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1 Introduction

Let X be an algebraic variety and let M be a constructible or perverse sheaf (in
the analytic or étale topology), a holonomic D-module, or a mixed Hodge mod-
ule on X (whenever these make sense). The set Supp(M) of points x ∈ X where
x∗M does not vanish is a constructible subset of X . In this article we show
that Supp(M) is a fundamental homological invariant of M . Namely, letting
C(X) denote one of the corresponding ‘derived’ categories Db

c (X), Db
h(DX),

DbMHM(X) (whenever these make sense), we show (cf. Corollary 4.9):

Theorem 1.1. The assignment M 7→ Supp(M) is the universal support datum
on C(X). In other words, it induces a homeomorphism

Spc(C(X)) ∼= Xcons.
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Here, the left-hand side denotes the spectrum of the tensor triangulated cat-
egory C(X) as defined by Balmer [6], and the right-hand side denotes the set
of points of the scheme X with the constructible topology. We point out the
importance for this result that the category C(X) is Q-linear (in contrast to
positive characteristic). We refer to Section 3 for our conventions regarding
each of the theories mentioned as well as for a discussion of further examples.

One may view this result from at least two different angles. On the one hand, it
says that the support classifies objects in these theories up to the tensor tri-
angulated structure. That is, two objects in C(X) can be built out of each other
using extensions, shifts, direct summands, and tensor products with arbitrary
objects, if and only if their total cohomologies have the same support. Equiva-
lently, the support sets up a bijection between thick tensor ideals in C(X) and
ind-constructible subsets of X . Thereby the support is seen to play the same
role for these theories as the chromatic level for stable homotopy theory [22]
and the π-support for the representation theory of finite group schemes [12].

On the other hand, one may ask how much information is lost by passing
from X to, say, the abelian category of constructible sheaves on X . This is
investigated in [38] where Kollár–Lieblich–Olsson–Sawin prove a topological
version of Gabriel’s reconstruction theorem for a certain class of varieties
(proper normal varieties of dimension at least two over an uncountable alge-
braically closed field of characteristic zero). It is natural to wonder about
monoidal and derived analogues and the authors in loc. cit. specifically suggest
an approach using the spectrum of tensor triangulated categories. A precursor
is Thomason’s result [44] which translates to the identity Spc(Dperf(X)) ∼= XZar

for every quasi-compact quasi-separated scheme X [18, Theorem 8.5]. We will
refine Theorem 1.1 to obtain the following monoidal topological analogue (The-
orem 5.21).

Theorem 1.2. Let C(X) be as above. Then the underlying Zariski topological
space of X is completely determined by the tensor triangulated category C(X).
More precisely we have

Spc∧(C(X)) ∼= XZar.

Here, the left-hand side denotes the smashing spectrum of C(X), that is, the
spectrum of the lattice of smashing tensor ideals in C(X). (We refer the reader
to Remark 5.1 for an informal explanation why the smashing spectrum should
play a role.) The first, less precise statement in Theorem 1.2 can also be proven
along the lines of [38, § 5.4]. In any case, together with [38, Theorem 5.1.2]
we deduce that for proper normal varieties of dimension at least two over an
uncountable algebraically closed field of characteristic zero, the tensor trian-
gulated category C(X) completely determines the scheme X (Corollary 5.22).
The question as to whether that remains true without the tensor structure—in
the spirit of Bondal–Orlov’s reconstruction theorem [15]—would seem natu-
ral. Similarly, it would be interesting to study the group of autoequivalences
of C(X).
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Of course, if a phenomenon is observed in seemingly all cohomology theories
it is natural to wonder about a motivic explanation. Let us then denote by
DMc(X) ‘the’ category of constructible motivic sheaves on X with coefficients
in a characteristic zero field, for example Beilinson motives [19] or Ayoub’s
étale motives [4]. If X = Spec(k) is the spectrum of a field, we had already
established in [31, Theorem 3.8] the analogue of Theorem 1.1 assuming ‘all
conjectures on motives over k’. Here we show that this special case implies
the result for arbitrary X and obtain the following result in motivic tensor-
triangular geometry.

Theorem 1.3. Let X/k be a quasi-projective variety and assume that
Spc(DMc(k(x))) = ∗ for each x ∈ X. Then there are canonical homeomor-
phisms

Spc(DMc(X)) ∼= Xcons, Spc∧(DMc(X)) ∼= XZar.

The article is organized as follows. In Section 2 we define generically simple
constructible systems which abstract the relevant features of the association
X 7→ C(X). The theories mentioned in Theorems 1.1 and 1.3 are shown to be
examples in Section 3, which involves establishing that C(X) is a simple tensor
triangulated category generically. This uses crucially (a step in) Beilinson’s
argument on the derived category of perverse sheaves [11], as well as [31] which
shows that the derived category of a Tannakian category in characteristic zero is
simple. In Section 4 (resp. Section 5) we prove Theorem 1.1 (resp. Theorem 1.2)
for (suitable) generically simple constructible systems, including the one of
Theorem 1.3.
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2 Constructible systems

In order to deal with constructible sheaves, holonomicD-modules, mixed Hodge
modules etc. all simultaneously, it will be convenient to introduce a ‘minimal’
set of axioms such theories should satisfy. This is done in Section 2.1. In
Section 2.2, we provide some useful criteria to verify these axioms.
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2.1 Definition and basic properties

Convention 2.1. All schemes are assumed to be noetherian and reduced1.
We fix a base scheme S and a full subcategory S of the category of S-schemes
satisfying the following property: If V ֌X is an immersion of S-schemes and X
belongs to S then so does V .

Example 2.2. The structure map X → S will play no role in this section and
is there only for flexibility. Indeed, some of the theories considered in Section 3
are not defined on all schemes. The main examples for us are the following.

(a) S = Vark, the category of k-varieties, that is, separated, finite type
schemes over a field k.

(b) S = SubS , the poset spanned by subschemes of S.

Let ttCat denote the (2, 1)-category of essentially small tensor triangulated
categories (or, tt-categories for short) together with exact tensor functors (or,
tt-functors for short) and natural isomorphisms of such.

Definition 2.3. A constructible system (on S) is a pseudo-functor C : Sop →
ttCat satisfying the axioms (Loc) and (Lisse) below.

Given a morphism f : X → Y in S, we denote the tt-functor C(f) by f∗.
Sometimes, especially if f is an immersion, we denote f∗M by M |X . When
S = SubS we also speak of a constructible system on S.

Convention 2.4. Assume X ∈ S is integral, with generic point x ∈ X . We
denote by

C(x) := C(x ∈ X) := 2-colimC(U)

where the colimit in ttCat is over non-empty open subsets U ⊆ X .2

If X is not assumed integral, and x ∈ X is an arbitrary point, with closure
cl(x) ⊆ X , we let C(x) := C(x ∈ cl(x)). Alternatively, it is the 2-colimit of
C(V ) where V runs through locally closed neighborhoods of x in X . We denote
by ρx : C(X)→ C(x) the canonical functor.

Completing Definition 2.3 we impose the following axioms on C:

• (Loc)3 For every open-closed decomposition U
j
֌X

i← Z (U open, Z
the closed complement), the functors

C(U)
j∗←− C(X)

i∗−→ C(Z)

define a recollement (see Convention 2.7 below).

1Reducedness is entirely unnecessary and for convenience only; see Remark 2.6
2For a brief discussion of 2-colimits in ttCat see [29, Remark 8.3].
3standing for ‘localization’
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• (Lisse) There exists, for each regular U ∈ S, a full tt-subcategory
Cls(U) ⊆ C(U) (of so-called lisse objects) such that:

(1) For every X ∈ S and M ∈ C(X) there exists a dense regular open
subset U ⊆ X such that M |U ∈ Cls(U).

(2) For every immersion f between regular schemes, the functor f∗ pre-
serves lisse objects.

(3) For regular, connected X ∈ S and x ∈ X , the functor ρx|Cls(X) :

Cls(X)→ C(x) is conservative.

Given a constructible system C we will often implicitly assume that a
choice of Cls as in (Lisse) has been made.

Remark 2.5. These axioms are modeled on the behavior of categories of con-
structible sheaves, the lisse objects corresponding to local systems. (In exam-
ples of interest, lisse objects are often the rigid objects.) On the other hand,
the examples of constructible systems we have in mind (Section 3) all arise
from (subfunctors of) fully-fledged six-functor formalisms, or, coefficient sys-
tems [24; 25; 30]. The term “constructible system” is an attempt at capturing
these two aspects.

Remark 2.6. By (Loc), there is a unique way to extend a constructible sys-
tem C to non-reduced schemes, namely by setting C(X) := C(Xred). This
extended constructible system satisfies the analogous axioms, and the argu-
ments in the article go through with minor modifications. In particular, both
Corollary 4.9 and Theorem 5.21 remain true.

Convention 2.7. Let TU
j∗←− T i∗−→ TZ be triangulated categories and exact

functors between them. This is called a recollement if

(1) j∗ admits a fully faithful right adjoint j∗;

(2) i∗ admits a fully faithful right adjoint i∗ whose essential image is the
kernel of j∗.

Remark 2.8. By [39, Proposition 4.13.1], a recollement as in Convention 2.7

induces a recollement in the sense of [13, § 1.4.3]: two exact functors TZ i∗−→
T j∗−→ TU satisfying the following properties:

(1) i∗ admits left and right adjoints i∗, i!, respectively.

(2) j∗ admits left and right adjoints j!, j∗, respectively.

(3) j∗i∗ = 0.

(4) i∗, j∗, j! are fully faithful.

(5) There are functorial triangles

j!j
∗ → id→ i∗i

∗ →+, i∗i
! → id→ j∗j

∗ →+
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From now on we will identify these two equivalent sets of data.

Convention 2.9. Let f : V ֌X be an immersion in S. We associate a functor
f! : C(V ) → C(X), called extension by zero as follows. Factor f = ij as an
open immersion j followed by a closed immersion i and define f! = i∗j!. It
follows from (Loc) that this is independent of the choice of factorization, up
to (canonical) isomorphism. (And the ‘same’ functor is obtained by factoring f
as a closed immersion followed by an open immersion.) We often denote the
composite f!f

∗ by (−)V .

The following projection formulæ will be useful in the sequel. Note that the
morphisms ‘dual’ to (2.11) involving the pairs of functors (j∗, j∗) and (i∗, i!)
are in general not invertible.

Lemma 2.10. Let C be a constructible system and let j, i as in (Loc). For
K ∈ C(U), L ∈ C(X), M ∈ C(Z) the following canonical maps are invertible:

j!(M ⊗ j∗N)
∼−→ j!M ⊗N, i∗M ⊗N

∼−→ i∗(M ⊗ i∗N) (2.11)

Proof. We note that the pair (j∗, i∗) is conservative, as follows from the first
triangle in Remark 2.8. It is straight-forward to check that upon applying
these two functors, the maps in the statement become isomorphisms thus the
claim.

Remark 2.12. It follows from (Lisse) that C(x) = Cls(x) := 2-colimCls(U)
over the regular locally closed neighborhoods of x. Indeed, the natural com-
parison functor Cls(x) → C(x) is fully faithful, and (Lisse) ensures that it is
essentially surjective too.

In this article we will not be able to say much about constructible systems in
general. Instead we will restrict to ‘generically simple’ ones in the following
sense.

Definition 2.13. Let C be a constructible system. It is called generically
simple if it satisfies the following additional axiom.

• (GenS) For every x ∈ X ∈ S, the tt-category C(x) = Cls(x) is simple.

Here we call a tt-category simple if it has exactly two thick tensor ideals.
These are necessarily the zero ideal and the whole category.4 (Recall that a
thick tensor ideal (or, tt-ideal for short) is a full triangulated subcategory stable
under direct summands and tensoring with arbitrary objects.)

Definition 2.14. Fix a generically simple constructible system C and let x ∈
X ∈ S. We denote by Px the kernel of ρx : C(X)→ C(x) (see Convention 2.4).

4If the tt-category is rigid, this is equivalent to the definition used in [31, p. 119]. In the
examples of constructible systems of interest to us, the category in question will always be
rigid.
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By (GenS), Px is a prime tt-ideal (that is, 1 /∈ Px, and if M ⊗ N ∈ Px then
M ∈ Px or N ∈ Px).

Lemma 2.15. With the assumptions of Definition 2.14 let f : X → Y be a
morphism in S. Then we have for all x ∈ X:

Pf(x) = (f∗)−1Px

Proof. This follows from the commutativity of the square

C(Y ) C(X)

C(f(x)) C(x)

f∗

ρf(x) ρx

f∗

together with the fact that a tt-functor between simple tt-categories is conser-
vative.

2.2 New from old

We now discuss a few criteria that will be useful in checking the axioms of a
(generically simple) constructible system.

Lemma 2.16. Let C be a constructible system and let ω : D→ C be a pseudo-
natural transformation of pseudo-functors Sop → ttCat such that:

(1) for each X ∈ S, the functor ωX : D(X)→ C(X) is conservative;

(2) for each immersion f : V ֌X, the functor f∗ : D(X)→ D(V ) admits a
right adjoint f∗, and the transformation ωXf∗ → f∗ωV is invertible.

Then D is a constructible system.

Proof. With Dls the preimage of Cls under ω, the axiom (Lisse) is clear. For
(Loc), let j : U ֌X and i : Z֌X be as in the axiom. Note that fully faith-
fulness of j∗ (resp. i∗) is equivalent to the counit j∗j∗ → id (resp. i∗i∗ → id)
being invertible. These are mapped to the corresponding counits in C, by
assumption, and are therefore invertible by conservativity of ω. Similarly, ω al-
lows us to conclude that j∗i∗ = 0 so that the image of i∗ is contained in ker(j∗).
Conversely, let M ∈ ker(j∗) and consider the unit M → i∗i∗M . Since ω inverts
this morphism it is invertible and we win.

Corollary 2.17. Let C be a constructible system and let D be a sub-pseudo-
functor stable under f∗ for each immersion f .

(a) Then D is a constructible system.

(b) Assume that D(x) is rigid for each x ∈ X ∈ S. If C is generically simple
then so is D.
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Proof. The first statement follows directly from Lemma 2.16. For the second
statement let x ∈ X ∈ S. Since a filtered colimit of faithful functors is faithful
we see that the canonical tt-functor D(x) → C(x) is faithful. The claim now
follows from [7, Corollary 1.8].

The following criterion for generic simplicity leverages an observation from [31]
together with Deligne’s internal characterization of Tannakian categories. For
both of these the characteristic zero assumption is crucial. Here we denote by
Cat⊗ the (2,1)-category of essentially small symmetric monoidal categories.

Proposition 2.18. Let E be a characteristic zero field. Let A• : I → Cat⊗ be a
filtered diagram of E-linear Tannakian categories5 and E-linear exact transition
functors. Denote by A = 2-colimiAi the colimit. Then the tt-category Db(A)
is simple.

Proof. The colimit A is an E-linear, rigid tensor abelian category, and it fol-
lows from [21, Théorème 7.1] that it is Tannakian too. We proved in [31,
Theorem 2.4] that the bounded derived category of a Tannakian category in
characteristic zero is simple.

3 Examples

In this section we verify that the theories mentioned in the introduction satisfy
the axioms of a generically simple constructible system. We also discuss addi-
tional theories obtained by restriction to subcategories, as well as the theory
of motivic sheaves which satisfies (some of) the axioms only conjecturally.

3.1 Constructible analytic sheaves

Let k ⊆ C be a field with a fixed embedding into the complex numbers and fix
a characteristic zero field E. For a variety X ∈ Vark we denote by X(C) the set
of C-points with the usual analytic topology, and by Sh(X(C);E) the category
of sheaves of E-vector spaces on this topological space. Let LS(X(C);E) denote
the full subcategory of E-local systems and Cons(X ;E) the full subcategory of
(algebraically) constructible sheaves. Recall the latter are those sheaves F for
which there exists a finite stratification X = ∐iXi into locally closed subsets
(defined over k) with F |Xi(C) a local system. The reader can find more details
for example in [23, § 4.1] (for k = C but this condition is unnecessary). Both
LS(X(C);E) and Cons(X ;E) are Serre tensor subcategories of Sh(X(C);E) and
hence restricting to complexes whose total cohomology belongs to them defines
two sub-tt-categories

Db
ls(X(C);E) ⊆ Db

c (X ;E) ⊆ D(Sh(X(C);E))

of the derived category of all sheaves.

5By convention, this involves the condition E = End(1).
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Proposition 3.1. The pseudo-functor Db
c (−;E) is a constructible system

on Vark. For k algebraically closed it is moreover generically simple.

Proof. The assignment X 7→ Db
c (X ;E) underlies a six-functor formalism, of

which (Loc) is only one property. (If k = C, the necessary constructions and
properties can be found for example in [23] and references therein, particulary
in [23, § 4.1]. For general k see [5].) With Db

ls as the lisse objects, the first
two conditions of (Lisse) are straightforward. For the last condition, that is,
to prove that ρx|Cls(X) is conservative when X is (regular and) connected and
x ∈ X , we reduce to the following claim: If F ∈ LS(X(C);E) vanishes on V (C)
for some locally closed subset x ∈ V ⊆ X then F = 0. As a local system
has constant rank on a connected topological space it suffices to prove that
V (C) meets all connected components of X(C). Denote by XC (resp. VC) the
base change of X (resp. V ) to C. The canonical map π0(XC) → π0(X(C))
is a bijection (and similarly for V ) so we reduce to proving that VC meets all
connected components of XC. Let T ⊆ XC be such a connected component.
By [43, Tag 04PZ], the image of T in X is a connected component hence must
equal X . In particular, T and VC intersect.
For (GenS) let X be an irreducible variety with generic point x. For each open
x ∈ U ⊆ X , the canonical tt-functor

Db(Cons(U ;E))→ Db
c (U ;E)

is an equivalence, as Nori proves [40, Theorem 3(b)]. Passing to the 2-colimit
yields a tt-equivalence Db

c (x;E) ≃ Db(Cons(x;E)) where Cons(x;E) is defined
as the analogous 2-colimit of the Cons(U ;E). (See [31, Lemma 2.6] for com-
muting Db and filtered colimits if necessary.) By definition of constructible
sheaves, we also have Cons(x;E) = LS(x;E). But the category of local systems
LS(U(C);E) is E-linear neutral Tannakian if k is algebraically closed. (If k is
not algebraically closed U(C) can have multiple connected components.) We
conclude with Proposition 2.18 that Db

c (x;E) is simple.

Remark 3.2. For each U as in the proof, a fiber functor for LS(U(C);E) is
given by the stalk at any point u of U(C), in which case we obtain an iden-
tification with the category Rep(π1(U(C), u);E) of E-linear representations of
the fundamental group. We argued in the proof of Proposition 2.18 that the
filtered colimit LS(x;E) of these Tannakian categories remains Tannakian (al-
though not necessarily neutral) using Deligne’s characterization of Tannakian
categories in characteristic zero. Alternatively, a fiber functor ω can be de-
scribed as follows.
Assume X is integral and choose an ultrafilter U on X(C) which contains U(C)
for all U appearing in the colimit. (This exists because every U is dense.) Let
E(x) = EX(C)/U be the associated ultrapower, that is, the quotient of the ring
EX(C) by the equivalence relation whereby two families become equivalent iff
they agree on an element of U . Then E(x) is a field extension of E. Given
a local system M ∈ LS(U(C);E) define ω(M) to be the equivalence class of
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the family (Mu) where Mu is the stalk at u if u ∈ U(C) and 0 else. Apriori

this functor takes values in the ultrapower mod(E)X(C)/U but clearly it actually
lands in the abelian tensor subcategory of objects with constant finite dimension
almost everywhere. One may identify this subcategory with mod(E(x)), the
category of finite dimensional E(x)-vector spaces. This defines a fiber functor
ω : LS(x;E)→ mod(E(x)).

In fact, the constructible system Db
c (−;E) is generically simple in an even

stronger sense. The following result will not be used in the sequel but seems in-
teresting in its own right. It is implicit in Beilinson’s proof of [11, Lemma 2.1.1].

Proposition 3.3. Let X ∈ VarC and E a characteristic zero field. There exists
an open dense U ⊆ X such that the canonical tt-functor

Db(LS(U(C);E))
∼−→ Db

ls(U(C);E)

is an equivalence.

Proof. We may clearly assume X is integral. In [11, Lemma 2.1.1] it is proved
(as a special case) that for the generic point x ∈ X , the canonical functor
Db(LS(x;E)) → Db

ls(x;E) is an equivalence. The proof proceeds by induction
on the dimension of X . In the induction step one starts with a local system F
(in Beilinson’s notation, F = M∗ ⊗ N) on X and produces a smooth affine
morphism π : U → Z with 1-dimensional fibers, where U ⊆ X is a non-empty
open subset, and Z is regular, such that the higher direct images R

qπ∗(F |U )
are local systems on Z.
To obtain the statement in the proposition it is sufficient to choose π inde-
pendently of F . This is indeed possible, by [45, Corollaire 5.1]. For example,
starting with an elementary fibration π′ : U ′ → Z ′ in the sense of Artin [1,
§ XI], this result guarantees a (regular) open dense Z ⊆ Z ′ such that the re-
striction π = π′|U : U = π−1(Z) → Z is a locally trivial fibration in the
analytic topology. In particular, for every F as above, the higher direct images
R

qπ∗(F |U ) are local systems on Z. The rest of the proof of [11, Lemma 2.1.1]
can be copied verbatim.

Remark 3.4. (a) We do not know whether Proposition 3.3 holds for ℓ-adic
lisse sheaves (discussed below in Section 3.2).

(b) The statement of Proposition 3.3 as well as the invocation of elemen-
tary fibrations in the proof suggest a relation with K(π, 1)-spaces (‘Artin
neighborhoods’ [1, § XI]). However, we do not know whether every
K(π, 1)-space U satisfies the conclusion. Indeed, saying that U is a
K(π, 1)-space amounts to the statement that extensions between local
systems may be computed equivalently in the category of sheaves on U(C)
or in the category of π1(U(C))-modules. However, we need to know that
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they may be computed in the category of local systems on U(C) (that is,
in the category of finite dimensional π1(U(C))-modules).

For X ∈ VarC denote by Perv(X ;E) ⊆ Db
c (X ;E) the abelian category of per-

verse sheaves on X , and by Pervgm(X ;E) the full subcategory of Perv(X ;E)
spanned by objects whose simple subquotients are all of geometric origin [13,
§ 6.2.4]. By construction, this is a weak Serre tensor subcategory.6 Let
Db

gm(X ;E) be the subcategory of Db
c (X ;E) spanned by objects whose perverse

cohomologies belong to Pervgm(X ;E). These are the constructible analytic
sheaves of geometric origin. In addition to being a tt-subcategory, it is stable
under the usual functoriality in X , by construction.

Proposition 3.5. The pseudo-functor Db
gm(−;E) is a generically simple con-

structible system on VarC.

Proof. This follows from Corollary 2.17 and Proposition 3.1.

Remark 3.6. For an alternative definition of constructible sheaves of geometric
origin and a proof that they are stable under the required functoriality see [5]
which also treats the general case k ⊆ C.
Between the two generically simple constructible systems Db

gm ⊆ Db
c , another

example should be generated by quasi-unipotent constructible sheaves [36].

3.2 Constructible étale sheaves

Let k be a field and ℓ a prime number invertible in k. Fix a finite exten-
sion E of Qℓ, or E = Q̄ℓ. We will not recall the definition of the ‘derived’
tt-category Db

c (X ;E) of constructible adic sheaves in the étale topology on va-
rieties X/k. This is sketched in [20, § 1.1] for certain k, and treated carefully
(and generalized) in [26]. Equivalently, one may use the pro-étale topology
to define these categories [14]. There is a bounded t-structure whose heart is
the category Cons(X ;E) of constructible E-sheaves on X in the sense of [33,
Exposé VI, 1.4.3]. Let LS(X ;E) ⊆ Cons(X ;E) denote the full subcategory of
lisse E-sheaves. As in the analytic context this gives rise to a tt-subcategory
Db

ls(Xét;E) ⊆ Db
c (X ;E) and we claim:

Proposition 3.7. The pseudo-functor Db
c (−;E) is a generically simple con-

structible system on Vark.

Proof. The proof that Db
c (−;E) is a constructible system is entirely analogous

to Proposition 3.1. We start by noting that Db
c (−;E) admits a six-functor

formalism and therefore satisfies (Loc), see [26, Theorem 6.3.(iv)] for a precise
statement. With Db

ls as the lisse objects the first condition in (Lisse) holds by
construction. The second condition holds (for any morphism f , not necessarily

6A weak Serre subcategory of an abelian category C is a non-empty full subcategory C′

such that an exact sequence A1 → A2 → B → A3 → A4 in C with Ai ∈ C′ implies B ∈ C′.
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an immersion) because f∗ preserves constant sheaves. For the last condition,
using the t-structure we reduce to showing that the functor

LS(Xét;E)→ LS(x;E) := 2-colimLS(Vét;E)

is conservative when X is connected, and where V ⊆ X runs through the locally
closed subsets containing x. But if M ∈ LS(Xét;E) vanishes on a locally closed
subset V and x̄ is a geometric point of X with image x then Mx̄ = 0 which
implies M = 0. Indeed, (−)x̄ is a fiber functor which exhibits LS(Xét;E) as a
neutral Tannakian category [33, Exposé VI, § 1.4.3].
We now turn to the last axiom (GenS). If k is algebraically closed, one can
prove it literally as in Proposition 3.1, using [10] instead of [40]. In the general
case, let x ∈ X ∈ S. By the argument of [11, Lemma 2.1.1], the canon-
ical tt-functor Db(Cons(x;E)) → Db

c (x;E) is an equivalence. Indeed, while
Beilinson works with the perverse t-structure in loc. cit., the argument clearly
goes through with respect to the standard t-structure as well, and for non-
closed fields k. But Cons(x;E) = LS(x;E) and this is a filtered colimit of
neutral E-linear Tannakian categories LS(Vét;E), as already explained in the
first paragraph of the proof. The axiom (GenS) therefore follows from Propo-
sition 2.18.

Remark 3.8. The category LS(x;E) := 2-colimLS(Vét;E) admits a fiber func-
tor analogously to the analytic case in Remark 3.2.

Remark 3.9. The subsystem generated by mixed sheaves [20, § 6] should form
another example of a generically simple constructible system.

3.3 Holonomic D-modules

Let k be a field of characteristic zero. For a regular k-variety X we de-
note by Db

h(DX) the bounded derived category of holonomic DX -modules [16,
§ VI.1.13]. It comes with a canonical conservative exact functor ν : Db

h(DX)→
Db

qc(OX). Since the notation in the literature is somewhat inconsistent let us
stress that the tensor product and inverse image functor along f : X → Y
‘induced’ by the tensor product and inverse image of OX -modules will here
be denoted by ⊗! and f !, respectively.7 More precisely, we have for M,N ∈
Db

h(DY ) the relations ν(M ⊗! N) ∼= ν(M) ⊗L ν(N)[− dim(Y )] and νf !(M) ∼=
Lf∗(ν(M))[dim(X)−dim(Y )]. We denote the Verdier dual tensor product and
inverse image by ⊗ and f∗, respectively.8 It is the latter two which we will
use in defining the constructible system. However, since the two tensor prod-
ucts are anti-equivalent, the conclusion in Corollary 4.9 doesn’t depend on this
choice. So to summarize, we have the usual adjunctions and relations, familiar
from six-functor formalisms:

f! ⊣ f !, f∗ ⊣ f∗, Df !D = f∗, Df!D = f∗,

7In [16, §VI], these are denoted by ⊗L

OX
and f !, respectively.

8In [16, §VI], the latter is denoted by f+.
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where f∗ is the tensor functor with respect to ⊗.

Proposition 3.10. Assume X may be embedded in a regular variety. The
assignment V 7→ Db

h(DV ) for regular V ⊆ X extends to a generically simple
constructible system on X.9

Proof. Let X֌Y be a closed embedding into a regular k-variety. If we can
prove the statement for Y then we obtain the statement for X . In other words,
we may assume X is regular to start with. Set C(X) = Db

h(DX). Given
V ⊆ X a locally closed subset, choose an open j : U ֌X such that V ⊆ U is
a closed subset. Temporarily denote by C(U)(V ) the full subcategory of C(X)
spanned by objects isomorphic to j!M where M |U\V = 0. We claim that this
is independent of the choice of U . Indeed, if V is already closed in X (one
easily reduces to this case) and M |U\V = 0 then (j!M)|X\V ∼= q!(M |U\V ) = 0,

where q : U\V ֌X\V . This shows that C(U)(V ) ⊆ C(X)(V ). Conversely,
let M ∈ C(X)(V ) so that M |X\V = 0. We need to show that j!j

∗M → M is
invertible, or by Verdier duality, that DM → j∗j∗DM is invertible. The fiber of
this morphism is ΓX\U (DM) and we know that νΓX\U (DM) ∼= ΓX\U (νDM) =

0 since (DM)|X\V = 0. We conclude that C(U)(V ) = C(X)(V ) and we may
unambigously write C(V ) from now on.
Continuing with the same notation, we define a restriction functor |V : C(X)→
C(V ) by sending M to

j! cone(r!r
∗j∗M → j∗M)

where r : U\V ֌U . This is indeed functorial because there is, for f : M →
N , a unique morphism M |V → N |V fitting into a morphism of the obvious
distinguished triangles.10 Exploiting this same fact and using the octahedron
axiom one may show that |V is canonically an exact functor. Moreover, since
|V restricts to the identity functor on C(V ) there is an essentially unique way
of turning C(V ) into a tt-category so that |V is a tt-functor. It is given by
M ⊗C(V ) N := (M ⊗N)|V with unit 1|V .
For two different choices of U there is a canonical isomorphism between the two
restriction functors (by the same argument as in the first paragraph) and from
this one deduces that there is a pseudo-functor C : SubopX → ttCat sending V
to C(V ) and sending an inclusion of locally closed subsets V ⊆ W to the
restriction |WV := (|V )|C(W ) : C(W ) → C(V ). This notation is not too abusive
since for regular V ⊆ X , we have a canonical equivalence C(V ) ≃ Db

h(DV ), by
Kashiwara’s lemma, which is compatible with the restriction functors.

9If the reader accepts that Db
h
(D−) underlies a well-behaved six-functor formalism (e.g.

satisfying the axioms of [2, Définitions 1.4.1, 2.3.1, 2.3.50] restricted to regular varieties) then
there is a standard way of extending it to a well-behaved formalism on Vark. In particular,
the statement of the proposition should hold with Vark instead of SubX . For lack of reference
we proceed instead in an ad-hoc fashion.

10It suffices to show hom(j!r!r
∗j∗M [1], N |V ) = 0, or by adjunction,

hom(r∗j∗M [1], r∗j∗(N |V )) = 0 but r∗j∗(N |V ) is the cone of the isomorphism
r∗r!r

∗j∗N → r∗j∗N hence vanishes.
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We now verify the axioms of a constructible system. For (Loc), let U
j
֌V

i← Z
be an open-closed partition of V , where V ⊆ X is a closed subset. (Again, one
easily reduces to this particular case of the axiom.) In that case X\Z is an
open and we denote by j′ : X\Z֌X the inclusion. Then U ⊂ X\Z is a closed
subset and the restriction |VU : C(V )→ C(U) is given by M 7→ j′! (j

′)∗M which
has a right adjoint N 7→ j′∗(j

′)∗N . The restriction |VZ : C(V ) → C(Z) is given
by M 7→ cone(j′!(j

′)∗M →M) which has a right adjoint given by the inclusion
C(Z)֌C(X). The image is by construction the kernel of |VU .
For (Lisse), let V ⊆ X be a regular subvariety. Under the canonical equiva-
lence Db

h(DV ) ≃ C(V ) we let Cls(V ) be the full subcategory of C(V ) spanned
by complexes whose cohomologies are integrable connections. Equivalently, it

is spanned by objects isomorphic to j!i∗M where V
i
֌U

j
֌X is a factoriza-

tion of a closed and an open immersion, and where M ∈ Db
h(DV ) is lisse in the

sense above. Note that a holonomic D-module M is an integrable connection
iff νM is a vector bundle. Also note that M ∈ Db

h(DV ) is lisse iff its Verdier
dual DM is. It is well-known that every holonomic D-module is generically
lisse thus the first condition in (Lisse). For the second one let f : V ֌W
be an immersion between regular subvarieties of X and let M ∈ Db

h(DW ) be
lisse. Then νDf∗M ∼= νf !DM ∼= Lf∗νDM [df ] (where df = dim(V )−dim(W ))
and the claim follows from the fact that Lf∗ preserves vector bundles. The
last condition follows, using the conservative functor ν, from the fact that the
support of a vector bundle is both open and closed.
To prove (GenS) fix an integral subvariety V ⊆ X with generic point x.
We may clearly assume V is regular. For each open x ∈ U ⊆ V we de-
note by DU -modh the category of holonomic DU -modules and by Dx -modh :=
2-colimUDU -modh the colimit. By [11, Lemma 2.1.1], the canonical func-
tor F : Db(Dx -modh) → Db

h(Dx) is an equivalence of triangulated cate-
gories. Moreover, Dx -modh = DE(x) is the colimit of the k-linear Tannakian
categories of integrable connections DE(U) (with the usual tensor product
over OU ). By Proposition 2.18, we see that the domain of F , the tt-category
Db(DE(x)), is simple. However, F is apriori not a tensor functor so some care
needs to be taken to conclude. Assume ad absurdum that Db

h(Dx) contains a
non-trivial tt-ideal K′, that is, K′ 6= 0,Db

h(Dx). Applying Verdier duality we see
that also Db

h(Dx) with the tensor structure given by ⊗! contains a non-trivial tt-
ideal K := DK′. We will obtain a contradiction by showing that the non-trivial
thick subcategory F−1(K) ⊆ Db(DE(x)) is a tt-ideal. For this it suffices to
show that F−1(K) is closed under tensoring with integrable connections since
these generate Db(DE(x)). Given M ∈ F−1(K) and N ∈ DE(x) choose U ⊆ V
so that M ∈ Db(DE(U)) and N ∈ DE(U). Then we have F (M) ⊗! F (N) ∈ K
and the latter is represented by

F (M)⊗L

OU
F (N)[−d] ∼= F (M ⊗N)[−d].

It follows that F (M ⊗N) ∈ K and we arrive at the required contradiction.
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Remark 3.11. The category DE(x) = 2-colimDE(U) appearing in the proof
is nothing but the category of k(x)-vector spaces with an integrable connection
(M,∇ : M → M ⊗k(x) Ω

1
k(x)/k). They played a role for example in [37; 28].

In particular, there is a canonical fiber functor to k(x)-vector spaces (which
forgets the connection).

Remark 3.12. Restricting to the full subcategoryDb
rh(DX) of complexes whose

total cohomology is a regular holonomic D-module, one obtains another gener-
ically simple constructible system. Moreover, if k = C, it is equivalent to
constructible analytic sheaves, by the Riemann-Hilbert correspondence.

3.4 Mixed Hodge modules

Here we work with complex varieties. For a regular variety Y we denote by
DbMHM(Y ) the bounded derived category of mixed (algebraic) Hodge modules
on Y in the sense of Saito [41]. According to [41, Theorem 0.1] there is a
conservative tt-functor rat : DbMHM(Y ) → Db

c (Y ;Q) which is compatible
with the usual functoriality in Y .

Proposition 3.13. Assume X may be embedded in a regular variety. The
assignment V 7→ DbMHM(V ) for regular V ⊆ X extends to a generically
simple constructible system on X.

Proof. The argument for extending the assignment to a pseudo-functor
Subop

X → ttCat is the same as in Proposition 3.10, using the functor rat in-
stead of ν. The fact that this is a constructible system then follows from
Corollary 2.17 and Proposition 3.7, using again the functor rat. For (GenS)
let V be a connected regular subvariety of X with generic point x. Since filtered
colimits commute with Db (for example by [31, Lemma 2.6]), the canonical tt-
functor Db(MHM(x))→ Db(MHM)(x) is an equivalence. But MHM(x) is the
filtered colimit, over x ∈ U ⊆ V open, of the Q-linear Tannakian categories
VMHSadm(U) of admissible variations of mixed Hodge structures on U [41,
p. 313]. We conclude again with Proposition 2.18.

Remark 3.14. Another example of a generically simple constructible system
should be formed by mixed Hodge modules of geometric origin [42, § 7].

3.5 Motivic sheaves

Let E be a characteristic zero field and denote, for any scheme X , by DM(X ;E)
a ‘good’ category of motivic sheaves on X with coefficients in E. To fix our ideas
we take DM(X ;E) to mean étale motivic sheaves DAét(X ;E) in the sense of [4].
By [19], we could equivalently consider Beilinson motives. Let DMc(X ;E) de-
note the subcategory of constructible motivic sheaves, that is, the thick sub-
category generated by the motives of separated smooth X-schemes and their
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negative Tate twists. Equivalently (at least if X is finite dimensional), these
are precisely the compact objects [4, Proposition 8.3].
Now fix a base field k. Then DMc(k;E) is nothing but Voevodsky’s triangulated
category of geometric motives. Recall that one expects a ‘motivic t-structure’
on DMc(k;E), with heart MM(k;E), the abelian category of mixed motives
over k. This should be a Tannakian category with fiber functors induced by
the classical cohomology theories. More optimistically one might hope that
DMc(k;E) is equivalent to Db(MM(k;E)), which would imply that DMc(k;E)
is a simple tt-category. We refer the reader to [31, § 3] for an extended discussion
of this point. (The main ingredient in proving the simplicity of Db(MM(k;E))
is, as in Proposition 2.18, [31, Theorem 2.4].)
In the sequel we will assume this holds for all fields relevant to the discussion.
Namely, let X be a quasi-projective k-variety.11

Hypothesis 3.15. The tt-category DMc(k(x);E) is simple for every x ∈ X .

In addition we assume that k and E satisfy one of the following two conditions:

(1) k ⊆ C and E is arbitrary, or

(2) ℓ is a prime number invertible in k and E is a finite extension of Qℓ.

In the first case let ℜX : DMc(X ;E)→ Db
c (X ;E) denote the Betti realization [3,

Définition 2.1], and in the second case the étale realization [4, Définition 9.6].
(When both conditions are satisfied, the choice of realization doesn’t matter
for what follows.)

Proposition 3.16. Under Hypothesis 3.15 the pseudo-functor DMc(−;E) is a
generically simple constructible system on X.

Proof. Fix a locally closed subvariety Y ⊆ X . For x ∈ Y the canonical functor

DMc(x;E)
∼−→ DMc(k(x);E) (3.17)

is an equivalence, by [4, Corollaire 3.22]. Therefore, Hypothesis 3.15 implies
directly (GenS). It follows from the equivalence in (3.17) together with [4,
Proposition 3.24] that the family ρx : DMc(Y ;E)→ DMc(x;E) is conservative
when x runs through all points of Y . Since non-trivial tt-functors out of simple
tt-categories are necessarily conservative we deduce that the family ℜx ◦ ρx :
DMc(Y ;E)→ Db

c (x;E) is also conservative, where we denote by ℜx the functor

DMc(x;E) = 2-colimV DMc(V ;E)
2-colimV ℜV−−−−−−−−→ 2-colimV Db

c (V ;E) = Db
c (x;E)

But ℜx ◦ ρx = ρx ◦ ℜY so that ℜY is necessarily conservative too.
Next, the functor DMc(−;E) underlies a fully-fledged six-functor formalism [4,
§ 8], and by [4, Théorème 9.6] and [3, Théorème 3.19], the realization functor ℜ
commutes with the six functors. By the preceding argument, we may now
apply Lemma 2.16 (and Propositions 3.1 and 3.7) to conclude.

11We restrict to quasi-projective varieties only to avail ourselves of convenient references.

Documenta Mathematica 27 (2022) 1739–1772



Supports for Constructible Systems 1755

4 Support theory

We first define, for every generically simple constructible system, a support
theory (Section 4.1). We then show that it is the universal support theory in
the sense of Balmer [6], and we derive consequences (Section 4.2). In particular,
we prove Theorem 1.1 of the introduction.

4.1 The support of a constructible object

Let C : Sop → ttCat be a generically simple constructible system as in Defini-
tion 2.3. Also fix an object X ∈ S.

Definition 4.1. Let M ∈ C(X). We define its support as a subset of the
points of the scheme X :

Supp(M) := {x ∈ X |M /∈ Px}

Remark 4.2. In other words, x /∈ Supp(M) if and only if M vanishes on a lo-
cally closed subset containing x. This follows immediately from the definitions.

Remark 4.3. In the following we will use the constructible topology. For a
topological space T we denote by 2T the set of its subsets. Recall that (at least
for T noetherian) V ∈ 2T is called constructible if it belongs to the Boolean
subalgebra generated by open subsets. Equivalently, if V is a finite union of
locally closed subsets. The constructible topology Xcons on the scheme X is
generated by the constructible subsets [32, 1.9.13]. Hence the open subsets of
Xcons are the unions of locally closed subsets. The closed subsets are intersec-
tions of constructible subsets.
The space Xcons is a Stone space: compact, Hausdorff and totally disconnected.
In fact, it is the image of X under the right adjoint to the inclusion of Stone
spaces into coherent spaces. An open subset of Xcons is (quasi-)compact iff
clopen in Xcons iff constructible in X . It follows that (Xcons)

∗ = Xcons where
(−)∗ denotes the Hochster dual (cf. Example 5.9). In other words, the ‘Thoma-
son subsets’ [6] of Xcons coincide with the open ones.

Proposition 4.4. Let M ∈ C(X). Then Supp(M) ⊆ X is a constructible
subset.

Proof. Let x ∈ Supp(M). We are going to show that there exists a locally
closed subset x ∈ V ⊆ Supp(M). Replacing X by cl(x) and M by M |cl(x), we
may assume X integral with generic point x. Replacing X by an open dense
subset we may assume that X is regular, connected, and that M is lisse. By
the last condition in (Lisse), we then have Supp(M) = X .
This proves that Supp(M) ⊆ Xcons is open. Remark 4.2 implies that
Supp(M) ⊆ Xcons is closed. We conclude with Remark 4.3.
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Lemma 4.5. The map Supp : Obj(C(X)) → 2Xcons is a support datum in the
sense of [6].

Proof. By Proposition 4.4, Supp(M) ⊆ Xcons is closed for everyM ∈ C(X). All
other required properties follow easily from the Px being prime tt-ideals.

Convention 4.6. Of course, we may extend supports to arbitrary sets of ob-
jects K ⊆ C(X):

Supp(K) :=
⋃

M∈K
Supp(M) ⊆ Xcons

Conversely, if V ⊆ Xcons is a subset, we define IV ⊆ C(X) to be the full
subcategory spanned by

{M ∈ C(X) | Supp(M) ⊆ V }.

The following are the ‘easy’ properties of these associations which will subse-
quently be shown to be inverses to each other.

Lemma 4.7. (a) For any set K ⊆ C(X), the subset Supp(K) ⊆ Xcons is open.

(b) For any V ⊆ Xcons, the subcategory IV ⊆ C(X) is a radical tt-ideal.12

(c) For any set K ⊆ C(X) the following inclusion holds:

√
tt(K) ⊆ ISupp(K)

(d) For any subset V ⊆ Xcons, we have

Supp(IV ) ⊆ V,

with equality if V is open.

Proof. The first statement follows immediately from Proposition 4.4. The sec-
ond statement is a consequence of the fact that we have IV =

⋂

x/∈V Px which
is an intersection of prime tt-ideals hence a radical tt-ideal itself. The inclusion
in the third statement follows immediately. The inclusion in the last statement
is obvious. But if V ⊆ Xcons is open and x ∈ V there exists a locally closed
subset W ⊆ XZar with x ∈ W ⊆ V . With the notation of Convention 2.9, we
have 1W ∈

(

∩y/∈V Py

)

\Px which gives the reverse inclusion.

4.2 Classification

Here are our two main results.

12A tt-ideal I is said to be radical if M⊗n ∈ I implies M ∈ I. If I is a tt-ideal, its radical√
I := {M | M⊗n ∈ I} is a radical tt-ideal [6, Lemma 4.2]. More generally, for any set K we

denote by
√

tt(K) the radical tt-ideal generated by K.

Documenta Mathematica 27 (2022) 1739–1772



Supports for Constructible Systems 1757

Theorem 4.8. Let C be a generically simple constructible system on S, and
let X ∈ S. The assignments

T(C(X)) Ω(Xcons)
Supp

∼
I

between T(C(X)), the set of tt-ideals in C(X), and Ω(Xcons), the set of open
subsets of Xcons, are inclusion-preserving inverse bijections.

Corollary 4.9. Let C be a generically simple constructible system on S. The
composite functor

S C−→ ttCat
op Spc−−→ Top

is naturally isomorphic to X 7→ Xcons. In particular, for every X ∈ S we have

Spc(C(X)) ∼= Xcons.

The spectrum Spc(T ) of a tt-category T is the set of prime tt-ideals in T with
a basis of closed subsets given by supp(t) = {P | t /∈ P}. We refer the reader
to [6] where it was introduced; see also Example 5.9.

Remark 4.10. Let X ∈ S. It follows from Theorem 4.8 that every tt-ideal in
C(X) is radical. Indeed, Lemma 4.7 says that IV is a radical tt-ideal for every
subset V ⊆ X .

Proof of Corollary 4.9. By Lemma 4.5 and the universality of Spc proved in [6,
Theorem 3.2], we get, for each X ∈ S, a continuous map φX : Xcons →
Spc(C(X)). Explicitly, it is given by φX(x) = {M ∈ C(X) | x /∈ Supp(M)} =
Px. It follows from Lemma 2.15 that the φX are the components of a nat-
ural transformation φ : (−)cons → Spc ◦C. By Remark 4.10, all tt-ideals in
C(X) are radical. Theorem 4.8 then says precisely that the criterion of [18,
Corollary 5.2] is satisfied so that φX is a homeomorphism.

The remainder of this section is devoted to the proof of Theorem 4.8. We fix
a generically simple constructible system C : Sop → ttCat and X ∈ S. As
in Theorem 4.8, we denote, for a topological space T , the set of open subsets
by Ω(T ). And for a tt-category T , the set of (resp. radical) tt-ideals will be
denoted by T(T ) (resp. R(T )).

Lemma 4.11. Let i : Z֌X be a closed immersion in S, with open complement
j : U ֌X. Then the maps

T(C(X)) −→ T(C(U))× T(C(Z))

R(C(X)) −→ R(C(U))× R(C(Z))

K 7−→ (j∗K, i∗K)
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are bijective. Moreover, the following square commutes (also with T instead
of R):

R(C(X)) Ω(Xcons)

R(C(U))× R(C(Z)) Ω(Ucons)× Ω(Zcons)

∼j∗×i∗

Supp

∼j−1×i−1

Supp× Supp

Proof. Note that j∗ and i∗ being retractions (to j! and i∗, respectively), they
are both full and essentially surjective. It follows that j∗ × i∗ indeed sends a
tt-ideal to a tt-ideal.
Next, for M ∈ C(X) and I ∈ T(C(X)) we have

j∗M ∈ j∗I ⇐⇒ j!j
∗M ∈ I (resp. i∗M ∈ i∗I ⇐⇒ i∗i

∗M ∈ I). (4.12)

Indeed, one direction being obvious, assume j∗M ∈ j∗I. Hence there is N ∈ I
with j∗M = j∗N . By the projection formula of Lemma 2.10 we have

j!j
∗M = j!j

∗N = j!j
∗
1⊗N ∈ I

as required. The same argument applies to the parenthesized statement
in (4.12). Note that the projection formulæ also show that j∗ × i∗ restricts
to radical tt-ideals.
Together with the triangle j!j

∗M → M → i∗i∗M →+ of the recollement (Re-
mark 2.8) we deduce from (4.12) that

M ∈ I ⇐⇒ j∗M ∈ j∗I and i∗M ∈ i∗I

and this easily gives the bijections in the statement. (The inverse to j∗ × i∗ is
given by (L,M) 7→ (j∗)−1(L) ∩ (i∗)−1(M).)
For the commutativity of the diagram, assume I ∈ T(C(X)) and let us show
that Supp(I)∩U = Supp(j∗I). (Again, the argument on Z is the same.) This
follows immediately from the commutative triangle, for each x ∈ U :

C(X) C(x)

C(U)

ρx

j∗ ρx

Proof of Theorem 4.8. In Lemma 4.7 we already showed Supp ◦I = idΩ(Xcons)

and it suffices to show I ◦ Supp = idT(C(X)). Thus let K ∈ T(C(X)) be a
tt-ideal. By Lemma 4.7 again, we know that K ⊆ I ◦ Supp(K), and it suffices
to show the reverse inclusion. So let M ∈ ISupp(K) = ∩K⊆Px

Px, and let us
show that M ∈ K. By Lemma 4.11 and noetherian induction, it suffices to find
a non-empty open subset U ⊆ X such that M |U ∈ K|U ⊆ C(U). Consequently
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we may assume X is regular, connected, and M ∈ Cls(X), by (Lisse). If
M = 0 then certainly M ∈ K so let us assume M 6= 0. If x ∈ X denotes the
generic point then (Lisse) implies that M /∈ Px. In particular, there exists
L ∈ K with L /∈ Px. By simplicity of C(x) we must have ρx(M) ∈ tt(ρx(L))13

and hence, by Lemma 4.13 below, there exists a non-empty open U ⊆ X such
that M |U ∈ tt(L|U ) ⊆ K|U ⊆ C(U). This completes the proof.

The following result is formulated in the language introduced in [29, § 8]. A
special case, enough for our application in the proof of Theorem 4.8, is when
T• is a filtered diagram with 2-colimit T .

Lemma 4.13. Let T• : I → ttCat be a pseudo-functor with I conjoining, and
f : T• → T a pseudo-natural transformation. Assume that f is surjective on
morphisms and detects isomorphisms [29, Definition 8.4]. If a, b ∈ T satisfy
a ∈ tt(b) there exist i and lifts ai ∈ Ti of a and bi ∈ Ti of b, such that ai ∈ tt(bi).

Proof. The relation a ∈ tt(b) means that a can be built from b in finitely many
steps. Each of these steps can be successively lifted to some Ti. (For a similar
argument the reader is referred to the proof of [29, Proposition 8.5].)

5 Monoidal topological reconstruction

In this section we discuss applications of our results in Section 4.2 to recon-
structing varieties X from C(X). In Corollary 4.9 we computed Spc(C(X)) =
Xcons, the underlying set of X with the constructible topology. The identity
map Xcons → XZar exhibits the former as the universal Stone space mapping
to the latter. Conversely, we may recover XZar from Xcons together with the
specialization relations in XZar [35, II.4]. Our first goal (Section 5.1) is to for-
malize this last process for tt-categories and their spectra. In Section 5.2 we
specialize to generically simple constructible systems and prove Theorem 1.2
of the introduction.

5.1 The smashing spectrum

Remark 5.1. We start with an informal account of what the ensuing (rather
abstract) discussion is supposed to achieve. Let U ⊆ XZar be an open sub-
set. Then there is an object 1U ∈ C(X) that, as we will prove in Sec-
tion 5.2, is characterized by the following three properties: (1) Its support
is precisely U , (2) it comes with a morphism µU : 1U → 1, and (3) the mor-
phism µU ⊗ id : 1U ⊗ 1U

∼−→ 1U is invertible. We call µU : 1U → 1 an
open idempotent if it exhibits 1U as a ⊗-idempotent as in the last condition.
An open idempotent µU ′ that factors through µU is ‘smaller’. Indeed, this is
equivalent to U ′ ⊆ U . And if we restrict to complements of irreducible closed
subsets we obtain the specialization relation on the points of XZar. In fact, we

13Here, tt(S) denotes the tt-ideal generated by a set S.

Documenta Mathematica 27 (2022) 1739–1772



1760 M. Gallauer

may recover XZar directly by letting the open subsets be the supports of open
idempotents.
This makes sense in general tt-categories T . Open idempotents form a dis-
tributive lattice, and we call the associated spectrum the smashing spectrum
of T and denote it by Spc∧(T ). (The name is justified by the correspondence
between idempotents and smashing tt-ideals which we recall.) Under certain
restrictive hypotheses on T , the canonical map Spc(T ) → Spc∧(T ) exhibits
the former as the universal Stone space mapping to the latter. In particular,
in the case of T = C(X), we recover the canonical map Xcons → XZar.
Many other works have explored similar ideas, notably [17; 8; 9; 27].

Convention 5.2. Throughout this section T denotes an essentially small tt-
category.

Remark 5.3. We feel the need to accompany Convention 5.2 with a ‘warn-
ing’. Originally, smashing ideals were studied mostly in the context of rigidly
compactly generated tt-categories, particularly the stable homotopy category
in algebraic topology. In that context there are few smashing ideals in the
subcategory of compact (equivalently, rigid) objects. In other words, the idem-
potents are typically not compact. Nevertheless, there are small tt-categories
in which the set of smashing ideals is informative, and it is these that we are
ultimately interested in. For a more precise ‘warning’ see Remark 5.15.

A convenient modern reference for the next couple remarks is [8] (except, again,
that we don’t assume our triangulated categories to be closed under coprod-
ucts).

Convention 5.4. Recall that a tt-idealK is called smashing if it is the kernel of
a Bousfield localization L : T → T and if the right orthogonal complement K⊥

is a tt-ideal as well. We obtain an exact triangle ∆K of endofunctors Γ→ id→
L with Γ a colocalization, and the relations

ker(Γ) = im(L) = K⊥, ker(L) = im(Γ) = K.

Remark 5.5. Of particular interest is the evaluation of ∆K at the unit 1. The
triangle

∆K(1) = (u := Γ1→ 1→ L1 =: z)

is idempotent in the sense that u ⊗ u ∼−→ u and z

∼−→ z ⊗ z. We call u → 1

(or just u) the open idempotent and 1 → z (or just z) the closed idempotent.
Conversely, starting with, say, an open idempotent u→ 1, the completed exact
triangle

u→ 1→ z

is idempotent and defines a smashing ideal ker(z ⊗ −) = tt(u) = u⊗ T . (We
sometimes denote the closed idempotent complementary to an open idempotent
by u

⊥ := z, and similarly ⊥
z := u.) This sets up a 1-to-1 correspondence
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between smashing ideals S(T ), open idempotents U(T ) (up to isomorphism)
and closed idempotents Z(T ) (up to isomorphism). Here, a morphism u→ u

′

of open idempotents is a morphism which makes the obvious triangle commute,
and similarly for closed idempotents.

Lemma 5.6. Let u,u′ be two open idempotents with complementary closed
idempotents z, z′, respectively. The following are equivalent:

(i) There exists a morphism of open idempotents u→ u

′.

(ii) u ∈ tt(u′)

(iii) u⊗ z′ = 0

(iv) u⊗ u′ ∼−→ u

Moreover, if these conditions are satisfied then there is a unique morphism of
open idempotents u→ u

′.

Proof. The last three conditions are clearly equivalent, and they yield a mor-
phism of open idempotents u

∼← u ⊗ u′ → u

′. Conversely, assume u → u

′

is such a morphism of open idempotents and let us prove that u ⊗ z′ = 0.
Consider the exact sequence

hom(u⊗ z′, z[−1]⊗ z′)→ hom(u⊗ z′,u⊗ z′)→ hom(u⊗ z′, z′).

The first term vanishes and the canonical morphism u⊗ z′ → z

′ is zero since
it factors through u′ ⊗ z′ = 0 thus the claim.
Uniqueness of a morphism u → u

′ of open idempotents follows from the fact
that the group hom(u, z′[−1]) ∼= hom(u⊗ u′, z′[−1]) vanishes.

Remark 5.7. Define meet and join operations on smashing ideals in terms of
their associated idempotents:

K ∧ K′ = tt(u(K)⊗ u(K′)), K ∨ K′ = ker(z(K) ⊗ z(K′)⊗−).

In fact, with obvious orderings of open and closed idempotents the correspon-
dence of Remark 5.5 yields isomorphisms of lattices S(T ) ∼= U(T ) ∼= Z(T ) [8,
Proposition 3.11].

Convention 5.8. Recall that a distributive lattice is a non-empty poset
(viewed as a category) which has finite limits and colimits and these distribute.
A morphism of distributive lattices is an exact functor. They thus form a
category denoted DLat.
The initial distributive lattice is the ordered set 2 = {0, 1}. The spectrum of a
distributive lattice A is the set of morphisms

Spec(A) := homDLat(A,2)
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with the topology generated by sets of the form

supp(a) := {p | p(a) = 1}, a ∈ A.

This sets up an anti-equivalence between distributive lattices and the category
CohSp of coherent spaces with coherent maps [35, Corollary II.3.4]. The inverse
functor is given by sending a coherent space X to the lattice of its quasi-compact
open subsets.

Example 5.9. The set of radical tt-ideals R(T ) ordered by inclusion is a dis-
tributive lattice. In fact, it is a compactly generated poset whose compact
objects form a distributive lattice. In particular, it satisfies an infinite form
of distributivity (it is a coherent frame). To see this, note that the inclusion
R(T )֌T(T ) admits a left adjoint

√
− and that T(T ) is clearly a compactly

generated poset. (It is the Ind-completion of the lattice of finitely generated tt-
ideals.) Moreover, as the directed union of radical tt-ideals is radical, it follows
that R(T ) is compactly generated, with compact objects Rc(T ) the radicals of
finitely generated tt-ideals.
A morphism of distributive lattices p : Rc(T ) → 2 extends uniquely to a
colimit preserving exact functor p̄ : R(T )→ 2 which may be identified with its
kernel (p̄)−1(0) ⊆ R(T ). The latter is a prime ideal and hence principal (as in
every frame) thus a further identification with a radical ideal in T and this is
easily seen to be a prime ideal in T . Therefore, the spaces Spec(Rc(T )) and
Spc(T ) have the same underlying set. Their topologies are dual in the sense
of Hochster [34], that is, they correspond to each other under the equivalence
X 7→ X∗ which fits into the following commutative square:

DLatop CohSp

DLatop CohSp

∼

∼(−)op ∼ (−)∗

∼

Lemma 5.10. The lattice of smashing ideals S(T ) is distributive, and K 7→
√
K

defines an injective homomorphism of distributive lattices
√
− : S(T )→ Rc(T ).

Proof. We factor the functor in the statement as S(T )֌Tc(T )
√
−−−→ Rc(T )

and note that, by Example 5.9, the second functor is exact. For the first
functor we need to show that K ∧ K′ = K ∩ K′ and K ∨ K′ = K + K′ for any
smashing ideals K,K′. In each case, only one inclusion requires proof. Thus let
t ∈ K ∩ K′. We then have u⊗ t

∼−→ t and u′ ⊗ t
∼−→ t (with hopefully obvious

notation), and therefore u⊗ u′ ⊗ t
∼−→ t hence t ∈ K ∧K′. Now let t ∈ K ∨K′,

that is, z ⊗ z′ ⊗ t = 0. Let u ∨ u′ be the open idempotent complementary to
z⊗ z′. By [8, Theorem 3.13], we have an exact Mayer-Vietoris triangle

u⊗ u′ ⊗ t→ (u⊗ t)⊕ (u′ ⊗ t)→ (u ∨ u′)⊗ t, (5.11)
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and the last term is isomorphic to t. But the first term is in K ∩ K′ and the
second is in K +K′ thus the claim.
For distributivity in S(T ), and with analogous notation, we need to show that

(u ∨ u′)⊗ u′′ ∈ K ∩K′′ +K′ ∩ K′′.

Replacing t by u′′ in the triangle (5.11), the claim follows.
Finally, we show that

√
− : S(T ) → Rc(T ) is injective. This amounts to

the following claim. If α : u → u

′ is a morphism of open idempotents, with
u

′ ∈
√

tt(u) then α is invertible. But as u′ is an idempotent, u′ ∈
√

tt(u)
implies u′ ∈ tt(u) and the claim follows from Lemma 5.6.

Definition 5.12. The smashing spectrum of T is the spectrum of the lattice
of smashing ideals:

Spc∧(T ) := Spec(S(T ))
In other words, the underlying set consists of the homomorphisms p : S(T )→ 2

and a basis for the topology is given by the sets {p | p(K) = 1} for K ∈ S(T ).

We spell out some direct consequences of the definition.

Proposition 5.13. (a) The space Spc∧(T ) is coherent.

(b) The association T 7→ Spc∧(T ) extends to a functor Spc∧ : ttCatop →
CohSp.

(c) There is a canonical natural transformation of functors ǫ : Spc→ Spc∧.

Proof. The first statement is clear. On the other hand, the association
T 7→ S(T ) defines a functor ttCat → DLat, acting on tt-functors F : T → T ′

by sending a closed (say) idempotent z ∈ T to F (z) ∈ T ′, thus the second
statement. Moreover, the association T 7→ Rc(T ) similarly defines a functor
ttCat → DLat, acting on tt-functors F : T → T ′ by sending K to

√
tt(F (K)).

It is then clear that the homomorphism
√
− : S→ Rc of Lemma 5.10 defines a

natural transformation. Composing with the spectrum equivalence we obtain
a natural transformation

ǫ : Spec(Rc(−))→ Spec(S(−)) = Spc∧(−)

and it suffices to show that ǫT is coherent also for the dual topology Spc(T ) (Ex-
ample 5.9). But given a smashing ideal K ∈ S(T ) corresponding to the idempo-
tent triangle u→ 1→ z we have ǫ−1

T (supp(K)) = supp(u) = Spc(T )\ supp(z)
which is a quasi-compact open in the dual topology.

Remark 5.14. Consider a pair (X, σ) where X is a topological space and σ
a function that assigns to a smashing ideal K ∈ S(T ) a subset σ(K) ⊆ X .
It is called a support datum on S(T ) if σ is a lattice homomorphism to
the frame Ω(X) of open subsets. By the Spec-Ω adjunction [35, Theo-
rem II.1.4], σ is the same as a continuous map X → Spc∧(T ). In other words,
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(Spc∧(T ), supp) is the universal support datum on S(T ). This is analogous
to [6, Theorem 3.2] or [18, Theorem 4.3]. It follows that it is also classifying,
that is, the analogues of [6, Theorem 4.10] or [18, Corollary 5.2] hold.

Remark 5.15. In general the smashing spectrum can be a rather poor invari-
ant. For example as seen in the proof of Proposition 5.13, if Spc(T ) is connected
then Spc∧(T ) is a singleton space. The following definition singles out a class
of tt-categories T for which Spc∧(T ) is at least as rich an invariant as Spc(T ).

Definition 5.16. If u is an open idempotent and z is a closed idempotent then
we call the tensor product u⊗z a locally closed idempotent. We say that T has
enough idempotents if every tt-ideal is generated by locally closed idempotents.

Lemma 5.17. Assume T has enough idempotents. Then Spc(T ) is equal to its
dual Spc(T )∗ = Spec(Rc(T )). In particular, it is a Stone space.

Proof. Let t ∈ T and consider supp(t) ⊆ Spc(T ) =: X . By our assumption,
we have tt(t) = tt(u1 ⊗ z1, . . . ,un ⊗ zn) for some locally closed idempotents
ui ⊗ zi, hence

supp(t) =
⋃

i

supp(ui) ∩ supp(zi) =
⋃

i

X\ supp(u⊥
i ) ∩X\ supp(⊥zi).

This shows that every quasi-compact open in Spc(T )∗ is also quasi-compact
open in Spc(T ). By duality, we have Spc(T ) = Spc(T )∗. In particular, every
quasi-compact open is also closed hence the space is Stone.

Proposition 5.18. Assume that T has enough idempotents. Then the map
ǫ : Spc(T ) → Spc∧(T ) is a bijection and exhibits the former as the universal
Stone space mapping to the latter.

Proof. The fact that Spec(Rc(T )) is Stone (Lemma 5.17) says precisely that
Rc(T ) is a Boolean algebra [35, Corollary II.4.4]. Thus the homomorphism√
− : S(T )→ Rc(T ) factors uniquely through the free Boolean algebra β S(T )

on the distributive lattice S(T ). The conclusion of the proposition is precisely
that the homomorphism of Boolean algebras

f̄ : β S(T )→ Rc(T )

is bijective. (Here, we use that Spc(T ) = Spec(Rc(T )), by Lemma 5.17).
For surjectivity of f̄ , let K ∈ Rc(T ) so that K is the radical of a finitely
generated tt-ideal. By our assumption, we may choose these generators to be
locally closed idempotents ui ⊗ zi. Letting β(u) ∈ β S(T ) denote the image of
the smashing ideal tt(u) in β S(T ), we find that f̄ maps

∨

i

β(ui) ∧ β(⊥zi)
⊥

to K. Injectivity of f̄ follows from Lemmata 5.10 and 5.19.
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Lemma 5.19. Let f : A֌B be an injective homomorphism of distributive
lattices with B a Boolean algebra. Assume that the induced homomorphism
f̄ : βA։B is surjective. Then f̄ is an isomorphism.

Proof. Let ā ∈ ker(f̄). Then ā =
∨

i β(ai) ∧ β(bi)
⊥ for some ai, bi ∈ A. As

f̄(ā) = 0 we must have f̄(β(ai))∧ f̄(β(bi))⊥ = 0 for each i, which is equivalent
to

f(ai ∧ bi) = f(ai) ∧ f(bi) = f(ai).

By injectivity of f we obtain ai ∧ bi = ai and hence β(ai) ∧ β(bi)
⊥ = 0 as

required.

5.2 Classification

We apply the constructions and results of Section 5.1 to generically simple
constructible systems C. For simplicity we will assume that all schemes X ∈ S
are varieties over some field k. In addition, we will assume that C satisfies the
following ‘Lefschetz type’ assumption. Let n ∈ Z and X ∈ S a variety. We
denote by Hn(X) the group homC(X)(1,1[n]).

• (0-Lef) For all integral curves V ∈ S, H−1(V ) = 0 and if U ⊆ V is a
dense open subset then H0(V )→ H0(U) is a monomorphism.

Remark 5.20. All examples in Section 3 satisfy (0-Lef). Indeed, when X is
regular the groups Hn(X) may be identified with, respectively, the Betti, ℓ-
adic, de Rham, absolute Hodge, and motivic cohomology of X in degree n (and
weight 0), and these conditions are then easy properties of the cohomology
theories. Namely, the cohomology groups vanish in negative degrees and the
0th cohomology group only depends on the number of connected components.
For Betti and ℓ-adic cohomology such an identification continues to hold for
general varieties. For motivic sheaves the precise (expected) formula for these
groups on general schemes is computed in [4, Proposition 11.1]. For curves,
all that is required is (besides localization) finite base change, more precisely
that f∗ commutes with restriction along open and closed immersions for f
finite (namely, the normalization of the curve; see last paragraph on p. 98
in loc. cit.). One either already believes that holonomic D-modules and mixed
Hodge modules satisfy finite base change or it is a (lengthy but) straightforward
exercise to deduce it from base change for finite morphisms between regular
varieties.

The following two results are our principal findings in this section.

Theorem 5.21. Let C be a generically simple constructible system on S satis-
fying (0-Lef). The composite functor

S C−→ ttCatop
Spc∧−−−→ Top
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is naturally isomorphic to X 7→ XZar. In particular, for every X ∈ S we have

Spc∧(C(X)) ∼= XZar.

Corollary 5.22. Let X ∈ Vark be a proper normal variety of dimension at
least two and assume k is uncountable algebraically closed of characteristic zero.
Let C be a generically simple constructible system on X satisfying (0-Lef).
Then the scheme X is completely determined by the tt-category C(X).

Proof. This follows from Theorem 5.21 together with [38, Theorem 5.1.2].

Remark 5.23. Let us compare Theorem 5.21 with [38, Proposition 5.4.5].
There, the authors reconstruct XZar from the abelian category of constructible
sheaves on X , without the tensor structure. Since this category forms the heart
of the bounded derived constructible category, we may see the tensor structure
in our work as playing the role of the t-structure in theirs. Another difference
between these two results is that we insist on characteristic zero fields as co-
efficients, while their argument also works with coefficients in a finite field.14

On the other hand, our result applies to other theories besides constructible
sheaves, and the reconstruction is arguably more systematic, obtained as a
consequence of classification results for these tensor triangulated categories.

Remark 5.24. Let X ∈ Vark be as in Corollary 5.22. It is natural to ask to
what extent the scheme X is determined by the triangulated category C(X)
without the tensor structure. This is in the spirit of Bondal-Orlov’s reconstruc-
tion theorem regarding the bounded derived category of coherent sheaves [15].
Similarly, it would be interesting to study the group of autoequivalences of the
triangulated category C(X).

Remark 5.25. Let f : X → Y be a universal homeomorphism between alge-
braic k-varieties. In the theories C considered in Section 3, the induced functor
f∗ : C(Y )→ C(X) is an equivalence of tt-categories. On the other hand, mere
homeomorphisms can fail to induce equivalences. For example, let Y be the
nodal curve y2 = x3+x2 over C and Y nor = A1

C
its normalization. Denote by X

the open subscheme of Y nor with one of the preimages of the singular point
in Y removed. The induced morphism f : X → Y is a Zariski homeomorphism
(but not universally closed). If the functor f∗ : Db

c (Y ;Q)→ Db
c (X ;Q) were an

equivalence, its quasi-inverse would have to be f∗. However, one easily checks
that f∗1 6∼= 1.

The rest of the section is devoted to proving Theorem 5.21. Fix X ∈ Vark
and C a generically simple constructible system on X satisfying (0-Lef).

Remark 5.26. Let K ⊆ C(X) be a tt-ideal. By Theorem 4.8, its support is a
union of locally closed subsets Vi of XZar, i ∈ I. It follows that K = tt(1Vi

|
14Strictly speaking, their statement also imposes further restrictions on the field k and the

variety X. However, these don’t seem to enter the argument.
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i ∈ I) (recall Remark 4.10). In other words, the tt-category C(X) has enough
idempotents in the sense of Definition 5.16. Proposition 5.18 and Corollary 4.9
then tell us that the underlying set of Spc∧(C(X)) is the set of points of X
(and such that the Boolean algebra generated by its opens is the constructible
topology). So, our goal is to show that the only open idempotents in C(X) are
of the form 1U → 1 where U ⊂ X is a Zariski open subset.

We start with the following simple observation.

Lemma 5.27. Let z be a closed idempotent in C(X) with Supp(z) = U ⊆
XZar an open subset. Then there exists an isomorphism z

∼= 1U such that the
composite 1U → 1→ z

∼= 1U is the identity.

Proof. Consider the following commutative square

1U ⊗ z z

1U 1

where all morphisms are the obvious ones. By our assumption and Corollary 4.9
we know supp(1U ) = supp(z) which implies that the left vertical arrow and
the top horizontal arrow are both invertible.

Proposition 5.28. Let u be an open idempotent in C(X). Then Supp(u) is
an open subset of XZar.

Proof. We find it more convenient to work with the associated closed idempo-
tent z. Let V = Supp(z) and let V̄ be the closure of V . Then zV̄ ∼= z hence we
may replace X by V̄ and assume that V is dense in X . To show that V = X
we may assume X is integral. Indeed, if X ′ ⊆ X is an irreducible component
then z|X′ is a closed idempotent in C(X ′) with support Supp(z|X′ ) = V ∩X ′.
We proceed by induction on the dimension of X . By constructibility, V con-
tains a dense open subset U of X . If dim(X) = 0 then X is discrete and there
is nothing to show. If dim(X) = 1 then V is a dense open, with closed com-
plement Z. By Lemma 5.27, we have a retraction 1 → 1V to the canonical
morphism 1V → 1 and thus a section 1Z → 1 to the canonical morphism
1 → 1Z . By adjunction, this section corresponds to a morphism 1 → i∗i!1
where i : Z֌X denotes the closed embedding. Consider the long exact se-
quence induced by the second triangle in Remark 2.8,

· · · → H−1(V )→ H0(X,Z)→ H0(X)→ H0(V )→ · · · ,

where H0(X,Z) := hom(1, i∗i!1). By (0-Lef), the first term vanishes and the
penultimate arrow is a monomorphism. We conclude that the section 1Z → 1

is zero and so V = X as desired.
We now assume dim(X) > 1. Since V being closed is a local property we may
assume X = Spec(A) is affine. It follows that there are at most finitely many
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primes p1, . . . , pn of height 1 not in V . Let m be a maximal ideal in A. In
particular, m cannot be contained in one of the pi. By the prime avoidance
lemma, there exists f ∈ m\ (p1 ∪ · · · ∪ pn). Choose a minimal prime f ∈ q ⊆
m. By Krull’s Hauptidealsatz, q is of height 1. Therefore it belongs to V .
Let X ′ := cl(q) and set z′ := z|X′ . Our induction hypothesis applied to
(X ′, z′) implies that V contains cl(q), so in particular m ∈ V . This shows
that the constructible subset V contains all maximal ideals of A and hence
V = Spec(A) = X as required (A is Jacobson).

Proof of Theorem 5.21. From Corollary 4.9 and Proposition 5.13 we deduce
a natural transformation (−)cons → Spc∧(C(−)) of functors S → Top. As
explained in Remark 5.26, it is componentwise bijective and the only thing
that remains to be shown is that the support of every open idempotent in
C(X) is Zariski open. This was shown in Proposition 5.28.
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