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Abstract. In the first section of his seminal paper on height pair-
ings, Beilinson constructed an ℓ-adic height pairing for rational Chow
groups of homologically trivial cycles of complementary codimension
on smooth proper varieties over the function field of a curve over an
algebraically closed field, and asked about a generalization to higher
dimensional bases. In this paper we answer Beilinson’s question by
constructing a pairing for varieties defined over the function field of a
smooth variety B over an algebraically closed field, with values in the
second ℓ-adic cohomology group of B. Over C our pairing is in fact
Q-valued, and in general we speculate about its geometric origin.
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1 Introduction

Let k be an algebraically closed field, B a smooth integral k-scheme of finite
type with function field K = k(B), and X a smooth proper integral K-variety
of dimension d. Fix a prime ℓ invertible in k. For an integer i ≥ 0 we denote
by CHi(X)Q the Chow group of codimension i cycles on X tensored by Q and
by CHi

hom(X)Q the subspace of homologically trivial cycles, i.e. the kernel of
the ℓ-adic étale cycle map

CHi(X)Q → H2i
ét (XK ,Qℓ(i))

where K stands for an algebraic closure of K.
In the first section of his seminal paper [2], Beilinson worked in the case where B
is a smooth proper curve and constructed (unconditionally) an ℓ-adic height
pairing

CHp
hom(X)Q ⊗ CH

q
hom(X)Q → Qℓ (1)
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for p+ q = d+1. This served as a motivation for his (conditional) construction
of the height pairing in the number field case.

In this article we extend Beilinson’s work to a not necessarily proper base B of
arbitrary dimension, solving the problem stated at the end of subsection (1.1)
of [2].

Theorem 1.1. In the situation above and for p+q = d+1 there exists a pairing

CHp
hom(X)Q ⊗ CH

q
hom(X)Q → H2

ét(B,Qℓ(1))

which for a smooth proper B of dimension 1 coincides with Beilinson’s pair-
ing (1) after composing with the trace isomorphism H2

ét(B,Qℓ(1))
∼
→ Qℓ of

Poincaré duality.

There is also a similar pairing in the case where k is algebraic over a finite
field instead of being algebrically closed.

The proof of the theorem is based on Beilinson’s original philosophy. In Sec-
tion 2 we construct a cohomological pairing on the ‘perverse parts’ of those
cohomology groups that contain classes of the relevant homologically trivial
cycles. These perverse parts, to be defined precisely in Section 2, are the
analogues over a higher dimensional base of the image of compact support co-
homology in usual cohomology used by Beilinson over curves. Then we prove
that the cycle classes actually lie in the perverse part. We offer two methods
for this, in Sections 3 to 5. The first one starts with the finite field case where
weight arguments can be invoked, and then applies a specialization argument.
The second one relies on the decomposition theorem for perverse sheaves of
geometric origin but not on weight arguments.

Our proof based on the decomposition theorem works equally well for singular
cohomology when k = C. In this case we obtain a result with Q-coefficients
whose proof will be sketched at the end of Section 5:

Theorem 1.2. Assume k = C. For p + q = d + 1 there exists a pairing with
values in Betti cohomology

CHp
hom(X)Q ⊗ CH

q
hom(X)Q → H2(B(C),Q(1))

which composed with the natural map H2(B(C),Q(1)) → H2
ét(B,Qℓ(1)) coin-

cides with the pairing of Theorem 1.1.

We conjecture that our pairing is of motivic origin:

Conjecture 1.3. The pairing of Theorem 1.1 comes from a pairing

CHp
hom(X)Q ⊗ CH

q
hom(X)Q → Pic(B)Q

followed by the cycle map.
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In Section 6 we prove the conjecture under the strong assumption that X
extends to a smooth proper B-scheme. This is done using a simple construction
involving the intersection product. In the bad reduction case there is some
evidence for the conjecture when X is an abelian variety: the construction of
Moret-Bailly ([17], §III.3) gives the required pairing in the case p = 1, in fact
over an arbitrary field k and only assuming B to be normal.
In the case of a projective B of dimension b we expect that the pairings of
Conjecture 1.3 yield non-degenerate pairings after composing with the degree
map Pic(B)Q → Q associated with a fixed ample line bundle L on B (i.e.
the map obtained by intersecting a class in Pic(B)Q ∼= CHb−1(B)Q with the
(b− 1)-st power of the class of L in CHb−1(B)Q and then taking the degree of
the resulting zero-cycle class).
Furthermore, we expect pairings as in Conjecture 1.3 to exist over an arbitrary
perfect field but at the moment we are not able to construct their cohomological
realization in this more general setting. However, we offer an Arakelovian
counterpart of the conjecture in Section 7 below.
Inspired by a lecture on a preliminary version of this note, Bruno Kahn [14] has
defined a certain subgroup CHp(X)(0) ⊂ CHp(X) and constructed a pairing

CHp(X)
(0)
Q ⊗ CH

q
hom(X)

(0)
Q → Pic(B)Q

purely by cycle-theoretic manipulations, over an arbitrary perfect field. He
conjectures that his subgroup CHp(X)(0) is in fact the subgroup of numerically
trivial cycles and therefore contains CHp

hom(X). This is strong evidence in
support of our conjecture.
We thank Bruno Kahn and Klaus Künnemann for very helpful discussions and
the referee for pertinent suggestions. A preliminary version of Kahn’s paper
[14] was also useful when writing up the details of the proof of Proposition 6.1
below.

A word on conventions: Except for the last section, by ‘variety’ we shall always
mean an integral separated scheme of finite type over a field. When working
with perverse sheaves in the ℓ-adic setting we shall use Qℓ-coefficients instead
ofQℓ-coefficients in order to remain in line with Beilinson’s original setup. This
is justified by ([3], Remark 5.3.10 and the remarks in 4.0).

2 The cohomological pairing

We keep the notation from the introduction, except that the base field k is
allowed to be an arbitrary perfect field. We spread out the morphism X →
SpecK to a smooth proper morphism π : X → U for a suitable affine open
subscheme U ⊂ B, and denote by j the inclusion map U → B. This section is
devoted to the construction of a pairing

H1−b
ét (B, j!∗R

2p−1π∗Qℓ(p)[b])×H
1−b
ét (B, j!∗R

2q−1π∗Qℓ(q)[b])→ H2
ét(B,Qℓ(1))

(2)
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where b := dimB = dimU and j!∗ is, as usual, the intermediate exten-
sion functor familiar from the theory of perverse sheaves (notice that since
R2p−1π∗Qℓ(p) is locally free on U , its shift by b is a perverse sheaf on U).
We proceed in two steps.

Step 1. Assume given a lisse sheaf F on an open subscheme j : U →֒ B.
Consider the duality pairing

F [b]⊗L RHom(F [b],Qℓ(b)[2b])→ Qℓ(b)[2b].

Such a pairing corresponds to a morphism

F [b]→ D(RHom(F [b],Qℓ(b)[2b]))

in Db(U,Qℓ), where D is the dualizing functor corresponding to the dualizing
complex Qℓ(b)[2b] on U . Since j!∗Qℓ(b)[2b] = Qℓ(b)[2b] by smoothness of B
and the intermediate extension functor j!∗ is interchangeable with D (see [15],
Corollary III.5.3), applying j!∗ gives a map

j!∗F [b]→ D(j!∗RHom(F [b],Qℓ(b)[2b])),

whence finally a duality pairing of perverse sheaves

j!∗F [b]⊗
L j!∗RHom(F [b],Qℓ(b)[2b])→ Qℓ(b)[2b].

Step 2. We apply the above to F := R2p−1π∗Qℓ. In this case fibrewise Poincaré
duality gives RHom(R2p−1π∗Qℓ,Qℓ) ∼= R2q−1π∗Qℓ(d) with our convention
p+ q = d+ 1, so that

RHom(R2p−1π∗Qℓ[b],Qℓ(b)[2b]) ∼= R2q−1π∗Qℓ(b+ d)[b].

Plugging this into the pairing of Step 1 we obtain a pairing

j!∗R
2p−1π∗Qℓ[b]⊗

L j!∗R
2q−1π∗Qℓ(b+ d)[b]→ Qℓ(b)[2b]

and, after twisting by Qℓ(p+ q − d− b) = Qℓ(1 − b), a pairing

j!∗R
2p−1π∗Qℓ(p)[b]⊗

L j!∗R
2q−1π∗Qℓ(q)[b]→ Qℓ(1)[2b]

in the bounded derived category of Qℓ-sheaves on B. Passing to cohomology,
we finally obtain the announced pairing (2).

In dimension 1, the groups in the arguments of the pairing (2) are those con-
sidered in Lemma 1.1.1 of [2]. Note that there are morphisms

H1−b
ét (B, j!∗R

2p−1π∗Qℓ(p)[b])→ H1
ét(U,R

2p−1π∗Qℓ(p)) (3)

and
H1−b

ét (B, j!∗R
2q−1π∗Qℓ(q)[b])→ H1

ét(U,R
2q−1π∗Qℓ(q)) (4)

induced by the natural map from j!∗ to Rj∗. We now prove that, again in
accordance with the dimension 1 case, these maps are in fact injective. This
will be a special case of the following more general statement.
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Proposition 2.1. For a perverse sheaf F on U the natural map

H1−b
ét (B, j!∗F)→ H1−b

ét (B,Rj∗F) (5)

is injective.

The proof of the proposition is based on a vanishing lemma. If i is the inclusion
map of the closed complement Z of U in X , set

G := i∗
pτ≥0i

∗Rj∗F (6)

where pτ≥0 denotes, as usual, the perverse truncation functor. Since j!∗F
and Rj∗F are perverse sheaves (the first by definition, the second by [15],
Corollary III.6.2), so is G. Recall (e.g. from [15], Lemma III.5.1) that G sits in
a distinguished triangle

j!∗F → Rj∗F → G → j!∗F [1]. (7)

Lemma 2.2. With notation as above, we have

Hc
ét(B,G) = 0

for all c < −b+ 1, where b = dimB as before.

Proof. The complex pτ≥0i
∗Rj∗F lives on the closed subscheme Z which is of

dimension at most b−1. Thus by ([15], Lemma III.5.13) its cohomology sheaves
are zero in degrees < −b + 1. Since i∗ is an exact functor, the cohomology
sheavesHt(G) also vanish for t < −b+1. Thus in the hypercohomology spectral
sequence

Est
2 = Hs

ét(B,H
t(G))⇒ Hs+t

ét (B,G)

the terms Est
2 are 0 for s < 0 or t < −b+ 1, hence for s+ t < −b+ 1.

Proof of Proposition 2.1. The distinguished triangle (7) induces an exact se-
quence of cohomology groups

H−b
ét (B,G)→ H1−b

ét (B, j!∗F)→ H1−b
ét (B,Rj∗F)

where the first term vanishes by the lemma.

The strategy of the proof of Theorem 1.1 is now as follows. Consider a homo-
logically trivial cycle class αp ∈ CHp

hom(X)Q. Extending a representative z of
αp to a cycle zU on a model π : X → U of X over U sufficiently small, we
obtain a cohomology class cl(zU ) ∈ H2p

ét (X ,Qℓ(p)). Since z is homologically
trivial, the proper smooth base change theorem implies that the image of cl(zU )
in H2p

ét (Xx,Qℓ(p)) is trivial for every geometric point x of U . Thus it is in the
kernel of the natural map

H2p
ét (X ,Qℓ(p))→ H0

ét(U,R
2pπ∗Qℓ(p)), (8)
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whence a class αp
U ∈ H

1
ét(U,R

2p−1π∗Qℓ(p)). Similarly, each αq ∈ CHq
hom(X)Q

has a representative αq
U ∈ H

1
ét(U,R

2q−1π∗Qℓ(q)) for U ⊂ B sufficiently small.

For later use we spell this out in more detail. Noting that

H2p
ét (X ,Qℓ(p)) ∼= H2p

ét (U,Rπ∗Qℓ(p)) ∼= H2p
ét (U, τ≤2pRπ∗Qℓ(p))

where τ≤ denotes the sophisticated truncation functor on Db(U,Qℓ), the dis-
tinguished triangle

τ≤2p−1Rπ∗Qℓ(p)→ τ≤2pRπ∗Qℓ(p) → R2pπ∗Qℓ(p)[−2p]→

→ τ≤2p−1Rπ∗Qℓ(p)[1]

identifies the kernel of (8) with H2p
ét (U, τ≤2p−1Rπ∗Qℓ(p)), which gives

rise to the class αp
U by applying the natural map τ≤2p−1Rπ∗Qℓ(p) →

R2p−1π∗Qℓ(p)[−2p+ 1].

In view of the injectivity of the maps (3) and (4) proven in Proposition 2.1 the
following statement makes sense.

Proposition 2.3. Assume k is algebraically closed or algebraic over a finite
field.

The classes αp
U and αq

U lie in the subgroups

H1−b
ét (B, j!∗R

2p−1π∗Qℓ(p)[b]) ⊂ H
1
ét(U,R

2p−1π∗Qℓ(p))

and

H1−b
ét (B, j!∗R

2q−1π∗Qℓ(q)[b]) ⊂ H
1
ét(U,R

2q−1π∗Qℓ(q)),

respectively.

Theorem 1.1 immediately follows from this proposition by applying the pairing
(2) to the classes αp

U and αq
U ; by a standard argument the resulting class in

H2
ét(B,Qℓ(1)) only depends on the classes αp and αq.

In the case of a finite base field we’ll see in the next section using a weight
argument that the maps (3) and (4) are in fact isomorphisms, so Proposition 2.3
will be obvious for k algebraic over a finite field. We shall offer two proofs of
Proposition 2.3 over algebraically closed fields. The first one, given in the
next two sections, will proceed by reduction to the finite field case using a
specialization argument. The second one will use the decomposition theorem
for perverse sheaves. Note that the proof of this theorem in [3] also proceeds
by a specialization argument and weight arguments over a finite base field,
so one may argue that the two arguments are not very different. However,
over C there are other proofs of the decomposition theorem that avoid weight
arguments (see [5], [18]) and therefore, combined with a base change argument
as in Lemma 4.3 below, we do obtain a different proof in characteristic 0.
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3 Proof of 2.3 over finite fields

In this section we first consider the case of a finite base field k. We begin
with a statement on weights. Needless to say, its proof is based on Deligne’s
fundamental results [10] on the Weil conjecture which we cite through ([3],
(5.1.14)).

Lemma 3.1. Assume that k is a finite field, and F is a pure perverse sheaf
on U of weight w. Consider the base change B of B to the algebraic closure k,
and the pullback G of the sheaf G defined in (6) to B.
The group H1−b

ét (B,G) has weights > w + 1− b.

Proof. In the distinguished triangle (7) introduced before Lemma 2.2 the per-
verse sheaf j!∗F is pure of weight w by ([3], Corollaire 5.4.3) and Rj∗F is
mixed of weights ≥ w by ([3], (5.1.14)). This last reference also gives that
Rj!F is mixed of weights ≤ w. Since by ([15], Corollary III.5.8) we have
j!∗F ∼= Im(pH0Rj!F →

pH0Rj∗F), we obtain (after shifting and using [3],
5.4.1) that the weight w part of Rj∗F is exactly the image of j!∗F in the
exact triangle (7). Therefore G is mixed of weights > w and the statement
follows by applying again ([3], (5.1.14)), this time to the structural morphism
B → Spec (k).

We are now able to prove:

Proposition 3.2. When the base field k is finite, the maps (3) and (4) defined
in the previous section are isomorphisms.

Proof. Applying Proposition 2.1 to the perverse sheaves F=R2p−1π∗Qℓ(p)[b]
and F = R2q−1π∗Qℓ(q)[b], respectively, we obtain that the maps in question
are injective. We prove surjectivity for (3), the other case being similar. The
map in question sits in the exact sequence

0→ H1−b
ét (B, j!∗R

2p−1π∗Qℓ(p)[b])→ H1
ét(U,R

2p−1π∗Qℓ(p))→ H1−b(B,G)

with G defined as in (6). We show that the last group here vanishes. Applying
Lemma 3.1 with F = R2p−1π∗Qℓ(p)[b] we obtain that H1−b

ét (B,G) has nonzero
weights (note that w = b − 1 in this case); in particular, the invariants of
Frobenius are trivial. On the other hand, we know from Lemma 2.2 (applied
over k) that H−b

ét (B,G) = 0. Therefore the Hochschild–Serre sequence

H1(k,H−b
ét (B,G))→ H1−b(B,G)→ H0(k,H1−b

ét (B,G))

shows that H1−b(B,G) = 0, as claimed.

Corollary 3.3. Proposition 2.3 holds when k is algebraic over a finite field.

Proof. The case when k is finite is immediate from the previous proposition.
Otherwise, a class αp

U ∈ H1
ét(U,R

2p−1π∗Qℓ(p)) as in Proposition 2.3 always
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comes from a class in some cohomology group H1
ét(U0,R

2p−1π0∗Qℓ(p)) where
k0 ⊂ k is a large enough finite field over which U , π and αp

U are defined and U
(resp. π) arise by base change from U0 (resp. π0). Now apply the finite field
case.

4 Proof of 2.3 via specialization

We now turn to arbitrary algebraically closed fields. Suppose k0 is an alge-
braically closed field, K0 is the function field of a smooth k0-variety B0, and
X0 is a smooth proper K0-variety that extends to a smooth proper morphism
π0 : X0 → U0 over an affine open subscheme U0 ⊂ B0. As in §6 of [3], we
may spread out the situation over the spectrum of a finite type Z-subalgebra
A ⊂ k0 to an affine open immersion jA : UA → BA and a smooth proper
morphism πA : XA → UA. Given a finite collection F1, . . . ,Fr of constructible
sheaves of Z/ℓZ-modules on XA (with ℓ invertible on A) and another collection
G1, . . . ,Gs on BA, we may find a dense open subscheme S ⊂ Spec (A) such that
the higher direct image sheaves RqπS∗(Fi|XS

) and RqjS∗(Gj |XS
) on BS are all

constructible and commute with any base change S′ → S. This follows from the
generic constructibility and base change theorem of Deligne ([9], Th. finitude,
Theorem 1.9 or [6], Theorem 9.3.1). Now as on ([3], p. 156) we find a strictly
henselian discrete valuation ring R with residue field the algebraic closure F of
a finite field and dominating the localization of A at a closed point contained
in S. Base changing from A to R we obtain morphisms jR : UR → BR and
πR : XR → UR. Denoting by k̃ an algebraic closure of the fraction field of R we
may base change the situation to obtain morphisms j̃ : Ũ → B̃ and π̃ : X̃ → Ũ
of k̃-schemes.
We may summarize the geometric situation introduced so far by the diagram
of schemes

X0 −−−−→ X0 −−−−→ XA ←−−−− XR ←−−−− X̃
y

yπ0

yπA

yπR

yπ̃

SpecK0 −−−−→ U0 −−−−→ UA ←−−−− UR ←−−−− Ũ
y

y
y

y
y

Spec k0
=

−−−−→ Spec k0 −−−−→ SpecA ←−−−− SpecR ←−−−− Spec k̃

where the squares in the right half of the diagram are cartesian. We also have
spreading outs and base changes for B0 given by

SpecK0 ←−−−− B0 −−−−→ BA ←−−−− BR ←−−−− B̃

with each incarnation of B containing the corresponding U as an open sub-
scheme. Finally, base changing the morphisms jR : UR→ BR and πR : XR→ UR

to the closed point of Spec (R) we obtain a situation with two morphisms
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j : U → B and π : X → U over the algebraic closure of a finite field as in the
previous section.
Now assume that X0, U0 and B0 are all equipped with stratifications TX0

,
TU0

, TB0
with smooth geometrically connected strata and for each stratum

Z of any of these stratifications we are given a finite collection LZ of locally
constant irreducible sheaves of Z/ℓZ-modules satisfying conditions (a)–(c) in
([3], 2.2.10). We can then consider, as in ([3], 6.1.8), the full subcategory
Db

T ,L(X0,Qℓ) ⊂ D
b
c(X0,Qℓ) of objects represented by a complex of Zℓ-sheaves

whose reduction mod ℓ has cohomology sheaves which, when restricted to
any stratum Z of TX0

, are locally constant and are iterated extensions of ob-
jects in LZ . We also consider the analogous subcategories Db

T ,L(U0,Qℓ) and

Db
T ,L(B0,Qℓ) for U0 and B0, respectively, and assume that the stratifications

are fine enough so that the functors Rj0∗ and Rπ0∗ send the corresponding
subcategories to each other. Now as in ([3], 6.1.8), after changing A and S if
necessary we may spread out the additional data over A such that the base
change properties hold for cohomology sheaves of objects of the various cate-
gories Db

T ,L. Moreover, after base changing to the generic and special fibres of
a well-chosen R as above we obtain equivalences of triangulated categories

Db
T ,L(X̃ ,Qℓ)↔ Db

T ,L(XR,Qℓ)↔ Db
T ,L(X ,Qℓ) (9)

and similarly for UR and BR as in ([3], lemma 6.1.9). In addition, we
may choose the stratifications so that these equivalences are compatible via
the functors RjR∗ and RπR∗ and their base changes, and are preserved by
Grothendieck’s six operations with respect to the maps jR and πR. This latter
fact is explained on ([3], p. 154).
The equivalences in (9) are induced by natural pullback maps u∗X :

Db
T ,L(XR,Qℓ) → Db

T ,L(X̃ ,Qℓ) and i∗X : Db
T ,L(XR,Qℓ) → Db

T ,L(X ,Qℓ). Fix-

ing a quasi-inverse (u∗X )
−1

for u∗X and composing with i∗X we obtain a special-
ization map

spX = i∗X (u∗X )
−1

: Db
T ,L(X̃ ,Qℓ)→ Db

T ,L(X ,Qℓ).

Choosing quasi-inverses (u∗U )
−1

and (u∗B)
−1

compatibly we also get specializa-
tion maps spU and spB. Up to modifying A and S one last time if necessary,
we may assume that these specialization maps respect the perverse t-structures
restricted to the subcategories above. This is again a consequence of the generic
base change theorem, as explained on ([3], p. 154).

Lemma 4.1. Assume F̃ is a perverse sheaf in Db
T ,L(Ũ ,Qℓ). There is a com-

mutative diagram

j∗!spU F̃ −−−−→ Rj∗spU F̃
y

y

spB j̃∗!F̃ −−−−→ spBRj̃∗F̃

of morphisms of perverse sheaves in Db
T ,L(B,Qℓ).
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1680 D. Rössler, T. Szamuely

Proof. Start with the commutative diagrams of morphisms of functors

i∗BRjR! −−−−→ Rj!i
∗
Uy

y

i∗BRjR∗ −−−−→ Rj∗i
∗
U

u∗BRjR! −−−−→ Rj!u
∗
Uy

y

u∗BRjR∗ −−−−→ Rj∗u
∗
U .

(10)

Here the upper rows are base change maps for higher direct image functors with
compact support, the lower rows are base change maps for usual higher direct
images and the vertical maps are forget support maps. Commutativity follows
from the construction of the compact support base change maps as in the proof
of ([6], 7.4.4 (i)). Applying the functor spB = i∗B(u

∗
B)

−1 to the second diagram

on the left, the functor (u∗U )
−1

to both diagrams on the right and splicing the
resulting two diagrams together we obtain the commutative diagram

Rj!spU −−−−→ Rj∗spU
x

x

i∗BRjR!(u
∗
U )

−1
−−−−→ i∗BRjR∗(u

∗
U )

−1

y
y

spBRj̃! −−−−→ spBRj̃∗.

Now the horizontal arrows of the first diagram of (10) are isomorphisms be-
cause, as noted above, the equivalences induced by the functors i∗U and i∗B are
compatible with the functors Rj∗ and Rj! (this, of course, ultimately boils
down to Deligne’s generic base change theorem). Hence we may invert the
upper vertical arrows in the above diagram and obtain a commutative diagram
of functors:

Rj!spU −−−−→ Rj∗spU
y

y

spBRj̃! −−−−→ spBRj̃∗

(11)

Now given a perverse sheaf F̃ in Db
T ,L(Ũ ,Qℓ), the specialization spUF is

again perverse as noted above, and perversity is also preserved by the func-
tors Rj̃∗ and Rj̃! ([15], Corollary III.6.2). Recalling that by definition

j̃!∗F̃ ∼= Im(pH0(Rj̃!F̃) →
pH0(Rj̃∗F̃)) and similarly for j!∗spUF , we see that

the diagram induces a map

j!∗spUF → spB j̃!∗F̃

using again that perversity is preserved under specialization. This is the left
vertical map of the diagram in lemma. The right vertical map the same as in
diagram (11). Finally, recalling that j̃∗j̃!∗F = F , we obtain the horizontal maps
of the diagram of the lemma as an adjunction map and the specialization of an
adjunction map, respectively, and commutativity results from the construction.
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Applying the functor Hq(B, ) to the above diagram we obtain:

Corollary 4.2. In the situation of the lemma set F := spU F̃ . There is a
commutative diagram of cospecialization maps

Hq
ét(B, j!∗F) −−−−→ Hq

ét(U,F)y
y

Hq
ét(B̃, j̃!∗F̃) −−−−→ Hq

ét(Ũ , F̃)

for all q ≥ 0.

Now let us return to our original algebraically closed base field k0. The field k̃
constructed above is algebraically closed of the same characteristic, so we may
assume that at least one of the inclusions k0 ⊂ k̃ or k̃ ⊂ k0 holds. We stick to
the first case; the second one is handled similarly.

Lemma 4.3. Assume k0 ⊂ k̃. For every perverse sheaf F0 in Db(U0,Qℓ) there
is a commutative diagram

Hq
ét(B0, j0!∗F0) −−−−→ Hq

ét(U0,F0)

∼=

y
y∼=

Hq
ét(B̃, j̃!∗F̃) −−−−→ Hq

ét(Ũ , F̃)

for all q ≥ 0, where F̃ is the pullback of F0 to Ũ .

Proof. Let e : Spec (k̃) → Spec (k0) be the natural morphism, so that F̃ =
e∗F0. The base change theorem for extensions of algebraically closed fields of
characteristic prime to ℓ (see e.g. [6], Corollary 7.7.3) gives us a commutative
diagram

Hq
ét(B0, j0!∗F0) −−−−→ Hq

ét(U0,F0)

∼=

y
y∼=

Hq
ét(B̃, e

∗j0!∗F0) −−−−→ Hq
ét(Ũ , e

∗F0)

so it remains to identify the groups in the lower left corner. This follows by
a similar, but simpler, argument as in the previous proof: in our construction
the Z-algebra A and the open set S were chosen so that the derived direct im-
age functors (with or without compact support) commute with arbitrary base
change and then the perverse t-structure is also preserved as on ([3], p. 158).
The above argument mutatis mutandis then shows that the intermediate ex-
tension functor also commutes with the base change e∗.

First proof of Proposition 2.3. We return to the situation at the beginning of
this section: k0 is an algebraically closed field, K0 is the function field of a
smooth k0-variety B0, and X0 is a smooth proper K0-variety that extends to a
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smooth proper morphism π : X0 → U0 over an affine open subscheme U0 ⊂ B0.
We moreover take a homologically trivial cycle class αp

0 ∈ CH
p
hom(X0)Q, extend

a representative cycle z0 to a cycle zU0
over U0 (changing U0 if necessary) and

take its cycle class cl(zU0
) ∈ H2p

ét (X0,Qℓ(p)). Now we perform the spreading
out procedure of the beginning of this section in such a way that we spread out
zU0

over A as well (modifying A if necessary), base change it to a cycle zUR
on

XR and pull it back to a cycle zU on the special fibre X . Note that under this
procedure the cycle class cl(zU ) ∈ H

2p
ét (X ,Qℓ(p)) cospecializes to cl(zU0

). This
follows from the contravariant functoriality of the cycle class (usually proven
via comparison with Chern classes as in [16], Corollary V.10.7; note that Milne
works over an algebraically closed field but the argument extends to a general
base using the general theory of Chern classes as found in [12], Exposé VII).
Since αp

0 is homologically trivial, the class cl(zU0
) gives rise to a cohomol-

ogy class αp
U0
∈ H1

ét(U0,R
2p−1π0∗Qℓ(p)) via the truncation procedure re-

called before Proposition 2.3; similarly, cl(zU ) gives rise to a cohomology class
αp
U ∈ H

1
ét(U,R

2p−1π∗Qℓ(p)). Since truncations and pullbacks are compatible,
the two classes correspond under the cospecialization map

H1
ét(U,R

2p−1π∗Qℓ(p))→ H1
ét(Ũ ,R

2p−1π̃∗Qℓ(p)) ∼= H1
ét(U0,R

2p−1π0∗Qℓ(p))

which exists by the generic base change theorem by our choice of the ring R.
Now applying Corollary 4.2 and Lemma 4.3 with F0 = R2p−1π0∗Qℓ(p)[b] and
q = 1− b we obtain a commutative diagram

H1−b
ét (B, j!∗R

2p−1π∗Qℓ(p)[b]) −−−−→ H1
ét(U,R

2p−1π∗Qℓ(p))
y

y

H1−b
ét (B0, j!∗R

2p−1π0∗Qℓ(p)[b]) −−−−→ H1
ét(U0,R

2p−1π0∗Qℓ(p))

where the right vertical cospecialization map sends αp
U to αp

U0
as

noted above. By Corollary 3.3 the class αp
U comes from a class in

H1−b
ét (B, j!∗R

2p−1π∗Qℓ(p)[b]). But then by commutativity of the diagram

αp
U0

comes from H1−b
ét (B0, j!∗R

2p−1π0∗Qℓ(p)[b]), as was to be shown.

5 Proof of 2.3 via decomposition

We begin with a general proposition that may be considered as an ‘absolute’
version of Proposition 2.3. Let again k be a general algebraically closed field
and X a smooth k-variety. Choose an open immersion jX : X →֒ Y with dense
image in a k-variety Y. For what follows only the k-dimension of X will be
relevant; let us denote it by N . Denote furthermore by ICY := jX !∗(Qℓ[N ])
the corresponding intersection complex. Recall that ICY = jV!∗(Qℓ[N ]) for any
other open immersion jV : V →֒ Y with V nonempty and smooth.

Proposition 5.1. The cycle class in H2p
ét (X ,Qℓ(p)) of a codimension p cy-

cle on X lies in the image of the restriction map H2p−N
ét (Y, ICY(p)) →

H2p
ét (X ,Qℓ(p)).
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To prove the proposition, we invoke de Jong’s theorem [8] on alterations to find
a proper and generically étale morphism ψ : W → Y over k such that W is
regular.

Lemma 5.2. The complex ICY identifies with a direct summand of Rψ∗(Qℓ[N ])
in Db(Y,Qℓ).

Proof. By the decomposition theorem ([3], Theorem 6.2.5 together with
note 77, p. 176) the complex Rψ∗(Qℓ[N ]) decomposes as a direct sum of
shifts of simple perverse sheaves. Fix a smooth open subscheme V ⊂ Y such
that the restriction ψV : ψ−1(V)→ V of the alteration is finite étale, and denote
by jV : V → Y the inclusion map. Applying the decomposition theorem to the
perverse sheaf RψV∗(Qℓ[N ]) on V and comparing the two decompositions we
see that jV!∗RψV∗(Qℓ[N ]) is a direct summand of Rψ∗(Qℓ[N ]).
Now since ψV is finite étale, there is a map RψV∗ψ

∗
VQℓ → Qℓ splitting the

adjunction map Qℓ → RψV∗ψ
∗
VQℓ up to multiplication by the degree of ψV

according to the ’méthode de la trace’ (see e.g. Stacks Project, Tag 58.65).
Observing that Qℓ

∼= ψ∗
VQℓ, we may thus identify Qℓ with a direct summand of

RψV∗Qℓ, whence ICY = jV!∗(Qℓ[N ]) is a direct summand of jV!∗RψV∗(Qℓ[N ]).
Putting this together with the previous paragraph we obtain the statement of
the lemma.

Proof of Proposition 5.1. Let c be a cycle class in H2p
ét (X ,Qℓ(p)), and let

c1 be its image in H2p
ét (ψ

−1(X ),Qℓ(p)). Let c2 be an extension of c1 to

H2p
ét (W ,Qℓ(p)) (one obtains such an extension by taking the Zariski closure

in W of a representative of c1). Now let

λ : Rψ∗(Qℓ(p)[N ])→ ICY(p)

be the projection map obtained from Lemma 5.2 after twisting by p. Passing
to cohomology over Y we obtain a map

ρ : H2p−N
ét (Y,Rψ∗(Qℓ(p)[N ]))→ H2p−N

ét (Y, ICY(p))

whose source may be identified with H2p−N
ét (W ,Qℓ(p)[N ]). By restricting

over X we obtain a commutative diagram

H2p−N
ét (W ,Qℓ(p)[N ])

ρ
−−−−→ H2p−N

ét (Y, ICY(p))

j∗
X

y
yj∗

X

H2p−N
ét (ψ−1(X ),Qℓ(p)[N ])

ρX

−−−−→ H2p−N
ét (X ,Qℓ(p)[N ])

Now consider the pullback map

ψ∗
X : H2p−N

ét (X ,Qℓ(p)[N ])→ H2p−N
ét (X ,RψX∗Qℓ(p)[N ]) ∼=

∼= H2p−N
ét (ψ−1(X ),Qℓ(p)[N ])
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where the first map is induced by the adjunction map Qℓ(p)[N ] →
RψX∗(Qℓ(p)[N ]) and ψX is the restriction of ψ above X . The composite map

ρX ◦ ψ
∗
X : H2p−N

ét (X ,Qℓ(p)[N ])→ H2p−N
ét (X ,Qℓ(p)[N ])

is induced by a map Qℓ(p)[N ] → Qℓ(p)[N ] in Db(X ,Qℓ) which is nonzero
because so is its restriction to X ∩ V where V is as in the previous lemma
(indeed, above X ∩V it is multiplication by the degree of ψV by the ‘méthode de
la trace’ used above). This map comes, after shifting and twisting, from a map
Qℓ → Qℓ of constant sheaves. Since X is integral, there is only one such map
up to scaling. It follows that c1 = ψ∗

X (c) maps to a nonzero constant multiple of
c by ρX . Since we also have c1 = j∗X (c2), by commutativity of the diagram we

obtain that c is in the image of the right vertical map j∗X : H2p−N
ét (Y, ICY(p))→

H2p−N
ét (X ,Qℓ,X (p)[N ]), which is what we wanted to prove.

Second proof of Proposition 2.3. Suppose now Y = XB for a relative compact-
ification πB : XB → B of π : X → U , so that we have a commutative pullback
diagram

X
jX

−−−−→ XB

π

y
yπB

U
j

−−−−→ B.

Consider the intersection complex ICXB = jX !∗Qℓ[d + b] on XB. We have an
adjunction map

ICXB(p)→ RjX∗j
∗
X ICXB (p) ∼= RjX∗Qℓ[d+ b](p). (12)

Applying the functor RπB
∗ and using the diagram above we obtain a map

RπB
∗ ICXB(p)→ RπB

∗ (RjX∗Qℓ[d+ b](p)) ∼= Rj∗(Rπ∗Qℓ[d+ b](p)). (13)

By the decomposition theorem the complex RπB
∗ ICXB (p) in Db(B,Qℓ) is the

direct sum of shifts of its perverse cohomology sheaves pRiπB
∗ ICXB (p). Re-

stricting over U we obtain the decomposition of the complex Rπ∗Qℓ[d+ b](p)
as the direct sum of shifts of its cohomology sheaves Riπ∗Qℓ[d+ b](p). So the
map above decomposes as a direct sum of the maps

pRiπB
∗ ICXB(p)[−i]→ Rj∗(R

iπ∗Qℓ[d+ b](p))[−i].

The map induced by the adjunction map (12) on the (2p−d−b)-th cohomology
of XB is of the form

H2p−d−b(XB , ICXB(p))→ H2p(X ,Qℓ(p)).

Using the map (13) we may identify it with a map

H2p−d−b(B,RπB
∗ ICXB(p))→ H2p(U,Rπ∗Qℓ(p))
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which thus decomposes as a direct sum of maps

H2p−d−b−i(B, pRiπB
∗ ICXB (p))→ H2p−i(U,Riπ∗Qℓ(p)). (14)

Now a cycle class in H2p(X ,Qℓ(p)) comes from a class in
H2p−d−b(XB , ICXB(p)) by Proposition 5.1. Moreover, its projection
to the component H2p−i(U,Riπ∗Qℓ(p)) comes from the component
H2p−d−b−i(B, pRiπB

∗ ICXB(p)) of H2p−d−b(XB, ICXB (p)).

It remains to show that the map (14) factors through the map

H2p−b−i(B, j!∗R
iπ∗Qℓ(p)[b])→ H2p−i(U,Riπ∗Qℓ(p)),

from which the proposition will follow by taking i = 2p − 1. To this end we
decompose the perverse sheaf pRiπB

∗ ICXB (p) further into its simple compo-
nents and compare it to the decomposition of the (−d)-th shift of its restric-
tion Riπ∗Qℓ(p)[d + b] over U . It follows that pRiπB

∗ ICXB(p) decomposes as
a direct sum of j∗!(R

iπ∗Qℓ(p)[b])[d] and some simple components supported
outside of U . These extra components vanish when restricted to U and the
claim is established.

Sketch of proof of Theorem 1.2. Assume k = C and pick a class αp ∈
CHp

hom(X)Q. As before, we can extend it to a cycle class on some model X over
U ⊂ B suitably small, whence a topological cycle class αp

t ∈ H
2p(X (C),Q(p)).

Using the comparison theorem between complex and étale cohomology, we
view the above group as a subgroup of H2p

ét (X ,Qℓ(p)). Similarly, we may
view H0(U(C),R2pπ∗Q(p)) as a subgroup of H0

ét(U,R
2pπ∗Qℓ(p)), for in-

stance by viewing H0 in both the topological and the étale contexts as
the subgroup of monodromy invariants. Thus homological triviality of
αp implies (using compatibility of Leray filtrations) that the class αp

U ∈
H1

ét(U,R
2p−1π∗Qℓ(p)) considered in Proposition 2.3 comes from a topologi-

cal class αp
U,t ∈ H

1(U(C),R2p−1π∗Q(p)), and similarly for αq
U ∈ CH

q
hom(X)Q.

Next we consider the analogue of Proposition 2.3: the class αp
U,t lies

in the image of the natural map H1−b(B(C), j!∗R
2p−1π∗Q(p)[b]) →

H1(U(C),R2p−1π∗Q(p)) and similarly for αq
U,t. This follows from the

same arguments as in the proof above, using the topological version of the
decomposition theorem as stated in [5]. Note that the proof becomes simpler,
since thanks to resolution of singularities one may take for XB a regular
compactification of X over B (which may not, however, be smooth over B),
and the introduction of W can be avoided. In particular, the analogue of
Proposition 5.1 becomes obvious.

We construct the topological analogue of the pairing (2) by exactly the same
methods as in Section 2, using the intermediate extension functor and the for-
malism of Poincaré duality in the topological context (see e.g. [13] for the
latter). Finally, we need an analogue of the key injectivity statement of Propo-
sition 2.1 for topological sheaves of Q-modules. It can be established in the
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same way as in the ℓ-adic case. More quickly, it can be deduced from Proposi-
tion 2.1 by base changing coefficients to Qℓ (an injective operation, as above)
and applying the comparison theorem.

6 The case of good reduction everywhere

In this section we present a simple geometric construction for the height pairing
(and hence a solution of Conjecture 1.3) in the case where the K-variety X
admits a smooth proper model X → B.
On the regular k-scheme X we have the pairing

CHp(X )× CHq(X )→ Pic(B), (z, z′) 7→ 〈z, z′〉 (15)

obtained by composing the intersection pairing for p+ q = d+ 1

CHp(X )× CHq(X )→ CHd+1(X ), (z, z′) 7→ z · z′

with the pushforward map

π∗ : CHd+1(X )→ CH1(B).

The proof of the following proposition was inspired by the proof of a related
statement in a preliminary version of [14].

Proposition 6.1. Let g : X → X be the natural map. If z ∈ CHp(X ) satisfies
g∗z ∈ CHp

hom(X) and z′ ∈ CHq(X ) satisfies g∗z′ = 0, then 〈z, z′〉 = 0.

Proof. If g∗z′ = 0, there is some open subscheme U ⊂ B such that z′ restricts
to 0 in CHq(XU ), where XU := X ×B U . Denoting by Z the complement
of U and setting XZ := X ×B Z, the localization sequence for Chow groups
([7], Proposition 1.8) implies that z′ comes from a class z′′ in CHq(XZ). Let
Zsing ⊂ Z be the singular locus of Z. It is a closed subscheme of codimension

≥ 2 in B, so Pic(B)
∼
→ Pic(B \Zsing). Therefore we may replace B by B \Zsing

and X by X ×B (B \ Zsing) and assume Z, and hence XZ , are smooth. Let
πZ : XZ → Z be the morphism obtained from π by base change, and let
ι : XZ → X (resp. ρ : Z → B) be the inclusion morphisms. We thus have a
pullback diagram of k-varieties

XZ
ι

−−−−→ X

πZ

y
yπ

Z
ρ

−−−−→ B

with XZ and Z smooth but possibly disconnected.
We compute

〈z, z′〉 = π∗(z · z
′) = π∗(z · ι∗(z

′′)) = π∗(ι∗(ι
∗(z) · z′′)) = ρ∗(πZ∗(ι

∗(z · z′′)))
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where we used the projection formula (see [7], 8.1.1 (c)) in the third equality.
It suffices to show that the class πZ∗(ι

∗(z) · z′′) ∈ CH0(Z) vanishes. Since
CH0(Z) is a finite direct sum of copies of Z indexed by the components of Z,
it will be enough to show that x∗(πZ∗(z

′
0 · ι

∗(z))) vanishes for an arbitrary
closed point x : Spec k → Z. Denote by πx : Xx → Spec k the fibre of π over x
and let ιx : Xx → XZ be the inclusion map, so that we have another pullback
diagram

Xx
ιx−−−−→ XZ

πx

y
yπZ

Spec k
x

−−−−→ Z

Note that by ([7], Theorem 6.2 (a)) we have the base change compatibility
πx∗ ◦ ι

∗
x = x∗ ◦ πZ∗. We can thus compute

x∗(πZ∗(ι
∗(z) · z′′)) = πx∗(ι

∗
x(ι

∗(z) · z′′)) = πx∗(ι
∗
x(ι

∗(z)) · ι∗x(z
′′)).

To show that the class on the right hand side is zero, it suffices to verify that its
cycle class inH0

ét(k(x),Qℓ(0)) is 0. Now since g∗z is homologically equivalent to
zero, the restriction of z to all fibres of π is homologically equivalent to 0 by the
smooth proper base change theorem. In particular, the cycle class of ι∗x(ι

∗(z))
in H2p

ét (Xx,Qℓ(p)) is trivial. The claim then follows from the compatibility of
the cycle class map with push-forwards and products.

Corollary 6.2. The pairing (15) induces a pairing

CHp
hom(X)× CHq

hom(X)→ Pic(B)

on generic fibres, still under the assumptions that p+ q = d+ 1 and X admits
a smooth proper model X → B.

Proof. Pick αp ∈ CHp
hom(X) and αq ∈ CHq

hom(X). Extend αp to a cycle class
on X , for instance by taking the Zariski closure z of a representative. Suppose
that z′1 and z′2 are two cycles on X whose classes both restrict to αq on X .
Then w := z′1 − z

′
2 satisfies g∗w = 0, and hence by the proposition we have

〈z, w〉 = 0. This shows that 〈z, z′1〉 only depends on αq and by symmetry the
same is true of αp.

Remark 6.3. Inspection of the above arguments shows that the pairing of the
corollary exists over an arbitrary perfect field k (the only difference is that in
the proof of Proposition 6.1 the point x should be a geometric point).

It remains to check that the pairing in the above corollary is com-
patible with that of Theorem 1.1. To do so, take representatives of
αp ∈ CHp

hom(X) and αq ∈ CHq
hom(X) as above, extend them to cycles on the

whole of X and consider the associated classes αp
B ∈ H

1
ét(B,R

2p−1π∗Qℓ(p))
and αq

B ∈ H
1
ét(B,R

2q−1π∗Qℓ(q)) as constructed before Proposition 2.3. Since
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in this case U = B, all intermediate extensions are just identity maps and the
pairing (2) of Section 2 becomes the cup-product pairing

H1(B,R2p−1π∗Qℓ(p)) ×H
1(B,R2q−1π∗Qℓ(q))→ H2(B,Qℓ(d+ 1)) (16)

induced by fibrewise Poincaré duality. Thus the compatibility to be verified
becomes:

Proposition 6.4. The cycle class of the value of the pairing of Corollary 6.2
on the pair (αp, αq) equals the value of the pairing (16) on the pair (αp

B, α
q
B).

Proof. This is well known but we sketch an argument for the sake of complete-
ness. To construct the pairing of Corollary 6.2 we extended αp and αq to X
and took the intersection product (15) followed by the pushforward map to
Pic(B). The cohomological realization of this construction is the cup-product
pairing

H2p(X ,Qℓ(p))×H
2q(X ,Qℓ(q))→ H2d+2(X ,Qℓ(d+ 1)) (17)

followed by the pushforward map

H2d+2(X ,Qℓ(d+ 1))→ H2(B,Qℓ(1)) (18)

induced by π that can be described in more detail as follows. We have an
isomorphism

H2d+2(X ,Qℓ(d+ 1)) ∼= H2d+2(B,Rπ∗Qℓ(d+ 1))

coming from the isomorphism of functors RΓ(X , ) = RΓ(B, ) ◦Rπ∗.
Since π has relative dimension d, Rπ∗ has trivial cohomology in degrees > 2d,
so that

H2d+2(B,Rπ∗Qℓ(d+ 1)) ∼= H2d+2(B, τ≤2dRπ∗Qℓ(d+ 1))

where τ≤ is the sophisticated truncation functor. The morphism

τ≤2dRπ∗Qℓ(d+ 1)→ R2dπ∗Qℓ(d+ 1)[−2d]

gives a map

H2d+2(B, τ≤2dRπ∗Qℓ(d+ 1))→ H2(B,R2dπ∗Qℓ(d+ 1)).

Finally, the trace map R2dπ∗Qℓ(d+ 1)→ Qℓ(1) of Poincaré duality induces a
map

H2(B,R2dπ∗Qℓ(d+ 1))→ H2(B,Qℓ(1))

and (18) is the composition of these.
The tensor product pairing

Qℓ(p)⊗Qℓ(q)→ Qℓ(d+ 1)
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induces a derived pairing

Rπ∗Qℓ(p)⊗
L Rπ∗Qℓ(q)→ Rπ∗Qℓ(d+ 1). (19)

Similarly, there is a derived pairing

RΓ(X ,Qℓ(p))⊗
L RΓ(X ,Qℓ(q))→ RΓ(X ,Qℓ(p+ q)) (20)

which induces (17) by passing to cohomology groups. It is a formal exercise
using Godement resolutions to verify that the pairing (20) coincides with the
pairing

RΓ(B,Rπ∗Qℓ(p))⊗
L RΓ(B,Rπ∗Qℓ(p))→ RΓ(B,Rπ∗Qℓ(p+ q)) (21)

induced by (19) via the composition RΓ(X , ) = RΓ(B, ) ◦Rπ∗.
To obtain the pairing (16) from (17), we note first that (19) induces truncated
pairings

τ≤iRπ∗Qℓ(p)⊗
L τ≤jRπ∗Qℓ(q)→ τ≤i+jRπ∗Qℓ(d+ 1)

for all i, j. In particular, for p+ q = d+ 1 we see that (21) induces pairings

H2p(B, τ≤2p−1Rπ∗Qℓ(p))⊗
L H2q(B, τ≤2q−1Rπ∗Qℓ(q))→

→ H2d+2(B, τ≤2dRπ∗Qℓ(p+ q))

where we have seen that the last group maps to H2(B,Qℓ(1)) via the trace
map.
The commutative diagram

τ≤2p−2Rπ∗Qℓ(p)⊗
L
τ≤2q−1Rπ∗Qℓ(q) −−−−−→ τ≤2p−1Rπ∗Qℓ(p)⊗

L
τ≤2q−1Rπ∗Qℓ(q)





y





y

τ≤2d−1Rπ∗Qℓ(d+ 1) −−−−−→ τ≤2dRπ∗Qℓ(d+ 1)

together with the distinguished triangles

τ≤2p−2Rπ∗Qℓ(p)→ τ≤2p−1Rπ∗Qℓ(p)→ R2p−1π∗Qℓ(p)[−2p+ 1]→

→ τ≤2p−2Rπ∗Qℓ(p)[1]

and

τ≤2d−1Rπ∗Qℓ(d+ 1)→ τ≤2dRπ∗Qℓ(d+ 1)→ R2dπ∗Qℓ(d+ 1)[−2d]→

→ τ≤2d−1Rπ∗Qℓ(d+ 1)[1]

shows that tensoring the first triangle by τ≤2q−1Rπ∗Qℓ(q) yields an induced
pairing

R2p−1π∗Qℓ(p)[−2p+ 1]⊗L τ≤2q−1Rπ∗Qℓ(q)→ R2dπ∗Qℓ(d+ 1)[−2d].

Documenta Mathematica 27 (2022) 1671–1692
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Since the target here is concentrated in degree 2d, we see using the distinguished
triangle

τ≤2q−2Rπ∗Qℓ(q)→ τ≤2q−1Rπ∗Qℓ(q)→ R2q−1π∗Qℓ(q)[−2q + 1]→

→ τ≤2q−2Rπ∗Qℓ(q)[1]

that the above pairing factors through a pairing

R2p−1π∗Qℓ(p)[−2p+ 1]⊗L R2q−1π∗Qℓ(q)[−2q + 1]→ R2dπ∗Qℓ(d+ 1)[−2d].

Application of the functor RΓ(B, ) finally induces the pairing (16).
To sum up, the pairing (16) arises from the composition of (17) and (18) via
a truncation procedure. It remains to note that, as explained before Proposi-
tion 2.3, the cycle class of an extension of αp (resp. αq) to X is sent exactly to
αp
B (resp. αq

B) under this procedure.

7 A conjecture about Arakelov Chow groups

In this section we formulate an Arakelovian analogue of Conjecture 1.3.
Let R be a regular arithmetic ring, i.e. a regular, excellent, Noetherian domain,
together with a finite set S of injective ring homomorphisms R → C which is
invariant under complex conjugation. Consider a regular, integral scheme B0

flat and of finite type over R. We shall write B0(C) for the set of complex
points of the (non-connected) complex variety given by the disjoint union of
the B0 ×R,σ C for all σ ∈ S. It naturally carries the structure of a complex
manifold.
A hermitian line bundle on B0 is by definition a line bundle L together with a
hermitian metric on the holomorphic line bundle associated with L over B0(C)

which is invariant under complex conjugation. We shall write P̂ic(B0) for the
group of isomorphism classes of hermitian line bundles on B0, together with
the group structure given by the tensor product (see [11] for background and

details). By construction, there is a homomorphism P̂ic(B0)→ Pic(B0) which
forgets the hermitian structure.
Fix an algebraic closure k of the fraction field k0 of R and denote by B the base
change of B0 to k. We shall write φ : P̂ic(B0)→ Pic(B) for the composition of
the above forgetful homomorphism with the natural pullback map Pic(B0)→
Pic(B). When R is the ring of integers of a number field, S the set of all
complex embeddings of R and B0 = SpecR, there is a group homomorphism
deg : P̂ic(Spec(R))) → R called the arithmetic degree (see [4], 2.1.3). More
generally, if R and S are as before and B0 is projective over R, then an ample
hermitian line bundle L on B0 induces an arithmetic degree (or height) map

P̂ic(B0) → R by intersecting with the (b − 1)-st power of the arithmetic first

Chern class of L and then applying the above degree map on P̂ic(Spec(R)) ([4],
3.1.1).
Let X0 be a smooth proper integral variety of dimension d over the function
field K0 of B0.
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Conjecture 7.1. Suppose that p+ q = d+ 1. There exists a pairing

h : CHp
hom(X0)Q ⊗ CHq

hom(X0)Q → P̂ic(B0)Q

with the following properties.

1. In the case when R is the ring of integers of a number field, S the set of

all complex embeddings of R and B0 = SpecR, the pairing d̂eg ◦ h is the
height pairing whose existence was conjectured by Beilinson in [2].

2. In the case when Bk0
is geometrically integral denote by X the base change

of X0 to K := kK0. Then the pairing φ ◦ h is the composition of the
pairing of Conjecture 1.3 with the base change map

CHp
hom(X0)Q ⊗ CHq

hom(X0)Q → CHp
hom(X)Q ⊗ CHq

hom(X)Q.

If moreover B0 is projective, we expect h to become a non-degenerate
R-valued pairing after base change to R and composition with the arith-
metic degree map P̂ic(B0)Q → R associated with an ample hermitian line
bundle on B0.

In the case of abelian varieties Moret-Bailly describes in [17], III 4.4.1 a can-
didate for the above pairing in the case when R is the ring of integers of a
number field, B = SpecR and q = 1.
Finally, for k = C one may consider the space of complex C∞ differential (1, 1)-
forms A1,1(B) on B and compose the pairing h of Conjecture 7.1 with the map

P̂ic(B0)Q → A1,1(B) obtained by taking the curvature forms of hermitian line
bundles. This would give rise to a pairing

CHp
hom(X0)Q ⊗ CHq

hom(X0)Q → A1,1(B)

for which it would be interesting to have an analytic construction.
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