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1 INTRODUCTION

Let k be a field. In this article, we study hypersurface rings of the form
klx1,...,2,]/(f) from both an algebraic and topological point of view. An
important algebraic invariant of such a ring is its homotopy category of ma-
trix factorizations, which we denote by [MF(k[z1,...,z,], f)] (we recall the
definition of this category in Section 2.1.1). Matrix factorizations were intro-
duced by Eisenbud in [Eis80] as a tool for studying the homological behavior
of modules over a hypersurface ring. More recently, matrix factorizations have
begun appearing in a wide variety of contexts, for instance homological mirror
symmetry (e.g. [KKPO8], by Katzarkov-Kontsevich-Pantev) and knot theory
(e.g. [KRO8], by Khovanov-Rozansky). In the present work, we continue the
study of an interplay between matrix factorizations and topological K-theory
that was begun in the inspiring paper [BvS12] of Buchweitz-van Straten.

A fundamental result in the theory of matrix factorizations is Knorrer’s peri-
odicity theorem:

THEOREM 1.1 ([Kno87] Theorem 3.1). Suppose k is algebraically closed and
char(k) # 2. If f € (z1,...,2n) C K[[z1,...,2,]], there is an equivalence of
categories

[MF (k[[z1, . .., zn]], )] = [MF(K[[21, . ., 20, u, )], f + u? + v?)].

This result plays an important role in the classification of local hypersurface
rings of finite maximal Cohen-Macaulay type; we refer the reader to Chapter 9
of Leuschke-Wiegand’s text [LW12] for details. Knorrer’s periodicity theorem
also demonstrates that one cannot recover f from its homotopy category of
matrix factorizations.

The main goal of this article is explain a precise sense in which Knorrer peri-
odicity is a manifestation of Bott periodicity in topological K-theory. In Sec-
tion 2, we motivate this project with a proof of an 8-periodic version of Knorrer
periodicity for isolated hypersurface singularities over the real numbers:

THEOREM 1.2. Let f € (x1,...,2,) C Rzy,...,2,], and sup-

pose Rlxy,...,z,]/(f) has an isolated singularity at the origin (i.e.

dimpg M < o0). Then there exists an equivalence of triangulated
2L, 2L

categom'els

[MF (R[[21, ..., 2zx]], )] = [MF(R[[#1, .., T, u1, - .- us]], f —ul — - —ud)].
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We point out that the “period” here is exactly 8; that is, for 1 <1 < 8, it can
happen that

[MF(R[[z1, ..., x.]], )] 2 MFR[[z1,...,zn,u1,...,w]], f — u% — u%)]

Our proof relies heavily on machinery developed by Dyckerhoff and Toén in
[Dycll] and [Toé07]. This result draws a distinction between the maximal
Cohen-Macaulay representation theory of hypersurface rings with ground field
R and those whose ground field is algebraically closed and has characteristic not
equal to 2, since the latter exhibit 2-periodic Knorrer periodicity. The maximal
Cohen-Macaulay representation theory of hypersurface rings with ground field
R does not seem to be well-studied, and we hope this work motivates further
investigation in this direction.

The presence of 2- and 8-periodic versions of Knorrer periodicity over C and
R, respectively, suggests the possibility of a compatibility between Knorrer
periodicity and Bott periodicity. Such a compatibility statement is formulated
and proved in Section 3. We state here the version of this result over C; a
version over R is also proven in Section 3 (Theorems 3.32 and 3.33).

THEOREM 1.3. Suppose f € (x1,...,zn) C Q := Clay,...,x,] and either
Q/(f) has an isolated singularity at the origin (i.e. dimc % < o0) or
ERTRAR ETS
f is quasi-homogeneous. Then there exists a commutative diagram
97
Ko[MF(Q, f)] KU®(B., Fy)
lB
K KUO(Béva)®KUO(B€'7FUZ+’U2)
lSTKU
¢?+u2+v2

Ko[MF(Q[U,U],f+u2 +’02)] KUO(BE//,Ff+u2+U2)

where Fy, Fy2yy2, and Fyy,21,2 denote the Milnor fibers of f, u? + 2, and
fHu+v% ¢ €, >0; Be, Ber, and Ber are closed balls of radius €, €, and
€ in C*, C?, and C"*2, respectively; K is induced by the Knérrer functor;
B is the Bott periodicity isomorphism; and STy is given by the product in
relative K -theory followed by the inverse of the map induced by pullback along
the Sebastiani-Thom homotopy equivalence.

The Sebastiani-Thom homotopy equivalence to which we refer in Theorem 1.3
is discussed in Section 3.1.2.

The key construction in this section yields the horizontal maps above; specifi-
cally, given a polynomial f over the complex (real) numbers, we build a map
CID(? (CIDHf) that assigns to a matrix factorization of a complex (real) polynomial
f a class in the topological K-theory of the Milnor fiber (positive or nega-
tive Milnor fiber) of f; this map first appeared in [BvS12] in the setting of
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complex isolated hypersurface singularities. We prove that this construction
induces a map gb(}: (qbﬂ}) on the Grothendieck group of the homotopy category
of matrix factorizations of f, and we show that it recovers the Atiyah-Bott-
Shapiro construction when f is a non-degenerate quadratic over R or C. The
Atiyah-Bott-Shapiro construction, introduced in Part IIT of [ABS64], provides
the classical link between Z/2Z-graded modules over Clifford algebras and vec-
tor bundles over spheres; the maps (b(; and qbﬂ} we discuss in Section 3 can be
thought of as providing a more general link between algebra and topology.
ACKNOWLEDGEMENTS. This work is adapted from my Ph.D. thesis at the
University of Nebraska-Lincoln. I must first of all thank my thesis advisor,
Mark E. Walker, for his support during my time as a graduate student at
Nebraska. I thank Luchezar Avramov and Brian Harbourne for their comments
on preliminary versions of this paper, and also Ragnar Buchweitz, Jesse Burke,
Michael Hopkins, and Claudia Miller for valuable conversations with regard to
this work. I owe special thanks to Hai Long Dao for pointing out to me that one
may use Proposition 3.3 in [Daol3] to prove Proposition 3.26 below. I would
also like to gratefully acknowledge support from NSF Award DMS-0966600 and
the University of Nebraska-Lincoln MCTP grant (NSF Award DMS-0838463).
Finally, I thank the anonymous referee for his or her helpful suggestions.

2 KNORRER PERIODICITY OVER R

In this section, we recall some foundational material concerning matrix fac-
torizations in commutative algebra, and we exhibit an 8-periodic version of
Knoérrer periodicity for matrix factorization categories associated to isolated
hypersurface singularities over the real numbers.

2.1 MATRIX FACTORIZATION CATEGORIES

We provide some background on matrix factorization categories. Fix a commu-
tative algebra @ over a field k£ and an element f of (). Henceforth, when we use
the term “dg category”, we mean “k-linear differential Z/2Z-graded category”.
We cite results on differential Z-graded categories from [Toél1] several times
throughout this section; we refer the reader to Section 5.1 of [Dycll] for a
discussion as to how one may reformulate the results in [Toéll] so that they
apply to the Z/2Z-graded setting.

2.1.1 DEFINITIONS AND SOME PROPERTIES

DEFINITION 2.1. The dg category MF(Q, f) of matriz factorizations of f over
Q@ is given by the following:

Objects in MF(Q, f) are pairs (P, d), where P is a finitely generated projective
Z/2Z-graded @-module, and d is an odd-degree endomorphism of P such that
d?> = f -idp. Henceforth, we will often denote an object (P, d) in MF(Q, f) by
just P.
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The morphism complex of a pair of matrix factorizations P, P’, which we will
denote by Hompyg (P, P’), is the Z/2Z-graded module of Q-linear maps from P
to P’ equipped with the differential 9 given by

da)=doa—(-1)aod
for homogeneous maps o : P — P’.

We will often express an object P in MF(Q, f) with the notation

Pl ‘—dl PO)
do
where P;, Py are the odd and even degree summands of P, and dy,dy are the
restrictions of d to P, and Py, respectively.
A degree 0 morphism « in MF(Q, f) can be represented by a diagram of the

following form:

di do

P1 PO Pl
GqJ( aol J{al
Pt Py s P

It is straightforward to check that « is a cycle if and only if this diagram
commutes. In fact, if f € Q) is a non-zero-divisor, it is easy to see that the left
square commutes if and only if the right square commutes.

Remark 2.2. If P, and P, are free and f is non-zero-divisor, P; and Py must
have the same rank.

Define Z'MF(Q, f) to be the category with the same objects as MF(Q, f) and
with morphisms given by the degree 0 cycles in MF(Q, f). When Q is regular
with finite Krull dimension and f is a regular element of @ (i.e. f is a non-unit,
non-zero-divisor), ZOMF(Q, f) is an exact category with the evident family of
exact sequences ([Orl03] Section 3.1).

The homotopy category, [MF(Q, f)], of the dg category MF(Q, f) is defined to
be the quotient of Z°MF(Q, f) by morphisms that are boundaries in MF(Q, f).
That is, objects in [MF(Q, f)] are the same as those of MF(Q, f), and the
morphisms in [MF(Q), f)] between objects P, P’ are classes in HHomyp (P, P').

DEFINITION 2.3. We call a matrix factorization trivial if it is a direct sum of
matrix factorizations that are isomorphic in Z°MF(Q, f) to either
pLe s g
idg
or
idg
fidg

for some finitely generated projective Q-module F.
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The following result gives an alternative characterization for when a morphism
in Z°MF(Q, f) is a boundary in MF(Q), f); the straightforward proof is omitted.

PROPOSITION 2.4. A morphism « : P — P’ in Z°MF(Q, f) is a boundary
in MF(Q, f) if and only if it factors through a trivial matriz factorization in
Z°MF(Q, f).

We conclude this section with a technical result that will be used in the proof
of Proposition 3.19:

PROPOSITION 2.5. Let P = (P (—%——) Py) be a matriz factorization of f over

0
Q. Assume f is a non-zero-divisor. Then the following are equivalent:

(1) coker(dy) is isomorphic to L] fL for some projective Q-module L.

(2) There exists a trivial matriz factorization E and a matriz factorization
E’ that is isomorphic in Z°MF(Q, f) to one of the form

such that P ® E' is isomorphic to E in ZOMF(Q, f).

We will use the following general fact about idempotent complete categories.
We suspect that this result is well-known to experts; we omit the purely formal
proof.

LEMMA 2.6. Let C be an idempotent complete additive category, and let £ be a
collection of objects in C that is

e closed under isomorphisms,
e closed under finite coproducts, and

e closed under taking summands; that is, whenever X is an object in C such
that idx factors through an object in £, X is an object in &.

Denote by L the quotient of C by those morphisms that factor through an object
in . If X and Y are objects in C, their images in L are isomorphic if and
only if there exist objects Ex, Ey in & such that

XOEx2Y @ Ey.
We now prove Proposition 2.5:

Proof. (2) = (1): Since the cokernel of d; is isomorphic to the cokernel of
d1 @ldF : P1 @F*)Po@F,

we may assume P is trivial. In this case, the result is obvious.
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(1) = (2): Choose a projective @-module L such that there exists an isomor-
phism
coker(dy) =N L/fL.

We have Q-projective resolutions
0— P % Py — coker(dy) — 0
0LLL>L/fL—0
Thus, there exist maps
Bi:Pi—L,vi:L—F
for i = 0,1 making the following diagrams commute:

dy

0 P Py coker(d;) —— 0
S

0 L 151 L/fL —— 0

0 j——— ) L/fL —— 0
'nl 'yol lg

0 P, il Py coker(d;) — 0

Hence, we have maps
hplpo—)Pl,hLiL—)L

such that
v10B1—idp, = hpodi, o By —idp, =diohp.

Prom —idr = fhr, fooyo —idr = fhr.
We have commutative diagrams

d1 f-idr

PP— B L———= L
hpod; hp f-hr hr
idp id
P -y P L, —r .
idp, dy idg, feidr
d fidpg
pp— Py L———= L

DOCUMENTA MATHEMATICA 21 (2016) 1459-1501



1466 MicHAEL K. BROWN

Denote by £ the collection of matrix factorizations of f over @ isomorphic in
ZOMF(Q, f) to a matrix factorization of the form
idg

Ee=—=F.

f

Notice that Z°MF(Q, f) is an idempotent complete additive category, and &
is closed under direct sums and direct summands in Z°MF(Q, f). Letting £
denote the quotient of ZMF(Q, f) by those morphisms that factor through an
object in £, we have that

(P“Z:lpo)g(b%w)
0 drp

in £. The result now follows from Lemma 2.6.

2.1.2 TRIANGULATED STRUCTURE

Suppose @ is regular with finite Krull dimension and f is a regular element of
Q. A feature of the homotopy category [MF(Q, f)] is that it may be equipped
with a triangulated structure in the following way ([Orl03] Section 3.1):

The shift functor maps the object

P=(P <Z——1>P0)
0

to the object

Pll] = (Py =22 py).

—da1

Given a morphism a 5 (P =2= Fy) — (P| ‘?Z_:) P!) in ZOMF(Q, f), the
0 0

mapping cone of « is defined as follows:

d6 (5]
0 —dy

d/l (&%)
0 —do
There are canonical morphisms P’ — cone(a) and cone(a) — P[1] in
ZOMF(Q, f). Taking the distinguished triangles in [MF(Q, f)] to be the trian-
gles isomorphic in [MF(Q, f)] to those of the form
P % P’ — cone(a) — PJ[1],

[MF(Q, f)] may be equipped with the structure of a triangulated category.
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The Grothendieck group, Ko[MF(Q, f)], of the triangulated category
[MF(Q, f)] is defined to be the free abelian group generated by isomor-
phism classes of [MF(Q, f)] modulo elements of the form [Pi] — [P:] + [Ps],
where P, P, and Ps fit into a distinguished triangle in the following way:

P1—>P2—>P3—)P1[1].

Remark 2.7. The category MF(Q, f) is not always triangulated in the dg sense
(see Section 4.4 of [Toéll] for the definition of a triangulated dg category).
When MF(Q, f) is triangulated in the dg sense, the induced triangulated struc-
ture on [MF(Q, f)] agrees with the triangulated structure just described.

Remark 2.8. When @ is a regular local ring and f is a regular element of @),
one has an equivalence of triangulated categories

IMF(Q, f)] = MCM(Q/(f)),

where MCM(Q/(f)) denotes the stable category of maximal Cohen-Macaulay
(MCM) modules over the ring Q/(f). The stable category of MCM modules is
obtained by taking the quotient of the category of MCM modules over Q/(f)
by those morphisms that factor through a projective @ /(f)-module. The above
equivalence is given, on objects, by

(P, H—Z: Py) + coker(dy).
0

Matrix factorizations were first defined by Eisenbud in [Eis80]; this interplay
between matrix factorizations and MCM modules over hypersurface rings pro-
vided the original motivation for the study of matrix factorization categories.

2.1.3 STABILIZATION

Assume now that @ is a regular local ring of Krull dimension n, and suppose f
is a regular element of Q. Denote by D(Q/(f)) the bounded derived category
of Q/(f), and set Perf(Q/(f)) to be the full subcategory of D®(Q/(f)) given
by perfect complexes. Perf(Q/(f)) is a thick subcategory of D®(Q/(f)); define
D"(Q/(f)) to be the Verdier quotient of D*(Q/(f)) by Perf(Q/(f)). In [Buc86],
Buchweitz calls this quotient the stabilized derived category of Q/(f).

By [Buc86], the functor

MCM(Q/(f)) — D(Q/(/))

that sends an MCM module M to the complex with M concentrated in degree
0 is a triangulated equivalence. Hence, composing with the equivalence in
Remark 2.8, one has an equivalence

[MF(Q. /)] = D2(Q/(f))
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Following [Dycl1], given an object C' in D”(Q/(f)), we denote by C*2P the
isomorphism class in [MF(Q, f)] corresponding to C' under the above equiva-
lence (“stab” stands for “stabilization”). In particular, thinking of the residue
field k of Q/(f) as a complex concentrated in degree 0, we may associate to k
an isomorphism class k5% in [MF(Q, f)]. We now construct an object E; in
MF(Q, f) that represents k5*2P; this construction appears in [Dyc11]. Choose a
regular system of parameters z1, ..., z, for ), and consider the Koszul complex

(@ /\ZQn, So)
=0

as a Z/27-graded complex of free Q-modules with even (odd) degree piece given
by the direct sum of the even (odd) exterior powers of Q™. Here, sy denotes
the Z/2Z-folding of the Koszul differential associated to x1, ..., x,. Choose an
expression of f € @ of the form

f:g1w1+~~~+gn:cn.

Fix a basis e1, ..., e, of Q", and set s1 to be the odd-degree endomorphism of
@?:0 /\"Q™ given by exterior multiplication on the left by gie; + - -+ + gnen.
Define

E; = (@ AN'Q™, so + s1).

i=0
It is easy to check that Ef is a matrix factorization of f. By Corollary 2.7
in [Dycll], E; represents k52 in [MF(Q, f)]. In particular, E; does not de-
pend on the choice of regular system of parameters x1,...,z, or coefficients
gis---,9n up to homotopy equivalence. Henceforth, we shall denote the dg
algebra Endyr(Ey) by A, f)-

2.2 THE TENSOR PRODUCT OF MATRIX FACTORIZATIONS

Let k be a field. We begin this section with a technical definition:

DEFINITION 2.9. Suppose @ is a commutative algebra over k and f € Q. If
the pair (@, f) satisfies

e () is essentially of finite type over k
e () is equidimensional of dimension n

e The module Qé? /k of Kéhler differentials is locally free of rank n

e The zero locus of df € Qé? Jk is a O-dimensional scheme supported on a
unique closed point m of Spec(Q) with residue field & and f € m

we shall call the pair Q/(f) an isolated hypersurface singularity, or THS.
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Remark 2.10. Our THS condition above is precisely condition (B) in Section 3.2
of [Dycl1]. As noted in loc. cit., if Q/(f) and Q'/(f’) are IHS, Q ®; Q'/(f ®
1+1® f') is as well.

Suppose Q and @’ are commutative algebras over k, f € Q, and f' € Q’. Given
objects P and P’ in MF(Q, f), MF(Q’, f'), one can form their tensor product
over k:

di ® idp(; idpo ® dll
—idp, ® d6 dp ® idp{

do ® idpé —idp, ® dll
idp, ® d6 di ® idp{

(PL®k P))® (Py®y PY) (Py@ PY) & (P PY)).

We will denote the tensor product by P @yr P’. This construction first ap-
peared in [Yos98]; it can be thought of as a Z/2Z-graded analogue of the tensor
product of complexes. It is straightforward to check that P®yr P’ is an object
in MF(Q®rQ', f®1+1® f’). In fact, setting fB f' := fR1+1Qf € QR Q’,
and noting that there is a canonical map of complexes

Homyr (P, L) ®5 Homyp (P, L) = Homyre (P @mr P/, L @ur L),
we have the following:
ProrosiTiON 2.11. There is a dg functor
STur : ME(Q, f) @ ME(Q', f') = MF(Q @4 Q' f @ f')
that sends an object (P, P') to P @ur P’.
Remark 2.12. Tt is straightforward to verify that STyr induces a pairing

Ko[MF(Q, f)] ® Ko[MF(Q', f')] = Ko[MF(Q @1 Q', f & f)].

Remark 2.13. The “ST” in the name STy stands for “Sebastiani-Thom”,
since this tensor product operation is related to the Sebastiani-Thom homotopy
equivalence discussed in Section 3.1.2. A precise sense in which the tensor prod-
uct of matrix factorizations is related to the Sebastiani-Thom homotopy equiv-
alence is illustrated by the proof of Proposition 3.29 below; see Remark 3.31
for further details.

Now, suppose Q/(f) and Q'/(f’) are IHS. Set Q" := Q @, Q'. We will denote
by @ the m-adic completion of Qu, where m is as in the definition of THS.
Define Q' and Q" similarly, and let

$:QwrQ — Q"
denote the canonical ring homomorphism. ¢ induces a dg functor
MF(¢) : MF(Q &, @', f & f') = MF(Q", f & f').
Set S/'\TMF to be the composition of MF(¢) with the tensor product functor

MF(Q, f) @x MF(Q', f') = MF(Q @1 Q', f ® [").
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PROPOSITION 2.14. If Q/(f) and Q'/(f’) are THS,
STarr : MF(Q. f) @x MF(Q', f') = MF(Q", f & f')
is a Morita equivalence of dg categories.

Remark 2.15. We emphasize that Proposition 2.14 is really a straightforward
application of several results in [Dycll]; we include a proof for completeness.
We refer the reader to Section 4.4 of [Toéll] for the definition of a Morita
equivalence of dg categories.

Proof. Let m and m’ be the maximal ideals of Q and @’ arising in Definition 2.9.
Suppose Qn and Q),, have Krull dimensions n and m, respectively. Qun and

' are regular local rings; choose regular systems of parameters x1,...,z,
and y1,...,Ym in Qn and Q/,,, and choose expressions

f=gix1+ -+ gnTn

fr=hyi+ + hym

of fand f’. Use these expressions to construct the dga’s A(q,,.s) and Aqr | ¢,
as in Section 2.1.3.

Note/Ehat T1,...,Tn and y1,...,Yn form regular systems of parameters in @
and @' as well, so we may use these expressions to construct A(@ P and A@\, 1y
Also, 71 ®1,...,2,®1,1®y1,...,1 @y, is a regular system of parameters in

Qr., where m” :=m® 1+ 1®m’, so we may use the expression

fef=@gaol)+ -+ (gnrn @)+ (1@ hy1) 4+ + (1 ® hm¥Ym)

to construct A, re ) and A(@,j@f,).

By Section 6.1 of [Dycl1], we have a quasi-isomorphism
F:AQu.n ®rA@ .1 — A, for)-
We also have a canonical map

G:A )—>AA

@.n @ Aq g @ for")"

By the proof of Theorem 5.7 in [Dycl1], the inclusions

AQum.1) = A1)

A = Ag

A 108 = A o

are all quasi-isomorphisms. Since a tensor product of Morita equivalences is
again a Morita equivalence ([Toél11] Section 4.4), it follows that the map

A@Qu.5 @ A, .1~ A O AG g
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is a Morita equivalence.
We have the following commutative square:

A@Qm.) Bk A, ) = AG5) Ok A 1

| o

A, sor) — A@n jap

It follows that G is a Morita equivalence.
One may think of a dga as a dg category with a single object. Adopting this
point of view, we have inclusion functors

it A, = MF(Q, f)

JiAg = ME@, f)

l: A(é\”,f@f’) — MF(Q”a f D fl)

Combining Theorem 5.2 and Lemma 5.6 in [Dycl1], we conclude that ¢, j, and
[ are Morita equivalences. In particular, we have that

1®J: A(@,f) Ay, A@\/,f/) - MF(Q) f) g MF(Q’, f/)

is a Morita equivalence.
Finally, consider the following commutative diagram:

i®; A =
@.5) @ A@.pn — MF(Q, f) @, MF(Q', /')

lG lﬁMF

l _
Agrsepy —=MF@Q".f & f)

A

Since the left-most vertical map and both horizontal maps are Morita equiva-
lences, ST\ is as well.
O

Remark 2.16. Using Theorem 4.11 of [Dycl1] along with a similar argument to
the one above, one may show that, under the assumptions of Proposition 2.14,
the functor

MF(Q, f) @ MF(Q', f') = MF(Q", f & f')

given by tensor product of matrix factorizations is also a Morita equivalence.
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2.3 MATRIX FACTORIZATIONS OF QUADRATICS

Fix a field k such that char(k) # 2 and a finite-dimensional vector space V
over k. Let ¢ : V — k be a quadratic form, and let Cliff5(¢) denote the
Clifford algebra associated to ¢. Cliffx(q) is a Z/2Z-graded k-algebra; let
modz, 7 (Cliffx(¢)) denote the category of finitely generated Z/2Z-graded left
modules over Cliff;(¢). Henceforth, when we refer to a module over a Clifford
algebra, we will always mean it to be a left module.

Assume ¢ is non-degenerate, and choose a basis {ey,...,e,} of V with respect
to which ¢ is diagonal; that is,

q=a12? + -+ a2 € S*(V*)

where the x; comprise the dual basis corresponding to the e;, and the a; are
nonzero elements of k. Denote by @ the localization of S(V*) at the ideal
(T1,...,2Tn)-

The following theorem, due to Buchweitz-Eisenbud-Herzog, yields a relation-
ship between Clifford modules and matrix factorizations of non-degenerate
quadratic forms:

THEOREM 2.17 ([BEH8T]). There is an equivalence of k-linear categories

modz2z(Cliffi (¢)) = [MF(Q. )]
Denote by © the explicit construction of this equivalence described in the proof
of Theorem 14.7 in [Yo0s90].

Remark 2.18. The inclusion

induces an equivalence

o

[MF(k[:Ch ceey zn]v Qn)] - [MF(@, Qn)]

To see this, we first recall that every matrix factorization of g,, over @ is isomor-
phic in [MF(Q, g»,)] to one with (linear) polynomial entries ([Yos90] Proposition
14.3); hence, the functor is essentially surjective.

Also, one has a commutative diagram

IMF(Q, )] —= MCM(Q/(g))

| |

[MF(Q, )] —> MCM(Q/(4n))
The morphism sets in MCM(Q/(¢»)) are Artinian modules, and hence com-

plete. Thus, the functor on the right is fully faithful, and so the functor on the
left is as well.
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It now follows from Theorem 4.11 in [Dycl1] that the functor

[MF(k[:Ch s 7$n]7 Qn)] - [MF(Q\, Qn)]

is fully faithful.

Suppose ¢’ : W — k is another non-degenerate quadratic form; choose a basis
of W with respect to which ¢’ is diagonal, and let ¥, .. .,y denote the corre-
sponding basis of W*. As above, we may think of ¢’ as an element of SZ(W*).
Set @’ to be the localization of S(W*) at the ideal (y1,...,Ym)-

It is well-known that the Z/27Z-graded tensor product of Cliff;(¢) and Cliff;(¢)
over k is canonically isomorphic to Cliffy(¢ @ ¢'). Further, by Remark 1.3 in
[Yos98], the Z/2Z-graded tensor product of Clifford modules is compatible,
via this canonical isomorphism and the equivalence in Theorem 2.17, with the
tensor product STyp in Proposition 2.11. That is, one has a commutative
diagram of k-linear categories

modz, o7 (Cliff () x mody /o7 (Cliffx(¢")) —— modz2z(Cliffx (¢ © ¢'))

l@x@ l@
IMF(Q, )] x [MF(Q', ¢')] ——" > [MF(Q & @', g & ¢')]

Let C be a rank 1 free Z/2Z-graded Cliff(¢)-module. If dim(V) = 1 and
q = 22, it is easy to check that the isomorphism class of ©(C) is k***", where
Est2b is as defined in Section 2.1.3. Further, E, ®ur Ey = Eypq, where Eg,
Ey, and Eyqq are as in Section 2.1.3 ([Dycll] Section 6.1). Thus, we have:

PROPOSITION 2.19. If a; =1 for 1 < i < n, the isomorphism class of ©(C) is
kstab.

2.4  PERIODICITY

Following [Dyc11], given a commutative algebra @ over a field k and an element
f of Q, we define MF*(Q, f) to be the dg category of possibly infinitely-
generated matrix factorizations; that is, objects of MF*(Q, f) are defined in
the same way as MF(Q, f), except the projective Z/2Z-graded Q-module P
need not be finitely generated.

A version of Knorrer periodicity (Theorem 1.1) for isolated hypersurface sin-
gularities may be deduced from the following proposition:

PROPOSITION 2.20. Suppose Q and Q' are commutative algebras over a field
k. Let f € Q and ' € Q', and suppose Q/(f) and Q'/(f") are THS. If there
exists an object X in MF(Q', ') such that

(a) X is a compact generator of [IMF*(Q’, )], and

(b) the inclusion k — EndMF(@ﬁf/)(X) is a quasi-isomorphism
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then the dg functor

Kx : MF(Q, f) — MF(Q &5 Q. f & f)

given by
P— Pour X

on objects and
a— a®idyx

on morphisms 1s a quasi-equivalence.

Proof. By Theorems 4.11, 5.1, and 5.7 in [Dyc11], the inclusion

End (X) = MF(Q, f')

MF(Q'.f")
is a Morita equivalence. We have a chain of Morita equivalences

MF(Q, f) @1 k = MF(Q. f) ®x Endyyp ) (X) = MF(Q, f) @ MF(Q', /).
Composing with S/TMF, Proposition 2.14 yields a Morita equivalence

MF(Q, f) = MF(Q @ Q', f & ).

This composition is clearly the functor Kx; thus, Kx is a Morita equivalence.
Since both MF(@, f) and MF(Q@’, f @ f') are triangulated in the dg sense
by Lemma 5.6 in [Dycl1], we may apply Theorem 3.2.1 in [Toél1] and Theorem
1.2.10 in [Hov07] to conclude that K x is a quasi-equivalence. |

To deduce a version of Knorrer periodicity for isolated hypersurface singular-
ities, assume k to be an algebraically closed field such that char(k) # 2, set
Q' = k[u,v] and f' = u® + v?, and take X to be the matrix factorization

klu, v] =2 k[u, v].

Uu—1

This is the approach taken in Section 5.3 of [Dyc11].

We point out that k is not assumed to be algebraically closed in Proposi-
tion 2.20, and no assumptions on the characteristic of k are made, either.
In particular, we may use Proposition 2.20 to prove an 8-periodic version of
Knorrer periodicity over R (this result implies Theorem 1.2 from the introduc-
tion):

THEOREM 2.21. Suppose @ is an R-algebra. Let f € Q, and suppose Q/(f)

is THS. Set Q' := R[uy,...,ug]. Then there exists a matriz factorization X of
—u? — -« —u over Q' such that the dg functor
MF(Q, f) = MF(Q®r Q' f —ui — - —u})
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given by
P— P@ur X

on objects and
a— a®idyx

on morphisms 1s a quasi-equivalence.

Remark 2.22. One may replace —u? — -+ — u? with uf + -+ + uZ and obtain
a similar result; the proof is the same.

Proof. Set ¢ := —u? —---—u? € Q. We equip the matrix algebra Mat;s(RR) of
16 x 16 of matrices over R with a Z/2Z-grading in the following way: A = (a;;)
is homogeneous of even degree if a;; = 0 whenever ¢ + j is odd, and A is
homogeneous of odd degree if a;; = 0 whenever i + j is even. By Proposition
V.4.2 in [Lam05],

CIIHR(Q) = Math(R)

as 7,/27-graded algebras. In particular, by Theorem 2.17,
[MF(Q', q)] = modz oz (Mati6(R)),

where the right hand side is the category of finitely generated Z/27Z-graded left
Maty6(IR)-modules. Let M € modz,sz(Matis(R)) be the module consisting of
elements of Matys(R) with nonzero entries only in the first column. Recall
that, by Remark 2.18, the canonical map

[MF(Q', q)] = [MF(Q’, q)]
is an equivalence; let X be an object of [MF(Q', ¢)] corresponding to M.
Let m := (uq,...,us) € @', and let E;, € MF(Q/,,¢) be as in Section 2.1.3.
Notice that, by Proposition 2.19, (X & X[1))®® = E, in [MF(Qh,q)]. In
particular, it follows from Theorems 4.1 and 4.11 of [Dyc11] that X is a compact
generator of [MF*(Q’, ¢)].
Since Endpiag,,(r) (M) = R as Z/27Z-graded R-algebras, where R is concentrated
in even degree, we have H°(Endyr (X)) 2 R. We now show H!(Endyr(X)) =
0. By Section 5.5 of [Dycl1], H*(Endmr (E,))® H' (Endmr (E,)) is isomorphic,
as a Z/2Z-graded R-vector space, to Cliffg(¢), and so H*(Endyr(E,)) has rank
128. Also, we have isomorphisms

H'(Endyr(F,)) = HY (Endyr (X @ X[1])%%))
~ H(Endyr (X)) @ H' (Endyr (X)),
Thus, H'(Endyr(X)) = 0, and so the inclusion
R < Endyr(X)

is a quasi-isomorphism. Now apply Proposition 2.20. O

Remark 2.23. Theorem 2.21 implies the existence of a Knorrer-type periodicity
for matrix factorizations over R of period at most 8. We point out that the
period is exactly 8, since the Brauer-Wall group of R is the cyclic group Z/8Z
generated by the class of Cliffg(z?).
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3 MATRIX FACTORIZATIONS AND THE TOPOLOGICAL K-THEORY OF THE
MILNOR FIBER

We have demonstrated that matrix factorization categories exhibit 2- and 8-
periodic versions of Knorrer periodicity over C and R, respectively. This pat-
tern resembles Bott periodicity in topological K-theory; the goal of this section
is to explain this resemblance.

We give a rough sketch of our approach. The classical link between the period-
icity of Clifford algebras up to Z/2Z-graded Morita equivalence and Bott peri-
odicity in topological K-theory is the Atiyah-Bott-Shapiro construction, which
first appeared in Part IIT of [ABS64] (and, in fact, a proof of Bott periodicity
using Clifford algebras is provided by Wood in [Woo66]). Loosely speaking,
the Atiyah-Bott-Shapiro construction is a way of mapping a finitely generated
Z/2Z-graded module over a real or complex Clifford algebra to a class in the
K-theory of a sphere.

Composing the Buchweitz-Eisenbud-Herzog equivalence (Theorem 2.17) with
the Atiyah-Bott-Shapiro construction, we have a way of assigning a class in the
topological K-theory of a sphere to a matrix factorization of a non-degenerate
quadratic form over R or C:

ABS o BEH

mf’s of real/complex quadratics K-theory of spheres

The idea is to lift this composition; that is, we wish to associate a space Xy to
a real or complex polynomial f and construct a map from matrix factorizations
of f to the topological K-theory of X so that the diagram

mf’s of real/complex quadratics ABSoBEH . je -theory of spheres

| |

mf’s of real/complex polynomials > K-theory of spaces of the form X

commutes.

It turns out that the right choice of Xy is the Milnor fiber (positive or negative
Milnor fiber) associated to the complex (real) polynomial.

We begin this section with discussions of known results concerning the Milnor
fiber and relative topological K-theory. Then, using the work of Atiyah-Bott-
Shapiro in [ABS64] as a guide, we will complete the above diagram, and we will
use the bottom arrow to explain a precise sense in which Knorrer periodicity
and Bott periodicity are compatible phenomena.

3.1 THE REAL AND COMPLEX MILNOR FIBERS

Let f € C[z1,...,z,], and suppose f(0) = 0. We begin this section by describ-
ing the construction of the Milnor fiber associated to f, following the exposition
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in Section 1 of [BvS12]. We then discuss various properties of the Milnor fiber
that we will make use of later on.

3.1.1 CONSTRUCTION OF THE MILNOR FIBRATION AND SOME PROPERTIES
OF THE MILNOR FIBER

For € > 0, define B, to be the closed ball centered at the origin of radius € in
C™, and for § > 0, set D5 to be the open punctured disk centered at the origin
in C of radius §.

Choose € > 0 so that, for 0 < ¢ < ¢, B intersects f~1(0) transversely. Upon
choosing such a number ¢, choose § € (0,¢) such that f~1(¢) intersects 0B,
transversely for all ¢ € Dj. Then the map

Y Ben f7H(D) = D;

given by ¥(z) = f(x) is a locally trivial fibration.

The map 1 depends, of course, on our choices of € and §. However, if €,0’ is
another pair of positive numbers satisfying the above conditions, the fibration
associated to these choices is fiber homotopy equivalent to the one above (see
Definition 1.5 in Chapter 3, §1 of [Dim92] for the definition of a fiber homotopy
equivalence). We are thus justified in calling 1) the Milnor fibration associated

to f.

Remark 3.1. The Milnor fibration was originally introduced in [Mil68]. The
above construction is not the same as the construction of the Milnor fibration in
[Mil68] and is due to Lé ([Lé76]). The two constructions yield fiber homotopy
equivalent fibrations ([Dim92] Chapter 3, §1).

Choose t € Dj5. The fiber of ¢ over ¢ is called the Milnor fiber of f over t;
we will denote it by Fy. Fy is independent of our choices of €, §, and ¢ up to
homotopy equivalence, so we suppress these choices in the notation, and we
will often refer to Fy as just the Milnor fiber of f. However, these choices will
be significant at several points later on.

If Clz1, .-, Znl(ay,....2,)/ (f) is THS (see Definition 2.9), set

Cllz1, ...,
u::dimCH<oo.
(Tl,.. ,m

THEOREM 3.2 ([Mil68] Theorem 6.5). If Clz1, ..., %n)(ey. . 2y/(f) is THS, Fy

is homotopy equivalent to a wedge sum of u copies of S™ 1.

Remark 3.3. Since 1) restricts to a fibration over a circle, Fy comes equipped
with a monodromy homeomorphism

L®

h:Fy = Fy.
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3.1.2 THE SEBASTIANI-THOM HOMOTOPY EQUIVALENCE

We recall the definition of the join of two topological spaces:

DEFINITION 3.4. Let X and Y be compact Hausdorff spaces. The join of X
and Y, denoted X %Y, is the quotient of X x Y x I by the relations

(z1,9,0) ~ (22,9, 0)

(xvyla 1) ~ (xvaa 1)
equipped with the quotient topology.

Remark 3.5. We express the cone CX over a compact Hausdorfl space X
explicitly as the quotient of
X x [0,1]

by the relation
(x1,0) ~ (22,0)

for all 1,22 € X. When X and Y are compact Hausdorff, X * Y is homeo-
morphic to (CX xY)U (X x CY) C CX x CY; here, we identify X and YV
with the subsets X x {1} and Y x {1} of CX and CY, respectively. By [Bro06]
5.7.4, an explicit homeomorphism

CX xCY S5 C(X *Y)

is given by

t .
(z,t,y,t') — ((z,y, g),t’), ift' >¢t,t#£0

t/
2_t)’t>’ ift>t,t#0
(2,0,9,0) = ((z,y,0),0),

and this map restricts to a homeomorphism

(1',t,y,t/> = ((zayvl -

w: (CX xY)U(X xCY) = X +Y.
Now, suppose f € Clz1,...,z,], f' € Cly1,...,ym], and f(0) = 0 = f/(0).
Assume R := C[‘Tla---axn](zl ..... xn)/(f) and R’ := (C[yl,---,ym](yl ..... ym)/(f/)
are THS (see Definition 2.9). Let f @ f’ denote the sum of f and f’ thought of

as an element of C[x1, ..., Zn, Y1, .., Ym]. The following theorem of Sebastiani-
Thom relates the Milnor fibers of f, f/, and f & f':

THEOREM 3.6 ([ST71]). There is a homotopy equivalence
ST : Ff *Ff/ — Ff@f/
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that is compatible with monodromy; that is, the square
Fp+ Fp —2 Frap
h*hl hl
Fp+ Fp —2 Frap
commutes up to homotopy.

Remark 3.7. By results of Oka in [OkaT73], the assumption in Theorem 3.6 that
R and R’ are THS is not necessary if f and f’ are quasi-homogeneous.

We refer the reader to Section 2.7 of [AGZV12] and §3 of Chapter 3 in [Dim92]
for discussions related to Theorem 3.6. We now exhibit an explicit map realizing
the homotopy equivalence in Theorem 3.6, following Section 2.7 of [AGZV12].
Choose real numbers €’,¢6”, such that the map

Ban(f® f)"YD}) — Din

given by = +— (f & f')(z) is a locally trivial fibration, as above.
Similarly, choose €, and €, ¢’, as well as t” € Dj,,, so that the analogous maps

B.n f~Y(D}) — Dj
Be 0 (f)~H(Dj) = Dy
are locally trivial fibrations, and also so that
(a) €, € are sufficiently small so that B, X B C Ber.
(b) [t"] < min{4,d'}.

Set Fy, Fy, and Fygy to be the Milnor fibers of f, f/, and f & f’ over t”.
Applying Lemma 2.10 in [AGZV12], choose a continuous map

H:CF; — B
such that
e H(z,1)==z € Fy C B,

e H(—,s): Ff — B. maps into the Milnor fiber B.N f~1(st") for s € (0,1),
and

o H(z,0) =0 for all z € Fy

ExampLE 3.8. If f is quasi-homogeneous of degree d with weights wy, ..., wq,
such a map H may be given by
(2,8) = (sTa1,...,8 8 x,).

Notice our assumption that R is IHS is not needed here.
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Choose H' similarly for the Milnor fiber Fy,. By the discussion on pages 54-55
of [AGZV12] and Remark 3.5, there is a homotopy equivalence

g:CFf XFf/ UFf X CFf/ —>Ff@f/

given by
1+s—5
#)7 Hl(yv

Composing, one has a homotopy equivalence

1—s+4¢

(x,8,y,8") — (H(x, 5

))-
gO’LU_liFf*Ff/ —>Ff@f/,

where w is the homeomorphism in Remark 3.5. The homotopy equivalence
gow™! enjoys the same properties as the map ST in Theorem 2.14.

Remark 3.9. g extends to a homotopy equivalence of pairs
G: (CFf x CFp,CFp x Fpr UFy x CFf/) — (BC//,Ff@f/)

that maps a point (z, s,y,s’) to

28" —
(H(w,5), H'(y, =), it s <5, s/ #0
2s—s'". ., & ..,
(H(‘T’ ) )aH(yag)alfS <Sas7é0

0,if s=0=1¢"

Remark 3.10. When f and f’ are quasi-homogeneous (and R, R’ are not
necessarily THS), we may use Example 3.8 to build a homotopy equivalence
g:CFy x Fpr UFy x CFypr — Frgy in the same way as above ([Dim92] Chap-
ter 3, Remark 3.197).

3.1.3 AN ANALOGUE OF THE MILNOR FIBRATION OVER R

Now, suppose f € R[xy,...,2,] and f(0) = 0. One may construct a locally
trivial fibration

Y BN f7H((—6,0)U (0,6)) — (—4,0) U (0,9)

for some € > 0 and § such that 0 < § << € in the same way as above, where
B, is now the closed ball of radius € centered at the origin in R".

But now, fibers over (—4,0) and (0,d) need not be homotopy equivalent. For
instance, if f = 22 + -+ + 22, the positive fibers of ¢ are homeomorphic to
S™~1 while the negative fibers are empty.

Choose t € (0,6) and ¢ € (—0,0). The fiber of ¢ over ¢ is called the positive
Milnor fiber of f over t, denoted by F;r, and the fiber of 1 over t' is called

the negative Milnor fiber of f over t', denoted Fp. As in the complex case,
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F}" and F; are independent of our choices of €, 4, t, and ¢’ up to homotopy
equivalence, so we suppress these choices in our notation, and we will often
refer to F' ;r and F; as just the positive and negative Milnor fibers of f.
The topology of the real Milnor fibers is more complicated than that of the
complex Milnor fiber. However, there is a version of Theorem 3.6 for real Mil-
nor fibers of quasi-homogeneous polynomials. Suppose f € R[x1,...,2,], [/ €
Rly1,...,ym| are quasi-homogeneous and nonconstant. If F;r and FfJC are
nonempty, there is a homotopy equivalence
Ff s« Ff = Fip
([DP92] Remark 11). Moreover, the homotopy equivalence may be constructed
as in Remark 3.10; that is, one has a homotopy equivalence of pairs

G: (CFf xCFf,

5, CFf X Ff,UFf x CF}) = (Ber, Ffi

f@f’)'

Since F; = Fff, one has a similar result for negative Milnor fibers.

3.2 RELATIVE TOPOLOGICAL K-THEORY

We introduce some facts concerning relative topological K-theory. All of the
results in this section are essentially due to Atiyah-Bott-Shapiro in [ABS64],
but we modify their exposition at several points to suit our purposes.
Let X be a compact topological space, and let Y be a closed subspace of X
such that there exists a homotopy equivalence of pairs between (X,Y) and a
finite CW pair; we construct a category C1(X,Y) from (X,Y) in the following
way:
e An object of C1(X,Y) is a pair of real vector bundles V1, V; over X equipped
with an isomorphism

Vily = Voly.

Denote objects of C1(X,Y) by (Vi, Vp; 0).
e Morphisms in C;(X,Y) are pairs of morphisms of vector bundles over X

ar: Vi =V, a0: Vo =V}
such that the following diagram of maps of vector bundles over Y commutes:

Vily —2— Voly

OéllYJ( ao\yl

Vily —— Wly
We write morphisms in C1(X,Y") as ordered pairs (aq, ap).
Remark 3.11. The reason for the subscript in the notation C;(X,Y) is that,
for any n > 1, one may similarly build a category C,,(X,Y’) with objects given

by ordered (n + 1)-tuples of vector spaces on X whose restrictions to Y fit into
an exact sequence (cf. [ABS64] §7).
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Remark 3.12. We will work with real vector bundles throughout this section;
however, there is an analogous version of every result in this section for complex
vector bundles.

The following facts about C;(X,Y") are easily verified:

o If (V4,Vp;0) and (V{, Vy;0’) are objects in C1(X,Y), (Vi@ VY, Vo @ V], 0@
c') is their coproduct.

e C1(X,Y) is an additive category.

e A map g : (X1,Y1) = (X2,Y2) of pairs of spaces as above induces a

functor
g" 1 C1(X2,Ys) = C1(X1, Y1)
via pullback.

e A morphism (a1, ap) in C;1(X,Y) is an isomorphism (resp. monomor-
phism, epimorphism) if and only if o7 and @y are isomorphisms (resp.
monomorphisms, epimorphisms) of vector bundles over X.

We shall call an object of C1(X,Y") elementary if it is isomorphic to an object
of the form (V,V;idy |, ). It is easy to check that (Vi,Vp;0) is elementary if
and only if o can be extended to an isomorphism o : Vi — V}.

If V and V' are objects in C1(X,Y), we will say V ~ V' if and only if there
exist elementary objects E, E’ such that

VeEx~2V' o FE.

The relation ~ is an equivalence relation. Let L1 (X,Y") denote the commutative
monoid of equivalence classes under ~ with operation @&. We shall denote by
[Vi, Vo; o] the class in Li(X,Y) represented by (V1, Vg, 0).

Remark 3.13. Let (X1,Y1), (X2,Y2) be pairs of spaces as above, and let g :
(X1,Y1) = (X2,Y3) be a map of pairs. Then the functor
9" Ci(X2,Y2) = C1 (X1, Y1)

applied to an elementary object is again elementary. Hence, g* induces a map
of monoids
L1(X2,Y2) — L1(X1, Y1)

The main reason we are interested in the monoid Li(X,Y) is the following
result:

PROPOSITION 3.14 (Atiyah-Bott-Shapiro, [ABS64]). There exists a unique nat-
ural homomorphism
x:Li(X,Y) = KO°(X,Y)

which, when'Y = 0, is given by
X(E) = [Vo] = [VAl.

Moreover, x is an isomorphism.
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In particular, L1(X,Y’) is an abelian group.
Let (X,Y), (X', Y’) be pairs as above. We conclude this section by exhibiting
a product map

Li(X,Y)®Li(X,Y) > Li(X x X', X xY'UY x X')

that agrees, via x, with the usual product on relative K-theory.

Let V. = (V4,Vo;0) € Ob(C1(X,Y)) and V' = (V{,V;0’) € Ob(C1(X',Y")).
By Proposition 10.1 in [ABS64], we may lift o, ¢’ to maps 7,5 of bundles over
X and X', respectively.

Thinking of

0=V HVy—=0
0=V, LVl =0

as complexes of bundles with V3, VY in degree 1 and V;, Vj in degree 0, we may
take their tensor product

0-VieoV B WieV))e (Ve V) = VeV =0,

where
ﬁ:(&®mw idy, ®7’)

. —idy, ® o’
27\ Foidy
The result is a complex of vector bundles over X x X’ that is exact upon

restriction to X x YUY x X'.
Choose a splitting 7 of 72| x xy Uy xx’. Then,

(VieVy) e (Voo Vi), (Voo V) e (Vi ® V) <71|XxY7Tqufo>]

is an element of L1(X x X/, X x YUY x X').
One may define monoids L, (X,Y’) involving longer sequences of bundles; see
[ABS64] Definition 7.1 for details. Denote elements of L, (X,Y) by

Viy oo s Vo; 0ny oy 01].

There is a map
Jgn L1(X)Y) = L, (X,Y)

given by
[Vl,‘/o;O'] — [0,...,O,Vl,Vo;O,...,0,0‘],

and, by Proposition 7.4 in [ABS64], j, is an isomorphism for all n.
We will need the following technical lemma:
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LEMMA 3.15. Let (X,Y) be a pair as above, and let [Vo,V1,Vy;09,01] €
Lo(X,Y). If w is a splitting of oo,

(Y s (7)) = [ i, Vosom, )

Proof. First, suppose dim(V;) > dim(V32) + dim(X). Apply Lemma 7.2 in
[ABS64] to construct a monomorphism

h:Vo—W
that extends 3. By the proof of Lemma 7.3 in [ABS64],
jQ([COker(h’); VO7U_1]) = [‘/27 ‘/15 VO’ 02, Jl];

and so

Jj2([coker(h) @ Va, Vo @ Va; A]) = [Va, Vi, Vi; 02, 01],
o1 0
A = . .
(0 1dV2|Y)

[coker(h) @ Vo, Vo @ Va; Al = [V1, Vo @ Vo <(;_1>]

where

Hence, it suffices to show

Choose a splitting s of h, and let
p: Vi — coker(h)

denote the canonical map. Then we have an isomorphism
<§) : Vi — coker(h) ® Va.
Since sly is a splitting of o3, we also have an isomorphism

(Jl) : ‘/1|y — V0|y @valy

S|y
01
S|y

Ny ——————=Wly @ Valy

(i,i) idvyly avaly

coker(h)ly @ Val|y A Voly @ Valy

We have a commutative square
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Thus

3

coker(1) © V2, Vo © Vai 4] = [, Vo 0 i (71 )1

Notice that we have an object

Wi 0he v <t () + -0 (7))

in C1(X x I,Y x I) whose restrictions to X x {0} and X x {1} are [V4,V, ®
Va; (?)] and [Vi, Vo @ Va; <01

N ], respectively. It now follows from Proposi-
Y
tion 9.2 in [ABS64] that

V1, Vo @ Vo (01 )] =[V1i,Vo & Va; (01)]-
sly T

This finishes the case where dim(V;) > dim(V2) + dim(X).
For the general case, choose a bundle E such that

dim(E) + dim(V1) > dim(V2) + dim(X).

Define
- [ 02 01 0
g1 0
U = [Vl@E,Vo@E@‘/Q; 0 ldE|y ]
T 0

Notice that
Vo, Vi, Vo;02,01] = U,

and
Vi, Vo & Vai (‘Q)] =U,

so that it suffices to show that j(U’) = U. Since (ﬂ' O) is a splitting of (002),

this follows from the case we have already considered. O
Now, the pairing
Li(X,)Y)@ Li(X)Y) - L1i(X x X', X xY'UY x X')
described in Proposition 10.4 of [ABS64] is given by sending a simple tensor
Vi, Vos o] @ [V{, Vs 0]
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to
st ViV, (Vi@ Vy)® (Vo V), Vo ® Vi T2l xxyruyx X/, Tt X x v 7oy < x7));

this follows from the proof of Proposition 10.4.
Thus, by Lemma 3.15, the map

Ob(C1(X,Y)) x Ob(Cy (X", Y")) = Li(X x X', X xY'UY x X')

given by

V) o (4 8 ) & (6 @ ), 06 0 ) & (v & ), (o))

determines

(a) a well-defined pairing on Ob(C1(X,Y))x Ob(C1(X’,Y”)) up to our choices
of liftings &, ¢/ and splitting 7, and

(b) a pairing
Li(X,Y)® Li(X",Y") = Li(X x X', X x Y'UY x X')
that coincides with the pairing in Proposition 10.4 of [ABS64].

Let [V],[V'] denote the classes represented by V and V' in L;(X,Y) and
L (X',Y"). Define

™

VIon V] = (Mo W) e (e Vi), (e V) & (Vi e V)): (ﬁ"‘”’“m/)y

Remark 3.16. By Proposition 10.4 in [ABS64] and the above remarks,
x((V]) @ x(V']) = x([V] &L, [V']).

3.3 A GENERALIZED ATIYAH-BOTT-SHAPIRO CONSTRUCTION APPLIED TO
MATRIX FACTORIZATIONS

In this section, we construct the maps (b(; and gb]]} described in the introduction.
We begin with a discussion of the Atiyah-Bott-Shapiro construction ([ABS64]
Part IIT). Following Atiyah-Bott-Shapiro, we work with real Clifford algebras
and K O-theory, and we point out that one may perform a similar construction
involving complex Clifford algebras and K U-theory.

3.3.1 THE ATIYAH-BOTT-SHAPIRO CONSTRUCTION

Define

n :_:L-%__:L'iER[QEh,.’L'n]
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for all n > 1, and set C,, := Cliffg(g,,). We also set Cj := R; we will think of
Cy as a Z/2Z-graded algebra concentrated in degree 0.
Let M(C,,) denote the free abelian group generated by isomorphism classes
of finitely-generated, indecomposable Z/2Z-graded left C),-modules. There are
evident injective maps

in:Cph — Cn+1

for all n > 0; these injections induce homomorphisms

it M(Cpat) = M(Cy)

via restriction of scalars. Set
Ay = M(Cp) /iy, (M(Cpi1)).
Define D™ to be the closed disk of radius 1 in R™. An important special case
of the classical Atiyah-Bott-Shapiro construction is the group isomorphism
an : Ay = Ly(D",0D™)

that appears in [ABS64] Theorem 11.5. «, is defined as follows: let M =
M; @& My be a finitely generated Z/2Z-graded left C,-module. We use the
R-vector spaces M7 and My to construct real vector bundles over D":

V1 = D" x M1
Vo = D" x MO
and we define a map
o:Vi—-W

given by (x,m) — (z,2 - m), where - denotes the action of C,, on M. Here,
we are thinking of D™ C R"™ as a subset of ). Notice that o restricts to
an isomorphism of bundles over dD™. Thus, we have constructed an element
Vi, Vo; 0] € L1(D™,0D™). Define
an([M]) = [Vi, Vo o].
We refer the reader to [ABS64] for verification that the mapping
[M] = [V1, Vo 0]

is well-defined on the quotient A,, and determines an isomorphism.

3.3.2 A MORE GENERAL CONSTRUCTION

Let f € (z1,...,2,) € Q := Rxy,...,2,]. Choose real numbers ¢,d, and ¢
such that ¢ > 0, 0 < § << ¢, and ¢t € (—6,0) in such a way that we may
construct a negative Milnor fiber F'; as in Section 3.1.3.
Denote by B the closed ball of radius € in R™ centered at the origin. We now
construct a map

Ob(MF(Q. f)) = L(B., F} )

that
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(a) recovers the Atiyah-Bott-Shapiro construction via the Buchweitz-
Eisenbud-Herzog equivalence (Theorem 2.17) when f = ¢,, and

(b) descends to a group homomorphism

Ko[MF(Q, f)] = L1(Be, Fy ).

We emphasize that a similar construction involving complex polynomials and
their Milnor fibers may be performed mutatis mutandis. One may also perform
the following construction using the positive Milnor fiber F;r of f.

Let P = (P, <j——1> Py) be a matrix factorization of f over Q). Denote by C(B.)

0
the ring of R-valued continuous functions on Be. Applying extension of scalars

along the inclusion
Q — C(B.),

we obtain a map

Py @0 C(B.) 229 pyog C(B,)

of finitely generated projective C(B.)-modules.

The category of real vector bundles over B, is equivalent to the category of
finitely generated projective C'(B.)-modules; on objects, the equivalence sends
a bundle to its space of sections. Let

v v

be a map of real vector bundles over B, corresponding to the above map d; ®id
under this equivalence. Since dj ody = f -idp, and dp ody = f -idp,, and
since the restriction of the polynomial f, thought of as a map R™ — R, to
Fy = Ben f7L(t) is constant with value t # 0, d1|F; is an isomorphism of
vector bundles on F' f_ . Its inverse is the restriction to F f_ of the map Vp —

determined by
1+ (do®id)

Py ®¢g C(B.) P, ¢ C(B.).

Define ®F (P, <j:> Fo) = (Vi, Vos |- ) € Ob(C1(Be, ).
0

Remark 3.17. The map analogous to q)]]% in the setting of polynomials over C
and KU-theory appears in [BvS12]; we discuss this in detail in Section 3.3.3.

A morphism in Z°MF(Q), f) determines a morphism in C; (B, F;") in an obvious

way (see Section 2.1.1 for the definition of the category Z°MF(Q, f)). Hence,
we have shown:

ProprosITION 3.18. There is an additive functor
(I)D} : ZOMF(Qaf) — Cl(BeaF;)
given, on objects, by

(P, %PO) = Vi, Vos d |- ).
0
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In particular, we have a map

Suppose f = ¢g,. Then e can be chosen to be 1 in the construction of the
negative Milnor fiber Fe, and the fiber can be chosen to be exactly S"~! C R”.
Let Iso([MF(Q, f)]) and Iso(mody o7 (Cliffr(¢n))) denote the sets of isomor-
phism classes of objects in [MF(Q, f)] and modyz,o7(Cliffr(g,)). It is easy to
check that one has a commutative triangle

Iso(modz oz (Cliffe () > L1(B, F})

R
©] i

Iso([MF(Q, f)])

where [©] denotes the bijection on isomorphism classes induced by the explicit
construction O of the Buchweitz-Eisenbud-Herzog equivalence (Theorem 2.17)
provided in the proof of Theorem 14.7 of [Yos90], and ABS denotes the Atiyah-
Bott-Shapiro construction. Hence, our construction recovers the Atiyah-Bott-
Shapiro construction via the Buchweitz-Eisenbud-Herzog equivalence when f =

qn-
Our next goal is to show that CIDH} induces a map on K-theory:
ProOPOSITION 3.19. @E induces a group homomorphism

¢}« Ko[MF(Q, f)] = Li(Bc, Fy).

We will adopt the following notational conventions for the purposes of the proof
of Proposition 3.19:

(1) A pair (e,t) is a good pair if € > 0, t < 0, and the map
1/} : BE N f_l((iaa 0) U (07 5)) - (755 0) U (05 5)
from Section 3.1.3 is a locally trivial fibration for some § > 0 such that

0< |t <d<<e

(2) If (e,t) is a good pair, we denote the negative Milnor fiber B, N f~1(¢)
by F,.

We will need the following technical lemma:
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LEMMA 3.20. Let (e1,t1), (€2, t2) be good pairs. Then there is an isomorphism
g:Ll(BEUF )E—}L (B€27F )

yielding a commutative triangle

R

Ob(MF(Q, f)) —= Li(B,, Fy,)

lqﬂﬁ /

L (BGUF )

Proof. The case where t; = t5 is immediate, so we may assume t; # ty. First,
suppose €1 = €2. Without loss, assume to < t7.

Set F;, 4= F~Y([t2,t1]). Since the inclusions

Fy = I,

[ta,t1]7 Fy, — I,

[t2,t1]

are homotopy equivalences, the pullback maps
L (B€1 ) F[tz,tl]) — Ll(Bﬁl ) Ftl)a LI(B€13 F[tQ,tl]) — Ll(Bﬁl ) th)

are isomorphisms.
We have commuting triangles

lR

( (Q f))—>L1(B617F )

R =

L (B€17F[;2 t1])

for i = 1,2. It follows that the result holds when €; = €.

For the general case, assume, without loss, that |ta]| < |t1]. Then (e, t2) is also
a good pair. By the cases we’ve already considered, the result holds for the
pairs (e1,t1) and (e1,t2), and also for the pairs (e, t2) and (ez,t2). Hence, the
result holds for the pairs (e1,t1), (e2,t2). O

We now prove Proposition 3.19:

Proof. Tt is not hard to see that @H}(P e P) = @H}(P) D @H}(P’); we need
only show that qﬁD} is well-defined. First, suppose P 2 0 in [MF(Q, f)]. Then
idp is a boundary in MF(Q, f), and so idp factors through a trivial matrix
factorization, by Proposition 2.4.

. d . . o .
Write P = (P <——d—1——> Py). Since P is a summand of a trivial matrix fac-
0

torization, coker(d;) is a projective Q/(f) module. Choose g € @ such
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that ¢g(0) # 0 and coker(d,), is free over Qq/(f), and choose € € (0,¢)
such that B N g~ '(0) = 0. The inclusion Q@ < @, induces a functor
MF(Q, f) — MF(Qy, f). Choose ¢’ such that (¢’,¢') is a good pair. Apply-
ing Lemma 3.20, we have a commutative diagram

Ob(MF(Q, f)) —— Ob(MF(Qy, f))
5

Ly(B.,F;) —— L1(Bu, )

It is easy to see that the ng} is well-defined when f = 0, so assume f # 0.
Then f is a non-zero-divisor in ), so we may apply Proposition 2.5 to conclude
that the image of P in Ob(MF(Qg, f)) maps to 0 via @]J%. Hence, the map

q)ﬂ} : Ob(MF(Q, f)) = L1(B., Fy") sends P to 0, as required.

We now show that, if a : P — P’ is a morphism in Z°MF(Q, f), @D}(P) ®
@Hf(cone(oz)) and @H}(P’) represent the same class in Ly (B, F; ). We start by
showing O (P[1]) = —®%(P) in Ly (B, F;"). Wiite ®%(P) = (Vi, Vosda|-),
so that CIDHf(P[l]) = (Vo, Vi; fd0|F;). Since cone(idp) is contractible, the class
represented by

do| - id
% (cone(idp)) = (Vo & Vi, Vi & Vo3 ol ' )
0 —difp-

in L1(Be, F;) is 0. The object

do| - s-id
(Vo © Vi) x Lo Vo) x I: )
0 _d1|F;
of C1(Be x I, F;~ x I) restricts to ®F(cone(idp)) at s = 1 and ®F((P @ P[1])[1])
at s = 0. Since (P@ P[1])[1] & P@ P[1], we may use Proposition 9.2 in [ABS64]
to conclude that @H}(P[l]) = f@H}(P) in L1(Be, Fy).
Now, we have

d, _
(D]%(cone(a)) = VoW, V1 &V ( OloFt —d(ié|1 ))
.

Using Proposition 9.2 in [ABS64] in the same manner as above, we may con-
clude that @H}(cone(a)) and CIDH}(P’) D @H}(P[l]) represent the same class in

Ly(B., F]).
Finally, suppose o : P — P’ is an isomorphism in [MF(Q, f)]. Then cone(c) is
contractible, and so the results we just established imply that @D}(P) = @D}(P’ )-
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Since every distinguished triangle in [MF(Q, f)] is isomorphic to one of the form
P % P' — cone(a) — PJ[1],

and we have shown that @D} preserves such triangles, we are done. o

3.3.3 THE KERNEL AND IMAGE OF qﬁ?

Let Q := Clz1,...,z,], and set m := (21,...,2,) C Q. Fix f € m, and define
R := Q/(f). Assume the hypersurface R has an isolated singularity at the
origin in the sense of Definition 2.9. Choose ¢, > 0 so that the map

B.N f~Y(D3) — D;

given by  — f(x) is a locally trivial fibration, as in Section 3.1; let F; denote
the Milnor fiber of f over some value t € D;5. We wish to examine the kernel
and image of the map

05+ Ko[MF(Q, f)] = L1(Bc, Fy).

Recall that, by Theorem 3.2, F¢ is homotopy equivalent to a wedge sum of p
copies of S~ !, where p is the Milnor number of f. Thus,

Li(B.,Fy) = KU%(B., Fy) 2 KU '(Fy)

~ “1/am—1y ~ J Z* if nis even
_@KU (5 )_{0 if n is odd
"

In particular, when n is odd, (b(? =0.
As we noted in Section 3.1, F is equipped with a monodromy homeomorphism

h:Fp = Fy.
Let S C Dj denote the circle of radius [t| centered at the origin, and set

E := B.N f~1(S). One has a long exact sequence, the Wang eract sequence
([Dim92] page 74)

o HY(B) L H(F) 2L HI(FY) - HYY(E) — -

where j : Fy — E is the inclusion. One also has an automorphism 7' :
Ly(B., Ff) = Ly(B., Fy) induced by h.
We have the following result regarding the image of qﬁ(%:

PROPOSITION 3.21. ¢ (Ko[MF(Q, f)]) C ker(T —1).
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Proof. The result is obvious when n is odd, since L;(B., Fy) = 0 in this case.
Suppose n is even. Notice that gb(}:(KO[MF(Q,f)]) C I*(L1(Be, E)), where
l:(Be, Fr) < (B, E) is the inclusion of pairs. Thus, the result follows from
the commutative diagram

Li(Be, E) ® Q —> Ly (B., Fy) ® Q —> Ly(Be, Ff) ® Q

LR )

KU Y(E)®Q ——> KUY (F;)  Q =~ KU~ (F}) 2 Q

P

H"\(B; Q) —— H""\(Fj;Q) ——> H""\(F;;Q)

IR

and the Wang exact sequence. The bottom-most vertical arrows are Chern class
maps; the bottom-middle and bottom-right vertical maps are isomorphisms
because Fy has nonzero odd cohomology only in degree n — 1. O

The map (ID(? : Ob(MF(Q, f)) — Li1(B, Fy) is used in [BvS12] to study the
Hochster theta pairing. We recall the definition of this pairing:

DEFINITION 3.22. The Hochster theta pairing

0 : Ko[MF(Qm, f)] X Ko[MF(Quw, f)] = Z

sends a pair ([P <Z——1> R, [P <—_d,1’ ) to
0 0

I(Tork™ (coker(d, ), coker(d}))) — I(Tort™ (coker(d, ), coker(d}))),
where [ denotes length as an Ry,-module.

Remark 3.23. Our assumption that R is IHS guarantees that the lengths in
Definition 3.22 are finite. The pairing 6 was introduced in [Hoc81]; for more
detailed discussions related to this pairing, we refer the reader to [BvS12],
[Daol3], and [MPSW11].

Remark 3.24. Under our assumptions, by Theorem 4.11 of [Dycl1], the map

Ko[MF(Q, f)] = Ko[MF(Qm, f)]

induced by inclusion is an isomorphism, so we may think of 6 as a pairing on

Ko[MF(Q, f)].
Let P = (P <Z——1> Py) be a matrix factorization of f over Q. We observe that
0

the image of gb(}:([P]) under the isomorphism L (B, Fy) =2 KU !(Fy) coincides
with a(coker(dy )m)|r;, where a is as in Section 4 of [BvS12]. Thus, Proposition
4.1 and Theorem 4.2 of [BvS12] immediately imply:
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ProrosiTION 3.25. If X € ker(d)(}:), 0(X,—) : Ko[MF(Q, f)] — Z is the zero

map.

Set Ko[MF(Q, f)]tors to be the torsion subgroup of Ko[MF(Q, f)]. We conclude
this section with the following explicit description of ker((b?) when n = 2:

PROPOSITION 3.26. If f € (x1,22) C Q@ = Clay,22], and the hypersurface
Q/(f) has an isolated singularity at the origin in the sense of Definition 2.9,

ker((b(;) = Ko[MF(Q, f)]tors-

Proof. Ko[MF(Q, f)ltors C ker(qﬁ(}:)) is obvious. Suppose [P] € ker((b(;). By

Proposition 3.25, the map 0([P],—) : Ko[MF(Q, f)] — Z is the zero map. Set
R = Q/(f). Since Ko[MF(Q (2, 2,), f)] = Go(R(z,,22))/[R(z,,2,)], an applica-

tion of Proposition 3.3 in [Dao13] finishes the proof. O
3.4 KNORRER PERIODICITY AND BOTT PERIODICITY

We now use our constructions qbﬂ} and gb(}: to exhibit a compatibility between
Knorrer periodicity (Theorem 1.1) and Bott periodicity. Set

Q=Rlz1,....,7s), Q" :=Rly1, ..., Ym]

and let
fe@,...,zn) CQ, fl €y, ym) CQ

be quasi-homogeneous polynomials.

Remark 3.27. We are assuming f and f’ are quasi-homogeneous so that the
version of the Sebastiani-Thom homotopy equivalence for real polynomials is
available to us (see Section 3.1.3). Analogous versions of every result in this
section hold over C when both f € Clz1,...,z,]) and f' € Cly1,...,ym] are
either quasi-homogeneous or THS.

We now construct the negative Milnor fibers of f and f’. Choose real numbers
€’,6"”, such that the map

Be” N (f D fl)_l((_(sua 0)) - (_6”’ 0)

given by x — (f @ f')(z) is a locally trivial fibration. Similarly, choose €, § and
€',d', as well as ¢/ € (—=4”,0), so that the analogous maps

Be N fﬁl((iév 0)) - (757 0)
Bo 0 (f)7H(=0",0)) = (=4,0)
are locally trivial fibrations, and also so that
(a) €, € are sufficiently small so that B, X B C Berr.

(b) [¢| < min{s,&'}.
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Set Iy, F, and Fyg ., to be the negative Milnor fibers of f, f',and f @ f
over t”. Assume they are nonempty.

Remark 3.28. We could proceed using positive Milnor fibers as well, but we
use negative fibers to stay consistent with Section 3.3.2.

Recall from Remark 2.12 that we have a map

Ko[MF(Q, f)] ® Ko[MF(Q'", f')] = Ko[MF(Q ®r Q', f & f')]

given by [P]®[P’] — [P®wmr P’]. The following proposition is the key technical
result in this section.

PROPOSITION 3.29. There exists a map
STL1 : Ll(Be;Ff_) ®L1(B€/,Ff_,) — Ll(Be”;Ff_@f/)
such that, given matriz factorizations P and P’ of f and f’, respectively,

ST1, (45 ([P]) @ 65 ([P])) = ¢fe ([P @mr P).

Proof. Write
P= (P == Ry), P' = (P| == P}
0 0

and
PF(P) = Vi, Vosdil ], . (P) = [V, Vg i - ]

We note that
Piop ([P our P =[(VieV)) e (Voo V), (Voo Vy) e (i @ W); 4],

where A is the restriction of the matrix

dy®id ided)
—id®d, do®id

to Ff_®f,.

As in Section 3.1.2, choose a continuous injection H : CFJT — B¢ such that
. H(m,l):xEFf_ C B.,

o H(—,s): F; — B.maps into the Milnor fiber B.nf~*(st”) for s € (0,1),
and

e H(z,0)=0foralzel,
Choose H' : CF;, — Be similarly. The maps of pairs
Vi (CFy L Fy) = (Be, Fy ), U (CFy Fpy) — (Be, Fr)
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induced by H and H’ yield isomorphisms on L upon pullback; this is immedi-
ate from the long exact sequence in K O-theory and the naturality of the map
x from Section 3.2 with respect to maps of pairs.

Recall from Section 3.2 that we have a map

Ll(CFf_,Ff_) ®L1(CFf_,,FJZ) — Ll(CFf_ X CFf_,,CFf_ X FJZ UFf_ X CFf_,)
denoted by
Vle V] [Vl®w, [V].
Define
STL1 : Ll(BE,F;) X Ll(Bel,F];) — Ll(Bell’F;GBf/)
to be given by

Ve [V]— (G)7HE(V]) @, () (V']),
where

G:(CFf_ x CF;,

1 OFy X Fp UFy x CFp) = (Ben, Fy

féBf’)

is as in Section 3.1.3. Recall that G is an explicit formulation of the Sebastiani-
Thom homotopy equivalence.
We now compute I*(¢%(P)) @, (I')*(¢}(P’)) explicitly. A splitting of the

restriction of
—id® (H")*(d})
H*(dy) ®id
to OF; x F;, UF; x CFy, is given, on the fiber over (x,8,y,8), by
1
f(H(z, ) + f'(H'(y, "))

(notice that f(H(z,s)) + f'(H'(y,s')) = (s+ §')t” # 0 when (z,s,y,s") €
CF; x F;, UFy x CFy,, since either s or s" is equal to 1). Thus, by the
discussion at the end of Section 3.2, the product

(—id® (H')*(dy) H*(do) ®id)

PV Vo dl 1) @, (VL Vs d e D)
is equal to
(W1 @ Wo) & (Wo ® WY), (Wo @ Wy) & (Wr @ WH); B,

where W; = H*(V;) and W/ = (H')*(V/) for i = 0,1, and B is given, on the
fiber over (z,s,y,s’) € CFy x Fp, UF; x CFy,, by the matrix

( H*(dy) ®id id® (H')*(d) )
1 : N[ 1 * . .
raEa ey (Cid @ (H) () smmay ey H(do) ®1d)
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We wish to show that, upon applying (G*)~! to this class, one obtains
(MeVhe Vel (Ve ly)e (Vie W)l

where C' is the restriction of the matrix

dy ®id id® d}
L(—id®@dy) Z(do®id)

to Ff@f,. This will finish the proof, since the class
(V1o Vg) @ (Voo V), (e V) e (hel):C]
is clearly equal to
(Ve e (eW), (e V) e (Vie i) Al
Observe that we have an object
(W @ Wy) & (Wo @ W) x I, (Wo @ Wy) & (W1 @ W) x I; D]

in C1(CFy x CFy x I,(CFy x Fpy UFy x CFp,) x I), where D is given, on
the fiber over

(2,8,9,5",T) € (CF; x Fr, UF; x CFp) x I,
by the matrix

< H*(dy) ®id id® (H')*(dy) >
1 : * 1 * : .
Faan+rey (A @ H) (o)) sy ey H (do) ©1id)

Here, f, f’, and the entries of dq,d}, do, dj, are evaluated at the point

T(1 -5 —s)+2s
2

Notice that f(a(T)) + f'(b(T)) # 0 for all

) H (5, T(1-¢ 2— s) + 25’)).

(a(T),0(T)) := (H(z,

(2,5,9,5",T) € (CF; x Fr, UF; x CFp) x I,

so this matrix is indeed an isomorphism on every fiber over (CF; x Iy, UF, x
CFp) x 1.
Restricting to T = 0, one obtains the object

(Wr @ Wo) & (Wo ® Wi), (Wo @ Wy) & (W1 @ W1); B).
Restricting to 7' = 1 and applying (G*)~!, one obtains
(VieVy e (VoeW), (Voe V) e (e W) 0).

Now apply Proposition 9.2 in [ABS64]. O

DOCUMENTA MATHEMATICA 21 (2016) 1459-1501



1498 MicHAEL K. BROWN

Remark 3.30. It follows easily from the naturality of the map x from Section 3.2
and Remark 3.16 that STy, induces a map
STko : KO°(Be, F;) ® KO°(Be, F,) = KO°(Ber, Fr 11).

Remark 3.31. We emphasize that the group homomorphism STy, in Proposi-
tion 3.29 is given by the composition of the product in topological K-theory
with the inverse of the pullback along a specific formulation of the Sebastiani-
Thom homotopy equivalence. Hence, Proposition 3.29 yields a precise sense in
which the tensor product of matrix factorizations is related to the Sebastiani-
Thom homotopy equivalence.

Let us now consider the case where Q' = Rluy, ..., us] and f' = —u? — - —uZ.
By Theorem 2.21 and Remark 2.18, [MF(Q’, f')] = [MF(R, 0)]. It follows that
Ko[MF(R[u1, ... ,ug],—u? — -+ — u2)] is isomorphic to Z, generated by the

class represented by the matrix factorization X constructed in the proof of
Theorem 2.21.
Also, F:u§*m*u§ is homeomorphic to S7, and so Ly (B, F~ __7u§) is isomor-

2_.
phic to Z. This group is generated by ¢Hfu27._.7u2 (X); thus, ¢H§u27___7 L ([X]) is
1 8 1 8
——0
a Bott element in the group Li(Be, F_y2_.._2) = KO (S®); we shall denote
by Or the map
KO%Be, F;) = KO°(B., F;) © KO(Ber, F_y2_.._2)

u

given by (x ® x) o (— ® ¢H§u%7___7u§([X])) ox~'. PBr is the Bott periodicity
isomorphism.

Since real Knorrer periodicity may be induced by tensoring with the matrix
factorization X, we will denote by Kr the map

Ko[MF(Q, f)] = Ko[MF(Qu1, .. us], f —ui — - — )]

given by — @wmr [X].

The following result gives a precise sense in which Bott periodicity and Knorrer
periodicity are compatible; it follows immediately from Proposition 3.29. We
emphasize that a virtually identical proof yields a similar result involving pos-
itive Milnor fibers.

THEOREM 3.32. Let f € Q = Rxy,...,2,] be a quasi-homogeneous polynomial
such that Fy #0, and set ¢ = —u? — -+~ —u2. Then the diagram
xod o
|
Kg KOO(BOFJC_)Q@KOO(BG/’FII)
lSTKO
XO¢5§+LI 0 _
Ko[MF(Q[Ul, N ,Ug], f + q)] — > KO (Beu, Ff—i—q)

DOCUMENTA MATHEMATICA 21 (2016) 1459-1501



KNORRER PERIODICITY AND BOTT PERIODICITY 1499

commutes.

We state the analogous version of this result over the complex numbers. Let Y
denote the matrix factorization Clu, v] === C[u, v] of u? + v, and let
uU—1

K : Ko]MF(Q, )] = Ko[MF(Qu, v], f + u? + v?)]

be given by —@up[Y]. Ko[MF(Clu,v], u?+v?)] 2 Z, and the group is generated
by [Y]. Also, by Theorem 3.2, F,2,,2 is homotopy equivalent to S!. Thus,
Ly(Be, F, ) is isomorphic to Z, generated by ¢, »([Y]). ¢5,2([Y]) is a
Bott element in the group Li (B, F2q,2) = I,(TJO(SQ); we shall denote by
the map

KUY(Be, Fy) — KU°(B., Fy) @ KUY(Ber, Fy2402)

given by (x ® x) o (— ® ¢S2+U2 ([Y])) o x~ L. B is the complex Bott periodicity
isomorphism. Let ST gy denote the pairing on relative KU-theory induced by
the complex version of the pairing ST,,. The following is a complex analogue
of Theorem 3.32:

THEOREM 3.33. Let f € (z1,...,2,) CQ = Clx1,...,2z,] and suppose either
e The hypersurface Clxy,...,%n](z,,....2,)/(f) is THS (see Definition 2.9),

or
e [ is quasi-homogeneous.

Then the diagram

0¢C
Ko[MF(Q, f)] ~ KU (B, Fy)
la
K KUO(Be,Ff)®KUO(B€/,FU2+U2)
lSTKU
X°¢§+u2+v2
olMF(Q[uy ], f + 1 + 1)~ KU (B, Fy o g10)

commutes.
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