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Abstract. The goal of this article is to explain a precise sense in
which Knörrer periodicity in commutative algebra and Bott period-
icity in topological K-theory are compatible phenomena. Along the
way, we prove an 8-periodic version of Knörrer periodicity for real iso-
lated hypersurface singularities, and we construct a homomorphism
from the Grothendieck group of the homotopy category of matrix
factorizations of a complex (real) polynomial f into the topological
K-theory of its Milnor fiber (positive or negative Milnor fiber).
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1 Introduction

Let k be a field. In this article, we study hypersurface rings of the form
k[x1, . . . , xn]/(f) from both an algebraic and topological point of view. An
important algebraic invariant of such a ring is its homotopy category of ma-
trix factorizations, which we denote by [MF(k[x1, . . . , xn], f)] (we recall the
definition of this category in Section 2.1.1). Matrix factorizations were intro-
duced by Eisenbud in [Eis80] as a tool for studying the homological behavior
of modules over a hypersurface ring. More recently, matrix factorizations have
begun appearing in a wide variety of contexts, for instance homological mirror
symmetry (e.g. [KKP08], by Katzarkov-Kontsevich-Pantev) and knot theory
(e.g. [KR08], by Khovanov-Rozansky). In the present work, we continue the
study of an interplay between matrix factorizations and topological K-theory
that was begun in the inspiring paper [BvS12] of Buchweitz-van Straten.
A fundamental result in the theory of matrix factorizations is Knörrer’s peri-
odicity theorem:

Theorem 1.1 ([Knö87] Theorem 3.1). Suppose k is algebraically closed and
char(k) 6= 2. If f ∈ (x1, . . . , xn) ⊆ k[[x1, . . . , xn]], there is an equivalence of
categories

[MF(k[[x1, . . . , xn]], f)]
∼=
−→ [MF(k[[x1, . . . , xn, u, v]], f + u2 + v2)].

This result plays an important role in the classification of local hypersurface
rings of finite maximal Cohen-Macaulay type; we refer the reader to Chapter 9
of Leuschke-Wiegand’s text [LW12] for details. Knörrer’s periodicity theorem
also demonstrates that one cannot recover f from its homotopy category of
matrix factorizations.
The main goal of this article is explain a precise sense in which Knörrer peri-
odicity is a manifestation of Bott periodicity in topological K-theory. In Sec-
tion 2, we motivate this project with a proof of an 8-periodic version of Knörrer
periodicity for isolated hypersurface singularities over the real numbers:

Theorem 1.2. Let f ∈ (x1, . . . , xn) ⊆ R[x1, . . . , xn], and sup-
pose R[x1, . . . , xn]/(f) has an isolated singularity at the origin (i.e.

dimR
R[[x1,...,xn]]

( ∂f
∂x1

,..., ∂f
∂xn

)
< ∞). Then there exists an equivalence of triangulated

categories

[MF(R[[x1, . . . , xn]], f)]
∼=
−→ [MF(R[[x1, . . . , xn, u1, . . . , u8]], f − u21 − · · · − u28)].
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We point out that the “period” here is exactly 8; that is, for 1 6 l < 8, it can
happen that

[MF(R[[x1, . . . , xn]], f)] ≇ [MF(R[[x1, . . . , xn, u1, . . . , ul]], f − u21 − · · · − u2l )].

Our proof relies heavily on machinery developed by Dyckerhoff and Toën in
[Dyc11] and [Toë07]. This result draws a distinction between the maximal
Cohen-Macaulay representation theory of hypersurface rings with ground field
R and those whose ground field is algebraically closed and has characteristic not
equal to 2, since the latter exhibit 2-periodic Knörrer periodicity. The maximal
Cohen-Macaulay representation theory of hypersurface rings with ground field
R does not seem to be well-studied, and we hope this work motivates further
investigation in this direction.
The presence of 2- and 8-periodic versions of Knörrer periodicity over C and
R, respectively, suggests the possibility of a compatibility between Knörrer
periodicity and Bott periodicity. Such a compatibility statement is formulated
and proved in Section 3. We state here the version of this result over C; a
version over R is also proven in Section 3 (Theorems 3.32 and 3.33).

Theorem 1.3. Suppose f ∈ (x1, . . . , xn) ⊆ Q := C[x1, . . . , xn] and either

Q/(f) has an isolated singularity at the origin (i.e. dimC
C[[x1,...,xn]]

( ∂f
∂x1

,..., ∂f
∂xn

)
<∞) or

f is quasi-homogeneous. Then there exists a commutative diagram

K0[MF(Q, f)]
φC

f
//

K

��

KU0(Bǫ, Ff )

β

��
KU0(Bǫ, Ff )⊗KU0(Bǫ′ , Fu2+v2)

STKU

��
K0[MF(Q[u, v], f + u2 + v2)]

φC

f+u2+v2
// KU0(Bǫ′′ , Ff+u2+v2)

where Ff , Fu2+v2 , and Ff+u2+v2 denote the Milnor fibers of f , u2 + v2, and
f + u2 + v2; ǫ, ǫ′, ǫ′′ > 0; Bǫ, Bǫ′ , and Bǫ′′ are closed balls of radius ǫ, ǫ′, and
ǫ′′ in Cn, C2, and Cn+2, respectively; K is induced by the Knörrer functor;
β is the Bott periodicity isomorphism; and STKU is given by the product in
relative K-theory followed by the inverse of the map induced by pullback along
the Sebastiani-Thom homotopy equivalence.

The Sebastiani-Thom homotopy equivalence to which we refer in Theorem 1.3
is discussed in Section 3.1.2.
The key construction in this section yields the horizontal maps above; specifi-
cally, given a polynomial f over the complex (real) numbers, we build a map
ΦC

f (ΦR

f ) that assigns to a matrix factorization of a complex (real) polynomial
f a class in the topological K-theory of the Milnor fiber (positive or nega-
tive Milnor fiber) of f ; this map first appeared in [BvS12] in the setting of
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complex isolated hypersurface singularities. We prove that this construction
induces a map φCf (φRf ) on the Grothendieck group of the homotopy category
of matrix factorizations of f , and we show that it recovers the Atiyah-Bott-
Shapiro construction when f is a non-degenerate quadratic over R or C. The
Atiyah-Bott-Shapiro construction, introduced in Part III of [ABS64], provides
the classical link between Z/2Z-graded modules over Clifford algebras and vec-
tor bundles over spheres; the maps φCf and φRf we discuss in Section 3 can be
thought of as providing a more general link between algebra and topology.
Acknowledgements. This work is adapted from my Ph.D. thesis at the
University of Nebraska-Lincoln. I must first of all thank my thesis advisor,
Mark E. Walker, for his support during my time as a graduate student at
Nebraska. I thank Luchezar Avramov and Brian Harbourne for their comments
on preliminary versions of this paper, and also Ragnar Buchweitz, Jesse Burke,
Michael Hopkins, and Claudia Miller for valuable conversations with regard to
this work. I owe special thanks to Hai Long Dao for pointing out to me that one
may use Proposition 3.3 in [Dao13] to prove Proposition 3.26 below. I would
also like to gratefully acknowledge support from NSF Award DMS-0966600 and
the University of Nebraska-Lincoln MCTP grant (NSF Award DMS-0838463).
Finally, I thank the anonymous referee for his or her helpful suggestions.

2 Knörrer periodicity over R

In this section, we recall some foundational material concerning matrix fac-
torizations in commutative algebra, and we exhibit an 8-periodic version of
Knörrer periodicity for matrix factorization categories associated to isolated
hypersurface singularities over the real numbers.

2.1 Matrix factorization categories

We provide some background on matrix factorization categories. Fix a commu-
tative algebra Q over a field k and an element f of Q. Henceforth, when we use
the term “dg category”, we mean “k-linear differential Z/2Z-graded category”.
We cite results on differential Z-graded categories from [Toë11] several times
throughout this section; we refer the reader to Section 5.1 of [Dyc11] for a
discussion as to how one may reformulate the results in [Toë11] so that they
apply to the Z/2Z-graded setting.

2.1.1 Definitions and some properties

Definition 2.1. The dg category MF(Q, f) of matrix factorizations of f over
Q is given by the following:
Objects in MF(Q, f) are pairs (P, d), where P is a finitely generated projective
Z/2Z-graded Q-module, and d is an odd-degree endomorphism of P such that
d2 = f · idP . Henceforth, we will often denote an object (P, d) in MF(Q, f) by
just P .
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The morphism complex of a pair of matrix factorizations P, P ′, which we will
denote by HomMF(P, P

′), is the Z/2Z-graded module of Q-linear maps from P
to P ′ equipped with the differential ∂ given by

∂(α) = d′ ◦ α− (−1)|α|α ◦ d

for homogeneous maps α : P → P ′.

We will often express an object P in MF(Q, f) with the notation

P1
d1−

�===�−
d0

P0,

where P1, P0 are the odd and even degree summands of P , and d1, d0 are the
restrictions of d to P1 and P0, respectively.
A degree 0 morphism α in MF(Q, f) can be represented by a diagram of the
following form:

P1
d1−−−−→ P0

d0−−−−→ P1

α1

y α0

y
yα1

P ′
1

d′
1−−−−→ P ′

0

d′
0−−−−→ P ′

1

It is straightforward to check that α is a cycle if and only if this diagram
commutes. In fact, if f ∈ Q is a non-zero-divisor, it is easy to see that the left
square commutes if and only if the right square commutes.

Remark 2.2. If P1 and P0 are free and f is non-zero-divisor, P1 and P0 must
have the same rank.

Define Z0MF(Q, f) to be the category with the same objects as MF(Q, f) and
with morphisms given by the degree 0 cycles in MF(Q, f). When Q is regular
with finite Krull dimension and f is a regular element of Q (i.e. f is a non-unit,
non-zero-divisor), Z0MF(Q, f) is an exact category with the evident family of
exact sequences ([Orl03] Section 3.1).
The homotopy category, [MF(Q, f)], of the dg category MF(Q, f) is defined to
be the quotient of Z0MF(Q, f) by morphisms that are boundaries in MF(Q, f).
That is, objects in [MF(Q, f)] are the same as those of MF(Q, f), and the
morphisms in [MF(Q, f)] between objects P, P ′ are classes inH0HomMF(P, P

′).

Definition 2.3. We call a matrix factorization trivial if it is a direct sum of
matrix factorizations that are isomorphic in Z0MF(Q, f) to either

E
f ·idE−

�=====�−
idE

E

or
E

idE−
�=====�−

f ·idE

E

for some finitely generated projective Q-module E.
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The following result gives an alternative characterization for when a morphism
in Z0MF(Q, f) is a boundary in MF(Q, f); the straightforward proof is omitted.

Proposition 2.4. A morphism α : P → P ′ in Z0MF(Q, f) is a boundary
in MF(Q, f) if and only if it factors through a trivial matrix factorization in
Z0MF(Q, f).

We conclude this section with a technical result that will be used in the proof
of Proposition 3.19:

Proposition 2.5. Let P = (P1
d1−

�===�−
d0

P0) be a matrix factorization of f over

Q. Assume f is a non-zero-divisor. Then the following are equivalent:

(1) coker(d1) is isomorphic to L/fL for some projective Q-module L.

(2) There exists a trivial matrix factorization E and a matrix factorization
E′ that is isomorphic in Z0MF(Q, f) to one of the form

F
idF−

�====�−
f

F

such that P ⊕ E′ is isomorphic to E in Z0MF(Q, f).

We will use the following general fact about idempotent complete categories.
We suspect that this result is well-known to experts; we omit the purely formal
proof.

Lemma 2.6. Let C be an idempotent complete additive category, and let E be a
collection of objects in C that is

• closed under isomorphisms,

• closed under finite coproducts, and

• closed under taking summands; that is, whenever X is an object in C such
that idX factors through an object in E, X is an object in E.

Denote by L the quotient of C by those morphisms that factor through an object
in E. If X and Y are objects in C, their images in L are isomorphic if and
only if there exist objects EX , EY in E such that

X ⊕ EX
∼= Y ⊕ EY .

We now prove Proposition 2.5:

Proof. (2) ⇒ (1): Since the cokernel of d1 is isomorphic to the cokernel of

d1 ⊕ idF : P1 ⊕ F → P0 ⊕ F,

we may assume P is trivial. In this case, the result is obvious.
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(1) ⇒ (2): Choose a projective Q-module L such that there exists an isomor-
phism

coker(d1)
∼=
−→ L/fL.

We have Q-projective resolutions

0 → P1
d1−→ P0 → coker(d1) → 0

0 → L
f
−→ L→ L/fL→ 0

Thus, there exist maps

βi : Pi → L, γi : L→ Pi

for i = 0, 1 making the following diagrams commute:

0 −−−−→ P1
d1−−−−→ P0 −−−−→ coker(d1) −−−−→ 0

β1

y β0

y
y∼=

0 −−−−→ L
f

−−−−→ L −−−−→ L/fL −−−−→ 0

0 −−−−→ L
f

−−−−→ L −−−−→ L/fL −−−−→ 0

γ1

y γ0

y
y∼=

0 −−−−→ P1
d1−−−−→ P0 −−−−→ coker(d1) −−−−→ 0

Hence, we have maps
hP : P0 → P1, hL : L→ L

such that
γ1 ◦ β1 − idP1

= hP ◦ d1, γ0 ◦ β0 − idP0
= d1 ◦ hP .

β1 ◦ γ1 − idL = fhL, β0 ◦ γ0 − idL = fhL.

We have commutative diagrams

P1
d1 //

hP ◦d1

��

P0

hP

��

L
f ·idL //

f ·hL

��

L

hL

��
P1

idP1 //

idP1

��

P1

d1

��

L
idL //

idL

��

L

f ·idL

��
P1

d1 // P0 L
f ·idL

// L

Documenta Mathematica 21 (2016) 1459–1501



1466 Michael K. Brown

Denote by E the collection of matrix factorizations of f over Q isomorphic in
Z0MF(Q, f) to a matrix factorization of the form

E
idE−

�====�−
f

E.

Notice that Z0MF(Q, f) is an idempotent complete additive category, and E
is closed under direct sums and direct summands in Z0MF(Q, f). Letting L
denote the quotient of Z0MF(Q, f) by those morphisms that factor through an
object in E , we have that

(P1
d1−

�===�−
d0

P0) ∼= (L
f−

�====�−
idL

L)

in L. The result now follows from Lemma 2.6.

2.1.2 Triangulated structure

Suppose Q is regular with finite Krull dimension and f is a regular element of
Q. A feature of the homotopy category [MF(Q, f)] is that it may be equipped
with a triangulated structure in the following way ([Orl03] Section 3.1):
The shift functor maps the object

P = (P1
d1−

�===�−
d0

P0)

to the object

P [1] = (P0
−d0−

�====�−
−d1

P1).

Given a morphism α : (P1
d1−

�===�−
d0

P0) → (P ′
1

d′
1−

�===�−
d′
0

P ′
0) in Z0MF(Q, f), the

mapping cone of α is defined as follows:

cone(α) = (P ′
0 ⊕ P1



d
′
0 α1

0 −d1





−
�===========�−

d
′
1 α0

0 −d0





P ′
1 ⊕ P0)

There are canonical morphisms P ′ → cone(α) and cone(α) → P [1] in
Z0MF(Q, f). Taking the distinguished triangles in [MF(Q, f)] to be the trian-
gles isomorphic in [MF(Q, f)] to those of the form

P
α
−→ P ′ → cone(α) → P [1],

[MF(Q, f)] may be equipped with the structure of a triangulated category.
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The Grothendieck group, K0[MF(Q, f)], of the triangulated category
[MF(Q, f)] is defined to be the free abelian group generated by isomor-
phism classes of [MF(Q, f)] modulo elements of the form [P1] − [P2] + [P3],
where P1, P2, and P3 fit into a distinguished triangle in the following way:

P1 → P2 → P3 → P1[1].

Remark 2.7. The category MF(Q, f) is not always triangulated in the dg sense
(see Section 4.4 of [Toë11] for the definition of a triangulated dg category).
When MF(Q, f) is triangulated in the dg sense, the induced triangulated struc-
ture on [MF(Q, f)] agrees with the triangulated structure just described.

Remark 2.8. When Q is a regular local ring and f is a regular element of Q,
one has an equivalence of triangulated categories

[MF(Q, f)]
∼=
−→ MCM(Q/(f)),

where MCM(Q/(f)) denotes the stable category of maximal Cohen-Macaulay
(MCM) modules over the ring Q/(f). The stable category of MCM modules is
obtained by taking the quotient of the category of MCM modules over Q/(f)
by those morphisms that factor through a projective Q/(f)-module. The above
equivalence is given, on objects, by

(P1
d1−

�===�−
d0

P0) 7→ coker(d1).

Matrix factorizations were first defined by Eisenbud in [Eis80]; this interplay
between matrix factorizations and MCM modules over hypersurface rings pro-
vided the original motivation for the study of matrix factorization categories.

2.1.3 Stabilization

Assume now that Q is a regular local ring of Krull dimension n, and suppose f
is a regular element of Q. Denote by Db(Q/(f)) the bounded derived category
of Q/(f), and set Perf(Q/(f)) to be the full subcategory of Db(Q/(f)) given
by perfect complexes. Perf(Q/(f)) is a thick subcategory of Db(Q/(f)); define
Db(Q/(f)) to be the Verdier quotient of Db(Q/(f)) by Perf(Q/(f)). In [Buc86],
Buchweitz calls this quotient the stabilized derived category of Q/(f).
By [Buc86], the functor

MCM(Q/(f)) → Db(Q/(f))

that sends an MCM module M to the complex with M concentrated in degree
0 is a triangulated equivalence. Hence, composing with the equivalence in
Remark 2.8, one has an equivalence

[MF(Q, f)] → Db(Q/(f))
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Following [Dyc11], given an object C in Db(Q/(f)), we denote by Cstab the
isomorphism class in [MF(Q, f)] corresponding to C under the above equiva-
lence (“stab” stands for “stabilization”). In particular, thinking of the residue
field k of Q/(f) as a complex concentrated in degree 0, we may associate to k
an isomorphism class kstab in [MF(Q, f)]. We now construct an object Ef in
MF(Q, f) that represents kstab; this construction appears in [Dyc11]. Choose a
regular system of parameters x1, . . . , xn for Q, and consider the Koszul complex

(

n⊕

i=0

∧i
Qn, s0)

as a Z/2Z-graded complex of free Q-modules with even (odd) degree piece given
by the direct sum of the even (odd) exterior powers of Qn. Here, s0 denotes
the Z/2Z-folding of the Koszul differential associated to x1, . . . , xn. Choose an
expression of f ∈ Q of the form

f = g1x1 + · · ·+ gnxn.

Fix a basis e1, . . . , en of Qn, and set s1 to be the odd-degree endomorphism of⊕n
i=0∧

i
Qn given by exterior multiplication on the left by g1e1 + · · · + gnen.

Define

Ef := (

n⊕

i=0

∧i
Qn, s0 + s1).

It is easy to check that Ef is a matrix factorization of f . By Corollary 2.7
in [Dyc11], Ef represents kstab in [MF(Q, f)]. In particular, Ef does not de-
pend on the choice of regular system of parameters x1, . . . , xn or coefficients
g1, . . . , gn up to homotopy equivalence. Henceforth, we shall denote the dg
algebra EndMF(Ef ) by A(Q,f).

2.2 The tensor product of matrix factorizations

Let k be a field. We begin this section with a technical definition:

Definition 2.9. Suppose Q is a commutative algebra over k and f ∈ Q. If
the pair (Q, f) satisfies

• Q is essentially of finite type over k

• Q is equidimensional of dimension n

• The module Ω1
Q/k of Kähler differentials is locally free of rank n

• The zero locus of df ∈ Ω1
Q/k is a 0-dimensional scheme supported on a

unique closed point m of Spec(Q) with residue field k and f ∈ m

we shall call the pair Q/(f) an isolated hypersurface singularity, or IHS.
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Remark 2.10. Our IHS condition above is precisely condition (B) in Section 3.2
of [Dyc11]. As noted in loc. cit., if Q/(f) and Q′/(f ′) are IHS, Q ⊗k Q

′/(f ⊗
1 + 1⊗ f ′) is as well.

Suppose Q and Q′ are commutative algebras over k, f ∈ Q, and f ′ ∈ Q′. Given
objects P and P ′ in MF(Q, f), MF(Q′, f ′), one can form their tensor product
over k:

((P1⊗kP
′
0)⊕(P0⊗kP

′
1)


 d1 ⊗ idP ′

0
idP0

⊗ d′1
−idP1

⊗ d′0 d0 ⊗ idP ′
1




−
�=====================�−

d0 ⊗ idP ′
0

−idP1
⊗ d′1

idP0
⊗ d′0 d1 ⊗ idP ′

1





(P0⊗kP
′
0)⊕(P1⊗kP

′
1)).

We will denote the tensor product by P ⊗MF P
′. This construction first ap-

peared in [Yos98]; it can be thought of as a Z/2Z-graded analogue of the tensor
product of complexes. It is straightforward to check that P ⊗MFP

′ is an object
in MF(Q⊗kQ

′, f⊗1+1⊗f ′). In fact, setting f⊕f ′ := f⊗1+1⊗f ′ ∈ Q⊗kQ
′,

and noting that there is a canonical map of complexes

HomMF(P,L)⊗k HomMF(P
′, L′) → HomMF(P ⊗MF P

′, L⊗MF L
′),

we have the following:

Proposition 2.11. There is a dg functor

STMF : MF(Q, f)⊗k MF(Q′, f ′) → MF(Q⊗k Q
′, f ⊕ f ′)

that sends an object (P, P ′) to P ⊗MF P
′.

Remark 2.12. It is straightforward to verify that STMF induces a pairing

K0[MF(Q, f)]⊗K0[MF(Q′, f ′)] → K0[MF(Q ⊗k Q
′, f ⊕ f ′)].

Remark 2.13. The “ST” in the name STMF stands for “Sebastiani-Thom”,
since this tensor product operation is related to the Sebastiani-Thom homotopy
equivalence discussed in Section 3.1.2. A precise sense in which the tensor prod-
uct of matrix factorizations is related to the Sebastiani-Thom homotopy equiv-
alence is illustrated by the proof of Proposition 3.29 below; see Remark 3.31
for further details.

Now, suppose Q/(f) and Q′/(f ′) are IHS. Set Q′′ := Q⊗k Q
′. We will denote

by Q̂ the m-adic completion of Qm, where m is as in the definition of IHS.
Define Q̂′ and Q̂′′ similarly, and let

φ : Q̂⊗k Q̂′ → Q̂′′

denote the canonical ring homomorphism. φ induces a dg functor

MF(φ) : MF(Q̂ ⊗k Q̂′, f ⊕ f ′) → MF(Q̂′′, f ⊕ f ′).

Set ŜTMF to be the composition of MF(φ) with the tensor product functor

MF(Q̂, f)⊗k MF(Q̂′, f ′) → MF(Q̂⊗k Q̂′, f ⊕ f ′).
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Proposition 2.14. If Q/(f) and Q′/(f ′) are IHS,

ŜTMF : MF(Q̂, f)⊗k MF(Q̂′, f ′) → MF(Q̂′′, f ⊕ f ′)

is a Morita equivalence of dg categories.

Remark 2.15. We emphasize that Proposition 2.14 is really a straightforward
application of several results in [Dyc11]; we include a proof for completeness.
We refer the reader to Section 4.4 of [Toë11] for the definition of a Morita
equivalence of dg categories.

Proof. Let m and m
′ be the maximal ideals of Q and Q′ arising in Definition 2.9.

Suppose Qm and Q′
m

′ have Krull dimensions n and m, respectively. Qm and
Q′

m
′ are regular local rings; choose regular systems of parameters x1, . . . , xn

and y1, . . . , ym in Qm and Q′
m

′ , and choose expressions

f = g1x1 + · · ·+ gnxn

f ′ = h1y1 + · · ·+ hmym

of f and f ′. Use these expressions to construct the dga’s A(Qm,f) and A(Q′
m

′ ,f
′),

as in Section 2.1.3.
Note that x1, . . . , xn and y1, . . . , ym form regular systems of parameters in Q̂
and Q̂′ as well, so we may use these expressions to construct A(Q̂,f) and A(Q̂′,f ′)

.

Also, x1 ⊗ 1, . . . , xn ⊗ 1, 1⊗ y1, . . . , 1⊗ ym is a regular system of parameters in
Q′′

m
′′ , where m

′′ := m⊗ 1 + 1⊗m
′, so we may use the expression

f ⊕ f ′ = (g1x1 ⊗ 1) + · · ·+ (gnxn ⊗ 1) + (1⊗ h1y1) + · · ·+ (1⊗ hmym)

to construct A(Q′′
m

′′ ,f⊕f ′) and A(Q̂′′,f⊕f ′)
.

By Section 6.1 of [Dyc11], we have a quasi-isomorphism

F : A(Qm,f) ⊗k A(Q′
m

′ ,f
′)

∼=
−→ A(Q′′

m
′′ ,f⊕f ′).

We also have a canonical map

G : A(Q̂,f) ⊗k A(Q̂′,f ′)
→ A

(Q̂′′,f⊕f ′)
.

By the proof of Theorem 5.7 in [Dyc11], the inclusions

A(Qm,f) →֒ A(Q̂,f)

A(Q′
m

′ ,f
′) →֒ A

(Q̂′,f ′)

A(Q′′
m

′′ ,f⊕f ′) →֒ A(Q̂′′,f⊕f ′)

are all quasi-isomorphisms. Since a tensor product of Morita equivalences is
again a Morita equivalence ([Toë11] Section 4.4), it follows that the map

A(Qm,f) ⊗k A(Q′
m

′ ,f
′) → A(Q̂,f) ⊗k A(Q̂′,f ′)
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is a Morita equivalence.

We have the following commutative square:

A(Qm,f) ⊗k A(Q′
m

′ ,f
′)

//

��

A(Q̂,f) ⊗k A(Q̂′,f ′)

G

��
A(Q′′

m
′′ ,f⊕f ′)

// A
(Q̂′′,f⊕f ′)

It follows that G is a Morita equivalence.

One may think of a dga as a dg category with a single object. Adopting this
point of view, we have inclusion functors

i : A(Q̂,f) →֒ MF(Q̂, f)

j : A(Q̂′,f ′) →֒ MF(Q̂′, f ′)

l : A
(Q̂′′,f⊕f ′)

→֒ MF(Q̂′′, f ⊕ f ′)

Combining Theorem 5.2 and Lemma 5.6 in [Dyc11], we conclude that i, j, and
l are Morita equivalences. In particular, we have that

i⊗ j : A(Q̂,f) ⊗k A(Q̂′,f ′)
→ MF(Q̂, f)⊗k MF(Q̂′, f ′)

is a Morita equivalence.

Finally, consider the following commutative diagram:

A(Q̂,f) ⊗k A(Q̂′,f ′)

i⊗j
//

G

��

MF(Q̂, f)⊗k MF(Q̂′, f ′)

ŜTMF

��

A(Q̂′′,f⊕f ′)

l // MF(Q̂′′, f ⊕ f ′)

Since the left-most vertical map and both horizontal maps are Morita equiva-
lences, ŜTMF is as well.

Remark 2.16. Using Theorem 4.11 of [Dyc11] along with a similar argument to
the one above, one may show that, under the assumptions of Proposition 2.14,
the functor

MF(Q, f)⊗k MF(Q′, f ′) → MF(Q′′, f ⊕ f ′)

given by tensor product of matrix factorizations is also a Morita equivalence.
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2.3 Matrix factorizations of quadratics

Fix a field k such that char(k) 6= 2 and a finite-dimensional vector space V
over k. Let q : V → k be a quadratic form, and let Cliffk(q) denote the
Clifford algebra associated to q. Cliffk(q) is a Z/2Z-graded k-algebra; let
modZ/2Z(Cliffk(q)) denote the category of finitely generated Z/2Z-graded left
modules over Cliffk(q). Henceforth, when we refer to a module over a Clifford
algebra, we will always mean it to be a left module.
Assume q is non-degenerate, and choose a basis {e1, . . . , en} of V with respect
to which q is diagonal ; that is,

q = a1x
2
1 + · · ·+ anx

2
n ∈ S2(V ∗)

where the xi comprise the dual basis corresponding to the ei, and the ai are
nonzero elements of k. Denote by Q the localization of S(V ∗) at the ideal
(x1, . . . , xn).
The following theorem, due to Buchweitz-Eisenbud-Herzog, yields a relation-
ship between Clifford modules and matrix factorizations of non-degenerate
quadratic forms:

Theorem 2.17 ([BEH87]). There is an equivalence of k-linear categories

modZ/2Z(Cliffk(q))
∼=
−→ [MF(Q̂, q)].

Denote by Θ the explicit construction of this equivalence described in the proof
of Theorem 14.7 in [Yos90].

Remark 2.18. The inclusion

k[x1, . . . , xn] →֒ Q̂

induces an equivalence

[MF(k[x1, . . . , xn], qn)]
∼=
−→ [MF(Q̂, qn)].

To see this, we first recall that every matrix factorization of qn over Q̂ is isomor-
phic in [MF(Q̂, qn)] to one with (linear) polynomial entries ([Yos90] Proposition
14.3); hence, the functor is essentially surjective.
Also, one has a commutative diagram

[MF(Q, qn)]
∼= //

��

MCM(Q/(qn))

��

[MF(Q̂, qn)]
∼= // MCM(Q̂/(qn))

The morphism sets in MCM(Q/(qn)) are Artinian modules, and hence com-
plete. Thus, the functor on the right is fully faithful, and so the functor on the
left is as well.
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It now follows from Theorem 4.11 in [Dyc11] that the functor

[MF(k[x1, . . . , xn], qn)] → [MF(Q̂, qn)]

is fully faithful.

Suppose q′ : W → k is another non-degenerate quadratic form; choose a basis
of W with respect to which q′ is diagonal, and let y1, . . . , ym denote the corre-
sponding basis of W ∗. As above, we may think of q′ as an element of S2(W ∗).
Set Q′ to be the localization of S(W ∗) at the ideal (y1, . . . , ym).
It is well-known that the Z/2Z-graded tensor product of Cliffk(q) and Cliffk(q

′)
over k is canonically isomorphic to Cliffk(q ⊕ q′). Further, by Remark 1.3 in
[Yos98], the Z/2Z-graded tensor product of Clifford modules is compatible,
via this canonical isomorphism and the equivalence in Theorem 2.17, with the
tensor product STMF in Proposition 2.11. That is, one has a commutative
diagram of k-linear categories

modZ/2Z(Cliffk(q))×modZ/2Z(Cliffk(q
′)) //

Θ×Θ

��

modZ/2Z(Cliffk(q ⊕ q′))

Θ

��
[MF(Q, q)]× [MF(Q′, q′)]

STMF // [MF(Q⊗k Q
′, q ⊕ q′)]

Let C be a rank 1 free Z/2Z-graded Cliffk(q)-module. If dim(V ) = 1 and
q = x2, it is easy to check that the isomorphism class of Θ(C) is kstab, where
kstab is as defined in Section 2.1.3. Further, Eq ⊗MF Eq′

∼= Eq⊕q′ , where Eq,
Eq′ , and Eq⊕q′ are as in Section 2.1.3 ([Dyc11] Section 6.1). Thus, we have:

Proposition 2.19. If ai = 1 for 1 6 i 6 n, the isomorphism class of Θ(C) is
kstab.

2.4 Periodicity

Following [Dyc11], given a commutative algebraQ over a field k and an element
f of Q, we define MF∞(Q, f) to be the dg category of possibly infinitely-
generated matrix factorizations; that is, objects of MF∞(Q, f) are defined in
the same way as MF(Q, f), except the projective Z/2Z-graded Q-module P
need not be finitely generated.
A version of Knörrer periodicity (Theorem 1.1) for isolated hypersurface sin-
gularities may be deduced from the following proposition:

Proposition 2.20. Suppose Q and Q′ are commutative algebras over a field
k. Let f ∈ Q and f ′ ∈ Q′, and suppose Q/(f) and Q′/(f ′) are IHS. If there
exists an object X in MF(Q′, f ′) such that

(a) X is a compact generator of [MF∞(Q′, f ′)], and

(b) the inclusion k →֒ EndMF(Q̂′,f ′)(X) is a quasi-isomorphism
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then the dg functor

KX : MF(Q̂, f) → MF(Q̂⊗k Q′, f ⊕ f ′)

given by
P 7→ P ⊗MF X

on objects and
α 7→ α⊗ idX

on morphisms is a quasi-equivalence.

Proof. By Theorems 4.11, 5.1, and 5.7 in [Dyc11], the inclusion

End
MF(Q̂′,f ′)

(X) →֒ MF(Q̂′, f ′)

is a Morita equivalence. We have a chain of Morita equivalences

MF(Q̂, f)⊗k k →֒ MF(Q̂, f)⊗k EndMF(Q̂′,f ′)
(X) →֒ MF(Q̂, f)⊗k MF(Q̂′, f ′).

Composing with ŜTMF, Proposition 2.14 yields a Morita equivalence

MF(Q̂, f) → MF(Q̂⊗k Q′, f ⊕ f ′).

This composition is clearly the functor KX ; thus, KX is a Morita equivalence.

Since both MF(Q̂, f) and MF(Q̂⊗k Q′, f ⊕ f ′) are triangulated in the dg sense
by Lemma 5.6 in [Dyc11], we may apply Theorem 3.2.1 in [Toë11] and Theorem
1.2.10 in [Hov07] to conclude that KX is a quasi-equivalence.

To deduce a version of Knörrer periodicity for isolated hypersurface singular-
ities, assume k to be an algebraically closed field such that char(k) 6= 2, set
Q′ = k[u, v] and f ′ = u2 + v2, and take X to be the matrix factorization

k[u, v]
u+iv−

�=====�−
u−iv

k[u, v].

This is the approach taken in Section 5.3 of [Dyc11].
We point out that k is not assumed to be algebraically closed in Proposi-
tion 2.20, and no assumptions on the characteristic of k are made, either.
In particular, we may use Proposition 2.20 to prove an 8-periodic version of
Knörrer periodicity over R (this result implies Theorem 1.2 from the introduc-
tion):

Theorem 2.21. Suppose Q is an R-algebra. Let f ∈ Q, and suppose Q/(f)
is IHS. Set Q′ := R[u1, . . . , u8]. Then there exists a matrix factorization X of
−u21 − · · · − u28 over Q′ such that the dg functor

MF(Q̂, f) → MF(Q̂⊗R Q′, f − u21 − · · · − u28)
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given by
P 7→ P ⊗MF X

on objects and
α 7→ α⊗ idX

on morphisms is a quasi-equivalence.

Remark 2.22. One may replace −u21 − · · · − u28 with u21 + · · ·+ u28 and obtain
a similar result; the proof is the same.

Proof. Set q := −u21− · · ·− u28 ∈ Q′. We equip the matrix algebra Mat16(R) of
16×16 of matrices over R with a Z/2Z-grading in the following way: A = (aij)
is homogeneous of even degree if aij = 0 whenever i + j is odd, and A is
homogeneous of odd degree if aij = 0 whenever i + j is even. By Proposition
V.4.2 in [Lam05],

CliffR(q) ∼= Mat16(R)

as Z/2Z-graded algebras. In particular, by Theorem 2.17,

[MF(Q̂′, q)] ∼= modZ/2Z(Mat16(R)),

where the right hand side is the category of finitely generated Z/2Z-graded left
Mat16(R)-modules. Let M ∈ modZ/2Z(Mat16(R)) be the module consisting of
elements of Mat16(R) with nonzero entries only in the first column. Recall
that, by Remark 2.18, the canonical map

[MF(Q′, q)] → [MF(Q̂′, q)]

is an equivalence; let X be an object of [MF(Q′, q)] corresponding to M .
Let m := (u1, . . . , u8) ⊆ Q′, and let Eq ∈ MF(Q′

m
, q) be as in Section 2.1.3.

Notice that, by Proposition 2.19, (X ⊕ X [1])⊕8 ∼= Eq in [MF(Q′
m
, q)]. In

particular, it follows from Theorems 4.1 and 4.11 of [Dyc11] thatX is a compact
generator of [MF∞(Q′, q)].
Since EndMat16(R)(M) ∼= R as Z/2Z-gradedR-algebras, where R is concentrated
in even degree, we have H0(EndMF(X)) ∼= R. We now show H1(EndMF(X)) =
0. By Section 5.5 of [Dyc11], H0(EndMF(Eq))⊕H1(EndMF(Eq)) is isomorphic,
as a Z/2Z-graded R-vector space, to CliffR(q), and soH1(EndMF(Eq)) has rank
128. Also, we have isomorphisms

H1(EndMF(Eq)) ∼= H1(EndMF((X ⊕X [1])⊕8))

∼= H0(EndMF(X))128 ⊕H1(EndMF(X))128.

Thus, H1(EndMF(X)) = 0, and so the inclusion

R →֒ EndMF(X)

is a quasi-isomorphism. Now apply Proposition 2.20.

Remark 2.23. Theorem 2.21 implies the existence of a Knörrer-type periodicity
for matrix factorizations over R of period at most 8. We point out that the
period is exactly 8, since the Brauer-Wall group of R is the cyclic group Z/8Z
generated by the class of CliffR(x

2).
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3 Matrix factorizations and the topological K-theory of the

Milnor fiber

We have demonstrated that matrix factorization categories exhibit 2- and 8-
periodic versions of Knörrer periodicity over C and R, respectively. This pat-
tern resembles Bott periodicity in topologicalK-theory; the goal of this section
is to explain this resemblance.
We give a rough sketch of our approach. The classical link between the period-
icity of Clifford algebras up to Z/2Z-graded Morita equivalence and Bott peri-
odicity in topological K-theory is the Atiyah-Bott-Shapiro construction, which
first appeared in Part III of [ABS64] (and, in fact, a proof of Bott periodicity
using Clifford algebras is provided by Wood in [Woo66]). Loosely speaking,
the Atiyah-Bott-Shapiro construction is a way of mapping a finitely generated
Z/2Z-graded module over a real or complex Clifford algebra to a class in the
K-theory of a sphere.
Composing the Buchweitz-Eisenbud-Herzog equivalence (Theorem 2.17) with
the Atiyah-Bott-Shapiro construction, we have a way of assigning a class in the
topological K-theory of a sphere to a matrix factorization of a non-degenerate
quadratic form over R or C:

mf’s of real/complex quadratics K-theory of spheres
ABS ◦BEH

The idea is to lift this composition; that is, we wish to associate a space Xf to
a real or complex polynomial f and construct a map from matrix factorizations
of f to the topological K-theory of Xf so that the diagram

mf’s of real/complex quadratics K-theory of spheres

mf’s of real/complex polynomials K-theory of spaces of the form Xf

ABS ◦BEH

commutes.
It turns out that the right choice of Xf is the Milnor fiber (positive or negative
Milnor fiber) associated to the complex (real) polynomial.
We begin this section with discussions of known results concerning the Milnor
fiber and relative topological K-theory. Then, using the work of Atiyah-Bott-
Shapiro in [ABS64] as a guide, we will complete the above diagram, and we will
use the bottom arrow to explain a precise sense in which Knörrer periodicity
and Bott periodicity are compatible phenomena.

3.1 The real and complex Milnor fibers

Let f ∈ C[x1, . . . , xn], and suppose f(0) = 0. We begin this section by describ-
ing the construction of the Milnor fiber associated to f , following the exposition
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in Section 1 of [BvS12]. We then discuss various properties of the Milnor fiber
that we will make use of later on.

3.1.1 Construction of the Milnor fibration and some properties

of the Milnor fiber

For ǫ > 0, define Bǫ to be the closed ball centered at the origin of radius ǫ in
Cn, and for δ > 0, set D∗

δ to be the open punctured disk centered at the origin
in C of radius δ.

Choose ǫ > 0 so that, for 0 < ǫ′ 6 ǫ, ∂Bǫ′ intersects f
−1(0) transversely. Upon

choosing such a number ǫ, choose δ ∈ (0, ǫ) such that f−1(t) intersects ∂Bǫ

transversely for all t ∈ D∗
δ . Then the map

ψ : Bǫ ∩ f
−1(D∗

δ ) → D∗
δ

given by ψ(x) = f(x) is a locally trivial fibration.

The map ψ depends, of course, on our choices of ǫ and δ. However, if ǫ′, δ′ is
another pair of positive numbers satisfying the above conditions, the fibration
associated to these choices is fiber homotopy equivalent to the one above (see
Definition 1.5 in Chapter 3, §1 of [Dim92] for the definition of a fiber homotopy
equivalence). We are thus justified in calling ψ the Milnor fibration associated
to f .

Remark 3.1. The Milnor fibration was originally introduced in [Mil68]. The
above construction is not the same as the construction of the Milnor fibration in
[Mil68] and is due to Lê ([Lê76]). The two constructions yield fiber homotopy
equivalent fibrations ([Dim92] Chapter 3, §1).

Choose t ∈ D∗
δ . The fiber of ψ over t is called the Milnor fiber of f over t;

we will denote it by Ff . Ff is independent of our choices of ǫ, δ, and t up to
homotopy equivalence, so we suppress these choices in the notation, and we
will often refer to Ff as just the Milnor fiber of f . However, these choices will
be significant at several points later on.

If C[x1, . . . , xn](x1,...,xn)/(f) is IHS (see Definition 2.9), set

µ := dimC

C[[x1, . . . , xn]]

( ∂f
∂x1

, . . . , ∂f
∂xn

)
<∞.

Theorem 3.2 ([Mil68] Theorem 6.5). If C[x1, . . . , xn](x1,...,xn)/(f) is IHS, Ff

is homotopy equivalent to a wedge sum of µ copies of Sn−1.

Remark 3.3. Since ψ restricts to a fibration over a circle, Ff comes equipped
with a monodromy homeomorphism

h : Ff

∼=
−→ Ff .
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3.1.2 The Sebastiani-Thom homotopy equivalence

We recall the definition of the join of two topological spaces:

Definition 3.4. Let X and Y be compact Hausdorff spaces. The join of X
and Y , denoted X ∗ Y , is the quotient of X × Y × I by the relations

(x1, y, 0) ∼ (x2, y, 0)

(x, y1, 1) ∼ (x, y2, 1)

equipped with the quotient topology.

Remark 3.5. We express the cone CX over a compact Hausdorff space X
explicitly as the quotient of

X × [0, 1]

by the relation

(x1, 0) ∼ (x2, 0)

for all x1, x2 ∈ X . When X and Y are compact Hausdorff, X ∗ Y is homeo-
morphic to (CX × Y ) ∪ (X × CY ) ⊆ CX × CY ; here, we identify X and Y
with the subsets X×{1} and Y ×{1} of CX and CY , respectively. By [Bro06]
5.7.4, an explicit homeomorphism

CX × CY
∼=
−→ C(X ∗ Y )

is given by

(x, t, y, t′) 7→ ((x, y,
t

2t′
), t′), if t′ > t, t′ 6= 0

(x, t, y, t′) 7→ ((x, y, 1 −
t′

2t
), t), if t > t′, t 6= 0

(x, 0, y, 0) 7→ ((x, y, 0), 0),

and this map restricts to a homeomorphism

w : (CX × Y ) ∪ (X × CY )
∼=
−→ X ∗ Y.

Now, suppose f ∈ C[x1, . . . , xn], f
′ ∈ C[y1, . . . , ym], and f(0) = 0 = f ′(0).

Assume R := C[x1, . . . , xn](x1,...,xn)/(f) and R
′ := C[y1, . . . , ym](y1,...,ym)/(f

′)
are IHS (see Definition 2.9). Let f ⊕ f ′ denote the sum of f and f ′ thought of
as an element of C[x1, . . . , xn, y1, . . . , ym]. The following theorem of Sebastiani-
Thom relates the Milnor fibers of f , f ′, and f ⊕ f ′:

Theorem 3.6 ([ST71]). There is a homotopy equivalence

ST : Ff ∗ Ff ′ → Ff⊕f ′
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that is compatible with monodromy; that is, the square

Ff ∗ Ff ′
ST

−−−−→ Ff⊕f ′

h∗h

y h

y

Ff ∗ Ff ′
ST

−−−−→ Ff⊕f ′

commutes up to homotopy.

Remark 3.7. By results of Oka in [Oka73], the assumption in Theorem 3.6 that
R and R′ are IHS is not necessary if f and f ′ are quasi-homogeneous.

We refer the reader to Section 2.7 of [AGZV12] and §3 of Chapter 3 in [Dim92]
for discussions related to Theorem 3.6. We now exhibit an explicit map realizing
the homotopy equivalence in Theorem 3.6, following Section 2.7 of [AGZV12].
Choose real numbers ǫ′′, δ′′, such that the map

Bǫ′′ ∩ (f ⊕ f ′)−1(D∗
δ′′ ) → D∗

δ′′

given by x 7→ (f ⊕ f ′)(x) is a locally trivial fibration, as above.
Similarly, choose ǫ, δ and ǫ′, δ′, as well as t′′ ∈ D∗

δ′′ , so that the analogous maps

Bǫ ∩ f
−1(D∗

δ ) → D∗
δ

Bǫ′ ∩ (f ′)−1(D∗
δ′) → D∗

δ′

are locally trivial fibrations, and also so that

(a) ǫ, ǫ′ are sufficiently small so that Bǫ ×Bǫ′ ⊆ Bǫ′′ .

(b) |t′′| < min{δ, δ′}.

Set Ff , Ff ′ , and Ff⊕f ′ to be the Milnor fibers of f , f ′, and f ⊕ f ′ over t′′.
Applying Lemma 2.10 in [AGZV12], choose a continuous map

H : CFf → Bǫ

such that

• H(x, 1) = x ∈ Ff ⊆ Bǫ,

• H(−, s) : Ff → Bǫ maps into the Milnor fiber Bǫ∩f−1(st′′) for s ∈ (0, 1),
and

• H(x, 0) = 0 for all x ∈ Ff

Example 3.8. If f is quasi-homogeneous of degree d with weights w1, . . . , wd,
such a map H may be given by

(x, s) 7→ (s
w1
d x1, . . . , s

wn
d xn).

Notice our assumption that R is IHS is not needed here.
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Choose H ′ similarly for the Milnor fiber Ff ′ . By the discussion on pages 54-55
of [AGZV12] and Remark 3.5, there is a homotopy equivalence

g : CFf × Ff ′ ∪ Ff × CFf ′ → Ff⊕f ′

given by

(x, s, y, s′) 7→ (H(x,
1 + s− s′

2
), H ′(y,

1− s+ s′

2
)).

Composing, one has a homotopy equivalence

g ◦ w−1 : Ff ∗ Ff ′ → Ff⊕f ′ ,

where w is the homeomorphism in Remark 3.5. The homotopy equivalence
g ◦ w−1 enjoys the same properties as the map ST in Theorem 2.14.

Remark 3.9. g extends to a homotopy equivalence of pairs

G : (CFf × CFf ′ , CFf × Ff ′ ∪ Ff × CFf ′) → (Bǫ′′ , Ff⊕f ′)

that maps a point (x, s, y, s′) to

(H(x,
s

2
), H ′(y,

2s′ − s

2
), if s 6 s′, s′ 6= 0

(H(x,
2s− s′

2
), H ′(y,

s′

2
), if s′ 6 s, s 6= 0

0, if s = 0 = s′.

Remark 3.10. When f and f ′ are quasi-homogeneous (and R,R′ are not
necessarily IHS), we may use Example 3.8 to build a homotopy equivalence
g : CFf × Ff ′ ∪Ff ×CFf ′ → Ff⊕f ′ in the same way as above ([Dim92] Chap-
ter 3, Remark 3.19’).

3.1.3 An analogue of the Milnor fibration over R

Now, suppose f ∈ R[x1, . . . , xn] and f(0) = 0. One may construct a locally
trivial fibration

ψ : Bǫ ∩ f
−1((−δ, 0) ∪ (0, δ)) → (−δ, 0) ∪ (0, δ)

for some ǫ > 0 and δ such that 0 < δ << ǫ in the same way as above, where
Bǫ is now the closed ball of radius ǫ centered at the origin in Rn.
But now, fibers over (−δ, 0) and (0, δ) need not be homotopy equivalent. For
instance, if f = x21 + · · · + x2n, the positive fibers of ψ are homeomorphic to
Sn−1, while the negative fibers are empty.
Choose t ∈ (0, δ) and t′ ∈ (−δ, 0). The fiber of ψ over t is called the positive
Milnor fiber of f over t, denoted by F+

f , and the fiber of ψ over t′ is called

the negative Milnor fiber of f over t′, denoted F−
f . As in the complex case,
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F+
f and F−

f are independent of our choices of ǫ, δ, t, and t′ up to homotopy
equivalence, so we suppress these choices in our notation, and we will often
refer to F+

f and F−
f as just the positive and negative Milnor fibers of f .

The topology of the real Milnor fibers is more complicated than that of the
complex Milnor fiber. However, there is a version of Theorem 3.6 for real Mil-
nor fibers of quasi-homogeneous polynomials. Suppose f ∈ R[x1, . . . , xn], f

′ ∈
R[y1, . . . , ym] are quasi-homogeneous and nonconstant. If F+

f and F+
f ′ are

nonempty, there is a homotopy equivalence

F+
f ∗ F+

f ′ → F+
f⊕f ′

([DP92] Remark 11). Moreover, the homotopy equivalence may be constructed
as in Remark 3.10; that is, one has a homotopy equivalence of pairs

G : (CF+
f × CF+

f ′ , CF
+
f × F+

f ′ ∪ F
+
f × CF+

f ′ ) → (Bǫ′′ , F
+
f⊕f ′).

Since F−
f = F+

−f , one has a similar result for negative Milnor fibers.

3.2 Relative topological K-theory

We introduce some facts concerning relative topological K-theory. All of the
results in this section are essentially due to Atiyah-Bott-Shapiro in [ABS64],
but we modify their exposition at several points to suit our purposes.
Let X be a compact topological space, and let Y be a closed subspace of X
such that there exists a homotopy equivalence of pairs between (X,Y ) and a
finite CW pair; we construct a category C1(X,Y ) from (X,Y ) in the following
way:
• An object of C1(X,Y ) is a pair of real vector bundles V1, V0 over X equipped
with an isomorphism

V1|Y
σ
−→ V0|Y .

Denote objects of C1(X,Y ) by (V1, V0;σ).
• Morphisms in C1(X,Y ) are pairs of morphisms of vector bundles over X

α1 : V1 → V ′
1 , α0 : V0 → V ′

0

such that the following diagram of maps of vector bundles over Y commutes:

V1|Y
σ

−−−−→ V0|Y

α1|Y

y α0|Y

y

V ′
1 |Y

σ′

−−−−→ V ′
0 |Y

We write morphisms in C1(X,Y ) as ordered pairs (α1, α0).

Remark 3.11. The reason for the subscript in the notation C1(X,Y ) is that,
for any n > 1, one may similarly build a category Cn(X,Y ) with objects given
by ordered (n+1)-tuples of vector spaces on X whose restrictions to Y fit into
an exact sequence (cf. [ABS64] §7).
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Remark 3.12. We will work with real vector bundles throughout this section;
however, there is an analogous version of every result in this section for complex
vector bundles.

The following facts about C1(X,Y ) are easily verified:

• If (V1, V0;σ) and (V ′
1 , V

′
0 ;σ

′) are objects in C1(X,Y ), (V1⊕V ′
1 , V0⊕V

′
0 , σ⊕

σ′) is their coproduct.

• C1(X,Y ) is an additive category.

• A map g : (X1, Y1) → (X2, Y2) of pairs of spaces as above induces a
functor

g∗ : C1(X2, Y2) → C1(X1, Y1)

via pullback.

• A morphism (α1, α0) in C1(X,Y ) is an isomorphism (resp. monomor-
phism, epimorphism) if and only if α1 and α0 are isomorphisms (resp.
monomorphisms, epimorphisms) of vector bundles over X .

We shall call an object of C1(X,Y ) elementary if it is isomorphic to an object
of the form (V, V ; idV |Y ). It is easy to check that (V1, V0;σ) is elementary if
and only if σ can be extended to an isomorphism σ̃ : V1 → V0.
If V and V ′ are objects in C1(X,Y ), we will say V ∼ V ′ if and only if there
exist elementary objects E,E′ such that

V ⊕ E ∼= V ′ ⊕ E′.

The relation∼ is an equivalence relation. Let L1(X,Y ) denote the commutative
monoid of equivalence classes under ∼ with operation ⊕. We shall denote by
[V1, V0;σ] the class in L1(X,Y ) represented by (V1, V0, σ).

Remark 3.13. Let (X1, Y1), (X2, Y2) be pairs of spaces as above, and let g :
(X1, Y1) → (X2, Y2) be a map of pairs. Then the functor

g∗ : C1(X2, Y2) → C1(X1, Y1)

applied to an elementary object is again elementary. Hence, g∗ induces a map
of monoids

L1(X2, Y2) → L1(X1, Y1).

The main reason we are interested in the monoid L1(X,Y ) is the following
result:

Proposition 3.14 (Atiyah-Bott-Shapiro, [ABS64]). There exists a unique nat-
ural homomorphism

χ : L1(X,Y ) → KO0(X,Y )

which, when Y = ∅, is given by

χ(E) = [V0]− [V1].

Moreover, χ is an isomorphism.
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In particular, L1(X,Y ) is an abelian group.
Let (X,Y ), (X ′, Y ′) be pairs as above. We conclude this section by exhibiting
a product map

L1(X,Y )⊗ L1(X
′, Y ′) → L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

that agrees, via χ, with the usual product on relative K-theory.
Let V = (V1, V0;σ) ∈ Ob(C1(X,Y )) and V ′ = (V ′

1 , V
′
0 ;σ

′) ∈ Ob(C1(X ′, Y ′)).
By Proposition 10.1 in [ABS64], we may lift σ, σ′ to maps σ̃, σ̃′ of bundles over
X and X ′, respectively.
Thinking of

0 → V1
σ̃
−→ V0 → 0

0 → V ′
1

σ̃′

−→ V ′
0 → 0

as complexes of bundles with V1, V
′
1 in degree 1 and V0, V

′
0 in degree 0, we may

take their tensor product

0 → V1 ⊗ V ′
1

τ2−→ (V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1)
τ1−→ V0 ⊗ V ′

0 → 0,

where

τ1 =
(
σ̃ ⊗ idV ′

0
idV0

⊗ σ̃′
)

τ2 =

(
−idV1

⊗ σ̃′

σ̃ ⊗ idV ′
1

)

The result is a complex of vector bundles over X × X ′ that is exact upon
restriction to X × Y ′ ∪ Y ×X ′.
Choose a splitting π of τ2|X×Y ′∪Y×X′ . Then,

[(V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1), (V0 ⊗ V ′
0 )⊕ (V1 ⊗ V ′

1);

(
τ1|X×Y ′∪Y×X′

π

)
]

is an element of L1(X ×X ′, X × Y ′ ∪ Y ×X ′).
One may define monoids Ln(X,Y ) involving longer sequences of bundles; see
[ABS64] Definition 7.1 for details. Denote elements of Ln(X,Y ) by

[Vn, . . . , V0;σn, . . . , σ1].

There is a map

jn : L1(X,Y ) → Ln(X,Y )

given by

[V1, V0;σ] 7→ [0, . . . , 0, V1, V0; 0, . . . , 0, σ],

and, by Proposition 7.4 in [ABS64], jn is an isomorphism for all n.
We will need the following technical lemma:
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Lemma 3.15. Let (X,Y ) be a pair as above, and let [V2, V1, V0;σ2, σ1] ∈
L2(X,Y ). If π is a splitting of σ2,

j2([V1, V0 ⊕ V2;

(
σ1
π

)
]) = [V2, V1, V0;σ2, σ1].

Proof. First, suppose dim(V1) > dim(V2) + dim(X). Apply Lemma 7.2 in
[ABS64] to construct a monomorphism

h : V2 → V1

that extends σ2. By the proof of Lemma 7.3 in [ABS64],

j2([coker(h), V0;σ1]) = [V2, V1, V0;σ2, σ1],

and so

j2([coker(h)⊕ V2, V0 ⊕ V2;A]) = [V2, V1, V0;σ2, σ1],

where

A =

(
σ1 0
0 idV2

|Y

)
.

Hence, it suffices to show

[coker(h)⊕ V2, V0 ⊕ V2;A] = [V1, V0 ⊕ V2;

(
σ1
π

)
]

Choose a splitting s of h, and let

p : V1 → coker(h)

denote the canonical map. Then we have an isomorphism
(
p
s

)
: V1 → coker(h)⊕ V2.

Since s|Y is a splitting of σ2, we also have an isomorphism
(
σ1
s|Y

)
: V1|Y → V0|Y ⊕ V2|Y .

We have a commutative square

V1|Y


 σ1
s|Y




//



p|Y
s|Y





��

V0|Y ⊕ V2|Y

idV0|Y ⊕V2|Y

��
coker(h)|Y ⊕ V2|Y

A // V0|Y ⊕ V2|Y
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Thus,

[coker(h)⊕ V2, V0 ⊕ V2;A] = [V1, V0 ⊕ V2;

(
σ1
s|Y

)
].

Notice that we have an object

[V1 × I, (V0 ⊕ V2)× I; t

(
σ1
s|Y

)
+ (1− t)

(
σ1
π

)
]

in C1(X × I, Y × I) whose restrictions to X × {0} and X × {1} are [V1, V0 ⊕

V2;

(
σ1
π

)
] and [V1, V0 ⊕ V2;

(
σ1
s|Y

)
], respectively. It now follows from Proposi-

tion 9.2 in [ABS64] that

[V1, V0 ⊕ V2;

(
σ1
s|Y

)
] = [V1, V0 ⊕ V2;

(
σ1
π

)
].

This finishes the case where dim(V1) > dim(V2) + dim(X).
For the general case, choose a bundle E such that

dim(E) + dim(V1) > dim(V2) + dim(X).

Define

U := [V2, V1 ⊕ E, V0 ⊕ E;

(
σ2
0

)
,

(
σ1 0
0 idE |Y

)
],

U ′ := [V1 ⊕ E, V0 ⊕ E ⊕ V2;



σ1 0
0 idE |Y
π 0


]

Notice that

[V2, V1, V0;σ2, σ1] = U,

and

[V1, V0 ⊕ V2;

(
σ1
π

)
] = U ′,

so that it suffices to show that j(U ′) = U . Since
(
π 0

)
is a splitting of

(
σ2
0

)
,

this follows from the case we have already considered.

Now, the pairing

L1(X,Y )⊗ L1(X
′, Y ′) → L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

described in Proposition 10.4 of [ABS64] is given by sending a simple tensor

[V1, V0;σ]⊗ [V ′
1 , V

′
0 ;σ

′]
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to

j−1
2 ([V1 ⊗ V ′

1 , (V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1), V0 ⊗ V ′
0 ; τ2|X×Y ′∪Y×X′ , τ1|X×Y ′∪Y×X′ ]);

this follows from the proof of Proposition 10.4.
Thus, by Lemma 3.15, the map

Ob(C1(X,Y ))×Ob(C1(X
′, Y ′)) → L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

given by

(V, V ′) 7→ [(V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1), (V0 ⊗ V ′
0 )⊕ (V1 ⊗ V ′

1);

(
τ1|X×Y ′∪Y×X′

π

)
]

determines

(a) a well-defined pairing on Ob(C1(X,Y ))×Ob(C1(X ′, Y ′)) up to our choices

of liftings σ̃, σ̃′ and splitting π, and

(b) a pairing

L1(X,Y )⊗ L1(X
′, Y ′) → L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

that coincides with the pairing in Proposition 10.4 of [ABS64].

Let [V ],[V ′] denote the classes represented by V and V ′ in L1(X,Y ) and
L1(X

′, Y ′). Define

[V ]⊗L1
[V ′] := [(V1 ⊗V

′
0)⊕ (V0⊗V

′
1), (V0 ⊗V

′
0)⊕ (V1 ⊗V

′
1);

(
τ1|X×Y ′∪Y×X′

π

)
].

Remark 3.16. By Proposition 10.4 in [ABS64] and the above remarks,

χ([V ])⊗ χ([V ′]) = χ([V ]⊗L1
[V ′]).

3.3 A generalized Atiyah-Bott-Shapiro construction applied to

matrix factorizations

In this section, we construct the maps φCf and φRf described in the introduction.
We begin with a discussion of the Atiyah-Bott-Shapiro construction ([ABS64]
Part III). Following Atiyah-Bott-Shapiro, we work with real Clifford algebras
and KO-theory, and we point out that one may perform a similar construction
involving complex Clifford algebras and KU -theory.

3.3.1 The Atiyah-Bott-Shapiro construction

Define
qn := −x21 − · · · − x2n ∈ R[x1, . . . , xn]
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for all n > 1, and set Cn := CliffR(qn). We also set C0 := R; we will think of
C0 as a Z/2Z-graded algebra concentrated in degree 0.
Let M(Cn) denote the free abelian group generated by isomorphism classes
of finitely-generated, indecomposable Z/2Z-graded left Cn-modules. There are
evident injective maps

in : Cn → Cn+1

for all n > 0; these injections induce homomorphisms

i∗n :M(Cn+1) →M(Cn)

via restriction of scalars. Set

An :=M(Cn)/i
∗
n(M(Cn+1)).

Define Dn to be the closed disk of radius 1 in Rn. An important special case
of the classical Atiyah-Bott-Shapiro construction is the group isomorphism

αn : An

∼=
−→ L1(D

n, ∂Dn)

that appears in [ABS64] Theorem 11.5. αn is defined as follows: let M =
M1 ⊕ M0 be a finitely generated Z/2Z-graded left Cn-module. We use the
R-vector spaces M1 and M0 to construct real vector bundles over Dn:

V1 := Dn ×M1

V0 := Dn ×M0

and we define a map
σ : V1 → V0

given by (x,m) 7→ (x, x · m), where · denotes the action of Cn on M . Here,
we are thinking of Dn ⊆ Rn as a subset of Cn. Notice that σ restricts to
an isomorphism of bundles over ∂Dn. Thus, we have constructed an element
[V1, V0;σ] ∈ L1(D

n, ∂Dn). Define

αn([M ]) = [V1, V0;σ].

We refer the reader to [ABS64] for verification that the mapping

[M ] 7→ [V1, V0;σ]

is well-defined on the quotient An and determines an isomorphism.

3.3.2 A more general construction

Let f ∈ (x1, . . . , xn) ⊆ Q := R[x1, . . . , xn]. Choose real numbers ǫ, δ, and t
such that ǫ > 0, 0 < δ << ǫ, and t ∈ (−δ, 0) in such a way that we may
construct a negative Milnor fiber F−

f as in Section 3.1.3.
Denote by Bǫ the closed ball of radius ǫ in Rn centered at the origin. We now
construct a map

Ob(MF(Q, f)) → L1(Bǫ, F
−
f )

that
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(a) recovers the Atiyah-Bott-Shapiro construction via the Buchweitz-
Eisenbud-Herzog equivalence (Theorem 2.17) when f = qn, and

(b) descends to a group homomorphism

K0[MF(Q, f)] → L1(Bǫ, F
−
f ).

We emphasize that a similar construction involving complex polynomials and
their Milnor fibers may be performed mutatis mutandis. One may also perform
the following construction using the positive Milnor fiber F+

f of f .

Let P = (P1
d1−

�===�−
d0

P0) be a matrix factorization of f over Q. Denote by C(Bǫ)

the ring of R-valued continuous functions on Bǫ. Applying extension of scalars
along the inclusion

Q →֒ C(Bǫ),

we obtain a map

P1 ⊗Q C(Bǫ)
d1⊗id
−−−−→ P0 ⊗Q C(Bǫ)

of finitely generated projective C(Bǫ)-modules.
The category of real vector bundles over Bǫ is equivalent to the category of
finitely generated projective C(Bǫ)-modules; on objects, the equivalence sends
a bundle to its space of sections. Let

V1
d1−→ V0

be a map of real vector bundles over Bǫ corresponding to the above map d1⊗ id
under this equivalence. Since d1 ◦ d0 = f · idP0

and d0 ◦ d1 = f · idP1
, and

since the restriction of the polynomial f , thought of as a map Rn → R, to
F−
f = Bǫ ∩ f−1(t) is constant with value t 6= 0, d1|F−

f
is an isomorphism of

vector bundles on F−
f . Its inverse is the restriction to F−

f of the map V0 → V1
determined by

P0 ⊗Q C(Bǫ)
1
t
(d0⊗id)

−−−−−−→ P1 ⊗Q C(Bǫ).

Define ΦR

f (P1
d1−

�===�−
d0

P0) = (V1, V0; d1|F−
f
) ∈ Ob(C1(Bǫ, F

−
f )).

Remark 3.17. The map analogous to ΦR

f in the setting of polynomials over C
and KU -theory appears in [BvS12]; we discuss this in detail in Section 3.3.3.

A morphism in Z0MF(Q, f) determines a morphism in C1(Bǫ, F
−
f ) in an obvious

way (see Section 2.1.1 for the definition of the category Z0MF(Q, f)). Hence,
we have shown:

Proposition 3.18. There is an additive functor

ΦR

f : Z0MF(Q, f) → C1(Bǫ, F
−
f )

given, on objects, by

(P1
d1−

�===�−
d0

P0) 7→ [V1, V0; d1|F−
f
].
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In particular, we have a map

Ob(MF(Q, f)) → L1(Bǫ, F
−
f ).

Suppose f = qn. Then ǫ can be chosen to be 1 in the construction of the
negative Milnor fiber F−

f , and the fiber can be chosen to be exactly Sn−1 ⊆ Rn.

Let Iso([MF(Q, f)]) and Iso(modZ/2Z(CliffR(qn))) denote the sets of isomor-
phism classes of objects in [MF(Q, f)] and modZ/2Z(CliffR(qn)). It is easy to
check that one has a commutative triangle

Iso(modZ/2Z(CliffR(qn)))
ABS //

[Θ]

��

L1(B1, F
−
f )

Iso([MF(Q, f)])

ΦR

f

::tttttttttttttttttttt

where [Θ] denotes the bijection on isomorphism classes induced by the explicit
construction Θ of the Buchweitz-Eisenbud-Herzog equivalence (Theorem 2.17)
provided in the proof of Theorem 14.7 of [Yos90], and ABS denotes the Atiyah-
Bott-Shapiro construction. Hence, our construction recovers the Atiyah-Bott-
Shapiro construction via the Buchweitz-Eisenbud-Herzog equivalence when f =
qn.
Our next goal is to show that ΦR

f induces a map on K-theory:

Proposition 3.19. ΦR

f induces a group homomorphism

φRf : K0[MF(Q, f)] → L1(Bǫ, F
−
f ).

We will adopt the following notational conventions for the purposes of the proof
of Proposition 3.19:

(1) A pair (ǫ, t) is a good pair if ǫ > 0, t < 0, and the map

ψ : Bǫ ∩ f
−1((−δ, 0) ∪ (0, δ)) → (−δ, 0) ∪ (0, δ)

from Section 3.1.3 is a locally trivial fibration for some δ > 0 such that

0 < |t| < δ << ǫ.

(2) If (ǫ, t) is a good pair, we denote the negative Milnor fiber Bǫ ∩ f
−1(t)

by F−
t .

We will need the following technical lemma:
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Lemma 3.20. Let (ǫ1, t1), (ǫ2, t2) be good pairs. Then there is an isomorphism

g : L1(Bǫ1 , F
−
t1 )

∼=−→ L1(Bǫ2 , F
−
t2 )

yielding a commutative triangle

Ob(MF(Q, f))
ΦR

f
//

ΦR

f

��

L1(Bǫ2 , F
−
t2 )

L1(Bǫ1 , F
−
t1 )

g
77♥♥♥♥♥♥♥♥♥♥♥♥

Proof. The case where t1 = t2 is immediate, so we may assume t1 6= t2. First,
suppose ǫ1 = ǫ2. Without loss, assume t2 < t1.
Set F−

[t2,t1]
:= f−1([t2, t1]). Since the inclusions

F−
t1 →֒ F−

[t2,t1]
, F−

t2 →֒ F−
[t2,t1]

are homotopy equivalences, the pullback maps

L1(Bǫ1 , F[t2,t1]) → L1(Bǫ1 , Ft1), L1(Bǫ1 , F[t2,t1]) → L1(Bǫ1 , Ft2)

are isomorphisms.
We have commuting triangles

Ob(MF(Q, f))
ΦR

f
//

ΦR

f

��

L1(Bǫ1 , F
−
t1 )

L1(Bǫ1 , F
−
[t2,t1]

)

∼=

77♥♥♥♥♥♥♥♥♥♥♥♥

for i = 1, 2. It follows that the result holds when ǫ1 = ǫ2.
For the general case, assume, without loss, that |t2| < |t1|. Then (ǫ1, t2) is also
a good pair. By the cases we’ve already considered, the result holds for the
pairs (ǫ1, t1) and (ǫ1, t2), and also for the pairs (ǫ1, t2) and (ǫ2, t2). Hence, the
result holds for the pairs (ǫ1, t1), (ǫ2, t2).

We now prove Proposition 3.19:

Proof. It is not hard to see that ΦR

f (P ⊕ P ′) = ΦR

f (P ) ⊕ ΦR

f (P
′); we need

only show that φRf is well-defined. First, suppose P ∼= 0 in [MF(Q, f)]. Then
idP is a boundary in MF(Q, f), and so idP factors through a trivial matrix
factorization, by Proposition 2.4.

Write P = (P1
d1−

�===�−
d0

P0). Since P is a summand of a trivial matrix fac-

torization, coker(d1) is a projective Q/(f) module. Choose g ∈ Q such
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that g(0) 6= 0 and coker(d1)g is free over Qg/(f), and choose ǫ′ ∈ (0, ǫ)
such that Bǫ′ ∩ g−1(0) = ∅. The inclusion Q →֒ Qg induces a functor
MF(Q, f) → MF(Qg, f). Choose t

′ such that (ǫ′, t′) is a good pair. Apply-
ing Lemma 3.20, we have a commutative diagram

Ob(MF(Q, f)) //

ΦR

f

��

ΦR

f

##●
●●

●●
●●

●●
●●

●●
●●

●●
●●

Ob(MF(Qg, f))

ΦR

f

��
L1(Bǫ, F

−
t )

∼= // L1(Bǫ′ , F
−
t′ )

It is easy to see that the φRf is well-defined when f = 0, so assume f 6= 0.
Then f is a non-zero-divisor in Q, so we may apply Proposition 2.5 to conclude
that the image of P in Ob(MF(Qg, f)) maps to 0 via ΦR

f . Hence, the map

ΦR

f : Ob(MF(Q, f)) → L1(Bǫ, F
−
t ) sends P to 0, as required.

We now show that, if α : P → P ′ is a morphism in Z0MF(Q, f), ΦR

f (P ) ⊕

ΦR

f (cone(α)) and ΦR

f (P
′) represent the same class in L1(Bǫ, F

−
t ). We start by

showing ΦR

f (P [1]) = −ΦR

f (P ) in L1(Bǫ, F
−
t ). Write ΦR

f (P ) = (V1, V0; d1|F−
t
),

so that ΦR

f (P [1]) = (V0, V1;−d0|F−
t
). Since cone(idP ) is contractible, the class

represented by

ΦR

f (cone(idP )) = (V0 ⊕ V1, V1 ⊕ V0;

(
d0|F−

t
id

0 −d1|F−
t

)
)

in L1(Bǫ, F
−
t ) is 0. The object

((V0 ⊕ V1)× I, (V1 ⊕ V0)× I;

(
d0|F−

t
s · id

0 −d1|F−
t

)
)

of C1(Bǫ× I, F
−
t × I) restricts to ΦR

f (cone(idP )) at s = 1 and ΦR

f ((P ⊕P [1])[1])
at s = 0. Since (P⊕P [1])[1] ∼= P⊕P [1], we may use Proposition 9.2 in [ABS64]
to conclude that ΦR

f (P [1]) = −ΦR

f (P ) in L1(Bǫ, F
−
t ).

Now, we have

ΦR

f (cone(α)) = (V0 ⊕ V1, V1 ⊕ V0;

(
d0|F−

t
α1

0 −d′1|F−
t

)
).

Using Proposition 9.2 in [ABS64] in the same manner as above, we may con-
clude that ΦR

f (cone(α)) and ΦR

f (P
′) ⊕ ΦR

f (P [1]) represent the same class in

L1(Bǫ, F
−
t ).

Finally, suppose α : P
∼=
−→ P ′ is an isomorphism in [MF(Q, f)]. Then cone(α) is

contractible, and so the results we just established imply that ΦR

f (P ) = ΦR

f (P
′).
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Since every distinguished triangle in [MF(Q, f)] is isomorphic to one of the form

P
α
−→ P ′ → cone(α) → P [1],

and we have shown that ΦR

f preserves such triangles, we are done.

3.3.3 The kernel and image of φCf

Let Q := C[x1, . . . , xn], and set m := (x1, . . . , xn) ⊆ Q. Fix f ∈ m, and define
R := Q/(f). Assume the hypersurface R has an isolated singularity at the
origin in the sense of Definition 2.9. Choose ǫ, δ > 0 so that the map

Bǫ ∩ f
−1(D∗

δ ) → D∗
δ

given by x 7→ f(x) is a locally trivial fibration, as in Section 3.1; let Ff denote
the Milnor fiber of f over some value t ∈ D∗

δ . We wish to examine the kernel
and image of the map

φCf : K0[MF(Q, f)] → L1(Bǫ, Ff ).

Recall that, by Theorem 3.2, Ff is homotopy equivalent to a wedge sum of µ
copies of Sn−1, where µ is the Milnor number of f . Thus,

L1(Bǫ, Ff ) ∼= KU0(Bǫ, Ff ) ∼= KU−1(Ff )

∼=
⊕

µ

KU−1(Sn−1) ∼=

{
Zµ if n is even
0 if n is odd

In particular, when n is odd, φCf = 0.

As we noted in Section 3.1, Ff is equipped with a monodromy homeomorphism

h : Ff

∼=
−→ Ff .

Let S ⊆ D∗
δ denote the circle of radius |t| centered at the origin, and set

E := Bǫ ∩ f−1(S). One has a long exact sequence, the Wang exact sequence
([Dim92] page 74)

· · · → Hi(E)
j∗

−→ Hi(Ff )
h∗−1
−−−→ Hi(Ff ) → Hi+1(E) → · · ·

where j : Ff →֒ E is the inclusion. One also has an automorphism T :

L1(Bǫ, Ff )
∼=
−→ L1(Bǫ, Ff ) induced by h.

We have the following result regarding the image of φCf :

Proposition 3.21. φCf (K0[MF(Q, f)]) ⊆ ker(T − 1).
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Proof. The result is obvious when n is odd, since L1(Bǫ, Ff ) = 0 in this case.
Suppose n is even. Notice that φCf (K0[MF(Q, f)]) ⊆ l∗(L1(Bǫ, E)), where
l : (Bǫ, Ff ) →֒ (Bǫ, E) is the inclusion of pairs. Thus, the result follows from
the commutative diagram

L1(Bǫ, E)⊗Q
l∗ //

∼=

��

L1(Bǫ, Ff )⊗Q

∼=

��

T−1
// L1(Bǫ, Ff )⊗Q

∼=

��
KU−1(E)⊗ Q

j∗
//

��

KU−1(Ff )⊗Q

∼=

��

h∗−1
// KU−1(Ff )⊗Q

∼=

��
Hn−1(E;Q)

j∗
// Hn−1(Ff ;Q)

h∗−1
// Hn−1(Ff ;Q)

and the Wang exact sequence. The bottom-most vertical arrows are Chern class
maps; the bottom-middle and bottom-right vertical maps are isomorphisms
because Ff has nonzero odd cohomology only in degree n− 1.

The map ΦC

f : Ob(MF(Q, f)) → L1(Bǫ, Ff ) is used in [BvS12] to study the
Hochster theta pairing. We recall the definition of this pairing:

Definition 3.22. The Hochster theta pairing

θ : K0[MF(Qm, f)]×K0[MF(Qm, f)] → Z

sends a pair ([P1
d1−

�===�−
d0

P0], [P
′
1

d′
1−

�===�−
d′
0

P ′
0]) to

l(TorRm

2 (coker(d1), coker(d
′
1))) − l(TorRm

1 (coker(d1), coker(d
′
1))),

where l denotes length as an Rm-module.

Remark 3.23. Our assumption that R is IHS guarantees that the lengths in
Definition 3.22 are finite. The pairing θ was introduced in [Hoc81]; for more
detailed discussions related to this pairing, we refer the reader to [BvS12],
[Dao13], and [MPSW11].

Remark 3.24. Under our assumptions, by Theorem 4.11 of [Dyc11], the map

K0[MF(Q, f)] → K0[MF(Qm, f)]

induced by inclusion is an isomorphism, so we may think of θ as a pairing on
K0[MF(Q, f)].

Let P = (P1
d1−

�===�−
d0

P0) be a matrix factorization of f over Q. We observe that

the image of φCf ([P ]) under the isomorphism L1(Bǫ, Ff ) ∼= KU−1(Ff ) coincides
with α(coker(d1)m)|Ff

, where α is as in Section 4 of [BvS12]. Thus, Proposition
4.1 and Theorem 4.2 of [BvS12] immediately imply:
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Proposition 3.25. If X ∈ ker(φCf ), θ(X,−) : K0[MF(Q, f)] → Z is the zero
map.

Set K0[MF(Q, f)]tors to be the torsion subgroup ofK0[MF(Q, f)]. We conclude
this section with the following explicit description of ker(φCf ) when n = 2:

Proposition 3.26. If f ∈ (x1, x2) ⊆ Q = C[x1, x2], and the hypersurface
Q/(f) has an isolated singularity at the origin in the sense of Definition 2.9,
ker(φCf ) = K0[MF(Q, f)]tors.

Proof. K0[MF(Q, f)]tors ⊆ ker(φCf ) is obvious. Suppose [P ] ∈ ker(φCf ). By
Proposition 3.25, the map θ([P ],−) : K0[MF(Q, f)] → Z is the zero map. Set
R = Q/(f). Since K0[MF(Q(x1,x2), f)]

∼= G0(R(x1,x2))/[R(x1,x2)], an applica-
tion of Proposition 3.3 in [Dao13] finishes the proof.

3.4 Knörrer periodicity and Bott periodicity

We now use our constructions φRf and φCf to exhibit a compatibility between
Knörrer periodicity (Theorem 1.1) and Bott periodicity. Set

Q := R[x1, . . . , xn], Q
′ := R[y1, . . . , ym]

and let
f ∈ (x1, . . . , xn) ⊆ Q, f ′ ∈ (y1, . . . , ym) ⊆ Q′

be quasi-homogeneous polynomials.

Remark 3.27. We are assuming f and f ′ are quasi-homogeneous so that the
version of the Sebastiani-Thom homotopy equivalence for real polynomials is
available to us (see Section 3.1.3). Analogous versions of every result in this
section hold over C when both f ∈ C[x1, . . . , xn] and f ′ ∈ C[y1, . . . , ym] are
either quasi-homogeneous or IHS.

We now construct the negative Milnor fibers of f and f ′. Choose real numbers
ǫ′′, δ′′, such that the map

Bǫ′′ ∩ (f ⊕ f ′)−1((−δ′′, 0)) → (−δ′′, 0)

given by x 7→ (f ⊕ f ′)(x) is a locally trivial fibration. Similarly, choose ǫ, δ and
ǫ′, δ′, as well as t′′ ∈ (−δ′′, 0), so that the analogous maps

Bǫ ∩ f
−1((−δ, 0)) → (−δ, 0)

Bǫ′ ∩ (f ′)−1((−δ′, 0)) → (−δ′, 0)

are locally trivial fibrations, and also so that

(a) ǫ, ǫ′ are sufficiently small so that Bǫ ×Bǫ′ ⊆ Bǫ′′ .

(b) |t′′| < min{δ, δ′}.
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Set F−
f , F−

f ′ , and F
−
f⊕f ′ to be the negative Milnor fibers of f , f ′, and f ⊕ f ′

over t′′. Assume they are nonempty.

Remark 3.28. We could proceed using positive Milnor fibers as well, but we
use negative fibers to stay consistent with Section 3.3.2.

Recall from Remark 2.12 that we have a map

K0[MF(Q, f)]⊗K0[MF(Q′, f ′)] → K0[MF(Q ⊗R Q
′, f ⊕ f ′)]

given by [P ]⊗ [P ′] 7→ [P ⊗MFP
′]. The following proposition is the key technical

result in this section.

Proposition 3.29. There exists a map

STL1
: L1(Bǫ, F

−
f )⊗ L1(Bǫ′ , F

−
f ′ ) → L1(Bǫ′′ , F

−
f⊕f ′)

such that, given matrix factorizations P and P ′ of f and f ′, respectively,

STL1
(φRf ([P ])⊗ φRf ′([P ′])) = φRf⊕f ′([P ⊗MF P

′]).

Proof. Write

P = (P1
d1−

�===�−
d0

P0), P
′ = (P ′

1

d′
1−

�===�−
d′
0

P ′
0)

and
ΦR

f (P ) = [V1, V0; d1|F−
f
], ΦR

f ′(P ′) = [V ′
1 , V

′
0 ; d

′
1|F−

f′
].

We note that

φRf⊕f ′([P ⊗MF P
′]) = [(V1 ⊗ V ′

0)⊕ (V0 ⊗ V ′
1), (V0 ⊗ V ′

0 )⊕ (V1 ⊗ V ′
1);A],

where A is the restriction of the matrix
(
d1 ⊗ id id⊗ d′1
−id⊗ d′0 d0 ⊗ id

)

to F−
f⊕f ′ .

As in Section 3.1.2, choose a continuous injection H : CF−
f → Bǫ such that

• H(x, 1) = x ∈ F−
f ⊆ Bǫ,

• H(−, s) : F−
f → Bǫ maps into the Milnor fiber Bǫ∩f−1(st′′) for s ∈ (0, 1),

and

• H(x, 0) = 0 for all x ∈ F−
f

Choose H ′ : CF−
f ′ → Bǫ′ similarly. The maps of pairs

l : (CF−
f , F

−
f ) → (Bǫ, F

−
f ), l′ : (CF−

f ′ , F
−
f ′ ) → (Bǫ′ , F

−
f ′ )
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induced by H and H ′ yield isomorphisms on L1 upon pullback; this is immedi-
ate from the long exact sequence in KO-theory and the naturality of the map
χ from Section 3.2 with respect to maps of pairs.
Recall from Section 3.2 that we have a map

L1(CF
−
f , F

−
f )⊗ L1(CF

−
f ′ , F

−
f ′ ) → L1(CF

−
f × CF−

f ′ , CF
−
f × F−

f ′ ∪ F
−
f × CF−

f ′ )

denoted by
[V ]⊗ [V ′] 7→ [V ]⊗L1

[V ′].

Define
STL1

: L1(Bǫ, F
−
f )⊗ L1(Bǫ′ , F

−
f ′ ) → L1(Bǫ′′ , F

−
f⊕f ′)

to be given by

[V ]⊗ [V ′] 7→ (G∗)−1(l∗([V ])⊗L1
(l′)∗([V ′])),

where

G : (CF−
f × CF−

f ′ , CF
−
f × F−

f ′ ∪ F
−
f × CF−

f ′ ) → (Bǫ′′ , F
−
f⊕f ′)

is as in Section 3.1.3. Recall that G is an explicit formulation of the Sebastiani-
Thom homotopy equivalence.
We now compute l∗(φRf (P )) ⊗L1

(l′)∗(φRf (P
′)) explicitly. A splitting of the

restriction of (
−id⊗ (H ′)∗(d′1)
H∗(d1)⊗ id

)

to CF−
f × F−

f ′ ∪ F
−
f × CF−

f ′ is given, on the fiber over (x, s, y, s′), by

1

f(H(x, s)) + f ′(H ′(y, s′))

(
−id⊗ (H ′)∗(d′0) H∗(d0)⊗ id

)

(notice that f(H(x, s)) + f ′(H ′(y, s′)) = (s + s′)t′′ 6= 0 when (x, s, y, s′) ∈
CF−

f × F−
f ′ ∪ F−

f × CF−
f ′ , since either s or s′ is equal to 1). Thus, by the

discussion at the end of Section 3.2, the product

l∗([V1, V0; d|F−
f
])⊗L1

(l′)∗([V ′
1 , V

′
0 ; d

′|F−

f′
])

is equal to

[(W1 ⊗W ′
0)⊕ (W0 ⊗W ′

1), (W0 ⊗W ′
0)⊕ (W1 ⊗W ′

1);B],

where Wi = H∗(Vi) and W ′
i = (H ′)∗(V ′

i ) for i = 0, 1, and B is given, on the
fiber over (x, s, y, s′) ∈ CF−

f × F−
f ′ ∪ F

−
f × CF−

f ′ , by the matrix

(
H∗(d1)⊗ id id⊗ (H ′)∗(d′1)

1
f(H(x,s))+f ′(H′(y,s′)) (−id⊗ (H ′)∗(d′0))

1
f(H(x,s))+f ′(H′(y,s′)) (H

∗(d0)⊗ id)

)
.
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We wish to show that, upon applying (G∗)−1 to this class, one obtains

[(V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1), (V0 ⊗ V ′
0)⊕ (V1 ⊗ V ′

1);C],

where C is the restriction of the matrix
(

d1 ⊗ id id⊗ d′1
1
t′′ (−id⊗ d′0)

1
t′′ (d0 ⊗ id)

)

to F−
f⊕f ′ . This will finish the proof, since the class

[(V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1), (V0 ⊗ V ′
0)⊕ (V1 ⊗ V ′

1);C]

is clearly equal to

[(V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1 ), (V0 ⊗ V ′
0)⊕ (V1 ⊗ V ′

1);A].

Observe that we have an object

[((W1 ⊗W ′
0)⊕ (W0 ⊗W ′

1))× I, ((W0 ⊗W ′
0)⊕ (W1 ⊗W ′

1))× I;D]

in C1(CF
−
f × CF−

f ′ × I, (CF−
f × F−

f ′ ∪ F
−
f × CF−

f ′ ) × I), where D is given, on
the fiber over

(x, s, y, s′, T ) ∈ (CF−
f × F−

f ′ ∪ F
−
f × CF−

f ′ )× I,

by the matrix

(
H∗(d1)⊗ id id⊗ (H ′)∗(d′1)

1
f(a(T ))+f ′(b(T )) (−id⊗ (H ′)∗(d′0))

1
f(a(T ))+f ′(b(T )) (H

∗(d0)⊗ id)

)
.

Here, f , f ′, and the entries of d1, d
′
1, d0, d

′
0 are evaluated at the point

(a(T ), b(T )) := (H(x,
T (1− s′ − s) + 2s

2
), H ′(y,

T (1− s′ − s) + 2s′

2
)).

Notice that f(a(T )) + f ′(b(T )) 6= 0 for all

(x, s, y, s′, T ) ∈ (CF−
f × F−

f ′ ∪ F
−
f × CF−

f ′ )× I,

so this matrix is indeed an isomorphism on every fiber over (CF−
f ×F−

f ′ ∪F
−
f ×

CF−
f ′ )× I.

Restricting to T = 0, one obtains the object

((W1 ⊗W ′
0)⊕ (W0 ⊗W ′

1), (W0 ⊗W ′
0)⊕ (W1 ⊗W ′

1);B).

Restricting to T = 1 and applying (G∗)−1, one obtains

((V1 ⊗ V ′
0)⊕ (V0 ⊗ V ′

1), (V0 ⊗ V ′
0)⊕ (V1 ⊗ V ′

1);C).

Now apply Proposition 9.2 in [ABS64].
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Remark 3.30. It follows easily from the naturality of the map χ from Section 3.2
and Remark 3.16 that STL1

induces a map

STKO : KO0(Bǫ, F
−
f )⊗KO0(Bǫ′ , F

−
f ′ ) → KO0(Bǫ′′ , F

−
f⊕f ′).

Remark 3.31. We emphasize that the group homomorphism STL1
in Proposi-

tion 3.29 is given by the composition of the product in topological K-theory
with the inverse of the pullback along a specific formulation of the Sebastiani-
Thom homotopy equivalence. Hence, Proposition 3.29 yields a precise sense in
which the tensor product of matrix factorizations is related to the Sebastiani-
Thom homotopy equivalence.

Let us now consider the case where Q′ = R[u1, . . . , u8] and f
′ = −u21−· · ·−u28.

By Theorem 2.21 and Remark 2.18, [MF(Q′, f ′)] ∼= [MF(R, 0)]. It follows that
K0[MF(R[u1, . . . , u8],−u

2
1 − · · · − u28)] is isomorphic to Z, generated by the

class represented by the matrix factorization X constructed in the proof of
Theorem 2.21.
Also, F−

−u2
1
−···−u2

8

is homeomorphic to S7, and so L1(Bǫ′ , F
−
−u2

1
−···−u2

8

) is isomor-

phic to Z. This group is generated by φR
−u2

1
−···−u2

8

(X); thus, φR
−u2

1
−···−u2

8

([X ]) is

a Bott element in the group L1(Bǫ′ , F−u2
1
−···−u2

8
) ∼= K̃O

0
(S8); we shall denote

by βR the map

KO0(Bǫ, F
−
f ) → KO0(Bǫ, F

−
f )⊗KO0(Bǫ′ , F−u2

1
−···−u2

8
)

given by (χ ⊗ χ) ◦ (− ⊗ φR
−u2

1
−···−u2

8

([X ])) ◦ χ−1. βR is the Bott periodicity

isomorphism.
Since real Knörrer periodicity may be induced by tensoring with the matrix
factorization X , we will denote by KR the map

K0[MF(Q, f)] → K0[MF(Q[u1, . . . , u8], f − u21 − · · · − u28)]

given by −⊗MF [X ].
The following result gives a precise sense in which Bott periodicity and Knörrer
periodicity are compatible; it follows immediately from Proposition 3.29. We
emphasize that a virtually identical proof yields a similar result involving pos-
itive Milnor fibers.

Theorem 3.32. Let f ∈ Q = R[x1, . . . , xn] be a quasi-homogeneous polynomial
such that F−

f 6= ∅, and set q = −u21 − · · · − u28. Then the diagram

K0[MF(Q, f)]
χ◦φR

f
//

KR

��

KO0(Bǫ, F
−
f )

βR

��
KO0(Bǫ, F

−
f )⊗KO0(Bǫ′ , F

−
q )

STKO

��
K0[MF(Q[u1, . . . , u8], f + q)]

χ◦φR

f+q
// KO0(Bǫ′′ , F

−
f+q)
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commutes.

We state the analogous version of this result over the complex numbers. Let Y

denote the matrix factorization C[u, v]
u+iv−

�=====�−
u−iv

C[u, v] of u2 + v2, and let

K : K0[MF(Q, f)] → K0[MF(Q[u, v], f + u2 + v2)]

be given by −⊗MF[Y ]. K0[MF(C[u, v], u2+v2)] ∼= Z, and the group is generated
by [Y ]. Also, by Theorem 3.2, Fu2+v2 is homotopy equivalent to S1. Thus,
L1(Bǫ′ , F

−
u2+v2) is isomorphic to Z, generated by φCu2+v2([Y ]). φCu2+v2([Y ]) is a

Bott element in the group L1(Bǫ′ , Fu2+v2) ∼= K̃U
0
(S2); we shall denote by β

the map
KU0(Bǫ, Ff ) → KU0(Bǫ, Ff )⊗KU0(Bǫ′ , Fu2+v2)

given by (χ⊗ χ) ◦ (− ⊗ φCu2+v2([Y ])) ◦ χ−1. β is the complex Bott periodicity
isomorphism. Let STKU denote the pairing on relative KU -theory induced by
the complex version of the pairing STL1

. The following is a complex analogue
of Theorem 3.32:

Theorem 3.33. Let f ∈ (x1, . . . , xn) ⊆ Q = C[x1, . . . , xn] and suppose either

• The hypersurface C[x1, . . . , xn](x1,...,xn)/(f) is IHS (see Definition 2.9),
or

• f is quasi-homogeneous.

Then the diagram

K0[MF(Q, f)]
χ◦φC

f
//

K

��

KU0(Bǫ, Ff )

β

��
KU0(Bǫ, Ff )⊗KU0(Bǫ′ , Fu2+v2)

STKU

��
K0[MF(Q[u, v], f + u2 + v2)]

χ◦φC

f+u2+v2
// KU0(Bǫ′′ , Ff+u2+v2)

commutes.
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