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Abstract. We prove the Kawaguchi-Silverman conjecture (KSC),
about the equality of arithmetic degree and dynamical degree, for
every surjective endomorphism of any (possibly singular) projective
surface. In high dimensions, we show that KSC holds for every surjec-
tive endomorphism of any Q-factorial Kawamata log terminal projec-
tive variety admitting one int-amplified endomorphism, provided that
KSC holds for any surjective endomorphism with the ramification di-
visor being totally invariant and irreducible. In particular, we show
that KSC holds for every surjective endomorphism of any rationally
connected smooth projective threefold admitting one int-amplified en-
domorphism. The main ingredients are the equivariant minimal model
program, the effectiveness of the anti-canonical divisor and a charac-
terization of toric pairs.
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1 Introduction

We work over an algebraically closed field k of characteristic zero. Let f :
X → X be a surjective endomorphism of a projective variety X over Q. There
are two fundamental dynamical invariants from the aspects of topology and
arithmetic. The first dynamical degree δf is defined as

δf := lim
m→+∞

((fm)∗H ·Hdim(X)−1)1/m,

where H is an ample divisor of X . Such limit, independent of the choice of H ,
exists and equals to the spectral radius of f∗|NS(X)⊗ZC; see Definition 2.2. The
arithmetic degree is defined as a function

αf (x) := lim
m→+∞

max{1, hH(fm(x))}1/m,

where hH is a Weil height function associated with an ample divisor H of X ;
see Definition 2.3. The Kawaguchi–Silverman Conjecture (KSC for short, see
[17]) asserts that αf is well-defined, i.e., the limit exists, and αf (x) = δf for
any point x with Zariski dense f -orbit.

Conjecture 1.1. (Kawaguchi-Silverman Conjecture = KSC) Let f : X → X
be a surjective endomorphism of a projective variety X over Q. Then the
following hold.

(1) The limit defining arithmetic degree αf (x) exists for any x ∈ X(Q).

(2) If the (forward) orbit Of (x) = {fn(x) |n ≥ 0} is Zariski dense in X,
then the arithmetic degree of x is equal to the dynamical degree of f , i.e.,
αf (x) = δf .

Remark 1.2. The original conjecture is formulated for dominant rational self-
maps of smooth projective varieties. In our setting, Conjecture 1.1 (1) has
been proved by Kawaguchi and Silverman themselves (cf. [16]); more precisely,
αf (x) is either 1 or the absolute value of an eigenvalue of f∗|N1(X) for any

x ∈ X(Q). In particular, αf (x) ≤ δf .
Conjecture 1.1 (2) has been proved at least in the following cases.

(i) f is polarized ([16, Theorem 5]).
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(ii) X is a smooth projective surface and f is an automorphism ([15, Theo-
rem 2(c)]).

(iii) X is a smooth projective surface and f is non-isomorphic ([23, Theo-
rem 1.3]).

(iv) X is a Mori dream space (eg. of Fano type; see [22, Theorem 4.1, Corol-
lary 4.2]).

(v) X is an abelian variety ([16, Corollary 32], [42, Theorem 2]).

(vi) X is a Hyperkähler variety ([21, Theorem 1.2]).

(vii) X is a smooth projective 3-fold with κ(X) = 0 and deg f > 1 ([21,
Prop. 1.6]).

Theorems 1.3, 1.5, 1.7 and 1.11 below are our main results.
First, we look at a surjective endomorphism f of a (possibly singular) sur-
face X . By taking the normalization which is f -equivariant, we may assume X
is normal. When f is an automorphism, one can further take an f -equivariant
resolution and reduce to the smooth case; see [15, Theorem 2(c)].
Assume now that f is non-isomorphic. Wahl [44, Theorem 2.8] showed that X
has at worst log canonical (lc) singularities. In the smooth surface case, KSC is
confirmed by Matsuzawa, Sano and Shibata [23, Theorem 1.3], by reducing the
problem to three precise cases: P1-bundles, hyperelliptic surfaces, and surfaces
of Kodaira dimension one.
However, in the singular surface case, it is in general not possible to find an
f -equivariant resolution. Nevertheless, we are able to run an f -equivariant
minimal model program (MMP) after iterating f ; see Section 4. Our key
observation is Theorem 5.2 (see also Theorem 5.4) which shows that the only
troubled case of Fano contraction, involved in the KSC, is in fact of product
type; see also Theorem 8.6 for a higher dimensional analogue. Conjecture 1.1
is thus fully solved for surfaces in Theorem 1.3.
When deg(f) ≥ 2, our proof (for possibly singular surfaces) does not depend
on (and in fact recover) [23, Theorem 1.3] (for the smooth surface case).

Theorem 1.3. KSC holds for any surjective endomorphism of a projective
surface.

We now look at a higher dimensional projective variety X . A surjective endo-
morphism P : X → X is said to be q-polarized if P∗H ∼ qH for some ample
(integral) Cartier divisor H and q > 1. A surjective endomorphism I : X → X
is said to be int-amplified if I∗L − L = H for some ample Cartier divisors L
and H . Every polarized endomorphism is int-amplified. See [26], [28], [30] and
[31] for properties of such P or I.
Especially, I : X → X is int-amplified if and only if every eigenvalue of the
pullback action I∗|NS(X)C on the complex Néron-Severi space is of modulus > 1;
further, for any given surjective endomorphisms f, g of X , if f is int-amplified
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(or say polarized), then fN ◦ g is also int-amplified for some large N (cf. [26,
Theorem 1.4]). Thus, our working condition of assuming the existence of one
int-amplified endomorphism in Question 1.4 and Theorems 1.5, 1.7 and 1.11 is
quite flexible.
Let f : X → X be a (not necessarily int-amplified) surjective endomorphism.
We wish to run an MMP f -equivariantly (after replacing f by a positive power).
On the one hand, to run an MMP, we need to assume that X has only mild
singularities, eg. Q-factorial Kawamata log terminal (klt) singularities; see
[20, Definition 2.34], [1]. On the other hand, for the f -equivariance, we need
to assume that X admits at least one int-amplified endomorphism; see [30,
Theorems 1.1 and 1.2].
Therefore, in higher dimensions, we focus on the following question:

Question 1.4. Let X be a normal projective variety which has only Q-factorial
Kawamata log terminal (klt) singularities and admits one int-amplified endo-
morphism. Does KSC hold for every surjective endomorphism of X?

In [22, §5], Matsuzawa provided a possible solution by adding three more as-
sumptions: the anti-Kodaira dimension κ(X,−KX) > 0, X being rationally
connected, and the flip termination conjecture. The flip termination conjecture
is proved when dim(X) ≤ 3 (cf. [32], [41]). However, it remains very difficult in
higher dimensions. On the other hand, it is proved in [5, Theorem 1.1] of au-
thors’ joint paper that −KX is numerically effective when X admits a polarized
endomorphism. This result was further generalized by the first author to the
int-amplified case [26, Theorem 1.5]. In general, a numerically effective divisor
may not be effective. Nevertheless, we are able to strengthen [26, Theorem 1.5]
and show below that −KX is indeed effective, or equivalently κ(X,−KX) ≥ 0.

Theorem 1.5 (cf. Theorem 6.2). Let X be a Q-Gorenstein normal projective
variety admitting one int-amplified endomorphism. Then we have:

(1) −KX ∼Q D (Q-linear equivalence) for some effective Q-Cartier divisor
D.

(2) Suppose further the anti-Kodaira dimension κ(X,−KX) = 0. Then D is
a reduced Weil divisor such that g−1(D) = D and g|X\D : X\D → X\D
is quasi-étale, i.e., étale in codimension 1, for any surjective endomor-
phism g of X.

In view of Theorem 1.5, we are led to the case κ(X,−KX) = 0, or κ(X,−KX) >
0. In [22, Proposition 3.6] (cf. Proposition 2.7), Matsuzawa showed that KSC
holds for f if f∗D ∼ δfD with κ(X,D) > 0. In general, one cannot weaken the
linear equivalence assumption here to numerical equivalence if H1(X,OX) 6= 0.
However, we are able to prove the following, by using the anti-Kodaira fibration
and the Chow reduction; see §7.

Proposition 1.6. Let f : X → X be a surjective endomorphism of a
Q-Gorenstein normal projective variety X with the anti-Kodaira dimension
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Kawaguchi-Silverman Conjecture 1609

κ(X,−KX) > 0. Suppose f∗KX ≡ δfKX (numerical equivalence). Then KSC
holds for f .

Let π : X → Y be a finite surjective endomorphism of normal projective
varieties. Denote by Rπ the ramification divisor of π so that KX = π∗KY +Rπ.
For a surjective endomorphism f : X → X , it is said to have totally invariant
ramification if f−1(SuppRf ) = SuppRf .
By another key observation (cf. Proposition 9.2) and induction on the dimen-
sion, after running an equivariant minimal model program, we may assume
f∗KX ≡ δfKX , or else KSC holds. We then further show that we are only left
with the following case for Question 1.4 by virtue of Proposition 1.6. Here, we
remark in advance that Condition (A5) below is implied by Conditions (A1) -
(A4); see Theorem 8.6.

Case TIRn (Totally Invariant Ramification case). Let X be a normal pro-
jective variety of dimension n ≥ 1, which has only Q-factorial Kawamata log
terminal (klt) singularities and admits one int-amplified endomorphism. Let
f : X → X be an arbitrary surjective endomorphism. Moreover, we impose
the following conditions.

(A1) The anti-Kodaira dimension κ(X,−KX) = 0; −KX is nef, whose class is
extremal in both the nef cone Nef(X) and the pseudo-effective divisors
cone PE1(X).

(A2) f∗D = δfD for some prime divisor D ∼Q −KX .

(A3) The ramification divisor of f satisfies Supp Rf = D.

(A4) There is an f -equivariant Fano contraction π : X → Y with δf > δf |Y
(≥ 1).

(A5) dim(X) ≥ dim(Y ) + 2 ≥ 3.

Our following result is also a bit surprise to us, where we are able to reduce
Question 1.4 to the above highly geometrically restrictive Case TIR, by merely
starting from an arbitrary endomorphism without any pre-given geometric in-
formation.

Theorem 1.7. Let X be a normal projective variety having only Q-factorial
Kawamata log terminal (klt) singularities and one int-amplified endomorphism.
Then we have:

(1) If KX is pseudo-effective, then KSC holds for any surjective endomor-
phism of X.

(2) Suppose that KSC holds for Case TIR (for those f |Xi
: Xi → Xi appear-

ing in any equivariant MMP starting from X). Then KSC holds for any
(not necessarily int-amplified) surjective endomorphism f of X.
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As a consequence, Question 1.4 can be reduced to the following:

Question 1.8. Does there exist f : X → X satisfying Case TIR (plus, if
necessary, that X is rationally connected as defined below)? If such f exists,
does it satisfy KSC?

Remark 1.9. Condition (A5) of Case TIR implies that dim(X) ≥ 3. Recently,
Matsuzawa and Yoshikawa constructed in [24, §7] an interesting example: a
klt rational surface X satisfying all the conditions of Case TIR2 except (A4)
and (A5). Moreover, X admits an (equivariant) quasi-étale cover which is a
(smooth) ruled surface over an elliptic curve, and the totally invariant divisorD
there is an elliptic curve.

A projective variety X is said to be rationally connected, in the sense of Cam-
pana and Kollar-Miyaoka-Mori ([4], [19]), if two general points of X(C) are
connected by a rational curve, after taking one (and hence every) embedding
of the defining field of X into C; see also [18, Definition 3.2, Exercise 3.2.5].
Let X be a rationally connected smooth projective variety admitting an int-
amplified endomorphism f with totally invariant ramification. In [29, Corol-
lary 1.4], the authors showed that X is then toric if f is polarized. For the
int-amplified case, the difficulty lies in showing the semistablity for the re-
flexive sheaf of germs of logarithmic 1-forms; see Section 10 for the details.
Nevertheless, we are able to prove the following:

Proposition 1.10. (cf. Proposition 10.7) Let f : X → X be an int-amplified
endomorphism of a rationally connected smooth projective variety X with to-
tally invariant ramification, i.e., f−1(SuppRf ) = SuppRf . Suppose that X
admits some MMP

X = X1 99K · · · 99K Xr → Y = P1

where Xi 99K Xi+1 is birational and Xr → Y is a Fano contraction. Then
Xi is a toric variety for each i. In particular, KSC holds for any surjective
endomorphism of Xi.

By Proposition 1.10, one can rule out Case TIR3 during any MMP starting
from a rationally connected smooth projective threefold. Namely, we have:

Theorem 1.11. Let X be a rationally connected smooth projective threefold
admitting one int-amplified endomorphism. Then KSC holds for an arbitrary
surjective endomorphism of X.

Remark 1.12 (Applications of our results). Our approach in this pa-
per lays down the frame work to attack the KSC for an arbitrary surjective
endomorphism on a (possibly singular or non-rationally connected) projective
varietyX admitting an int-amplified endomorphism, by reducing to Case TIRn;
see Questions 1.4 and 1.8. For instance, the steps, including the equivariant
MMP, and the results of the current paper are essentially used/restated by
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Matsuzawa and Yoshikawa [25, Proposition 5.1, Lemmas 5.2-5.3, Remark 1.2].
Indeed, furthering our exclusion of Case TIRn when n = 3, they have applied
our equivariant MMP and made progress towards our frame work by excluding
Case TIR during the MMP when X is smooth and rationally connected. It
shows that to attack the KSC for arbitrary (possibly singular) variety it is im-
portant/inevitable to study Case TIRn to which narrowed down by the current
paper.
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2 Preliminaries

Notation and Terminology. Let X and Y be projective varieties of dimen-
sion n. Let f : X → X be a surjective endomorphism and π : X → Y a finite
surjective morphism. We say π is quasi-étale if it is étale in codimension 1.
Two R-Cartier divisors Di of X are numerically equivalent, denote as D1 ≡ D2,
if (D1 −D2) · C = 0 for any curve C on X . Two r-cycles Ci of X are weakly
numerically equivalent, denoted as C1 ≡w C2, if (C1 − C2) · L1 · · ·Ln−r = 0
for all Cartier divisors Li. The numerical equivalence implies weak numerical
equivalence; see [28, Section 2].
We use the following notation throughout the paper unless otherwise stated.

Pic(X) the group of Cartier divisors of X modulo linear equiva-
lence ∼

PicK(X) Pic(X)⊗Z K with K = Q,R,C

Pic0(X) the neutral connected component of Pic(X)

Pic0K(X) Pic0(X)⊗Z K with K = Q,R,C

NS(X) Pic(X)/Pic0(X), the Néron-Severi group

N1(X) NS(X) ⊗Z R, the space of R-Cartier divisors modulo nu-
merical equivalence ≡

NSK(X) NS(X)⊗Z K with K = Q,R,C

Nr(X) the space of r-cycles modulo weak numerical equiva-
lence ≡w

f∗|V the pullback action on V , which is any group or space above

f∗|V the pushforward action on V , which is any group or space
above
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Nef(X) the cone of nef classes in N1(X)

NE(X) the cone of pseudo-effective classes in N1(X)

PE1(X) the cone of pseudo-effective classes in N1(X)

Rπ the ramification divisor of π assuming that X and Y are
normal

SuppD the support of D =
∑

aiDi which is
⋃

iDi, where ai > 0
and Di are prime divisors

SEnd(X) the monoid of all the surjective endomorphisms of X

κ(X,D) Iitaka dimension of a Q-Cartier divisor D

ρ(X) Picard number of X which is dimR N1(X)

Definition 2.1. Let f : X → X be a surjective endomorphism of a variety X
and Z ⊆ X a subset. Z is said to be f -invariant (resp. f−1-invariant) if
f(Z) = Z (resp. f−1(Z) = Z). Z is said to be f -periodic (resp. f−1-periodic)
if f s(Z) = Z (resp. f−s(Z) = Z) for some s > 0.

Definition 2.2. (Dynamical degree; δf , ιf ) Let f : X → X be a surjective
endomorphism of a projective variety X . The (first) dynamical degree δf of f
is defined as the spectral radius of f∗|N1(X). Another equivalent definition is

δf = lim
m→+∞

((fm)∗H ·Hdim(X)−1)1/m,

where H is any nef and big Cartier divisor of X . Denote by ιf the minimal
modulus of eigenvalues of f∗|N1(X). When X is smooth over the complex field,
δf (resp. ιf ) is equal to the maximal (resp. minimal) modulus of eigenvalues of
f∗|H1,1(X,R) (cf. [7], [8, §4]). Note that δfs = (δf )

s.

Definition 2.3. (Weil height function and arithmetic degree) Let X be a
normal projective variety defined over Q. We refer to [13, Part B], [17] or [22,
Section 2.2] for the detailed definition of the Weil height function hD : X(Q) →
R associated with some R-Cartier divisor D on X . Here, we simply list some
fundamental facts which will be used later.

• hD is determined only up to a bounded function by the divisor D.

• h∑
aiDi

=
∑

aihDi
+O(1) where O(1) means some bounded function.

• hE is bounded below outside SuppE for any effective Cartier divisor E.

• Let π : X → Y be a surjective morphism of normal projective varieties
and B some R-Cartier divisor of Y . Then hB(π(x)) = hπ∗B(x) + O(1)
for any x ∈ X(Q).

The arithmetic degree αf (x) of f at x ∈ X(Q) is defined as

αf (x) = lim
m→+∞

max{1, hH(fm(x))}1/m,
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where H is an ample Cartier divisor. This limit exists and is independent of
the choice of H (cf. [16, Theorem 2], [17, Proposition 12]). Moreover, αf (x) is
either 1 or the absolute value of an eigenvalue of f∗|N1(X) (cf. [16, Remark 23]).
Note that αf (x) ≤ δf and αfs(x) = αf (x)

s. This allows us to replace f by any
positive power whenever needed.

In the rest of this section, we list several fundamental results about KSC which
are important and will be frequently used in the rest of the paper.

Lemma 2.4. Let π : X 99K Y be a dominant rational map of projective varieties.
Let f : X → X and g : Y → Y be surjective endomorphisms such that g ◦ π =
π ◦ f . Then δg ≤ δf . Further, if π is generically finite, then δg = δf .

Proof. For the convenience of the reader, we give a quick proof of this well
known result. Let W be the graph of π and pX : W → X and pY : W → Y
the two projections. Here pX is a birational morphism and pY is a surjective
morphism. Denote by h : W → W the lifting of f . Let H be any ample Cartier
divisor of X . By the projection formula,

δf = lim
m→+∞

[(fm)∗H ·Hdim(X)−1]1/m

= lim
m→+∞

[(hm)∗(p∗XH) · (p∗XH)dim(W )−1]1/m = δh

since p∗XH is nef and big. Note that p∗Y : N1(Y ) → N1(W ) is injective. So
δg ≤ δf . Suppose π is generically finite. Let A be an ample divisor of Y . Then
p∗Y A is nef and big. A similar argument shows that δg = δf .

The proof of the following lemma is taken from [22, Lemma 5.6].

Lemma 2.5. Let π : X 99K Y be a dominant rational map of projective varieties.
Let f : X → X and g : Y → Y be surjective endomorphisms such that g ◦ π =
π ◦ f . Then the following hold.

(1) Suppose π is generically finite. Then KSC holds for f if and only if KSC
holds for g.

(2) Suppose δf = δg and KSC holds for g. Then KSC holds for f .

Proof. For (1), by taking the graph of π, it suffices for us to consider the case
when π is a generically finite surjective morphism. By Lemma 2.4, δf = δg.

Let x be a closed point of X . It is clear that Of (x) = X if and only if

Og(π(x)) = Y . Take any x ∈ X with Zariski dense orbit. Let H be an ample
Cartier divisor of Y . We have

hH(gm(π(x))) = hH(π(fm(x))) = hπ∗H(fm(x)) +O(1).

So αg(π(x)) ≤ αf (x). Since π is generically finite, we may write π∗H = A+E
for some ample Cartier divisor H and effective Cartier divisor E after replacing
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H by a multiple. There exists an infinite sequence n1 < n2 < · · · such that
{fni(x) | i = 1, 2, · · · } is Zariski dense in X and fni(x) 6∈ SuppE. Since hE is
bounded below outside SuppE, we have

hH(gni(π(x))) = hA(f
ni(x)) + hE(f

ni(x)) +O(1) ≥ hA(f
ni(x)) +O(1).

This implies that αg(π(x)) ≥ αf (x). So (1) is proved.

For (2), we may assume that π is a surjective morphism by (1). By the first
equality, we have δg = αg(π(x)) ≤ αf (x) ≤ δf and (2) is proved.

Lemma 2.6. (cf. [39, Lemma 3.2]) Let f : X → X and g : Y → Y be two
surjective endomorphisms of projective varieties. Suppose KSC holds for both f
and g. Then KSC holds for f × g.

Proposition 2.7. (cf. [22, Proposition 3.6]) Let f : X → X be a surjective
endomorphism of a normal projective variety X. Suppose f∗D ∼Q δfD for
some effective Q-Cartier divisor with Iitaka dimension κ(X,D) > 0. Then
KSC holds for f .

Theorem 2.8. (cf. [42, Theorem 2]) Let X be a Q-abelian variety, i.e., it has
a quasi étale cover by an abelian variety. Then KSC holds for any surjective
endomorphism of X.

Proof. Let g : X → X be a surjective endomorphism. There exists a finite
surjective morphism π : A → X with A being an abelian variety, such that g
lifts to a surjective endomorphism f : A → A (cf. [38] or [5, Corollary 8.2]).
Then the result follows from [42, Theorem 2] and Lemma 2.5.

3 Pullback Action on Pic(X)

In this section, we discuss the relation between f∗|Pic0(X) and f∗|N1(X).

Proposition 3.1. Let f : A → A be an isogeny of an abelian variety A.
Denote by AC := A ⊗Z C and fC : AC → AC the induced linear map. Let λ be
an eigenvalue of fC. Then ιf ≤ |λ|2 ≤ δf (cf. Definition 2.2).

Proof. After embedding the defining field of A and f in C, we may assume
that A is defined over C. Suppose fC(x) = λx for some λ 6= 0 and 0 6= x ∈ AC.
Let Pf ∈ Z[t] be the characteristic polynomial of f∗|H1(A,Z). Then Pf (f) = 0
and hence Pf (fC) = (Pf (f))C = 0. In particular, Pf (fC)(x) = 0. Then λ
is a root of Pf and hence an eigenvalue of f∗|H1(A,Z). Therefore, |λ|2 is an
eigenvalue of f∗|H1,1(A,R). The proposition is proved.

Lemma 3.2. Let f : A → A be a surjective endomorphism of an abelian vari-
ety A. Let f∨ : A∨ → A∨ be the dual endomorphism of the dual abelian variety
A∨ := Pic0(A). Then δf = δf∨ and ιf = ιf∨ .
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Proof. We may replace the base field by C. Note that the dual of a translation is
still a translation and the pullback action of a translation on N1(A) is always an
identity. So we may assume that f is an isogeny. Let mf ∈ Z[t] be the minimal
polynomial of f∗|H1(A,Z). Then mf (f) = 0 and mf (f

∨) = mf (f)
∨ = 0. A dual

argument shows that mf is also the minimal polynomial of (f∨)∗|H1(A∨,Z).
Therefore, f∗|H1,1(A,R) and (f∨)∗|H1,1(A∨,R) have the same eigenvalues. The
lemma is proved.

Proposition 3.3. Let f : X → X be a surjective endomorphism of a nor-
mal projective variety X whose Albanese morphism is surjective. Let λ be an
eigenvalue of f∗|Pic0

C
(X). Then ιf ≤ |λ|2 ≤ δf .

Proof. Let π : X → A be the Albanese morphism. Note that A is the dual of
Pic0(X). Denote by g := f |A. Then g∨ = f∗|Pic0(X) + a for some a ∈ Pic0(X).
Since π is surjective, we have ιf ≤ ιg = ιg∨−a ≤ δg∨−a = δg ≤ δf by Lemma 3.2.
Then the result follows from Proposition 3.1.

Proposition 3.4. Let f : X → X be an int-amplified endomorphism of a
normal projective variety X. Then all the eigenvalues of f∗|PicQ(X) are of
modulus greater than 1.

Proof. Note that NSC(X) = PicC(X)/Pic0C(X) and all the eigenvalues of
f∗|NSC(X) are of modulus greater than 1 by [26, Theorem 1.1]. By Proposi-
tion 3.3, all the eigenvalues of f∗|Pic0

C
(X) are of modulus greater than 1. The

result follows.

Lemma 3.5. (cf. [16, Lemma 19]) Let f : X → X be a morphism. Then
there is a monic integral polynomial Pf (t) ∈ Z[t] with the property that Pf (f

∗)
annihilates Pic(X).

Definition 3.6. Let f : X → X be a surjective endomorphism of a projective
variety X . Let D ∈ PicR(X). Denote by Vf (D) the subspace of PicR(X)
spanned by {(fm)∗D}m≥0. Denote by Ef (D) the convex cone of effective R-
Cartier divisors in Vf (D). Note that Ef (D) does not contain any line. However,
the closure of Ef (D) may contain lines.

We need the following to show the effectiveness of anti-canonical divisor in
Section 6.

Proposition 3.7. Let f : X → X be a surjective endomorphism of a projective
variety X. Then the following hold.

(1) For any D ∈ PicR(X), Vf (D) and Ef (D) are finite dimensional and
f∗|PicR(X)-invariant.

(2) f∗f
∗ = f∗f∗ = (deg f) id on PicR(X).

Proof. By Lemma 3.5, Vf (D) is finite dimensional. Clearly, f∗(Vf (D)) ⊆
Vf (D). By the projection formula, f∗f

∗ = (deg f) id on Pic(X). So f∗|PicR(X)

is injective, hence f∗f
∗ = f∗f∗ on Vf (D). Note that f∗D is effective if D is

effective. So f∗(Ef (D)) = Ef (D).

Documenta Mathematica 27 (2022) 1605–1642



1616 S. Meng, D.-Q. Zhang

4 Equivariant Minimal Model Program for Surfaces

In this section, we recall the (monoid) equivariant minimal model program
for a (possibly singular) normal projective surface admitting a non-isomorphic
endomorphism.

Lemma 4.1. Let X be a normal projective surface and C an irreducible curve
on X. Then there exists an integer n0 > 0 (depending only on X) such that
n0C ≡w D (weak numerical equivalence) for some (integral) Cartier divisor D.

Proof. Let D1, · · · , Dr be (integral) Cartier divisors which form a basis of
N1(X). Denote by A := (Di · Dj)1≤i,j≤r the intersection matrix which is
invertible by the Hodge index theorem. Then there is some D =

∑
aiDi such

that D ·Di = C ·Di ∈ Z for each i. Since (a1, · · · , ar) ∈ A−1(Zr) ⊆ Zr/ det(A),
we are done by letting n0 = det(A).

Let X be a normal projective surface. By [46, Lemma 3.2], there is a natural
embedding N1(X) ⊆ N1(X). Let C and C′ be two curves on X . Then we
may define C · C′ := D · C′ for some D ∈ N1(X) with D ≡w C, which is
independent of the choice of D (cf. Lemma 4.1). We say that C has negative
self-intersection if C2 < 0. Note that the above intersection coincides with
the traditional Mumford intersection for Weil divisors on X . Indeed, given a
resolution π : X ′ → X , the Mumford pullback preserves the weak numerical
equivalence, i.e., π∗C ≡w π∗D, by noting that π∗C ·E = 0 for any exceptional
prime divisor E. Denote by RC := R≥0[C] the ray generated by [C] in NE(X).
Denote by ΣC the union of curves whose classes are in RC . Let f : X → X be a
surjective endomorphism. The projection formula implies that f(ΣC) = Σf(C)

and f−1(ΣC) = ΣC′ for any curve C′ with f(C′) = C; see [30, Lemma 4.2].

Lemma 4.2. Let X be a normal projective surface with only log canonical (lc)
singularities. Let π : X → Y be a divisorial contraction of some KX-negative
extremal ray having the exceptional divisor E =

∑
Ei with Ei irreducible.

Then Y has only lc singularities. Further, E2
i < 0 and ΣEi

= E.

Proof. Y is lc by [11, Theorem 3.3]. In particular, KY is Q-Cartier.
Write KX ∼Q π∗KY +

∑
aiEi. Since KX ·Ei < 0, we have ai > 0 for each i by

the negativity lemma (cf. [20, Lemma 3.39]). Note that the rays REi
= REj

in N1(X) and ΣEi
= E. Then E1 ≡w t(

∑
aiEi) for some t > 0. Since

(
∑

aiEi) · E1 = KX ·E1 < 0, we have E2
1 < 0.

Let X be a normal projective surface. Denote by S(X) the set of all irreducible
curves C on X with negative self-intersection and ΣC being a finite union of
irreducible curves.

Lemma 4.3. (cf. [33]) Suppose X is a normal projective surface. Then we
have:

(1) The action SEnd(X) on S(X), via (f, C) 7→ f(C), is well defined.
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(2) Suppose X has a non-isomorphic surjective endomorphism. Then S(X)
is finite; and f−t0(C) = C for any f ∈ SEnd(X) and C ∈ S(X) where
t0 = |S(X)|!.

Proof. For (1), let f ∈ SEnd(X), C ∈ S(X). By Lemma 4.1, n0C ≡w D for
some fixed integer n0 > 0 and (integral) Cartier divisor D. Write f∗C = df(C).
Then f(C) ≡w f∗D/(dn). By the projection formula,

f(C)2 = (f∗D)2/(d2n2) = (deg f/d2)C2 < 0.

On the other hand, Σf(C) = f(ΣC). Therefore (1) is proved.
For (2), let g ∈ SEnd(X) be a non-isomorphic one.

Claim 4.4. For any f ∈ SEnd(X) and C ∈ S(X), f−1f(C) = C.

Since f−1f(ΣC) = ΣC , our f
−1 induces a bijection between the (finitely many)

irreducible components of Σf(C) and ΣC . Since C ⊆ f−1f(C), the claim is
proved.

Claim 4.5. For some t > 0, gt(C) ⊆ SuppRg, where Rg is the ramification
divisor of g.

Suppose the contrary. By Claim 4.4, we have g∗(gt(C)) = gt−1(C) and hence
(gt)∗C = (deg g)tgt(C) for any t > 0. Therefore,

gt(C)2 = (deg g)−tC2 < 0.

By Lemma 4.1, n2
0g

t(C)2 ∈ Z<0 for any t > 0. Note that C2 < 0 and deg g > 1.
Then we get a contradiction by letting t ≫ 1. The claim is proved.
Denote by

S0(X) := {C ∈ S(X) |C ⊆ SuppRg}

which is a finite set. For any C ∈ S(X), gi(C) = gj(C) ∈ S0(X) for some
i > j > 0 by Claim 4.5. Let sC = i− j which is determined by C. Then

C = g−igi(C) = g−igj(C) = g−sC (C).

Claim 4.6. Let s =
∏

C∈S0(X) sC . Then S(X) =
⋃s−1

i=0 gi(S0(X)), hence it is
a finite set.

Let C ∈ S(X). By Claim 4.5, C0 := gt(C) ∈ S0(X) for some t > 0. There exist
some integers a > 0 and b ≥ 0 such that as = t+b and 0 ≤ b < s. By Claim 4.4
and the choice of s, we have C = g−tgt(C) = g−t(C0) = g−tgas(C0) = gb(C0).
The claim is proved.
Finally, by (1) and Claim 4.6, for any f ∈ SEnd(X) and C ∈ S(X), we have
f i(C) = f j(C) for some i > j > 0 with i − j ≤ |S(X)|. By Claim 4.4,
C = f−if i(C) = f−(i−j)(C). So (2) is proved.

A submonoid G of a monoid Γ is said to be of finite-index in Γ if there is a
chain G = G0 ≤ G1 ≤ · · · ≤ Gr = Γ of submonoids and homomorphisms
ρi : Gi → Fi such that Ker(ρi) = Gi−1 and all Fi are finite groups.
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Theorem 4.7. Let X be a normal projective surface admitting a non-
isomorphic surjective endomorphism. Then any MMP starting from X is G-
equivariant for some finite-index submonoid G of SEnd(X).

Proof. By [44, Theorem 2.8], X has only lc singularities, so one can run MMP
within the lc category (cf. [11, Theorem 1.1]). Any MMP of X has at most
ρ(X) steps and involves only divisorial and Fano contractions. Let π : X → Y
be the first step. Suppose π is a Fano contraction. By the finiteness of Fano
contractions (cf. [30, Lemma 4.4], [28, Lemma 6.2]), there is a submonoid
G ≤ SEnd(X) such that π is G-equivariant.
Suppose π is divisorial. By Lemma 4.2, each irreducible component of the
π-exceptional divisor is in S(X). By Lemma 4.3, S(X) is finite and there is
a submonoid G ≤ SEnd(X) of finite index such that G|S(X) = id. So π is
G-equivariant. Since G and hence G|Y admit non-isomorphic endomorphisms,
we may replace X by Y and repeat the argument.

5 KSC for Surfaces: Proof of Theorem 1.3

In this section, we will prove KSC for surfaces. Indeed, we provide a very
detailed characterization of a non-isomorphic surjective endomorphism f : X →
X of a normal projective surface X . Note that such X has log canonical (lc)
singularities by [44, Theorem 2.8]. In particular, the canonical divisor KX is
Q-Cartier.
First, we recall a result of Nakayama which characterizes the case when the
canonical divisor is pseudo-effective.

Theorem 5.1. (cf. [37, Theorem 3.1]) Let f : X → X be a non-isomorphic sur-
jective endomorphism of a normal projective surface X with KX being pseudo-
effective. Then KX is nef, f is quasi-étale, and there is a quasi-étale finite
Galois cover ν : V → X such that ν ◦ fV = f ℓ ◦ ν for a non-isomorphic surjec-
tive endomorphism fV of V and a positive integer ℓ, and that V and ν satisfy
exactly one of the following conditions:

(1) V is an abelian surface.

(2) V ∼= E × T for an elliptic curve E and a smooth projective curve T of
genus ≥ 2. Moreover, fV and f have no Zariski-dense orbit.

Proof. This follows from [37, Theorem 3.1] by letting the totally invariant di-
visor S = 0 there. In fact, we only have Cases (3) and (2) there corresponding
to our Cases (1) and (2) here. For our Case (2), we only need to check the as-
sertion about the non-existence of dense orbits. For this, note that fV (E×{t})
has genus ≤ 1 (an elliptic curve, indeed) and it cannot dominate T which is of
genus ≥ 2. Thus f : V → V descends to a surjective endomorphism h : T → T
by the rigidity lemma [6, Lemma 1.15]. Since T has genus ≥ 2, this h has finite
order. So fV and hence f have no Zariski-dense orbit.
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We refer to [10, Theorem 1.1 (4) iii] for the cone theorem frequently used late
on.

Theorem 5.2. Let X be a normal projective surface with only log canonical
singularities and π : X → Y a Fano contraction with dim(Y ) = 1. Let f :
X → X and g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f .
Suppose δf > δg. Then we have:

(1) f∗D ∼ δfD for some semi-ample and π-ample prime divisor D with RD

being an extremal ray of NE(X).

(2) There is a δf -polarized endomorphism h : P1 → P1 such that h◦φ = φ◦f
where φ : X → P1 is the Iitaka fibration of D.

In particular, there is a finite surjective morphism τ : X → P1 × Y such that
(g × h) ◦ τ = τ ◦ f .

Proof. First, X has rational singularities, hence Q-factorial (cf. [35, Proposition
2.33]). By the assumption, the Picard number ρ(X) = ρ(Y ) + 1 = 2.
Note that δg is a positive integer. Since π∗(N1(Y )) is an f∗-invariant hyper-
plane of N1(X), another eigenvalue δf of f∗|N1(X) is also an integer. Let F ∼= P1

be a general fibre of π. Then f∗F ≡ δgF . Let RD be another extremal ray of
Nef(X). Then D · F > 0, and f∗D ≡ δfD. We have D2 = 0, for otherwise,
D2 > 0 and

(δfδg)D
2 = (deg f)D2 = (f∗D)2 = (δf )

2D2

imply that δf = δg, contradicting the assumption. Thus,

Nef(X) = PE1(X) = NE(X).

Claim 5.3. Some choice of D is Q-Cartier and has κ(X,D) > 0.

Once Claim 5.3 is proved, the new D has κ(X,D) = 1 since D2 = 0. Then we
have D ∼Q Da + Dc ∼Q Db + Dc for effective Q-Cartier divisors Da, Db, Dc

such that SuppDa and SuppDb are non-empty and have no common irreducible
component. Since RD is extremal in NE(X), we have RD = RDa

= RDb
. Then

Da is nef and Da · Db = 0. So SuppDa ∩ SuppDb = ∅. In particular, Da is
semi-ample. Replacing D by mDa for some m > 0, we may assume D is base
point free. Then the Iitaka fibration φ : X → B is a morphism with B being
a smooth projective curve. Note that D ∼Q φ∗H for some ample Q-Cartier
divisor H of B. Let C be any irreducible curve of X . Then φ(C) is a point if
and only if D · C = H · φ∗C = 0. Note that f∗C ·D = C · f∗D = δf (C ·D).
So φ(C) is a point if and only if so is φ(f(C)). Since the Iitaka fibration φ
has connected fibres, there is a surjective endomorphism h : B → B such
that h ◦ φ = φ ◦ f by the rigidity lemma (cf. [6, Lemma 1.15]). Note that F
dominates B since F ·D > 0. Then B ∼= P1 and h∗|Pic(B) = δf id. In particular,
f∗D ∼Q f∗φ∗H = φ∗h∗H ∼Q δfD.
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This proves the assertion (1) and (2) of the theorem. For the final assertion of
the theorem, τ is naturally induced by the two fibrations π and φ. It is finite
because ρ(X) = ρ(P1 × Y ) = 2.

Therefore, to prove the theorem, we only need to show Claim 5.3 which will be
proved in several steps below.
Step 1. Suppose KX · D < 0. By the cone theorem, RD is generated by
a rational curve again denoted as D. Note that (aD − KX) · D > 0 and
(aD−KX) ·F > 0 for a > 0. Then aD−KX is ample by Kleiman’s ampleness
criterion (cf. [20, Theorem 1.8]) and hence D is semi-ample by the base point
free theorem (cf. [10, Theorem 2.1]). So Claim 5.3 is proved in this case.

Step 2. From now on, we assume that KX ·D ≥ 0. Note that

0 ≤ D ·Rf = D ·(KX−f∗KX) = D ·KX−f∗D ·f∗KX/δf = (1−δg)D ·KX ≤ 0.

Then D · Rf = 0. Hence either Rf = 0 or RD = RRf
. If Rf = 0, then

KX = f∗KX implies thatKX is an eigenvector of N1(X). SoKX is numerically
parallel to one of D and F and it must be the former since −KX and D are
relatively ample (but not F ) over Y . Hence 1 = δf > δg ≥ 1, a contradiction.
Therefore, Rf 6= 0 and RD = RRf

. Write Rf =
∑

aiDi where ai > 0 are

integers and Di are irreducible components. Since RRf
is extremal in NE(X),

RDi
= RD for every i.

Step 3. Suppose D1 is not f−1-periodic. Then there exists infinitely many
different irreducible curves Et such that f∗Et = etEt−1 for some integer et > 0
and E1 = D1. By Proposition 3.7, Et ∼Q (et/ deg f)f

∗Et−1. Then Vf (D1)
(cf. Definition 3.6) is spanned by {Et}t≥0. By Proposition 3.7, Vf (D1) is finite
dimensional. Then we have A :=

∑
i∈I biEi ∼Q

∑
j∈J bjEj =: B for some finite

sets I and J with I∩J = ∅ and bi, bj are positive integers. Note that RD = RA

and κ(X,A) > 0. So in this case, Claim 5.3 holds by taking A as new D.

Step 4. Now we may assume that f−1(Di) = Di for every i after replacing f
by a positive power. Then f∗Di = δfDi.
Suppose SuppRf is not irreducible. Then we have D1 ≡ tD2 for some rational
number t > 0. Note that m(D1 − tD2) ∈ π∗(Pic0(Y )) for some positive integer
m and

f∗(D1 − tD2) = δf (D1 − tD2).

If D1 − tD2 ∼Q 0, then κ(X,D1) > 0, and we are done. Otherwise, m(D1 −
tD2) ∈ π∗(Pic0(Y )) is not a torsion. Hence g∗ has an eigenvector in Pic0C(Y )
corresponding to the eigenvalue δf > 1; thus the condition of Proposition 3.3
cannot be satisfied, i.e., the Albanese morphism of X is not surjective. So the
genus of Y is at least 2, and then g has finite order and all the eigenvalues of
g∗|Pic0

C
(Y ) are roots of unity, again a contradiction.

Step 5. Finally, we are left with the case that SuppRf = D1 is irreducible
and f−1-invariant. Replace D by D1. Then KX + D = f∗(KX + D). Note
that

(KX +D) · F = f∗(KX +D) · f∗F/δg = δf (KX +D) · F.
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So (KX +D) · F = 0 and D · F = −KX · F = 2.

Let X̃ be the normalization of the (irreducible) main component of X ×Y Ỹ

where Ỹ is the normalization of D. Denote by p1 : X̃ → X and p2 : X̃ → Ỹ
the induced projections. Denote by f̃ : X̃ → X̃ the equivariant lifting of f
and D̃ := p−1

1 (D). Note that there is a diagonal embedding D → D×Y D and

π|D : D → Y is a double cover. Then D̃ is not irreducible. Note that the general

fibre of p2 is a smooth rational curve. So X̃ has only rational singularities and
is Q-factorial (cf. [35, Proposition 2.33]). Write D̃ :=

∑2
i=1 D̃i. Replacing f̃ by

a positive power, we may assume f̃−1(D̃i) = D̃i for each i. Then f̃∗D̃i = δf D̃i.

We assert that p2 : X̃ → Ỹ is a Fano contraction. First, deg(f̃) = deg(f) ≥ 2

implies that X̃ is lc, thus we can run MMP of X (cf. [11, Theorem 1.1]).

Now let C̃ be any negative curve of X̃ . By Lemma 4.3, f̃−1(C̃) = C̃ after

replacing f̃ by a positive power. Write f̃∗(C̃) = tC̃ for some t > 0. Then

f̃∗(C̃) = (deg f̃ /t)C̃. Now f∗p1∗C̃ = p1∗f̃∗C̃ = tp1∗C̃. Since p1 is finite, p1(C̃)

is not a point and hence either t = δf or δg. However, C̃2 < 0 implies that

t2 = deg f̃ = deg f . Then δf = δg, a contradiction. Thus the relative MMP of

X̃ over Ỹ has only one step Fano contraction which is p2 (as asserted).

Note that D̃ ⊆ SuppRf̃ . By the same argument of Step 4, since D̃ is not

irreducible, we have κ(X̃, D̃i) > 0 and hence κ(X,D) > 0.
So Claim 5.3 is proved in this case. This also proves the theorem.

We now characterize the case when the canonical divisor is not pseudo-effective.

Theorem 5.4. Let f : X → X be a non-isomorphic surjective endomorphism
of a normal projective surface X with KX not being pseudo-effective. Then,
replacing f by a positive power, one of the following holds.

(1) f is polarized and f∗|N1(X) = q id for some integer q > 1.

(2) ρ(X) = 2; there is an f -equivariant Fano contraction π : X → Y with
δf = δf |Y .

(3) ρ(X) = 2; there exist a finite surjective morphism τ : X → P1 × Y where
Y is a smooth projective curve, a surjective endomorphism g : Y → Y ,
and a surjective endomorphism h : P1 → P1 such that (g× h) ◦ τ = τ ◦ f .

Proof. Note that X is lc by [44, Theorem 2.8]. By [11, Theorem 1.1] and
Theorem 4.7, replacing f by a positive power, we may run f -equivariant MMP

X = X1 → · · · → Xi → · · · → Xr → Y

with πi : Xi → Xi+1 being divisorial contractions for i < r and πr : Xr → Y
being a Fano contraction. Denote by fi := f |Xi

and g := f |Y . If Y is a point,
then ρ(Xr) = 1 and fr is automatically polarized since deg fr = deg f > 1.
Note that if fr is polarized, then f is polarized by [28, Corollary 3.12] and
further f∗|N1(X) is a scalar action (cf. [28, Theorem 1.8]).
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Suppose now that Y is a curve and fr is not polarized. We claim that r = 1.
Replacing X by Xr−1, it suffices for us to consider the case when r = 2. Let E
be the exceptional divisor of π1 : X → X2. Then f−1(E) = E and write
f∗E = tE for some t > 0. Let P := π2 ◦ π1(E) be a point in Y . Then

g∗P = δgP . Let F2 := π∗
2P and F := π∗

1F2. Then F = F̃2 + aE where a > 0

and F̃2 is the strict transform of F2 in X . Since f−1(SuppF ) = SuppF , we

have f−1(Supp F̃2) = Supp F̃2. Note that

δgF̃2 + δgaE = δgF = f∗F = f∗F̃2 + atE.

Therefore, t = δg. On the other hand, E2 < 0 implies that δ2g = t2 = deg f =
deg f2, hence the two eigenvalues of f∗

2 |N1(X2) are both δg. Since deg f > 1,
f is then polarized, a contradiction. So the claim is proved. In particular,
ρ(X) = 2.
The theorem is finished then by applying Theorem 5.2.

Remark 5.5. In [24, §7], Matsuzawa and Yoshikawa constructed a family of
int-amplified surjective endomorphisms f : X → X of a klt rational surface sat-
isfying Theorem 5.4 (2) but not the others. Their example has the properties:
κ(X,−KX) = 0, and −KX ∼Q D with D = SuppRf being an f−1-invariant
elliptic curve.

Proof of Theorem 1.3. Wemay assume thatX is normal after normalization by
Lemma 2.5. If f is an automorphism, then we may further take an f -equivariant
resolution and KSC holds for f by [15, Theorem 2(c)] and Lemma 2.5.
Suppose f is non-isomorphic. Then X is lc by [44, Theorem 2.8]. If KX is
pseudo-effective, then the theorem follows from Theorem 5.1, [42, Theorem 2]
and Lemma 2.5. If KX is not pseudo-effective, then the theorem follows from
Proposition 2.7, Theorem 5.4 and Lemmas 2.5 and 2.6.

6 Effectiveness of −KX : Proof of Theorem 1.5

In this section, we show the effectiveness of the anti-canonical divisor of any
variety admitting an int-amplified endomorphism. Theorem 6.2 below includes
Theorem 1.5.

Proposition 6.1. Let f : X → X be a surjective endomorphism of a nor-
mal projective variety X. Let D be an effective Cartier divisor of X with
κ(X,D) = 0 and f∗D ∼Q D+B for some effective Q-Cartier divisor B. Then
f−1(SuppD) = SuppD and SuppB ⊆ SuppD.

Proof. Pushing forward the assumption, we get (deg f)D ∼Q f∗D+f∗B. Thus,
since κ(X, f∗D) = κ(X,D) = 0 (cf. [43, Theorem 5.13] or Lemma 7.5), we have

f−1(SuppD) = (SuppD) ∪ (SuppB) ⊇ SuppB,

SuppD = (Supp f∗D) ∪ (Supp f∗B).
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Hence Supp fn+1
∗ D ⊆ Supp fn

∗ D, and by DCC we eventually get the equality.
Replacing D by fn

∗ D we may assume Supp f∗D = SuppD.
Note that

Supp f∗D = Supp f∗f∗D = Supp f∗f
∗D = SuppD.

The first equality is from SuppD = Supp f∗D, while the second follows from
(deg f)D = f∗f

∗D ∼Q f∗f∗D (cf. Proposition 3.7) and κ(X,D) = 0. So
f−1(SuppD) = SuppD.

Theorem 6.2. Let X be a Q-Gorenstein normal projective variety admitting
an int-amplified endomorphism f . Then we have:

(1) −KX ∼Q D for some effective Q-Cartier divisor D.

(2) Suppose further κ(X,−KX) = 0. Then D is an (integral) reduced ef-
fective Weil divisor; SuppRf = SuppD and it is f−1-invariant. More-
over, for any surjective endomorphism g of X, we have g−1(D) = D and
SuppRg ⊆ SuppD, i.e., g|X\D : X\D → X\D is quasi-étale.

Proof. (1) We use the notation in Definition 3.6. By the ramification divisor
formula,

f∗(−KX)− (−KX) = Rf ∈ Ef (Rf ).

Therefore, −KX ∈ Ef (Rf ) by Propositions 3.4, 3.7 and [26, Proposition 3.2].
This and KX being Q-Cartier, imply that −KX ∼Q D for some effective Q-
Cartier divisor D.
(2) Suppose κ(X,−KX) = 0. By Proposition 6.1, f−1(SuppD) = SuppD
and SuppRf ⊆ SuppD. Write D =

∑
aiDi where Di is the irreducible com-

ponents of D and ai > 0. Replacing f by a positive power, we may assume
f−1(Di) = Di. Since f is int-amplified, we have f∗Di = qiDi with qi > 1
(cf. [26, Theorem 1.1]). So

∑
(qi − 1)Di = Rf ∼Q f∗D −D =

∑
ai(qi − 1)Di.

Since κ(X,Rf ) = 0 and qi > 1, we have ai = 1 for each i. The last assertion of
(2) follows from Proposition 6.1 since g∗(−KX)− (−KX) = Rg ≥ 0.

7 Anti-Kodaira Fibration: Proof of Proposition 1.6

In this section, we focus on the case when f∗KX ≡ δfKX and κ(X,−KX) > 0.
We show that the Chow reduction of the Iitaka fibration π : X 99K Y of −KX is
f -equivariant. By some further cone analysis, we show that f |Y is δf -polarized.
We first recall the definition and properties of the Chow reduction in [34, Propo-
sition 4.14 and Definition 4.15], using the formulation in his RIMS preprint
version.
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Proposition 7.1 (Chow reduction). Let π : X 99K Y be a dominant rational
map from a projective variety X to a normal projective variety Y . Then there
exist a normal projective variety T and a birational map µ : Y 99K T satisfying
the following conditions:

(1) The graph γµ◦π : Γµ◦π → T of µ ◦ π is equi-dimensional.

(2) Let µ′ : Y 99K T ′ be a birational map to another normal projective variety
T ′ such that the graph γµ′◦π : Γµ′◦π → T ′ of µ′ ◦ π is equi-dimensional.
Then there exists a birational morphism ν : T ′ → T such that µ = ν ◦ µ′.

We call the composition µ ◦ π : X 99K T above satisfying Proposition 7.1 (1) -
(2) the Chow reduction of π : X 99K Y , which is unique up to isomorphism.
Theorem 7.2 below is a generalization of Nakayama [34, Theorem 4.19] with
exactly the same proof. Note that his special MRC fibration there (also a Chow
reduction) is used only to secure our following assumption that g ◦π = π ◦f for
some dominant self-map g on the base of the Chow reduction π, precisely, for
him to show in [34, Proof of Theorem 4.19, page 592, lines 4-9, after the display]
that his Y and Y1 there are birational (to the sameW there) so that f : X → X
descends to a rational self-map g : Y 99K Y . Then his argument there further
shows that g is a surjective endomorphism. His polarized assumption is only
used to show that g is polarized.
Recall that we say a dominant map π : X 99K Y of normal projective varieties
has connected fibres if the normalization of the graph Γπ → Y has connected
fibres. In characteristic 0, by the Stein factorization, it is equivalent to saying
that the function field k(Y ) is algebraically closed in k(X).

Theorem 7.2. (cf. [34, Theorem 4.19]) Let π : X 99K Y be a dominant map of
normal projective varieties with connected fibres. Let f : X → X be a surjective
endomorphism and g : Y 99K Y a dominant self-map such that g ◦ π = π ◦ f .
Suppose π is a Chow reduction of itself. Then g is a surjective endomorphism.

We now recall some fundamental results about Iitaka fibrations.

Lemma 7.3. Let X be a normal projective variety. Let D1 and D2 be two
effective Cartier divisors with D2 − D1 effective and κ(X,D1) = κ(X,D2).
Then for t ≫ 1, the Iitaka fibrations φtDi

satisfy φtD1
= σ ◦ φtD2

for some
birational map σ.

Proof. Let s0, · · · , sm(1) be a basis ofH
0(X, tD1) and let t0, · · · , tm(2) be a basis

of H0(X, tD2) where ti = ξsi (0 ≤ i ≤ m(1)) with div(ξ) = t(D2−D1). Define
p1 : X 99K Pm(1) via p1(x) = (s0(x) : · · · : sm(1)(x)) and p2 : X 99K Pm(2)

via p2(x) = (t0(x) : · · · : tm(2)(x)), so that pi is the composition of the Iitaka

fibration φtDi
: X 99K Yi and embedding Yi ⊆ Pm(i). Define h : Pm(2)

99K Pm(1)

via h(x0 : · · · : xm(2)) = (x0 : · · · : xm(1)). Then p1 = h ◦ p2. Since the
Iitaka fibrations have connected fibres, there exists some dominant rational
map σ : Y2 99K Y1 with connected fibres such that φtD1

= σ ◦ φtD2
by the

universal property of Stein factorization of φtD1
. Moreover, σ is birational

since dim(Y1) = dim(Y2).
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Lemma 7.4. Let f : X → X be a surjective endomorphism of a normal pro-
jective variety. Let D be an effective Cartier divisor. Let φtD : X 99K Y and
φtf∗D : X 99K Y ′ be the Iitaka fibrations with t ≫ 1. Then g′ ◦φtf∗D = φtD ◦ f
for some dominant rational map g′ : Y ′

99K Y .

Proof. Let φf∗|tD| : X 99K Z be the dominant rational map defined by f∗|tD|
where |tD| is the complete linear system of tD. Clearly, Z = Y and φf∗|tD| =
φtD ◦ f . Since f∗|tD| is a sub linear system of |tf∗D|, by the argument in the
proof of Lemma 7.3, there is a dominant rational map g′ : Y ′

99K Y such that
φf∗|tD| = g′ ◦ φ|tf∗D| = g′ ◦ φtf∗D.

We recall the following well-known useful result.

Lemma 7.5. (cf. [43, Theorem 5.13]) Let f : X → Y be a surjective morphism
of projective varieties and let D be a Cartier divisor of Y . Then κ(Y,D) =
κ(X, f∗D).

Corollary 7.6. Let f : X → X be a surjective endomorphism of a normal
projective variety X with κ(X,−KX) ≥ 0. Let φ−mKX

: X 99K Y be the Iitaka
fibration with m ≫ 1. Then there is a dominant self-map g : Y 99K Y such
that g ◦ φ−mKX

= φ−mKX
◦ f .

Proof. Let φmf∗(−KX) : X 99K Y ′ be the Iitaka fibration with m ≫ 1. By
Lemma 7.4, g′ ◦ φmf∗(−KX) = φ−mKX

◦ f for some dominant rational map
g′ : Y ′

99K Y .

By the ramification divisor formula, we have f∗(−KX) = −KX + Rf . By
Lemma 7.5, κ(X, f∗(−KX)) = κ(X,−KX). Then φ−mKX

= σ ◦ φmf∗(−KX)

for some birational map σ : Y ′
99K Y by Lemma 7.3. Let g := g′ ◦ σ−1. Then

g ◦ φ−mKX
= φ−mKX

◦ f .

Lemma 7.7. Consider the following commutative diagram of normal projective
varieties

W
σW //

φW

��

X

φmD

��

Y
σY // Z

where φmD is the Iitaka fibration of some effective Cartier divisor D of X with
m ≫ 1, σW is a birational morphism, σY is a birational map, and φW is a
surjective morphism. Let F ⊆ PE1(W ) be the minimal extremal face containing
σ∗
WD. Then φ∗

W (PE1(Y )) ⊆ F .

Proof. Taking a sufficiently high resolution i : W ′ → W , we have a birational
morphism σW ′ : W ′ → X such that σ∗

W ′ |mD| = d+∆ where d is a free linear
system and ∆ is the fixed component. Then φd = φmD ◦ σW ′ . Let M ∈ d.
Then M = φ∗

d
A for some ample Cartier divisor A on Z.
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Consider the following commutative diagram

W ′ i //

j
��

φd

~~⑥⑥
⑥
⑥
⑥
⑥
⑥
⑥

W

φW

��

Z Ỹ
p1oo

p2 // Y

where Ỹ is the graph of σY , p1 and p2 are the two (birational) projections,
and j is a morphism induced by the two morphisms φW ◦ i and φd.
Let H be an effective Cartier divisor of Y . The class of E′ := p∗1sA − p∗2H is
the class of an effective divisor for some s ≫ 1. Note that

σ∗
W ′smD ∼ sM+s∆ = j∗p∗1sA+s∆ = j∗p∗2H+j∗E′+s∆ = i∗φ∗

WH+j∗E′+s∆.

Taking the pushforward of i, we have

σ∗
W smD = φ∗

WH + i∗(j
∗E′ + s∆).

Since F is the minimal extremal face of PE1(W ) containing σ∗
WD, we have

φ∗
WH ∈ F . Therefore, φ∗

W (PE1(Y )) ⊆ F .

Theorem 7.8. Let f : X → X be a surjective endomorphism of a Q-Gorenstein
normal projective variety X such that f∗KX ≡ qKX for some integer q > 1.
Suppose κ(X,−KX) > 0. Then there is an f -equivariant dominant rational
map π : X 99K Y to a normal projective variety Y such that dim(Y ) > 0 and
f |Y is q-polarized.

Proof. Let φmD : X 99K Z be the Iitaka fibration of D := −KX with m ≫ 1.
By Corollary 7.6 and Theorem 7.2, there is a birational map σY : Y 99K Z
such that π := σ−1

Y ◦ φmD is (the Chow reduction of φmD and) f -equivariant.
Denote by g := f |Y .
Let W be the normalization of the graph of π. We have the following commu-
tative diagram

W
σW //

φW

��

X

φmD

��

Y
σY // Z

Let F be the minimal extremal face containing σ∗
WD in PE1(W ). By

Lemma 7.7, we have φ∗
W (PE1(Y )) ⊆ F .

Note that f lifts to a surjective endomorphism h : W → W . Since h∗σ∗
WD ≡

qσ∗
WD, we have h∗(F ) = F by the uniqueness of F (cf. [27, Lemma 4.2]). De-

note by 〈F 〉 the subspace in N1(W ) spanned by F . By [28, Propositions 2.9],
h∗|〈F 〉 is diagonalizable with all the eigenvalues being of the same modulus q.

Therefore so is g∗|N1(Y ) since N1(Y ) = 〈PE1(Y )〉 ⊆ 〈F 〉. By [28, Proposi-
tions 2.9 and 1.1], g is q-polarized.
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Now we can show Proposition 1.6 easily.

Proof of Proposition 1.6. We may assume δf > 1. Then the theorem follows
directly from Theorem 7.8, Lemma 2.5 and Proposition 2.7.

8 Case TIR: Conditions (A1) - (A4) Imply Condition (A5)

In this section, we show that in Case TIR, Conditions (A1)-(A4) imply Condi-
tion (A5). The main idea is to take the double cover as in Step 5 of the proof
of Theorem 5.2.
We first recall the result below.

Lemma 8.1. (cf. [36, Lemma 2.3], [38, Lemma 2.5]) Let f : X → X be a
non-isomorphic surjective endomorphism of a normal projective variety X. Let
θk : Vk → X be the Galois closure of fk : X → X for k ≥ 1 and let τk : Vk → X
be the induced finite Galois covering such that θk = fk◦τk. Then there are finite
Galois morphisms gk, hk : Vk+1 → Vk such that τk◦gk = τk+1, τk◦hk = f ◦τk+1

and (deg hk)/(deg gk) = deg f .

The following result about periodic subvarieties is another application of the
technique used in the proofs of [38, Theorem 3.3] and [26, Theorem 5.2].

Theorem 8.2. Let f : X → X be an int-amplified endomorphism of a normal
projective variety X. Suppose D := SuppRf is f−1-invariant and X\D is klt.
Let Z be an f−1-periodic proper closed subvariety of X. Then Z ⊆ SuppRf .

Proof. It suffices for us to consider the case when Z is irreducible. We
apply Lemma 8.1 and use the notation there. Set d := deg f . Then
d = (deg hk)/(deg gk), and d > 1 (cf. [26, Lemma 3.7]). Denote by Uk :=
Vk\τ

−1
k (D). Then Uk+1 = g−1

k (Uk) = h−1
k (Uk). By the ramification divisor

formula, f |X\D : X\D → X\D is quasi-étale. Hence θk|Uk
, τk|Uk

, gk|Uk+1
and

hk|Uk+1
are quasi-étale and Galois by the construction. So Uk is klt by [20,

Proposition 5.20]. Therefore, gk|Uk+1
and hk|Uk+1

are étale for k ≫ 1 by [12,
Theorem 1.1]. Let A be an ample Cartier divisor on X . Denote by Ak := τ∗kA
and (f∗A)k := τ∗k (f

∗A). Denote by Sk := τ−1
k (Z). In the rest of the proof, we

always assume k ≫ 1.
Suppose Z 6⊆ D. Then Sk+1 = g−1

k (Sk) = h−1
k (Sk). Note that gk and hk

are étale over the generic point of Sk. By viewing Sk as a cycle with simply
the reduced structure, we have Sk+1 ≡w g∗kSk ≡w h∗

kSk; see [45, §2.3] for the
pullback of cycles by finite surjective morphisms. Let m = dim(Z) < dimX .
By the projection formula, we have

Sk+1 · (f
∗A)mk+1 = Sk+1 · g

∗
k((f

∗A)k)
m = (deg gk)Sk · (f

∗A)mk

and

Sk+1 · (f
∗A)mk+1 = Sk+1 · h

∗
k(Ak)

m = (deg hk)Sk ·Am
k .
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Then Sk · (f∗A)mk = dSk · Am
k . Note also that (τk)∗Sk = tkZ for some integer

tk > 0. Thus, by the projection formula, we have tkZ · (f∗Am) = dtkZ · Am.
Therefore,

1 ≤ Z · Am = lim
i→+∞

Z ·
(f i)∗Am

di
= 0

with the last equality by [26, Lemma 3.8], a contradiction.

Lemma 8.3. Let π : X → Y be a surjective morphism of normal projec-
tive varieties with Y being Q-factorial. Let D1, · · · , Dr ∈ NSC(Y ) such that
D1 · · ·Dr ≡w 0 (weak numerical equivalence). Then π∗D1 · · ·π∗Dr ≡w 0.

Proof. Let n = dim(X) ≥ m := dim(Y ) and d := n−m. Suppose the contrary
that π∗D1 · · ·π∗Dr 6≡w 0. Then we can find (general) very ample divisors
Hi of X such that H1 · · ·Hn−r · π∗D1 · · ·π∗Dr 6= 0. Since X is normal, we
may assume H1 is a normal variety (cf. [40]). Inductively, by the Bertini’s
theorem, we may assume that each Zs := H1 ∩ · · · ∩Hs (1 ≤ s ≤ n− r) is an
irreducible normal subvariety (and a Cartier divisor) of Zs−1 with dim(Zs) =
n − s ≥ r ≥ 1, and π|Zs

: Zs → π(Zs) (s ≥ d) is generically finite. Then
π(Zd) = Y and π(Zs) = π(Zs−1 ∩ Hs) =

⋂
d<i≤s π(Hi ∩ Zd) for s > d. Note

that H ′
s := (π|Zd

)∗(Hs|Zd
) (s > d) is a Q-Cartier divisor on Y since Y is

Q-factorial. In particular, π∗(H1 · · ·Hn−r) = eH ′
d+1 · · ·H

′
n−r for some e > 0.

Note that n− r ≥ d. By the projection formula:

0 6= H1 · · ·Hn−r · π
∗D1 · · ·π

∗Dr = π∗(H1 · · ·Hn−r) ·D1 · · ·Dr

= eH ′
d+1 · · ·H

′
n−r ·D1 · · ·Dr,

contradicting that D1 · · ·Dr ≡w 0.

Proposition 8.4. Let f : X → X be a surjective endomorphism of a Q-
factorial lc projective variety X. Let π : X → Y be an f -equivariant Fano
contraction with general fibre F . Suppose δf > δf |Y and f∗D ≡ δfD for

some π-ample D ∈ N1(X). Then Dd 6≡w 0 and Dd+1 ≡w 0 (weak numerical
equivalence) with d := dim(X)− dim(Y ).

Proof. Note thatD|F is ample, henceDd·F = (D|F )d > 0. We identify NSC(Y )
as a subspace of NSC(X) via π∗. Set x := D. Then NSC(X) is spanned by
NSC(Y ) and x.

Let {yij}1≤i≤k,1≤j≤ℓi be a basis of NSC(Y ) such that g∗(yij ) = λiyij + yij+1

if j < ℓi, and g∗(yij ) = λiyij if j = ℓi. For two sequences of integers, we
say (aij ) < (bij ) if for some i′ and j′, ai′

j′
< bi′

j′
and aij ≤ bij when i > i′

and when i = i′ and j > j′. Let s ≥ d be the maximal integer such that
xs 6≡w 0. Let (aij ) be the maximal sequence such that

∑
ij
aij = dim(X) − s

and xs ·
∏

ij
y
aij

ij
6= 0. For convenience, we call (aij ) the degree sequence of y

aij

ij

and
∑

j aij the i-th degree of (aij ).
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Note that
f∗(xs ·

∏

ij

y
aij

ij
) = δsfx

s · {
∏

ij

(λiyij )
aij +∆}

where the degree sequence of each term of ∆ is larger than (aij ). Thus x
s ·∆ =

0, so

deg f = δsf ·
∏

i

λ
∑

j aij

i .

Lemma 8.3 implies
∏

ij
y
aij

ij
6≡w 0 in Y , noting that Y is Q-factorial (cf. [20,

Corollary 3.18]). So
∏

ij
y
aij

+bij
ij

6= 0 for some bij ≥ 0 and
∑

ij
(aij + bij ) =

dim(Y ). Let (cij ) be the maximal sequence such that
∑

j cij =
∑

j(aij + bij )

for each i and
∏

ij
y
cij
ij

6= 0. Note that

g∗(
∏

ij

y
cij
ij

) =
∏

ij

(λiyij )
cij +∆′

where the degree sequence of each term of ∆′ is larger than (cij ) and the i-th
degree of each term of ∆′ is still

∑
j(aij + bij ) for each i. Then ∆′ = 0 and

hence

deg g =
∏

i

λ
∑

j
cij

i .

We may write
∏

ij
y
cij
ij

≡ tF on X for some 0 6= t ∈ C. Since D|F is ample, we

have xd ·
∏

ij
y
cij
ij

6= 0. Note that

f∗(xd ·
∏

ij

y
cij
ij

) = δdfx
d ·

∏

ij

(λiyij )
cij .

Then

deg f = δdf ·
∏

i

λ
∑

j cij
i .

Finally, we have δs−d
f =

∏
i λ

∑
j
(cij−aij

)

i . Since
∑

j(cij − aij ) ≥ 0 for each i,∑
ij
(cij − aij ) = dim(Y ) − (dim(X)− s) = s − d and |λi| ≤ δg < δf , we have

s = d.

Lemma 8.5. Let π : X → Y be a degree two finite surjective morphism of
normal varieties. Let f : X → X and g : Y → Y be surjective endomorphisms
such that π ◦ f = g ◦ π. Suppose g is quasi-étale, and there is no g−1-periodic
prime divisor of Y . Then π and f are quasi-étale.

Proof. Suppose prime divisor Q1 of Y is in Bπ, the branch locus of π. Then
π−1(Q1) = P1 and π∗Q1 = 2P1, where P1 is a prime divisor of X . Now
π ◦f = g ◦π implies 2f∗(P1) = π∗g∗(Q1). Thus g

−1(Q1) ⊆ Bπ since g is quasi-
étale. So the set g−1(Bπ) is contained in the set Bπ. Hence these two sets are
the same since g is surjective. We then have Bπ = 0, by the assumption. Thus,
π and hence g ◦ π = π ◦ f and also f are quasi-étale.
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Theorem 8.6. In Case TIR, Conditions (A1)-(A4) imply Condition (A5).

Proof. We assume (A1) - (A4). We will deduce (A5). If dim(Y ) = 0, then X
is a klt Fano variety, so κ(X,−KX) > 0, contradicting Condition (A1). Thus
dimY ≥ 1.
We still have to consider the case dim(X) = dim(Y ) + 1. Let I : X → X be
an int-amplified endomorphism. We may assume π is I-equivariant, after I
is replaced by a positive power (cf. [26, Theorem 1.10]). By Theorem 6.2,
I−1(D) = D and SuppRI = D.
We first claim that π|D : D → Y is finite. Since D ∼Q −KX is π-ample
and dim(D) = dim(Y ), π|D is generically finite. If π|D is not finite, then D
contains some curve C contracted by π. Since D is π-ample, D · C > 0.
However, D2 ≡w 0 by Proposition 8.4. So D|D ≡ 0 (cf. [46, Lemma 3.2]) and
hence D · C = D|D · C = 0, a contradiction. The claim is proved.

Let X̃ be the normalization of the (irreducible) main component of X ×Y Ỹ

where Ỹ is the normalization of D. Denote by p1 : X̃ → X and p2 : X̃ → Ỹ
the induced projections. Denote by f̃ : X̃ → X̃ and Ĩ : X̃ → X̃ the equivariant
liftings of f and I. Set D̃ := p−1

1 (D). Since the general fibre F of π is P1,
we have KX · F = −2 and D · F = 2. Since there is a diagonal embedding
D → D ×Y D, our D̃ is reducible. Write D̃ :=

∑2
i=1 D̃i with D̃i irreducible.

Replacing f̃ and Ĩ by positive powers, we may assume D̃i is f̃−1 and Ĩ−1-
invariant for each i.
Note that p1 is a double cover and I|X\D is quasi-étale. By Lemma 8.5, p1|X̃\D̃

and Ĩ|X̃\D̃ are quasi-étale. Since D̃ has two irreducible components, p∗1D =

D̃ and p1 is quasi-étale. Then KX̃ = p∗1KX and D̃ are Q-Cartier. By [20,

Proposition 5.20], X̃ is klt. So SuppRĨ = D̃. Further, p2 has connected fibres

and p2|D̃ : D̃ → Ỹ is a finite surjective morphism since so is π|D.

Note that D̃1∩D̃2 is Ĩ−1-invariant closed and does not dominate Ỹ . Replacing
Ĩ by a positive power, p2(D̃1 ∩ D̃2) is Ĩ|−1

Ỹ
-invariant by [5, Lemma 7.5]. Let

Z := p−1
2 (p2(D̃1∩ D̃2)) which is Ĩ−1-invariant. By Theorem 8.2, Z ⊆ D̃. Then

D̃1 ∩ D̃2 = ∅, since D̃ contains no fibre of p2. Note that D̃ is Q-Cartier. The
non-Q-Cartier locus of D̃1 is contained in D̃1 ∩ D̃2. So D̃i is Q-Cartier and
f̃∗D̃i = δf D̃i for each i .

Since the general fibre of X̃ → Ỹ is still P1, KX̃ is not pseudo-effective

over Ỹ . By the relative cone theorem (cf. [20, Theorem 3.25] and [30, The-

orem 1.1]), replacing Ĩ by a positive power, there is an Ĩ-equivariant con-

traction πC̃ : X̃ → B over Ỹ of some KX̃ -negative extremal ray RC̃ . If πC̃

is birational with E the exceptional locus, then p2(E) ( Ỹ is Ĩ|−1

Ỹ
-invariant

by [5, Lemma 7.5] and hence p−1
2 (p2(E)) is Ĩ−1-invariant. By Theorem 8.2,

p−1
2 (p2(E)) ⊆ D̃, a contradiction since D̃ does not contain any fibre of p2.

So dim(X̃) − 1 = dim(Ỹ ) ≤ dim(B) < dim(X̃). Thus the induced morphism

πB : B → Ỹ is generically finite and hence birational since p2 has connected
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fibres. Similarly, πB has to be isomorphic. So p2 is a Fano contraction.

Note that D̃i is p2-ample. Then for some rational number t > 0, D̃1 − tD̃2 ∈
p∗2(PicQ(Ỹ )) by the cone theorem (cf. [20, Theorem 3.7]). Denote by g̃ :=

f̃ |Ỹ . Then g̃∗(D̃1 − tD̃2) = δf (D̃1 − tD̃2). Note that δg̃ = δf |Y < δf = δf̃
(cf. Lemma 2.4). Since Ĩ|Ỹ is int-amplified (cf. [26, Lemma 3.4]), the Albanese

morphism of Ỹ is surjective by [26, Theorem 1.8]. So D̃1 − tD̃2 ∼Q 0 by

Proposition refprop-eig-sqrt. Therefore, κ(X̃, D̃1) > 0 and hence κ(X,−KX) =
κ(X,D) > 0. This contradicts (A1). Thus (A5) holds.

9 Reduction to Case TIR: Proof of Theorem 1.7

The following result is simple but useful.

Lemma 9.1. Let f : V → V be an invertible linear map of a finite dimensional
normed real vector space V such that f(C) = C for a closed convex cone C ⊆ V
which spans V and contains no line. Suppose f(x) = qx for some 0 6= x ∈
C and q > 0. Suppose further that q is the only eigenvalue of f which has
modulus q and the q-eigenspace is 1-dimensional. Then the ray Rx generated
by x is extremal in C.

Proof. Let F be the minimal extremal face containing x and W the space
spanned by F . Then f(F ) = F and f(W ) = W by (cf. [28, Lemma 2.7]). By
[27, Lemma 4.2] and [28, Proposition 2.9], all the eigenvalues of f |W are of
modulus q. So dim(W ) = 1 by the assumption. In particular, F = Rx is an
extremal ray of C.

The following is the key in the proof of Theorem 1.7 for the induction purpose.

Proposition 9.2. Let X be a Q-factorial klt projective variety. Let π : X → Y
be a Fano contraction (so Y is still Q-factorial klt). Let f : X → X and
g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f . Sup-
pose κ(X,−KX) ≥ 0 and any finite sequence of MMP starting from X is
f -equivariant after replacing f by a positive power. Suppose further the Al-
banese morphism of X is surjective. Then replacing f by a positive power,
there is an f -equivariant MMP: a composition of birational MMP X 99K X ′

followed by a Fano contraction X ′ → Y ′, such that after replacing (f,X, g, Y )
by (f |X′ , X ′, f |Y ′ , Y ′), one of the following holds.

(1) f∗KX ≡ δfKX with δf > 1 being an integer and κ(X,−KX) > 0.

(2) δf > δg; κ(X,−KX) = 0, so −KX ∼Q D ≥ 0; the class of −KX is ex-
tremal in both the cone Nef(X) and the cone PE1(X); and D = SuppRf

is a prime divisor with f∗D = δfD.

(3) dim(Y ) < dim(X) and δg = δf .
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Proof. We show by induction on ρ(X). If ρ(X) = 1 (i.e. Y is a point and X
is Fano), then we have Case (1). So we assume ρ(X) ≥ 2. If δf = δg, then
we have Case (3) with no replacement. So it suffices to consider the case when
δf > δg.

Note that N1(X)/π∗ N1(Y ) is 1-dimensional and f∗|N1(X)/π∗ N1(Y ) = q id for
some integer q > 0. Then q = δf and it is the only eigenvalue of f∗|N1(X)

with modulus δf and the q-eigenspace is 1-dimensional. By a version of the
Perron-Frobenius theorem (cf. [2]), f∗D ≡ δfD for some nef and π-ample
Cartier divisor D ∈ N1(X). Moreover, the ray RD generated by D in N1(X)
is extremal in both Nef(X) and PE1(X) by Lemma 9.1. Let a > 0 such that
B := D + aKX satisfies B · C = 0, where C is a (rational) curve so that RC

is the extremal ray of NE(X) contracted by π. Then B ∈ π∗ N1(Y ) by the
cone theorem (cf. [20, Theorem 3.7]). We discuss according to two situations
on whether B pseudo-effective or not.

Situation 1. B is pseudo-effective. Since −KX is effective, D = B +
(−aKX) implies that the rays RD = RB = R−KX

. In particular, f∗KX ≡
δfKX and −KX is extremal in both Nef(X) and PE1(X). By the assumption
κ(X,−KX) ≥ 0, we can assume D is an effective Q-divisor such that −KX ∼Q

D. If κ(X,−KX) > 0, we have Case (1).

If κ(X,−KX) = 0, write D =
∑

aiDi with ai > 0 being a rational number
and Di being irreducible. Since −KX is extremal in PE1(X), we have the
rays RDi

= R−KX
. Applying Proposition 6.1 to −KX , we have f−1(Di) = Di

for each i after replacing f by a positive power. Since f∗Di ≡ δfDi and
Di is not numerically trivial, f∗Di = δfDi. Suppose SuppD is reducible.
Then sD1 − tD2 ∈ Pic0(X) for some positive integers s and t. Note that
f∗(sD1 − tD2) = δf (sD1 − tD2) and δf > 1. Since the Albanese morphism of
X is surjective by the assumption, we have sD1− tD2 ∼Q 0 by Proposition 3.3.
Therefore, κ(X,−KX) ≥ κ(X,D1) > 0, a contradiction. By Proposition 6.1,
SuppRf ⊆ D1 := SuppD. On the other hand, f∗D1 = δfD1 with δf > 1
implies that D1 ⊆ SuppRf . So Rf = (δf − 1)D1 and hence KX + D1 =
f∗(KX +D1). Note that KX +D1 ∼Q −D+D1 = (a1 − 1)D1. So a1 = 1 and
D = D1. So we have Case (2).

Situation 2. B is not pseudo-effective. For a small effective ample
Q-Cartier divisor E, (1/a)B + E is not pseudo-effective. Denote by A :=
E + (1/a)D which is ample since D is nef. Thus KX + A = (1/a)B + E is
not pseudo-effective. By [1, Corolllary 1.3.3], we may run ϕ : X 99K X ′, a
birational (KX +A)-MMP with scaling of A (cf. [1, Section 3.10]) and end up
with a Fano contraction π′ : X ′ → Y ′ of some (KX′ + A′)-negative extremal
ray RC′ where A′ is the strict transform of A. Note that this particular choice
of (KX + A)-MMP is also a KX -MMP. By the assumption, replacing f by a
positive power, we may assume this MMP is f -equivariant. If ρ(X ′) < ρ(X),
then we are done by induction (noting that X ′ → Alb(X ′) = Alb(X) is still
surjective). If ρ(X ′) = ρ(X), then ϕ consists of only flips. Hence, we can use
ϕ∗ to identify N1(X ′) with N1(X). Let D′ and E′ be the strict transform of D
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and E. Since the curves in RC′ cover X ′, we have E′ · C′ ≥ 0. Then

(KX′ +
1

a
D′) · C′ = (KX′ +A′) · C′ − E′ · C′ < 0.

So KX′ + 1
aD

′ (identified with KX + 1
aD = (1/a)B ∈ π∗ N1(Y )) is not in

(π′ ◦ ϕ)∗ N1(Y ′). Thus π∗ N1(Y ) and (π′ ◦ ϕ)∗ N1(Y ′) are two different f∗-
invariant hyperplanes of N1(X). Note that f∗|N1(X) has only one eigenvalue of
modulus δf and δf > δg. Then δf = δf |Y ′

. So we have Case (3) after replacing
(X,Y ) by (X ′, Y ′).

Proof of Theorem 1.7. If KX is pseudo-effective, then X is Q-abelian by [26,
Theorem 1.9] (without using the Q-factorial condition on X). So (1) follows
from Theorem 2.8.
For (2), we show by induction on dim(X). Since KSC holds for curves, assume
dim(X) ≥ 2. By (1), we may assume KX is not pseudo-effective. Let I : X →
X be an int-amplified endomorphism. By [30, Theorem 1.2], replacing f and I
by positive powers, we may run f and I-equivariant MMP

X = X1 99K · · · 99K Xi 99K · · · 99K Xr → Xr+1 = Y,

where Xi 99K Xi+1 (i ≤ r) is birational, π : Xr → Y is a Fano contraction,
each Xj (j ≤ r + 1) is still Q-factorial klt, and the descending of I to each Xj

is still int-amplified. By Lemma 2.5, we may replace X by Xr.
Note that any finite sequence of MMP starting from X is f and I-equivariant
after iterations by [30, Theorem 1.1], and κ(X,−KX) ≥ 0 by Theorem 1.5.
Moreover, the Albanese morphism of X is surjective by [26, Theorem 1.8]. So
we may apply Proposition 9.2 and it suffices for us to consider the three cases
there by Lemma 2.5. For Case (1), we are done by Proposition 1.6. For Case
(2), it is further Case TIR by Theorems 6.2 and 8.6; by the assumption, KSC
holds for f . For Case (3), we may replace X by a lower dimensional one and
we are done by induction (cf. Lemma 2.5).

10 Toric Characterizations and Proof of Theorem 1.11

In this section, we show that Case TIR3 will not happen during any MMP
starting from a rationally connected smooth projective threefold which admits
an int-amplified endomorphism. The key of the proof is a characterization
of a toric pair in the presence of an int-amplified endomorphism with totally
invariant ramification.
Recall that a normal projective variety X over k is said to be toric or a toric
variety if X contains an algebraic torus T = (k∗)n as an (affine) open dense
subset such that the natural multiplication action of T on itself extends to an
action on the whole variety X . In this case, let D := X\T , which is a divisor;
the pair (X,D) is said to be a toric pair.
We mainly focus on the following question in this section.
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Question 10.1. Let X be a rationally connected smooth projective variety and
D ⊂ X a reduced divisor. Suppose f : X → X is an int-amplified endomor-
phism such that f−1(D) = D and f |X\D : X\D → X\D is quasi-étale. Is
(X,D) a toric pair?

First, Question 10.1 has been affirmatively answered whenX is a Fano manifold
of Picard number 1. Indeed, Hwang and Nakayama showed then that X is
isomorphic to Pn and D is a simple normal crossing divisor consisting of n+1
hyperplanes; see [14, Theorem 2.1]. Later, their result was generalized by the
authors [29, Corollary 1.4], answering the above question affirmatively when f
is polarized.
We sketch the idea of the proof when f is polarized. A key step is in apply-
ing the dynamical property of f to verify that the reflexive sheaf of germs of
logarithmic 1-forms Ω̂1

X(logD) (cf. [29, 2.1]) is free, i.e., isomorphic to O⊕n
X

where n = dim(X); see [14, Proposition 2.3] and [29, Theorem 5.4]. Thus
h0(X, Ω̂1

X(logD)) = dim(X). The remaining steps do not involve f at all.

Write D =
∑ℓ

i=1 Di with Di irreducible. Then one calculates by [29, Theo-
rem 4.5 and Remark 4.6] the complexity of the pair (X,D) as

c(X,D) : = dim(X) + r(D) − ℓ(D)

= dim(X) + h1(X,OX)− h0(X, Ω̂1
X(logD)) = 0

where ℓ(D) := ℓ and r(D) is the rank of the vector space spanned byD1, · · · , Dℓ

in N1(X). Finally, (X,D) is a toric pair by the complexity criterion [3, Theo-
rem 1.2].
Thus, to fully answer Question 10.1, we only need to generalize the above key
step to the int-amplified case. Imitating the proof of [14, Proposition 2.3] and
[29, Theorem 5.4], we just need to verify the following two conditions for some
ample Cartier divisor H :

(i) c1(Ω̂
1
X(logD))·Hn−1 = c1(Ω̂

1
X(logD))2 ·Hn−2 = c2(Ω̂

1
X(logD))·Hn−2 =

0.

(ii) Ω̂1
X(logD) is H-slope semistable.

We will see late on that the second condition is not easy to verify and remains
unprovable for the general int-amplified case. For the easy comparison with
the polarized case, we will also consider the singular case.
We need the following to show the vanishing of c2(Ω̂

1
X(logD)).

Proposition 10.2. (cf. [14, Proposition 2.4]) Let X be a normal projective
variety smooth in codimension 2 and D ⊂ X a reduced divisor. Suppose f :
X → X is an int-amplified endomorphism such that f−1(D) = D and f |X\D :
X\D → X\D is quasi-étale. Then there is a smooth open subset U ⊆ X such
that D ∩ U is a normal crossing divisor and codim(X\U) ≥ 3. In particular,
Ω̂1

X(logD) is locally free over U .
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Proof. Let ν : D̃ → D ⊆ X be the normalization of D and c the conductor
of D, regarded as a Weil divisor on D̃. Since X is smooth in codimension 2,
the adjunction formula gives

KD̃ + c = ν∗(KX +D)

where ν∗(KX +D) is regarded as the pullback of a divisorial sheaf. There is an

endomorphism h : D̃ → D̃ such that ν◦h = f ◦ν and its ramification divisor Rh

is h∗
c− c. In fact, we have KD̃ + c = h∗(KD̃ + c) from KX +D = f∗(KX +D).

Note that h is int-amplified and c is reduced (cf. [26, Theorem 3.3], [45,
Lemma 5.3, the arxiv version]). If a plane curve has a reduced conductor
over a singular point, then the singularity is nodal. So D has only normal
crossing singularities in codimension one.

We now apply [26, Lemma 3.8] to show the vanishing of the Chern classes.

Proposition 10.3. Let X be a normal projective variety which is of dimension
n ≥ 2 and smooth in codimension 2, and D ⊂ X a reduced divisor. Suppose
f : X → X is an int-amplified endomorphism such that f−1(D) = D and
f |X\D : X\D → X\D is quasi-étale. Let H be an ample divisor on X. Then

c1(Ω̂
1
X(logD)) ·Hn−1 = c1(Ω̂

1
X(logD))2 ·Hn−2 = c2(Ω̂

1
X(logD)) ·Hn−2 = 0.

Proof. Let the open set U be as in Proposition 10.2. Then f |f−1(U)\D is étale,
since f |X\D is quasi-étale and by the purity of branch loci.

There is a natural morphism ϕ : f∗Ω̂1
X(logD) → Ω̂1

X(logD) and ϕ|f−1(U) is an
isomorphism. So for 1 ≤ i ≤ 2, we have

f∗ci(Ω̂
1
X(logD)) = ci(f

∗Ω̂1
X(logD)) = ci(Ω̂

1
X(logD)).

Then the projection formula implies

ci(Ω̂
1
X(logD)) ·Hn−i = ci(Ω̂

1
X(logD) · (f t)∗(Hn−i)/(deg f)t

for any t > 0. By [26, Lemma 3.8], ci(Ω̂
1
X(logD)) · Hn−i = 0. The proof for

c1(Ω̂
1
X(logD))2 ·Hn−2 = 0, is similar.

Lemma 10.4. Let f : X → X be a surjective endomorphism of a projective
variety X. Suppose f∗|N1(X) is diagonalizable with positive integral eigenvalues
q ≥ p, and no other eigenvalues. Let H be an ample Cartier divisor. Then
H = A+B for some nef Q-Cartier divisors A and B such that f∗A ≡ pA and
f∗B ≡ qB.

Proof. If p = q, then f∗|N1(X) = q id and we may take A = H and B =

0. Assume q > p. Let ϕ := f∗|N1(X). Let A = lim
i→+∞

piϕ−i(H) and B =

lim
i→+∞

ϕi(H)/qi. Since ϕ is diagonalizable with only integral eigenvalues p and

q, the above limits are Q-Cartier and H = A + B. It is clear that ϕ(A) = pA
and ϕ(B) = qB. Note that A and B are limits of ample divisors. So A and B
are nef.
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We are not able to show the slope semistability for the general int-amplified
case. However, the following case is enough for us to rule out Case TIR3 in the
proof of Theorem 1.11.

Proposition 10.5. Let X be a normal projective variety of dimension n ≥
2, and D ⊂ X a reduced divisor. Suppose f : X → X is an int-amplified
endomorphism such that f−1(D) = D and f |X\D : X\D → X\D is quasi-
étale. Suppose further that f∗|N1(X) is diagonalizable with one or two positive
integral eigenvalues and no other eigenvalues. Let H be an ample divisor on X.
Then Ω̂1

X(logD) is H-slope semistable.

Proof. By Lemma 10.4, we can write H = A + B where A and B are nef
Q-Cartier divisors such that f∗A ≡ pA and f∗B ≡ qB. We may assume
q ≥ p > 1 (cf. [26, Theorem 1.1]). Let F ⊂ Ω̂1

X(logD) be the maximal
destabilizing subsheaf with respect to H . Then:

µH(F) =
c1(F) ·Hn−1

rankF
=

n−1∑

i=0

(
n− 1

i

)
c1(F) · Ai · Bn−1−i

rankF

=

n−1∑

i=0

(
n− 1

i

)
µAi·Bn−1−i(F).

Suppose the contrary that µH(F) > µH(Ω̂1
X(logD)) = 0 (cf. Proposition 10.3).

Then µAi·Bn−1−i(F) > 0 for some i. In particular, Ai · Bn−1−i 6≡w 0. Since
f∗|N1(X) is diagonalizable, A

i ·Bn−1−i ·C 6= 0 for some Cartier divisor C with
f∗C ≡ aC. Here a = p, or q, so a > 1. By the projection formula, we have

(deg f)Ai ·Bn−1−i ·C = (f∗A)i ·(f∗B)n−1−i ·f∗C = (piqn−1−ia)Ai ·Bn−1−i ·C.

Therefore, we have deg f/piqn−1−i = a > 1. Since A and B are nef, we have

s = sup{µAi·Bn−1−i(F) | F ⊂ Ω̂1
X(logD)} < ∞.

Then for some k ≫ 1 and g := fk, we have

µAi·Bn−1−i(g∗F) = (deg f/piqn−1−i)kµAi·Bn−1−i(F) = akµAi·Bn−1−i(F) > s.

Let the open set U be as in Proposition 10.2. Let j : g−1(U) →֒ X be
the inclusion map and let G := j∗((g

∗F)|g−1(U)). Then µAi·Bn−1−i(G) =
µAi·Bn−1−i(g∗F) > s. Note that (g∗F)|g−1(U) is a subsheaf of the locally free

sheaf (g∗Ω̂1
X(logD))|g−1(U)

∼= Ω̂1
X(logD)|g−1(U). Since codim(X\g−1(U)) ≥ 2

and j∗ is left exact, G is a coherent subsheaf of Ω̂1
X(logD) . So we get a

contradiction.

With the preparation done, we have the following criterion of toric pairs.
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Theorem 10.6. Let X be a rationally connected smooth projective variety and
D ⊂ X a reduced divisor. Suppose f : X → X is an int-amplified endo-
morphism such that f−1(D) = D and f |X\D : X\D → X\D is quasi-étale.
Suppose further f∗|N1(X) is diagonalizable with one or two positive integral
eigenvalues, and no other eigenvalues. Then (X,D) is a toric pair.

Proof. By the assumption, KX+D = f∗(KX+D); it is zero in N1(X) since f is
int-amplified and hence all eigenvalues of f∗|N1(X) are of modulus > 1 (cf. [26,
Theorem 1.1]). So KX +D ∼ 0, because X is simply connected, and hence has
no non-trivial torsion line bundle (cf. [6, Corollary 4.18]). This relation also
implies (X,D) is a toric pair when dim(X) = 1.
Assume now dim(X) ≥ 2. By Propositions 10.3, 10.5 and [12, Theorem 1.20],
Ω̂1

X(logD) is free. In particular, h0(X, Ω̂1
X(logD) = dim(X). Note that

h1(X,OX) = 0. By [29, Theorem 4.5], the complexity c(X,D) ≤ 0 and
hence (X,D) is a toric pair by [3, Theorem 1.2] (cf. [29, Theorem 4.3 and
Remark 4.4]).

Proposition 10.7. Let f : X → X be an int-amplified endomorphism of a
rationally connected smooth projective variety X with totally invariant ramifi-
cation, i.e., f−1(SuppRf ) = SuppRf . Suppose X admits some MMP

X = X1 99K · · · 99K Xr → Y = P1

where Xi 99K Xi+1 is birational and π : Xr → Y is a Fano contraction. Then
we have:

(1) Replacing f by a positive power, f∗|N1(X) is diagonalizable with one or
two positive integral eigenvalues, and no other eigenvalues; f descends to
int-amplified endomorphism fi of Xi (i ≤ r), and each fi still has totally
invariant ramification.

(2) (Xi, SuppRfi) is a toric pair for each i ≤ r.

(3) KSC holds for any surjective endomorphism of Xi.

Proof. By [26, Theorems 1.10 and 1.11], replacing f by a positive power, this
MMP is f -equivariant, f∗|N1(X) is diagonalizable with all the eigenvalues being
integers greater than 1, and all fi := f |Xi

and g := f |Y are still int-amplified.
Let τ : X 99K Xr be the composition.
Let W be the graph of τ and let p1 : W → X and p2 : W → Xr be the two
projections. Then f lifts equivariantly to a surjective endomorphism h : W →
W . Let E be an exceptional prime divisor of τ . Write f∗E = aE for some
a > 0. Then h∗EW = aEW where EW is the strict transform of E in W .
If π ◦ p2(EW ) is a closed point y of Y , then EW is contained in the support of
Wy := p∗2π

∗(y). Since h∗Wy = δgWy , we have a = δg.
Suppose π ◦p2(EW ) = Y . Since g is polarized, the set Per(g) of periodic points
is Zariski dense in Y by [9, Theorem 5.1]. Then h(FW ) = FW for some (irre-
ducible) general fiber FW of π◦p2, after replacing f (and h) by positive powers.
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Denote by F := p1(FW ) and Fr := p2(FW ). Clearly, p1|FW
and p2|FW

are bi-
rational morphisms and Fr is also a general fibre of π. Since E dominates Y ,
we have F ∩ E 6= ∅ and hence E|F is an effective Q-Cartier divisor which is
not numerically trivial. Note that f∗

rHr ≡ qHr for some π-ample Cartier divi-
sor Hr and integer q > 0. Then Hr|Fr

is ample and (fr|Fr
)∗Hr|Fr

≡ qHr|Fr
.

Since fr is int-amplified, q > 1 (cf. [26, Lemma 3.5, Theorem 1.1]). So fr|Fr

is q-polarized and hence so is f |F ; see [28, Proposition 1.1 and Corollary 3.12].
Since (f |F )∗E|F = aE|F and E|F 6≡ 0, we have a = q (cf. [45, Lemma 2.4] or
[28, Proposition 2.9]).

Thus f∗|N1(X) has positive integral eigenvalues δg and q, and no other eigen-
values. (1) is proved. Indeed, Rfi is the (birational image) of Rf and
f−1
i (SuppRfi) = SuppRfi holds for i = 1 and hence for all i.

By (1) and Theorem 10.6, (Xi, SuppRfi) is a toric pair for i = 1, and hence
for all i ≤ r. Indeed, let T be the big torus acting on X . Then the MMP is
T -equivariant, and T stabilizes SuppRfi for i = 1 and hence for all i. (2) is
proved.

Since a toric variety is of Fano type, (3) follows from (2) and [22, Corollary 4.2].

Proof of Theorem 1.11. By [30, Theorem 1.4], we have the following finite se-
quence of G-equivariant MMP for some submonoid G ≤ SEnd(X) of finite
index

X = X1 99K · · · 99K Xi 99K Xi+1 99K · · ·Xr → Y 99K · · ·

where Xi 99K Xi+1 is birational and π : Xr → Y is a Fano contraction. More-
over, G∗|NSQ(X) is commutative and Q-diagonalizable. Let f be a surjective
endomorphism of X . Replacing f by a positive power, we may assume f ∈ G.
By Proposition 9.2 (cf. Theorem 1.7 and its proof), it suffices to show that
fr := f |Xr

: Xr → Xr does not satisfy Case TIR3.

Suppose the contrary. Then dim(Y ) = 1, and Y ∼= P1 since X is ratio-
nally connected. By the assumption, G contains (a positive power of) an
int-amplified endomorphism I : X → X . Note that δf = δfr > δf |Y and
G∗|NSQ(X) is commutative and diagonalizable. Note also that all the eigenval-
ues of I∗|NSQ(X) are greater than 1. Then it is possible for us to take k ≫ 1

such that δfk◦I ≥ (δf )
k > (δf |Y )

k · δI|Y ≥ δ(fk◦I)|Y . Moreover, all the eigen-

values of (fk ◦ I)∗|NSQ(X) are greater than 1 (cf. [30, Theorem 1.4(2)]). In

particular, replacing f by fk ◦ I, we may assume f is also int-amplified and fr
still satisfies Case TIR3 (here k ≫ 1 is used to make sure δfr > δfr |Y still holds
after replacement). By Theorem 6.2, fr and hence f have totally invariant
ramification (the MMP being G-equivariant). By Proposition 10.7, Xr is toric,
contradicting the assumption κ(Xr,−KXr

) = 0.
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[4] F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École
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