense span in L2(Py) (the
space of square integrable functions with respect to the measure Py, which is
the distribution of the input X).

As aremark, the first part of the convergence assumption follows from the conver-

gence of the tuple (w7 (z,-), w3 (t,,-,-), w3 (z,-)) to (W1, w2, w3) in the Wasserstein-4
distance, i.e.,

igf/(|wf(t, uy) — wy ()| + |w (¢, uy, ub, uly) — o (uy, uz, us)|*

+ w3t uf) — w3 (ua)|*) do(uy, uz, us, uy uh, uy) — 0,

where the infimum is over all couplings 7 of p! x p? x p? and itself. In particular,

one can prove so with the initialization and regularity conditions and Lemma 3.2.

Theorem 6.6. Consider the infinite-M MF limit W*(t) corresponding to the net-
work (6.2), under Assumption 6.5. Further assume either:

(untrained third layer) [ I(u3 # 0)p3(duz) > 0 and &(-) = 0 (and therefore
w3 (t,u3) = us unchanged at all t > 0), or

(trained third layer) £3(+) = 1 and the initialization satisfies that £L(w?, w9, w3) <
Ez[£(Y, ¢3(0))].
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Then the following hold:

e Case 1 (convex loss): If £ is convex in the second variable, then

lim L(W*(1)) = infEz[£(Y, y(X))].
t—00 y

» Case 2 (generic non-negative loss): Suppose d,£(y,y) = 0 implies £(y,y) = 0.
If y = y(x) is a function of x, then LW*(t)) — O ast — oc.

The proof is deferred to Section 6.3. While global convergence is proven via the
infinite- M MF limit W*, it is easy to adapt the proof to prove the same for the canon-
ical MF limits that are described in Section 5.1.1, giving a statement similar to the
two-layer case (Theorem 6.2). By working with the infinite- M limit, specifically com-
bining Theorem 6.6 with Corollary 5.4, we immediately obtain the following result.

Corollary 6.7. Consider the neural network (6.2). Under the same setting as Theo-
rem 6.6, in Case 1,

I—>00 ni,np—>00 €—>

lim lim  lim Ez[£(Y.§(t/e]. X)) = infEZ[£L(Y. F(X)].
y

in probability, and in Case 2, the same holds with the right-hand side being 0. Here
—C
min

ni,ny — 00 in such a way that ny, — 00 and n_¢ lognyax — 0 for any ¢ > 0, with

Rmin = Min{ny, ny} and ny, = max{ny,ns}.

Similar to Section 6.1, here we also have a converse relation between global con-
vergence and the essential supremum condition in Assumption 6.5 (4).

Proposition 6.8. Consider the infinite-M MF limit W*(t) corresponding to the net-
work (6.2). Suppose that the initialization and regularity assumptions (i.e., the first
and third assumptions) of Assumption 6.5 hold, and that £(y,y) — oo as |y| — oo
for each y. Further assume that there exists w3 such that as t — 00, there is a cou-
pling 73 of p> and itself such that

/ w3 (1, o) — B3 (us)| dr (s, ) — O.

Then the following hold:

e Case 1 (convex loss): If £ is convex in the second variable and
lim LW (1)) = inf Ez[£(Y, y(X))],
—>00 y
then it must be that

0
—w;(t,ul,uz,U3)H -0 ast— oo.

ot

sup EU3~p3 [

u1 €R, us esupp(p?)
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» Case 2 (generic non-negative loss): Suppose 0, £(y, y) = 0 implies £(y,y) =0,
and y = y(x) is a function of x. If LIW*(t)) — 0 as t — oo, then the same
conclusion also holds.

We prove Proposition 6.8 in Appendix E.

6.2.1. High-level idea of the proof. Before we proceed, we give a high-level discus-
sion of the proof of Theorem 6.6. This is meant to provide intuitions and explain the
technical crux, so our discussion may simplify and deviate from the actual proof. Our
first insight is to look at the second layer’s weight w3 Recall that

%w;(t,ul,uz,m) = —Ez[AF*(Z, us; W* (1) o1 ((wi (£, u1), X))].

At convergence time ¢ = co, we expect to have zero movement and hence, denoting
W = {wi, wa, ws}:

Ez[AY*(Z uz; W) o1 (01 (u1), X))] = 0

for uy € supp(p'), uz € supp(p>). Suppose for the moment that we are allowed to
make an additional (strong) assumption on the limit w, that is, supp(w; (U;)) = R?
for U; ~ p!. This implies that the universal approximation property, described in
Assumption 6.5 (5), holds at ¢ = oco; more specifically, it implies {¢; ({w;(u1), ")) :
uy € supp(pl)} has dense span in L?(Py). This yields

EZ[AE*(Z us; W) | X =x] =0
for #-almost every x. Recalling the definition of Af *, one can then easily show that
Ez[0,£(Y, 5*(x: W) | X = x] = 0.

Global convergence follows immediately; for example, in Case 2 of Theorem 6.6, this
is equivalent to that d, £ (y (x), $*(x; W)) = 0 and hence £(y(x), $*(x; W)) = 0 for
JP-almost every x. In short, the gradient flow structure of the dynamics of w} provides
a seamless way to obtain global convergence. Furthermore, there is no critical reliance
on convexity.

However, this plan of attack has a potential flaw in the strong assumption that
supp(11(U;)) = R¥, i.e., the universal approximation property holds at convergence
time. Indeed, there are setups where it is desirable that supp(i;(U;)) # R?, see
[7,22]; for instance, in the case where the neural network is to learn some “sparse and
spiky” solution, and hence the weight distribution at convergence time, if successfully
trained, cannot have full support. On the other hand, one can entirely expect that if
supp(wy (0,Uy)) = R initially at r =0, then supp(wy (¢, Uy)) = R at any finite £ > 0.
The crux of our proof is to show the latter without assuming supp(w; (U;)) = R<.
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This is done via an algebraic topology argument, in which the mapping (¢, u) —
M(t, u) that maps from (¢, w(0,u1)) = (¢, u1) to wy(t,uy) is shown to preserve a
homotopic structure through time.

6.3. Proof of Theorem 6.6

First, using an algebraic topology argument, we show that if wi (0, U;) = U; ~ ol
has full support, then so does wi (¢, U;) at any time ¢. Note that the following result
holds beyond the setting of Theorem 6.6.

Lemma 6.9. Assume L = 3 and Wy = R? (for some positive integer d), along with
Assumptions 2.4-2.6 and 4.6. Under a (pl, p2, p3)-i.i.d. initialization, consider the
infinite-M limit of the canonical MF limits as described in Section 5.1.2, and in
particular the dynamics {w}};=12,3. Here we disregard the biases by considering
EX(-) = E2(-) = 0.and b»(0,-) = b3(0,-) = 0. Assume that

0y (A, w.b.g.h) =65 (A, g.h),

for some function 63, i.e., o) does not depend on the second and third variables.
Suppose that the support of p‘lV is Wy. Then for all finite time t, the support of
Lawy, 1 (Wi (2, Ur)) is Wi.

Proof. Specialized to the current setting, w} and w; satisfy

-
—wi(t,uy)

" 6 OBz [0V ([ 6. Zonwz.u) i @u)pl dua). i ). X) |

0 * w
sz(t,ul,uz,ll3) = _%-2 (Z)]EZ[g(Z7zﬂula u3)]a

for all uy € supp(pl), us € supp(p2) and uz € supp(p3), where
g(t,z,uy,u3) = 6;”(A£I*(t,z, uz), Hy (t,x,u3), H (¢, x,uy)),
h(t,z,uy,us,us3) = 0{1(A§I*(I,Z,u3), w5 (t,uy,uz,u3),0,
Hj(t,x,u3), Hy (¢, x,u1))
t
= 01H<Af*(t,z,u3),u2—/ EY(S)Ez[g(s, Z,u1,u3)]ds,0,
0
H;(z,x,u3),H;‘(z,x,u1)).
Here we have shortened the notations to remove dependency on the biases:

w;(t» Ui, Uz, u3) = w;([, Ui, u2’u3a0)9 AZI,_I*(I’Z’M:;) = Ag*(t’z’u:;’o)’
H(t,x,u3) = Hy(t,x,u3,0).
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We recall the initialization
wi0,u1) =uy, wi(0,-,uz,+) =uz, wi(0,u3,-) =us.

In the following, we define K; to be a generic constant that changes with # and which
is finite with finite 7. We proceed in several steps.

Step 1. We study the function /2. We have, from Assumptions 2.6 and 2.4,
|AY*(t.z.-. )| < K(1 + |Af*@.2)]) < K,

|w;(t7u3v')| = |w;(07u37')| + Kt = |u3| + Kl‘v
|AS* (1.2, u3)| < K1+ [AF (@, 2)D(1 + [wh (2, us,)]) < Ki(1 + us)).

Consequently, by Assumption 2.6,

gtz ur,uz)l < K(1+ [AF* (1 2 u3)]) < Ko (1 + Jus)),

lg(t,z,u1,u3) — g(t,z,uy, uz)|
< K(1+ |AJ*(t, z us) DI H{ (¢, x uy) — HE (1, x )|
< K:(1 + |us))|H{ (¢, x,u1) — H{ (t, x,u7)],

for all u; € supp(pl) and u3 € supp(p3). Using these bounds and Assumption 2.6,
we obtain

\h(t,z,uy,uz,uz) — h(t,z,u}, uz, us)|
< KO+ 188z [ Ballgto. Zour.us) = 60, Zus)l ds
+ K(1+ A5 @z uz)) (1 + ol +Ath[|g<s,z,u1,u3>uds)
X ’Hl*(t,x,ul) — H{(t, x, u’1)|
< Ko(1 + sl + |us]?) iliIt)|H1*(s,x,ul) — H{(s,x,u}))l,
as well as that
\h(t, z,ur,uz,uz)| < K(1 + |AF* (2, 2,u3)))
< (14 | + /Othng@,z,ul,us)n ds)
< Ke(1 4 ual? + [us]?).
These are the desired bounds for 4.

Step 2. 'We show that for an arbitrary 7 > 0, wi: [0, T] x W; — W, is continuous.
Now, by using the bound for the function % in Step 1 and Assumptions 2.5 and 2.6,
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foruy,u} € Wy, we have
d 3k * I
| ) = wi )
= [erosz[or( [ h6. 2. )i p @, wi ). X)
=0t ( [ e Zan vz upi g s wi ). X) |

< Klwi(t,uy) —wi(t,u))| + K,(l + /|u2|2p‘2v(du2) + /|u3|2p‘3,,(du3))
xIEz[sup|H1*(s,x,u1)—Hl*(s,x,u’l)|]
s<t

< KJw}(t.ur) — wi(t )| + KEz[ sup [Hf s, x.up) — Hy (s.x.u4)]]
s<t

= K|WT(I’M1) - wi“(t, u’1)| + KtEZ[SuIt) |¢1(wi‘(s,u1), X) - ¢1(wik(s’ “/1)1 X)|]
s<

A

Kt sup |wik(ss ul) - wr(s»ull)|'
S<t

By Gronwall’s inequality,

sup [wi (s.u1) — wi(s.uy)] < e |wi(0,u1) — wi (0. uh)| = X uy —ui.
s<t

Furthermore, by Assumptions 2.4 and 2.6, fort’ <,
[wi (1) — wi(t', uy)

< /t/’ SIN(S)Ez[OIN(/h(S,Z,ul,uz,u3)pvzv(du2)pv3v(du3),wi‘(s,ul)“)()]‘ds

t
<k [ B2t [Ihs. 2o ua) | @u)pi ] ds
t/

< Kt(l + /|u2|2p3v(du2) + /|u3|2pv3v(du3))|t —l‘/|
< Kt —1'|.
This shows that w defines a continuous function wi: [0, 7] x W; — Wj.

Step 3. Consider the sphere S? which is a compactification of R?. We can extend wi
to a function M: [0, T] x S¢ — S? fixing the point at infinity, which remains a contin-
uous map since |M(t,u1) —uy| = |[M(t,u;) — M(0,u;)| < Krt.Let M;:R? — R4
be defined by M,(u;) = M(t,u;). We claim that M, is surjective for all finite ¢.
Indeed, if M, fails to be surjective for some ¢, then for some p € S¢, M;:S¢ —
S\ {p} — S? is homotopic to the constant map, but M then gives a homotopy
from the identity map M, on the sphere to a constant map, which is a contradic-
tion as the sphere S is not contractible. Hence, wi (¢, ) is surjective for all finite 7.
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Now let U; ~ p;,, which has full support, and consider wj (¢, U;). Let us assume
that wy (¢, U;) does not have full support at some time ¢, which implies there is an
open ball B in R? for which P(wi(z, Uy) € B) = 0. Due to surjectivity and con-
tinuity of u; +— wj (¢, u1), there is an open set U such that wy(¢t,u;) € B for all
uy € U. Then P(U; € U) = 0, contradicting the assumption that U; has full support.
Therefore, w7 (¢, U) must have full support at all # > 0. ]

With this lemma, we are ready to prove Theorem 6.6. We recall the setting of
Theorem 6.6, and in particular, the neural network (6.2).

Proof of Theorem 6.6. Let U; ~ p', i = 1,2,3 independently. It is easy to check that
Assumptions 2.4-2.6, as well as the conditions of Lemma 6.9, hold. Therefore, by
Lemma 6.9, the support of Law(wj (z, Uy)) is R at all . We recall from the conver-
gence assumption the limits w;, w, and w3, and we shall first prove (wy, Wy, w3) is
a global minimizer of £ in Case 1 and £ (w1, w5, w3) = 0 in Case 2.

By the convergence assumption, we have that for any € > 0, there exists 7'(¢) such
that for all # > T'(¢) and almost surely,

€ > [Ez[AS* (1, Z, Us)gr ((w] (1, Un), X))]|

= |(]EZ[A£{*(I1 Z? U3) | X = x]a (Pl((w)lk([, Ul)a x)))Lz(f/-’X)l'
Since Law(wj (¢, Uy)) has full support, we obtain that for u in a dense subset of R4,
ess-sup|(EZ[AS*(1, Z,U3) | X = x], 01((u, X)) 24| < €.

By continuity of u > @1 ((u,-)) in L2(Py), we extend the above to all u € R?. Recall
the couplings 7; in Assumption 6.5 (4), since ¢; is bounded,

]E(U3,Ug)~m ”(EZ[|A§I*U? Z, U3) - Ag*(zﬁ U/; wy, Wa, u_)3)| | X = X],

¥1 ((usx»)Lz(ng)H
< KEx, [|A)"(1. Z,Us) = A*(Z, Usi 1, W2, 103) ]
< KEx,[(1 + [w3(Us))(|w; (t. U3) — w3(Us)| + |ws(Us)| w3 (¢, Uy, Us, U3)
— 0o (Uy, Uz, Us)| + |[w3(U2)||02(Uy, Uz, Us)| |lwi (¢, Uy) — w1 (Uy)])],
where the last step is by the regularity assumption, similar to the calculation in the

proof of Theorem 6.2. Recall that the right-hand side converges to 0 as t — co. We
thus obtain that for all u € R¥,

Eu,[(Ez[AY*(Z, Us; Wy, 2, W3) | X = x], 01((u, X)) 124y ]] = O.
which yields that for all u € R? and almost surely,

(EZ[AS*(Z, Us: w1, W2, W3) | X = x], @1 ((u, X)) 12(py)| = 0.
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Here we note that, by the regularity assumption,
[Ez[AF*(Z, Us; 1, W2, 3) | X = x]| < K[b3(Us)],

and so Ez[AZT*(Z,uz; 1,0, w3) | X = x]isin L2(Pyx) for almost every u3. Since
{o1((u,-)) : u € R?} has dense span in L?(Px), we have

Ez[AY*(Z, u3; w1, W2, w3) | X = x] =0
for Py -almost every x and almost every u3, and hence
Ez[02L(Y, 9" (X; W1, W2, W3)) | X = x]
X 3 (H3 (x; W1, W2, W3)) W3 (u3) gy (Hy (X, 35 W1, Wa)) = 0.
We note that our assumptions guarantee that P (w3 (Us) # 0) is positive:
* Inthecase [ I(u3 # 0)p*(duz) > 0 and &(-) = 0, it is obvious that
P(w3(Us) # 0) > 0.
e Inthe case L(w?, wd, w?) < Ez[L(Y, ¢3(0))], it can be easily checked that
Ll ) w3t ) w3t ) < Ll ) wy - - ) w3, ),

forz > ¢t’. This is in fact a standard property of gradient flows. In particular, setting
t’ = 0 and taking 1 — o0, it is easy to see that

L1, W, W3) < L(w?, wy, wy) < EZ[L(Y, ¢3(0))].

If P(w3(Uz) = 0) = 1, then L(w1, w2, w3) = Ez[L(Y, ¢3(0))], a contradiction.

Then since ¢ and ¢} are strictly non-zero, we have
Ez[02£(Y, §* (X w1, W2, w3)) | X = x] =0

for Py -almost every x.
In Case 1, since &£ convex in the second variable, it follows that for any measurable
function y(x),

Ly, y(x)) = L(y, Y(x:wy, w2, W3))
> 02 L(y, Y(x; Wy, w2, W3))(Y(X) — J(x: W1, Wa, W3)).

Taking the expectation, we get Ez[£(Y, 7(X))] = L(w1, Wz, w3), i.e., (W1, W2, W3)
is a global minimizer of £.

In Case 2, since y is a function of x, we obtain d»£(y, y(x; Wy, w2, w3)) = 0 and
hence £(y, y(x; w1, W2, w3)) = 0 for Px-almost every x.
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Finally, to connect £ (w1, W2, w3) with L(W™*(¢)) in the limit 1 — oo, we have

LW (1)) — L(W1, w2, W3)|
= |Ez[£(Y, 7", X)) — LY, §*(X; w1, w2, w3))]|
< KEZ[|7*(. X) — §*(X; W1, w2, w3)]]
< KEg, [|w}(t,U3) —w3(Us)| + [w3(Us)| w5 (¢, U{, Uy, U3) — w2 (Uy, Uz, Us)|
+ [w3(U3)||w2(Uy, Uz, Us)| |lwi (¢, Uy) — wi(Un)]]

which tends to 0 as t — oo. This completes the proof. |

7. Convergence to global optimum: multilayer networks with
correlated initializations

In Section 6, we proved that global convergence is guaranteed for networks with
L < 3 and i.i.d. initializations. Underlying these results is a universal approxima-
tion property that holds throughout the course of training, and this is shown for quite
general data distributions. Recall from Section 5 that i.i.d. initializations cause a cer-
tain degenerate behavior in the network with L > 4. In particular, by Corollary 5.5,
neurons at intermediate layers collapse to the same function of the input and therefore
are not expected to span the space of functions of the input L?(£yx). In other words,
these intermediate layers become a bottleneck that hinders universal approximation
in the context of more than three layers and general data distributions.

To attain meaningful training, this suggests a departure from i.i.d. initializations.
In particular, we propose a correlated initialization scheme that resolves the aforemen-
tioned bottleneck problem. To be precise, the key idea lies in the new concept of bidi-
rectional diversity. A similar concept has been encountered in Section 6; for instance,
diversity in the two-layer case in Section 6.1 refers to the full support condition of the
first layer’s weight distribution in the Euclidean space, implied at initialization t = 0
by Assumption 6.1 (2) and shown to hold at any finite time ¢ by Lemma E.I. Here
bidirectional diversity furthers this idea to the multilayer case with arbitrary depths.
Firstly, it is realized in function spaces that are naturally described by our neuronal
embedding framework. Secondly, it is bidirectional: roughly speaking, for interme-
diate layers, diversity holds in both the forward and backward passes. The effect of
bidirectional diversity is that a certain universal approximation property, at any finite
training time ¢, is propagated from the first layer to the second to last one. Importantly,
the proposed correlated initialization only ensures bidirectional diversity at initializa-
tion t = 0, but it is the learning dynamics that automatically maintains bidirectional
diversity at any finite ¢. This fact is again shown by a topological invariance argument.
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In the following, we first describe the multilayer fully-connected neural network
under consideration and its corresponding MF limit. We then describe the proposed
correlated initialization, and state and prove the global convergence guarantee.

7.1. Multilayer fully-connected neural network
We consider the following L-layer fully-connected network:

y(x: W(k)) = o (Hr(x, 1: W(k))), (7.1)
Z wi(k, ji—1, J)ei-1(Hi—1(x, ji—1; W(k))),
Ji—1=1

Hl(x,_]l,W(k)) = (Wl(k,jl),X),

fori = L,...,2, in which x € R¢ is the input, W(k) = {w;(k,-),w;(k,-,-) : i =
2,..., L} is the weight with w; (k, j1) € R?, w; (k, ji_1. ji) € R,and ¢;: R — R is the
activation. Here the network has widths {n;}; <7, with ny = 1. We train the network
with stochastic gradient descent (SGD) with respect to the loss £: R x R — Rx¢ and
the data z (k) = (x(k), y(k)) € R¢ x R drawn independently at time k from a training
distribution &. Given an initialization W(0), we update W (k) according to

wi(k + 1, ji—1, ji) = Wik, ji—1. ji) — €§i(te) A} (z(k), ji-1, Ji: W(k)),
wi(k + 1, j1) = wi(k, j1) — €§1(te) AT (z(k), j1: W(k)),

H; (x, ji; W(k)) =

ni—1

fori = L,...,2,in which j; € [n;], € € R5 is the learning rate, &:R>o > R is
the learning rate schedule for w;, and for z = (x, y)andi = L, ..., 2, we define

ARz, ,W(k)) = 3,200, 50 W(k)))ep (HL (x, 1; W(k))),

n;
AL Gt W) = o 3 AN i W wi k. i1, o)
P X B i W),
AY(z, jir jii W) = Af(z. i W) @it (Hi—1 (x, ji—1: W(K))),
AY(z, j1: W(k) = ATz, j1; W(K))x.
In short, for an initialization W(0), we obtain a SGD trajectory W (k) of an L-layer

network with size {n;};<z. We also note that this neural network fits into the frame-
work in Section 2.

7.2. Mean field limit

Given a neuronal ensemble (2, P) = ]_[l-LZI(Q,-, P;) (in which Q7 = {1}), the MF
limit that is associated with the network (7.1) is described by the continuous-time
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evolution of W(t) = {wi(¢,-), w;(¢,-,-) :i =2,..., L}, given by the following MF
ODEs:

d .
p wiltcimrici) = —&(OEZ[AP (Z, cicr,cii W), i=2,...,L,

0
3 Wi1t.e1) = —E(OEZ[AT (Z ci W)L,

where wi: R x Q1 — R4 and wi:Rsp x ;-1 x Q; — R. Here we define, for
i =1L,...,2,the forward quantities

Y(x; W(t)) = oL (Hp(x, 1; W(t))),
Hi(x,ci; W(t)) = Ec,_, [wi(t,Ci—1,ci)pi—1 (Hi—1(x, Ci—1;: W(2)))].
Hl(X,Cl; W(Z)) = (U)1(Z,C1),x),

and the backward quantities

AR 1 W(0) = 2200, 5 W)@l (Hp(x, 1; W(1))),
ARz eim; W) = B [AF (2, Cis W(t))wi(t, ci—1, Ci)
X @i (Hi—1(x,ci—1; W),
AY (2, cim1,cis W) = AR (2, ci; W) pim1 (Hi—1 (x, ci—1; W(2))),
AY(z,c1: W) = Az, e W(@))x.

As a reminder, the data Z = (X,Y) ~ & and C; ~ P;. To recap, given a neuronal
ensemble (2, P), for each initialization W(0), we have defined a MF limit W ().

7.3. Global convergence and bidirectional diversity

We begin the study of global convergence of the network (7.1) with an analysis of its
MF limit, which is the focus of this subsection. To measure the learning quality, we
consider the loss averaged over the data Z ~ J:

L(F) =Ez[£(Y.J(X: F))].

where F ={f; :i =1,..., L} aset of measurable functions f;:Q; — R%, fi:Q;_1 x
Q —>Rfori =2,...,L.

Recall that in our framework, the finite-sized neural network is formally con-
nected with its MF limit via a neuronal embedding. Here without making explicit
this connection, one can study the MF limit that is defined on the basis of a given
neuronal embedding (2, P, {w?},-SL), where w(l): Q, »> RY, w?: Qi1 xQ; — R
fori =2,..., L. In particular, we make the following assumptions.
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Assumption 7.1. Consider a neuronal embedding (Q, P, {w?};<1), recalling Q =
[T, Qi and P = [[~, P with Q7 = {1}. Consider the MF limit associated with
the neuronal ensemble (2, P) with initialization W(0) such that wy(0,-) = w(-)
and w; (0,,+) = w?(-,-). We make the following assumptions:

ey

(@)

3

“

&)

Initialization: The functions {w?},-f . satisfy
1 1
sup —= E[[w](C))["]""™ < K. sup —=E[|w](Ci—1.C))|"]"'™ < K.
m=>1 m=>1 /M
fori =2,...,L.
Diversity: The functions {w?}; <1 satisfy

supp(w?(C1), w3(C1.-)) = RY x L2(Py),
supp(wy (-, Ci), wiy 1 (Ci, ) = L2(Piz1) x L2(Pi11)
fori =2,...,L — 1. (Remark: we write w?(-, C;) to denote the random
mapping ¢ — w?(c, C;), and similar for w?H (Ci,+).)
Regularity: We assume the following:

* ¢ is K-bounded for 1 <i < L — 1, ¢/ is K-bounded and K-Lipschitz for
1 <i < L, and ¢; is non-zero everywhere,

* 02L(-,-)is K-Lipschitz in the second variable and K -bounded,
* |X| < K with probability 1,
 the learning rate schedule &; is K-bounded and K-Lipschitz for 1 <i < L.

Convergence: There exist a coupling 7; of HiL=1 P; and itself such that, for
i=2,...,L,

! / - L -
B [ 010, €y, ) — i (Cir T, 185G G| = 0,
Ex, [l ) — 1 €O ], 105(Ci1.CI| = 0
Tt >4 jan (Wilbi—1 & ,

as t — oo, where (Cy,...,Cr,Cy,...,C]) ~ m;. Furthermore,
0
ess—sup|§wL(I, Cr_1, 1)‘ — 0.

(Here we take ]_[]If:iJrl =1fori =1L)

Universal approximation: The set {@;((u,-)) : u € R%} has dense span in
L?(Px) (the space of square integrable functions with respect to the mea-
sure Py, which is the distribution of the input X'). Furthermore, for each
i =2,...,L—1, ¢ is non-obstructive in the sense that the set {¢; o f :
f € L?(Px))} has dense span in L2(Py).
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It is easy to see that this set of assumptions satisfies Assumptions 2.4-2.6 and 4.6.
As a consequence, by Theorem 3.1, there exists a unique solution W to the MF ODEs
ont € [0, 00).

Theorem 7.2. Consider a neuronal embedding (2, P,{w?}; <) and the MF limit as
in Assumption 7.1. Assume £(-) = 1.

e Case 1 (convex loss): If £ is convex in the second variable, then

lim C(W() = infC(F) = inf Ez[£(Y, (X))
t—00 F y: R4 >R

¥
» Case 2 (generic non-negative loss): Suppose 0, £(y, ¥) = 0 implies £(y, y) = 0.
If y = y(x) is a function of x, then L(W(t)) — 0 ast — oo.

The assumptions here are similar to those made in Theorems 6.2 and 6.6 of
Section 6. Similar to the settings of Section 6, the regularity assumption can be sat-
isfied for several common setups and loss functions; for example, this holds when
@; is sigmoid or tanh for i < L — 1, ¢ is the identity, and £ is the Huber loss.
The convergence assumption here is also similar to the convergence assumption in
Assumption 6.1 or Assumption 6.5. In particular, the first part of the convergence
assumption is essentially a Wasserstein-type convergence; it follows from the con-
vergence of (w; (t))iL=1 to (u_),-)iL=1 in an appropriate Wasserstein distance. The fifth
assumption is again natural and can be satisfied by common activations. For example,
@; canbe tanh fori = 1,..., L — 1. Indeed, whenever {¢; ((u,-)) : u € R?} has dense
span in L2(Px), ¢; is non-obstructive since

span({p; ((u,-)) : u € R?}) C span({g; o f : f € L*(Px)}).

The diversity assumption is new. It refers to an initialization scheme that introduces
correlation among the weights. In particular, i.i.d. initializations do not satisfy this
assumption for L > 3.

The second assumption is the counterpart of the diversity assumption made in
Theorems 6.2 and 6.6, but there is a special difference. In Section 6, the diversity
assumption refers to a full support condition of only the first layer’s initial weight,
which is in the Euclidean space. Here our diversity assumption refers to a particular
full support condition for all layers. At a closer look, the condition is in the func-
tion space and reflects certain bidirectional diversity. In particular, this assumption
implies both w? (-, C;) and w?(C;_1, -) have full supports in L?(P;—;) and L2(P;),
respectively (which we shall refer to as forward diversity and backward diversity,
respectively).

High-level idea of the proof. The proof proceeds with several insights that have al-
ready appeared in Section 6. The novelty of our present analysis lies in the use of the
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aforementioned bidirectional diversity. To clarify the point, let us give a brief high-
level idea of the proof. At time ¢ sufficiently large, we expect to have

ad
EwL(Z’ CL-1, l)

= [Ez[02L£(Y, 3 (X: W0))ep, (HL(X, W) L1 (HL-1(X, cL—1: W(1)))]| ~ 0

for Py_i-almost every cz—;. If the set of mappings x — Hy_q(x,cp—1; W(t)), in-
dexed by cz_1, is diverse in the sense that supp(Hy (-, Cp—1: W(t))) = L*(Px),
then, since ¢y is non-obstructive, we obtain

Ez[02L(Y, §(X: W) | X = x]op (HL(x,1: W(1))) ~ 0,

and consequently
Ez[0, LY, 9(X; W (@) | X =x]~0

for Py -almost every x. The desired conclusion then follows.

Hence, the crux of the proof is to show that supp(Hy—1 (-,Cr—1:W(t)))=L?*(Px).
In fact, we show that this holds for any finite time ¢ > 0. This follows if we can prove
the forward diversity property of the weights, in which w; (¢, -, C;) has full support
in L2(P;_) forany t > 0and 2 <i < L — 1, and a similar property for wy (¢, Cy).
Interestingly, to that end, we actually show that bidirectional diversity, and hence both
forward diversity and backward diversity, holds at any time ¢ > 0, even though we only
need forward diversity for our purpose. The full proof is deferred to Section 7.5.

A converse for global convergence. Similar to Section 6, we also have a converse rela-
tion between global convergence and the essential supremum condition in Assump-
tion 7.1 (4). The proof is presented in Appendix F.

Proposition 7.3. Consider the MF limit corresponding to the network (7.1), such that
they are coupled together by the coupling procedure in Section 4.1 with a neuronal
embedding (2, P,{w?}i<1). Suppose that the initialization and regularity assump-
tions (i.e., the first and third assumptions) of Assumption 7.1 hold, and that £(y, y) —
00 as |y| — oo for each y. Further assume £1,(-) = 1. Then the following hold.:

e Case 1 (convex loss): If £ is convex in the second variable and L(W(t)) —
infr L(F) ast — 00, then it must be that

ad
sup  |—wr(.Cr—1,1)] >0 ast— oo.
cL—1€Q211
» Case 2 (generic non-negative loss): Suppose 0, £(y, ) = 0 implies £(y,y) =0,
and y = y(x) is a function of x. If L(W(t)) — 0 as t — oo, then the same
conclusion also holds.
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7.4. Connection to the network (7.1)

Theorem 7.2 concerns with the global convergence of the MF limit. To make the con-
nection with a finite-width neural network (7.1), we recall the neuronal embedding
(Q, P, {w?}i<r), as well as the coupling procedure in Section 4.1. We, however,
present a twist to the procedure, that is, we choose first the neuronal embedding
(2, P, {wl(-) }i<r) and then perform the following two steps:

(1) We form the MF limit W(¢) (for ¢ € R>) associated with the neuronal ensem-
ble (2, P) by setting the initialization W(0) to wq(0,-) = w?(-), w; (0,-,-) =
w?(-,-) and running the MF ODEs.

(2) Weindependently sample C;(j;) ~ P; fori =1,...,Land j; =1,...,n;. We
then form the neural network initialization W(0) with wy (0, j1) =w?(C1(j1))
and w; (0, ji—1, ji) = w)(Ci—1(ji=1). Ci(ji)) for j; € [n;]. We obtain the
network’s trajectory W(k) for k € Nx¢ for the network (7.1), with the data
z (k) generated independently of {C;(j;)}i<z and hence W(0).

That is, instead of starting with a given initialization law of W(0) as done in Sec-
tion 4.1, here we first start with a chosen neuronal embedding. We then form the MF
limit W(¢) and the neural network initialization W(0), and hence the dynamics W(k),
based on this neuronal embedding. In other words, the initialization law of W(0) is
deduced from the chosen neuronal embedding. Obviously this procedure ensures that
n-independence is satisfied (Assumption 4.4).

In summary, in the present context, the neuronal embedding forms the basis on
which the finite-width neural network is realized. Furthermore, the neural network and
its MF limit are coupled. Then, using Theorem 7.2 and Corollary 4.9, one can obtain
the following result on the optimization efficiency of the neural network with SGD.

Corollary 7.4. Consider the neural network (6.2) as described by the coupling proce-
dure with the aforementioned twist. Under the same setting as Theorem 7.2, in Case 1,

lim lim lim Ez[£(Y.§(X: W((1/€]))] = inf £(F) = inf Ez[£(Y. 7(X))]
y

1= {n;}i<p €0

in probability, where the limit of the widths is such that n i, — oo and n_{ 10 yax —
0foranyc > 0, with iy, =min{n; : 1 <i < L —1}and np, = max{n; : 1 <i <

L — 1}. In Case 2, the same holds with the right-hand side being 0.

7.5. Proof of Theorem 7.2
Proof of Theorem 7.2. We divide the proof into several steps.

Step 1: Diversity of the weights. We will first show that supp(w; (f, C;)) = R? and
supp(w; (¢, -, C;)) = L?>(P;_;) fori =2,..., L — 1 and for any t > 0. We do so
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by showing a stronger statement, that the following bidirectional diversity condition
holds at any finite training time:

supp(wy (¢, C1), wa(t, C1,-)) = RY x L2(Py),
supp(w; (¢, -, Ci), wi+1(t, Ci,+)) = L*(Pi—1) x L*(Piy1), i =2,...,L—1,

forany ¢ > 0.
We prove the first statement. Given a MF trajectory (W(t))s=o and u; € R,
uy € L2(P,), we consider the following flow on R? x L2(P,):

d
o a;(r,cz;u) = —5(OEZ[AZ(Z, co; W) o1 ((aff (1), X)),

= a1 Ftu) = —E1(OEZ[Ec, [AY (Z, Cos W(1))aS (¢, Cas )]
x ¢y ({af (t:u). X)) X]. (1.2)

for u = (41, u2), with the initialization a; (0 u) =u; and a, (0, c2; 1) = ua(ca).
Existence and uniqueness of (a1 ,a2) follows similarly to Theorem 3.1. We next
prove, for all finite 7 > Oand u™* = (u1 JUy ) e R x L2(P5), that there exists u~™ =
(uy,u;) € R4 x L?(P,) such that

af’(T;u_) = u;“, a;(T,-;u_) = u;r

We consider the following auxiliary dynamics on R? x L?(P5):

%az_(t,cz;u) = &(T —EZ[AJ(Z, c2s W(T = 1) g1 ({ay (13), X))],

D a0 = 6T~ DEZ[EG, M (Z, G W(T —1)a (1, Coa)
< ¢f (ay (). X)) X ]

initialized at a7 (0;u) =uy and a5 (0, c2;u) =uz(c2) foru = (uy,uz) € R4 x L2(P5).
Existence and uniqueness of (aj, a; ) follow similarly to Theorem 3.1. Observe that
the pair

ay(t)=a (T —t;ut), a,(t,ca) =a; (T —t,co;u™)

solves the system
0 __ 0 _
5 a, (t,cp) = —5 ay (T —t,co;u™)
= —&OEZ[AF(Z. co: W) g1 (@7 (1), X)),
0 __ 0 _
3 4 1) = —5; 4 (T —t;u™)

= 6 (OEZ[Ec, [AF(Z, Coi W(t)) a5 (t, Co)l @i (a7 (1), X)) X1,



P.-M. Nguyen and H. T. Pham 262

initialized at @, (0,¢2) = a5 (T, c2;u™) and ay (0) = a7 (T;ut). Thus, by uniqueness
of the solution to the ODE (7.2), (@ , a5 ) forms a solution of the ODE (7.2) initialized
at
ary(0) =ay (T:u™), ay(0,¢2) = ay (T.co3u™).

In particular, the solution (a7 , a5 ) of the ODE (7.2) with this initialization satisfies

ar (1) =a;(O;u™)y=uf, a3(T,")=ay(0,-;u”)=u.
Let u] = a7 (T;u") and u; = a; (T,-;u™). Then we have a; (T;u~) = u} and
a;'(T, uT) = u;, as desired.

Using this, by continuity of the map u +— (afr(T; u), a;r(T, -;u)), for every
€ > 0, there exists a neighborhood U of u™ such that for any u € U, we have that
|(a;r(T; u), a;(T, -;u)) —u™| < e. Notice that the MF trajectory W(t) satisfies

wi(t,c1) = af (t; w10, c1), w2(0,c1,)),
wa(t,c1,+) = aj (¢, ;w1 (0,¢1), w2(0, ¢y, ).
Then, since (w1 (0, C;), w»(0, C1,-)) has full support in R¢ x L2(P,), for any finite
T > 0, we have that (w; (T, Cy), wo(T, Cy,-)) has full support in R¢ x L2(P,), prov-
ing the first statement.

The other statements can be proven similarly by considering the following pairs
of flows on L2(P;_1) x L2(P;+1), foru = (uy,uz) € L>(Pi—1) x L*(P;1+1):

0

ot
= —&(OEZ[AN(Z.a] (t.-:u).af (6. 5u): W) @iy (Hi—1 (X, ¢cimq: W(D)))],

ad
&aﬁ_l(l‘,ci—kl;“)
= —&i1(OEZ[AFL(Z, cixt: W) i (HE (Z, 6t (2, -30)s WD),
initialized at a;" (0, ¢;—1; u) = u1(ci—1) and a,-++1(0,Ci+1§u) = uz(¢i+1), and
0 _ _ _
a7 (t.cici;u) = &(T —OEZ[ANZ, a7 (t,-:u), a7, (1, -5u); W(T —1))
X gi—1(Hi—1 (X, cici; W(T —1)))].

d
o7 Gina (G cipiw) = &1 (T = DEZ[AZ (Z, i W(T = 1))
X @i (HN(Z.aj (t,:u); W(T —1)))],

initialized at a; (0, ¢;—1;u) = u1(ci—1) and a; (0, ¢;+1;u) = uz(ci+1), in which
we define, for f € L?(P;_y) and g € L?(P;11),

Az, f.g:W(t) = Ec, ., [AR (2. Cigr; W(1)g(Ci1) 9 (HE (2. [ W()))].
Hi(z, ;W) = Ec,_ [ f(Ci—1) ¢i—1(Hi—1(x, Ci—1; W()))].
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Step 2: Diversity of the pre-activations. We will show that supp(H; (-, C;; W(t))) =
L?(Px) for anyt > 0,fori =2,...,L — 1 by induction.
Firstly, consider the base case i = 2. Recall that

Hy(x,c; W(1)) = Ec, [wa(t, C1, c2)p1 ({w1 (2, C1), x))] = Ha(t, x, wa(t, -, c2)).

Observe that the set cl({Hx(¢,-, f) : f € L?(Py)}) is a closed linear subspace of
L?(Px). Hence, this set is equal to L2(Py) if it has dense span in L2(Px), which
we show now. Indeed, suppose that for some g € L2(Px) such that |g| # 0, we have
Ez[g(X)Hs(t, X, f)] = O forall £ € L?(Py). Equivalently,

Ec,[f(CDEZz[g(X)o1((w1(z, C1), X))]] = 0,
forall f € L?(P;). As such, for P;-almost every cy,
Ez[g(X)p1({wi(t,c1), X))] = 0.

Since supp(w;(z, C1)) = R and the mapping u — ¢;({u, x)) is continuous, by
the universal approximation assumption for ¢;, we obtain g(x) = 0 for Py-almost
every x, which is a contradiction. We have therefore proved that cl({Fx (¢, -, f) :
f € L2(P1)}) = L?>(Px). Note that, since f +— H»(¢,x, f) is continuous, and
supp(wa(z,-, C2)) = L%(Py), we have supp(Ha (-, Co; W(t))) = L?(Px), as desired.

Now let us assume that supp(H;_1(-, Ci—1; W(t))) = L?(Px) for some i > 3
(the induction hypothesis). We would like to show supp(H; (-, C;i; W(t))) = L?(Px).
This is similar to the base case. In particular, recall that

Hi(x,ci; W(t)) = E¢,_[wi (¢, Ci—1, i) pi—1(Hi—1(x, Ci—1; W(1)))]
= H;(t, x,w;(t,-,¢i)).

Now suppose that for some g € L?(Px), |g| # 0, we have Ez[g(X)H; (¢, X, f)] =0
forall f € L?(P;_1). Then, for P;_;-almost every c;_1,

Ez[g(X)pi—1(Hi—1(X,ci—1; W(t)))] = 0.

Recall the induction hypothesis supp(H;_1 (-, Ci—1; W(t))) = L*(Px). Since ¢;_1 is
non-obstructive and continuous, we obtain g(x) = 0 for Px-almost every x, which
is a contradiction. Therefore, the set cl({#;(t,-, f): f € L?>(P;—1)}) has dense span
in L2($Px), and again, this implies it is equal to L2(Px). Since f + H;(t, x, f)
is continuous and supp(w; (¢, -, C;)) = L?(P;_,), we have supp(H; (-, C;; W(t))) =
L?(Px).

Step 3: Concluding. Let

Ez[0£(Y. 5(X: W) | X = x]op (HL(x, 1; W (1)) = H(x, W(1)).
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From the last step, we have supp(Hy_1(-,Cp—1; W(t))) = L?(Px) for any ¢ > 0.
Recall that

D cr1,1) = B DO WO (i (X WO

By the convergence assumption, for any € > 0, there exists 7'(¢) > 0 such that for any
t > T(e), and for Pr_;-almost every ¢y 1,

|Ez[# (X, W) or—1(HL—1(X. co—1; W(1)))]| <e.

We claim that J (x, W(t)) — H(x,{w;}i<z) in L' (Px) as t — oo. Assuming this
claim and recalling that ¢, is K-bounded by the regularity assumption, we then
have that for some 7’(¢) > T'(¢), and for any ¢t > T’ (¢),
ess-sup|Ez [H (X, {wi}i<r) -1 (HL—1(X, CL—1: W(1)))]|
< KEz[|H (X Awi}i<r) — H (X, W())]]
+ ess-sup|Ez [H (X, W(t)) pr—1 (HL—1 (X, CL—1: W(1)))]| < Ke.

Since supp(Hz—1(-, C—1; W(t))) = L?*(Px) and ¢y _; is continuous,
[Ez[H (X, {wi}i<L) f(X)]| = Ke forall f €S,
for S = {pr_10g:g € L*(Px)}. Since € > 0 is arbitrary,
[Ez[H (X Awi}i<) f(X)]| =0 forall f €S.

Furthermore, since ¢, is non-obstructive, S has dense span in L?($x). Therefore,
H (x,{w; }i<r) = 0 for Px-almost every x. Since ¢; is non-zero everywhere,

Ez[02£(Y, y(X:{wi}i<1)) | X = x] =0

for Sy -almost every x.
In Case 1, due to convexity of &£, for any measurable function y,

L(y,y(x)) =Ly, Y (xi{wi}i<r)) = 2L (y. Y(x,{wi }i<2)) ((x) = Y (x.{wi Ji<L))-

Taking expectation, we get Ez[£(Y, y(X))] > L({W; }i<L)-
In Case 2, we have that d,£(y(x), y(x;{w; }i<r)) = 0, and therefore it follows
that £(y(x), y(x;{w; }i<r)) = 0, for Px-almost every x, since y is a function of x.
This gives a result on £({w; };<1), conditional on the claim that # (x, W(t)) —
H(x,{w;}i<r)in L1 (Px) ast — co. We now prove the claim. Recall the coupling 7,
in Assumption 7.1.4. In the following, we let (Cy,...,Cr,C{,...,C]) ~ m;. For
brevity, we denote

8i(t,x.cici) = |Hi(x,c;;W(t)) — Hi(x, ci {W; }i<1)|.
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First observe that by the regularity assumption, for2 <i < L,
8i(t.x,cic)) < KE¢,_, c/_, [lwi (¢, C{_y, ¢}) — Wi (Ci-1. ;)|
+ |w; (Ci—1. ¢i)|8i—1 (1, x, Ci—1, C{_y)].
81(t,x,c1,¢1) < Klwi(t,¢}) —wi(er)]-
This gives
Ez[|H(X, W(1)) — H (X Awi}i<r)l] = KEZz[$(z, X, 1, 1)]

L L
< KL ZE[|wi(I, Ci/—l’ Ci/) —w; (Ci_q, Ci)| 1_[ |u_)j(Cj_1, Cj)|]
i=2 j=i+1

L
+ KEE[wi (¢, €)= w1 (Co)l [T18;(Cj-1, €I
j=2
By the convergence assumption, the right-hand side tends to 0 as ¢ — oo. This proves
the claim.
Finally, let us connect £(W(¢)) with L({w; }i<L):
ILW@) — L{witi<r)| = [Ez[L£(Y, (X W(1))) — LY, Y (X;{w;}i<r))]|
< KEZ[|y(X; W) — Y(X:{wi}i<L)l]
< KEz[SL(Z, X, 1, 1)],

which again tends to 0 as # — oo. This concludes the proof. |

8. Convergence to global optimum under Morse—Sard assumptions

In this section, we show that global convergence is guaranteed under a different set
of convergence assumptions, namely, convergence in moments of the MF limit and
certain Morse—Sard assumptions. This generalizes the global convergence mechanism
of [9] for two-layer networks to settings where the loss &£ is not necessarily convex
and the depth L > 2.

8.1. The two-layer case
Consider the two-layer setting of Section 6.1. We make the following assumption.

Assumption 8.1. There exist limits w; and w, such that the following hold:

(1) (Wasserstein-type convergence.) There exists a coupling r; of P; and itself
such that

Ex, [[W2(C))| w1 (2, C}) — w1 (C1)| + |wa(t, C{, 1) — w2(C1)[] = 0

ast — oo, where (Cy, Cy) ~ m;.
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(2) (Morse—Sard in the limit.) With W = {i;, i, }, the mapping
up > F () = [Ez[0:2(Y, $(X; W) @5 (Ha (X, 1; W) @1 ((ur, X))

satisfies the following property. As r — oo, ii; > ¥ (rii;) converges uni-
formly in C'(S?1) to a function F°°:S4~! — R, where S¢~! = {ii; €
R¥:|ii;| = 1}. Furthermore, for any stationary point u* of ¥ with ¥ (u}) > 0,
and for any &¢ > 0, there exists § € (0, §p) so that for Ss the connected com-
ponent of the set {u : % (u) > .’%:(u*l‘) — &} that contains u7, there is £ > 0
such that |[VF (u)| > & for all u € dcl(Ss), the boundary of the closure of Ss.
Similarly, for any stationary point i} of F° with ¥ *°(u}) > 0 and for any
8o > 0, there exists § € (0, 8o) so that for Ss the connected component of the
set {ii € S F(>i) > fw(ﬁf) — 8} that contains u7, there is £ > 0 such
that |VF(i1)| > £ for all it € dcl(Ss).

The convergence condition in the above assumption is actually the first part of
Assumption 6.1 (4), and hence the remark for Assumption 6.1 (4) applies; i.e., one
can deduce this condition from the convergence of (w1 (¢, -), wa(z, -, 1)) to (wy, W)
as t — oo in the Wasserstein-2 distance.

Theorem 8.2. Consider the MF limit corresponding to the network (6.1), such that
they are coupled together by the coupling procedure in Section 4.1. Under Assump-

tions 6.1 (1)—(3) and (5), and 8.1, the following hold:

* Case 1 (convex loss): If £ is convex in the second variable, then

lim L(W (1)) = inf L(f1, f2) =infEz[L(Y, y(X))].

t—>00 J1,/2 y

» Case 2 (generic non-negative loss): Suppose 0, £(y, y) = 0 implies £(y, y) = 0.
If y = y(x) is a function of x, then L(W(t)) =0ast — oc.

Let us make a comparison with the two-layer setting in Section 6.1, and in par-
ticular, Assumption 6.1. We see that the convergence assumption in Assumption 6.1
is replaced by Assumption 8.1. More specifically the uniform convergence condi-
tion of a%wz (t, C1, 1) in Assumption 6.1 is replaced by the Morse—Sard condition of
Assumption 8.1.

Similar to the proof of Theorem 6.2 in Section 6.1, the role of the Morse—Sard
condition is — together with the full support property supp(Law(w; (¢, C;))) = R by
Lemma E.1 — to affirm that

F(ur) = |Ez[02L(Y, §(X: W) @5 (Ha(X. ;W) o1 ((ur. X)]I* = 0

for all u; € R¥, after which universal approximation is invoked to yield the desired
global convergence. The main idea is the following: should the above not hold, there



A rigorous framework for the mean field limit of multilayer neural networks 267

exists a region of u; where % (u1) > 0. Since supp(Law(w; (¢, C1))) = R, at any
time ¢, for a non-negligible mass on C;, wj(¢, Cq) fully occupies the region. The
Morse—Sard condition ensures that the interaction over time between the two layers
w1 (¢, Cy) and wa (¢, Cq, 1) in this region would however force the dynamics to diverge
so long as % (u1) > 0.

The proof of Theorem 8.2 is deferred to Appendix G. We also refer to Section 9
for further discussions. In the following, we extend this result to the multilayer case
and present its proof.

8.2. The multilayer case

One can obtain a multilayer analogue of Theorem 8.2. The key idea behind the Morse—
Sard condition is similar to the two-layer case. Here the advantage of our framework
becomes clearer since it easily accommodates the idea in the multilayer setup.

Recall the setting of Section 7. We make the following assumption which is a
direct analogue of Assumption 8.1 in the two-layer case.

Assumption 8.3. There exist limits {w; }; <z, such that the following hold:

(1) (Wasserstein-type convergence.) There exist couplings m; of ]_[iL=1 P; and
itself such that

— L —
Er, [lw1.€1) = w1 (COP T, 18(Cj1. C)F] >0,
Ex, [l03(.C/y. €)= B(C cHPTT . l(c ¢HP] -0
T [ACKI =7 P 7 i i—1, i J=it1 j\j—=1, 4 s
fori =2,...,Last — oo, where (Cy,...,Cr.Cy,...,C]) ~ my.

(2) (Morse-Sard in the limit.) With W = {i; }; <1, the mapping
ur—1 € L*(Pr—2) = F (ur—1),
defined by

F(up—1) := [Ez[02L(Y, y(X: W))op (HL(X, 1; W)

— 2
X or—1((ur—1, HL2(X,-; W))2(p, _ ]|

satisfies the following property. As r — 00, fip_1 —> ¥ (riiz_) converges
uniformly in C'(S(L2(P1_3))) to a function F*®°:S(L2(Py_5)) — R, where
S(L*(Pp—2)) ={u € L>(PL ) : lulz2(p, _,) = 1}. Furthermore, for any sta-
tionary point ¥ _, of ¥ and for any 8y > 0, there exists § € (0, §o) so that
for Ss the connected component of the set {u : F(u) > ¥ (uy_,) — &} that
contains u} _,, there is £ > 0 such that |VF (u)| > & for all u € dcl(Ss), the
boundary of the closure of Ss. Similarly, for any stationary point i; _, of Foo
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and for any &¢ > 0, there exists § € (0, §p) so that for S5 the connected com-
ponent of the set {u : ¥ (u) > ¥ °°(uj_,) — 8} which contains ri; _, forall r
sufficiently large, there is & > 0 such that |VF (u)| > & for all u € dcl(Ss).

The convergence condition in the above assumption is actually the first part of
Assumption 7.1 (4), and hence the remark for Assumption 7.1 (4) applies; i.e., one can
deduce this condition from the convergence of (w; (t))iL=1 to (u_)i)iL=1 in an appropriate
Wasserstein distance. We now state the theorem. The proof is deferred to Section 8.3.

Theorem 8.4. Consider a neuronal embedding (2, P, {w?}isL) and the MF limit
described in Section 7, and in particular, under Assumptions 7.1 (1)—(3) and (5),
and 8.3. Assume £p(-) = Ep1(-) = 1.

e Case 1 (convex loss): If £ is convex in the second variable, then

lim L(W(t)) =inf£(F) = inf Ez[2(Y,7(X))].
t—00 F 7:R4—>R

+ Case 2 (generic non-negative loss): Suppose 0> £(y,y) = 0 implies £(y.y) = 0.
If y = y(x) is a function of x, then L(W(t)) — 0 ast — oo.

8.3. Proof of Theorem 8.4

Proof of Theorem 8.4. In the following, for f, g € L?*(Pr—5), let us write (f, g) in
place of { f, g)12(p, _,) for brevity. Let us define

Hi(X,Ci) = Hi(X,Ci;W), I__IL(X) = H_L(-x» 1)’ .)7()() :ﬁ(x’W)’
and for uy 1 € L?(Pp_5),

Gr(ur—1) = Ez[0,L(Y. ¥(X) op (HL (X)) or—1({ur—1. HL (X, )]
Gr-1(uz—1) = Ez[3:£(Y. 7(X)) o1 (HL(X))
X @p _((ur—1, HL—2(X, ) H—2(X, )],
Gr(t,up—1) = Ez[:£(Y, 5(t, X)) gr (HL(1, X, 1))
X or—1((up—1. HL—2(t, X)) ].
Gr-1(t,up—1) =Ez[02L(Y, §(t. X)) ¢y (HL (2, X, 1))
X @p_1((up—1, HL—2(t, X,-))) HL2(t, X, ')]-
Notice that Gy _; (ur—1), G—1(t,ur—1) € L*(Pr_»), which follows easily from As-
sumptions 7.1 (3) and 8.3 (1) and Lemma 3.2. Similar to the proof of Theorem 8.2,
with Assumptions 7.1 (3) and 8.3 (1), we obtain that, as ¢t — oo,
E[|HL(X) = HL(t. X. D] = 0. E[|7(X) = 5(z. X)|*] =0,
E[|8:£(Y, (1. X)) = 3L (Y. 7(X))|!] = 0,
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and uniformly in vy _q,
|Gr—1(t,ur—1) — Gr—1(up—1)[> > 0. |GL(t,ur—1) — Gr(ur—1)|* — 0.

Consider the limit potential given by
Z 1= 2
Flur—1) = 51GLur-1)I"
By Assumption 7.1 (3), uz_ — % (uz_1) is continuous. Notice that
— 1 — _ _ _
VF(ur—1) = 3 261 (up—1)V(GL(ur—1)) = Gr(ur—1)Gr—1(ur—1).

Let F%°:S(L2(Pr—»)) — R be defined by ¥ (iiz 1) = limy— o0 F (riiz_1), which
exists by Assumption 8.3. We shall argue that ¥ (uy_) = O foralluy_, € L2(Pr_5)
by contradiction. To that end, let us assume that F (uz—1) # 0 for some uy_;. Note
that % is bounded by a constant, by Assumption 7.1 (3). Thus, either there is a local
maximizer uy _; of F with ¥ (u7 _;) > O or there is a local maximizer %) _, of Fo
with F°@;_,) > 0.

First consider the case that ¥ has a local maximizer uy_, with F (uy_,) > 0.
Under Assumption 8.3, there exists § € (0, ¥ (u7 _,)) arbitrarily small so that for Ss
the connected component of the set {u : % (u) > ¥ (u7 _,) — 8} that contains uj _,,
there is & > 0 such that |[VF (uz—;)| > & forall uz_; € dcl(Ss). Let T, be sufficiently

large so that for ¢t > Ty, we have if uy_; € dcl(Ss), |GL—1 (up—1)—Gr—1(t,up—1)| <

£/\/8F (u7 _,), which, similar to the proof of Theorem 8.2, implies
£2

AF (ui_))

Also, we further enlarge Ty so that |Gz (uz_1) — Gr(t,up_1)| < %\/3':(“2—1) -6

fort > Ty and any uz—1 € cl(Ss), and hence

Gr(t,up—1) > Gr(up—1) — %\/ Fuy_)—8>Grur—1) — %\/ F(up—1)

(GL—1(ur—1).Gr—1(t, up—1)) > 8.1)

_ 1 _
=Gr(up—1) — §|GL(UL—1)|a (8.2)
_ 1 /= _ 1 /=
Gr(t,up—1) < Gp(up—1) + 5V Fuy_)—8<Gr(up—1) + 5V F(up—1)
_ 1 _
= Gr(up—1) + §|GL(ML—1)|- (8.3)

Furthermore, notice that

0 —
gGL(wL—l (t7 Ty CL—I))

= —wr(t,Cr—1, ){(Gr—1(wr—1(t,-,CL-1)), GL—1(t, wr—1(t,, CL—1))). (8.4)
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Let Q7 be the subset of Q;_; consisting of ¢y _1, where |wr, (0, cr, 1)| < 1. As
shown in Step 1 of the proof of Theorem 7.2,for any ¢t > 0, we have

supp(wr—1(t,+,Cr—1),Cr—1 € Qr—1) = L*(PL2),

and hence for any open subset B of L2(Py_5), there exists a positive mass of C;_; €
Q7_1 such that wr—1(t,-,Cr—1) € B. In the following, we consider Cy_; € Qr_1.
We further divide the argument into two cases: G (uy_,) > 0 and GL (uy_,) <0.

Let us consider the case G, (u7_;) > 0. Then we can choose sufficiently small §
such that G, (ur—1) > Oforall uy_; € cl(Ss). Furthermore, consider the scenario that
there exists T > Ty such that a positive mass of (wy—1(7,-,Cr—1), wr(T,Cr—_1, 1))
onCr_y € Qp_ has wr—1(T,-,Cr—1) € Ss and w (T, Cr—1, 1) < 0. Note that, by
equation (8.2), if w—1(¢,-,Cr—1) € Ss, then

0
EwL(tv Cr1.1) =—=Gp(t,wp—(T,-,CL-1))

< —(GL(U)L—I(T, . CL-1)) — %lGL(wL—l(Tv : CL—I))|) <0.

Define Ty = inf{t > T:wp—1(¢,-,Cr—1) ¢ Sg}. Then ¢t — wy (¢, Cr—1, 1) is decreas-
ing on t € [T, T1). Let us argue that 77 = oco. Indeed, suppose 77 is finite. We
then have, by continuity, that wy_; (77, -, Cr—1) € dcl(Ss) and wy, (T1, Cp—1,1) <
wr (T, Cp—1, 1) < 0. As such, %EL(wL_l(Tl, -,Cr—1)) > 0, by equations (8.1)
and (8.4). By continuity, for some y > 0, we have %EL (wp—1(Ty +¢t,-,Cp—1)) >0
forall £ € [0, y]. But then

Gr(wr—1(Tyi +t,-,Cr—1)) = GL(wp—1(T1,+, Cr—1)) = /2(F (u}_,) =),

and hence wy—1(Ty +¢,-,Cr—1) € Sg forall ¢t <y, contradicting the definition of T7.
Therefore, Ty = 0o, i.e., for t > T and C; € € with wr—1(T,-,Cr—1) € S5 and
wr (T, Cr—-1,1) <0, we have wy 1 (¢,-, Cr—1) € Sg, which implies

1_
Gr(t,wrp—i(t,-,CL—1)) = EGL(wL—l(f,',CL—l))

- \/%f(wL—l(t, +,CrL-1)) > \/%(}:("2—1) —9),

where the first inequality is by equation (8.2) and the fact G (ug—1)>0foralluy_; €
cl(Ss). In particular, there is a positive mass of (wr—1(7T, -, Cr—1), wr(T, Cr—1, 1))
with G (¢, wp—1(¢,-,Cr—1)) = \/(ff?(uz_l) —§8)/2 forall t > T'. Noting that

CEBLE(Y. 9. X)) = ~E[GL( wi (1, Coo)P)

we obtain %E [£(Y, 7(¢, X))] being bounded above by a strictly negative constant for

all + > T, which is a contradiction since £ is bounded below.
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Next we are considering the scenario that for all ¢ > Tp, the probability that
wr—1(t,-,Cr—1) € Ssand wy,(z,Cr—1,1) <0on Cr_; € Qy_; is zero. Let us argue
that for any ¢t > Ty and for a.e. Cp_; € Qy_; with wr—1(t,+,Cr—1) € Ss, we have
wr—1(s,-,Cr—1) € S for all s € [Ty, t]. Indeed, consider ¢ and Cr_; € Q7 _; such
that wy—1(¢,-,Cr—1) € S and wr—1(T’,-,Cr—1) ¢ S5 for some T’ € [Ty, ). Let
t' =sup{s € [T, t] : wp—1(s,-,Cr—1) ¢ Ss} < t. By continuity, w1 (¢',-,Cr—1) €
dcl(Ss) and so, by equation (8.1),

2
(GL—1(wp—1(t',+, CL—1)), GL1 (t', w1 (', -, CL—1))) > %
4F (uy_,)
By continuity, there exists t” € (¢/, ) such that for all s € [/, "],
52

Gr—1(wp—1(s,-.Cr-1)), Gr—1(s, wp—1(s.+,Cp_ >
(GL—1(wr—1( 1-1)), Gr—1(s, wr—1( 1-1))) 1007 et )

By definition of ¢’, we also have wz_1(s, -, Cr—1) € Ss and thus wr (s,Cr—1,1) >0
for any s € (¢, t]. Then, by equation (G.4), %GL(wL_l(s, -,Cr—1)) <Oforalls e
(¢, t"] and therefore

Gr(wr—1(t",-.CL—1)) < Gr(wp—1(t',+, CL—1)) = \J2(F (u}_,) = 6),

where the equality follows from wz_q(¢/,-, Cp—1) € dcl(Ss). However, this contra-
dicts with wy—q(¢”,-, Cp—1) € Ss. Therefore, it holds that for any ¢t > Ty , for a.e.
Cp_1 € Q71 with wr—1(t,-,Cr—1) € Ss, we have wy—1(s,-,Cr—1) € Ss and hence
wr (s,Cr—1,1) > 0foralls € [Ty, ?]. Since wy,—1(¢,-,Cr—1) on Cp—1 € Q7 _; has full
support at any ¢ > 0, we have, for any 79 > Tj, that there is a positive mass on C;_; €
Q7 _; such that wr—1(to,+,Cr—1) € S5 and hence, as shown, wz—1(s,-,Cr—1) € Ss
and wr (s, Cr—1,1) > 0 for all s € [Ty, to]. Note that we have wr (Tp, Cp—1,1) <
M (Tp) for some finite M (Ty) > 0 for Cp—; € Q11 (which follows from the fact that
|%wL(t, -, )] < K, by Assumption 6.1 (3) and wz, (0, Cr—1, 1) < 1). Also note that
for wp—1(s,-,Cr—1) € Sg and s > Ty,

0 1—
EU)L(S, Cr-1.1) =—-Gr(s,wr—1(s,-,Cr-1)) < —EGL(wL—l(S,',CL—l))

= —\/%f(wL—l(& -, Cr—1)) < _\/%(f(”z—l) —9)

a strictly negative constant, where the first inequality is by equation (8.2) and the fact
that Gz (uz—1) > O forall uy_; € cl(Ss). As such, for any fo > Tp such that

M(To) — (t0 — To) \/%(}:(V}i_l) —§) <0,
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there is a positive mass on Cy_; € QL_l such that firstly wr (s, Cr—1, 1) > 0 for all
s € [Ty, to] and secondly there exists ¢ € [T, o] in which

wr (¢, Cr—1.1) < M(Tp) — (t — To)\/%(ff*:(uz_l) —§) <0.

We again obtain a contradiction.

The case Gy, (u7 _;) < 0 can be treated similarly, with the use of equation (8.2)
replaced by equation (8.3). Both cases lead to a contradiction, ruling out the possibility
that there is a local maximizer uj _, of F with ¥ (uyj_y) >0.

Next consider the case where # does not have any local maximizer in L?(Pp_5)
but ¥ has a local maximizer uy_, with F ®(#y _,) > 0. Under Assumption 8.3,
there exists 8 € (0, ¥ (v _,)) arbitrarily small so that for Ss the connected com-
ponent of the set {u : ¥ (u) > .?ft""(ﬁz_l) — &}, which contains ruy_, for all r
sufficiently large, there is £ > 0 such that |V.# (u)| > & for all u € dcl(Ss). The rest
of the argument can be repeated as before to yield a contradiction.

In short, we have shown that % (uz_;) = %|GL (uz—1)|?> = 0, and equivalently,

Ez[0:£(Y., ¥(X)) ¢ (HL (X)) pr—1((up—1. HL—2(X,)))] =0

for all uy_; € L?(Pr_2). The proof can now be completed similar to the proof of
Theorem 7.2. u

9. Further discussions

Having presented our neuronal embedding framework for multilayer MF neural net-
works and proven several results concerning i.i.d. initializations and global conver-
gence under various settings, we now place the discussion of our work in the context
of related works.

9.1. Two-layer neural networks

The MF view on the training dynamics of neural networks has gathered significant
interests in the recent literature, starting with the two-layer case [9, 22, 26, 32, 34].
In this case, it is known that convergence to global optimum is possible for gradient
descent or SGD [9,22,32], with a potentially exponential rate [18] and a dimension-
independent width [21]. This line of works has also inspired research into new training
algorithms [27, 31, 38], stability properties of the trained networks [33], other archi-
tectures which are compositions of multiple MF neural networks [12, 20] and MF
neural networks in other machine learning contexts [1,25]. Most works focus on fully-
connected networks on the Euclidean space and utilize certain convexity properties
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to study optimization efficiency. The MF formulation of the two-layer case in these
works enjoys the wealth of the mathematics of optimal transport and gradient flows
in measure spaces [3].

Our work, on the other hand, considers general Hilbert spaces which can be
infinite-dimensional (Section 2) and does not rely critically on convexity (see Theo-
rems 6.2, 6.6, 7.2, 8.2 and 8.4). Our framework departs from the Wasserstein gradient
flow viewpoint, and while being in the early stage of technical foundations, it is
demonstrated to give useful results including and beyond the two-layer case.

9.2. Multilayer neural networks

As mentioned in the introduction, the multilayer case poses a major conceptual chal-
lenge. Prior to our work, several ideas have been proposed independently. The work
in [23] puts forth the idea that a neuron is represented by a stochastic (Markov) kernel
and gives a heuristic derivation, where the MF limit is described by a certain evolution
of measures over the space of stochastic kernels. The work in [4] rigorously derives
the MF limit as an evolution of a measure on paths through layers. In [35], the network
is viewed as a time-dependent function of its initialization and this function simplifies
upon concentrations over the randomness of the initialization. All three works employ
scalings with respect to the widths, in which normalizations are applied at every lay-
ers, not just the last layer, together with compensating learning rates. This thereby
ensures nonlinear evolution at all layers.

Working under the same scalings, our framework gives a new perspective via
a central question: how does one describe an ensemble of an arbitrary number of
neurons? Answering this question, our idea of a neuronal embedding allows one to
describe the MF limit in a clean and rigorous manner. In particular, it avoids extra
assumptions made in [4,35]: unlike our work, [4] assumes untrained first and last lay-
ers and requires non-trivial technical tools; [35] takes an unnatural sequential limit of
the widths and proves a non-quantitative result, whereas we prove a quantitative bound
that essentially requires only the minimum of the widths to be large. An advantage of
our framework comes from the fact that while MF formulations in [4,35] are specific
to and exploit i.i.d. initializations, our formulation does not, and thereby allows to
study i.i.d. initializations as well as interesting non-i.i.d. initialization schemes. Com-
pared to [23], while a certain step of our analysis takes an inspiration from the idea of
stochastic kernels in [23], our framework circumvents its technical cumbersomeness
and gives a rigorous and clean mathematical treatment.

After our first preprint, the work [14] takes another view on this challenge. In
particular, considering a finite set of training data, [14] encodes each neuron by its
pre-activation values, computed over the entire training data, at initialization. As a
specific interpretation by [14], the pre-activation values at initialization capture a
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certain sense of “features” seen by the neurons. Meanwhile our framework identifies
neuron j; at layer i via the sample C; (j;) drawn from the space (2;, P;) (Section 4.1)
and remains general about this space. One may observe the following connection: a
specific choice of the neuronal embedding can be built over random variables that are
defined by the pre-activation values at initialization. The generality of our framework
maintains freedom over choices of the neuronal embedding, including this specific
choice. For example, when the training data size is infinite, an idealized situation com-
monly assumed in theoretical studies, then if one follows [14], each pre-activation
becomes a function over an infinite domain, instead of a finite-dimensional vector.
This potentially poses technical complications, which can be avoided simply by a
different choice of the neuronal embedding in our framework.

9.3. Degeneracy with i.i.d. initializations

As shown in Section 5, i.i.d. initializations cause strong degeneracy for a network
depth at least four. The work [4] is the first to realize and take advantage of this phe-
nomenon to formulate the MF limit; in particular, the measure on the paths in [4]
admits a product structure, signifying the mutually independent nature of the evolu-
tions of weights at different layers in the infinite width limit. Note, however, that [4]
explicitly exploits this degeneracy phenomenon to formulate the MF limit. In contrast,
our framework is general and upon specializing to the case of i.i.d. initializations, it
allows to derive this phenomenon in greater details and simultaneously remove cer-
tain technical assumptions in [4]. In particular, we remove the technical conditions of
random input and output features and no biases of [4]. In addition, one can use Corol-
lary 5.4 to immediately verify that in the setting of no biases, L > 5 and untrained first
and last layers (§]'(-) = &/'(-) = 0), the weights and activations in the limit satisfy
the McKean—Vlasov equation in [4].

Such degeneracy is generally undesirable. The fact that our framework is not spe-
cific to i.i.d. initializations allows for an escape from this situation. In this aspect,
our framework follows closely the spirit of the work [23], whose MF formulation is
also not specific to i.i.d. initializations. Through the language of stochastic kernels,
[23] envisions a scenario in which evolutions of the weights at different layers are
stochastically coupled. The usefulness of such scenario is realized by our global con-
vergence guarantee for multilayer networks with arbitrary depths in Sections 7 and 8
(Theorems 7.2 and 8.4), with the novel idea of bidirectional diversity for non-i.i.d.
initialization.

9.4. Global convergence

Optimization efficacy has been one major question that sets the MF literature apart
from other theoretical studies of neural networks, where one witnesses new involve-
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ment of sophisticated mathematical tools and insights. As mentioned, the two-layer
case has enjoyed numerous efforts to establish global convergence (see, e.g., [7,9, 18,
22,31,32,38,39]). Our work is the first to obtain global convergence guarantees in the
MF regime for the multilayer case.

Two-layer networks: comparison to [9]. Closely relevant to our thread of results is the
work [9]. This work treats the two-layer case under certain convergence and Morse—
Sard assumptions and convex losses. To make a direct comparison with [9], let us first
focus on the two-layer case, and in particular, Theorem 6.2 together with its accom-
panying Assumption 6.1. Several elements in our analysis are inspired by this work;
we also differ in crucial ways. Similar to [9], our proof also hinges on the insight
that a certain diversity property is held throughout the course of training. We assume
a universal approximation property (Assumption 6.1 (5)), which is natural in neural
network learning, and dispense with convexity of the loss, whereas [9] does not utilize
universal approximation and requires convex losses. In our convergence assumption
(Assumption 6.1 (4)) the moment convergence condition is similar to the convergence
assumption in [9]. We differ from [9] fundamentally in the uniform convergence con-
dition ess-sup |%w2(t, C1, 1)] = 0 of the second layer’s weight. On one hand, this
condition replaces the Morse—Sard condition in [9], which is difficult to verify in
general. On the other hand, it is a natural assumption to make: as shown in Propo-
sition 6.4, if this uniform convergence condition fails, global convergence cannot
be attained. In short, using the insight on diversity, together with universal approx-
imation, we uncover a new mechanism for global convergence without the need for
convex losses.

Multilayer networks. While [9] is specific to two-layer networks, we further the in-
sight on diversity to the multilayer case, where we introduce the new notion of bidi-
rectional diversity. In the context of two-layer networks, diversity refers to that the
first layer’s weight distribution has full support in the Euclidean space. In the multi-
layer case, this notion no longer resides in the Euclidean space, but it is realized in
function spaces that are naturally described by the neuronal embedding framework.
Moreover, as noted in Section 7.3, it highlights an interesting dynamical mechanism,
in which adjacent layers interact with each other over time in such a way that diversity
is preserved through the depth of the network and at any time, roughly speaking.

Similar to the two-layer case, in place of the Morse—Sard assumption in [9], we
show global convergence under uniform convergence of the gradient update at a cer-
tain layer (Theorems 6.6 and 7.2). Again we note per Propositions 6.8 and 7.3, there
is a converse relation between this uniform convergence and global convergence; if
the former fails, so does the latter.

Several of these insights are utilized in the recent work [14], which proves a
global convergence guarantee for a residual MF neural architecture under the uniform
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convergence assumption of the gradient update. In this architecture, a skip connection
is introduced to route the first layer directly to the second last one. Thanks to this
skip connection, diversity is essentially transferred directly from the first layer to the
second last layer. In short, in [14], diversity is maintained with the help of architec-
tural imposition. In contrast, in our global convergence result for the multilayer case,
diversity is maintained automatically by the training dynamics.

The work [20], which studies a type of composition of many two-layer MF net-
works, and a recent update of [35], which studies the three-layer case, establish condi-
tions of stationary points to be global optima with certain overlapping ideas. However,
they require essentially a certain diversity assumption on the limit point (i.e., at con-
vergence ¢ = 00). We do not need to make this assumption: the remark in Section 6.2.1
highlights the dynamical nature of the proof where diversity is assumed at initializa-
tion £ = 0 only and proven to hold at any finite training time ¢t < oco. As explained
in Section 6.2.1, diversity may not hold at # = oo and global convergence can still be
attained regardless.

Let us mention again that global convergence results in those works are proven
under the convex loss assumption. On the other hand, our results allow for removal of
this assumption and our proofs do not make use of convexity in any crucial way.

Convergence under Morse—Sard assumptions. Our framework is able to give a self-
contained proof of global convergence under the Morse—Sard assumption, without the
aforementioned uniform convergence assumption (Theorems 8.2 and 8.4).

Let us place this discussion in the two-layer context, particularly Theorem 8.2 and
its accompanying Assumption 8.1. Observe that Assumption 8.1 (2) follows immedi-
ately if ¥ and ¥ satisfy Morse—Sard type regularity, i.e., the sets of regular values
of ¥ and ¥ are dense (hence the name “Morse—Sard”). Indeed, assume that ¥ and
F ° satisfy Morse—Sard type regularity. Let §5 ={u:Fw)>F (u7) — &}. In that
case, for any stationary point uj of F with ¥ (u7) > 0, and for any 89 > 0, there
exists § € (0, §p) so that any u € 801(§5) satisfies V.F (1) # 0. Over a bounded con-
nected component Ss of Ss, this immediately implies the existence of & > 0 such
that |VF (u)] > & for all u € dcl(Ss). Over an unbounded connected component
Ss of Sy, whenever 7 (u]) — & is a regular value of F, there is £ > 0 such that
|VF (u)| > £ foru € dcl(Ss) \ B(0, r) for some r sufficiently large, where B(0, r) is
the ball around 0 with radius r. Since ¥ (u7) — & is a regular value of 7, by making
£ > 0 smaller if needed, we can guarantee that |V.# (u)| > & foru € dcl(Ss) NB(0, r),
and hence |V (u)| > £ for all u € dcl(Sy).

Thus our Morse—Sard condition is similar to (and slightly weaker than) the Morse—
Sard assumption of [9]. As stated, it is sufficient for this condition to hold with respect
to the limit W = {i;, W»}. A counterpart statement of the Morse—Sard assumption
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of [9] would impose the condition on a generic class of pairs of functions W =
{01, W, )} that contains W and as such trivially imply our assumption.

As explained in Section 8.1, the Morse—Sard condition forces the interaction over
time between the weights of the two layers in a specific way that guarantees global
convergence. This idea was realized by [9] in the language of Wasserstein gradient
flows for a convex loss function £ and two-layer neural networks. Here in the two-
layer case, firstly Theorem 8.2 extends the result to generic losses; secondly and more
importantly, it demonstrates that the same idea could be naturally executed in our
framework without the use of Wasserstein gradient flows.

Theorem 8.4 demonstrates further the applicability of our argument to the multi-
layer case, which the Wasserstein gradient flow formulation has difficulty with.

9.5. Empirical findings and other infinite-width scalings

Mathematical ideas aside, one important aspect is how well one can observe the
MF limiting behavior in multilayer networks with finite but large widths, normal-
ized under the MF scaling. This has been demonstrated positively in the work [23]. In
particular, [23] performs experiments on several real-life machine learning tasks and
finds that the evolution curves of certain performance metrics, such as the training loss
and the classification accuracy, are almost insensitive to the widths — provided suffi-
ciently large — and hence they exhibit a limiting behavior. As [23] shows, this occurs
as soon as the widths are on the order of just a few hundreds, which is common in
practice.

The MF scaling is not the only infinite-width scaling with interesting properties.
Another popular scaling regime is the neural tangent kernel (NTK) scaling [2, 8, 11,
17,19,41]. In the NTK scaling, the weights do not move and the learning dynam-
ics becomes linearized, although several interesting properties such as convergence to
the global optimum are attainable. For this reason, it is often said that the NTK-scaled
infinite-width neural networks do not perform feature learning. This NTK-like behav-
ior is not what is observed in practical neural networks with finite but large widths. In
contrast, the MF-scaled networks have nonlinear dynamics and weights moving away
from initialization, and thus said to perform feature learning in the literature.

The MF scaling is not necessarily the only scaling with feature learning (see, e.g.,
[16,40]). It is known that in the standard scaling that matches with the usual prac-
tice, the networks are NTK-like in the infinite-width limit [21,40]. Consequently, any
infinite-width scalings with feature learning are only proxies of practical finite-width
neural networks. Despite this fact, we note that [23] demonstrates on several real-life
machine learning tasks that a MF multilayer network, without heavy hyperparameter
tuning, can achieve realistic performances, comparable to practical neural networks
that are similar in architectural designs and training procedures; [20] demonstrates an
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improved performance over strong and well-tuned practical neural networks by using
the MF scaling. In other words, the MF scaling offers a good proxy, with potentially
no loss in practical performances.

A few alternative scalings, accompanied by suitable initializations and learning
rates, are proposed in [16,40] to avoid the NTK-like behavior. Theoretical understand-
ing of feature learning in these scalings is currently limited to just a single SGD step,
unlike our work which studies the full learning trajectory of MF networks and proves
the presence of meaningful learning via global convergence. As said, all these scalings
are proxies of practical finite-width networks. Furthermore, it is argued in [21] that
for two-layer infinite-width networks that are close to practical networks, the behav-
ior near initialization is more NTK-like, while that in the long-time horizon is more
MF-like. We expect a similar situation for the multilayer case, in which case it is
insufficient to understand neural networks by analyzing only a few initial SGD steps.
Our work also demonstrates the goodness of well-designed non-i.i.d. initializations,
which thus far have been under-explored in the literature.

In a later follow-up work [29], our neuronal embedding framework is extended to
study a finite-width correction to the infinite-width MF limit and the implicit bias of
gradient descent training in this finite-width regime, hence paving the path to address
the aforementioned limitation of the infinite-width viewpoint.

A. Useful tools

We state a martingale concentration result, which is a special case of [30, Theo-
rem 3.2] and applies to a more general Banach space.

Theorem A.1 (Concentration of martingales in separable Hilbert spaces.). Consider
a martingale Z, € 7, a separable Hilbert space, adapted to ¥,, such that |Z, —
Zn—1| < Rand Zy = 0. Then, for anyt > 0,

P(max|Zi| = 1)

n
<2 inf exp(—/\t +ess-sup Y B[ 2kl 1 — 3| Zy — Z4 | | 5‘7k_1]).
A>0 =1

In particular, fort < nR,

12

oz

Proof. The first part follows from [30, Theorem 3.2]. The second part follows from
the observation that for A < 1/(2R),

]P’(max|Zk| > t) < 2exp<—
k<n

EfeMZe=Zr-1l 1 _A1Zp — Zi—i| | Faer] < 4A2R2,
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and as such we have for ¢t < nR,
2

Tone)

Next we state two results for -independent random variables in separable Hilbert

P Zil>1)<2 inf Al 4+ 4nA%R?) <2 (—
(I/?safl flz1) = 0y inl gy FP(EAL + 4nATRT) = 2exp
spaces.

Theorem A.2 (Concentration of n-independent bounded sum in separable Hilbert
spaces). Consider n n-independent random variables Xy, ..., X, in a separable
Hilbert space, where n € [0, 1]. Suppose that | X; — E[X;]| < R almost surely. Then,
for § > 2nR, we have

P(%‘i& —E[X;]
i=1

Proof. Since | X; — E[X;]| < R, the claims are immediate for § > R. Let

82

> 8) < 26Xp<_62?)'

Zi = X1 —E[Xi]+ X2 —E[Xo | X1] + -+ X; —E[X; | X1,..., Xi—1].

Then Z; is a martingale adapted to ¥; = 0(X1,..., Xj—1). By Theorem A.1,
2

16nR? ) ’
assuming that ¢ < nR. Using the n-independence property, we have that

P(‘ix,- —E[X;]
i=1

P(1Za] = 1) < 2exp(-

> 6n) < P(1Zy| = 6n — nR)

= 200p(~ IR g op(- 0,

foré € (2nR, (1 + n)R). [

Theorem A.3 (Moments of n-independent heavy-tailed sum in separable Hilbert
spaces). Consider (X1, X2, ...) being n-independent random variables in a sepa-
rable Hilbert space. Suppose that for some constant k > 1 (with k < K), for any
i € N5y,

sup m~*ZE[|X;["]'/" < K.

m=>1

Then, form > 1,
I v mt/m 1+k/2 0.01 —1/2
E[)—ZXi—IE[Xi]| ] < Km'"t*/2 max (nn®°t, n=1/2).
s

Proof. 1t is easy to see that it suffices to prove the claim for m > 2. Let us define
Fi =0(X1,...,X;—1) and

Z; = X1 —E[Xq]+ X2 —E[Xz | 2] +---+ X; —E[X; | Fi].



P.-M. Nguyen and H. T. Pham 280

Then Z; is a martingale adapted to %;. Note that for any m > 1 and B > 0:
n
IEU 3 X —E[Xi]
i=1

< ElZ"]"/" +E[| Y EIX: | £i] - E[Xi]
i=1

m:|1/m

m]l/m
1/m

n m
< E(Za[""" + E[| Y ElXilix,iz5 | £ - ElXilix=8] | +nnB

i=1

n 1/m
< El|Z[")/" 4 0! =" (Y ENXi "y, 281)  +nnB.

i=1
By [30, Theorem 4.1], for m > 2,
E[|Z,|™"/™
n 1/m n 5 m/2q1/m
< Km( Y EIXM) " + KvmE[( Y ENX —ELX | 7P| 7))
i=1 i=1

1/m

< Km(Xn:EHXHm])I/m + KME[(iEHXi'Z | f”’i])m/z]
i=1 i=1

< K(m + ﬁnl/z—“m)(iEnxiV"])”m
i=1

< K(mnl/m + ﬁnl/z)mk/z < Kmltk/2,1/2.
We also have

E[|X:|" Ijx,=58) < E[|X:|*"]'*P(1X;| = B)"/? < K"m"*/? exp(~K B*'¥),

since | X;|'/* is K-sub-Gaussian. Therefore,
n mq1l/m B2/k
EHZX,- —E[X;] ] < Km1+k/2n1/2—|—Kmk/zexp(— )n—l—nnB.
i=1
The claim is satisfied for B>k = ¢m log n with a suitable constant c. |

B. Remaining proofs for Section 3
B.1. Proof of Lemma 3.2

Proof of Lemma 3.2. Let n(i) = 2F7" and 7j(i) = 2/~!. Let us define

50 .
[wilm.: =y ZE[Suplwi(& Ci—1,Ci)|m]l/m, i=2,...,L.
<t



A rigorous framework for the mean field limit of multilayer neural networks 281

We prove the following by backward induction, fori = 2, ..., L and any m > 50:
50

\ — E[sup ess-sup|AF (s, Z, C,~)|m]1/m
m s<t Z~P

< K3nG-1- 2(1+,r1(z) 1) l_[ (1—|—[[w]]]"(’ l)+ !HMHZ”‘”L
j=i+1

A

[willme < K371+ [wi]mo) (1 +17D) ]_[ (L [ T2 + 1 1119,
j=i+1

Il 52 llle = K7D+ bifllo) (1 +17) ]‘[ (1 [, J7957 4 |1, 29,
j=i+1

for some immaterial constant K > 1, where, by standard convention, ]_[ iy = Lif
i=1L.
Let us start with i = L. By Assumption 2.6, for $#-almost every z,

sup| AH(t,2,1)] < K.
t>0

Consequently, for J-almost every z,
max(sup  sup |A¥(t,z.co—1. D] sup|AD(r.z. 1))
t>0 c; 1€ t>0

<K(1+ §1>110)|Af(t,z, D)) < K%

Together with Assumption 2.4 and the fact that wy, and by, satisfy the MF ODEzs, this
implies
[welme < [welmo + K2 lbelle < llbe [llo +K>t.
These prove the statement for i = L.
Next, assuming the statement for i + 1, we prove the statement for i, where
1 <i < L. Using Cauchy—Schwarz’s inequality, we have from Assumption 2.6, for
m > 50,
E[ sup ess-sup| AT (s, Z, CHI™|

s<t Z~P

< KmE[supess sup |I[£(;IJrl [(1 + |Al+1(s,Z,C,-+1)|)
S<t Z~P

X (14 [wis1(5, Ci. Cin)| + [bi+1 (s, Cian)D][" |

< KmI[*I[]ECiJrl [1+ supess—sup|AiIi1(s, Z, C,~+1)|2]
s<t Z~9

m/2

2
X By [1+ suplui 165, Ci. Cian) P+ suplbia 5. G P17

s<t
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< K™(1 + E[ supess- suplA,H(s,Z,C,'+1)|2]m/2)
S<t Z~P

X E[l +Eciy, [sup|wi+1(S, Ci, Cix)|" ] + E[ suplbit1(s, Ci+1)|2]m/2]
s<t
< K™(1+ E[supess-sup| A%, (5. Z. Cie) P]™?)
sS<t Z~P
< (L4 m™2[wi [, + Ibia [I7)

which implies, by the induction hypothesis,

50
— E[ supess-sup|AF (s, Z, C;)|™]
m S<t Z~P

1/m

K(1 + E[supess-sup|AZ (s, Z,C,-+1)|2]1/2)(1 + [wit1]m,e + [|bis1llle)
sst Z~p

K[l +K371(t) 2(1 +t'7(’+1) 1) 1_[ (1 +[[w]]]n(/ i— 1)_,’_mb H‘ n(j—i— 1))]
j=i+2

X [1 + K37V 4 [wi1]mo + |Bis1 o) (@ + 76T

 TT 0+ B 4 iy 30+ "]

j=i+2

< K¥0D72(1 4 @) H (U4 [wi L™ + 1B 5.
j=i+1

Therefore, by Assumptions 2.6 and 2.4, with the fact that w; satisfies the MF ODEs,
we have

50
[wilm: =/ — E[sup
m s<t

S
_/ E'GNEZ[AP(s". Z,Ciy, C))] ds’
0

w; (0, Ci—1, Gi)

m:|1/m

K
< [wilm,o + —E[supess sup|AY (s, Z,Ci—1, C; )|m]1/mt

\/_ s<t Z~P
< [w +K1—|——IE sup ess-su AHSZC m/m),
[wilmo + K (1 + =B sup z~f" (5.2, ")
= KD o1+ T BB+ 159

j=i+1

We obtain a similar bound for |||b;|||;. This completes the backward induction. With
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the same argument, one can obtain a similar bound for i = 1:

50
\/ = E[ supess-sup|Atl (s, Z, C1)|m]1/m
m

S<t Z~P

< K371(0)—2(1 = 1)1_[(1 —f—[[wjﬂn(l 1)+ H’b ’H 7(j— 1))

llwillle < k37O + |||w1!Ho)(1+t”“))]_[(1 + L In ™ + 111851189 ~).
j=2

By taking the supremum on m or setting m = 50, these bounds imply the claimed
bound on [W]y., and ||W|||;. In addition, from the bounds on [w;]m., it follows
that sup;, |w; (s, Ci—1, C;)| is Ko(7)-sub-Gaussian for 2 < i < L. Together with the
union bound, we then get the claimed probability bound. ]

B.2. Proof of Lemma 3.4
We state the following two useful auxiliary lemmas.

Lemma B.1. Consider two collections of MF parameters W', W € Wr. Under
Assumption 2.5, foranyt < T and 1 <i < L, the following hold:
E[ sup ess-sup| H; (X, Ci; W'(5)) — Hi (X, Cis W' (s)I*]'"?
S<t X~P
< KRG (D)W =W,
sup ess-sup| §(X; W'(s)) = §(X; W' ()| < KXKg (D)W = W"|,.

s<t X~P

Lemma B.2. Given B > 0, consider two collections of MF parameters W' ,W" € Wr
such that

P(max2(W') > Ko(T)B) < 2Le' K187,
P(maxZ(W") > Ko(T)B) < 2Le' K18,
Under Assumptions 2.5 and 2.6, foranyt < T and 2 <i < L, the following hold:
E[ sup ess-sup| A¥ (Z, C;_y, Cis W'(s)) — A¥(Z, Ciy, G W' (s))[2]'?

St Z~P
<D W W),
E[ sup ess-sup| A2 (Z, Ci: W' (s)) — A2(Z. Gy W”(s))|2]1/2 <D, W ,W"),
st Z~P
E[ supess-sup|AY(Z,C1: W'(s)) — AY(Z, Cy; W”(s))|2]1/2 <D, W ,W"),
S<t Z~&P

in which D(t, W/, W") := (KKo(T))*L+2((1 + B)||W' — W"||; + ~/Le K1 B2/2).
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These lemmas lay the foundation to prove Lemma 3.4.

Proof of Lemma 3.4. Let us recall the quantity D(¢, W', W) from Lemma B.2. Let
us note a simple identity:

ec( [ ro.00as)]= [ [ Eelsincrson Olasds,
< [ [ Belsor o Rl 0PI dss s
= ([ Bellss.coras)’

Now, for any i > 2,

() o|as)T"

—E[( / 6 GEZAY (Z. Comr. G W/(5) ~ AP (Z. Com G W )| ds ) |
1/2

9 Fw(W )(s,Ci—1,Ci) — Fw(WN)(S Ci1,

< kEe[( / |EZ[A;"(Z,Ci_1,ci;W/(s))—A;-”(z,ci_l,ci;W”(s))1|ds) ]
0
() ! w ’ w 7" 1/2
< K | E[[Ez[AY(Z.Ci—1.Ci:W'(5)) — AP(Z. Ci—1, Ci: W' (5))]|*]
0
(C) ! i V4
<K D(s, W', W")ds,
0

where (a) is due to Assumption 2.4, (b) is by the aforementioned identity, and (c) is
an application of Lemma B.2. Therefore,

E[ sup| F* (W')(s, Ci—1, Ci) — F* (W")(s, Ci—1, C)[?]""*
s<t

N

8 w U / a w 1 !/ 2 1/2
§E[sup( SFP W Gt C) = 5 B (W) Cim, ds)]
Sft 0 8[
t
§K/ D(s, W', W")ds.
0
One can show the same bound for F l.b and F”. This completes the proof. ]

Lemmas B.1 and B.2 are in fact special cases of the following lemmas.

Lemma B.3. Consider two collections of MF parameters W', W" € Wr. Suppose
that we define C’l, e C’L independent random variables on Q1, . .., 2, such that C’i
is independent of C1,...,Ci—1,Cit1,...,Cr, and that there exists some K«(T) >
Ko(T) such that all following quantities are upper-bounded by K«(T) forallt < T
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and for W = W' orW = W":

Jmax, E[suplui (s, Cimy, €], max, B[ suploi (5. Ci-1, C) ],
<1<
max E[sup|w,(s Ci_ 1,C)|50]1/50, max ]E[sup|wl(s Ci— 1,C)|50]1/50,
2<i<L s<t <L s<t
max E[sup|b (s, C)|50]1/50, max ]E[sup|b (s, C)|50]1/50
2<i<L s<t s<t
A 1150 5011/50
E[ sup|wi (s, Cy)| ] [sup|w1(s CHP’]
s<t

Under Assumption 2.5, foranyt < T and 1 <i < L, we have

E[supess-sup| H; (X, C;: W' ()~ Hi (X.Co: W (s)) 2] 2 < KL KE(T)d, (W' . W),

S<t X~P
and the same holds if we replace C; with C; in the left-hand side of the above. Here
we have defined the metrics:
(W', W") = max( max d,(w w), jmax dt(bl’,bl”) c?,(wi, wY)),
2<i<L

di (w], wf) = max(E supluf 5 Ci-1,C) — s, Gror, CP]
s<t

5 A0 212,
E[ sup|w] (s, Ci—1, C;) — w//(s, Ci—1, Ci)|? /

s<t

]

]

E sup|wlf(s, C’,-_l, C)— wlf’(s, éi—l, Ci )|2]1/2
s<t

]

s<t

1/2
1’71

d; (bl by = maX(E sup|b (s, Ci) — b}/ (s, C1)|?]

s<t
E[ suplb(s, C;) — b/'(s, CnI?]'"?),
s<t

[
[
[
E[ sup|w)(s, Ci—1. Ci) — w]'(s, Ci—1, Ci)|? 1/2)’
[
[
[ 12

c?t(w/l,w/l/) = max(E sup|w) (s, C1) — w} (s, Cy)| ]
s<t
E[ suplw] (s, C1) — wi (s, C1)2]"?).
s<t

(Note that the random variables C; are general, and may be chosen to be equal to C;.
The space Wt which contains W' and W' is defined with respect to the random
variables C1,...,CL.)

Lemma B.4. Consider two collections of MF parameters W', W" € Wr. Suppose
we define the random variables C1, ..., Cr, the bounding constant K,(T) and the
metric d; (W', W") as given in the statement of Lemma B.3. Further assume that for
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some non-negative function & and some B > 0,

P(mag(W') = K«(T)B) < E(B),
P(Ra2(W") = K.(T)B) < E(B),

in which we define

max;’ (W') = max sup max(|w (s.Ci_1.Ci)l, |wi (s, Ci_1.Ci)|,

2<i<L g<t
lwj (s, Ci—1. G|, lwj (s, Ci—1. Cy)]).
Under Assumptions 2.5 and 2.6, foranyt < T and?2 <i < L, we have

E[supess-sup |AY(Z, Ci_1,Cis W'(s)) — AP (Z, Ci_1,C;: W”(s))|2]l/2

S<t Z~P

<D, W W"),

E[ supess-sup |A2(Z, Ci: W'(s)) — AL(Z. C: W (s)P]"/? < De. W', w"),

sS<t Z~P
E[supess-sup |AY(Z, Ci; W'(s)) — AY(Z,Cr; W”(s))|2]1/2 <D, W W),

S<t Z~P

and the same holds if we replace Ci or Ci_y with C; or C;i_y, respectively, in the
left-hand side of each line above. Here

D@, W', W"):= (KK«(T))*!T2((1 + B)Yd, (W', W") + \/E(B)).

Next we prove each of the remaining lemmas.

B.3. Proof of Lemmas B.1 and B.3

Proof of Lemma B.1. The first bound is a direct corollary of Lemma B.3 by setting
C; = C; forall i € [L]. In addition, by Assumption 2.5,

sup ess-sup|H(X; W'(s)) — $(X; W"(s))| < KDp(t) < KEKE(T)|W' = W"||,,

S<t X~P

completing the proof. |

Proof of Lemma B.3. Let us denote
Dy (1) = E[ supess-sup| H; (X, Ci; W'(s)) — Hi(X, Ci; W"(s) 2]/,
s<t X~P

Dj(t) = E[ supess-sup|H; (X, Ci: W'(s)) — H; (X, Ci; W' (5))[*]

S<t X~P

1/2

By Assumption 2.5,
D (t) < KE[ sup|w (s, C1) — wl(s, C)[]"* < Kd. (W', W").

s<t
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The same bound holds for D (). Next let us consider D;(t). By Assumption 2.5,
using Cauchy—Schwarz’s inequality, we obtain

Di(t) < K]E[SUPEQ_I [(1 + |w](s. Ci—1. )| + [w] (s. Ci—1. Ci)| + |b] (5. C)]
s<t

- 1/2
+ |} (s, Ci)|) ess-sup| Hi—1 (X, Ci—1; W'(s)) — Hi—1(X, Ci_1; WN(S))|]2]
X~P

+KE[supEc, _, [[w](s. Ci—1. C)—w]'(s. Cimy. Co) |+ b} (5. €1) =B/ (5. C)|IP]/?
s<t

= KEI:Dzz—l(t) Sup]EC,-ﬂ [1 + |w1/'(sv Ci—laéi)|2 + |wl{/(s, Ci—la éi)lz
s<t

+ 1bj (s. C)I* + 1B} (s, C})Iz]]l/2
+KE[supEc, , [w](s. G, C)—w{ (5. G, C)l + b5, C) =B} 5. C ]2
< KK*(;)Di_l(t) + Kd, (W, W").
We have the same bound for D; (¢). Hence,
max(D; (1), D; (1)) < KK+(T)max(D;_1(t), Di—1(t)) + Kd, (W', W").
This, in particular, implies

max max(D; (1), D; (1)) < KX K (T) dy(W. W").
=i=

which proves the statement. u

B.4. Proof of Lemmas B.2 and B.4

Proof of Lemma B.2. This is a special case of Lemma B.4 with C; = C; foralli € [L],
K«(T) = Ko(T) and E(B) = 2Le1—K132. .

Proof of Lemma B.4. First of all, by Cauchy—Schwarz’s inequality, we have, from
Assumption 2.6,

E[ supess-sup| A (Z, C;; W’(s))|50]1/50

s<t Z~P

< KE| supess-sup|Ec, ., [(1 + [AfL,(Z. Cir: W (5)D

s<t Z~&P

) . ) 5071/50
X (1+ |wjy (s, Ci. Ciy)| + |b] 41 (5. Ciy1))]| ]
< KE [ECH—I [1 + sup ess—sup|Al~Ii1(Z, Cit1: W’(s))|2]25
S<t Z~P

s 5571/50
xEc, [l + i‘ilt)|wf+1(5, Ci.Ciy1)* + ililz b} 1 (s, Cip1)I?] ]
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1/2
<K(1+ ]E[supess—sup|Ailil(Z, Cit1: W/(S))|2] / )

S<t Z~P

1/50

x (1 +E[sup|lw],(s.Ci, Cix1)°]">" + E[ sup|b] (s, Ci+1)|2]1/2)
s<t s<t

< KK.(T)(1 + E[supess-supmﬁl(z, Cit1; W’(s))|5°]1/50)_

sS<t Z~P
We have, similarly,

E[ supess-sup| AZ (Z, Ci; W'(s))*°] 150

S<t Z~P

< KK«(T)(1 + E[ supess-sup| A | (Z, Ciq1; W/(s))|50]1/50).

S<t Z~P
Therefore, for any i € [L],

IE[ sup ess—sup|A,-H(Z, Ci; W/(S))|50]1/50

s<t Z~P

< K*KkE(T),

) (B.1)
IE[ sup ess-sup| AlH (Z,Ci; W'(s)) |50] /30

s<t Z~P

< KEKE(T).

The same bound holds for W”. With this, let us proceed with two steps.

Step 1. For brevity, let us define
DF (t) = E[supess-sup|AF (Z,Ci; W'(s)) — AF (2, C; W”(s))|2]1/2,
sS<t Z~P

D) = E[ sup ess-sup| AZ(Z, Cii W' (s)) — AP (Z, Cy; W”(s))|2]

sS<t Z~P

1/2

We first have, from Assumption 2.6 and Lemma B.3,
DH(t)y = D (t) < K supess-sup| Hy (X, 1; W'(s)) — Hp (X, 1; W' (s))|
S<t X~P

+ K supess-sup|j(X; W'(s)) — $(X; W' (s))|

s<t X~P
< KKy (T)d (W' W").
Next we consider ljﬁl and Dihll for i > 2. By Assumption 2.6,
DE (1) < K(D (0) + D20y + D (1) + D) + D (1)),
in which

Dﬁll (t) = Eg,_, [supess-sup Ec; [(1 + w; (s, Ci—1,C)| + lw (s, Ci—1.G)|
S<t Z~P
1/2
+ |bi (s, Ci)|+1b] (s, Ci)|)|A,~H(Z, Ci: W (s)—Af(z, C; W”(S))|]2] )
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D) =E¢, [sup ess-sup Ec, [(1+|AF(Z, C; W/ ()| +AF(Z, C; W (5))])

s<t Z~P
~ ~ 1/2
X (|w1/(sv Ci—lv Cl) - wz{/(sv Ci—lv Cl)| + |bl/(s7 Cl) - bl{/(sa Cl)|)]2] )
DY) =Eg, | supess-sup B, [(1+]AF(Z, Ci: W ()| +|AF(Z. Ci: W (5))

s<t ZNJ

x (1 4+ [w](s, Ci—1. G| + [w] (s, Ciz1. Co)| + |b](s, Ci)| + |} (5. Ci)])
x |Hi (X, Ci: W'(s)) — Hi (X, Ci; W (s))] ] 2,

D) =E¢,_ [supess supEc, [(1+|AF(Z, Ci; W (s))|+|AE(Z, Ci; W (5))])

S<t Z~P

x (14 |bj(s, Ci)| + |b] (s, Ci)l)]
_ . 1/2
x |Hi—1(X, Ci—1; W'(s)) — Hi—1(X, Ci_1; W”(S))|2] ,

D2 (1) =Eg, [supess supEc, [(1+|AF(Z, Ci; W (s)| +|AF(Z, Ci; W (5))])
S<t Z~P

x (5. Cioa. Gl + w5, Gt D)
~ - 1/2
X |Hi—1(X, Ci—1; W'(s)) — Hi—1(X, Ci—1; W”(S))|2]
We bound each term. For liﬁ 11 , we use Cauchy—Schwarz’s inequality to obtain

B (1) = KEq, [ supess-supEc, [(1+ [wf(s, Ciot, I + ] (s, Ci1, C)
S<t Z~&P

1/2
+ [bi (5. C) 2 + 1B (5. ) 2) | DI ()]
< KK.(T)DH ().
Similarly, using equation (B.1),
271/2

le(t) < K supess-supEc; [1—|—|AH(Z Ci: W (s))|2+|AH(Z Ci: W (s))| ]

s<t Z~P
xd, (W' ,W")
< KEKE(TYd, (W', W").
To bound D 1 , we use Lemma B.3 and equation (B.1):
DH 3(1)
< KE¢, [sup esssup B, [14 A2 (Z. Co: W/(s)|* + |AH (2. C;: W (5))]*] '/

S<t Z~P
x B, [14 [w] (s, i1, C* + [w]/ (s, Ci_1, C)[* + [bi(s. C* +1B] (5. C)[*]">
1/2
X Ec,[|Hy(X. Ci: W'(5)) = Hi(X. Ci: W' ()]
< K2L+2K5L+2(T) C?t(W/, W”),
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and similarly, for D~£ ’f ,
DR
<KE¢ | [supess-supEc,.[l + A2z, Ci: W' (s)* + |AH(z. ¢ W’ ()]

s<t Z~9
x Ec,[1 + |bj(s, Ci)|> + |b] (5. Ci)I?]
- . 1/2
X |Hi—1 (X, Ci—1; W'(s)) — Hi—1(X, Ci_1; W”(S))|2]
< K2L+2K§L+2(T) C?t(W/, W”).

The treatment of D~£ 15 requires more care. Cauchy—Schwarz’s inequality and equa-
tion (B.1) give us

DEING)
<KE¢ | [sup ess—supEc[[l + |A,-H(Z, Ci: W (s)|® + |A,H(Z, C;; W”(s))|2]

S<t Z~P
x Ec; [[w;(s, Ci—1, C)I* + |w] (s, Ci—1, Ci)|’]
- - 1/2
X [Hi=1 (X, Cimys W/(5) = Hima (X, Cimis W/ ()P
< KEKE(DE] sup(|w](s. Ci—1. CI* + [w] (5. Ci—1. C)I?)
s<t

x ess-sup| Hi_1 (X, Ci_1: W'(s)) — Hi_1(X, Ci_1; W”(s))|2]1/2.

Z~P
Recall our assumption
P(maxy (W') = K«(T)B) < E(B),
P(RaxL(W") = K.(T)B) < E(B).
We also have, from Assumption 2.5,

E[ sup ess-sup| H;—1 (X, Ci_1: W/(S))|8]1/8

S<t Z~P
< K(l + E[sup|u)£_1(s, Ci_s, Ci_1)|8]1/8 + E[sup|b£_1(s, C’i_l)|8]l/8)
s<t S<t
< KK (T).
and similarly,

E[ supess-sup| Hi—i (X. Ci—p: W (s)]"/* < KKw(T).

s<t Z~P
As such, denoting the event

E = {sup|w/(s, Ci—1, C)| = K+(T)B, sup|w{ (s, Ci—1, C;)| = K+(T)B},
s<t s<t
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we obtain, from Lemma B.3,
DHHO!
< KEKE(D)E[ sup(|w] (s, Ci—1. C)I? + [w! (s, Ci—1, C1)[?)
s<t

x ess-sup| Hy_1 (X, Ci_y: W'(s)) — Hi_1(X, Ci_1: W () P(I(=E) + 1(E)]""*
Z~P

< KEKETYT)B
x E[ sup ess-sup| H; 1 (X, Ci—1:W'(s))— Hi—1(X, éi—l;W”(S))|2]

S<t Z~&P

1/2

~ ~ 1/8
+ KL KE(T)E] sup|w)(s, Ci—y, Ci)|® + sup |w) (s, Ci—y, C)|]"
s<t s<t

B[ sup ess-sup(| Hy—1 (X.Ci— ;W' (s)[8 + | Hi—1 (X,Ci—1i;W" (5))[)] /*P (E) /2

s<t Z~P
< K2 KT B, (W W) + KEKEP(T) VE(B).
Putting all the bounds together yields
D (1) < KK (T)DE () + (KKL(T)?42(1 + BY d, (W', W)
+ KLKEY(T) E(B).
Similarly,
DI, (1) < KK«(T)DF (0) + (KK« (T)* *2(1 + B) d: (W', W")
+ KLKEY(T) E(B).
Together with the bound on D f and D 1{1 , we thus obtain
max max(D; (1), D (1))

< (KK«(T)*:F2((1 + B)d, (W', W") + E(B)). (B.2)

1

This completes the first step.

Step 2. We now prove the main claims of the lemma. For brevity, for i > 2, let us
denote

DY (t) = E[ supess-sup| A’ (Z, Ci—y, Ci: W'(s)) — A (Z,Cioy, i W"(S))IZ]I/Z,

sS<t Z~P

D(1) = E[ supess-sup| AL (Z, € W'(5)) — AX(Z. G W/ (s)) ] /2,
S<t Z~P

DY (1) = E[ supess-sup| A¥ (Z, Cr: W'(s)) — AY(Z. Cr: W () 2] .
SSt Z~P

By Assumption 2.5,
DY) = K(D{" (1) + D" (1)),
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in which
b;”’l(t) = E[su[t) esZs—sup(l + A (Z,C W ()P + 1A (Z. C: W (s)]P)
s<t Z~9
X (|Hi—y (X Ciy: W'(s)) — Hi_1(X. Co_y: W"(s))[)] "2,
DP2(t) = E[sg) esZs-sup (1AF(Z,Ci; W'(s)) — AP (Z, Ci: W (s)|?
sSt Z~P
+w(s, Ci—1. Cr) — w]/(s. Ci—1. G + |b(s. Ci) — b}/ (5. C) |2
+ | Hi (X, G W'(5)) — Hy(X.CoW"(5))P)]"/2.
We bound D'
D! (1) = E supess-sup(1 + |A[(Z. C: W/(s) P + 1A7(Z. Ci: W]
sSt Z~P

x E[ supess-sup| Hi—1 (X, Ci—1:W'(s))— Hi—1(X, Ci—;;W" (5)) *]

S<t Z~P

< K2ER2L(TYd, (W', W"),

1/2

where we have used equation (B.1) and Lemma B.3. We also have the following
bound on D~lw 2 from Lemma B.3 and equation (B.2):

DP2(1) < (KK«(T)* (1 + B)d,(W'.W") + VE(B)).
which therefore leads to
DP(t) < (KK(T)***2((1 + B)d,(W', W") + VE(B)).

The same bound similarly applies to lﬁf’ (¢) and 15’1” (). ]

C. Remaining proofs for Section 4

C.1. Proofs of Propositions 4.14, 4.15 and 4.16

Before delving into the proofs, we introduce some auxiliary results. We first present a
useful concentration result. In fact, the tail bound can be improved using the argument
in [15], but the following simpler version is sufficient for our purposes.

Lemma C.1. Consider an integer n > 2; let (c1, 2, ..., cn) be n-independent for
n € [0,1/2] and let x be another independent random variable. Let E . and E. denote
the expectations with respect to x only and {c;};e[n] only, respectively. Consider a
collection of mappings { fi}ie[n), which map to the same separable Hilbert space.
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Let f;(x) = E.[fi(ci, x)]. Assume that | f;(ci, x) — fi(x)| < R for almost every x
and c;, then for any § > 2nR,

P(E[[2 Y A — ] = 8) = Kexp(- L2,
i=1

5 '\ 512R2
Proof. For brevity, let us define

Zn(x) = (filei x) — fi(x)).

i=1
By Theorem A.2, for § > 23R,

2

né
P(|Zn(x)] = nd | x) < 26XP(_64R2)’

and therefore .
P(1Zu(x)| = n8) < 2exp(— ),
64 R?
since the right-hand side is uniform in x. Next note that, with respect to the random-
ness of x only,

Ex[1Zn(X)[] = Ex[|1Zn ()IL(1Zn(x)| = 18/2)] + Ex[|Zn(x)|L(| Zn(x)| < né/2)]
< Ex[|Zn ()| L(1Zn (x)| = n8/2)] + nd/2.

As such, by Markov’s inequality and Cauchy—Schwarz’s inequality,

P(Ex[|Zn(x)]] 2 n8) < P(Ex[|Zn()|L(1Zn(x)| = n8/2)] = né/2)

A

2
— EZy()I1( Zn ()] = n8/2)]

IA

2 B2, (P2 B(1Z0(0)] = 0822

2

IA

4 211/2 né
—EIZa(0)P1 exp(~ 2573 ).

Notice that, since cq, ..., ¢, are n-independent and f; (x) = E.[f; (¢ci, x)],
E[|Z,(x)|*] < nR* + nn*R>.

We thus get

4 /1T +nnR né? 4R né?
—exp(— ) < —exp(— )
N/ 512R? ) 512R?

This proves the claim. |

P(Ex[|Zn(x)]] =z n) <
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The next useful result concerns with the sampling at initialization.

Lemma C.2. Under Assumption 4.6, following the coupling procedure, we have, for
any 8 > 0 and B > 0, with probability at least 1 — K Lny,x exp(—K(§ A 81/26)n11n/i§2),
that the following hold, for 2 <i < L:

Moment bounds:

W lllo = lI1Wllo < W fllo +8'%°,

(-3 Ea Cis. i) "™ < Ell(cir, oo 4 550
j =1

nj—1

1 50
(G X EalwdCaGion, C) ™' Bl €y, G 4 5%,

Ji—1=1

Excess bounds:

ni— ni
—— > 2 MWl (CinaGim1), GG 2 B) = P(1w} (Cio1, C)| 2 B) | < 6,
U =1j=1
1 &
— Y LB (Ci(ji)| = B) = P(|b(Ci)| = B)| < 6.
fi=1
Here npy, = max(ny,...,ny) and npj, = min(ny,...,np—1).

Proof. We treat the bounds separately.

The moment bounds. We recall that

nj—1 nj

H\W’Ho:max(zgzgi(nl o '21;1,X_:1|w (Ci—1(ji-1). C(Jz))|50) O,
o (o Z|b°<c ) L (S wte) ™),

Lji=1
Let us first prove the following:
P(ZW =8 <e -exp(—K81/26n}/52),
n

20 =L 3 € ~ Eu(C ]|
Lji=1

Indeed, we note that for any m > 1, E[|w?(C;)|>*"]'/™ < Km?>. As such, by The-
orem A.3,
E[|Z(1)|m]l/m < Km26n1_1/2.
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This implies |ZM|1/52 is K nl_l/ 194 _sub-Gaussian, from which the claim follows.
Using the same argument, we get

P(Z® > §) < e-exp(—K8/20n}/*2),
nr—1
o 2 WL DI = Efwl (Coor. DI,

JL—1=1

A ‘

as well as that
]P’(A(i) >§)<e -exp(—K81/26n.1/52)

Al Z|b°<c GIP* = E[Ib2 (€]

Jji=1

for2 <i < L — 1. In addition, since 27 = {1} and nz = 1, itis obvious that we have
b2 (CL(jL)| = |bL(CL)I.

Next for 2 <i < L — 1, without loss of generality, suppose n; > n;_;. Let us
prove the following:

IP’(Z(i) >6) <en; -exp(—l(c?l/%n.lisl2 ,
ni—1 nj

>0 D W (Cia(imn). GG = E[lwf (Cimr. C)IP)).

Ji—1=1 ji=1

7@ —

ni—n;

For fixed j; € [n;], let us first consider
Cj, (ji—1) = (Ci—1(ji=1), Ci((ji—1 + ji) modn;)).

For any 1-bounded function f, due to independence between C; (j;) and C;—1(ji—1)
and Assumption 4.4, we have

[EL(Cj; Gi-0) 1 4G GV #5i—» Ci(Uii—1 + Ji) mod ny)]
—E[£(Cj, Gi=1) | Ci((i—1 + ji) modn;)]| < ni—1,

which implies
|ELf(C), (ji-1) | {C;, Gi—Dbir_ #ii—1) —E[£(Cj; Gi—)]| < ni-1.

That is, {C ji (Ji=1)}j;_,€n;—,1 18 Ni—1-independent. Hence, by the same argument, by
letting

ni—1

> 1wP(Ci Gim) ™ = Ellwf (€5, Gim) .

Ji—1=1

@ _
Zji

nll
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we have _
]P’(ZJ(;) >8) <e -exp(—K81/26ni11512).

By the union bound,

P(Zz® > §) < P(]mf,f Z](.ii) >§) <en; -exp(—K(‘)’l/zsnilisl2 ,
which is the desired claim.
Upon an application of the union bound, these probability bounds imply the bound
[Wlllo < [IIW |[Jo +6/5°. The rest of the

on the probability of the event |[|W|||o = |
bounds are similarly proven.

The excess bounds. Without loss of generality, assume n; > n;—; for2 <i < L — 1.
Let us denote
nji—1

> 1w (G, Gim1)| = B) = P(lw?(Ci—1.Ci)| = B).

1.
Ji—1=1

D =
Ji ni—

Recall previously that {C’ i (Ji=1)}j;_, eln;_,1 18 ni—1-independent. As such, by Theo-
rem A.3,

E[DO["™ < Kmni .
This implies that |D](.f) |12 is K nl__ll/ *_sub-Gaussian, and hence for any § > 0,

IP’(|D](.5)| >§)<e -exp(—KSniliz1 .

The union bound yields

nj

1

j 1/2
IP’( - Z DJ(.:) > 8) < Kn; exp(—K8ni£1 .
Li=1
Note that this holds for any B > 0. The rest of the bounds are similarly proven. |

Similar to Lemma 3.2, one can prove the following.
Lemma C.3. Under Assumptions 2.4 and 2.6, for any t € [0, 00),
Wl < K<E U+ A+ WG IIWIese) < K (0400 + [[[WIGH).

where k. = K% for some constant K > 1 sufficiently large. In particular, for any
i e[L],
1 & . 1/50 .
(- 2 supess-supl AR(Z, jis W(s)I®) T = K1+ )1+ [|W50),
Ni Tysst Z~p
ni

1 ) 1/50
(= > supess-supl AT(Z jis Wi(ls/e])T) T = KEE(1 4 10)(1 + [ WI[§0).
nj ji=1 sS<t Z~P
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Furthermore, by defining

1/50
W Il samp.e = max( max ( Z]Ecl . sup|w,(s Ci—1,Ci(ji))| 0]) ,
ji=1

2<i<L
QR ) 1/50
max (—— Y Eq,[suplwi(s. Cima Gion). C)I™])
2<i<L\nj; 1].,_]=1 s<t
1 ni—1 ng
C; C; 50) ,
Jmax (- 2 3 s GG G
1/50
50
ma, (o 2sup|b GGGP)

(- Zsumwl(s an®) ™).

_ St

we also have

1/50
I lamo: (- Z supess-sup| Af (Z, i (j): W(s))I*°)

s§t Z~P

< K“(1+ t“)(l + max (||| W[5"

samp 0

Proof. The proof follows the same argument as Lemma 3.2. This is obvious for the
statements concerning W and W. To prove the latter claims that involve ||| W ||| samp,»
the argument follows similarly. In particular, let us denote

1 & _ 1/50 _
| wi [||right,e = (n_ Z EC;_l[Suplwi(S,Ci—17Ci(]i))|50]) ; 2<i=L,
lji=1 s<t
1 ot . 1/50 _
lwillins = (—— Y Eq,[suplwi(s. CimaGim). COI°]) T 2=i <L,
nj—1 =1 s<t
ni—1 n;

50
R 6. GG GNP 2 =i <L

i=1j;=1%%

50
| Bz [ samp.e = ( Z Suplb (s, Ci (J:))ISO) : 2<i<L,

ji=1°

1 1/50
w1 |||s =(— sup|wq (s, C1(J 50) ,
201 . (m;s;ﬂ 15 Ca ()|

1/50
|HA,H|||samp,,=( Zsupesssupmﬂ(z GUWEI®) . 1=isL,

s<t Z~P
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— S<t Z~P

1 & 1/50
Il A%l = B[ 3" supess-suplaf . i wisn ] 1=i<L.
n;
Ji=1

Then similar to Lemma 3.2, we obtain, for2 <i < L,

|HA£IH|samp,t <K,
A llsampe < K+ [IAF DA + [l[wi Nheter + NIl billl o).
willletee < ll[wi leto K0+ [|AF ]2,
lwi llrgnt.e < llwi [llsigneo +K T+ A7 llsamp.e) 2,
willleens < llws [llcen,o + K1+ A7 [|samp.e) 1.
15 llsamp.e < 11153 llsamp.0 +K 1+ A Il samp.e) 2.
lwi llsamp.s < 1w samp.0 + K+ | ATl samp.e) 7.

Note that

19 . = e o e s o g mna, [ lcons.

ZréliaSXL ’Hbt ’Hsamp,tv wq ’Hsamp,t )
Together with the bound on ||| Af||; given by Lemma 3.2, one can derive the claims.
The proof is complete. ]

C.1.1. Proof of Proposition 4.14.

Proof of Proposition 4.14. In the following, let K; denote an immaterial positive con-
stant that takes the form
K; = K (1 + ¢*L),

where k7, = KL, such that K; > 1 and K, < Kp for all t < T. We note that the
terminal time 7', the constant K;, as well as the usual immaterial constant K, do not
depend on B. We start with some preliminary facts.

Fact 1: moment bounds. We first note that at initialization, we have Do(W, W) = 0
and |||W|||o < K. By Assumption 4.6 and Lemma 3.2, ||| W |||z < K. Furthermore, by
Lemma C.2, with probability at least 1 — K L,y exp(—Knrln/ifz), we have |||W][jo <
K and [[|W ||| samp,0 < K, recalling the definition of ||| W |||samp,; from the statement of
Lemma C.3. Let this event be denoted by &. Unless noticed otherwise, we shall place

most of the contexts of our proof upon &. By Lemma C.3, one deduces that

|||W|| T Wmsamp,T < Kr,
1 & - 1/50
(-3 supesssuplal(z, s Wesni®) " < K.
ng = s<t z~p

Ji=1
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nj

1 1/50
(== > swpess-suplAf (2, G W) < Kr
nj i8St Z~P

on the event &. We also remark that the fact ||| W|||z < Kr holds irrespective of &.

Fact 2: maximal bounds for W. We note that the assumption ess-sup maxg’ (W) and
ess-sup max(l;(W) has an interesting consequence:

ess-sup maxy (W) < K7 (1 + B),
ess-sup maxl}(W) < Kr(1+ B),
ess-sup max sup|AH(Z Ci:W)| < Kr(l + B).

l<isL<T

We note that this claim holds irrespective of the event & from Fact 1. Following this
claim, it is immediate that almost surely,

ess-sup max  max |wi([,Ci—1(ji—1)»Ci)| < Kr(l + B),
C; 2<i<L ji_1€[n;—1]

ess- sup max max |w;(t, Ci—1,Ci(ji)| < Kr(1+ B),
Ci_y 2=<i=L j;€[n;]

max max lw; (¢, Ci—1(ji—1), Ci(ji))| < Kr(1 + B),

2<i=<L ji_1€ln;—1l,j;i €ln;]

max max |bi (¢, Ci(ji)| < Kr(1 + B),

2<i<L ji€[n;]

ess-sup max max_ sup |AH(Z Ci(ji):W())| < Kr(1 + B),
zZ~p 1=<i=L ji€[n;l¢<T

since C;(j;) is a copy of C;. Now we prove the claim. First consider max}’ (W). By
Assumption 2.6, for J-almost every z,

sup  sup  |AY(z,cr—1, s W(2))] < K(l + sup|A£I(z, 1; W(t))|) <K
>0

t>0c71€Q1—1
which implies, by Assumption 2.4, that

ess-sup sup|wg, (¢, Cr—1,1)| < ess—sup|w2(CL_1, D+ KT < Kr(1+ B).
t<T

Next assuming that ess-sup sup, .7 |w; (¢, Ci—1, C;)| < K7 (1 + B) fora giveni > 2,
by Assumption 2.6, we have for J-almost every z and all t < T,
1AL (2, Cimrs W)
< KE¢,[(1 + |Af (2, C; W) (1 + |wi(t, Cimy, Gi)| + [bi(t, Ci)])]
< KEc,[(1 4 |Af (2. C: W) ) (K7 (1 4 B) + |bi (1. Ci))]
< K[+ E[IAf 2. C: W) P1V) (K (1 + B) + E[|b: (1. C;)P]/?)]
< Kr(1 + B),
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where the last step follows from the fact |||[W|||r < K7 and Lemma 3.2. Again by
Assumption 2.6, we then obtain

A (z,Ci—1,Ci; W(t))| < Kr(1 + B),
which implies, by Assumption 2.4, that

ess-sup sup|w;—1 (¢, Ci—1, Ci)| < ess-sup|w;_, (Ci—1,C;)| + K7 (1 + B)T
t<T
< KT(I + B).

This completes the induction argument to show that ess-sup max}’ (W) < K7 (1 + B).
We have also showed that

<i<

ess-sup max sup|AiH(Z, Ci; W) < Kr(1+ B).
t<T

We thus obtain, from Assumption 2.6,
Az, Ci; W(0))| < Kr(1 + B),
for 2 <i < L and J-almost every z. This implies

ess-sup sup|b; (¢, C;)| < ess-sup|b?(C,-)| + Kr(1+ B)T < K7(1 + B),
t<T

which shows ess-sup max’,’(W) < K7 (1 4+ B), as claimed.
Fact 3: maximal bounds for W. We also have on the event &, almost surely,
max max sup|w; (¢, ji—1, ji)| < Kr(1 + B),
2<i<L ji_1€[n;—1l,ji€lni] ¢<T
max max_sup|b; (7, ji)| < Kr(1 + B).
2<i<L ji€[n;] t<T
A proof of this fact is similar to the argument for Fact 2. We note that this argu-
ment requires the use of the fact |||[W]||z < Kr, which holds on the event &, and
the application of Lemma 3.2. The latter application holds by noticing that W can
be viewed as a collection of MF parameter whose neuronal ensemble (2w, Prew) =
niL=1 (2 news Pi new) takes the following specific form: Q; pew = {Ci(1),...,Ci(n;)}
and P; new is a uniform probability measure on €2; peyw.
We now decompose the proof into several steps.

Step 1 — Main proof. Let us first define some quantities that represent the difference
between W and W:*

4To simplify our notation, here and in the following argument, we denote by d; the partial
derivative with respect to the first variable, so, for example, d;w; (¢, Ci—1 (ji—1), Ci (ji)) =

Zw;(t, Ci—1(ji—1). Ci (ji)-
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1~ _ 1/2
DY (1) = (Z Z|81w1(1,11) —31w1(f,C1(Jl))|2) ,
J1=1
ni—1 N

o . ) . 1/2
Z Z [01W; (¢, ji—1, Ji) — 01w; (2, Ci—1(ji—1), C; (]i))|2> ,

Ji—1=1Jji=1

1
ni—1n;

pr() = (

| AL 1/2
phw=(;- lelb,-(r,j,-)—alb,-a,ci(ji))ﬁ) S 2sisL
Ji=

We are also interested in the following quantities that represent the smoothness in the
time evolution of W(¢) and W (¢):

AV (.0 = (% D 11wi( +¢.Ci(in) — 31w1(t,C1(j1))|2)1/2,

Jj1=1
- 1 X _ . ; L \1/2
A0 = (- i+ Ly = jol)
Jj1=1
1 nj—1 N
are = (- — Y DI+ LG Gin). Gi)
T Jimi=1 =1
1 . w2\ 12
—31wi(l,Ci—l(]i—1),Ci(Ji))|) :
. 1 i N\1/2
w — ~4 .. -. J— ~. .. .4
ey = (ni_lnijzljzlwlw,(z it ) = b im P)
i—1=1ji=

1 /
AL@.¢) = (; Yo 10ibi(e + &, Ci(i) - Blbi(t,Ci(J'i))lz)1 E
=1

~ 1 ~ ~ 1/2
A0 = (= Yo lbi + L) - 0bi ) . 25i <L
Lji=1

These quantities give a bound on D, (W, W):
t t
DAW ) < K [ max DE (/)00 ds+ K [ max D(Ls/J6) ds
HKE s sup max(A} (5,8, 47,8, Y (5,8, A7 (5,E),
s<T—-¢ 0<{'<

where we have used the fact Do(W, W) = 0. The next task is to bound the terms

inside the integral.
To find bounds on D/’ (), we introduce the following quantities for 1 <i < L:

nj - /
Gi() = (- Y2 BZIARZ, jis W) - A (Z.Ci G W)
[

1
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and

R0 = (- Y0 B2 jis W) — Hi (X, Gl wap )

Ji=1

We specify their connection in the following. By Assumptions 2.4 and 2.6, fori > 2,
DP (1) < K(DI™' (1) + Gi(t) + D (W, W) + Fi (1)),

in which

DI = (-3 essesup(1 + 1ARZ. s WO + 18K (Z. Gl W) P)

ji=1 27
nj_1 - B ) 5 1/2
x—— " Ezl[Hima (X jii: W) = Hima (X, Gy G WD)
i—1 .
Ji—1=1

By Lemma C.3, on the event &,
DP (1) < Kr Fima(0).
As such, on the event &,
DY (1) < Kr(Fim1 () + Gi(t) + De(W. W) + Fi(1)).
Similarly, we also have
DY (1) = K(G1(t) + Dy (W. W)).

Together with the previously derived bound on D, (W, W), we obtain, on the event &,
t t
DAW.W) = Kr [ DWAT)ds + Kr [ max(Gills/¢16) + Fi(ls/¢10) ds
0 0

t
+ K/ max D?(|s/¢]¢)ds
0 2<i<L
+ Kt sup - sup max(AP (s.8). A7 (5. 8. AY (5.8). A7 5. 8)).
s<T—¢ o<¢/<¢ !
which holds forallt < T.
Next we make the following claims:
*  Claim I: For any ¢ € [0, T], on the event &, almost surely,

sup  sup max(Ap(t,¢), A7 (1,¢), A (1,8)), AL (t.¢') < Kr(1+ B)L.
t<T—¢ 0<¢{'<¢ !
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* Claim 2: For a sequence {y; > 0,j =2,...,L}andt < T, let 83 denote the
event in which for all k € {1,2,...,i},

k—1

Fit) < KE(DiW. W) + (1 + B) Y vy,
j=1

(The summation Zf;% equals 0 if k = 1.) We claim that foreachi = 1,..., L,
i—1

2
. niy:
PEL: e =1-Y ’;JII exp(—’K—fT“).
j=1 "

* Claim 3: For a sequence {#; >0,j =1,...,L —2}andt < T, let ESIAJ- denote
the event that forall k € {i,i + 1,..., L},
) L2
G (1) < KzL7+H! ((1 + B)D (W, W) + (1 + 32)(5LA + /3,-)),
j=k

where SLA = ZjL;ll Yj+1. (The summation Z]L;,f equals 0 if k > L —1.) We

claim that foreachi =1,..., L,

H A H ~ nj+18]
P(EM, NEL;€) = P(EM,:6) - ; i exp(— ).
e Claim4:Fort <T,let 8;’ denote the event that for all k € {2,..., L},

DR(t) = Kr((1 + B)D(W. W) + (1 + B*)87),

where 62 = §8 + Z]L;lz . We claim that

N2
_”/V.i+1)

i—1
P(EM, NEA nerie) = PEM, nepse) -y 2E exp( &

i=1 Vi+1

Let us assume these claims. Using the bounds on IP’(é’tHL; &), IP’(StHL N StA’l; &) and
IP’(SEL N StA,l N Stb; &), combining the previous bound, applying the union bound
overt €{0,¢,2¢,...,|T/t]¢} and recalling Do(W, W) = 0, we then get

t

DAW.) = Kr [ [+ BDOYI)
0

L-1 L-2
+ 0+ BY( Y v+ D B) + (1 + Bt s,
j=1 j=1
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for all t < T, with probability at least

L-1 2 L-2 2

T Nj+1 njYVii1 n; nj-l—lﬂ'

(e ) D g e )
CJZ: ‘ e Z,Bj "k

—1 Vi j=1

— KLnpax exp(—Knl/Sz),

min

for any ¢ € [0, T']. By Gronwall’s lemma, the above implies that for all t < T,

304

Di(W. W) < Kr[(1+ B )(Z i + Zﬂ,) + (14 B)¢ | exp(Kr (1 + B)T)

Jj=1 Jj=

= Kr( Z Vit1 + Z B + &) exp(Kr (1 + B)).
j=1 j=1
The proposition statement is then easily obtained by choosing

L (ZTL"YZ‘“”‘+ ) i=l..L-1
. = (e} e, = 1,..., )
Vi+1 Krn, g s J

B L <2TL"‘%“‘X+ ) j=t..L=2
;o= (0] e, =1,..., — 4,
J K1y g s J

and

We are left with verifying the claims.

Step 2 — Claim 1. We first note that, by Assumptions 2.4 and 2.6, Lemma C.3, and

the fact ||| W ||

W |||samp,0 < K, on the event &:

0

1 ni_q n; 1/50
( Z Zsuplalwl(s Ci—1(ji-1), Ci (Jz))|50)
Mol T o oSt

nj

1 1/50
<K+ K(— Z supess—suplA,H(Z, Ci(ji); W(s))|50) < Kr,

n; ! s<t ~P
=15t 2~

for any t < T. Therefore,

nj—1 nj

Z Z sup  sup |wi(s + ¢ Ci—1(ji—1). Gi(ji))

(11 n;
i—17tg i 1_11_15<T ¢ 0<i’'<t

N\ 1/2
—wils, G (Gim). GGN[P) T = Kt
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Similarly, we also have that on the event &,

1 ,
(- D Eci[ sup sup [wis +¢.Ciot. Gij)
" s<T—¢ 0<¢'<¢
. 2 1/2
—wi(s. G GGN]) T = Krt,
1 nj—1

(-— X Eal swp sup fuils +¢.Cima(Gim). C)
Ri-1, 7=, s<T—{0={'<¢

1/2
—w; (s, Ci—1(ji-1), Ci)|2]) < Kr¢,

E[ sup sup |wi(S+§/,Ci—1,Ci)—wi(S,Ci—l,Ci)lz]l/zEKTZ,
s<T—-{0=<¢'<¢

|2 , . 12

(== swp sup |biGs+¢ Gl —biGs. GUMP) T < K,

ni ji=1S§T_§ 0=<¢'<¢

E[ sup sup [bi(s+¢.C) —l),<(s,C,-)|2]1/2 < Krt,
s<T—-{0=<{'<¢
nj

(5> sup sup (s + .Gt~ was. GO < K,

n
1Ty st ostr<t

E[sup sup |wi(s+ ¢, C1) —wis, C1)|2]1/2 < K7t
S<t 0<{/'<¢

Together with Lemma B.4, this fact gives us a bound on A} (¢, {). In particular, defin-
ing We(t) = W(t + ¢), we apply Lemma B.4 to the two MF parameter collections
W and W along with the new random variable C; that is drawn uniformly from the
set{C;(1),...,C;i(n;)}. Recalling the metric d; (W, We) in this lemma, the above fact
shows that d 7—¢ (W, W) < K7 on the event €. The lemma holds due to Fact 1 and
Fact 2. The conclusion of the lemma then reads

sup sup max(AY (1,0, A2(t.7))) < Kr(1 + B)dr—e (W, We) < Kr(1 + B)L,
t<T-to<t'<t !
almost surely on the event &.
By a similar argument, we have, almost surely on the event &,

sup  sup max(A¥(z,), Ab(1,¢)) < Kr(1 + B)¢L.
t<T-{ 0<{’'<t !

Indeed, one can repeat the argument by noticing that W can be viewed as a collection
of MF parameters whose neuronal ensemble (2w, Phew) = ]_[ZL 1 (i news Pinew)
takes the following specific form: Q; pew = {Ci(1),. .., Ci(n;)} and P; pey is a uniform
probability measure on £2; pey-.
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Step 3 — Claim 2. We show the claim by induction. Consider Fj:

Hi (e, jis W ()= Hi(x,G; (i): W) = |1 (1 (2, j1). %) =1 (wi(2,C1 (j1), x)]
= KDt(W’ W)

for J-almost every x by Assumption 2.5, and therefore
Fi(t) = KDy(W, W).

That is, P(Sfl) =1.
Now let us assume the claim for F;_; with i > 2 and consider the claim for F;.
We have the following decomposition:

H; (X, ji: W(t) — Hi(X, C;(ji); W(1))]
1 nj—1

P D it jimr, ji), bt ji) Hiea (X, jim; W (0)))

Ji—1=1
— By [ (w0, Cim, GG, it G Gi) Himt (X, Cima W) |
< 01,i(1) + 02, (1),

which gives

0 = (- Y B0+ 102:0)17)

=1
where we define
01,i(t) = — j'ril}%(ﬁ)i(l,ji—l,J'i),gi(l,ji%Hi—l(X, Ji—1: W (1))
_¢i(wi(lt,Ci—l(ji—l)’Ci(ji)),bi(tvci(ji))s Hi—1(X, Ci—1(ji-1); W(l)))‘,
02,1(1) = iil@(wi(nci_l(j,-_l),cxji)),bi(z,ci(ji»,

Hi_1(X, Ci—1(ji—1): W(1)))
—Ec;_, [¢i (wi (. Ci—1, Ci (ji)). bi (t. Ci (ji)). Hi—1(X, Ci—1: W(l‘)))]‘-

By Assumption 2.5 and Cauchy—Schwarz’s inequality, we obtain a bound on Q1 ;:

K izl
Ez[|Q1i (D) < — S (Ui i i)

i—1
Ji—1=1

+ wi (t, Cim1(i—1). GG + 1bi (¢, ji)|? + 1bi (¢, Ci (i) )
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nj—1
Y Ez[Hi (X, jioi; W(©) = Hi-1 (X, Ci1 (ji—1); W)
Ji—1=1
K nj—i
+o— D Wit ji1s i) — wi(t. Cima (jima). Ci (i)
i-1
Ji-1=1

+ K|bi(t, ji) — bi(t, C:(ji))|%,

X

ni—

and therefore, by Fact 1, under the events & },Ii_l and &,

n; / )
(X Y E210001) " < KrFia) + KDV D),
Pji=1

Let us bound Q> ;. For brevity, let us write
ZH(t i1, i) = ¢i(wilt. cim1,¢i). bi(t. ci), Hi—1(x, cim1; W(1))).
Recall that C;_1(j;—1) and C; (j;) are independent. We thus have
E(Z{ (1. Ci1Gi-0). Ci(G) | GG = B, [Z{ (1, it G (G-

Furthermore, {C;—1(ji—1)}j;_,e[n;_,] are ni—1-independent by Assumption 4.4. We
also have that for #-almost every x, almost surely,

1ZH (1. Cio1(jim1). Ci(Gi)| < Kr (14 B),
by Assumption 2.5 and Fact 2. Then, by Lemma C.1, noting that y; > Kn;_1,

ni—lViz)

P(E21024] = Kr(1+ Byn) = —-exp(~"2

By taking a union bound of the above probabilistic bound over j; € [r;], we thus have,
on the events 83_1 and &,

Fi(t) < Kr Fi—1(t) + KD;(W,W) + Kr(1 4+ B)y;

i-1
= K (DWW + 1+ B) Y yp).
j=1
with probability at least 1 — (n; /y;) exp(—n—1y{/Kr). We thus get

) ) 2 i—-1 ni 2
P €)= Pl 6) ~ Lew(-" ) 21 -3 exp(—E).
J j=1 J

which proves the claim.
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Step 4 — Claim 3. We show the claim by backward induction. The proof is similar to
Claim 2. Consider i = L. Notice that on the event SSL,

Ez[[§(X: W (@) = §(X; W@)[] < KFL(t) < KF(D(W, W) + (1 + B)Sp),
by Assumption 2.5. We thus get from Assumption 2.6 that on the events & {IL and &,

GL(1) < K(FL(1) + EZ[[§(X: W (1)) = $(X: W)
< KEPY D, (W, W) + (1 + B)8p).

Thatis, P(EM, N €2,:€) = P(EM,: 6).

Considering i = L — 1, by Assumption 2.6, we have

GL-1(1) < K(GP,(1) + G2, (1) + G2 (1) + G2, (1)),

in which
. 1 np—i
G20 = (= 2 1+ 1BLl . D + wr (. Coma (). DP
T jL—1=1

~ 1/2
+ bt DI + lbe 6, D) GL(),
GP (1) = (1 +EZ[|ANZ, W) + Ez[| A (Z, 1 W)

1 np—i 3 . . i
X (nL_l . Z |[wr (¢, jr—1,1) —wr(t,Cr—1(jr-1), 1)|

JjL—1=1

Flhe )~ b nP)”
1 & N
G20 = (o X Bz[(+IARZ @)+ 1AL (Z. 1 W)

T jL—1=1

X (14| (t, jr—1, DI+ wr(t, C—1(jr—1), D]+ b, D] +[br(t, 1)])

~ o\ 1/2
X [HL (X, 1 W (0) = H (X, W) )

S Ez[(+ ARZ W) + AR (Z 1 W)
JL—1=1

X (14 |Wr(, jr—1, D]+ |wr (¢, Coo1(jr—1), D|+1br(t, D] +|br(t, 1)])

- n1/2
X M1 (X j1: W () = H (X, Coma o) W)

{20 = (

nr—1

Due to Fact 1, on the event &,

GV (1) < KrGy(1).
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By Assumption 2.6, we have, for #-almost every z,
ARz, W) AL (2, W) < K.
Using this fact,
G2 (1) < KD(W, W).

The same fact also applies to Gl(f_)l, G£4_)1 and Gf_)l. In particular, we obtain for
Gfﬂl, on the event &,

np—i
G20 < K(—— Y (14182 jr1.D)
L=l jL—1=1
. ~ 2\ 1/2
+ [wr(t, Cooa(z-1). DI + bt D] + b ¢t D)) FL(0)

< K7 Fp(1),

where the last display follows from Fact 1. Similarly, by using Fact 2 and Fact 3, we
have on the event &,
G121 (6) < Kr(1+ B)FL1(0).

Hence, on the events 8,‘1, StA’L and &,
Gr-1(1) < Kr(GL(t) + De(W, W) + FL(1) + (1 + B) FL—1 (1))
< KEP2((1+ B)D, (W, W) + (1 + B»)5E).
In other words, P(Ef, N €/, _1:6) = P(EF,:6).

Next let us assume the claim for 7, and consider the claim fori — 1, for2 <i <
L — 1. For notational brevity, in the following, we let

ARG = ANZ, jis W), Hi(i) = Hi (X, ji: W(@)),
AF(ci) = AF(Z,ci; W(1)),  Hi(ci) = Hi(X,ci: W(1)).
‘We have

|A™ (ie1) = AE(Ciz1(i—1))

1 e . .
P Z ol (AR Gi), Wi (e, jimr, ji)s bi(t, ji), Hi (i), Hi—1 (im1))
fi=1

—Eg, [Ul-H_l(AlH(Ci),w,-(t,Ci_l(ji_l),Ci),bi(l,Ci),Hi(Ci),Hi—l(Ci—l(ji—l)))]’
< 03,i(1) + Q4,i (1),

which gives
ni—1

/
Gina) = (- 3 E2l103:(0 +1000I7)

T Jim1=1
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in which we define

03i(1) = — Zlo, V(ARG Wi, jimrs i) it i) Hi (i) Hizy (im1))
j—l

— oL (AP (Ci (o)) wit, Cimi (Gim1), Ci (i), bi (2, Ci (o)),
H'(C'(ji)) Hi—1(Ci—1(ji-1)))|.
Zo, V(AP (GG, wilt. Ca (im1). G (). bi(t. Ci (o).
j_l

H;(Ci(ji)). Hi—1(Ci—1(ji-1)))

—E¢,[of (AP (Ch),wi(t, Ci—1(ji-1), Ci), bi(t, Cy),
Hi(C). Hima (Gt Gim) ]|

Let us first bound Q3 ;. This is similar to the bounding of G_;. In particular, by

Assumption 2.6, we have

(- % Eal0n0R)” = KB + 020 + 000 + 050,

.111

04,i(t) =

in which
(1) 1 ni—1 1 n;
0000 = (=— 2 (= Do (Uit fimr ol + it Gt Gien). GG

i—1 . i .
Ji—1=1 Ji=1

y /
+ 1By (2, i) + 1bi (t. Ci G EZ[1ARGy) — A (CiUf))'])z)l g

1
o5l =(;— Z( 5220+ ARG + A7 GG
jizi=1 'ji=1 ) i
X (11 (¢, i1, Ji)=wi (1, it G-, CGaD| + 1Bi (e, j) =it CGiI) ) )
> (5 SO ES[(1 + ARG + AR (GG

Ji—1=1 .]l_l

(L4 |; (2, ji—1. ji)l +wi (8, Cimt Gim1)s Ci G|+ 1bi (2. ji) | +1bi (2, C: (i))])
/
x [Hy (i) H,'(ci(ji))u)z)1 "

ni—1

000 = (1 5 (L3 mala 4 1a%G)1 + GG
T im=t =1

X (L[ (t, ji—1, ji)l +|wi (¢, Cim1 Gii—1), G Gi)) |+ 1Bi (2, ji) | +1b: (2, Ci (Gi)])

/
x |Hi—1(Ji-1) — Hi—l(Ci—l(ji—l))|])2>l 2-

1
oty = (—

ni—
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To bound Q3 ;» we use Cauchy—Schwarz’s inequality and Fact 1 to obtain that, on the
event &,

nj—i nj

Do (L4 i, jimrs )|+ [wit, Cimr (i), CiGi)

Ji—1=1 ji=1

05) () < (

nij—1n;

B+ b GO 3 B288G) - A Gl
j_l
< KrG;(1).

By Cauchy-Schwarz’s inequality and Fact 1, we have the following bound on Q ;21)
on the event &:

1 n; /
080 < K(-- Y B2+ I8P + A7 GG
Li=1

ni—1 ni

X(nz 17 > Dol jimr i) = wie, CimaGim). GG P

Ji—1=1 ji=1

~ 2}
+ 1Bi e, i) = bi (1. G G P)
S KT®[(W7 I/’I«/)

Similarly, on the event &,
(@) 1 &
057(1) = Kr(1+B)— 3" Ez[(1+|AF () +]AF (€ (i)
—
x |H; (ji) — H'(C'(ji))|]

/
Y ke(4 B Y B+ 1ATGOR + 1A GUnR) R
]t_l
< Kr(L+ BYFi0).

where we use Fact 2 and Fact 3 in step (a), Cauchy—Schwarz’s inequality in step (b)
and Fact 1 in step (c). With the same argument, on the event &,

a 1 &
000 L ket B 3 (LS B+ 1aMG) + 1P
1— /

i—1=1 Jz—l

/
X |Hi—1(ji-1) — Hi—l(Ci—l(ji—l))”)z)l ’
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< Kr(1+ B) (- 30 B0+ ARG + 17 G GP)
=1
1 Ml 1/2
x — Y Ez[Hi1(jio) - Hi—l(Ci—l(ji—l))|2])

ni—1 .
=1

(©)
< Kr(1+ B)F;_1(1),

where again we use Fact 2 and Fact 3 in step (a), Cauchy—Schwarz’s inequality in step
(b) and Fact 1 in step (c). Therefore, on the events &, é”tA and EJEL,

N

nj—1

1 1/2
(”li—l ji;ZI Ez[| Q3. (f)|]2)
< Kr(Gi(t) + D.(W, W) + (1 + B)(Fi(1) + Fi—1(1)))
L—2
< KZE72((1+ BYD,W. W) + (L + B (88 + Y B))-
j=i

Next let us bound Q4 ;. For brevity, let us write
ZA(t cimr, ) = o (AF (ci), wi(t, ez, ), bi(t, ¢i), Hi(ci), Hi—1(ci—1)).
Recall that C;_1(j;—1) and C; (j;) are independent. We thus have
Ec,(inlZ{ (¢, Cim1(ji—1). Ci() | Cim1Gi-D] = Eq; [Z{ (¢, Cim1 Gi—1), Ci)].

Furthermore, {C;(ji)};,e[n,] are n;-independent by Assumption 4.4. We also have
that, almost surely,

|Z2 (@, Cim1Gi-1), Gi (i)
< KA+ |AFCG)DA + |wit, Cii (im1), Ci (i) + [bi (2, Ci (i)
< Kr(1+ B?),

by Assumption 2.6 and Fact 2. Then, by Lemma C.1, noting that 8;_; > Kun;,

nip7_, )

P(E2[04 ()] = Kr(1 + B)fimr) = 5 exp(~"12F

i—1

We thus have, by taking a union bound over j;_; € [r;_1], on the events &, StAi
and 61,

L-2
Gior(0) = KE2((1 4+ BYD, (W, W) + (1L + BY (88 + Y 85))

j=i—1
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with probability at least 1 — (n;—1/Bi—1) exp(—n; 7,/ Kr). We thus get

. B2
P(EM, NEA_,:6) > P(EM, NEL:6) - ;—‘1 exp(—%)
,_

L-2
n;
>PELE) - ﬂ—{exp(
J

j=i-1

nj+lﬁ,2)
Kr /°

which proves the claim.

Step 5 — Claim 4. We reuse the notations introduced in the previous step. For2 <i <
L, we have

|AX(Z, jis W (1)) — AX(Z. Ci(ji): W(2)))|

1 nj—1 B

o Z ol (AR Gi), wi (¢, jimr. ji). bi(t. ji). Hi(ji). Hi—1 (ji-1))
i =1

—Ec,_, [P (AF (Ci(ji)). wi(t, Ci—1, Ci (i), bi(t, Ci (ji)).
H(C;i(ji)). Hi—1(Ci—1))]

< 0s5,i(t) + Qs,i (1),

which gives, by Assumption 2.4,

n; /
DY) = K (o 32 B2l )]+ 10asl?)

Ji=1
in which we define
0s.i(t) = - — > ol (ARG Wi (2, i, ji)s bt ji) Hi (i), Himt Gi-1))
T jim=1
— P (AF(Ci(ji)) wilt, Cimi(im1), Ci (i), bi(t, Ci (i),
H;(Ci(ji). Hi—1(Ci—1(ji-1)))|
and
O6.i(t) = |- — > oP(AF(CiGi)) wie, CimiGimn). Ci (i) bi (2, Ci (i),
o=l

H;(Ci(ji)). Hi—1(Ci—1(ji-1)))
—Ec,_, [oP (AP (Ci(ji)), wi(t, Ci—1, Ci (ji). bi (¢, Ci (ji)).
H;i(Ci(ji)), Hi—1(Ci—1))]
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Similar to the bounding of D}’ (¢), we have, on the event &,
1 N 5
(o= Y E2005:0P) T = Kr(Fima(6) + Git) + De(W. W) + Fi(0)).
=1

To bound (g, for brevity, let us write
Zh(t,cimr,ci) = P (AT (), wit, ez, i) bi(t, i), Hi(ei), Hi—1(ci—1)).
Recall that C;_;(j;—1) and C; (j;) are independent. We thus have
Ec, ,GiplZ2(t, Cimi(jiz1), Ci (i) | Ci ()] = E¢,_, [Z2(t, Ci—1, Ci ()]

Furthermore, {C;—1(ji—1)}j;_,e[n;_,] are ni—1-independent by Assumption 4.4. We
also have that, almost surely,

|ZP (1. Cima(i1). G G| = KL+ [AF (G (i) < Kr(1 + B),
by Assumption 2.6 and Fact 2. Then, by Lemma C.1, and since y; > Kn;_1,

ni—l)/i2>

P(E2(0s:] = Kr(1 + By) = —exp( "

Notice that 82 > y;. We thus have, by taking a union bound over j; € [n;], on the
events &, 8tA1 and SIHL,

DY(t) < Kr((1 + B)YD,(W, W) + (1 + B?)5?),

with probability at least 1 — (n; /y;) exp(—ni—1y?/Kr). The claim then follows again
from the union bound. =

C.1.2. Proof of Proposition 4.15.

Proof of Proposition 4.15. We consider ¢ < T, for a given terminal time 7" € €Nxg.
We again reuse the notation K; from the proof of Proposition 4.14. Note that K; < K
for all t < T'. We also note that at initialization, Dy (W, W) = (. We start with a few
preliminary facts:

Fact I: moment bounds. We recall a useful fact from the proof of Proposition 4.14:
with probability at least 1 — K L, exp(—K nrln/ifz), the event & occurs, and & con-

tains the following:

IWlllo = 1w llo < K.

1 n; - 1/50
max (_ Z sup ess—sup|AlH(Z,ji;W(l))|50) ;

_ Wllr < Kr.
1<i<L \n; j,~=1t5T Z~P
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We further remark that since |||[W|||o < K, from Lemma C.3, we have on the event &:

nj

1 . 1/50
max (— 3 sup ess-sup| AF(Z, i W(le/e))™)  [IW]llirye < K.
ISisLANG £=4i<r z~p

We also observe that the randomness of the event & is entirely by the samples of the
coupling procedure {C1(j1),...,Cr(jr) : ji € [ni]. i =1,...,L}.

Fact 2: maximal bounds. We also recall another useful fact from the proof of Propo-
sition 4.14: on the event &, almost surely,
max max sup|w; (¢, ji—1, ji)| < Kr(1 + B),
2<i<L ji_1€[n;1l,ji€lni] ¢<T
max max_sup|b; (7, ji)| < Kr(1 + B).
2§i§L j,-e[ni] IST
In fact, the same extends to W: on the event &, almost surely,
max max sup|w; ([?/€], ji-1., ji)| < Kr(1 + B),
2<i<L ji_y€lnj—1l.ji€lnil ¢1<T

max  max sup|b;(|z/€]. ji)| < Kr (1 + B),

2<i<L j,~e[n,~] t<T

max max_sup ess-sup|AN(Z, ji;W(|t/€]))| < Kr(1 + B).
1<i<L ji€[n;] +<T z~P

Indeed, let us consider the claim for w;. By Assumption 2.6, for #-almost every z,

sup  max ]|AZ(Z,jL_1, 1;W([t/e]))| < K(1+SUI(;|AE(Z, 1;W(Lt/ej))|) <K,

10 jL—1€nL—1
which implies, by Assumption 2.4, that almost surely, for any j;—; € [np—1],

sup|wz ([t/€], jL—1, D] < ess-sup|wp (Co—1, )| + KT < Kr(1 + B).

t<T
Next assuming that sup,_7 [w;([Z/€], ji—1, ji)| < Kr(1 + B) almost surely for a
given i > 2, by Assumption 2.6, we have on the event &, for any j;_1 € [n;—1],t <T
and J-almost every z:

|AL (2, i1 W2 /€])]

K .
< — ) (1 + supess-sup| AT(Z. ji: W([1/e]))])
ni ji=1 t<T Z~&P

x (14 [wi(t/€], jim1, ji)| + Ibi(L2 /€], ji)])
< K57 (14 sup esssupl AB(Z. i W(lt /e ) (Kr (14 B+ i (L1 ). o))

n; ‘ < ~P
l]i=1 t<T Z~F
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nj

1 H .. 2 12
< k(14 (5 X swesssuplalz s Wil/e)?) )
Ji=1"=

1 & . 1/2
x (Kr(1+B)+ (- Yo Ib(le/el o) )
-
= Kr(1+ B),
where the last step follows from Fact 1. Again by Assumption 2.6, we then obtain
A (2 jim1 jis W2 /)] = Kr (1 + B),
which implies, by Assumption 2.4, that almost surely on the event &, for any j;_; €
[ni—1] and ji € [n;],
sup|w;(|t/€], ji—1, ji)| < ess-sup|lw?_(Ci—1,Ci)| + Kr(1+ B)T

t<T
< Kr(1 + B).

This proves the claim for w;, and the rest of the claims are similarly proven.

Now let us consider 2 < i < L and particularly the task of bounding

nj—1 nj

/
(n,-_lln,- > Z|wi(|_t/€J’ji—lsji)_wi([’ji—lsji)lz)l21

Ji—1=1 ji=1

which is a quantity in D7 (W, W). As shown in the proof of Proposition 4.14,
sup sup max(AY (r.8). A7(1.8) < Kr(1 + B)¢
1

t<T—-¢ 0<{'<¢

almost surely, where we recall

n; n;
i—1 i 2

AP0 = (

Bt + € i)~ i i )P)
Jz 1=1ji=1

As such, by Assumption 2.4, we have the decomposition

ni—1 ni

(e X S wllefel i = im0 P)

jl 1=1 j;=1
ni—1 nj lz/e]—1
(¥ 2 Z EY (kAT (2 (K). ji-1. ji: W(K))
i1t Ji—1=1 ji=1

—/t 311f)i(S1ji—1,ji)dS‘ )1/2

=0
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ni—1 M lz/e]—1

(n i 2 Z‘ > g ke)AY (k). jimr. ji: W(K))

Ji—1=1 ji=1 k=0

[t/e]—1 1/2
—e Y diitke i )| ) +iKr(1+ Be
k=0
ni—1 ni
<K(—— 3 S 10iW/e) i D 102t /e imr i)
Ri-1Mi Ji—1=1 ji=1

+tK7(1 + B)e,
where we define

Oui(lt/el, ji-1.Ji)
[t/e]—1 _
=€ Z Ez[|AT(Z, ji-1. ji: W(k)) = AY(Z, ji-1, Ji: W(ke))l],
k=0
Qa2,i(lt/e], ji-1.Ji)
[t/e]—1
=|e Y E®ATC®R). jimr. ji W) ~EZIAY(Z. jior. ji WD
k=0
(Here Z}ffoj_l = 0if |¢/€] = 0.) The task is then to bound Q1 ; and Q> ;.

Bounding Q1,;. We take note of a simple identity:
Lt/el—1

|J|Z( Z fGk)

jeJ
|_t/eJ 1|_t/eJ 1

e > Z qu k1) f(j.k2)

k1=0 k=0 jEJ
lt/e]—11[t/e]-1

Y Y (G2 rGkrR) (g S irGkr)

k1=0 k=0 jeJ jeJ
[z/e]—1

= X (rzimon)T)

As such, by Assumption 2.6,

1 ni—1 ng
( 3 Y100/l jimr i)l )
S
[t/e]—1 l£/€e]—1

<e ) Dik)=Ke Y (D) + Gi(k) + Dpe(W. W) + F; (k).
k=0 k=0
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in which we define
nji— ni

Z Zess sup|AY(Z, ji—1, jis W(k))

jioi=1j=1 #~%

Di(k) = (

ni—1n;

N . o N\ 1/2
—A~(Z,Ji—1,1i;W(k6))|) ,

D) = (5 > esssup(l + [AF(Z,jis W (k) + |AT(Z. jis WD)
Pji=1 47

ni—1

1/2
> ess-sup[H—y (X, ji—1; W (ke) =B (X, ji-1: W) ) .
j, =1 7

1

ni—

X

Gitk) = (- Zeszs suplAlZ. s W ke - ANCZ. jis W)
s

R = (- Zeszs SuplHL (X, j: W (ke) ~ By(X. ji Wik)?)
~P

By Lemma C.3 and Fact 1, on the event &,
DM (k) < K Fi—y (k).

which implies
1 ni—1 R
101i(l1/€]l, ji-1. Ji)
(’li—lni ji21;1 112—:1 )
lt/el-1
<Kre Y (Fim1(k) + Gi(k) + Dc(W, W) + Fi(k)).
k=0

We proceed with bounding F; and G;.
To bound F;, by Assumption 2.5 and Cauchy—Schwarz’s inequality,
ni—1 ni

|F; (k)2 = vi(ke, ji—1, ji)|* + Iwi(k, ji-1, ji)|?

]z 1=1 ]z—l
+ Ibi(ke,fi)l2 + |bi (k. j)I?) | Fi—1(k)|> + KDi (W, W)
< Kr|Fie1 () + KDi (W, W),

where the last display holds on the event & by Fact 1. Notice that, by Assumption 2.5,
|Fi(k)| < KDge(W, W). Therefore, on the event &,

max |F; (k)| < K7 Drc(W, W),
1<i<L

which is the desired bound for F;.
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Next let us bound G;. By Assumption 2.6, we have:
Gi—1(k) < K(G (k) + GP (k) + GP (k) + G (K)),

in which
ni—1

G (k) = ( 3 ( Z L+ [ (ke o jo)l + Wik jizt. i)l

Ji—1=1

+ |bi(k€’ ]l)' + |bl(k’ ]l)')

- o - _ 2\1/2
x ess-sup [AR(Z, ji: W (ke) — ARZ. jis W) )
Z~P
=

6= (- Y (- 3" esssup(1 -+ |A(Z, i W (k)

1—1] =1 lj—l Z~P
+1AZ. i W(K))))
X (01 (e, ji-1, ji)—Wi k. i1, ji)| + 1Bi(ke. j) =ik jD)) )

nj—1

> (5 Zess sup (1 + [A(Z, ji: W (ke))|

jim=1 =1 2P
+|A3(Z, Ji§W(k))|)
x (14+|w; (ke, ji—1, ji)|+ Wik, ji—1, ji)|+1bi(ke, ji)|+bi(k, ji)])

1

ni—1

6%,k = (

. 2\1/2
x ess-sup|H; (X, ji; W(ke)) — H; (X, ji§W(k))|) ) ;

Z~P
R |
G (k) :( — Y ( Zess sup(1 + |AR(Z, ji: W (ke))|
nj—1 i =1 nij — Z~P

+ 1A}z, ji;W(k))l)
x (14+|w; (ke, ji—1, ji)|+ Wik, ji—1, ji)|+1bi(ke, ji)|+bi(k, ji)])

. . . 201/2
x ess-sup|H; _1 (X, ji—1; W(ke)) — H;_1 (X, ]i—1;W(k))|> ) :
Z~P

To bound Gi(i)l, by Cauchy—Schwarz’s inequality and Fact 1, on the event &,

ni—1 ni

0D (11w (ke i)l +Iwi k. jio1. ji) |+ 1B (ke i)

Ji— l_llt_1

G(l)l (k) < (

nj—1n;

+ bk o))’ Zes; upl AM(Z. ji: W (ke)) ~ AF(Z. ji: W(k))?)
Lii=1 2P

< KrG;(k).
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‘We also have a bound on G( , on the event &:

G2\ (k) < K( 5" esssup(1+[A(Z. i W (ke -+ B (2. jwiR)'

o z~?

ni—1 n

1 g . . . .
X(n — > ) lbitke,jimr. i) = Wik, jior Ji)l?
i—11;

Ji—1=1ji=1
o 212
+ |b;i(ke, ji) —bi(k, ji)| )
= KTDke(W’ W)

Similarly, by Fact 1 and Fact 2, on the event &,

G2 (k)
< KT(1+B)— 26?~Syp(l+|AH(Z JiW (ke)|+[ANZ. ji:W(K))])
i
x esZs—s;)lp|H,~ (X, ji; W(ke)) — H; (X, ji; W(k))|
< Kr(1 +B)

< (o > esssup(1+[AMZ. i (ke 2 +183(Z. jiwion ) Fi)

Lji=1 2%
< Kr(1+ B)F;(k),
G(4)1 (k)

< KT<1+B)i S essesup(1-H[AR(Z, jis ¥ (ke ) HAM(Z, ji: WD Fr8)
i) Z~P

< Kr(1 + B)Fi-1(k).
Therefore, on the event &,
Gi—1(k) = K7(Gi(k) + De(W. W) + (1 + B)(F; (k) + Fi—1(k)))
< Kr(Gi(k) + (1 + B)Dre(W. W)).
Notice that, by Assumption 2.6,
Gr(k) < KFL(k) < KrDe(W, W).
Therefore, on the event &,

max [Gi (k)| = K7 (1 + B)Dye(W, W),
==

which is the desired bound for G;.
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Together these bounds yield
nj—1 nj
max, (- PP ILNUERS i)’
Ji—1=1 ji=1
lt/e]—1
<eKr(l1+B) Y Drc(W.W).
k=0

Bounding Q, ;. For brevity, let us write

Zk = k) (AT (K), jimt. jis W) = EZ[AY(Z, ji—1, ji: WK))]),
k—1
Zi=Y Zi. Zo=0.
=0
Let % be the sigma-algebra generated by {z(s) : s € {0, ...,k — 1}}. Recall that it is
independent of the samples {C1(j1),...,CL(jL) : ji €[ni],i =1,..., L} and hence
the event &. Note that {Z }r <N is a martingale adapted to {F} }xen. Furthermore, for
k < T/e, the martingale difference is bounded:
|Zk| < K ess-sup|A](Z, ji—1, ji; W(k))|
Z~P
< K(1 + ess-sup|A}(Z, ji; W(k))|) < K7(1 + B),
Z~P
which holds on the event &, by Assumptions 2.4 and 2.6 and Fact 2. Therefore, by
Theorem A.1, we have
2

KTTG)'

P (. jim1, i) = (1+ B)G: €) < 2exp(-
(ue<of?f‘.’fr/e} Q2,i(u. ji-1.ji) = (1 + B){: €) < 2exp
Putting it all together. Applying the union bound to the bound on Q5 ;, we then get
that on the event &, with probability at least 1 — 2n;n;_; exp(—¢2 /(K7 Te€)), for all
t <T,

ni—1 n

sup [,](”l n; Z lez |s/€l, ji—1, Ji)—wi(s, ji— 1,Jl)|)

s<t,ji—1€[ni—1l.ji € Jic1=1j;=1
lt/e]—1

< Kr(L+B)(e Y Die(W. W)+ +e).
k=0

One can obtain similar bounds for b; and w;. Together these bounds yield that with
probability at least

L
;2
1— 2(?11 + an‘ni_l) CXp(— KTTG) - Kanax exp(_Knrln/ijz)’
=2
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we have, forallt < T,

lt/e]—1
DigjeseW. W) = Kr(1+ B)(e Y. Dee(W. W)+ +e),
k=0

which implies, by Gronwall’s lemma,

Dr (W, W) < (¢ + €)exp(K7 (1 + B)).

Choosing ¢ = \/KTe log(2(n + ZiLzz nini—1)/8) completes the proof. ]
C.1.3. Proof of Proposition 4.16.

Proof of Proposition 4.16. We again reuse the notation K; from the proof of Proposi-
tion 4.14. Note that K; < Kg forall ¢ < T'. Itis easy to see from Theorem 3.1 that the
trajectory W (¢) exists and is unique. Let us recall the mapping F and the space Wr
from the proof Theorem 3.1; we note that F is associated with the initialization W (0).
Since F(W)(t) — W(0) = W(t) — W(0) and W is a fixed point of F, we have

W =Wl < IW—=Wlo+ W —-FW)l:
=W =Wlo+ |F(W) = F(W)];.

Due to truncation, it is immediate that for2 <i < L,

[w1(0,c)| = [w1(0, 1),
|lwi (0, ¢ci—1,¢i)| < |w; (0, ci—1,ci)l,
[6i (0, c;)| < |bi(0,ci)l.

As such, by repeating the argument of Lemma 3.2, one can show that W € Wr and
that
P (max2(W) > Ko(T)u) < 2Le'~K1**  forallu > 0.

Thus, Lemma 3.4 gives
t
1) = FOD) e < Kr (4 B) [ 1W = Wil ds + e 55),
0
which implies, by the previous bound,

t
W =Wl < K ((+B) [ W = Wleds + e 55) [ = W,
0

Hence, Gronwall’s lemma yields

_ 2
W —Wlr < (W —Wlo+ e KB Kr(+8),
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Notice that, for2 <i < L,

E[lw(Ci—1.Ci) — wi (0, Ci—1, Ci)|?]
= E[|w?(Ci—1.G) — BP I(|w} (Ci—1.Ci)| > B)]
< E[Jw] (Ci1. )P I(Jw; (Ci-1. Ci)| > B)]
< E[lw(Ci—1. G2 P(1wf(Cim1. C)| > B)'/? < Ke KB,
where the last displays comes from Assumption 4.6 and, in particular, we have [37]
P(|w?(C,~_1, o= r) < Ke K™ forall r > 0.

Similarly,
E[IbY(C;) — bi(0.C) ] < Ke X5,
Also recall that w1 (0, ¢1) = w?(c1). As such, a similar bound holds for [|[W — W o

and this gives the desired bound on ||W — W ||t.

The derivation for |W — W/||r is similar. Indeed, Lemma C.2 indicates that for

_Kr2 1/52
" thin

any fixed r > 0, with probability at least 1 — K Ln.x exp(—Ke ), we have

¢ _ 2
IWllo < [IW o +e~*" < K,

as well as that forall i € {2,...,L},

nj—1 nj

Z Z |w (Cl 1(]1 1) C(]l))| > I")

Ji—1=1ji=1

nj—1n;

< P([wd(Cim1. C)| = r) + e K7 < Ke K7,

— Z (162(Ci (il = 1) < P(2(C)| = 1) + e K < Ke K,
]z_l
By taking r = B and performing an argument similar to the bounding of | W — W ||,
we obtain

. L - o
W =Wl < (W — W|lo + e KB*)Kr(U+B) < go~KB>+Kr(1+B)

32 1/52

mm

with probability at least 1 — K Lnp,, exp(—Ke™ ). The derivation for |W —

W||7 is also similar. [

C.2. Proofs of Corollaries 4.9, 4.10 and 4.11

Lemma C.4. Consider the MF trajectory W(t), t < T, under Assumptions 2.4-2.6
and 4.6. Forany { > 0, [|[W — W |7 < Kr4¢{, where We(t) = W(t + §) and Kr1¢
is a finite constant that depends on the initialization W(0) and grows continuously
with (.
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Proof. We reuse the notation K; from the proof of Proposition 4.14. By Assump-
tion 2.6 and Lemma C.3, for2 <i < L,

E[ sup Ez[|AP(1,Z,Ci—1, C)*]] < K(1 +E[ sup Ez[|af(,Z,C)IA])
t<T+¢ t<T+¢
< Kry4¢,

and therefore, by Assumption 2.4,

E[ sup|wi(r + ¢ Ci—1. C;) — wi(t. Cimy. C)P)'? < Kroyet.
t<T

One can also deduce a similar bound for b; and w;. [

Proof of Corollary 4.9. We reuse the notation K; from the proof of Proposition 4.14.
We have the following decomposition for i € [L]:

L Ely (Hi(le/e). X, )] — BB ¥ (Hi (r. X, Co)|
ti=1
< = 3[Ry W (le/e). X, )] ~ Bzl (i1t X, G G|
=1

+

1 &

- Z Ez[y(H;i(t/ele, X, Ci(ji)] —EzEc, [¥ (H([t/€]e, X, Ci))]‘
Lji=1

+ EzEc [l¥ (Hi(lt/e]e, X, Ci)) — Y (Hi(t, X, Cy))]

n; /
< K(ni Y Ez[[Hi(lt/e]. X, ji) — Hi([t/e]e. X, CiUi))'z])l 2

Ji=1

3 Bl (Hile/ele, X, iG] ~ BzEc [y (Hi(L1/ele. X, Ci)

Ji=1
+ KEzEc, [|Hi([t/ele, X, Ci) — Hi (1, X, C)]
= 01,i(1) + 02,(t) + 03, (1),

where we use the fact i is K-Lipschitz and Cauchy—Schwarz’s inequality. We provide
bounds on each term. Note that by the fact y is K-Lipschitz and Assumption 2.5:

Ez[y (Y.y(lt/e]. X)) = Ez[¥ (Y, (. X))
< KEz[HL([t/€], X, 1) = HL(t, X, D],

and as such, bounding Q7. gives the last claim in the corollary.
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Bounding Q1,;. By Assumption 2.5 and Cauchy—Schwarz’s inequality, for i > 2,

101 (1)
K ni—1
S Z Z L+ |wi(lt/€], ji- 1’]1)|2+|w1(t Ci—1(ji-1), C(]l))|2
T Ji—1=1 ji=1

+ |bi(|_t/EJsJi)|2 + 1bi (t, C; i) ?)|Q1,i—1 (1) > + KDZ(W, W)

K nji—1 R
S D7D (A [wit, Cimi Gim): GG + [bi e, Ci (i) P
1— 12

Ji—1=1 ji=1
+ DI W, W))|Qri—1()> + KDF (W, W)

< Kr (1 + DAW, W) Q1m0 + KDXW, W)
< Kr(1+ DWW, W))[Q1,-1()|*,

where, by Lemmas C.2 and C.3, (a) holds for all + < T and all i > 2 with prob-
ability at least 1 — K L7y, exp(—Knil/i:z). Also, from Assumption 2.5, Q1,1(¢) <
KD, (W, W). We thus have

max sup 01,,(1) < Kr(1 + DE(W, W))Dr (W, W),

i€[L] s<T
with probability at least 1 — K Lny,, exp(—K nrln/irslz).
Bounding Q> ;. Recall that {C;(j;)};, e[s;] are n;-independent and n; < n;, ~12 Since

Y is K-bounded, we have, by Theorem A.2 and the union bound, that

K KT
sup Q2 (1) < 1/ — 10g(—)
t<T n; €d

with probability at least 1 — §.

Bounding Q3 ;. By Assumption 2.5 and Lemma C.3, forallt < T andi > 2,

103 (D) < KE[1 + |wi(t,Ci—1, C)> + |bi (1. C))?
+ |wi([t/€le, Ci—1. Ci)* + |bi (11 /e]e, C)I]| Q3,i—1 (1) ?
+ KE[|w; (1, Ci—1, Ci) —wi([t/€]e, Cimy, C)?
+ |bi (1, C;) — bi([t/e]e. Ci)?]
< Kr|03i-1(0) + KE[|wi (1, Ci—1, Ci) —w; (|t /€€, Ci—1, Ci)|?
+1bi (. Ci) — bi([t/e]e, Ci)I].

Similarly,
103.1(0)* < KE[Jwi (1, Cy) — wi([1/€]e. C1)I?].
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We thus obtain, from Lemma C .4,

max sup Q3 ;(t) < Kre.
i€[L] s<T

Putting it all together. All previous bounds show that

Z Ez[W (Hi(l1/€]. X. ji)] - EzEc, [ (Hi(t. X. )|

t<T
KT
< Kr(1+ DEW.W)Dr(W. W) + [ log(g) + Kre,
1

1/52
min

with probability at least 1 — § — K Lny.x exp(—Kn_:°7). Together with Theorem 4.7,
we obtain the claim. ]

Proof of Corollary 4.10. In the following, for a set J = {Ny,..., N} with N, = 1,

we write J — oo to mean that Ny, ..., N._1 — oo such that for Np,x = max J
and Nyin = min{Ny,..., Np_1}, we have Ny, — oo and N log Niyax — 0 for any
c>0.

For a given T > 0 and a set of integers I = {ny,...,ny}, for any two sets W)

and W® of the form
WO = L@, ), w @, i, ), bV @) € [ili € (L)1 € [0, T,
and similar for W, let us equip a distance metric:

d[,T(rW(l)’ W(Z)) — max( llllia<XL dlu,)if (W(l), 'W(Z))’ 212,322 dia}(”w(l)’ W(Z))),

n

1 — 1/2
d}‘j’Tl('W(l), W) = (— Z sup|w1 )(t ry) — gz)(t,r1)|2) ,

2 r = lt<T
) 1 nj—1 nj ) @ 1/2
4w w®) = ( D 2 suphw(tricnr) —wi 0oy Lrl?)
1.T ni_1n; r1_1=1rl~=1t§ =10 i—1,74

. 1/2
Py (WO, W) = ( Z suplbV (¢, 1) = bP @ r)P) . 2=i <L,

=1!=T

Let us also consider the space ¥7, 7 of 1-bounded Lipschitz functions f* with respect
to this distance metric:

|F(WD) — F(W)| <2 A dp (WD, WD),

Step I: Coupling via finite-width networks. Recall that (Q, P, {w?};e[r]. {b?}2<i<L)
satisfies Assumption 4.4, i.e., -independence. Thus, for each index J ={Ny,...,Nr}
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of Init, one can find a sampling rule for which the samples {C;(j;)};;e[n,] are n;-
independent fori < L — 1 and n; — 0 as N; — oo. Then one obtains a neural network
initialization W(0) with law p by setting

w1(0, j1) = w1(0,C1(j1)),  Wi(0, ji—1, ji) = wi (0, Ci—1(ji-1). Ci (ji)).
b; (0, ji) = ;i (0,C;(j;)), 2<i =<L.

Similarly using ($2, P, {02} ier), {13?}251‘5L), we obtain W(0) with the same law p
by setting

W10, j1) = 01(0,Cr(j1)), Wi (0, ji—1, ji) = Wi (0, Ci—1(ji—1), Ci (ji)),
b; (0, ji) = b; (0, C;(ji)), 2<i<L,

where {C; (ji)} j;e[n;] are n;-independent for i < L — 1. We consider the evolution
W(¢) starting from W(0) (which is independent of W once W(0) is fixed). Note that
W(t) is a deterministic function of its initialization W(0) and the data {z(s)}s<;.
Similarly, we consider the counterpart for W: the evolution W(t) as a function of the
initialization W(O) and the data {Z(s)}s<;. Due to sharing the same distribution for
both the initialization and the data, these evolutions have the same law. In other words,
for any 6 > 0,

inf  P(W-W|r=6)=0,
coupling of (W,W)

in which
W~ Wiz
(e Ztsgl;lwl(u/q i —walesel. ne)".
=1
1 Ni—1 N;
o (e 2 2 suplwallfel imre i = Wulle/e) - wiP) "
Ji—1=1Jji=

1 N; . . 2 1/2
max (ﬁtlg tSl§1£|bi(U/€J7]i)—bi(U/d’]iN ) )

2<i<L

Theorem 4.7 implies that, following the coupling procedure, for any § > 0, with prob-
ability atleast 1 — 8 —oy.L.,

Dr(W,W) < 0¢,y:5.T,L>

where here and in the following, we denote by 0,7 and o¢ .5, 7,1 appropriate quanti-
ties that may change from line to line with 07,1 — 0 and o¢ .5, 7,1 — 0O as the learning
rate € — 0 and J — oo. Here without loss of generality, we assume o¢ .57, > 0.
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We also have a similar result for DT(W, W). As such,

inf  P(dyr(Wsr.Wir) = 06,7:5,T,L)
coupling of (W, W)

<P(Dr(W,W) > oc ss.1.L) + P(Dr(W,W) > oc ys.7.1)

+ inf — P(|W—-WIr = 0cs:51.L)
coupling of (W, W)

<25+ 207.L,
where we define
Wi = {wi(t, C1(j1), wi (t. Ci—1 (ji—1). Ci (ji)). bi (¢, Ci (i) :
Ji € [Nil,i € [L],1 € [0,T]},
Wy = {1, C1(j1)), i (¢, Cim1(i1), Ci (i), bi (¢, Ci (i) -
Ji € [Ni],i € [L],t € [0,T]}.
This gives a sense of approximate closeness between W and W onasetJ = {N1,...,

N} with sufficiently large size N;, importantly under the assumption of 7-indepen-
dence. To extend this to arbitrary finite sizes, we perform the following argument.

Step 2: Extension to finite sizes. For a given fixed set [ = {ny,...,nr} withny =1,
let us consider the following sub-sampling procedure: for each i € [L] and each r; €
[1;], we independently sample V;(r;) uniformly from [N;], and then set S;(r;) =
C; (Vi (ri)) and S; (r;) = Ci (V;(r;)). Let us define

Wrr = {wi(t, S1(r1)), wi(t, Si—1(ri=1), Si(ri)). bi (¢, Si (ri)) :
ri € [nil.i € [L],t €[0,T]},

and "WI,T similarly. We prove that Law('W; 7) and Law(Wl,T) are close in an appro-

priate sense. This shall be done via a connection with dy 7 (W r, W 7,7)ontheset J.
Let Ey denote the expectation with respect to the sub-sampling procedure only

(i.e., with respect to the randomness of {V;(r;) : r; € [n;], i € [L]}). Notice that

Evlld} s (Wi Wi Pl = d )y (Wy.r. W)l
Ev{ldy 3 (Wer. Wi = |y (Wrr. Wi,
Using this fact and Markov’s inequality, for any 6 > 0,
P(d} ' (Wrr. Wir) = 0)
<P} (Wyr. Wrr) = 6%)
+E[Ey[I(d}F (Wit Wir) = O 1A} 3(Wor. Wor) < 67)]
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<P@}H(Wrr. Wrr) = 62)
+ 0 2E[Ey [|d}'; (Wr.r. Wr.r) PV 1d Y 3 (Wor. Wir) < 6)]
<P} (Wrr. Wor) = 6) + 62,

The bound on dj r(Wy.T, W]’T) gives

inf P(d}lj;(WJ,T, Wrr) > Oc.75.1,0(1) <28 +20y.1.
coupling of (W, W)

Then, by taking 6 = . /o¢ j.s.7.L, We have

inf  P(d’y (Wrr, Wir) > JoessrL) < erL(,€J),
coupling of (W, W)

er,.(8,€,J) =28+ 20,1 + 0c y5.T.L-

A similar fact holds for dlb’;, and therefore by the union bound,

inf P(dr,r (Wi, Wrr) > Voers.rL(€, J)) <2Ler,L(8,¢€,J).

coupling of ('W,'W)

In particular, this implies, for any f € ¥7.1,

[ELf(Wr,r)] — E[f(Wr,r)l| < 4Ler,1.(8,€,J) + Joecss.1.L-

This describes closeness between Law('Wy r) and Law('WI,T). Note that this is not
sufficient to conclude the proof (via taking € — 0, J — 0o, § — 0): the left-hand side
involves the random variables C; (V;(r;)), which firstly does not remove 7-indepen-
dence and secondly is not independent of J since V;(r;) € [N;].

Step 3: Removing n-independence. Let {U;(j;)};;e[n,;] be drawn i.i.d. from P;, inde-
pendently for each i € [L], as in the statement of the corollary. First we recall that
{Ci(ji)}j;e[n; are n;-independent for i < L — 1 with n; — 0 as N; — oo. We also
note Ny, =nz = 1 and hence U (1) = Cr(1). As such, for any 1-bounded function g,

|E~v[g(Si(ri):ri €[nil.i € [LD] —Evy[gUi(Vi(ri)) :ri € [ni].i € [LD]]| o011

where o.r 1 is a deterministic quantity such that oy.7 ; — 0as J — oo and E.yp
denotes the expectation with respect to everything excluding the sub-sampling proce-
dure. Indeed, suppose that {V;(1),...,V;(n1)} is a permutation of {V; (1),...,Vi(n1)}
such that V(1) > --- > V;(n1). Using the 7-independence property, we have the fol-
lowing for [&1| < n1:

E-v[g(Si(ri) : ri € [n;].i € [L])]
=EvE_c,,anEc, @ api~ci @ apl&(C1(V1(r). Ci(Vi(ri)) -

ry € [n].ri € [ni] fori > 2)]
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= E~VENC1 WV (1))IEU1 (V1 (1)) [g(Ul (171 1), (‘71 (r1)), Ci(Vi(ri)) :
r1 € [n1]\ {1}, r; € [n;] fori > 2)] + {1,
where conditioning on the sub-sampling, E_c, (7, (1)) is the expectation with respect
to everything excluding C1 (V1(1)), and E¢ (%, (1))~c, (# (1)) 1S the expectation with
respect to C1(V1(1)) conditioning on everything else. (Here we have assumed that
Vi(1),...,Vi(ny) are all distinct, since any repeated elements can be removed without

affecting the argument.) By iterating this decomposition, we obtain the claim.
On the other hand, since {U; (j;)};, [n;] are i.i.d., it is easy to see that

E[g(Ui (Vi(ri)) 1 ri € [ni].1 € [L])] = E[g(Ui(ri) : ri € [n;].i € [L])].
Together with the result from the previous step, we thus have, for any f € ¥7.r,
[ELf (WA TH] = ELf (WU, T)]| <2051 +8Ler,L (B €.J) + 2o 511
where we recall
WU, T) = {wi(t. Uy (j1)). wi (¢, Ui—1(ji—1). Ui (ji)). bi (2. Ui (ji)) :
Ji € Inil,i € [L],t € [0, T1},

and similarly for W(I , T). Note that the left-hand side is completely independent
of J, € and §. So, by taking ¢ — 0, J — 00, § — 0, we have

E[f(W(I,T)] = E[f(W(I. T))],
which completes the proof. ]
Proof of Corollary 4.11. For any test function ¥: W; x W, — R that is bounded with
bounded gradient, we have

% / Y (ur, uz) dp; (U, uz)

= % Ec, [ (w1(z, C1), wa(t, Cy, 1))]

= —Ec, [(Viv(wi(r, C1), wa(r, C1, 1)), §7 (1) EZ[AY (2, Z, C)])]
—Ec, [(Vay (w1 (2, C1). wa(t, C1. 1)),y (1) EZ[AY (¢, Z. C1, 1)])]

D _Ec, [[Viv (wi(t, C1)o wat, Co 1) EF () EZ[AY ey uzi Z, po)])]
—Ec, [(V2¥ (w1 (2, ) wa(t, C1. 1), & (1) Ez[AY (w1, u2: Z. p1)])]
== (991020, Gl 21 1) ),

where step (a) can be checked easily by inspection. This shows that p; satisfies the
claimed distributional partial differential equation. The rest of the claims follow in a
similar vein to the proof of Corollary 4.9. |
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D. Remaining details for Section 5
D.1. Infinite-M limit of the canonical MF limit under i.i.d. initializations

We give the full description of the infinite-M limit W* of the canonical MF limit,
described in Section 5.1.2. To that end, let us first consider depth L > 5. Let {wl.* iL=1
and {b} }I.L:2 be functions satisfying the following dynamics:

iwf(t, up) = =&Y (OEZ[AY*(t, Z, uy)],

ot
I
sz([9ul’u2sv2) = _i‘-;v(t)]EZ[Ag]*(t, Z, Ui, U2, U2)],
- W .
Ewi (t’ uiyvi—lyvi) = _gl (t)EZ[A:U (tvzaui7vi—lvvi)]a

i=3,....L-2,
d
ng_l([,uL—lyuL,UL—L vi—1)=—€_1(OEZ[AY* (1. Z up—1,up,vp—2,v1-1)].

0
5 wy (t,up,vp—1) = —&f OEZ[AL*(t, Z, up, vi—1)].

0
o bi (o) = =8 OEZ[A7" (1, 2)],
i=2,...,.L—2,

0

5192—1([71% vi—1) = —Ep_ (DEZ[AY* [ (t, Z, up)),

%bi(r) = —§1(DEZ[A}* (1. 2)).
for all u; € supp(py,) fori =1,..., L,
for all v; € supp(p{,) fori =2,...,L —1,
with the initialization wi (0, u1) = uy, w3(0,-, u2,+) = uz, w7 (0, u;,-,-) = u; for
i=3,...,L-2w;_;O0,ur—1,-,-,") =ur_1, wy(O,ur,-) =ur, b} (0,v;) = v;
fori =2,...,L—2,b;_,(0,-,vp—1) = v 1 and b; (0) a deterministic constant that

p{; (b7 (0)) = 1 (i.e., b} (0) = pr(1) according to equation (5.5)). Here the quantities
are defined by the following forward and backward recursions.

Forward recursion:

H(t,x,uy) = ¢p1(wi(t,uy),x),

H3 (tx,02) = [ 201102, 02). 030, v2), BT @)l o),
H(t,x,v;)

= /¢i(w;k(t,ui,vi—1,Ui),b;k(t,vi)’Hi*_l(t,x,Ui—l))PfN(dui)p{)_l(dvi—l),
i=3,...,L—2,
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HZ—](t5 xa uL’ UL—I)
= /¢L—1(wz_1(tv uL—la ML, vL—Z’ vL—l)a bz_l(tv ML, UL_l),Hik_z(t, x1 vL—Z))

x oL dup—1)pE 2 (dvi—2),
Hj (t,x)

= /ﬂbL(wzaa“L’vL—l)’bZ(t)vH;j—1(t’x’uL,UL—I))PVI;(duL)Plf_l(dUL—l),
Yt x) = ¢ry1(Hf (1, X)).

Backward recursion:

Af*(t,z) = o (y. §*(t.x). H} (t.x)),
AY*(t,z,up, v —1)

= o) (AF*(t.2), wi(toup, vp—1). b} (t), H (t.x), Hf _\(t,x,ur, v—1)),

Ab*(1,z2)

:/O’E(AI{I*(Z,Z),wz(t7uL,UL—l)vb;:(t)sz([vx)’HZ—I(Z’x’uL’vL_l))
x pE(dur)pt = (dvr-1),

AB* (t,z,up,vp—1)

=o' (AE*(t,z), w}(t,up,vi—1), b} (t), H} (t,x), H} _,(t, x,ur,v.—1)),

APE (t,z,up 1, up, v —2, V1)
= O—ZV_I(AL}‘I_*l (tv Zv uLv vL—l)’ wz_l(tv uL—lv uL’ vL—Z’ vL—l)a bz—l(t’ uL’ vL—l)a

Hp_(t.x,ur,vp—1), Hf ,(t.x,v1—2)).

Ab* (¢ zup, vp-)

=/ P (AF* (8 zup v—1), )y (tup—1,uL,0—2,01-1), b} _; (t,ur, v 1),
Hi_((t,x,up,ve—1), Hf _,(t,x,v.-2)) pE " (dur—1) pt 2 (dvr—2),

AP (1,2, v0-2)

= /UE_Z(Afljl(IvzyuvaL—l)»wz_l([yuL—lvML,UL—LUL—I)»b[f_1(t»uLyUL—1)y
H}_(t.x,up,vi—1), Hf 5(t,x,v.-2))pk(dur) p&~ " (dur—1) ot ™" (dvr—1),

w*
AP*(t,z,ui,vi—1, V)
*

= o) (AT (t, 2, vi), wi (t ui, viey, vi), B (1, vi), HE (1, X, 0), HE (1, X, 0i21)),
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b
A7*(t,z,v7)
= /aib(AlH*(t,z,vi),w;k(z,u,',vi_l,v,'),b;"(t,vi),Hi*(t,x,vi),Hi"‘_l(z,x,ui_l))

X phy(dui)ph " (dvi—y),
A (1.2, vi0)

= /UiH—l(AzH*(fsz, i) i (t g, vi-1,0;), b (t,v;), H (¢, x,0;), H | (t, x,vi-1))
x pi(dui)pi(dv;) fori =L —2,....3,

AY*(t,z,u1,u2, v2)

= o (AFT*(t, 2, v2), Wi (t, 1, uz,v2), b3 (¢, v2), H (t, x,v2), H (¢, x,u1)),

Ag*(t,z,vz)

= /a;’(Af*(t,Z, v2), W (t, U1, u2,v2), b5 (t,v2), Hy (t,x,v2), H{ (t,x,u1))
x pg.(duz)py (duy),

A{i*(t,z,ul)

= fofl(AgI*(l,z,vz),w;(t,ul,uz,vz),b;(t,vz),H;(t,x,vz),Hl*(t,x,ul))

x p2(duz)pp(dvs),
AY*(t,z,uy) = UY(AIH*(I, z,uy), wy (¢, uy), x).

In the case L = 3 and L = 4, we define the dynamics of w; and b;" similarly.
In particular, for L = 4, one can simply disregard all above equations that are with
invalid indices. For L = 3, we define

2u)i‘(z‘, uy) = =V (OEZ[AY* (1, Z,uy)],

ot
0
Ewi‘(t,ul,w,us,vz) = —&' (OEZ[AY*(t, Z, u1, uz, u3,v2)],
d
E’”;(I»uavz) = —&Y(Ez[AY*(t, Z,u3, v2)],
. .
gbz (t,uz, v2) = —E2()EZ[AS* (1, Z, u3, v2)],

d

ot

for all u; € supp(p?,) fori = 1,2,3, forall v; € supp(p{,) fori = 2,3, in which
H{(t,x,u1) = ¢1(wy(t,u1),x),

Hj(t,x,u3,v2) = /q&z(w;(t,ul,uz,m,vz),b;‘(t,u3,v2),Hl*(t,x,ul))

X py (duy) i (dus),

b3(1) = —E2(OEZ[AS (1, 7)),
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Hi(t,x) = /¢3(w§(t,u3,vz),b§(f),Hz*(t,x,us,vz))P@(dw)Pﬁ(dvz),

yA*(t"x) = ¢4(H;([,X)),
A (1,2) = 03 (y, §*(t. x), H} (1, %)),
AY*(t,z,usz,v2) = og’v(Ag*(t, z), w3 (t,us, v2),b3(t), Hy (t,x), Hy (t,x,u3,v2)),

AS*(1t,2) = /aé’(Ai’*(t,z),w;*(t,ua,vz),b;“(t),H;‘(t,x),H;(t,x,us,vz))

x py(du3) py(dvz),
AF*(t,2,u3,00) = o (AL* (1, 2), wi(t, us,v2), bE(2), HE (t, x), Hy (¢, x,u3,02)),
AY*(t, z,ur, uz,us, v2) = 0y (AF*(t, 2, u3, v2), w3 (¢, u1, Uz, us, v2),

b3 (t,uz,v2), Hy (1, x,u3,v2), H{ (1, x,u1)),

Ag*(t,z,u3,v2) = /aé’(Af*(t,z,m,vz),wz‘(t,ul,ug,u3,vz),b;(t,u3,vz),

Hy(t,x,u3,v2), Hy(t,x,u1)) pa(du) p3(dus),

A*(t,z,up) = /Uf’(Af*(I,z,ua,vz),w;(t,ul,uz,ug,vz),bi(t,ua,vz),

Hj(t,x,u3,v2), H{ (¢, x, Ml)) Pvzv(duz) P‘?v(du3)’ Pﬁ(dvz)v

AY*(t,z,up) = Of"(AfI*(t,z,ul), wy (t,uy1), x).

Finally, let W*(¢) = {wj(t,-), w/(t,-),b](t,-), i =2,...,L}. The existence and
uniqueness of such dynamics follow similarly to the proof of Theorem 3.1.

Theorem D.1 (Complete statement of Theorem 5.3). Given (p},...,pL, p2, ..., pL)
and an integer M, construct the canonical neuronal ensemble (QM , pM ), the ran-
dom variables (Cy,...,CrL) ~ PM — ]_[iL=1 PiM and the canonical MF limit WM

as described in Section 5.1.1. Also construct the dynamics W* described in Sec-
tion 5.1.2. For L > 5, define the following:

wi®(t,c1) = wi(t, wi(cr),
w(t, 1. ¢2) = w3t w (1), wH(cr. ¢2). b3 (c2)).
w(t, ci—1,ci) = wit, w(ci—1, i), bY_ i (ci—1),b)(ci)), i=3,...,L—2,
wi® (1, cr—a.cp—1) = wj_ (t, w) _ (cL—2.cL—1), wp (cL—1. 1),
b2_2 (cL—2), b2_1 (cL-1)).
wio(t. cp—1.1) = wy (t, wp(cr—1.1). b7 (cL—1)).
b (t,c;) = b} (t,b)(c:)), i=2,...,L-2,
b (t,cp—1) = bf_(t, w} (cL—1.1).b) _(cL-1)).
b2 (t, 1) = by (1),
ci € Q; = A xNyy, i=1,...,L—1.
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For L = 4, we define similarly by disregarding the equations with invalid indices. For
L = 3, we define

wi*(t, c1) = wi(t, wi(cr)).
wS(t, 1. ¢2) = wi (1, wy(cr. c2), w(ca, 1), wi(cr)., b3(c2)).
w(r,c2, 1) = wi (1, w3(c2. 1), b3 (c2)),
bS°(t, ) = b3 (t, w3(c2, 1), b3 (c2)),
b3 (t) = b3 (1).

We also let W°(t) = {w{°(t,-), w(t,-,-),b°(t.-), i =2,...,L}. Let us consider

M M M
(WM _w>y, = max(lglisz(wi — wfo),,zlélianL(bi — bfo),),
<wM - wOO)t = ]E”wllu(ts Ci—la Cl) - wloo(tv Ci—17 Ci)|2]1/25

1 1

(b = b°) = B[} (1.C;) = b°(. CHPIV?, i =2..... L,

(wif —wi)e = Eflw}! (1, C1) — wi* . C) P12,
Then, under Assumptions 2.4-2.6 and 4.6, forany T > 0and L > 2,

Kr,L
sup(WM — ), < =
t§¥< )i M 0.499

for sufficiently large M = M(T, L), where K11 is a constant that depends on T
and L. Furthermore, for L > 4and2 <i <L — 2,

N Kr1
sup E[|H; (X. Ci: WM (@) = H 0. X.bYCOPI'? < 555

D.2. Proof of Theorem D.1

Proof of Theorem D.1. Let us consider the case L > 5; the case where L < 4 is simi-
larly proven. We use K77, to denote a generic constant that depends on 7" and L and
may change from line to line.

Step 1. By following the argument of Lemma 3.2, one can show that || W ||1 as well
as the following quantities are all bounded by K7,1.:

E[ sup ess-sup| Hy (¢, X, w(l)(Cl))|50],
t<T Z~P
E -sup| H* (¢, X, b?(Ci))|*°].
,nax Bl sup ess-supl (¢, X, b (C))I™]

E[ sup ess-sup| H}_; (1, X, w} (Cr—1.1),b] _(CL—1)*°],
t<T Z~P
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sup ess-sup| H; (¢, X)|,
t<T Z~%

E[ sup ess—sup|A{{*(t, Z, w(l)(Cl))ISO],
t<T Z~%P

max _E[ sup ess-sup| AT*(t, Z, b (Ci))I*°].
2<i<L-2 “4<T zZ~P

E[ sup ess-sup| AF* (1, Z, w (Cp—1,1), b _ (CL—1)]*°],
t<T Z~P

sup ess-sup| AZ*(¢, 7).
t<T Z~P

Likewise one can also show that for any B > 0,
P(max (W) > K71 B) < 2K7 e KB,

in which

maxy (W) = max sup|w°(t, Ci—1, C)|.
2<i<L t<T

Step 2. Let us define

D1(t) = E[|Hi(X,Cy;; W®(t)) — H{ (t, X, w)(C1))|?],

336

D;(t) = E[|H;(X,C;; W®(t)) — H(t, X,b2(C:)[*], i=2,...,L—2,

Dp_1(t) = E[|HL1(X,CL_1; W™ (1))
— H} (6. X, wd(Cpo1, 1), 62 _ (CL-)[*]:
Dr(t) = E[|HL(X,1; W) — Hj (¢, X)|*].
We claim that fort < T,

K
Di(t) < ;;L, i e[L].

Firstly, it is immediate that
Hi(X,Ci; W (1)) = ¢1(wi(t, w)(C1)), X) = H (1, X, w)(C1)),

and hence D1(t) = 0. Fori = 2, we have

Da(1) = E[|Ecy [#2 (w3 (1. w(C1). wd(C1. C2). B3(C2)). b3 (1. B(C)),

Hi(X.Ci; W™(1)))]
- [ Ga (Wt w1 w2, BY(C2)). b (0. b(Ca)). Hi (.. 1))

x pvlv(dul)p‘zv(duz)‘z].
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Recalling that wd(Cy, C2) = g2(01, 02)(A2), b3 (C2) = p2(62)(A2) and w(Cy) =
p1(61)(A1) from the construction of Section 5.1.1, we have

Ec,[[Ec, [g2(w} (1. w)(C1). w3 (Cy. Ca).bI(Ca)). b3 (1. b3(Ca)),
Hy(x.C: w2 0))][]

= Eo,.21.00 402,02 [(92 (05 (2, p1(1) (A1), 62(01, 02) (A2), p2(62) (A2)),
b;(tv pZ(QZ)(AZ))’ Hl*(tv X, pl(el)(kl)))v
b2 (w3 (¢, p1(6) (X)), 42(61, 62)(X2), p2(62)(12)),
b3 (1, p2(02)(A2)), HY (1, x,p1(6)(A1))))]

O B 05161 = 60) [ (B2 01,1022, B3 1. v2). H7 15,0,
G2 (w3 (1w Uz, v2), b3 (t, v2), Hy (1, x,u})))

x pa(dun)py(duy)py (duz)pi(dva)|
+ o, [161 £ 6) [ (90312, 02). 530, v2). H 300,
P2 (w3 (1, U’ uh. v2), b3 (1, v2), HY (1, x,u})))
X ph(dur)p2 (duz)ph (i) o2 (duty) o3 (dvs) |
= o7 [ (e v b3 0. @ x),
$2 (3 (1,1} 102, 2), b3 (1, 02), HY (1, x,01)
X py (dur) py,(du) p3.(duz) py (dva)
M-l /‘/¢2(w§k(1,u1,uz,vz),b;(t,vz), H(t,x,u1))pl(duy)p? (duy) ’

M
x pp(dva),

+

where in step (a), (61, A}) ~ Unif([M]) x Py is an independent copy of (6;, A1) and
is independent of (6, A,), and step (b) is by the construction of py, P, and g». It is
also easy to see that

Ec,|{Be, [92(w3 (1w (€1), w3(Cr. C2). B(C2)). b3 (1. bY(C2)).
Hy(x,Cq; Woo([)))],

[ 9205003, BC). 5 1. BY(Co). HE )l ) )

= / | f B2 w3 (11,2, v2). B3 (1. v2). HE (1, x.01))ph ()03 (dwa)| 3 (dva).
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Therefore, fort < T,

Dz(l) < %/E[}((ﬁz(w;(nu],uz, Uz),b;(l‘, U2), Hl*([,X,Ml)),
¢2(w;(t’ u/la Uz, v2)v b;(tv 02)’ Hl*(l’ X’ u/l)))”
X py(dur)py (du'y) p.(duz) py (dv2)

1
a7 [E[] [ 2003z v. 300, 70 X))

2
x ph(dur)p3(duz)| JoR(dva)
K
S M E[|¢2(w>2k(tv Ui, us, v2)7 b;(t7 v2)’ Hl*([’ Xv Ml))|2]
X Pvlv(dul)Pi(duz)Pﬁ(dvz)

- Krp
- M

’

where we use Step 1 and Assumption 2.5 in the last step. Fori € {3,..., L — 2},
recall that w? (Ci—1, C;) = q; (0;—1.6;)(Xi), b)(Ci) = pi(6;)(A;) and bY_ (Ci—y) =
Pi—1(0i—1)(A;—1) from the construction of Section 5.1.1. Then, similar to the argu-
ment fori = 2,

Ec,[[Ec,_, [¢i (w] . w)(Ci—1,Ci). b} (Ci-1). b (Cy)).
bF (1. b2(C)). Hi 4 (1. x. b2 (Ci1))) ][]
= %f(¢i(w?(l’uiavi—l,Ui)’b;k(tsUi)’Hi*_l([,xvvi—l)),
i (W] (¢, ui, vj_y,vi), by (1, v;), H (1, x,v]_))))
x ol (duy)phy (dvi—1)ply " (dv]_y)pi(dv;)
S [| [ v v br v i)
x pl(dui) b (dvi—1) ? ph (dvy),
Ec, [(ECH [¢i (w] (1. w(Ci—1. Ci), b)_ 1 (Ci—1). bY(Ci)),
b} (t.b)(Ci)), HY (. x,b)_(Ci-1)))].
[ 94607 s 11 BN BT B HE 15,0
X ph,(dui)py ™ (dvi))|

. . 2
— [| [ #stwr v 57 v B v i)

+

x ph(dvy),
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which then gives, by Step 1 and Assumption 2.5,

Ec,[|Ec;_, [¢i (w] (t, w) (Ci—1. Ci), b (Ci—1). b (Ci)).
b (1. bY(Ci)), H (%, b0, (Cim1)))] — HE (6, X, b2(C))[]
=Ec HECH [¢i (w] (2. w(Ci—1. Ci), b)_ 1 (Ci—1).bY(Ci)),
bE(t,bY(Ch)), Hyt (1, %, b0 (Ci-1)))]
_/¢i(w7(z,ui,vi_l,b?(ci)),b;‘(z,b?(ci)),H,.*_l(z,x,vi_l))
< ol (dus)p (dvi )| ]
< %[|¢i(w;k(t,ui,vi_1,v,-),bi*(t,v,-),Hl.*_l(t,x’vi_l))lz
x pi(dui)ph " (dvi—1)pp(dvi)

Kr,L

<

- M
Next, notice that again by Step 1 and Assumption 2.5,
E[|Hi(X.Ci: W (1)) —Ec,_, [¢i (w] (1. w)(Ci—1. Ci). by (Ci—1). b (Cy)).
bF (L. BY(C)). HE 4 (1. X b0 (Cim))][]
=E[|Ec,_, [¢i (w] ¢, w)(Ci—1. Ci). b)_ (Ci—1). b (C})),
by (t.bY(C)), Hi—1 (X, Ci—1; W*(1)))]
—Ec¢,_, [¢i (w] @, w)(Ci—1, Ci), b)_ 1 (Ci—1), b (C})),
bF (L. BY(C)). HE 4 (1. X b0 (Cim))][]
< KE[|E¢,_,[(1 + |w] (. w) (Ci—1. Ci), bY_; (Ci—1). b)(Ci))| + 6] (1. b)(Ci))|)
X [Hi—1 (X, Ciy: W(0) — HY (1. X.b0_ (Ci—)|]|]
< KE[(1 + [w] (1, w(Ci—1, Ci), b1 (Ci—1), Y (C)| + b} (¢, b (Ci) )]
x E[|H;_1(X.Ci_y: W® (1)) — H (1. X.b?_(Ci_1))|*]
< K7,.D;i1(1).

Hence,
Kr,L

D;(t) < + K1, Di—1(1).
This proves the claim for i < L — 2. The other claims are similar.

Step 3. Let us define

D) = E[|AT(Z,Cry w (1)) — AT*(1, Z, w(C)) ],
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DF () =E[AF(Z,Ci; W™ @) — AF*(t.Z, b2 (C)[Z], i=2,....L -2,
DI (t) = E[|AF_ (Z,CL—y;W>® (1) = AF* (1, Z, w) (CL—1,1), b) _ 1(CL DI,
DE () =E[IAF(Z, 1, W) — Af*(1. Z) ).

We claim that fort < T,

DF(t) < Kr1 i €[L].

M 9
The derivation is similar to Step 2; let us give a sketch and highlight the difference.

The last claim for i = L is immediate from Assumption 2.6 and Step 2. Let us consider
the claim for 2 <i < L — 3; the rest of the claims are similar. We have

E[|Ec;,, [6f (ARS (. Z.bY4 (Civ1). wiyy (1w (Ci. Cig1). BY(Cy),
1+1(Cl+1))’bl*—l—l(t’bl-i-l(ci-i-l))’ Hi*-i-l(t? X7blp+1(ci+l))7 Hi*(t’ X, blo(cl)))]
— A, 2,00(Ci)[?]

- E[‘]EC1+1 (Ag-*l (t’ Z7 bl()+1(cl+1))9 w;k-}-](tv w?—l,—](civ Ci+1)’ blo(cl)’
b1 (Cig1)). by (0,57 (Cig 1)), H (1. X bYy 1 (Ci 1)), H (1. X, 57 (Ci))) |

_/UiH(AiIi*l(t’Z’vi+1)7w;k+1(t’ui+l’b?(ci)vUi+1)’b;k+1(tavi+1),
. . 2
Hf\ (2, X, vi+1),H,-*(l,X,b?(Ci)))Piv+l(dui+1)P{,+l(dvi+1)) ]
@ K % * *
= M/EHO—P(A{?H(LZyvi-i-l)awi—}—l(t’ui-l—l»vi’vi+1)vbi+1(tavi+l)’

Hi*+1([’X’ vi+l)7Hi*([’Xs Ui))| ] H_l(duz+l)pb(dvz)Pb+l(dvz-l—l)
b K
<— | E[(1+ |Aﬁ*1(t, Z v+ [w/ (1, uig1,vi, vit1)|?

+ 1571 (1. Vi) P PLT (i 1) o}y (dvi) oy T (dvigr)
© K7L

- M

’

where (a) is similar to Step 2, in which we use the fact that w?H(Ci, Cit1) =

qit1(6;. 0ix 1) (Aig1), BY(Ci) = pi(0;)(Ai) and b?, 1 (Ciy1) = pis1(0i11)(Xit1),
from the construction of Section 5.1.1, (b) is by Assumption 2.6, and (c) follows
from Step 1. We also note

E[|Ec,,, [0/ (ARt Z, b0 (Cig1)). wiy (8wl (Ciu Cig1). BY(C),

b1 (Cig)). b7y (0741 (Ci)) Hiy (0 X b7 (Cign)) H (1, X, 5)(Ch))) ]
— APz 2w )[]
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=E[|Ec,,, [0/ (AEA (1. Z. b0 (Cit1)), wiy (6, wly  (Ciy Cig1). BY(Cy),
b1 (Ci1)) by (1,071 (Cign)), Hiy (1. X bY 1 (Cign)), H (8, X, 5)(C1))) ]
—Ec; [0 (AP A(Z. Cin: W) wiy (1w (Ci, Cigr). B (Ci).
,+1(Cz+1)),b,*+1(lybl+1(ci+1))»Hi+1(X7Ci+1;W°°(t)),Hi(X7Ci§W°°(f)))]|2]

S KE[Ec, , [(1 + [wiy 1 (t, w1 (Ci, Cig1), b (Ci), b4 (Cig1))|
+ 1By (1 b2 (Cre)) ) AP (1. 2,60 (Civ1) = AR (Z. Cipr: W) []7]
+ KE[Ec;,, [(1 + [wiyy (t, wih (Ci, Cig1), B (Ci), by 1 (Cis1))|
+ b (624 (Cie ) (1 + 1A (4 Z, b0y (Cign)|
+ AL Z.00 1 (Cin)) = AL (Z. Cier: WO (0)])
x (|Hf (¢, X, b?+1(ci+1)) —Hit1 (X, Cig1; WP(1))]
+ |} (1, X, b (C) — Hi(X, C; W2 (0)) ]
< Kr,o (DE . (t) + Dit1(t) + Di(t)) + KQi(t),
where (a) follows from Assumption 2.6, (b) follows from Step 1, and we define
0i(t) = E[Ec; ., [l (t, wly 1 (Ci, Cig1), bY(Ci), bYy 1 (Cit1))|
(|Aﬁﬁ(f Z,b?+1(Ci+1))|
AR Z. b1 (Cign) = APL(Z. Gy W (0)])
X | (1, X, b0 (C) — Hi(X, Cs W2 0)[]].
The bounding of Q;(¢) requires some more care. In particular, for B > 0, define
E = {{w},(t, w1 (Ci, Cig1), b (Ci), b}y 1 (Civ1))| = BY.

Upon decomposing the inner expectation of Q;(¢) into the sum of [(E) and I(—E),
together with Step 1, via an appropriate use of Cauchy—Schwarz’s inequality, it is easy
to see that

0i(1) < Kr.o B(Di (1) + D (1) + Kr.o (1 + Di (1) + DI ()P (E)'®
< Kr,o(1+ BY(D; (t) + DFf (1) + Kp,pe P,
which holds for any B > 0. Combining these bounds together and Step 2, we obtain

D) < KB?

z+1(z) +Di1(t)+D;(t) + Kr,Le™

Kr1 H 1 —KB?
< 7 + K7, (1 + B)(Di—}—l(t) + M) + Kr,L€ .

Then choosing B = c+/log M for an appropriate constant ¢ leads to the desired con-
clusion.
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Step 4. Let us define

DY (1) = E[|AY(Z.Ci;: W® (1)) — AY*(t. Z, wi(C1)I?],

DY (t) = E[|AY(Z,C1,Cos W™ (1)) = AY* (1, Z, wi (C1), w3 (C1,C2), b3 (C2)) ],

D} (t) = E[|A}(Z, Ci—1, Ci; W™ (1))

— AP*(t. Z w)(Ci1. Ci). b (Ci). BY(CO)P]. i =3,....L-2,
DY_(t) = E[|A}_((Z,CL2.CL_1: WX (1)) — A} (1, Z, w} _1(CL—2.CL—1).
wp(Cr-1.1).b7_,(CL—2),b}_1(CL-1))|].

DY (t) = E[|AF(Z,Cr—1, L W)= AP*(t, Z, wp (Cr-1, 1), b}, (CL-1)) ],

DE (1) = E[|AL(Z, Ci: W (1)) — AP* (1, Z,b(Ci)) 2. i=2,...,L—2,
Dp (1) =E[|A?_((Z.CLi:W™(1) = AP* (1. Z.wp (CL—1.1).b)_,(CL1)) ],

DY (1) = E[|AL(Z. 1 W (1)) — Ab* (1. 2) .

We claim that forany ¢t < T,

log!/? M log/2 M
w < s 7 b <
max Di(1) = Krp—p— Jnax D} (1) < Krp——.

Indeed, by Assumption 2.6, for 3 <i < L — 2,
DY (1) < KE[1+ [A{* (2, Z,b(Ci)?
+ |AF* (1, Z,62(Ci)) — AP (2, Ciy W) )*]Di-1(2)
+ KD (t) + Di (1))
The claim for Dl.w then follows from Steps 1, 2 and 3. The rest are similar.

Step 5. With the same argument as Lemma B.4, given Step 1, one gets that for 2 <
i <L,anyt <T andany B > 0,

E[[EZ[AP(Z, Cimt. C: WM (1)) = AP(Z, Cimy, C; W (0))]|] /2

< Kr,((1+ BY(WM — W), 4 ¢ KB?),
As such, by Step 4,
E[|AY(Z.Cioy. Cii WM (1)) = AP*(t, Z, wl(Ci—1. Ci). BY_{ (Ci—1). bY(Ci)) P2
< [DE0)|V? + E[|AY(Z, Cimy, C; WM (1)) — AP(Z, Cimy, Cis W(1))[]1/?

log'/* M

= K7L <—M1/2

L+ BYWM _w=), + e—KBz).
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One can obtain similar results for AY and All.’ . Hence, we obtain that forallt < T,

logl/4 M

t
M
(w —Woo)tSKT,L/O( YR

L1+ B(WM Wy, ¢ e—KBz) ds.
Since (WM — W), = 0, Gronwall’s inequality implies that

log!/* M 2 1
M _ oo . g M —KB2\ K7, (14+B)
spW=—W >’§KT’Léﬂfo[( wiz e e ]SKT’LM0~499’

for sufficiently large M.
Furthermore, with the same argument as Lemma B.3, given Step 1, one gets that
for2<i <L-2andanyt <T,

E[|H; (X, Ci; WM (1)) — H; (X, Ci; W ()[]V/? < Krp (WY — W),

As such, together with Step 2, we get

1
sup E[| H; (X, Ci: W (1)) — H (1. X. b} (C)))'? < K11 ~5255
t<T
for sufficiently large M. ]

D.3. Proof of Proposition 5.2

Proof of Proposition 5.2. It is easy to see that under the canonical neuronal ensemble
(QM, PM), the functions {w?}E  and {p?}L_, satisfy the i.i.d. initialization law,
according to equation (5.1)—(5.5). To derive the 5-independence property, recall from
the construction that for i < L — 1, C;(j;) = (4;(ji), i (ji)) and {C; (ji )}, e[n;] are
sampled from (Py x Unif([M]))" conditional on that {6; (j;)};;[n,] are all distinct.
Notice then, fori < L — 1 and any j € [n;],

> ELf(GiG)) | 6i(h) = 6].
0¢{6; (h):h+#j}

E[f(Ci() [{Ci(h).h # j}] = M—n +1

Thus, for 1-bounded function f, we have
[E[f(Ci () [ {Ci(h).h # j —E[f(Ci(G))]]
< : Z IE[f(Ci(7)) | 0i(h) = 6]

M _
0&6; (h):h#j}
n; — 1 . _
=D 2 EGH) |6k =6l

OEL0; (h):h#)}
n; — 1

M

The claim is trivial fori = L. [

=

[\
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D.4. Proofs of Corollaries 5.5 and 5.6

Proof of Corollary 5.5. By Proposition 5.2 and Corollary 4.9 (in particular, one of the
intermediate steps in its proof), we have that for sufficiently large M, with probability
at least 1 — 38 — K Ly exp(—Kn$2

min/?

n; / B
(ni > Ez[Hi(Lt/e). X. ji)—Hi(X. Ci (jo): Wf‘f(Lt/eJe»F])1 = Ol e,
Lii=1

where we recall that {C; (j;)};, e[»;] are sampled according to the sampling rule PM
as described in Section 5.1.1. On the other hand, since Law(C; (j;)) = PiM , by The-
orem 5.3,

1
JE[—
n; j

which yields, for any y > 0,

ni /
E2[1H (X, G G WLt fele) — H7 (1t fele. X, BoP] - < 2k
=1

l

1 & ,
P(— > Ez[|Hi(X.Ci(ji): WM ([t/e]e)—H[ (|1 /ee. X. Bi)[*] = y) <=
ni yM?®
Finally, by following the argument in the proof of Corollary 4.9, we have
E[H(t/ele. X, B)) — H}(t, X, B)|*]"/? < Kr,Le.

The proof concludes by combining this with the previous two probability bounds and
taking M — oo and then y — 0. ]

Proof of Corollary 5.6. For 3 <i < L — 2, since b? (C;) = B is a constant,
w°(t, Ci—1, Ci) —wi°(0,Ci—1, Ci)

_ _fotg;v(s)mz[a;v(Af’*(s, Z.69(C;)), w (s, wO(Ciy, Ci), b0 (Ci1),
b (Ci)). b} (5,5 (C)), Hi (s, X, b)(Ci)). Hy (s, X, bi_ (Ci-1))) ] ds

= —/Ot § (EZ[57 (AF* (s, Z,b(Ci)), b} (s, b (Ci)),
H} (5. X, b)(C)). H (5. X, b} (Ci-1)))] ds

- _/Ot EV()Ez[67 (AF*(s, Z, By), b} (s, Bi), Hi*(s, X, B;),
H (s, X, Bi-1))] ds,

which is independent of C;_; and C;. The desired claim readily follows. [ ]
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E. Remaining proofs for Section 6

E.1. Proof of Theorem 6.2

First we show that if w; (0, Cy) has full support, then so does w; (¢, Cy) at any time ¢.
Note that the following result holds beyond the setting of Theorem 6.2.

Lemma E.1. Consider the MF ODE:s (as described in Section 2.2) with L. = 2 and
W, = R4 (for some positive integer d ), under Assumptions 2.4-2.6 and 4.6. Let us
disregard the bias of the second layer by considering £3(-) = 0 and b2(0, ) = 0.
Suppose that the support of Law(w;(0, C1), wz(0, Cy, 1)) contains the graph of a
continuous function F: Wy — W, such that |F(u)| < K for all u € Wy. Then for all
finite time t, the support of Law(wy (¢, Cy)) is Wy.

Proof. Since the support of Law(w; (0, Cy), w,(0, Cy, 1)) contains the graph of F:
W; — W,, we can choose the neuronal embedding so that there is a choice C; () for
each u € W such that w; (0, C;(u)) = u and w;(0, C;(u), 1) = F(u), and further-
more, for any neighborhood U of (u, F (1)), (w1(0, C1), w,(0, Cq, 1)) lies in U with
positive probability. For an arbitrary 7 > 0, let us define M: [0, T] x W; — W; by
M(t,u) = wi(z, C1(u)).

We show that M is continuous. In the following, we define K to be a generic con-
stant that changes with ¢ and is finite with finite 7. We first have from Assumption 2.6
that

IAH(t,z, 1) <K, |AY@t.z.c1, )| < K(1+ A2 @z, 1)) <K,
which implies, by Assumption 2.4,
lwa(t, c1. )] < |w2(0,cq, )| + K.
In particular, for any u € Wy,
|lwa(t,C1(u), )| < F(u) + K; < K;.
We then have from Assumptions 2.5-2.6 that
|Hy(t,x,c1) — Hi(t, x,¢))| < K|lwi(t,¢1) —wi(z,¢h)],
|AY(t,z,c1,1) = AY(t, 2, ¢1, D)
< KA+|AE @, z, D)) Hi(t, x, c1)— Hi (¢, x, ¢}) |+ K |wa (£, c1, 1) —wa (¢, ¢}, 1)
< K(Jwa (. c1. 1) —wa(t. ¢, D] + [wi (2, c1) — wy (2. c))).
AT (1,2, ¢0) — Af (1,2, ¢))
< K1+ A (t.z. D)) (Jwa(t. . 1) — wa(t. ¢}, 1)
+ (1 + |wa(t, 1, D] + lwa(t, ¢f, DDIH1 (2, x, ¢1) — Hy (1, x. ¢})])
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< Klwa(t,c1.1) —wa(t, ¢}, 1)

+ K (1 + [w2(0, ¢, | + |w2(0, ¢y, DD wi (7, e1) — wi (2, )],
|AY (2,2, ¢c1) — AV (1,2, ¢})]

< K(AT(t,2,¢0) = AT (1,2, )] + [wit, e1) — wi (2, ¢7)])

< K|wa(t,¢1,1) —wa(t, ¢}, 1)
+ K (1 + [w2(0, ¢1, D] + [w2(0, ¢y, D)) |wi(t, ¢1) — wi(t, ¢))].

Defining
R(t) = |lwa(t, C1(u), 1) —wa(t, C1 (), 1)|? + w1 (z, C1 () — wi(t, C1 ()|

for some u,u’ € Wy, we then have forany t < T,

d
77 RO = Kr (1 + w20, C1(w). DI + |w2(0, Ci(w'), D)*R(1)
= Kr(1 4+ |F)| + |F@))*R(1)
< K7 R(1),
which implies that R(¢) < R(0) exp(K7?). In addition, by Assumption 2.6,
ATtz el = K+ A7 (5 2. DDA + [wa(t.cr. D)
S K|w2(07 Cl9 1)| + Kta
AV (1.2, c0)| < KL+ AT (1. 2.c1)))
S K|w2(03 CI, 1)| + Kta
which leads to
lwi(t,c1) —wi (', e1)| < Kever (14 [w2(0, ¢p, Dt — 1]
Since R(0) = |F(u) — F(u')|?> + |u —u'|> = 0 as u — u’, we deduce, fort,¢' < T,
that
lwi(t, Cr(w)) — w1 (t'. C1(u))]
< Jwit, C1(w)) —wi (', Cr@)| + [wi (', C1 (W) — w1 (', Cr ("))
< Kr(1+|F)D|t —¢'| + v R(O)exp(K7T) — 0

as (u,t) — (v, t'). This shows that M (¢,u) = w1 (¢, C1 (1)) is continuous.

Recall that W; = R¢, and consider the sphere S¢ which is a compactification
of W;. We extend M: [0, T] x S — S? by fixing the point at infinity, which remains
a continuous map since

|M(t,u) —u| = [M(t,u) — M(0,u)| = [wi (7, C1(u)) — w1(0, C1(u))|
< Kr(l 4+ |F(u)|)t < Krt.
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Let M;: W; — W be defined by M,(u) = M(¢,u). Observe that if M, is surjective
for all ¢, then the support of Law(wq (¢, C1)) is Wy, since for a neighborhood B of
M(t,u) = wy(t, C1(n)), P(wy (¢, Cy) € B) = P(w1(0, Cy) € Mt_l(B)) > 0. It is
indeed true that M, is surjective for all ¢ for the following reason. If M, fails to be
surjective for some ¢, then for some p € S, M,:S¢ — S4 \ {p} — S¢ is homotopic
to the constant map, but M then gives a homotopy from the identity map My on the
sphere to a constant map, which is a contradiction as the sphere S¢ is not contractible.
This finishes the proof of the claim. ]

We are ready to prove Theorem 6.2. We recall the setting of Theorem 6.2, and in
particular, the neural network (6.1).

Proof of Theorem 6.2. 1t is easy to check that Assumptions 2.4-2.6 hold. Therefore,
by Theorem 3.1, the solution to the MF ODBE:s exists uniquely, and by Lemma E. 1, the
support of Law(w; (¢, C1)) is R? at all #. We recall from the convergence assumption
the limits w; and w,, and we shall first prove (w1, w5) is a global minimizer of £ in
Case 1 and £(w;, wz) = 0in Case 2.

By the convergence assumption, we have that for any € > 0, there exists 7'(¢) such
that for all # > T'(¢) and P-almost every ¢y,

€ > [Ez[02L£(Y. (2, X)) pa(Ha(t. X, 1) o1 ({w1 (2. ¢1), X))]]
= (Ez[0:L(Y, 5(t. X)) | X = x]@3(Ha(t, x. 1)), p1((w1(t.¢1). X)) 2(2y) -

Let H(f1, f2, x) = Ez[02L£(Y, Y(X; f1, f2)) | X = x]gy(Ha(x; f1, f2)). Since
Law(w; (¢, C1)) has full support, we obtain that, for # in a dense subset of R¥,

[(F (w1 (2, ), wat, -, 1), x), e1({u, X)) 122y < €.

Since ¢} is bounded and | X | < K, Ex[l¢1((v/, X)) — @1 ((u, X))|*] = O as u’ — u.
Hence,

|<J€(U)1(I, ')v U)Z(l, s 1),X), (pl((u’x))>L2(J’X)| <€,

for all u € RY. We claim that ¢ (wy(¢,-), wa(t,-, 1), X) — H (1,02, X) in L' (Py)
as t — oo. Assuming this claim, since ¢; is bounded, we have for every u € RY,

(H(wy, w2, x), 01 (U, X)) 2(py) = 0.
Since {1 ((u,-)) : u € R4} has dense span in L2(Py),
H (W1, W2, x) = E[02L£(Y, J(X;W1,W2)) | X = x]5(Ha(x; W1, W2)) = 0,

for Py -almost every x.
In Case 1, ¢} is non-zero, and we get E[0,£(Y, y(X; wi, w2)) | X = x] =0
for Px-almost every x. For &£ convex in the second variable, for any measurable
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function y(x), we have
L(y.y(x)) = L(y, Y(x; w1, w2)) = 2Ly, Y (o3 Wy, w2))(J(x) — Y(x; Wy, W2)).

Taking expectation, we get Ez[£(Y, y(X))] = L(w1, wy), i.e., (W1, wy) is a global
minimizer of L.

Now, in Case 2, since y is a function of x and (pé 1S non-zero, we obtain that
02 (y, y(x;wy,wz)) = 0and hence L(y, y(x; Wy, w2)) = 0 for Px-almost every x.
That is, L(U_)l s 11)2) =0.

We now prove the claim. Using the assumptions and recalling the coupling 7, in
Assumption 6.1 (4), we have

E[|H (wi(t,-), walt,-, 1), X) — H(wi(t,-), wa(t,-, 1), X)|]
< E[|02£(Y, §(X; w1, w2)) 93 (Hz2 (X w1, w2))
— 02£(Y, $(X; W1, w2)) @5 (H2(X; W1, W2))]]
< KE[|@5(Ha(X: w1, w2)) — 5 (Ha (X101, 02))]]
+ KE[|p2(H2(X; w1, w2)) — g2(H2(X; w1, w2))]
< KE[|H2(X; wy, w2) — Ha(X; Wy, w2)]]
< KEy, [|02(Cy) — wa(t, C{, 1)]
+ [W2(C1)| o1 ((w1 (2, Cy), x)) — @1 ({1 (C1), x))|]
< KEg, [|[W2(C1) — wa(t, Cy, V)| 4 [w2(C)| [wi (2, C7) — w1 (C1)I],

which converges to 0 by assumption. This proves the claim.

Finally, to connect £ (w1, wy) with £(W(¢)) in the limit ¢ — co, we have

|[L(W (1)) — L(w1, wa)
= [Ez[£(Y, Y(X; W(1))) — LY, Y(X; w1, w2))]]
= KIEz[J(X: W(1)) — Y(X: w1, w2)]|
< KEg, [[02(Cy)||wy(r, C) — w1 (C1)| + |wa(t, Cy, 1) — w2 (Cy)]].

which again converges to 0 by assumption. This completes the proof. ]

E.2. Proof of Proposition 6.8

Proof of Proposition 6.8. We recall

8 * A% *

—w,y (f, U1, Uz, u3) = —EZ[82§C(Y, V@ X)) wi(t,usz)

ot
X (pf/i(H;(t’ X)) (pé(HZ*(tv X7 U3))§01 ((wik(t’ U1), X))],
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for u; € R4, uy € supp(p?), us € supp(p). By the regularity assumption,

8 * Ak *
| Wi us)| = KEZ[0L(Y. 3" (0 X)) [wi 0. us)].

Note that the right-hand side is independent of #; and u,. Since
/|w§(t, uly) — ws(usz)| dr; (us,uy) — 0

as t — oo for a coupling nt?’ of p3 and itself, we have for some finite 7y < K,
Eflws(Us)l] = E[lw3 (10, U3)] + K = K,

where the last step is by an argument similar to the proof of Lemma 3.2 and the
initialization assumption. As such, for all ¢ sufficiently large, we have

0
sup IEU3~p3[ a—w;(l,uhuz,Uz,)H
u1€RY , us esupp(p?) !

< KEz[|0,Z(Y. §*(t. X)) E[|w3 (1. U3)|]
< KEZz[[02£(Y, 3™ (¢, X)II(K + E[|w3(U3)I])
< KEZz[[02£(Y, y*(t, X))]].

The proof concludes once we show that Ez[|d,£(Y, y*(¢, X))|] = 0 ast — oo.

For a fixed x, let us write £(¢, x) = E[L£(Y, 7*(¢, X)) | X = x] and d,£(¢, x) =
E[0,£(Y,y*(¢, X)) | X = x] for brevity. Consider Case 1. We claim that if there is an
increasing sequence of time ; so that lim; oo [£(#;, x) —infy E[£(Y, y) | X =x]] =0,
then lim; o0 [02£(#;, x)| = 0. Indeed, it suffices to show that for any subsequence 7;;
of #;, there exists a further subsequence 7;; such that limj_, |02 L(2; n x)| =0.1In
any subsequence 7;; of #;, using that £(#;;, x) is convergent and the fact £(y, y) — oo
as || — oo, we have that $*(#;;, x) is bounded. Hence, we obtain a subsequence lij,
for which y*(z; i X) converges to some limit y*. By continuity, we have

E[L(Y.5%) | X =] = lim £(;, .x) = infE[L(Y. ) | X = x].
k—o0 y

Thus, since £ is convex in the second variable, we have E[d, £(Y, y*)|X = x] = 0.
Hence,

lim [02£(1;, . x)| = [E[02L(Y, §)|X = x]| =0,

k—o0 o

as claimed. Similarly, we obtain in Case 2 that if there is an increasing sequence of
time #; so that lim; o £(#;, x) = 0, then lim; o0 |02 L(;, x)| = O.

To show that EZz[|d,£(¢, X)|] = 0 as t — oo, it suffices to show that for any
increasing sequence of times #; tending to infinity, there exists a subsequence f;;
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of #; such that Ez[|d2£(#;, X)|] — 0. In Case 1, we have lim; o L(W™*(1;)) =
infy EZ[£(Y, 5(X))], 50 im/o0 Ez[£ (1, X) — infycx) EZ[£(Y, 5(X)) | X]] =
0. Since £(t;, X) — inf5x) Ez[£(Y, y(X)) | X] is non-negative, it converges to 0
in probability. Therefore, there is a further subsequence #;; for which £(z;;, X) —
inf5x) EZ[£(Y, (X)) | X] converges to 0 J-almost surely. By the previous claim,
|02£(ti;, X)| converges to 0 &-almost surely. Since [d2£(Z;;, X)| is bounded -
almost surely, we obtain that Ez[|02£(#;;, X)|] — 0 from the bounded convergence
theorem. The result in Case 2 can be established similarly. ]

F. Remaining proofs for Section 7

F.1. Proof of Proposition 7.3

Proof of Proposition 7.3. We recall

0
EwL(f,CL—l, 1)

= —Ez[02 LY, Y(X; W) o, (HL(X, 1; W())) pr—1 (HL—1(X, cL—1; W()))],

for c;,—1 € Qr_1. By the regularity assumption,

D wnteri | £ KEZID 200 500 W)L

Note that the right-hand side is independent of cz_;. Then as argued in the proof
of Proposition 6.8 (Section E.2), Ez[|0,L£(Y, y(X; W(t)))|]] = 0 as t — oo. This
completes the proof. ]

G. Remaining proofs for Section 8

G.1. Proof of Theorem 8.2
Proof of Theorem 8.2. For brevity, let us write
Hy(x) = Hy(x, 1; W),  3(x) = J(x; W).
We also define
Ga(t,ur) = Ez[02£(Y, §(t. X)) o3 (H2(t, X, 1)) 1 ((u1. X))].
Gi(t,u1) = Ez[02L(Y, (1, X)) g3 (Ha (2, X, 1) ¢ ({u1, X)) X],

Ga(ur) = Ez[0:2£(Y, (X)) 93 (H2(X)) g1 ((u1, X)),
Gi(u1) = Ez[9:£(Y, 5(X)) 95 (H2(X)) ¢y ((ur, X)) X].
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We claim that as ¢t — oo,

E[|Ha(t, X. 1) = H2(X)[] = 0. E[[§(t, X) — 5(X)|] = 0,
Efl02£(Y, 9(1, X)) — 02 L£(Y, y(X))[] = 0,

and uniformly in u1,
|G1(t,uy) — Gi(uy)| = 0, |Ga(t,uy) — Ga(uy)| — 0.
Indeed, recall the coupling 7; in Assumption 8.1, we have from Assumption 6.1 (3):

Ex[|Ha(t, X, 1) — Hy(X)]]
= Ex[|Ec,.c/ymm [W2(t, C{, D1 (w1 (2, C1), X)) = w2(C)e1 (w1 (Cr), X))]|]
< KEq, [|@2(Co)[wi (1. C) = @1 (C)| + [wa(t, €. 1) = D2(C),

which tends to 0 as ¢+ — oo by Assumption 8.1. The other claims can be derived
similarly.

Consider the limit potential ¥ given by
= 1= 2
Fu) = §|G2(M1)| .
By Assumption 6.1 (3), u; — % (u1) is continuous. Notice that
_ 1 - _ _ _
VF () = 3 2G2(u)V(G2(u1)) = G2(u1) Gy (uy).

Let £%°:S971 — R be defined by F°(ii1) = lim, .o F (rii;), which exists by
Assumption 8.1. We shall argue that % (1;) = 0 for all u; € R, by contradiction.
To that end, let us assume that % (1) 2 0 for some u;. Note that F is bounded by a
constant by Assumption 6.1 (3). Thus, either there is a local maximizer u} of F with
F (ut) > 0 or there is a local maximizer #* of ° with ¥ (ii¥) > 0.

First consider the case that ¥ has a local maximizer u} with & (u*) > 0. Under
Assumption 8.1, there exists § € (0, ¥ (u7)) arbitrarily small so that for Ss the con-
nected component of the set {u: ¥ (1) > ¥ (u7) — 8} that contains u7j, there is £ > 0
such that |VF (u1)] > & for all u; € dcl(Ss). Let T, be sufficiently large so that

for t > Ty, we have, for u; € dcl(Ss), |G1(u1) — G (¢, uy)| < S/,/S.?*:(u*f), which
implies
(G1(u1). G1(t,ur)) = |G — 1G] 1G1(ur) — Gy (2, up)]

£ Gy

8F (u7)

> |Gy (u1)* —
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IVF (u)l =
—2|52(u1)||G1(u1)|
_IVF@P  #

4% (uy) 4F (ut)’

VE

|G1(u1)|> —

(G.1)

where (a) is because Zf(uf) > 2F (uy) = |Go(uyp)|? for any u; € dcl(Ss) by local
maximality of u7 and continuity of . Also, we further enlarge Tp so that for t > T

and any u; € cl(Ss), |G2(u1) — Ga(t,uy)| < %,/f(u}‘) — &, and hence

Ga(t,u1) > Go(uy) — %\/ F(uf) -8

> Gz(ul)_%\/}:(ul) = GZ(UI)_%|GZ(UI)L G.2)

Gy(t,uy) < Ga(uy) + %,/ﬁ(u;‘) — 6
< éz(ul)+%\/3§(ul) = Gz(”1)+%|62(u1)|- (G.3)

Furthermore, notice that

d = _ 0
m Ga(w1(2,Cr)) = <G1(w1(t, C1))., Ewl(l, C1)>
= —ws(t, C1, 1)(G1(w1(t, C1)), G1(t,w1(t,C1))).  (G.4)

Let Q be the subset of £ consisting of ¢; where |w»(0,¢1, 1)| < |F(wy(0,¢1))]| + 1
for F given in Assumption 6.1 (2). The proof of Lemma E. 1 in fact shows that for any
¢t > 0 and any open subset B of R, there exists a positive mass of C; € Q; such
that wy (¢, C1) € B. In the following, we consider C; € Q1. We further divide the
argument into two cases: Gz(ui‘) > 0 and (_}2(u’1‘) < 0.

Let us consider the case that G, (u7) > 0. Then we can choose sufficiently small &
such that G, (u1) > 0 for all u; € cl(Ss). Furthermore, consider the scenario that there
exists T > Tp such that a positive mass of (w1 (7T, Cy1), wa(T, C1, 1)) with C; € Q
has wy (T, Cy) € Ss and w, (T, Cq, 1) < 0. Note that if wq (¢, C1) € cl(Sy),

0 _ _
sz(hcly 1) = —=Ga(t,wy(t,C1)) < —(Gz(wl([»cl)) - %|G2(w1(I,C1))|> <0

by equation (G.2). Define 77 = inf{t > T : w1(¢,Cy) ¢ Ss}. Thent +— w,(¢,Cq, 1) is
decreasing on ¢ € [T, T1). Let us argue that 77 = oo. Indeed, suppose 77 is finite. We
then have, by continuity, wi (71, Cy) € d¢cl(Ss) and wo (71, C1, 1) <w,(T,Cq,1) <O.
As such, %(_;2 (w1(T1, C1)) > 0 by equation (G.1) and (G.4). By continuity, for some
y > 0, we have & Go(wy(T; +¢,Cy)) > 0 forall ¢ € [0, y]. But then

Go(w1(Ty +1,C1)) = Go(w1(Ty, Cr)) > J2(F (uF) - §),
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and hence w1 (77 +t,Cq) € Ss for all t < y, contradicting the definition of 77. There-
fore, T} = oo, i.e.,fort > T and C; € 2 with wy (T, Cy) € Ss and wo(T,Cy,1) <0,
we have wi (¢, C1) € Ss, which implies

Ga(t, wy(t,Cy)) (Za) %Gz(wl(l, C)) = \/% F (wi(t, Cr)) > \/%(3‘?(“?) —4),

where (a) is by equation (G.2) and the fact G,(u;) > O for all u; € cl(Ss). In par-
ticular, there is a positive mass of (w1 (¢, C1), wa(t, C1, 1)) with G (¢, w1 (¢, C1)) >

,/(f(u’l‘) —8)/2 forall t > T. Noting that

CEL£(Y, 9. X))] = ~BlIGat w1, Co)P] ~ E[Ga (6, w10, C)P)
< —E[|Ga(t, w1 (t, C1)) |,

we obtain that %E[SE(Y , y(t, X))] is bounded above by a strictly negative constant
for all + > T, which is a contradiction since &£ is bounded below.

Next consider the scenario that for all # > Ty, the probability that wi (¢, C;) € Ss
and w,(t,Cy1,1) <0on C; € S~21 is zero. Let us argue that for any t > Ty and for
ae. C; € Q; with w1 (t, Cq) € S, we have wy (s, Cq) € Sg for all s € [Tp, t]. Indeed,
consider 7 and C; € € such that wy(t, Cy) € Sg and w1 (T’, Cy) ¢ Ss for some
T’ €[To,t). Lett' =sup{s € [T, 1] : w1(s,Cy) ¢ Ss} < t. By continuity, wy(t’,Cy) €
dcl(Ss), and so, by equation (G.1),

52

(G1(wi(t', C1)), G1(t', wi (', Cy))) > 437'(u’1‘)

By continuity, there exists ¢” € (¢/,¢) such that for all s € [¢/,¢"],

_ 52
Gi(wi(s,C1)),G1(s, w1(s, C > —2
(G1(wi(s,C1)), G1(s, wy(s, Cr))) 1007 %)
By definition of ¢/, we also have w; (s, Cy) € Ss and therefore wy(s, Cq1, 1) > 0 for
any s € (¢, t]. Then, by equation (G.4), %Gz(wl(s, Cy)) <Oforalls € (¢/,t"], and

therefore
Ga(w1(t", Cy)) < Ga(wi(t', Cy)) = \/2(1“;(@) —6),

where the equality follows from wy (', Cy) € dcl(Ss). However, this contradicts with
wy(t”, Cy) € Ss. Therefore, it holds that for any t > Ty , for a.e. C; € Q, with
wi(t, Cy) € Sg, wi(s, C1) € Sg and therefore w, (s, Cq, 1) > 0 for all s € [Ty, t].
Since wy (¢, C1) on C; € §21 has full support at any ¢ > 0, we have, for any ¢ty > Ty,
that there is a positive mass on C; € fZl such that wq(f, C;) € Ss, and hence, as
shown, wi(s, C1) € Sg and wa(s, C1, 1) > 0 for all s € [Ty, to]. Note that we have
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wa(To, C1, 1) < M(Tp) for some finite M(Ty) > 0 for Cy € Q, (which follows
from the fact |%w2(t, -, 1)] < K by Assumption 6.1(3) and that |w,(0, Cq, 1)| <
| F(w1(0,Cy1))| + 1 < K). Also note that for wy (s, C;) € Ss and s > Ty,

d
EwZ(S9 Cl? 1) = _GZ(S’ wl(S, Cl))

—~

< —% Ga(wi(s. Cy)) = —\/% F (wi(s, Cr)) < —\/%(TT(WD —9).

a strictly negative constant, where (a) is by equation (G.2) and the fact G,(u;) > 0
for all u; € cl(Ss). As such, for any ¢ty > T such that

M(To) ~ (1o — To) | 5(F )~ 8) <

there is a positive mass on C; € §21 such that firstly w, (s, C1, 1) > 0 for all s € [Ty, to]
and secondly there exists ¢ € [Ty, #p] in which

walt, Co.1) = M(Ty) — ¢~ To) | 5(F ) =) <0,

We again obtain a contradiction.

The case Gz(u’f) < 0 can be treated similarly, with the use of equation (G.2)
replaced by equation (G.3). Both cases lead to a contradiction, ruling out the possibil-
ity that there is a local maximizer u? of  with & (u*) > 0.

Next consider the case where # does not have any local maximizer in R¢ but Foo
has a local maximizer %} with F *(u}) > 0. Under Assumption 8.1 (and with the
same argument in the discussion that follows), there exists § € (0, % *° (u7)) arbitrarily
small so that for Ss the connected component of the set {u e R%: & (1) > F (uy)—0}
which contains ru7 for all r sufficiently large, there is £ > 0 such that IVF ()| > &
for all u € dcl(Ss). The rest of the argument can be repeated as before to yield a
contradiction.

In short, we have shown that ¥ (1) = %|Gz (u1)|?> = 0 and, equivalently,

Ez[32Z(Y, 7(X)) 95 (H2(X g1 ((u1, X)) = 0

for all u; € R?. The remaining proof follows identically as in the proof of Theo-
rem 6.2. |
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