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Abstract. The goal of this article is to compute the Gerstenhaber
bracket of the Hochschild cohomology of the Fomin-Kirillov algebra on
three generators over a field of characteristic different from 2 and 3.
This is in part based on a general method we introduce to easily
compute the Gerstenhaber bracket between elements of HH0(A) and
elements of HHn(A) for n ∈ N0, the method by M. Suárez-Álvarez in
[8] to calculate the Gerstenhaber bracket between elements of HH1(A)
and elements of HHn(A) for any n ∈ N0, as well as an elementary re-
sult that allows to compute the remaining brackets from the previous
ones. We also show that the Gerstenhaber bracket of HH•(A) is not
induced by any Batalin-Vilkovisky generator.
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1 Introduction

The goal of this article is to completely compute the Gerstenhaber bracket of
the Hochschild cohomology HH•(A) of the Fomin-Kirillov algebra A on three
generators over a field k of characteristic different from 2 and 3. In the paper
[3] we have computed the algebra structure on HH•(A), and we showed that
it is a finitely generated graded algebra with a minimal set {Xi|i ∈ J1, 14K}
of 14 generators, three of which are in HH0(A), five are in HH1(A), four are
in HH2(A), one in HH3(A) and one in HH4(A). In this article we compute
the Gerstenhaber bracket between these generators, which fully determines the
Gerstenhaber bracket on HH•(A).
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Our calculations are organised as follows. First we provide a general method
of homological flavour to easily compute the Gerstenhaber bracket between el-
ements of HH0(A) and elements of HHn(A) for any n ∈ N0 and any algebra A
over a field k (see Theorem 2.7). We then use this method for the partic-
ular case of the Fomin-Kirillov algebra A on three generators over a field of
characteristic different from 2 and 3 (see Proposition 4.4). Secondly, for A
as before, we compute the Gerstenhaber bracket between elements of HH1(A)
and elements of HHn(A) for any n ∈ N0 using the method introduced by M.
Suárez-Álvarez in [8] (see Propositions 4.5 and 4.10). Finally, we present a
simple result that allows us to compute the remaining Gerstenhaber brackets
under some assumptions on the algebra structure of the Hochschild cohomology
of an algebra (see Lemma 4.12), which are verified in the case of the Fomin-
Kirillov algebra A on three generators over a field of characteristic different
from 2 and 3 (see Proposition 4.14). We summarize our results in Table 4.1.
By using the explicit expression of the Gerstenhaber bracket of HH•(A) to-
gether with a direct computation, we show that the former is not induced by
any Batalin-Vilkovisky generator (see Proposition 4.15).

The article is organised as follows. In the first subsection of Section 2 we recall
some general facts about the Gerstenhaber bracket on Hochschild cohomology.
In Subsection 2.2 we present our general method to compute the Gerstenhaber
bracket between elements of HH0(A) and elements of HHn(A) for any n ∈
N0, whereas in Subsection 2.3 we recall the method of [8] to compute the
Gerstenhaber bracket between elements of HH1(A) and elements of HHn(A)
for any n ∈ N0. In Section 3 we recall the definition of the Fomin-Kirillov
algebra on three generators, and we summarize some results of [3] about its
Hochschild cohomology, in particular those we are going to use in the sequel.
Finally, in Section 4 we compute the Gerstenhaber brackets of the generators
of the algebra structure of the Hochschild cohomology of the Fomin-Kirillov
algebra A on three generators, following the path described in the previous
paragraph.

In the whole article, we will denote by N (resp., N0) the set of positive (resp.,
nonnegative) integers, and Z the set of integers. Moreover, given i, j ∈ Z we
define the integer interval Ji, jK = {n ∈ Z|i 6 n 6 j}. To reduce space in
the expressions of the article we will typically denote the composition f ◦ g of
maps f and g simply by their juxtaposition fg. For a field k, all maps between
k-vector spaces will be k-linear and all unadorned tensor products ⊗ will be
over k.

We would like to thank the referee for the careful reading of the article.

2 The Gerstenhaber bracket on Hochschild cohomology

All along this section we will consider k to be a field and A to be a (unital
associative) k-algebra.
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2.1 Generalities on the Gerstenhaber bracket

In this subsection we recall several basic definitions and results concerning the
Gerstenhaber bracket, that we will utilize in the sequel.
Recall that the bar resolution (B•(A), d•) of A is given by Bn(A) = A⊗(n+2)

for n ∈ N0, with the differentials dn : Bn(A) → Bn−1(A) given by

dn(a0| . . . |an+1) =

n
∑

j=0

(−1)ja0| . . . |aj−1|ajaj+1|aj+2| . . . |an+1

for a0, . . . , an+1 ∈ A and n ∈ N, and the augmentation π : B0(A) = A⊗A → A
defined by the multiplication of A. We will typically write a0| . . . |an+1 instead
of a0 ⊗ · · · ⊗ an+1 for simplicity. There is an isomorphism

F : HomAe

(

Bn(A), A
)

−→ Homk(A
⊗n, A)

given by F (f)(a1| . . . |an) = f(1|a1| . . . |an|1) for f ∈ HomAe(Bn(A), A) and
a1, . . . , an ∈ A. The inverse map

G : Homk(A
⊗n, A) −→ HomAe

(

Bn(A), A
)

of F is explicitly given by G(g)(a0| . . . |an+1) = a0g(a1| . . . |an)an+1 for g ∈
Homk(A

⊗n, A) and a0, . . . , an+1 ∈ A.
The following definition is classical (see for instance [10], Def. 1.4.1).

Definition 2.1. Let m,n ∈ N0, f ∈ Homk(A
⊗m, A) and g ∈ Homk(A

⊗n, A).
The Gerstenhaber bracket [f, g] is defined at the chain level as the element
of Homk(A

⊗(m+n−1), A) given by

[f, g] = f ◦G g − (−1)(m−1)(n−1)g ◦G f,

where f ◦G g is defined by

(f ◦G g)(a1| . . . |am+n−1)

=
m
∑

i=1

(−1)(n−1)(i−1)f
(

a1| . . . |ai−1|g(ai| . . . |ai+n−1)|ai+n| . . . |am+n−1

)

.

Moreover, if m = 0, then f ◦G g = 0, while if n = 0, then the formula should
be interpreted by taking the value g(1) in place of g(ai| . . . |ai+n−1).

Using the isomorphisms F and G of chain complexes given above, one
defines the Gerstenhaber bracket in HomAe(B•(A), A) by [f, g] =
G([F (f), F (g)]) ∈ HomAe(Bm+n−1(A), A) for f ∈ HomAe(Bm(A), A), g ∈
HomAe(Bn(A), A) and m,n ∈ N0. The Gerstenhaber bracket given before
induces a well-defined bilinear map

[ , ] : Hm
(

HomAe(B•(A), A)
)

×Hn
(

HomAe(B•(A), A)
)

−→ Hm+n−1
(

HomAe(B•(A), A)
)
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1776 E. Herscovich, Z. Li

for all m,n ∈ N0, that we also call the Gerstenhaber bracket.
More generally, let (P•, ∂•) be a projective bimodule resolution over A with
augmentation µ : P0 → A. Let i• : P• → B•(A) and p• : B•(A) → P•

be morphisms of complexes of A-bimodules lifting idA, so p•i• is homotopic to
idP•

and i•p• is homotopic to idB•(A). We also recall that the morphisms i• and
p• induce the quasi-isomorphisms i∗• : HomAe(B•(A), A) → HomAe(P•, A) and
p∗• : HomAe(P•, A) → HomAe(B•(A), A) given by i∗•(f) = fi• and p∗•(g) = gp•
for f ∈ HomAe(B•(A), A) and g ∈ HomAe(P•, A), respectively. Moreover,
H(i∗•),H(p

∗
•) : HH

•(A) → HH•(A) are independent of the choice of i• and p•.
The Gerstenhaber bracket

[ , ] : Hm
(

HomAe(P•(A), A)
)

×Hn
(

HomAe(P•(A), A)
)

−→ Hm+n−1
(

HomAe(P•(A), A)
)

for all m,n ∈ N0 is then defined by transport of structures. More gener-
ally, given cocycles f ∈ HomAe(Pm, A) and g ∈ HomAe(Pn, A), we define the
Gerstenhaber bracket [f, g] ∈ Hm+n−1(HomAe(P•, A)) ∼= HHm+n−1(A) as the
cohomology class of i∗•([p

∗
•(f), p

∗
•(g)]).

The following properties of the Gerstenhaber bracket are classical (see for in-
stance [2], equation (2), cf. [10], Lemmas 1.4.3 and 1.4.7).

Lemma 2.2. Let k be a field and A a k-algebra. Then

[x, y] = −(−1)(m−1)(n−1)[y, x],

[x, [y, z]] = [[x, y], z] + (−1)(m−1)(n−1)[y, [x, z]],
(2.1)

and

[x ⌣ y, z] = [x, z] ⌣ y + (−1)m(p−1)x ⌣ [y, z] (2.2)

for all x ∈ HHm(A), y ∈ HHn(A) and z ∈ HHp(A), where ⌣ denotes the cup
product.

Remark 2.3. To avoid any confusion, we remark that the definition of cup
product on Hochschild cohomology in the previous result is the one given in
[2], Section 7. Explicitly, at the level of the bar resolution it is given by
(f⌣g)(a1, . . . , am+n) = f(a1, . . . , am)g(am+1, . . . , am+n), for a1, . . . , am+n ∈
A, f ∈ Homk(A

⊗m, A) and g ∈ Homk(A
⊗n, A). A different convention, in the

spirit of Koszul’s sign rule, includes a sign (−1)mn (see [10], Def. 1.3.1 and
Rk. 1.3.3). To reduce space we will denote the cup product simply by juxtapo-
sition.

The previous result is typically rephrased by stating that the Hochschild co-
homology is a Gerstenhaber algebra, i.e. a graded-commutative alge-
bra H = ⊕n∈N0H

n endowed with a bracket [ , ] : H ⊗ H → H satisfying
[Hm, Hn] ⊆ Hm+n−1 for m,n ∈ N0, (2.1) and (2.2).
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Assume for the rest of this subsection that A is graded, i.e. there exist k-
vector subspaces {An}n∈Z of A such that A = ⊕n∈ZAn, and Am ·An ⊆ Am+n

for all m,n ∈ Z. Recall that a left A-module M is called graded if there are k-
vector subspaces {Mn}n∈Z ofM such thatM = ⊕n∈ZMn and Am·Mn ⊆ Mm+n

for all m,n ∈ Z. Given two graded left A-modules M and N , a morphism
f : M → N of left A-modules is called homogeneous of degree d ∈ Z if
f(Mn) ⊆ Nn+d for all n ∈ Z. Let HomA(M,N) be the k-vector space consisting
of all morphisms of left A-modules from M to N . Let

HomA(M,N) =
⊕

d∈Z

HomA(M,N)d,

be the graded k-vector space, where HomA(M,N)d is the subspace of
HomA(M,N) consisting of all homogeneous morphisms of degree d.
The following result is classical (see [5], Cor. 2.4.4).

Lemma 2.4. If M is a finitely generated graded module over a graded algebra A,
then HomA(M,N) = HomA(M,N).

Corollary 2.5. Let (P•, ∂•)

· · ·
∂3−→ P2

∂2−→ P1
∂1−→ P0

µ
−→ A −→ 0

be a projective bimodule resolution of a graded k-algebra A, where Pi is finitely
generated as left Ae-module for i ∈ N0, and µ and ∂i are homogeneous of
degree 0 for i ∈ N. Then HomAe(Pi, A) = HomAe(Pi, A) for i ∈ N0. Hence, the
Hochschild cohomology HH•(A) ∼= ⊕i∈N0 H

i(HomAe(P•, A)) of A is a bigraded
algebra, for the cohomological degree i and the internal degree induced by that
of A and P•. Moreover, the cup product and the Gerstenhaber bracket on
HH•(A) preserve the internal degree.

Remark 2.6. The existence of a projective bimodule resolution of the graded
k-algebra A satisfying the conditions of the previous corollary clearly holds if
the graded k-algebra Ae is noetherian (e.g. if A is finite dimensional over k).

2.2 Method computing the bracket between HH0(A) and HHn(A)

In this subsection we introduce an elementary method to compute the Gersten-
haber bracket between the cohomology groups HH0(A) and HHn(A) for n ∈ N0

of any algebra A using any projective bimodule resolution of A (see Thm. 2.7).
We were unable to explicitly find this method in the existing literature (see
Remark 2.12), although we suspect it could be well known to the experts.
Let ρ be an element of the center Z(A) ∼= HH0(A) of A and ℓρ ∈
HomAe(B0(A), A) be the morphism defined by ℓρ(1|1) = ρ. Let (P•, ∂•) be
a projective bimodule resolution over A with augmentation µ : P0 → A, and
let i0 : P0 → B0(A) be the 0-th component of a morphism i• : P• → B•(A)
of complexes of A-bimodules lifting idA. The main aim of this subsection is
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to prove the following theorem, that tells us that we can compute the Ger-
stenhaber bracket between HH0(A) and HHn(A) for n ∈ N0 using a simple
homological procedure on any projective bimodule resolution of A.

Theorem 2.7. Consider the same assumptions as in the previous paragraph.
Let ηn : Pn → Pn be the map given by ηn(v) = ρv − vρ for v ∈ Pn and n ∈ N0.
Since η• = {ηn : Pn → Pn}n∈N0 is a lifting of the zero morphism from A to
itself, η• is null-homotopic, i.e. there is a family hρ

• = {hρ
n : Pn → Pn+1}n∈N0

of morphisms of A-bimodules such that

η0 = ∂1h
ρ
0 and ηn = hρ

n−1∂n + ∂n+1h
ρ
n (2.3)

for n ∈ N. Then, if φ ∈ HomAe(Pn, A) is a cocycle for some n ∈ N, the
Gerstenhaber bracket [φ, ℓρi0] ∈ HHn−1(A) is given by the cohomology class of
φhρ

n−1.

Remark 2.8. It is easy to see that if φ ∈ HomAe(Pn, A) is a cocycle (resp.,
coboundary), then φhρ

n−1 is a cocycle (resp., coboundary) by applying (2.3). On
the other hand, in general we have P0 = B0 = A ⊗ A and i0 = idA⊗A, so we
can forget about i0 in Theorem 2.7.

The rest of this subsection is devoted to proving Theorem 2.7. In order to do
that, we first need to prove some preliminary results.
Let tn : Bn(A) → Bn+1(A) be the morphism of A-bimodules given by

tn(a0| . . . |an+1) =

n
∑

j=0

(−1)ja0| . . . |aj |ρ|aj+1| . . . |an+1

for a0, . . . , an+1 ∈ A and n ∈ N0. Let ξ• = {ξn : Bn(A) → Bn(A)}n∈N0 be the
family of morphisms of A-bimodules defined by ξn(u) = ρu−uρ for u ∈ Bn(A)
and n ∈ N0.

Lemma 2.9. We have that ξ0 = d1t0 and ξn = tn−1dn + dn+1tn for n ∈ N.

Proof. For a0, . . . , an+1 ∈ A and n ∈ N,

d1t0(a0|a1) = d1(a0|ρ|a1) = a0ρ|a1 − a0|ρa1 = ρa0|a1 − a0|a1ρ = ξ0(a0|a1),

and

dn+1tn(a0| . . . |an+1) = dn+1

( n
∑

j=0

(−1)ja0| . . . |aj |ρ|aj+1| . . . |an+1

)

= S1 + S2,

where

S1 =

n
∑

j=0

(−1)j
{

(−1)ja0| . . . |aj−1|ajρ|aj+1| . . . |an+1
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+ (−1)j+1a0| . . . |aj |ρaj+1|aj+2| . . . |an+1

}

= a0ρ| . . . |an+1 − a0| . . . |an|ρan+1

= ξn(a0| . . . |an+1),

and

S2 =

n
∑

j=0

(−1)j
{ j−2
∑

r=0

(−1)ra0| . . . |ar−1|arar+1|ar+2| . . . |aj|ρ|aj+1| . . . |an+1

+ (−1)j−1a0| . . . |aj−2|aj−1aj |ρ|aj+1| . . . |an+1

+ (−1)j+2a0| . . . |aj|ρ|aj+1aj+2|aj+3| . . . |an+1

+

n
∑

r=j+2

(−1)r+1a0| . . . |aj |ρ|aj+1| . . . |ar−1|arar+1|ar+2| . . . |an+1

}

=
n
∑

i=0

{ n
∑

j=i+2

(−1)j+ia0| . . . |ai−1|aiai+1|ai+2| . . . |aj |ρ|aj+1| . . . |an+1

− a0| . . . |ai−1|aiai+1|ρ|ai+2| . . . |an+1

+ a0| . . . |ai−1|ρ|aiai+1|ai+2| . . . |an+1

+

i−2
∑

j=0

(−1)j+i+1a0| . . . |aj |ρ|aj+1| . . . |ai−1|aiai+1|ai+2| . . . |an+1

}

=
n
∑

i=0

(−1)i+1

{ i−2
∑

j=0

(−1)ja0| . . . |aj |ρ|aj+1| . . . |ai−1|aiai+1|ai+2| . . . |an+1

+ (−1)i−1a0| . . . |ai−1|ρ|aiai+1|ai+2| . . . |an+1

+ (−1)ia0| . . . |ai−1|aiai+1|ρ|ai+2| . . . |an+1

+

n
∑

j=i+2

(−1)j−1a0| . . . |ai−1|aiai+1|ai+2| . . . |aj |ρ|aj+1| . . . |an+1

}

= −tn−1dn(a0| . . . |an+1).

Hence, ξn = tn−1dn + dn+1tn.

Lemma 2.10. The Gerstenhaber bracket [ϕ, ℓρ] ∈ HomAe(Bn−1(A), A) is given
by [ϕ, ℓρ] = ϕtn−1 for ϕ ∈ HomAe(Bn(A), A) and n ∈ N.

Proof. For a0, . . . , an ∈ A,

[ϕ, ℓρ](a0| . . . |an) = a0[F (ϕ), F (ℓρ)](a1| . . . |an−1)an

= a0(F (ϕ) ◦G F (ℓρ))(a1| . . . |an−1)an

= a0

( n
∑

i=1

(−1)i−1F (ϕ)(a1| . . . |ai−1|ρ|ai| . . . |an−1)

)

an
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= a0

( n
∑

i=1

(−1)i−1ϕ(1|a1| . . . |ai−1|ρ|ai| . . . |an−1|1)

)

an

=

n
∑

i=1

(−1)i−1ϕ(a0|a1| . . . |ai−1|ρ|ai| . . . |an−1|an)

= (ϕtn−1)(a0|a1| . . . |an−1|an).

Hence, [ϕ, ℓρ] = ϕtn−1.

Lemma 2.11. We assume the same hypotheses as those of Theorem 2.7. Then,
there exists a family s• = {sn : Pn → Bn+2(A)}n∈N0 of morphisms of A-
bimodules such that i1h

ρ
0 − t0i0 = d2s0 and in+1h

ρ
n − tnin = dn+2sn − sn−1∂n

for n ∈ N.

Proof. Since d1(i1h
ρ
0 − t0i0) = i0∂1h

ρ
0 − d1t0i0 = i0η0 − ξ0i0 = 0, where we

used that i0 is a morphism of A-bimodules in the last equality, there exists
a morphism s0 : P0 → B2(A) of A-bimodules such that d2s0 = i1h

ρ
0 − t0i0.

We now claim that there exists a family s• = {sn : Pn → Bn+2(A)}n∈N0 of
morphisms of A-bimodules such that dn+2sn = in+1h

ρ
n − tnin + sn−1∂n by

induction on n ∈ N0 (where s−1 = 0). Indeed,

dn+1(in+1h
ρ
n − tnin + sn−1∂n)

= dn+1in+1h
ρ
n − dn+1tnin + (inh

ρ
n−1 − tn−1in−1 + sn−2∂n−1)∂n

= in∂n+1h
ρ
n − (ξn − tn−1dn)in + inh

ρ
n−1∂n − tn−1in−1∂n

= in(∂n+1h
ρ
n + hρ

n−1∂n)− ξnin = inηn − ξnin = 0,

where we used the inductive assumption in the first equality, Lemma 2.9 in the
second equality, the definition of ηn in the third equality and the fact that in
is a morphism of A-bimodules in the last equality. The result thus follows.

Proof of Theorem 2.7. Let ϕ = φpn ∈ HomAe(Bn(A), A). Then ϕ is a cocycle
and [φ, i∗•(ℓρ)] = i∗•([p

∗
•(φ), ℓρ]) = [ϕ, ℓρ]in−1 = ϕtn−1in−1 by Lemma 2.10.

Since p•i• is homotopic to the identity of P•, there exists φ1 ∈ HomAe(Pn−1, A)
such that φ− ϕin = φ− φpnin = φ1∂n. Then,

φhρ
n−1 − ϕtn−1in−1 = (ϕin + φ1∂n)h

ρ
n−1 − ϕtn−1in−1

= ϕ(dn+1sn−1 − sn−2∂n−1) + φ1(ηn−1 − hρ
n−2∂n−1)

= −ϕsn−2∂n−1 − φ1h
ρ
n−2∂n−1 ∈ HomAe(Pn−1, A)

is a boundary, where we used Lemma 2.11 and the definition of ηn−1 in the
second equality and the fact that φ1 is a morphism of A-bimodules in the last
identity. Hence, [φ, i∗•(ℓρ)] ∈ HHn−1(A) coincides with the cohomology class of
φhρ

n−1, as was to be shown.

Remark 2.12. The homotopy maps hρ
• in Theorem 2.7 are presumably homo-

topy liftings in the sense of [9]. However, our maps hρ
• do not directly follow the

Documenta Mathematica 27 (2022) 1773–1804



Gerstenhaber Structure on HH•(FK(3)) 1781

scheme of that definition –as well as being far simpler, for they are restricted
to a much easier situation– since they do not require the computation of any
map ∆ : P• → P• ⊗A P• lifting the isomorphism A → A ⊗A A, which is also
the case in [6].

2.3 Method computing the bracket between HH1(A) and HHn(A)
(after M. Suárez-Álvarez)

In this subsection we will briefly recall the method introduced by M. Suárez-
Álvarez in [8] to compute the Gerstenhaber bracket between HH1(A) and
HHn(A) for n ∈ N0.

Recall that HH1(A) is isomorphic to the quotient of the space of derivations
of A modulo the subspace of inner derivations. Let ρ : A → A be a derivation
of A, i.e. ρ(xy) = ρ(x)y + xρ(y) for all x, y ∈ A. For a left A-module M , a
ρ-operator on M is a map f : M → M such that f(am) = ρ(a)m+af(m) for
all a ∈ A and m ∈ M . It is direct to see that the map ρe = ρ⊗ idA + idA ⊗ ρ :
Ae → Ae defined by ρe(x⊗ y) = ρ(x)⊗ y+ x⊗ ρ(y) for x, y ∈ A is a derivation
of the enveloping algebra Ae and ρ is a ρe-operator on A.

Let (P•, ∂•) be a projective bimodule resolution over A with augmentation
µ : P0 → A. A ρe-lifting of ρ to (P•, ∂•) is a family of ρe-operators ρ• =
{ρn : Pn → Pn}n∈N0 such that µρ0 = ρµ and ∂nρn = ρn−1∂n for n ∈ N. The
morphism of complexes

ρ♯•,P•

: HomAe(P•, A) → HomAe(P•, A)

defined by ρ♯n,P•

(φ) = ρφ − φρn for φ ∈ HomAe(Pn, A) and n ∈ N0 is in-
dependent of the ρe-lifting up to homotopy (see [8], Lemma 1.6) and it thus
induces a morphism on cohomology that we will denote by the same symbol.
Let i• : P• → B•(A) and p• : B•(A) → P• be morphisms of complexes of
A-bimodules lifting idA. Then the diagram

Hn
(

HomAe(B•(A), A)
)

Hn
(

HomAe(B•(A), A)
)

Hn
(

HomAe(P•, A)
)

Hn
(

HomAe(P•, A)
)

H(i∗
•
)

H(ρ♯

•,B•(A)
)

H(i∗
•
)

H(ρ♯
•,P•

)

(2.4)

commutes (see [8], Lemma 1.6). On the other hand, as noted in [8], Sections 2.1
and 2.2, using the ρe-lifting of ρ to the bar resolution defined by

ρn(a0| . . . |an+1) =

n+1
∑

j=0

a0| . . . |aj−1|ρ(aj)|aj+1| . . . |an+1
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for a0, . . . , an+1 ∈ A and n ∈ N0, it is easy to check that the diagram

HomAe

(

Bn(A), A
)

HomAe

(

Bn(A), A
)

Homk(A
⊗n, A) Homk(A

⊗n, A)

F

ρ♯

n,B•(A)

F

[ρ,−]

commutes. As a consequence, the Gerstenhaber bracket between the cohomol-
ogy classes of G(ρ) ∈ HomAe(B1(A), A) and ϕ ∈ HomAe(Bn(A), A) is given by

the cohomology class of [G(ρ), ϕ] = G([ρ, F (ϕ)]) = ρ♯n,B•(A)(ϕ).

We finally recall one of the main results of [8], which tells us that we can
compute the Gerstenhaber bracket between HH1(A) and HHn(A) for n ∈ N0

using any projective bimodule resolution of A (see [8], Thm. A and Section 2.2).
The proof just follows from observing that, on cohomology, (2.4) gives us the
identities

[

i∗•(G(ρ)), φ
]

= i∗•
(

[G(ρ), p∗•(φ)]
)

= i∗•
(

ρ♯n,B•(A)(p
∗
•(φ))

)

= ρ♯n,P•

(φ).

Theorem 2.13. Let (P•, ∂•) be a projective bimodule resolution over the alge-
bra A with augmentation µ : P0 → A, and let i1 : P1 → B1(A) be the first
component of the morphism i• : P• → B•(A) of complexes of A-bimodules lift-
ing idA. Given a cocycle φ ∈ HomAe(Pn, A) and n ∈ N0, the Gerstenhaber

bracket [G(ρ)i1, φ] ∈ HHn(A) is given by the cohomology class of ρ♯n,P•

(φ).

Remark 2.14. Note that in our Theorem 2.7, as well as in the result proved in
[8] that was recalled before as Theorem 2.13, we need at least some component(s)
of the comparison map from the generic projective resolution (P•, ∂•) to the bar
resolution.

3 Basics on the Fomin-Kirillov algebra FK(3) on 3 generators

In this section we will review the basic definitions concerning the Fomin-Kirillov
algebra on 3 generators. Recall that, given i ∈ Z, we will denote by Z6i the set
{m ∈ Z|m 6 i}. Given r ∈ R, we set ⌊r⌋ = sup{n ∈ Z|n 6 r} the usual floor
function. From now on, k is a field of characteristic different from 2 and 3.
We recall that the Fomin–Kirillov algebra on 3 generators is the k-algebra
FK(3) generated by the k-vector space V spanned by three elements a, b and c
modulo the ideal generated by the vector space R ⊆ V ⊗2 spanned by

{a2, b2, c2, ab+ bc+ ca, ba+ ac+ cb}.

This is a nonnegatively graded algebra by setting the generators a, b and c
in (internal) degree 1. As usual, we will omit the tensor symbol ⊗ when de-
noting the product of the elements of the tensor algebra TV = ⊕n∈N0V

⊗n.
We refer the reader to [1, 4] for more information on Fomin-Kirillov algebras.
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Note that FK(3) = ⊕m∈J0,4KFK(3)m, where FK(3)m is the subspace of FK(3)
concentrated in internal degree m. It is easy to see that

B= {1, a, b, c, ab, bc, ba, ac, aba, abc, bac, abac} (3.1)

is a basis of FK(3) (see [1]). Given m ∈ J0, 4K, we will denote by Bm the subset
of (3.1) that is a basis of FK(3)m.
Let us briefly denote by {A,B,C} the basis of V ∗ dual to the basis {a, b, c}
of V , where the former are concentrated in internal degree −1. The quadratic
dual FK(3)! = ⊕n∈N0FK(3)!−n of the Fomin Kirillov algebra FK(3) is then
given by

FK(3)! = k〈A,B,C〉/(BA −AC,CA −AB,AB −BC,CB −BA),

where FK(3)!−n is the subspace of FK(3)! concentrated in internal degree −n.
Notice that FK(3)!0 = k and FK(3)!−1

∼= V ∗. We recall that B!
n =

{An, Bn, Cn, An−1B,An−1C,An−2B2} is a basis of FK(3)!−n for all integers
n > 2, where we follow the convention that A0B2 = B2 (see [7], Lemma 4.4).
For simplicity, from now on we will denote the Fomin-Kirillov
algebra FK(3) simply by A. Let (A!

−n)
∗ be the dual space of A!

−n and
B!∗

n = {αn, βn, γn, αn−1β, αn−1γ, αn−2β2}\{0} the dual basis to B
!
n for n ∈ N,

where we will follow the convention that if the index of some letter in an element
of the previous sets is less than or equal to zero, it is the zero element 0. We will
omit the index 1 for the elements of the previous bases and write B!∗

0 = {ǫ!},
where ǫ! is the basis element of (A!

0)
∗. The previous bases for the homogeneous

components of A or (A!)# = ⊕n∈N0(A
!
−n)

∗ will be called usual. Recall that
(A!)# is a graded bimodule over A! via (ufv)(w) = f(vwu) for u, v, w ∈ A!

and f ∈ (A!)#.
For the explicit description of the bimodule Koszul complex (Kb

•, d
b
•) over

the Fomin-Kirillov algebra A, we refer the reader to [3], Subsection 3.1. The
following result gives an explicit description of the minimal projective resolution
of A in the category of bounded below graded A-bimodules.

Proposition 3.1. ([3], Prop. 3.7) The minimal projective resolution (P b
• , δ

b
•)

of A in the category of bounded below graded A-bimodules is given as follows.
For n ∈ N0, set

P b
n =

⊕

i∈J0,⌊n/4⌋K

ωiK
b
n−4i =

⊕

i∈J0,⌊n/4⌋K

ωiA⊗ (A!
−(n−4i))

∗ ⊗A,

where ωi is a symbol of homological degree 4i and internal degree 6i for all i ∈
N0, the A-bimodule structure of P b

n is given by x′(ωix⊗u⊗y)y′ = ωix
′x⊗u⊗yy′

for all x, x′, y, y′ ∈ A and u ∈ (A!
−(n−4i))

∗, and the differential δbn : P b
n → P b

n−1

for n ∈ N is given by

δbn

(

∑

i∈J0,⌊n/4⌋K

ωiρn−4i

)

=
∑

i∈J0,⌊n/4⌋K

(

ωid
b
n−4i(ρn−4i) + ωi−1f

b
n−4i(ρn−4i)

)

,
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where ρj ∈ Kb
j for j ∈ N0, ω−1 = 0 and f b

j : Kb
j → Kb

j+3 are the morphisms
given in [3], (3.2). This gives a minimal projective resolution of A by means
of the augmentation ǫb : P b

0 = A ⊗ (A!
0)

∗ ⊗ A → A, where ǫb(x ⊗ ǫ! ⊗ y) = xy
for x, y ∈ A.

To reduce space, we will typically use vertical bars instead of the tensor product
symbols⊗ for the elements of P•. We will use in the sequel the following explicit
expression of some values of the map f b

0 in the previous result. They follow
immediately from [3], (3.2).

Fact 3.2. The morphism f b
0 defined in [3], (3.2), satisfies that

f b
0(a|ǫ

!|1) = 2a|α3|bac+ 2a|β3|abc− 2a|γ3|aba− a|α2β|abc+ a|α2γ|aba

− a|αβ2|bac− ac|α2β|ab − ab|α2γ|ac+ ab|αβ2|ab+ ab|αβ2|bc

− ac|αβ2|ba− 2ab|α3|ab− 2ab|α3|bc+ 2ac|α3|ba+ 2ac|β3|ab

+ 2ab|γ3|ac− abc|α2β|a− aba|α2β|c+ abc|α2γ|b+ aba|α2γ|a

+ 2abc|β3|a+ 2aba|β3|c− 2abc|γ3|b− 2aba|γ3|a+ 2abac|α3|1

− abac|αβ2|1,

f b
0(1|ǫ

!|a) = −2|α3|abac+ 1|αβ2|abac− a|α2β|abc− c|α2β|aba+ a|α2γ|aba

+ b|α2γ|abc+ 2a|β3|abc+ 2c|β3|aba− 2a|γ3|aba− 2b|γ3|abc

+ ba|α2β|(ab + bc) + ab|α2γ|ba+ bc|α2γ|ba+ ab|αβ2|(ab+ bc)

− ac|αβ2|ba− 2ab|α3|(ab+ bc) + 2ac|α3|ba− 2ba|β3|(ab + bc)

− 2ab|γ3|ba− 2bc|γ3|ba+ 2bac|α3|a+ 2abc|β3|a− 2aba|γ3|a

− abc|α2β|a+ aba|α2γ|a− bac|αβ2|a,

f b
0(b|ǫ

!|1) = 2b|α3|bac+ 2b|β3|abc− 2b|γ3|aba− b|α2β|abc+ b|α2γ|aba

− b|αβ2|bac+ ba|α2β|ac+ ba|α2β|ba− bc|α2β|ab− ba|α2γ|bc

− bc|αβ2|ba+ 2bc|α3|ba− 2ba|β3|ac− 2ba|β3|ba+ 2bc|β3|ab

+ 2ba|γ3|bc+ aba|α2γ|b+ bac|α2γ|a− aba|αβ2|c− bac|αβ2|b

+ 2aba|α3|c+ 2bac|α3|b− 2aba|γ3|b− 2bac|γ3|a+ 2abac|β3|1

− abac|α2β|1,

f b
0(1|ǫ

!|b) = −2|β3|abac+ 1|α2β|abac+ a|α2γ|bac+ b|α2γ|aba− b|αβ2|bac

− c|αβ2|aba+ 2b|α3|bac+ 2c|α3|aba− 2a|γ3|bac− 2b|γ3|aba

− bc|α2β|ab+ ba|α2β|(ba+ ac) + ba|α2γ|ab+ ac|α2γ|ab

+ ab|αβ2|(ba+ ac)− 2ab|α3|(ba+ ac) + 2bc|β3|ab

− 2ba|β3|(ba+ ac)− 2ba|γ3|ab− 2ac|γ3|ab+ 2bac|α3|b+ 2abc|β3|b

− 2aba|γ3|b− abc|α2β|b+ aba|α2γ|b− bac|αβ2|b,

f b
0(c|ǫ

!|1) = 2c|α3|bac+ 2c|β3|abc− 2c|γ3|aba− c|α2β|abc+ c|α2γ|aba

− c|αβ2|bac− (ab+ bc)|α2β|ac− (ab + bc)|α2β|ba

+ (ab+ bc)|α2γ|bc+ (ba+ ac)|α2γ|ac− (ba+ ac)|αβ2|ab
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− (ba+ ac)|αβ2|bc+ 2(ba+ ac)|α3|ab+ 2(ba+ ac)|α3|bc

+ 2(ab+ bc)|β3|ac+ 2(ab+ bc)|β3|ba− 2(ab+ bc)|γ3|bc

− 2(ba+ ac)|γ3|ac+ bac|α2β|a− abc|α2β|c− bac|αβ2|c

+ abc|αβ2|b+ 2bac|α3|c− 2abc|α3|b− 2bac|β3|a+ 2abc|β3|c

+ 2abac|γ3|1− abac|α2γ|1,

f b
0(1|ǫ

!|c) = −2|γ3|abac+ 1|α2γ|abac+ a|α2β|bac− c|α2β|abc+ b|αβ2|abc

− c|αβ2|bac− 2b|α3|abc+ 2c|α3|bac− 2a|β3|bac+ 2c|β3|abc

− bc|α2β|ac+ ab|α2γ|bc+ bc|α2γ|bc+ ba|α2γ|ac+ ac|α2γ|ac

− ac|αβ2|bc+ 2ac|α3|bc+ 2bc|β3|ac− 2ab|γ3|bc− 2bc|γ3|bc

− 2ba|γ3|ac− 2ac|γ3|ac+ 2bac|α3|c+ 2abc|β3|c− 2aba|γ3|c

− abc|α2β|c+ aba|α2γ|c− bac|αβ2|c.

Given n ∈ N0, there is a canonical isomorphism

HomAe(P b
n, A)

∼= Qn (3.2)

of graded k-vector spaces, where Qn = ⊕i∈J0,⌊n/4⌋Kω
∗
iK

n−4i and Kn =

Homk((A
!
−n)

∗, A). Transporting the differential of the left member of (3.2)
induced by that of (P b

• , δ
b
•), we obtain a complex of k-vector spaces Q•, whose

cohomology gives the linear structure of the Hochschild cohomology HH•(A).
Note that the space Homk((A

!
−n)

∗, Am) is concentrated in cohomological de-
gree n and internal degree m− n. The symbol ω∗

i has cohomological degree 4i
and internal degree −6i for i ∈ N0. We will usually omit ω∗

0 for simplicity.
Let Hn

m be the subspace of Hn(Q•) concentrated in internal degree m− n for
m,n ∈ Z. Note that Hn

m = 0 for (n,m) ∈ Z
2 \ (N0×Z64). The following result

gives a recursive description of the spaces Hn
m.

Proposition 3.3. ([3], Cor. 5.3) For integers m 6 1 and n ∈ N0, we have

Hn
m

∼=

{

ω∗
1−m

2

Hn+2m−2
1 , if m is odd,

ω∗
−m

2
Hn+2m

0 , if m is even.

Given elements x ∈ Bm and y ∈ B!∗
n , the symbol y|x will denote the linear

map in Kn = Homk((A
!
−n)

∗, A), which maps y to x and sends the other usual
basis elements of (A!

−n)
∗ to zero. See [3], Cor. 5.4, for specific representatives

of the cohomology classes of a basis of Hn
m for (n,m) ∈ N0 × Z64.

The algebra structure of the Hochschild cohomology HH•(A) (with the multi-
plication given by the cup product) is described as follows.

Theorem 3.4. ([3], Cor. 6.11) The Hochschild cohomology HH•(A) is iso-
morphic to the quotient of the free graded-commutative (for the cohomological
degree) k-algebra generated by fourteen elements (with fixed cohomological de-
grees and internal degrees) modulo the ideal generated by the elements given in
[3], (6.5).
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Moreover, the fourteen generators of HH•(A) mentioned in Theorem 3.4 are
represented in H•(Q•) by the following cocycles: X1 = ǫ!|(ab + ba), X2 =
ǫ!|(ab + bc − ac), X3 = ǫ!|abac, X4 = α|bac, X5 = β|abc, X6 = γ|aba, X7 =
α|(aba−abc), X8 = α|a+β|b+γ|c, X9 = α2|1, X10 = β2|1, X11 = γ2|1, X12 =
(αβ+αγ)|1, X13 = α3|a+β3|b+γ3|c and X14 = ω∗

1ǫ
!|1. Let Yi ∈ HomAe(P b

n, A)
be the element associated to Xi via the isomorphism (3.2) for i ∈ J1, 14K. In
what follows and to simplify our notation, given a cocycle φ, we will use the
same symbol φ for its cohomology class.
Let i• : P b

• → B•(A) be a morphism of complexes of A-bimodules lifting idA.
It is clear that i0 : A ⊗ (A!

0)
∗ ⊗ A → A ⊗ A and i1 : A ⊗ (A!

−1)
∗ ⊗ A → A⊗3

can be chosen as follows

i0(1|ǫ
!|1) = 1|1, i1(1|α|1) = −1|a|1, i1(1|β|1) = −1|b|1 and i1(1|γ|1) = −1|c|1.

4 Gerstenhaber brackets on Hochschild cohomology of FK(3)

4.1 Gerstenhaber brackets of HH0(A) with HHn(A)

In this subsection we are going to utilize the method introduced in Subsec-
tion 2.2 to compute the Gerstenhaber bracket of Xi for i ∈ J1, 14K with the
elements X1, X2, X3 in HH0(A). To wit, for every element Xi with i ∈ J1, 3K,
we find the associated element ρ in the center Z(A) such that ℓρi0 = Xi, pro-
vide the corresponding self-homotopy hρ

• satisfying (2.3) and then compute the
respective Gerstenhaber brackets by means of Theorem 2.7.
We remark first that [Xi, 1] = 0 for i ∈ J1, 14K, since h1

• = 0 gives [Xi, 1] = 0
for i ∈ J4, 14K and the other follow from cohomological degree reasons. On the
other hand, Definition 2.1 tells us that [Xi, Xj ] = 0 for i, j ∈ J1, 3K. The proof
of the following three results is a lengthy but straightforward computation.

Fact 4.1. Let ρ = ab+ ba ∈ Z(A). Then, there is a self-contracting homotopy
hρ
• satisfying (2.3) such that

hρ
0(1|ǫ

!|1) = −b|α|1− a|β|1− 1|α|b− 1|β|a,

hρ
n(1|αn|1) = (−1)n+1b|αn+1|1− 1|αn+1|b,

hρ
n(1|βn|1) = (−1)n+1a|βn+1|1− 1|βn+1|a

for n ∈ N, and

hρ
1(1|γ|1) = b|α2|1 + a|β2|1 + a|αβ|1 + b|αγ|1− 1|α2|b− 1|β2|a− 1|αβ|b

− 1|αγ|a,

hρ
2(1|γ2|1) = a|γ3|1 + b|γ3|1 + c|α2β|1 + c|αβ2|1 + 1|γ3|a+ 1|γ3|b + 1|α2β|c

+ 1|αβ2|c,

hρ
2(1|αβ|1) = −b|α3|1− c|β3|1− a|α2γ|1− 1|α3|c− 1|β3|a− 1|α2γ|b,

hρ
2(1|αγ|1) = −c|α3|1− a|β3|1− b|α2γ|1− 1|α3|b− 1|β3|c− 1|α2γ|a.
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Fact 4.2. Let ρ = ab + bc − ac ∈ Z(A). Then, there is a self-contracting
homotopy hρ

• satisfying (2.3) such that

hρ
0(1|ǫ

!|1) = c|α|1 + a|γ|1 + 1|α|c+ 1|γ|a,

hρ
n(1|αn|1) = (−1)nc|αn+1|1 + 1|αn+1|c,

hρ
n(1|γn|1) = (−1)na|γn+1|1 + 1|γn+1|a

for n ∈ N, and

hρ
1(1|β|1) = −c|α2|1− a|γ2|1− c|αβ|1− a|αγ|1 + 1|α2|c+ 1|γ2|a+ 1|αβ|a

+ 1|αγ|c,

hρ
2(1|β2|1) = −a|β3|1− c|β3|1− b|α2γ|1− b|αβ2|1− 1|β3|a− 1|β3|c− 1|α2γ|b

− 1|αβ2|b,

hρ
2(1|αβ|1) = b|α3|1 + a|γ3|1 + c|α2β|1 + 1|α3|c+ 1|γ3|b+ 1|α2β|a,

hρ
2(1|αγ|1) = c|α3|1 + b|γ3|1 + a|α2β|1 + 1|α3|b + 1|γ3|a+ 1|α2β|c.

Fact 4.3. Let ρ = abac ∈ Z(A). Then, there is a self-contracting homotopy
hρ
• satisfying (2.3) such that

hρ
0(1|ǫ

!|1) = −aba|γ|1− ab|α|c− a|β|ac− 1|α|bac,

hρ
1(1|α|1) = aba|αβ|1− ab|α2|b− ba|β2|c+ c|α2|bc+ b|β2|ac+ b|αβ|bc

− 1|α2|bac− 1|αβ|abc,

hρ
1(1|β|1) = aba|αγ|1− 2ab|α2|c− ac|α2|a− ab|αβ|a+ a|α2|bc− a|β2|ab

− a|β2|bc+ c|β2|ac+ a|αγ|ac− 1|αγ|bac,

hρ
1(1|γ|1) = 2aba|γ2|1− ba|αβ|c+ b|α2|bc− a|γ2|ac− c|αβ|ac− 1|αγ|abc,

hρ
2(1|α2|1) = bac|α3|1 + bc|β3|a− ba|β3|c+ ba|α2γ|a− b|α3|ab− b|α3|bc

+ c|α3|ba+ a|β3|ac+ c|β3|bc+ a|α2γ|bc+ b|α2γ|ba− 2|α3|bac,

hρ
2(1|β2|1) = abc|β3|1− 2ab|α3|c+ ac|α3|b+ ab|β3|a− bc|β3|a+ ab|α2γ|b

− ba|α2γ|a+ b|α3|ab+ 2b|α3|bc− c|α3|ba+ c|α3|ac− a|β3|ac

− b|α2γ|ba+ b|α2γ|ac− 1|α3|bac− 2|β3|abc− 1|α2γ|aba,

hρ
2(1|γ2|1) = −3aba|γ3|1 + ba|β3|c− ab|αβ2|c− b|α3|bc− a|β3|ac− c|β3|bc

+ b|γ3|ac− a|α2γ|bc+ 1|α3|bac− 1|α2β|abc,

hρ
2(1|αβ|1) = −2aba|αβ2|1− ac|α3|c− bc|β3|b − 2ba|β3|a− ab|α2γ|c

− ba|α2γ|b− a|α3|bc+ b|α3|ba+ 2b|α3|ac+ b|β3|ab− c|β3|ac

+ a|γ3|ac− c|γ3|ab+ c|α2β|ac− a|α2γ|ac− a|αβ2|bc− 1|α2γ|bac

− 1|αβ2|abc,

hρ
2(1|αγ|1) = −abc|α3|1− 2aba|α2β|1− 3ab|α3|b− ab|β3|c− 2bc|β3|c

− 2ba|α2γ|c− ba|αβ2|a+ 2a|α3|ba− c|α3|bc− b|β3|ac− b|γ3|ab

− a|α2β|ab − b|α2γ|bc+ c|α2γ|ac− c|αβ2|ab− 1|α2β|bac

− 2|α2γ|abc.
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Using the previous results together with Theorem 2.7 we obtain the Gersten-
haber bracket between Xi for i ∈ J1, 14K and X1, X2, X3.

Proposition 4.4. The Gerstenhaber bracket on HH•(A) of Xi for i ∈ J1, 14K
with an element Xj for j ∈ J1, 3K is given by

[Xi, X1] =











−2X1, if i = 8,

−4X1(X9 +X10), if i = 13,

0, if i ∈ J1, 14K \ {8, 13},

[Xi, X2] =











−2X2, if i = 8,

−4X1X10, if i = 13,

0, if i ∈ J1, 14K \ {8, 13},

and

[Xi, X3] =















































0, if i ∈ J1, 7K,

−4X3, if i = 8,

−2Xi−5, if i = 9, 10,

2X6, if i = 11,

2X7 −X1X8 +X2X8, if i = 12,

−4X3(X9 +X10 +X11), if i = 13,

X13 − (2/3)X8(X9 +X10 +X11), if i = 14.

Proof. Note that ℓab+bai0 = Y1, ℓab+bc−aci0 = Y2 and ℓabaci0 = Y3. Applying
Theorem 2.7 together with Facts 4.1, 4.2 and 4.3, we get the brackets

[Xi, X1] =











−2X1, if i = 8,

−(α2 + β2 + γ2)|(ab + ba)− αβ|ba− αγ|ab, if i = 13,

0, if i ∈ J1, 12K \ {8},

[Xi, X2] =



















−2X2, if i = 8,

(α2 + β2 + γ2)|(ac− ab− bc)

+ αβ|ac− αγ|(ab + bc),
if i = 13,

0, if i ∈ J1, 12K \ {8},

and

[Xi, X3] =







































0, if i ∈ J1, 7K,

−4X3, if i = 8,

−2Xi−5, if i = 9, 10,

2X6, if i = 11,

α|(aba− abc)− β|bac− γ|bac, if i = 12,

−4(α2 + β2 + γ2)|abac, if i = 13.

Indeed, this was simply done by computing [Yi, Y1] = Yih
ab+ba
h(Yi)−1, [Yi, Y2] =

Yih
ab+bc−ac
h(Yi)−1 , and [Yi, Y3] = Yih

abac
h(Yi)−1, where h(Yi) denotes the cohomological
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degree of Yi for i ∈ J1, 13K, and by transport of structures. Note that the
vanishing of [Xi, X3] for i ∈ J4, 7K also follows from a simple degree argument
using Corollary 2.5 together with [3], Cor. 5.9. The latter two results also tell us
that [X14, Xj ] = 0 (or [Y14, Yj ] = 0) for j = 1, 2, by degree reasons. This result
also follows from noting that hab+ba

3 is of internal degree 2, so hab+ba
3 (1|u|1)

is of internal degree 5 for any u ∈ B!∗
3 , which implies that Y14(h

ab+ba
3 (1|u|1))

vanishes, since Y14 vanishes on any homogeneous element of internal degree
strictly less than 6. Hence, Y14h

ab+ba
3 = 0. We get Y14h

ab+bc−ac
3 = 0 for the

same reason.
Next, we compute ϕ = [Y14, Y3] = Y14h

abac
3 . By (2.3), the map habac

3 : P b
3 → P b

4

satisfies δb4h
abac
3 = η3 − habac

2 δb3. It is easy to check that

(η3 − habac
2 δb3)(1|α3|1) = −bac|α3|a+ abc|β3|a− aba|β3|c+ aba|α2γ|a+ vα3 ,

(η3 − habac
2 δb3)(1|β3|1) = −2aba|α3|c+ bac|α3|b+ aba|β3|a− abc|β3|b

+ aba|α2γ|b+ vβ3 ,

(η3 − habac
2 δb3)(1|γ3|1) = abc|β3|c+ 3aba|γ3|c− bac|αβ2|c+ vγ3 ,

(η3 − habac
2 δb3)(1|α2β|1) = abc|α3|a− 4bac|α3|b− 2aba|β3|a− abc|β3|b

+ bac|β3|c+ 3aba|γ3|b+ 2aba|α2β|a− aba|α2γ|b

− 2abc|α2γ|c− abc|αβ2|a+ aba|αβ2|c+ vα2β , (4.1)

(η3 − habac
2 δb3)(1|α2γ|1) = −4bac|α3|c+ bac|β3|a− 4abc|β3|c+ 2aba|α2β|b

+ bac|α2γ|b− 3aba|α2γ|c+ aba|αβ2|a+ vα2γ ,

(η3 − habac
2 δb3)(1|αβ2|1) = −3aba|α3|b+ 2abc|α3|c− 4abc|β3|a+ bac|β3|b

+ 3aba|γ3|a+ 2aba|α2β|c− aba|α2γ|a− abc|α2γ|b

− bac|α2γ|c+ 2aba|αβ2|b+ vαβ2 ,

where vu ∈ ⊕j∈J0,4K\{3}(Aj ⊗ (A!
−3)

∗ ⊗A4−j) for u ∈ B!∗
3 . By degree reasons,

the element habac
3 (1|u|1) for u ∈ B!∗

3 is of the form

habac
3 (1|u|1) = Bu + ω1(λ

u
1a|ǫ

!|1 + λu
21|ǫ

!|a+ λu
3 b|ǫ

!|1 + λu
41|ǫ

!|b+ λu
5 c|ǫ

!|1

+ λu
61|ǫ

!|c),

where Bu ∈ Kb
4 has internal degree 7 and λu

i ∈ k for i ∈ J1, 6K. Therefore,

(η3 − habac
2 δb3)(1|u|1) = δb4h

abac
3 (1|u|1)

= db4(Bu) + λu
1f

b
0(a|ǫ

!|1) + λu
2f

b
0(1|ǫ

!|a) + λu
3f

b
0(b|ǫ

!|1)

+ λu
4f

b
0(1|ǫ

!|b) + λu
5f

b
0(c|ǫ

!|1) + λu
6f

b
0(1|ǫ

!|c).

(4.2)

Using the explicit expression of the differential db4 given in [3], Fact 3.1, together
with an elementary computation we see that, given any homogeneous element
B ∈ Kb

4 of internal degree 7, the coefficients of aba|γ3|a and aba|α2γ|a in db4(B)
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are equal, the coefficients of aba|γ3|b and aba|α2γ|b in db4(B) coincide, and the
coefficients of abc|β3|c and abc|α2β|c in db4(B) are also the same. Comparing
the coefficients of aba|γ3|a and aba|α2γ|a in both sides of the equation (4.2),
where the left member is explicitly given by (4.1) and the right member is
computed using Fact 3.2, we obtain

λα3
1 + λα3

2 = 1/3, λαβ2

1 + λαβ2

2 = −4/3, λu
1 + λu

2 = 0

for u ∈ B!∗
3 \ {α3, αβ2}. Similarly, comparing the coefficients of aba|γ3|b and

aba|α2γ|b in both sides of the equation (4.2), where the left member is explicitly
given by (4.1) and the right member is computed using Fact 3.2, we obtain

λβ3

3 + λβ3

4 = 1/3, λα2β
3 + λα2β

4 = −4/3, λu
3 + λu

4 = 0

for u ∈ B!∗
3 \ {β3, α2β}. Comparing the coefficients of abc|β3|c and abc|α2β|c

in both sides of the equation (4.2), where the left member is explicitly given
by (4.1) and the right member is computed using Fact 3.2, we obtain

λγ3

5 + λγ3

6 = 1/3, λα2γ
5 + λα2γ

6 = −4/3, λu
5 + λu

6 = 0

for u ∈ B!∗
3 \ {γ3, α2γ}. Then ϕ(1|u|1) = Y14h

abac
3 (1|u|1) for u ∈ B!∗

3 is given
by

ϕ(1|α3|1) = (1/3)a, ϕ(1|β3|1) = (1/3)b, ϕ(1|γ3|1) = (1/3)c,

ϕ(1|α2β|1) = −(4/3)b, ϕ(1|α2γ|1) = −(4/3)c, ϕ(1|αβ2|1) = −(4/3)a.

Hence, [X14, X3] = (1/3)(α3|a+ β3|b+ γ3|c)− (4/3)(α2β|b + α2γ|c+ αβ2|a).
We now note the following identities,

α2|(ab + ba) = X1X9, β2|(ab+ ba) = X1X10,

α|aba+ β|bac = (1/2)(X1X8 −X2X8), α2|abac = X3X9,

β2|abac = X3X10, γ2|abac = X3X11

(4.3)

and

(α3 − αβ2)|a = (1/2){X13 +X8(X9 −X10 −X11)},

(β3 − α2β)|b = (1/2){X13 +X8(X10 −X9 −X11)},

(γ3 − α2γ)|c = (1/2){X13 +X8(X11 −X9 −X10)},

given in [3], (6.2). Using the previous equalities as well as the coboundaries
g2j,2 ∈ B̃2

2 for j ∈ J1, 8K \ {4, 5} and e11,3 = α|(aba+ abc) + (β − γ)|bac ∈ B̃1
3 of

the sets B̃2
2 and B̃1

3 given in [3], Subsubsection 5.3.1, we get

[X13, X1] = −(α2 + β2 + γ2)|(ab + ba)− αβ|ba− αγ|ab− 3g21,2 − 3g22,2 − 2g23,2

+ g28,2

= −4(α2 + β2)|(ab + ba) = −4X1(X9 +X10),
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[X13, X2] = (α2 + β2 + γ2)|(ac− ab− bc) + αβ|ac− αγ|(ab+ bc)− g21,2

− 2g22,2 − g23,2 + g26,2 − g27,2 + g28,2

= −4β2|(ab+ ba) = −4X1X10,

[X12, X3] = α|(aba− abc)− β|bac− γ|bac− e11,3

= 2α|(aba− abc)− 2(α|aba+ β|bac) = 2X7 −X1X8 +X2X8,

[X13, X3] = −4(α2 + β2 + γ2)|abac = −4X3(X9 +X10 +X11),

[X14, X3] = (1/3)(α3|a+ β3|b+ γ3|c)− (4/3)(α2β|b+ α2γ|c+ αβ2|a)

= X13 − (2/3)X8(X9 +X10 +X11).

The proposition is thus proved.

4.2 Gerstenhaber brackets of HH1(A) with HHn(A)

In this subsection we are going to utilize the method recalled in Subsection 2.3
to compute the Gerstenhaber bracket of Xi for i ∈ J4, 8K with the elements Xj

for j ∈ J1, 14K.

Let ρ : A → A be a derivation of A. By [8], Lemma 1.3, the ρe-lifting ρ• =
{ρn : P b

n → P b
n}n∈N0 of ρ to (P b

• , δ
b
•) exists, and it can be chosen in such a way

that

ρ0(x|ǫ
!|y) = ρ(x)|ǫ!|y + x|ǫ!|ρ(y),

ρn(ωix|u|y) = xqωiuy + ωiρ(x)|u|y + ωix|u|ρ(y),
(4.4)

for all x, y ∈ A, n ∈ N, i ∈ J0, ⌊n/4⌋K and u ∈ B!∗
n−4i, where qωiu ∈ P b

n

satisfies that δbn(qωiu) = ρn−1δ
b
n(ωi1|u|1). To reduce space, we will usually

write qu instead of qω0u. As recalled in Subsection 2.3, given φ ∈ HHn(A), the
Gerstenhaber bracket [G(ρ)i1, φ] ∈ HHn(A) is given by the cohomology class
of ρφ− φρn.

In what follows, we consider a set of derivations of A whose classes give a basis
of HH1(A) and for each of them we will provide some of the corresponding
elements qωiu satisfying (4.4). Then, we shall compute the respective Gersten-
haber brackets by means of Theorem 2.13.

The proof of the following result follows immediately from the statement.

Proposition 4.5. Let ρ : A → A be the derivation of A defined by ρ(x) =
deg(x)x for x ∈ B. Then ρ• defined by ρn(ωix|u|y) = (deg(x) + deg(y) + n+
2i)ωix|u|y for x, y ∈ B, i ∈ J0, ⌊n/4⌋K, u ∈ B!∗

n−4i and n ∈ N0 is a ρe-lifting of
ρ. Note that deg(x) + deg(y) + n + 2i is the internal degree of ωix|u|y. Since
G(ρ)i1 = −X8, the Gerstenhaber bracket [X8, φ] ∈ HHn(A) for φ ∈ HHn(A) is
given by the cohomology class −a(φ)φ, where a(φ) is the internal degree of φ.
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Hence,

[X8, Xj] =































−2Xj, if j ∈ J1, 7K \ {3},

−4X3, if j = 3,

0, if j = 8,

2Xj, if j ∈ J9, 13K,

6X14, if j = 14.

The proof of Facts 4.6, 4.7, 4.8 and 4.9 below is a lengthy but straightforward
computation.

Fact 4.6. Let ρ = ρ4 : A → A be the derivation of A defined by ρ4(a) = bac
and ρ4(x) = 0 for x ∈ B\ {a}. Then the elements qωiu = q4ωiu ∈ P b

n in (4.4)
can be chosen as follows. First, q4βn

= q4γn
= 0 for n ∈ N. Moreover,

q4α = ba|γ|1 + b|α|c+ 1|β|ac,

q4α2
= ba|αβ|1− b|α2|b− c|α2|c− b|αβ|c+ 1|αβ|ac,

q4αβ = ab|γ2|1− ab|α2|1 + ba|αγ|1− 2b|α2|c− c|α2|a− b|β2|c− a|αβ|c

− b|αβ|a+ 1|α2|bc− 1|β2|ab+ 1|αγ|ac,

q4αγ = ba|γ2|1 + 1|β2|ac,

q4α3
= bc|β3|1 + ba|α2γ|1 + b|α3|c+ c|α3|b+ b|β3|a− c|β3|c− a|α2γ|c

+ b|α2γ|b− 1|β3|ac− 1|α2γ|bc,

q4α2β = ab|γ3|1 + ba|αβ2|1− a|α3|b− 2a|β3|c− c|β3|a− b|γ3|c− c|γ3|b

− a|α2β|c− c|αβ2|c− b|α2γ|c− a|α2γ|a+ 1|α3|bc+ 1|γ3|ba− 1|α2γ|ba

− 1|αβ2|bc,

q4α2γ = ba|α2β|1 + ab|αβ2|1− 2ab|α3|1− ba|β3|1 + a|α3|c+ 2b|α3|b+ c|α3|a

+ a|β3|a+ b|β3|c+ c|β3|b+ a|α2γ|b+ a|αβ2|c− 1|α3|ba− 2|β3|ab

+ 1|αβ2|ac,

q4αβ2
= 3ba|γ3|1− (ab+ bc)|β3|1 + (ab + bc)|α2β|1− 3c|α3|b− 2a|β3|b− b|β3|a

− c|β3|c− 2a|γ3|c− 2c|γ3|a− a|α2β|b − 2c|α2β|c− 2b|α2γ|b− c|α2γ|a

− c|αβ2|b+ 2|β3|ac+ 1|γ3|ab− 1|α2γ|ab,

q4ω1ǫ!
= bac|α4|a+ 4abc|β4|b− aba|γ4|c+ 4ab|α3β|bc− 4bc|α3β|ab

+ 2(ba+ ac)|α3γ|ac+ 2ba|α3γ|ba+ ab|α2β2|ac+ bc|α2β2|ba

− 2ba|α2β2|(ab+ bc)− 4ab|α4|ba− 2bc|α4|ba+ (ba+ ac)|α4|bc

+ 4ab|α4|ac− 2(ba+ ac)|α4|ab+ 8bc|β4|ac− 10ba|β4|ab− 2ac|β4|ab

+ 6ab|β4|ac+ 4(ab+ bc)|β4|ba− 2ab|γ4|ba− 4bc|γ4|ba+ 6ab|γ4|ac

− 5ba|γ4|ab+ 4ba|γ4|bc− 6ac|γ4|ab+ a|α4|bac+ 4b|β4|abc− c|γ4|aba

− ω1c|ǫ
!|c.
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Fact 4.7. Let ρ = ρ5 : A → A be the derivation of A defined by ρ5(b) = abc
and ρ5(x) = 0 for x ∈ B\ {b}. Then the elements qωiu = q5ωiu ∈ P b

n in (4.4)
can be chosen as follows. First, q5αn

= q5γn
= 0 for n ∈ N. Moreover,

q5β = ab|γ|1 + a|β|c+ 1|α|bc,

q5β2
= ab|αγ|1− a|β2|a− c|β2|c− a|αγ|c+ 1|αγ|bc,

q5αβ = ab|γ2|1 + 1|α2|bc,

q5αγ = ab|αβ|1 − bc|αβ|1− 2ba|β2|1− a|α2|c− 2a|β2|c+ b|β2|a− c|β2|b

+ b|γ2|a+ b|αβ|b − a|αγ|b+ 1|β2|ac− 1|α2|ba+ 1|αβ|bc,

q5β3
= (ba+ ac)|α3|1 + ab|α2γ|1 + a|α3|b+ b|α3|a+ 2a|β3|c+ c|β3|a+ b|γ3|c

+ c|γ3|b+ a|α2β|c+ a|α2γ|a+ c|αβ2|c− 1|γ3|ba+ 1|αβ2|bc,

q5α2β = 2ab|γ3|1− 2(ba+ ac)|α3|1− (ab+ bc)|α2γ|1 + (ba+ ac)|αβ2|1− a|α3|b

− 2b|α3|a− 2c|β3|a− b|γ3|c− c|γ3|b − 2a|α2γ|a− c|αβ2|c+ 2|α3|bc

+ 1|γ3|ba− 1|α2γ|ba,

q5α2γ = ba|α2β|1 − 2ba|β3|1− ab|α3|1 + a|α3|c+ b|α3|b+ c|α3|a+ 2a|β3|a

+ b|β3|c+ c|β3|b+ b|α2β|c+ b|α2γ|a+ b|αβ2|b− 2|α3|ba− 1|β3|ab

+ 1|α2β|bc,

q5αβ2
= ba|γ3|1 + ab|α2β|1 − b|α3|c− c|α3|b − b|β3|a+ c|β3|c− b|α2γ|b

+ b|αβ2|c+ 2|β3|ac− 1|α2γ|ab+ 1|α2γ|bc,

q5ω1ǫ!
= 4bac|α4|a+ abc|β4|b− aba|γ4|c+ ab|α3β|ab+ 5ab|α3β|bc

− 4bc|α3β|ab + 2(ba+ ac)|α3γ|ac+ 2ba|α3γ|ba− ac|α3γ|ba

− ab|α2β2|ba+ 2bc|α2β2|ba− 2ba|α2β2|ab− ba|α2β2|bc+ ac|α2β2|bc

− 11ab|α4|ba+ 2ab|α4|ac+ 6ba|α4|bc+ ac|α4|ab+ 9ac|α4|bc

+ 3ab|β4|ac+ bc|β4|ac− 6ba|β4|ab+ ba|β4|bc− 3ac|β4|ab− 5ab|γ4|ba

+ 4ab|γ4|ac− 4bc|γ4|ba− 2bc|γ4|ac− 3ba|γ4|ab+ 6ba|γ4|bc− 8ac|γ4|ab

+ 4a|α4|bac+ b|β4|abc− c|γ4|aba− ω1c|ǫ
!|c.

Fact 4.8. Let ρ = ρ6 : A → A be the derivation of A defined by ρ6(c) = aba
and ρ6(x) = 0 for x ∈ B\ {c}. Then the elements qωiu = q6ωiu ∈ P b

n in (4.4)
can be chosen as follows. First, q6αn

= q6βn
= 0 for n ∈ N. Moreover,

q6γ = ab|α|1 + a|β|a+ 1|α|ba,

q6γ2
= ba|αβ|1− b|α2|b+ c|β2|c+ a|γ2|a+ c|αβ|a+ a|αγ|c+ 1|αγ|ab,

q6αβ = 2ab|α2|1 + c|α2|a+ b|β2|c+ b|αβ|a+ 1|β2|ab,

q6αγ = ba|β2|1 + a|α2|c+ c|β2|b+ a|αγ|b+ 2|α2|ba,

q6γ3
= ab|αβ2|1− ba|β3|1 + a|β3|a− a|γ3|b− b|γ3|a− b|α2β|c− c|α2β|b

− b|αβ2|b− 1|β3|ab+ 1|αβ2|ba,
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q6α2β = ac|α3|1 + ab|α2γ|1 + 2c|α3|c+ 2a|β3|c+ 2c|β3|a+ 2a|α2γ|a+ b|α2γ|c

+ c|α2γ|b+ a|αβ2|b+ b|αβ2|a− 1|α3|(ab+ bc) + 1|α2γ|ba,

q6α2γ = 3ab|α3|1 + 2ba|β3|1− a|α3|c− c|α3|a− b|β3|c− c|β3|b+ 3|α3|ba

+ 2|β3|ab,

q6αβ2
= 2bc|β3|1 + 2ba|α2γ|1 + 3b|α3|c+ 3c|α3|b+ 3b|α2γ|b− 2|β3|(ba+ ac)

+ 2|α2γ|ab,

q6ω1ǫ!
= 2bac|α2β2|a+ aba|α2β2|c− 5bac|α4|a− 3abc|β4|b − 2bac|α3β|b

+ 8ab|α4|ba− 6ab|α4|ac+ 6bc|α4|ba+ 3ba|α4|bc+ 3ac|α4|bc

+ 3ab|β4|ac+ 3bc|β4|ac+ 10ba|β4|ab− 8ba|β4|bc+ 8ac|β4|ab

− 4ab|γ4|ba− 2ab|α2β2|ba− 5a|α4|bac− 3b|β4|abc− 2b|α3γ|bac

+ 2a|α2β2|bac+ c|α2β2|aba− ω1a|ǫ
!|a.

Fact 4.9. Let ρ = ρ7 : A → A be the derivation of A defined by ρ7(a) =
aba − abc, ρ7(ab) = ρ7(ac) = abac, ρ7(ba) = −abac and ρ7(x) = 0 for x ∈
B\ {a, ab, ba, ac}. Then the elements qωiu = q7ωiu ∈ P b

n in (4.4) can be chosen
as follows. First, q7βn

= q7γn
= 0 for n ∈ N. Moreover,

q7α = ab|α|1− ab|γ|1 + a|β|a− a|β|c+ 1|α|ba− 1|α|bc,

q7α2
= ab|α2|1 + ac|α2|1− a|αβ|a− 1|α2|bc+ 2|α2|ba,

q7αβ = ba|β2|1− ba|γ2|1 + (ba+ ac)|αβ|1 + a|α2|c+ c|β2|b+ c|β2|c− a|γ2|c

+ b|γ2|b− c|γ2|b+ c|αβ|a− c|αβ|c+ a|αγ|b+ c|αγ|b+ 1|α2|ba

− 1|γ2|ba+ 1|αβ|(ba+ ac),

q7αγ = ab|α2|1− ab|γ2|1 + c|α2|a− c|α2|c+ b|β2|c+ b|αβ|a− b|αβ|c+ 1|β2|ab

+ 1|αβ|ac,

q7α3
= ab|α3|1 + ac|α3|1− 1|α3|bc+ 2|α3|ba,

q7α2β = ab|α3|1 + 2ba|β3|1 + 2bc|β3|1− ba|γ3|1 + 2ba|α2γ|1− ab|αβ2|1− a|α3|c

+ 3b|α3|c+ c|α3|b− a|β3|a− a|β3|b+ b|β3|a− b|β3|c− 2c|β3|b + c|β3|c

− a|γ3|b+ a|γ3|c− b|γ3|b+ 2c|γ3|a+ c|α2β|c− a|α2γ|b+ a|α2γ|c

+ b|α2γ|b− a|αβ2|c+ b|αβ2|c− c|αβ2|b+ 2|α3|ba+ 1|β3|ab− 3|γ3|ab

− 1|α2β|bc+ 1|α2β|ba+ 2|α2β|ac,

q7α2γ = ac|α3|1 − ba|γ3|1− (ab + bc)|α2β|1 + ba|αβ2|1− b|α3|a+ 3b|α3|c

+ 2c|α3|b+ c|α3|c+ a|β3|c+ c|β3|a− a|γ3|a+ 2a|γ3|c− 2b|γ3|b

+ 2c|γ3|a+ b|α2β|b− c|α2β|a+ 2c|α2β|c+ a|α2γ|a+ b|α2γ|b+ b|α2γ|c

+ c|α2γ|a+ b|αβ2|a− 2|γ3|ab+ 2|α2β|ac,

q7αβ2
= ab|α3|1 + ba|β3|1− 2ab|γ3|1− a|α3|c− c|α3|a+ 2c|α3|c− a|γ3|b

+ b|γ3|c+ c|α2γ|b+ 1|α3|ba+ 1|β3|ab− 1|γ3|ba,

Documenta Mathematica 27 (2022) 1773–1804



Gerstenhaber Structure on HH•(FK(3)) 1795

q7ω1ǫ!
= 2abc|α2β2|a− 3abc|α2β2|c− aba|α2β2|a+ 2aba|α2β2|b− 5bac|α4|b

− 7bac|α4|c+ 5abc|β4|c+ 3aba|γ4|a− 3aba|γ4|b+ 8ab|α4|ab

+ 3ab|α4|bc+ bc|α4|bc− 2ba|α4|ba+ 4ac|α4|ba+ 6ac|α4|ac+ 9ab|β4|ab

− 4bc|β4|ab− 5bc|β4|bc− 4ba|β4|ba− 7ba|β4|ac+ 14ab|γ4|ab

+ 7bc|γ4|ab− ba|γ4|ba− ba|γ4|ac− 8ac|γ4|ba+ 7ab|α3β|ac

− 3bc|α3β|ba+ bc|α3β|ac+ 2ba|α3β|ab+ 3ba|α3β|bc+ ba|α3β|ba

+ 3ba|α3β|ac+ 3ac|α3β|bc− 6ac|α3β|ba− 3ac|α3β|ac− ab|α3γ|ab

+ 5ab|α3γ|bc− 9ab|α3γ|ba− 5ab|α3γ|ac+ 3bc|α3γ|ab+ 6bc|α3γ|bc

− 2bc|α3γ|ba− 2ba|α3γ|ab− 2ba|α3γ|bc+ 6ac|α3γ|ab+ 7ab|α2β2|ab

+ 2ab|α2β2|bc− ba|α2β2|ba+ 2ba|α2β2|ac+ 4ac|α2β2|ac− 2b|α4|bac

+ c|α4|bac+ a|β4|abc− 2c|β4|abc+ 4a|γ4|aba+ 2b|γ4|aba

+ 2a|α2β2|abc− 2c|α2β2|abc− a|α2β2|aba− 2b|α2β2|bac− c|α2β2|bac

+ ω13|ǫ
!|(ba+ ac− bc).

We will now apply the previous results to compute the Gerstenhaber brackets
of Xi for i ∈ J4, 7K with all the other generators of the Hochschild cohomology
of A.

Proposition 4.10. The Gerstenhaber bracket [Xi, Xj ] ∈ HH•(A) for i ∈ J4, 7K
and j ∈ J1, 14K is given by

[Xi, Xj] =











































































































0,
if (i, j) ∈

(

J4, 7K × J1, 7K
)

∪
(

J4, 6K × J9, 11K
)

,

2Xi, if i ∈ J4, 7K and j = 8,

4X1X9, if i = 7 and j = 9,

X1X10, if i = 7 and j = 10,

−X1(X9 +X10), if i = 7 and j = 11,

2X1Xi+5, if i ∈ J4, 5K and j = 12,

2X1(X9 +X10), if i = 6 and j = 12,

X1X9, if i = 7 and j = 12,

τi8X4X10, if i ∈ J4, 6K and j = 13,

4X1X13 − 4X2X13 − 8X4X12, if i = 7 and j = 13,

τi
(

(1/3)X2
i+5 − (4/3)X9X10

)

, if i ∈ J4, 6K and j = 14,

X9X12, if i = 7 and j = 14,

where τi = 1 if i ∈ J4, 5K and τ6 = −1.

Proof. Given i ∈ J4, 7K, let ρi be the derivation of Fact 4.6, Fact 4.7, Fact 4.8,
and Fact 4.9, respectively. Note that G(ρi)i1 = −Yi. By Theorem 2.13,
[−Yi, Yj ] is precisely the cohomology class of ρiYj − Yjρ

i
n for i ∈ J4, 7K and

j ∈ J1, 13K, where n is the cohomological degree of Yj and ρin is obtained
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from (4.4) together with Fact 4.6 for i = 4, Fact 4.7 for i = 5, Fact 4.8 for
i = 6, and Fact 4.9 for i = 7. It is explicitly given by

[−X4, Xj ] =







































0, if j ∈ J1, 7K ∪ {9},

−2X4, if j = 8,

αβ|(ab + bc)− αγ|ac, if j = 10,

−αβ|ab− αγ|ba, if j = 11,

α2|(bc− ba− ac), if j = 12,

3α2γ|aba− 5αβ2|bac, if j = 13,

and

[−X5, Xj ] =







































0, if j ∈ J1, 7K ∪ {10},

−2X5, if j = 8,

−αβ|bc+ αγ|(ba+ ac), if j = 9,

−αβ|ab− αγ|ba, if j = 11,

−β2|(ab + bc− ac), if j = 12,

−5α2β|abc+ 3α2γ|aba, if j = 13,

as well as

[−X6, Xj ] =







































0, if j ∈ J1, 7K ∪ {11},

−2X6, if j = 8,

αβ|(bc− ab)− αγ|(2ba+ ac), if j = 9,

−αβ|(ab + bc) + αγ|ac, if j = 10,

γ2|(bc− ba− ac)− αβ|ba− αγ|ab, if j = 12,

−10α2γ|aba− 2αβ2|bac, if j = 13,

together with

[−X7, X13] = α3|(abc− 2aba) + α2β|(2bac− 6aba)− α2γ|(abc+ 4bac)

+ 5αβ2|(abc− aba),

and

[−X7, Xj ] =







































0, if j ∈ J1, 7K,

−2X7, if j = 8,

α2|(bc− ab− ac− 2ba)− αβ|(ba+ ac) + αγ|bc, if j = 9,

αβ|ac− αγ|(ab + bc), if j = 10,

αβ|ba+ αγ|ab, if j = 11,

(αβ + αγ)|(bc− ba− ac), if j = 12.

Next, we will compute ϕi = [−Yi, Y14] = ρiY14 − Y14ρ
i
4 for i ∈ J4, 7K. Using

Fact 4.6, it is easy to see that ϕ4(1|β4|1) = ϕ4(1|γ4|1) = ϕ4(ω11|ǫ
!|1) = 0,

whereas Fact 4.7 gives us immediately the identities ϕ5(1|α4|1) = ϕ5(1|γ4|1) =
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ϕ5(ω11|ǫ
!|1) = 0, Fact 4.8 tells us that ϕ6(1|α4|1) = ϕ6(1|β4|1) =

ϕ6(ω11|ǫ
!|1) = 0, and Fact 4.9 yields that ϕ7(1|β4|1) = ϕ7(1|γ4|1) = 0 and

ϕ7(ω11|ǫ
!|1) = 3(bc − ba − ac). For i ∈ {4, 7} and u ∈ B!∗

4 \ {β4, γ4} (resp.,
i = 5 and u ∈ B!∗

4 \ {α4, γ4}, i = 6 and u ∈ B!∗
4 \ {α4, β4}), we have that

ϕi(1|u|1) = (ρiY14 − Y14ρ
i
4)(1|u|1) = −Y14(q

i
u) = −λu

i ,

where λu
i ∈ k is the coefficient of ω11|ǫ

!|1 in qiu. It is easy to check that

ρ43δ
b
4(1|α4|1) = bac|α3|1 + abc|β3|1 + aba|α2γ|1 + v4α4

,

ρ43δ
b
4(1|α3β|1) = −2aba|α3|1 + 3abc|γ3|1 + bac|α2β|1 + abc|α2γ|1

+ 2aba|αβ2|1 + v4α3β ,

ρ43δ
b
4(1|α3γ|1) = −2aba|β3|1 + 2bac|γ3|1 + 2aba|α2β|1 + bac|α2γ|1

+ abc|αβ2|1 + v4α3γ ,

ρ43δ
b
4(1|α2β2|1) = −2bac|α3|1− 2abc|β3|1 + 4aba|γ3|1 + 2abc|α2β|1

+ 2bac|αβ2|1 + v4α2β2
,

and

ρ53δ
b
4(1|β4|1) = bac|α3|1 + abc|β3|1 + aba|α2γ|1 + v5β4

,

ρ53δ
b
4(1|α3β|1) = −2aba|α3|1 + 2abc|γ3|1 + bac|α2β|1 + aba|αβ2|1 + v5α3β ,

ρ53δ
b
4(1|α3γ|1) = abc|α3|1− 2aba|β3|1 + 2bac|γ3|1 + 2aba|α2β|1 + bac|α2γ|1

+ abc|αβ2|1 + v5α3γ ,

ρ53δ
b
4(1|α2β2|1) = −3bac|α3|1− 2abc|β3|1 + 3aba|γ3|1 + 2abc|α2β|1

− aba|α2γ|1 + bac|αβ2|1 + v5α2β2
,

as well as

ρ63δ
b
4(1|γ4|1) = −abc|β3|1 + aba|γ3|1 + bac|αβ2|1 + v6γ4

,

ρ63δ
b
4(1|α3β|1) = 4aba|α3|1− 2bac|β3|1 + 2abc|α2γ|1 + 2aba|αβ2|1 + v6α3β ,

ρ63δ
b
4(1|α3γ|1) = −abc|α3|1 + 2aba|β3|1 + aba|α2β|1 + bac|α2γ|1 + v6α3γ ,

ρ63δ
b
4(1|α2β2|1) = 4bac|α3|1 + 4abc|β3|1 + 4aba|α2γ|1 + v6α2β2

,

together with

ρ73δ
b
4(1|α4|1) = (aba− abc)|α3|1 + v7α4

,

ρ73δ
b
4(1|α3β|1) = −abc|α3|1 + 3bac|α3|1 + 3aba|β3|1 + 2abc|β3|1− aba|γ3|1

− 2bac|γ3|1− abc|α2β|1 + 2aba|α2γ|1 + v7α3β,

ρ73δ
b
4(1|α3γ|1) = 2aba|α3|1 + 2bac|α3|1 + 2abc|β3|1− 2bac|β3|1− 2aba|γ3|1

− 2abc|γ3|1− abc|α2β|1 + aba|α2γ|1 + abc|α2γ|1 + aba|αβ2|1
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− bac|αβ2|1 + v7α3γ ,

ρ73δ
b
4(1|α2β2|1) = aba|α3|1− abc|α3|1 + aba|β3|1− abc|γ3|1 + v7α2β2

,

where viu ∈ ⊕j∈J0,2K(Aj ⊗ (A!
−3)

∗ ⊗ A3−j) if i ∈ {4, 7} and u ∈ B!∗
4 \ {β4, γ4},

or if i = 5 and u ∈ B!∗
4 \ {α4, γ4}, or if i = 6 and u ∈ B!∗

4 \ {α4, β4}.
Since, qiu is of the form qiu = Bi

u+λu
i ω11|ǫ

!|1 by degree reasons, where Bi
u ∈ Kb

4,
and we have by definition that δb4(q

i
u) = ρi3δ

b
4(1|u|1), we see that

db4(B
i
u) = δb4(q

i
u)− λu

i f
b
0(1|ǫ

!|1) = ρi3δ
b
4(1|u|1)− λu

i f
b
0(1|ǫ

!|1) (4.5)

for i ∈ J4, 7K. Using the explicit expression of the differential db4 given in [3],
Fact 3.1, it is clear that the coefficients of aba|γ3|1 and aba|α2γ|1 in db4(B)
coincide for all B ∈ Kb

4. Comparing the coefficients of aba|γ3|1 and aba|α2γ|1
in both sides of the equation (4.5), together with the expression of f b

0(1|ǫ
!|1)

given in [3], (3.2), we get

λα4
4 = λβ4

5 = −λγ4

6 = 1/3, λα3β
i = λα3γ

i = 0, λα2β2

i = −τi4/3,

λα4
7 = λα2β2

7 = 0, and λα3β
7 = λα3γ

7 = 1,

for i ∈ J4, 6K, where τi = 1 if i ∈ J4, 5K and τ6 = −1. Hence, we obtain that

ϕ4(1|α4|1) = −1/3, ϕ4(1|α3β|1) = ϕ4(1|α3γ|1) = 0, ϕ4(1|α2β2|1) = 4/3,

ϕ5(1|β4|1) = −1/3, ϕ5(1|α3β|1) = ϕ5(1|α3γ|1) = 0, ϕ5(1|α2β2|1) = 4/3,

ϕ6(1|γ4|1) = 1/3, ϕ6(1|α3β|1) = ϕ6(1|α3γ|1) = 0, ϕ6(1|α2β2|1) = −4/3,

ϕ7(1|α4|1) = ϕ7(1|α2β2|1) = 0 and ϕ7(1|α3β|1) = ϕ7(1|α3γ|1) = −1.

In consequence, we get

[−X4, X14] = (4/3)α2β2|1− (1/3)α4|1,

[−X5, X14] = (4/3)α2β2|1− (1/3)β4|1,

[−X6, X14] = (1/3)γ4|1− (4/3)α2β2|1,

[−X7, X14] = −(α3β + α3γ)|1 + 3ω∗
1ǫ

!|(bc− ba− ac).

Using the coboundaries g2j,2 ∈ B̃2
2 for j ∈ J4, 6K and e3k,3 ∈ B̃3

3 for k ∈ J7, 8K
given in [3], Subsubsection 5.3.1, (4.3) as well as the identities

α2β|abc = X4X10, α4|1 = X2
9 , and α2β2|1 = X9X10, (4.6)

which follow from [3], Fact 6.3 and (6.2), we can rewrite several brackets as

[−X4, X10] = αβ|(ab + bc)− αγ|ac− g25,2 = 0,

[−X4, X11] = −αβ|ab− αγ|ba+ g24,2 = 0,

[−X4, X12] = α2|(bc− ba− ac)− g26,2 = −2α2|(ab+ ba) = −2X1X9,
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[−X4, X13] = 3α2γ|aba− 5αβ2|bac− 5e37,3 − 3e38,3 = −8α2β|abc = −8X4X10,

[−X4, X14] = (4/3)α2β2|1− (1/3)α4|1 = (4/3)X9X10 − (1/3)X2
9 .

Analogously, using the coboundaries g2j,2 ∈ B̃2
2 for j ∈ {4, 5, 7} and e38,3 ∈ B̃3

3

given in [3], Subsubsection 5.3.1, (4.3), (4.6) and the identity β4|1 = X2
10 given

in [3], Fact 6.3, we get that

[−X5, X9] = −αβ|bc+ αγ|(ba+ ac)− g24,2 + g25,2 = 0,

[−X5, X11] = −αβ|ab− αγ|ba+ g24,2 = 0,

[−X5, X12] = −β2|(ab + bc− ac)− g27,2 = −2β2|(ab+ ba) = −2X1X10,

[−X5, X13] = −5α2β|abc+ 3α2γ|aba− 3e38,3 = −8α2β|abc = −8X4X10,

[−X5, X14] = (4/3)α2β2|1− (1/3)β4|1 = (4/3)X9X10 − (1/3)X2
10.

Moreover, using the coboundaries g2j,2 ∈ B̃2
2 for j ∈ J1, 5K and e3k,3 ∈ B̃3

3

for k ∈ J7, 8K given in [3], Subsubsection 5.3.1, (4.3), (4.6) and the identity
γ4|1 = X2

11 given in [3], Fact 6.3, we obtain

[−X6, X9] = αβ|(bc− ab)− αγ|(2ba+ ac) + 2g24,2 − g25,2 = 0,

[−X6, X10] = −αβ|(ab+ bc) + αγ|ac+ g25,2 = 0,

[−X6, X12] = γ2|(bc− ba− ac)− αβ|ba− αγ|ab− 2g21,2 − 2g22,2 − g23,2

= −2(α2 + β2)|(ab + ba) = −2X1(X9 +X10),

[−X6, X13] = −10α2γ|aba− 2αβ2|bac− 2e37,3 + 10e38,3 = 8α2β|abc = 8X4X10,

[−X6, X14] = (1/3)γ4|1− (4/3)α2β2|1 = (1/3)X2
11 − (4/3)X9X10.

Finally, using the coboundaries g2j,2 ∈ B̃2
2 for j ∈ J1, 6K \ {3} and e3k,3 ∈ B̃3

3 for
k ∈ J1, 4K ∪ J9, 10K given in [3], Subsubsection 5.3.1, (4.3) and

α3|(aba− abc) = X7X9, α3|aba+ β3|bac = X7(X9 +X10)− 2X6X12,

(α3 + β3)|aba = X6X12, (α3β + α3γ)|1 + 3ω1ǫ
!|(ba− bc+ ac) = X9X12,

given in [3], Fact 6.3, or in [3], (6.2), together with the second element in the
fifth and the eighth line, the first element in the ninth line of [3] (6.5), we have
that

[−X7, X9] = α2|(bc− ab− ac− 2ba)− αβ|(ba+ ac) + αγ|bc− g21,2 − g26,2

= −4α2|(ab + ba) = −4X1X9,

[−X7, X10] = αβ|ac− αγ|(ab+ bc)− g22,2 = −β2|(ab+ ba) = −X1X10,

[−X7, X11] = αβ|ba+ αγ|ab+ g21,2 + g22,2 = (α2 + β2)|(ab+ ba)

= X1(X9 +X10),

[−X7, X12] = (αβ + αγ)|(bc− ba− ac)− g21,2 + g24,2 − g25,2 = −α2|(ab + ba)
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= −X1X9,

[−X7, X13] = α3|(abc− 2aba) + α2β|(2bac− 6aba)− α2γ|(abc+ 4bac)

+ 5αβ2|(abc− aba)− (1/3)(23e31,3 + 11e32,3 − 32e33,3 − 16e34,3

− 5e39,3 + 6e310,3)

= (8/3)α3|(aba− abc)− (32/3)(α3 + β3)|aba

− (16/3)(α3|aba+ β3|bac)

= −(8/3)X7(X9 + 2X10) = −4X1X13 + 4X2X13 + 8X4X12,

[−X7, X14] = −(α3β + α3γ)|1 + 3ω∗
1ǫ

!|(bc− ba− ac) = −X9X12.

The proposition is thus proved.

Remark 4.11. Note that vanishing of [Xi, Xj ] for i ∈ J4, 7K and j ∈ J3, 7K in
Proposition 4.10 also follows from a simple degree argument based on Corol-
lary 2.5 and the Hilbert series of the Hochschild cohomology given in [3],
Cor. 5.9.

4.3 Gerstenhaber brackets

We will finally compute the remaining Gerstenhaber brackets. We start with
the following result, which is a sort of descending argument.

Lemma 4.12. Let H = ⊕n∈N0H
n be a Gerstenhaber algebra with bracket [ , ].

Let x ∈ Hn+1, y ∈ Hn, ax ∈ H0, ay ∈ H1 and z ∈ Hm satisfy that axx = ayy,
and there is a vector subspace M ⊆ Hn+m−1 such that [y, z] ∈ M and the map
µay

: M → Hn+m sending v ∈ M to ayv is injective. Then, [y, z] is the unique
element v ∈ M satisfying that ayv coincides with

(−1)m−1
(

ax[x, z] + [ax, z]x− [ay, z]y
)

. (4.7)

Proof. By (2.2) we get that

[axx, z] = [ax, z]x+ ax[x, z] and [ayy, z] = [ay, z]y + (−1)m−1ay[y, z].

These identities together with axx = ayy imply

ay[y, z] = (−1)m−1
(

ax[x, z] + [ax, z]x− [ay, z]y
)

.

Hence, the right member is in the image of the injective map µay
, and the

result follows.

Remark 4.13. We will apply the previous lemma to the case when H = HH•(A)
is the Hochschild cohomology of a graded algebra A, so H is endowed with an
extra grading, called internal (see Corollary 2.5), the elements x, y, z, ax, ay are
homogeneous for both gradings and M ⊆ Hn+m−1 is the subspace of internal
degree equal to the sum of those of y and z. In this case, the methods given in
Subsections 2.2 and 2.3 allow to compute the last two brackets of (4.7), whereas
the first one will usually vanish by degree reasons.
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Proposition 4.14. Let A = FK(3) be the Fomin-Kirillov algebra on 3 gen-
erators. Then, we have the Gerstenhaber brackets [Xi, Xj ] = 0 for i, j ∈
J9, 14K \ {13} and

[X13, Xj ] =



















2X2
j , if j ∈ J9, 11K,

−6X1X14 + 6X2X14 + 2X9X12, if j = 12,

0, if j = 13,

4(X9 +X10 +X11)X14, if j = 14.

Proof. Recall that, by Corollary 2.5, the Gerstenhaber bracket satisfies that
[ , ] : Hn1

m1
× Hn2

m2
→ Hn1+n2−1

m1+m2−1, where Hni
mi

has internal degree mi − ni for
i = 1, 2. Using this degree argument together with the Hilbert series of the
Hochschild cohomology computed in [3], Cor. 5.9, we easily see that [Xi, Xj ] =
0 for i, j ∈ J9, 14K \ {13}. Moreover, [X13, X13] = 0 by (2.1).
It remains to compute [X13, Xj ] for all j ∈ J9, 14K\{13}. Note first the identities

[X8, X9]X13 − 6[X3, X9]X14 = 2X9X13 + 12X4X14 = 2X8X
2
9 ,

[X8, X10]X13 − 6[X3, X10]X14 = 2X10X13 + 12X5X14 = 2X8X
2
10,

[X8, X11]X13 − 6[X3, X11]X14 = 2X11X13 − 12X6X14 = 2X8X
2
11,

[X8, X12]X13 − 6[X3, X12]X14 = 2X12X13 − 12X7X14 + 6X1X8X14

− 6X2X8X14

= 2X8X11X12 + 6X1X8X14

= 2X8X
2
12 − 4X8X9X10

= 2X8X9X12 − 6X1X8X14 + 6X2X8X14,

[X8, X14]X13 − 6[X3, X14]X14 = 4X8(X9 +X10 +X11)X14,

(4.8)

where the first equality of the first fourth lines as well as that of the last line
follows from Propositions 4.4 and 4.5, and we used the first element of the
seventh and the eighth line of [3], (6.5), as well as its last four elements, for the
remaining equalities. The penultimate element of the ninth line of [3], (6.5),
also tells us that 6X3X14 = X8X13 ∈ HH•(A).
Notice now that, by degree reasons, [X13, Xj ] ∈ H4

0 for j ∈ J9, 12K and H4
0

is precisely the subspace of HH4(A) spanned by the elements X2
9 , X

2
10, X

2
11,

X9X12 − 3X1X14 + 3X2X14, X9X10, X1X14 and X2X14. On the other hand,
[X13, X14] ∈ H6

−2 = ω∗
1H

2
0 , by degree reasons, and ω∗

1H
2
0 is the subspace of

HH4(A) spanned by X9X14, X10X14, X11X14 and X12X14. Let us denote by
jM ⊆ HH4(A) the subspace given by H4

0 if j ∈ J9, 12K and by H6
−2 if j = 14.

Since the elements X8X
2
9 , X8X

2
10, X8X

2
11, X8X9X12−3X1X8X14+3X2X8X14,

X8X9X10, X1X8X14, and X2X8X14 are linearly independent, by the second
equalities of the first four lines of (4.8) together with [3], (6.7) and (6.8), the map
jM → HH5(A) given by left multiplication by X8 is injective for j ∈ J9, 12K.
Similarly, the elements X8X9X14, X8X10X14, X8X11X14 and X8X12X14 are
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linearly independent, by [3], (6.8), so the map 14M → HH7(A) given by left
multiplication by X8 is also injective.
Finally, applying Lemma 4.12 to x = X14, y = X13, z = Xj, ax = 6X3,
ay = X8 and M = jM for j ∈ J9, 14K\{13}, together with the fact remarked at
the beginning of the proof that [X14, Xj ] = 0 and (4.8), the result follows.

We can summarize the calculations of the Gerstenhaber brackets on HH•(A)
done in Propositions 4.4, 4.5, 4.10 and 4.14 in the following table, where the
brackets strictly below the diagonal are not displayed since they can be obtained
using Lemma 2.2.

ρ φ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0 0 0 0 0 0 0 2X1 0 0 0 0 4X1(X9 +X10) 0
X2 0 0 0 0 0 0 2X2 0 0 0 0 4X1X10 0
X3 0 0 0 0 0 4X3 −2X4 −2X5 2X6 2X7 −X1X8 +X2X8 4X3(X9 +X10 +X11) X13 − (2/3)X8(X9 +X10 +X11)
X4 0 0 0 0 2X4 0 0 0 2X1X9 8X4X10 (1/3)X2

9 − (4/3)X9X10

X5 0 0 0 2X5 0 0 0 2X1X10 8X4X10 (1/3)X2
10 − (4/3)X9X10

X6 0 0 2X6 0 0 0 2X1(X9 +X10) −8X4X10 (4/3)X9X10 − (1/3)X2
11

X7 0 2X7 4X1X9 X1X10 −X1(X9 +X10) X1X9 4X1X13 − 4X2X13 − 8X4X12 X9X12

X8 0 2X9 2X10 2X11 2X12 2X13 6X14

X9 0 0 0 0 −2X2
9 0

X10 0 0 0 −2X2
10 0

X11 0 0 −2X2
11 0

X12 0 6X1X14 − 6X2X14 − 2X9X12 0
X13 0 4(X9 +X10 +X11)X14

X14 0

Table 4.1: Gerstenhaber brackets [ρ, φ].

Proposition 4.15. There is no generator of the Gerstenhaber bracket on
the Hochschild cohomology HH•(A) of A = FK(3), i.e. there is no map
∆ : HH•(A) → HH•(A) of degree −1 such that

[x, y] = (−1)|x|
(

∆(xy)−∆(x)y − (−1)|x|x∆(y)
)

(4.9)

for all homogeneous elements x, y ∈ HH•(A), where |x| is the cohomological
degree of x. In particular, there is no Batalin-Vilkovisky structure on HH•(A)
inducing the Gerstenhaber bracket.

Proof. Assume that (4.9) holds. Obviously, ∆(HH0(A)) = 0. Applying the
results in Table 4.1 and (4.9), we get −4X3 = [X8, X3] = ∆(X8)X3, and
0 = [Xi, Xj] = ∆(Xi)Xj for i ∈ J4, 7K and j ∈ J1, 3K, since X8X3 =
XiXj = 0 in that case (see the first two lines of [3], (6.5)). Hence, ∆(X8) ∈
−4 + spank〈X1, X2, X3〉 and ∆(Xi) ∈ spank〈X1, X2, X3〉 for i ∈ J4, 7K, where
spank〈X1, X2, X3〉 is the k-subspace spanned by X1, X2, X3. Moreover,

−2X4 = [X3, X9] = ∆(X3X9)−X3∆(X9) = ∆(X3X9),

2X4 = [X4, X8] = −∆(X4X8) + ∆(X4)X8 −X4∆(X8)

= −∆(X4X8) + ∆(X4)X8 + 4X4,

(4.10)

where we used that X4Xi = X3Xk = 0 for i ∈ J1, 3K and k ∈ J4, 8K, by
the first two lines of [3], (6.5). Since X3X9 = X4X8 ∈ HH2(A) (see the
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penultimate element of the third line of [3], (6.5)), adding the equations (4.10),
we obtain ∆(X4)X8 + 4X4 = 0. The identity ∆(X4) = k1X1 + k2X2 + k3X3

for k1, k2, k3 ∈ k, which we proved before, implies that k1X1X8 + k2X2X8 +
4X4 = 0. This is impossible since the elements X1X8, X2X8 and X4 are
linearly independent in HH1(A) (see [3], (6.7)). The proposition thus follows.
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