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ABSTRACT. The goal of this article is to compute the Gerstenhaber
bracket of the Hochschild cohomology of the Fomin-Kirillov algebra on
three generators over a field of characteristic different from 2 and 3.
This is in part based on a general method we introduce to easily
compute the Gerstenhaber bracket between elements of HH"(A) and
elements of HH"(A) for n € Ny, the method by M. Sudrez-Alvarez in
[8] to calculate the Gerstenhaber bracket between elements of HH' (A)
and elements of HH"(A) for any n € Ny, as well as an elementary re-
sult that allows to compute the remaining brackets from the previous
ones. We also show that the Gerstenhaber bracket of HH®(A) is not
induced by any Batalin-Vilkovisky generator.

2020 Mathematics Subject Classification: 16E40, 18G10, 16537
Keywords and Phrases: Fomin-Kirillov algebra, Hochschild cohomol-
ogy, Gerstenhaber bracket

1 INTRODUCTION

The goal of this article is to completely compute the Gerstenhaber bracket of
the Hochschild cohomology HH®(A) of the Fomin-Kirillov algebra A on three
generators over a field k of characteristic different from 2 and 3. In the paper
[3] we have computed the algebra structure on HH®*(A), and we showed that
it is a finitely generated graded algebra with a minimal set {X;|i € [1,14]}
of 14 generators, three of which are in HH?(A), five are in HH'(A), four are
in HH?(A), one in HH*(A) and one in HH*(A4). In this article we compute
the Gerstenhaber bracket between these generators, which fully determines the
Gerstenhaber bracket on HH®(A).
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1774 E. HErscoviICH, Z. L1

Our calculations are organised as follows. First we provide a general method
of homological flavour to easily compute the Gerstenhaber bracket between el-
ements of HH’(A) and elements of HH™(A) for any n € Ny and any algebra A
over a field k (see Theorem 2.7). We then use this method for the partic-
ular case of the Fomin-Kirillov algebra A on three generators over a field of
characteristic different from 2 and 3 (see Proposition 4.4). Secondly, for A
as before, we compute the Gerstenhaber bracket between elements of HH'(A)
and elements of HH"(A) for any n € Ny using the method introduced by M.
Sudrez-Alvarez in [8] (see Propositions 4.5 and 4.10). Finally, we present a
simple result that allows us to compute the remaining Gerstenhaber brackets
under some assumptions on the algebra structure of the Hochschild cohomology
of an algebra (see Lemma 4.12), which are verified in the case of the Fomin-
Kirillov algebra A on three generators over a field of characteristic different
from 2 and 3 (see Proposition 4.14). We summarize our results in Table 4.1.
By using the explicit expression of the Gerstenhaber bracket of HH®(A) to-
gether with a direct computation, we show that the former is not induced by
any Batalin-Vilkovisky generator (see Proposition 4.15).

The article is organised as follows. In the first subsection of Section 2 we recall
some general facts about the Gerstenhaber bracket on Hochschild cohomology.
In Subsection 2.2 we present our general method to compute the Gerstenhaber
bracket between elements of HH(A) and elements of HH™(A) for any n €
No, whereas in Subsection 2.3 we recall the method of [8] to compute the
Cerstenhaber bracket between elements of HH'(A) and elements of HH"(A)
for any n € Ny. In Section 3 we recall the definition of the Fomin-Kirillov
algebra on three generators, and we summarize some results of [3] about its
Hochschild cohomology, in particular those we are going to use in the sequel.
Finally, in Section 4 we compute the Gerstenhaber brackets of the generators
of the algebra structure of the Hochschild cohomology of the Fomin-Kirillov
algebra A on three generators, following the path described in the previous
paragraph.

In the whole article, we will denote by N (resp., Ny) the set of positive (resp.,
nonnegative) integers, and Z the set of integers. Moreover, given i,j € Z we
define the integer interval [i,7] = {n € Z|i < n < j}. To reduce space in
the expressions of the article we will typically denote the composition f o g of
maps f and g simply by their juxtaposition fg. For a field k, all maps between
k-vector spaces will be k-linear and all unadorned tensor products ® will be
over k.

We would like to thank the referee for the careful reading of the article.

2 THE GERSTENHABER BRACKET ON HOCHSCHILD COHOMOLOGY

All along this section we will consider k to be a field and A to be a (unital
associative) k-algebra.

DOCUMENTA MATHEMATICA 27 (2022) 1773-1804



GERSTENHABER STRUCTURE ON HH®(FK(3)) 1775

2.1 GENERALITIES ON THE (GERSTENHABER BRACKET

In this subsection we recall several basic definitions and results concerning the
Gerstenhaber bracket, that we will utilize in the sequel.

Recall that the BAR RESOLUTION (B, (A), d) of A is given by B, (A) = A®(+2)
for n € Ny, with the differentials d,, : B,(A4) — B,—1(A) given by

n
dn(ao| - ant1) = Y (=1Vao ... |aj1]ajazii]aiol .. [anis
=0

for ag,...,an+1 € Aand n € N, and the augmentation 7 : By(4) = A A — A
defined by the multiplication of A. We will typically write ag|...|an+1 instead
of ap ® -+ - ® an41 for simplicity. There is an isomorphism

F : Hompe (B, (A), A) — Homy (A®", A)

given by F(f)(a1]...lan) = f(1]a1]...|an|l) for f € Homae(B,(A),A) and
ai,--..,a, € A. The inverse map

G : Homy (A®", A) — Hom e (B, (A), A)

of F is explicitly given by G(g)(aol...|ant+1) = aog(ai|...|an)ans1 for g €
Homy (A®", A) and ag, . ..,an11 € A.
The following definition is classical (see for instance [10], Def. 1.4.1).

DEFINITION 2.1. Let m,n € Ny, f € Homg(A®™, A) and g € Homy,(A®" A).
The GERSTENHABER BRACKET |[f, g] is defined at the chain level as the element
of Homy (A®(m+n=1) " A) given by

[f.g] = fogg— (—1)mDNgos f,

where f og g is defined by

(focg)(a1]...|amtn—1)
= (=)D f(ay] . aioa|g(aal - laiin—1)laisn] - amin-1).
1=1

Moreover, if m = 0, then f og g = 0, while if n = 0, then the formula should
be interpreted by taking the value g(1) in place of g(a;| ... |@itn-1).

Using the isomorphisms F' and G of chain complexes given above, one
defines the GERSTENHABER BRACKET in Homuae(Be(A),A) by [f,g9] =
G([F(f),F(g)]) € Homae(Bmin-1(A),A) for f € Homae(B,,(A),A), g €
Homye(By(A), A) and m,n € Ng. The Gerstenhaber bracket given before
induces a well-defined bilinear map
[,] : H™ (Homae(Be(A), A)) x H" (Homae(Bs(A), A))
— H™"! (Homa< (Be(A), A))
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1776 E. HErscoviICH, Z. L1

for all m,n € Ny, that we also call the GERSTENHABER BRACKET.

More generally, let (P, ds) be a projective bimodule resolution over A with
augmentation p : Py — A. Let is : Po — Be(A) and pe : Be(A) — P
be morphisms of complexes of A-bimodules lifting id 4, SO peie is homotopic to
idp, and iepe is homotopic to id Be(A)- We also recall that the morphisms i, and
pe induce the quasi-isomorphisms ¢} : Hom ge (Be(A), A) — Hom ge(P,, A) and
pa: Homye(Py, A) — Homye(Bo(A), A) given by i3(f) = fie and pi(g) = gpe
for f € Homae(Bo(A),A) and g € Homuye(P,, A), respectively. Moreover,
H(i}),H(p}) : HH*(A) — HH®(A) are independent of the choice of ie and ps.
The GERSTENHABER BRACKET

[,]: H™ (Homae (Po(A), A)) x H" (Homae (Pu(A), A))
— H™"! (Homa< (Pu(A), A))

for all m,n € Ny is then defined by transport of structures. More gener-
ally, given cocycles f € Homge(P,,, A) and g € Homye (P, A), we define the
Gerstenhaber bracket [f, g] € H™ "1 (Hom e« (P,, A)) = HH™ "7 1(A) as the
cohomology class of i}([pi(f),ri(9)])-

The following properties of the Gerstenhaber bracket are classical (see for in-
stance [2], equation (2), ¢f. [10], Lemmas 1.4.3 and 1.4.7).

LEMMA 2.2. Letk be a field and A a k-algebra. Then

['T’y] = _(_1)(m71)(n71)[9a x]’

2.1
[, [y, 2]] = [[z,9], 2] + (=)D Vy, [z, 2]], >

and
[x—y,z]=[z,2] —y+ (fl)m(pfl):c — [y, 2] (2.2)

for all x € HH™(A), y € HH"(A) and z € HHP(A), where — denotes the cup
product.

REMARK 2.3. To avoid any confusion, we remark that the definition of cup
product on Hochschild cohomology in the previous result is the one given in
[2], Section 7. Explicitly, at the level of the bar resolution it is given by
(f—9)(a1,...,amsn) = flar, .., am)g(@ms1,-- - Qmin), for a1,...,amin €
A, f € Homg(A®™, A) and g € Homy(A®™, A). A different convention, in the
spirit of Koszul’s sign rule, includes a sign (—1)™" (see [10], Def. 1.3.1 and
Rk. 1.3.3). To reduce space we will denote the cup product simply by juztapo-
sition.

The previous result is typically rephrased by stating that the Hochschild co-
homology is a GERSTENHABER ALGEBRA, i.e. a graded-commutative alge-
bra H = ®npen,H"™ endowed with a bracket [,] : H ® H — H satisfying
[H™, H"] C H™™"~1 for m,n € Ny, (2.1) and (2.2).
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Assume for the rest of this subsection that A is GRADED, i.e. there exist k-
vector subspaces {4, tnez of A such that A = @, czA,, and A, - Ay, C A
for all m,n € Z. Recall that a left A-module M is called GRADED if there are k-
vector subspaces { My, }nez of M such that M = @pezM, and A,- My, C Moyt
for all m,n € Z. Given two graded left A-modules M and N, a morphism
f+ M — N of left A-modules is called HOMOGENEOUS of degree d € Z if
f(M,) € Npiqforalln € Z. Let Hom4 (M, N) be the k-vector space consisting
of all morphisms of left A-modules from M to N. Let

Homa(M,N) = @ Homa(M,N)q,
deZ

be the graded k-vector space, where Homa(M,N)y is the subspace of
Hom 4 (M, N) consisting of all homogeneous morphisms of degree d.
The following result is classical (see [5], Cor. 2.4.4).

LEMMA 2.4. If M is a finitely generated graded module over a graded algebra A,
then Homa (M, N) = Homa (M, N).

COROLLARY 2.5. Let (P, 0s)

05 0 17}
Ly P Pp P A

be a projective bimodule resolution of a graded k-algebra A, where P; is finitely
generated as left A°-module for i € Ny, and p and 0; are homogeneous of
degree 0 fori € N. Then Homye(P;, A) = Homae(P;, A) fori € Ng. Hence, the
Hochschild cohomology HH®(A) = @en, H (Homae (Ps, A)) of A is a bigraded
algebra, for the cohomological degree i and the internal degree induced by that
of A and P,. Moreover, the cup product and the Gerstenhaber bracket on
HH®(A) preserve the internal degree.

REMARK 2.6. The existence of a projective bimodule resolution of the graded
k-algebra A satisfying the conditions of the previous corollary clearly holds if
the graded k-algebra A is noetherian (e.g. if A is finite dimensional over k).

2.2 METHOD COMPUTING THE BRACKET BETWEEN HH?(A) AND HH"(A)

In this subsection we introduce an elementary method to compute the Gersten-
haber bracket between the cohomology groups HH?(A) and HH™(A) for n € Ny
of any algebra A using any projective bimodule resolution of A (see Thm. 2.7).
We were unable to explicitly find this method in the existing literature (see
Remark 2.12), although we suspect it could be well known to the experts.

Let p be an element of the center Z(A) = HH(A) of A and ¢, €
Hom e (By(A), A) be the morphism defined by £,(1|1) = p. Let (P, 0s) be
a projective bimodule resolution over A with augmentation pu : Py — A, and
let ig : Py — Bo(A) be the 0-th component of a morphism e : P — Be(A)
of complexes of A-bimodules lifting id4. The main aim of this subsection is
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1778 E. HErscoviICH, Z. L1

to prove the following theorem, that tells us that we can compute the Ger-
stenhaber bracket between HH’(A) and HH"(A) for n € Ny using a simple
homological procedure on any projective bimodule resolution of A.

THEOREM 2.7. Consider the same assumptions as in the previous paragraph.
Let n, : P, — P, be the map given by n,(v) = pv —vp for v € P, and n € Ny.
Since e = {Nn : P = Pnlnen, @8 a lifting of the zero morphism from A to
itself, ne is null-homotopic, i.e. there is a family he = {h2 : P, — Pyi1}nen,
of morphisms of A-bimodules such that

no =0ihy and n, =h? 0, + Opt1hl (2.3)

for n € N. Then, if ¢ € Hompe(Py, A) is a cocycle for some n € N, the
Gerstenhaber bracket [¢,£,io] € HH" "' (A) is given by the cohomology class of

Phy -

REMARK 2.8. It is easy to see that if ¢ € Homye(P,, A) is a cocycle (resp.,
coboundary), then ¢hl _, is a cocycle (resp., coboundary) by applying (2.3). On
the other hand, in general we have Py = By = A® A and ig = idaga, so we
can forget about ig in Theorem 2.7.

The rest of this subsection is devoted to proving Theorem 2.7. In order to do
that, we first need to prove some preliminary results.
Let t,, : B,(A) — Bp+1(A) be the morphism of A-bimodules given by

n

tulaol. .- lans1) = S (=Daol ... |aslplazea] .. . lanss
j=0

for ag,...,ant1 € A and n € Ny. Let & = {&, : Bn(A) = Bn(A)}nen, be the
family of morphisms of A-bimodules defined by &, (u) = pu—wup for u € B, (A)
and n € Ny.

LEMMA 2.9. We have that & = ditg and &, = tn—1dy, + dpy1ty, forn € N.

Proof. For ag,...,a,+1 € A and n € N,
dito(aolar) = di(ao|plar) = aoplar — aglpar = paglar — aolarp = &o(aolar),

and

n

dratafanl - Jansr) = duir (LDl lagllaseal - ansr ) = Si-+ 52

Jj=0

where
S1= z<_1>j{(_1>ja0| - Jayrlagplagl . Jame
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T (1) ag) ... aglpazsalagsal .. |an+1}
=app|...|ant1 — aol ... |an|panii
=&y (aol - |an+1),

n j—2
Sy = Z(—l)J{ D (=D7aol .. lar—1larariilarssl - laglplagial - - ani

=0 =0
+(=1)"ao| .. |aj-2]aj-1aslplaji1] ... Jant
+ (1Y 2aql ... |ajlplajirajzlajs] . - Jants
+Z 1)™*ag '|aj|p|aj+1|---|ar—1|arar+1|aT+2|---|an+1}
r=j+2
n n
= { > (=1 agl .. Jaial|asaiplaiga| . laglplajial - lang
=0 =142
— a0| N |ai_1|aiai+1|p|ai+2| N |an+1
+ a0| N |ai,1|p|aiai+1|ai+2| N |an+1
+ Z L ao| . ajlplajal .- ai-1|aiaisi]aira] .. |an+1}
n i—2 )
= (- Hl{z =1 aol. .. lajlplaj1]. . - |ai-1laiaiyi]aive| . . |anst
1=0 7=0
+ (—1)i71a0| e |ai,1|p|aiai+1|ai+2| e |an+1
+ (=1D’aol ... lai—1|asaiv1|plaira] . . [anta

3 (1) a] . faislasasalaisal - - Jaglolagaal - |an+1}

j=i+2
= —tn_ldn(a0| N |an+1).
Hence, &, = tp—1dp + dnt1tn. O

LEMMA 2.10. The Gerstenhaber bracket [p,{,] € Homae(B,—1(A), A) is given
by [¢,£,] = ptn_1 for ¢ € Homye(By(A), A) and n € N.

Proof. For aqg,...,a, € A,

[0, £l ol - [an) = a0 F (), F(€,))(au] ... [an—1)an
— ao(F(¢) o F(€,)) (@] . |an—1)an

n

a0<z Y E(p (a1|...|ai1|p|ai|...|an1))an

=1
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1780 E. HErscoviICH, Z. L1

a0<2(1)i1¢(1|a1| - aica|plad) . .. |an1|1)) an

=1

(—1)i71g0(a0|a1| o ailplag] - lan—1]an)

Il
.
I M:
[\

53

—~

otn—1)(aglai] ... |an—1|an).

Hence, [p,¢,] = @tn_1. O

LEMMA 2.11. We assume the same hypotheses as those of Theorem 2.7. Then,
there exists a family se = {sn : Pn, — Bpny2(A)}nen, of morphisms of A-
bimodules such that ilhg —toto = daSo and in41hf, — tpin = dnt2Sn — Sn—10n
forn e N.

PT’OOf. Since dl(llhg — toio) = ioalhg — dlﬁo’io = io?’]o — fo’t'o = 0, where we
used that ig is a morphism of A-bimodules in the last equality, there exists
a morphism sg : Py — Ba(A) of A-bimodules such that daso = i1hf — toio.
We now claim that there exists a family s¢ = {5, : P, = Bpy2(A)} nen, of
morphisms of A-bimodules such that d,+28, = int1h? — tpin + Sp—10n by
induction on n € Ny (where s_1 = 0). Indeed,

dpt1(tnt1hf — tpin + Sp—10n)
= dpi1in+1hf, — dpgitnin + (inh? | —tp_1in—1 + $n—20,—1)0n
= inOnt1ht — (€n — tn—1dp)in + inh? _10n — tn_19p—10n
= in(an-i-lhz + hvpz—lan) —&nin = intn — &nin =0,

where we used the inductive assumption in the first equality, Lemma 2.9 in the
second equality, the definition of 7,, in the third equality and the fact that i,
is a morphism of A-bimodules in the last equality. The result thus follows. [

Proof of Theorem 2.7. Let ¢ = ¢p,, € Homye (B, (A), A). Then ¢ is a cocycle
and [¢,i5(¢,)] = 15([p5(0),4,]) = [0, Lp)in—1 = @tp_1in—1 by Lemma 2.10.
Since pete is homotopic to the identity of P,, there exists ¢1 € Hom ge (P,,—1, A)
such that ¢ — @i, = ¢ — Pprin = ¢10,. Then,

Phy 1 — ptn_vin_1 = (Qin + ¢10n)h]_| — Ptp_1in_1
= @(dn+15n—1 — Sn—20n-1) + ¢1 (-1 — h) _30p—1)
= —Sp—20p-1 — 1hl_30p_1 € Homye (Py—1, A)

is a boundary, where we used Lemma 2.11 and the definition of 7,1 in the
second equality and the fact that ¢, is a morphism of A-bimodules in the last
identity. Hence, [¢,i%(¢,)] € HH""!(A) coincides with the cohomology class of
®hl _,, as was to be shown. O

REMARK 2.12. The homotopy maps hs in Theorem 2.7 are presumably homo-
topy liftings in the sense of [9]. However, our maps his do not directly follow the
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scheme of that definition —as well as being far simpler, for they are restricted
to a much easier situation— since they do not require the computation of any
map A : Py — Py @4 P, lifting the isomorphism A — A ®4 A, which is also
the case in [6].

2.3 METHOD COMPUTING THE BRACKET BETWEEN HH'(A) anp HH"(A)
(AFTER M. SUAREZ-ALVAREZ)

In this subsection we will briefly recall the method introduced by M. Suarez-
Alvarez in [8] to compute the Gerstenhaber bracket between HH'(A) and
HH"(A) for n € Ny.

Recall that HH'(A) is isomorphic to the quotient of the space of derivations
of A modulo the subspace of inner derivations. Let p: A — A be a derivation
of A, i.e. p(xy) = p(x)y + xp(y) for all z,y € A. For a left A-module M, a
p-OPERATOR on M is amap f : M — M such that f(am) = p(a)m+af(m) for
alla € A and m € M. It is direct to see that the map p* = pRidg +ida ® p :
A°® — A€ defined by p(z ®y) = p(x) @y + 2 ® p(y) for z,y € A is a derivation
of the enveloping algebra A€ and p is a p®-operator on A.

Let (P,,0.) be a projective bimodule resolution over A with augmentation
w: Py — A A p°-LIFTING of p to (Ps, ) is a family of p®-operators p, =
{pn : Pn = Pp}nen, such that pupo = pp and O, pn = pr—10y, for n € N. The
morphism of complexes

pﬁ_ﬁp. : Hom e (P,, A) — Hom ge (P, A)

defined by pf, 1 (¢) = p¢ — dpn for ¢ € Homue(Pn, A) and n € No is in-
dependent of the pe-lifting up to homotopy (see [8], Lemma 1.6) and it thus
induces a morphism on cohomology that we will denote by the same symbol.
Let i : Po — Bo(A) and pe : Be(A) — P. be morphisms of complexes of
A-bimodules lifting id4. Then the diagram

H" (Hom . (B4(A), A)) IM H" (Hom . (B4(A), A))

lH(ii) lH(Z-:) (2.4)
#
H" (Homue (Pa, A)) ——22) 1" (Hom . (Py, A))

commutes (see [8], Lemma 1.6). On the other hand, as noted in [8], Sections 2.1
and 2.2, using the p®-lifting of p to the bar resolution defined by

n+1
pulaol .- lant1) =D aol .. laj1lp(aj)laji] .. Jant

=0
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1782 E. HErscoviICH, Z. L1
for ag,...,an+1 € A and n € Ny, it is easy to check that the diagram

#
P, Be(A)

Hom 4« (B, (4), A) Hom e (B, (4), A)

J# 7
Homy (A®", A) S o EN Homy (A®", A)

commutes. As a consequence, the Gerstenhaber bracket between the cohomol-
ogy classes of G(p) € Homye(B1(A), A) and ¢ € Homy.(B,(A4), A) is given by
the cohomology class of [G(p), | = G([p, F(¥)]) = pth.(A)(ga).

We finally recall one of the main results of [8], which tells us that we can
compute the Gerstenhaber bracket between HH'(A) and HH"(A) for n € Ny
using any projective bimodule resolution of A (see [8], Thm. A and Section 2.2).
The proof just follows from observing that, on cohomology, (2.4) gives us the
identities

[12(G(p)), 8] = i (1G(p), ps(D)]) = i3 (P, 5. ) (PE (@) = P, (@).

THEOREM 2.13. Let (Pa,ds) be a projective bimodule resolution over the alge-
bra A with augmentation p : Py — A, and let i1 : P, — Bi(A) be the first
component of the morphism ie : Pe — Be(A) of complexes of A-bimodules lift-
ing ida. Given a cocycle ¢ € Hompe(P,,A) and n € Ny, the Gerstenhaber
bracket [G(p)i1, ] € HH"(A) is given by the cohomology class of sz,P. (9).

REMARK 2.14. Note that in our Theorem 2.7, as well as in the result proved in
[8] that was recalled before as Theorem 2.13, we need at least some component(s)
of the comparison map from the generic projective resolution (Ps,ds) to the bar
resolution.

3 BasIcs ON THE FOMIN-KIRILLOV ALGEBRA FK(3) ON 3 GENERATORS

In this section we will review the basic definitions concerning the Fomin-Kirillov
algebra on 3 generators. Recall that, given ¢ € Z, we will denote by Z¢; the set
{m € Z|m < i}. Given r € R, we set |r] = sup{n € Z|n < r} the usual FLOOR
FUNCTION. From now on, k is a field of characteristic different from 2 and 3.
We recall that the FOMIN-KIRILLOV ALGEBRA on 3 generators is the k-algebra
FK(3) generated by the k-vector space V spanned by three elements a, b and ¢
modulo the ideal generated by the vector space R C V®2 spanned by

{a? b, c?, ab+ be + ca, ba + ac + cb}.

This is a nonnegatively graded algebra by setting the generators a, b and ¢
in (internal) degree 1. As usual, we will omit the tensor symbol ® when de-
noting the product of the elements of the tensor algebra TV = @pen,VE".
We refer the reader to [1,4] for more information on Fomin-Kirillov algebras.
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Note that FK(3) = @,e[0,41FK(3)m, where FK(3),, is the subspace of FK(3)
concentrated in internal degree m. It is easy to see that

B ={1,a,b,c,ab,bc,ba,ac, aba, abc, bac, abac} (3.1)

is a basis of FK(3) (see [1]). Given m € [0,4], we will denote by %,,, the subset
of (3.1) that is a basis of FK(3),,.

Let us briefly denote by {A, B,C} the basis of V* dual to the basis {a,b,c}
of V, where the former are concentrated in internal degree —1. The QUADRATIC
pUAL FK(3)' = @,en,FK(3)",, of the Fomin Kirillov algebra FK(3) is then
given by

FK(3)' =k(A,B,C)/(BA — AC,CA — AB, AB — BC,CB — BA),

where FK(3)"_,, is the subspace of FK(3)' concentrated in internal degree —n.
Notice that FK(3)), = k and FK(3)', = V*. We recall that B! =
{A™ B",C", A"1B, A"~1C, A"2B?} is a basis of FK(3)' ,, for all integers
n > 2, where we follow the convention that A°B? = B? (see [7], Lemma 4.4).

FOR SIMPLICITY, FROM NOW ON WE WILL DENOTE THE FOMIN-KIRILLOV
ALGEBRA FK(3) simpry BY A. Let (A',)* be the dual space of A" and
B = {n, Brs Y, W15, On—17, n_2P82}\ {0} the dual basis to B!, forn € N,
where we will follow the convention that if the index of some letter in an element
of the previous sets is less than or equal to zero, it is the zero element 0. We will
omit the index 1 for the elements of the previous bases and write By = {€'},
where ¢ is the basis element of (A})*. The previous bases for the homogeneous

components of A or (A")# = @,en,(A",,)* will be called USUAL. Recall that
(A"Y# is a graded bimodule over A' via (ufv)(w) = f(vwu) for u,v,w € A’
and f € (AH#.

For the explicit description of the BIMODULE K0szuL coMPLEX (K2, d%) over
the Fomin-Kirillov algebra A, we refer the reader to [3], Subsection 3.1. The
following result gives an explicit description of the minimal projective resolution

of A in the category of bounded below graded A-bimodules.

PROPOSITION 3.1. ([3], Prop. 3.7) The minimal projective resolution (P2, 8%)
of A in the category of bounded below graded A-bimodules is given as follows.
For n € Ny, set

Pe @ k= @ el el
ie[0,|n/4]] 1€[0,[n/4]]

where w; is a symbol of homological degree 4i and internal degree 6i for all i €
No, the A-bimodule structure of PP is given by o' (w;z@u®y)y’ = wr’ r@uyy’
forallz,2',y,y' € A andu € (Ai(n%i))*, and the differential 6° : P® — P,
for n € N is given by

52( 3 wipn_4i)= > (widh_si(pn-ai) + wiia fh_4i(pn-ai)),
ie[[0,[n/4]] i€[0,[n/4]]

DOCUMENTA MATHEMATICA 27 (2022) 1773-1804



1784 E. HErscoviICH, Z. L1

where p; € K;’ for 7 € Ng, w_1 =0 and fJb : KJZ-’ — K;-’Jrg are the morphisms
given in [3], (8.2). This gives a minimal projective resolution of A by means
of the augmentation € : P} = A® (A})* ® A — A, where ®(z @ € ® y) = zy
forx,y € A.

To reduce space, we will typically use vertical bars instead of the tensor product
symbols ® for the elements of P,. We will use in the sequel the following explicit
expression of some values of the map f§ in the previous result. They follow
immediately from [3], (3.2).

FACT 3.2. The morphism f§ defined in [3], (3.2), satisfies that

fe(alé'|1) = 2a|as|bac + 2a|Bs|abe — 2alys|aba — a|asBlabe + alosy|aba
— alafz|bac — aclazfab — ablagy|ac + ablafa|ab 4 ablafa|be
— aclafz|ba — 2ablag|ab — 2ab|as|be + 2ac|as|ba + 2ac|B3|ab
+ 2ablvys|ac — abe|lagfla — abaazflc + abcazy|b 4 abalagyla
+ 2abc|B3|a + 2aba|PBs|c — 2abelys|b — 2abalys|a 4+ 2abac|as|1
— abaclafs]|1,

fe1l€'|a) = —2|as|abac + 1|afs|abac — a|asBlabe — c|asBlaba + alaoy|aba
+ blagy|abe + 2a|B3|abe + 2¢|B3|aba — 2a|y3|aba — 2blvys|abe
+ balagB|(ab + be) + ablazy|ba + be|asy|ba + ablaBa|(ab + be)
— ac|aBz|ba — 2ablas|(ab + be) + 2ac|as|ba — 2ba|Bs](ab + be)
— 2ab|y3|ba — 2bc|ys|ba 4+ 2bac|as|a + 2abe|Bsla — 2abalys|a
— abc|agf|a + abalasyla — baclaBs)a,

Fo(bl€'|1) = 2b|as|bac + 2b| B3|abe — 2b|y3|aba — blasB|abe 4 blazy|aba
— blaBa|bac + ba|asflac + ba|asf|ba — be|asS|ab — balasy|be
— be|aBz|ba + 2bclas|ba — 2balBs|ac — 2balBs|ba + 2bc| B3| ab
+ 2ba|ys|be + abalaay|b + baclagyla — abalafz|c — bac|afBs|b
+ 2abalas|c 4+ 2bac|as|b — 2abalys|b — 2bac|ys|a + 2abac| B5]1
— abac|azBl1,

fe|é'p) = —2|Bslabac + 1]asBlabac + alaay|bac + blagy|aba — blaSs|bac
— claBa|aba + 2blas|bac + 2¢|as|aba — 2a|ys|bac — 2b|vys|aba
— be|agBlab 4+ balazB|(ba + ac) + ba|azy|ab + aclagy|ab
+ ablaBs|(ba + ac) — 2ablas|(ba + ac) + 2bc|B3|ab
— 2balBs|(ba + ac) — 2balys|ab — 2ac|ys|ab + 2bac|as|b 4+ 2abc| Bs|b
— 2abalysz|b — abc|asflb + aba|aay|b — baclaBa|b,

felclé'|1) = 2¢|as|bac + 2¢|Bs|abe — 2¢|y3|aba — c|agzBlabe + c|agy|aba
— c|afz|bac — (ab + be)|asflac — (ab + be)|asf|ba
+ (ab 4+ be)|azy|be + (ba + ac)|azy|ac — (ba + ac)|aBa|ab
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— (ba + ac)|afz|bc 4+ 2(ba + ac)|ag|ab + 2(ba + ac)|as|be
+ 2(ab + be)|Bslac + 2(ab + be)|Ps|ba — 2(ab + be)|ys|be
— 2(ba + ac)|ys|ac + baclasfla — abelasB|c — bac|afz|c
+ abe|aBa)b + 2bac|as|c — 2abc|as|b — 2bac|Bs|a + 2abe|Bs|c
+ 2abac|ys|l — abac|agy|1,

fe1|é'le) = —2|v3|abac + 1|agy|abac + alasBlbac — c|azBlabe + blaSa|abe
— clafBa|bac — 2blas|abe + 2¢|as|bac — 2a|Bs|bac + 2¢|B3|abe
— be|agflac 4+ ablagy|be + belagy|be + balasy|ac + aclazy|ac
— aclafz|be + 2ac|as|be + 2bc|Bs|ac — 2ab|ys|be — 2be|vys|be
— 2balys|ac — 2ac|ys|ac + 2bac|as|c + 2abe| Bs|c — 2abalys|c

— abclagf|c + aba|azy|c — baclaSs]c.
Given n € Ny, there is a canonical isomorphism
Hom . (P2, A) = Q" (3.2)

of graded k-vector spaces, where Q" = @ie[[O,Ln/ALJ]]w;'kKn_M and K" =

Homy((AZ,,)*, A). Transporting the differential of the left member of (3.2)
induced by that of (P?,8%), we obtain a complex of k-vector spaces Q°, whose
cohomology gives the linear structure of the Hochschild cohomology HH®(A).
Note that the space Homy((A',)*, A,,) is concentrated in cohomological de-
gree n and internal degree m —n. The symbol w; has cohomological degree 4:
and internal degree —6: for ¢ € Nyg. We will usually omit w§ for simplicity.
Let H!* be the subspace of H"(Q®) concentrated in internal degree m — n for
m,n € Z. Note that H" = 0 for (n,m) € Z?\ (Ng x Zg4). The following result
gives a recursive description of the spaces H.

PROPOSITION 3.3. ([3], Cor. 5.8) For integers m < 1 and n € Ny, we have

2m—2 :
wk_ HPm if m is odd,
b7 EE R ’ ’
m . .
W HYTA™, if m is even.
2

Given elements z € %B,, and y € B!*, the symbol y|r will denote the linear
map in K" = Homy((A",,)*, A), which maps y to = and sends the other usual
basis elements of (A" )* to zero. See [3], Cor. 5.4, for specific representatives
of the cohomology classes of a basis of HY, for (n,m) € Ng X Zga.

The algebra structure of the Hochschild cohomology HH®(A) (with the multi-

plication given by the cup product) is described as follows.

THEOREM 3.4. ([3], Cor. 6.11) The Hochschild cohomology HH®(A) is iso-
morphic to the quotient of the free graded-commutative (for the cohomological
degree) k-algebra generated by fourteen elements (with fized cohomological de-
grees and internal degrees) modulo the ideal generated by the elements given in

[3], (6.5).
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Moreover, the fourteen generators of HH®*(A) mentioned in Theorem 3.4 are
represented in H*(Q®) by the following cocycles: X; = €'|(ab + ba), Xy =
€'|(ab + be — ac), X3 = €'|labac, X4 = albac, X5 = Blabe, X¢ = y|aba, X7 =
a|(aba—abc), Xg = a|a+ﬁ|b+7|c, Xg = a2|1, X10 = 62|1, X11 = ’yg|1, X12 =
(aB+ay)|1, X13 = az|a+Bs|b+3|c and X14 = wie'|l. Let Y; € Homae (P?, A)
be the element associated to X; via the isomorphism (3.2) for ¢ € [1,14]. In
what follows and to simplify our notation, given a cocycle ¢, we will use the
same symbol ¢ for its cohomology class.

Let 4 : P? — Bo(A) be a morphism of complexes of A-bimodules lifting id 4.
It is clear that ip : A® (A))*® A - A® Aand i; : A® (A ))* ® A — A®3
can be chosen as follows

io(1]e'1) = 1[1,i1(1|a|1) = —1]al1,i1(1]8]1) = —1]b|1 and i1 (1]7]1) = —1|c]1.

4 GERSTENHABER BRACKETS ON HOCHSCHILD COHOMOLOGY OF FK(3)

4.1 GERSTENHABER BRACKETS OF HH"(A) witn HH"(A)

In this subsection we are going to utilize the method introduced in Subsec-
tion 2.2 to compute the Gerstenhaber bracket of X; for ¢ € [1,14] with the
elements X1, X5, X3 in HH°(A). To wit, for every element X; with i € [1, 3],
we find the associated element p in the center Z(A) such that ¢,ip = X;, pro-
vide the corresponding self-homotopy hj4 satisfying (2.3) and then compute the
respective Gerstenhaber brackets by means of Theorem 2.7.

We remark first that [X;,1] = 0 for i € [1,14], since hl = 0 gives [X;,1] =0
for ¢ € [4,14] and the other follow from cohomological degree reasons. On the
other hand, Definition 2.1 tells us that [X;, X;] = 0 for 4, j € [1, 3]. The proof
of the following three results is a lengthy but straightforward computation.

FacT 4.1. Let p = ab+ba € Z(A). Then, there is a self-contracting homotopy
h% satisfying (2.3) such that
h§(1le'1) = =blall - a|B]1 — 1]alb - 1|5|a,
B (Lan/1) = (=1)" bl |1 — Lanslb
hf,(11Ba]1) = (=1)" alBns1]1 = 1|Bas1la

forn eN, and

R (1y[1) = blaz|1 + a|B2|1 + a|aB|1 + blay|l — 1|az|b — 1|B2]a — 1|aB|b
- layla,
h5(1[v2[1) = alys|1 + blys|L + claaB|l + clafa|l + 1vsla + 1|v3[b + 1]azfB]c
+ 1|aBs]e,
h5(LaB|l) = —blas|l — c[Bs|1 — alazy|l — 1|asle — 1[Bs|a — 1|azy|b,
RS (1avy|1) = —clag|l — alBs3|1 — blagy|l — 1|as|b — 1|Bs]c — 1]asy]a.
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Fact 4.2. Let p = ab+ be — ac € Z(A). Then, there is a self-contracting
homotopy ha satisfying (2.3) such that

h§(1le'1) = clall + aly|1 + 1|aje+ 1|7]a,
Wy, (Lom[1) = (=1)"clon41|1 + amqale,
hfz(lh/n'l) (_1)na|7n+1|1 + 1|'Yn+1|a

forn eN, and

R (18]1) = —c|az|1 — a|ye|1 — c|aB|l — alay|1 + 1]as|c + 1|y2]a + 1]aBla
+ 1ayle,
h5(1]B2|1) = —alB3]1 — c[B3]1 — blazy|1 — blafa|l — 1| B3]a — 1[Bs|c — L]azy[b
— 1|aBs]d,
RS (1aB|1) = blag|l + a|y3|1 + clazB|1 + 1]as|c + 1|y3|b + 1|2 8]a,
BE(1Jory[1) = clas|1 + bls|1 + alasBl1 + aslb + 1sla + 1azBle.

Fact 4.3. Let p = abac € Z(A). Then, there is a self-contracting homotopy
h% satisfying (2.3) such that

ho(1|e'[1) = —abaly|1 — ablajc — a|Blac — 1|a|bac,
RY(1|a|1) = abalaB|1l — ablas)b — ba|Ba|c + c|az|bc + b|B2|ac + blaB|be
— 1]ag|bac — 1|aS|abe,
RY(1|B]1) = aba|ay|l — 2ablas|c — aclaz|a — ablaB|a + alaz|be — a|Ba|ab
— a|Balbe + c|B2lac + alay|ac — 1|ay|bac,
RY(1]y|1) = 2abaly2|1 — balaB|c + blas|bec — alya|ac — c|af|ac — 1|ay|abe,
hb(1|az|1) = baclas|l + be|Bs|a — ba|Bs|c + ba|asy|a — blas|ab — blas|be
+ clas|ba 4 a|Bs|ac + ¢|Bs|be + a|aay|be 4+ blazy|ba — 2|as|bac,
h5(1]B82|1) = abc|Bs]1 — 2ablas|c + aclas|b + ab|Bs|a — bc|Bs|a + ablagy|b
— balagy|a + blaslab + 2blag|be — c|as|ba + clas|ac — alB3|ac
— blagy|ba + blagy|ac — 1|as|bac — 2|83]abe — 1|agy|aba,
h8(1]v2|1) = —3abalys|1 + ba|Bs|c — ablafa|c — blas|be — a|Bs|ac — ¢|B3|be
+ b|yslac — alagy|be + 1|as|bac — 1]asSBlabe,
hE(1laB|1l) = —2abalaBz|l — aclas|c — be|fBs]b — 2ba|Bs]a — ablazy|c
— balagy|b — alaszlbe + blag|ba + 2b|as|ac + b|Bs]|ab — c|Bs]ac
+ a|yslac — c|yslab + clasBlac — alagy|ac — alaBalbe — 1|agy|bac
— 1]aBa|abe,
RS (1|ay|l) = —abclas|1 — 2abalasB|1 — 3ablas|b — ab|Bs|c — 2bc|Bs]c
— 2balasy|c — balaBala + 2alas|ba — c|as|be — b|Bs|ac — blys|ab
— a]azBlab — blagy|be + clagy|ac — clafz|ab — 1]azf|bac
— 2|aay|abe.
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Using the previous results together with Theorem 2.7 we obtain the Gersten-
haber bracket between X; for i € [1,14] and X7, Xo, X3.

PROPOSITION 4.4. The Gerstenhaber bracket on HH®(A) of X; fori € [1,14]
with an element X; for j € [1,3] is given by

—2X7, ifi =8,
[Xi, X1] = —4X1(Xg + X10), ifi=13,
0, ifi € [1,14] \ {8,13},
—2X,, if i =8,
[Xi, Xo] = { —4X1 X1, ifi=13,
0, ifi € [1,14] \ {8,13},
and
0, ifi e [1,7],
—4Xs, ifi =8,
—2X;_s5, ifi=9,10,
[X;, X3] = { 2Xg, ifi =11,
2X7 — X1 Xg + X0 Xs, ifi =12,
—4X3(Xg + X10 + X11), if i =13,
X153 — (2/3)Xs(Xg + X10 + X11), ifi=14.

P’f’OOf. Note that gaberaiO = Yl; EabercfaciO = Y2 and EabaciO = }/3 Applylng
Theorem 2.7 together with Facts 4.1, 4.2 and 4.3, we get the brackets

_2X13 ifi= 8’
[Xi, X1] = < —(ag + B2+ ¥2)|(ab + ba) — aB|ba — ay|ab, ifi=13,
0, if i € [1,12] \ {8},
—9X,, ifi=8,
+ B2+ —ab—b
[Xi, Xo] = (2 + 2 1 72)|(ae = ab = be) if i = 13,
+ aflac — ay|(ab + be),
0, if i € [1,12] \ {8},
and
0, if i € [1,7],
_4X,, ifi=8,
[Xi,X3] — i—5» 1 Z 9, 0,
2Xg, if ¢ =11,
al(aba — abe) — Blbac — v|bac, if i =12,
—4(ag + B2 + ¥2)|abac, if 7= 13.
Indeed, this was simply done by computing [V;, Y] = Yih‘;lg;_b)“_l, Y, V2] =
}Qh‘;l(’;lgcjlac, and [Y;,Y3] = }Qh‘;l(’gl,f)_l, where h(Y;) denotes the cohomological
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degree of Y; for i € [1,13], and by transport of structures. Note that the
vanishing of [X;, X3] for ¢ € [4, 7] also follows from a simple degree argument
using Corollary 2.5 together with [3], Cor. 5.9. The latter two results also tell us
that [X14, X;] = 0 (or [Y14,Y;] = 0) for j = 1,2, by degree reasons. This result
also follows from noting that h$°™® is of internal degree 2, so h%b+b“(1|u|1)
is of internal degree 5 for any u € BY, which implies that Yi4(h§°T%(1|ul1))
vanishes, since Y74 vanishes on any homogeneous element of internal degree
strictly less than 6. Hence, Y14hgb+ba = 0. We get Y14h§b+bcfaC = 0 for the
same reason.

Next, we compute ¢ = [Yi4, Y3] = Y14h4%%¢. By (2.3), the map hg%e¢ : P — P}
satisfies 05h4be¢ = nz — hgbacst. Tt is easy to check that

(n3 — h3*¢68)(1]az|1) = —bac|as|a + abe|Bs|a — aba|Bs|c + abalazy|a + vay,,
(n3 — hgbec68)(1|B3|1) = —2abalas|c + bac|as|b + aba|Bs|a — abe|Bs|b
+ aba|asy|b + vg,,
(15 — h¥o<a8)(1ys|1) = abelBsle + 3abalslc — baclaBale + vy,
(n3 — h§b268) (1]aB|1) = abe|as|a — 4bac|as|b — 2abalBs|a — abe|Bs|b
+ bac|Bs|c + 3abalys|b + 2abalazfla — aba|asy|b
— 2abc|agy|c — abe|afz|a + abalafs|c + va,8, (4.1)
(13 — h3%268) (1|any|1) = —4bac|as|c + bac|Bs|a — 4abe|Bs|c + 2abalazB|b
+ bac|azy|b — 3abalasy|e + abalaBz|a + vayy,
(n3 — h3**¢65)(1|afz|1) = —3abalas|b + 2abc|as|c — 4abe|Bs|a + bac|Bs|b
+ 3abalvys|a + 2abalasBlc — abalazy|a — abe|asy|b
— baclagy|c + 2abalafa|b + vas,,

where vy, € @04\ 33 (4; ® (AL3)* ® Ay_;) for u € BY. By degree reasons,
the element h$*e¢(1|u|1) for u € B is of the form
hgbec(1u|l) = By +wi(AYale'[1 + Ae1]€'|a + Neble' |1 + A41|e'[b + A¥cle'[1
+Ag1le[c),
where B, € K! has internal degree 7 and \* € k for i € [1,6]. Therefore,
(15 — h5"*°83) (1|u|1) = 63hg"*“(L]ul1)
= di(Bu) + A1 fo(ale'[1) + g f5 (1]€la) + A3 5 (ble'|1)
+ Xi Fo (L' b) + A3 fo (cle'[1) + Ag £5 (1]€']e).
(4.2)

Using the explicit expression of the differential d} given in [3], Fact 3.1, together
with an elementary computation we see that, given any homogeneous element
B € K? of internal degree 7, the coefficients of abalys|a and aba|asy|a in d4(B)

DOCUMENTA MATHEMATICA 27 (2022) 1773-1804



1790 E. HErscoviICH, Z. L1

are equal, the coefficients of aba|yz|b and aba|aey|b in d}(B) coincide, and the
coefficients of abe|Bs|c and abc|asB|c in d4(B) are also the same. Comparing
the coefficients of aba|ys|a and abalasy|a in both sides of the equation (4.2),
where the left member is explicitly given by (4.1) and the right member is
computed using Fact 3.2, we obtain

A8 NS =173, XY 4T = 473 AU AY =0

for u € By \ {az,aB2}. Similarly, comparing the coefficients of abalyz|b and
aba|agy|b in both sides of the equation (4.2), where the left member is explicitly
given by (4.1) and the right member is computed using Fact 3.2, we obtain

AP AP =173, AP HAPP =43, M A =0

for u € B5 \ {B3, 2B}. Comparing the coefficients of abc|fs|c and abe|azfe
in both sides of the equation (4.2), where the left member is explicitly given
by (4.1) and the right member is computed using Fact 3.2, we obtain

AN =173, AT H NG =—-4/3, M4+ =0
for u € BY \ {73, @27}. Then ¢(1|ull) = Yi4h%%*(1]ull) for u € BY is given
by
p(1]asll) = (1/3)a, p(1]Bs]1) = (1/3)b, p(1lsl1) = (1/3)c,
p(lazfll) = =(4/3)b,  @(lay|l) = —(4/3)c,  @(1ab2|l) = —(4/3)a.

Hence, [X14, X3] = (1/3)(as|a + Bs]b + v3|c) — (4/3)(a2B|b + asy|c + afz]a).
We now note the following identities,

as|(ab + ba) = X1 Xo, Ba|(ab + ba) = X1 X1,
alaba + Blbac = (1/2)(X1Xs — X2X3), aglabac = X3Xo, (4.3)
62|abac:X3X10, 72|abac:X3X11

and

(a3 —apf2)la = (1/2){ X153 + Xs(X9 — X10 — X11)},

(B3 — azB)[b = (1/2){ X153 + Xs(X10 — Xo — X11)},

(73 — a2y)|e = (1/2){ X135 + Xs(X11 — Xo — X10)},
given in [3], (6.2). Using the previous equalities as well as the coboundaries
g2, € B3 for j € [1,8]\ {4,5} and e} 3 = al(aba + abc) + (B — 7)|bac € B of
the sets B2 and B} given in [3], Subsubsection 5.3.1, we get
[X13, X1] = —(az + B2 +72)[(ab + ba) — aBlba — aylab — 3¢7 , — 393 5 — 203

Jr£J§,2
= —4(az + B2)[(ab + ba) = —4X1(Xo + X10),
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[X13, Xo]

(a2 + B2 +72)|(ac — ab — be) + aplac — av|(ab + be) — i 5
- 293,2 - 9%,2 + 9625,2 - 9;,2 + 93,2
= —4ps|(ab + ba) = —4 X1 X1,
[X12, X3] = al(aba — abe) — Blbac — y|bac — 6%73
= 2a|(aba — abc) — 2(ajaba + Blbac) = 2X7 — X1 Xs + X2 X35,
[X13, X3] = —4(a2 + B2 + ¥2)|abac = —4X5(Xo + X0 + X11),
[X14, Xs] = (1/3)(as|a + Bs|b + ys|c) — (4/3)(a2f]b 4 az7|c + afz|a)
= X13 — (2/3)Xs(X9 + X10 + X11).

The proposition is thus proved. O

4.2 GERSTENHABER BRACKETS OF HH'(A) wiTH HH"(A)

In this subsection we are going to utilize the method recalled in Subsection 2.3
to compute the Gerstenhaber bracket of X; for ¢ € [4, 8] with the elements X
for j € [1,14].

Let p: A — A be a derivation of A. By [8], Lemma 1.3, the p¢-lifting ps =
{pn : P = P’},.cn, of p to (P, d%) exists, and it can be chosen in such a way
that

polzle'ly) = p(x)|e'ly + z|€'[p(y), )
pr(wiz|uly) = Tqu,wy + wip(z)|uly + wiz|u|p(y),

for all z,y € A, n € N, i € [0,|n/4]] and v € B ,,, where q,,, € P’
satisfies that 6% (qu,u) = pn_102(w;ljull). To reduce space, we will usually
write g, instead of q,,.. As recalled in Subsection 2.3, given ¢ € HH"(A), the

Gerstenhaber bracket [G(p)i1,¢] € HH"(A) is given by the cohomology class
of p¢ - ¢pn

In what follows, we consider a set of derivations of A whose classes give a basis
of HH'(A) and for each of them we will provide some of the corresponding
elements ¢y, satisfying (4.4). Then, we shall compute the respective Gersten-
haber brackets by means of Theorem 2.13.

The proof of the following result follows immediately from the statement.

PROPOSITION 4.5. Let p : A — A be the derivation of A defined by p(x) =
deg(x)x for x € B. Then pe defined by pn(w;z|uly) = (deg(z) + deg(y) + n +
2i)wiz|uly for x,y € B, i € [0, |n/4]], u € B ,, and n € Ny is a p°-lifting of
p. Note that deg(x) + deg(y) + n + 2i is the internal degree of w;x|uly. Since
G(p)i1 = —Xg, the Gerstenhaber bracket [Xg, ¢] € HH"(A) for ¢ € HH"(A) is

given by the cohomology class —a(@)d, where a(@) is the internal degree of ¢.
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Hence,
—2X;, ifj e [L,7]\ {3},
—4X3, ifj=3,
[Xs, X;] =10, ifj =38,
2X; if j €1]9,13],
6X14, ifj=14.

The proof of Facts 4.6, 4.7, 4.8 and 4.9 below is a lengthy but straightforward
computation.

FacT 4.6. Let p = p* : A — A be the derivation of A defined by p*(a) = bac
and p*(z) = 0 for v € B\ {a}. Then the elements qu,u = ., € PL in (4.4)
can be chosen as follows. First, qén = qén =0 for n € N. Moreover,

ga = baly|1 + blafe + 1]B]ac,
qa, = balaf|l — blas|b — clas|c — blaBc + 1|af]ac,
qiﬂ = ab|ya|l — ab|az|l + ba|ay|l — 2blas|c — c|ag]a — b|Ba|c — a|ab]c
— blaB|a + 1]aslbe — 1|B2]ab + 1|ay|ac,
Gy = balya|1 +1|Bs]ac,
Gay = be| B3| 1 + baazy|L + blas|e + clas|b + bl 3]a — ¢|B3]c — alazy|c
+ blagy|b — 1]Bs|ac — 1]azy|be,
qiﬁ = ab|y3|1 + balafz|1 — alas|b — 2a|Bs|c — c|Bs]a — blys|c — ¢|y3]b
— alaaB|c — clafa|c — blagy|c — alazyla + 1|as|be + 1|vys|ba — 1|agy|ba
— 1|af2lbe,
qiﬂ = ba|az |1 + ablafsz|l — 2ablasz|l — ba|Bs|1 + a|as|c + 2blas|b + clas|a
+ a|Bs|a + b|Bslc + c|Bs|b + alazy|b + alaBz|c — 1|as|ba — 2|Fs|ab
+ 1|afs]ac,
s, = Bbals|1 — (ab+ be)|Bal1 + (ab -+ be) azBI1 — Belaglb — 2alBslb — blsla
— ¢|Bs|c — 2alvys|c — 2¢|vys|a — alaaB|b — 2¢|asBlc — 2blasy|b — claay|a
— claB2|b + 2|Bs]ac + 1|ys3]ab — 1|azy|ab,
= bac|agla + 4abc|B4]b — abalys|c 4+ 4ablasBlbe — 4be|asBlab
+ 2(ba + ac)|asy|ac + 2ba|aszy|ba + ablasfa|ac + be|asBa|ba
— 2ba|asBa|(ab + be) — 4ablag|ba — 2bc|aglba + (ba + ac)|ay|be
+ 4dablagl|ac — 2(ba + ac)|as|ab + 8bc|Ba|ac — 10ba|Ba|ab — 2ac|Ba|ab
+ 6ab|B4|ac + 4(ab + be)|Balba — 2ab|vy4|ba — 4be|ya|ba + 6ablys|ac
— 5ba|ys|ab + 4balvys|be — 6ac|ya|ab + a|ag|bac + 40| Bs]abe — c|y4|aba

qwle!

— wiclé'e.
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FACT 4.7. Let p = p° : A — A be the derivation of A defined by p°(b) = abc
and p°(z) = 0 for x € B\ {b}. Then the elements qu, = ¢, € P} in (4.4)
can be chosen as follows. First, qgn = q,5yn =0 for n € N. Moreover,

a5

5
98,
5
dag

5
qa'y -

5 __
dg, =

5
Ao, =

5 _
qaz’)’ -

5
q@ﬂ2 =

qwle’

abl[1+ alle + 1]albe.
ablay|l — a|Bzla — ¢|fa|c — alay|e + 1]aylbe,

ab|y2|1 + 1|as|be,

ablaf)1 — belaB|l — 2ba|B2|1 — alas|c — 2a|B2|c + b|Ba]a — ¢|B2|b

+ b|y2la + blaB|b — a|ay|b + 1|Bz]ac — 1|az|ba + 1]aB|be,

(ba + ac)|as|l 4+ ablagy|l + alas|b + blas|a + 2a|Bs|c + ¢|Bs|a + blys|e
+ c|y3|b + alaaflc + alagyla + clabaz|c — 1|vs]ba + 1|aBz]be,

2ab|y3|1 — 2(ba + ac)|as|l — (ab + bc)|aay|1l + (ba + ac)|afa|l — alas|d
— 2blas|a — 2¢|Bs|la — blys|c — ¢|y3]b — 2alazy|a — c|afz|c + 2|as|be

+ 17slba — 1|azy|ba,

balasB|1 — 2ba|Bs|1 — ablas|l + a|as|c + blas|b + c|as|a + 2a|Fs|a

+ b|B3|c + ¢|Bs]|b + blazBlc + blagy|a + blaBz|b — 2|as|ba — 1|Bs|ab

+ 1]a28lbe,

ba|ys|1 + ablagB|1 — blas|c — c|as|b — b|Bs|a + ¢|Bs|c — blaay|b

+ blaBalc + 2|Bs|ac — 1|azy|ab + 1]|azgyl|be,

4bac|agla + abc|B4alb — abalvys|c + ablasBlab + bablasB|be

— 4bclasBlab + 2(ba + ac)|agy|ac + 2balasy|ba — aclasy|ba

— ablasBa|ba + 2bc|asBa|ba — 2balasBalab — balasBalbe + aclasBalbe

— 11lablaslba + 2ablas|ac + 6balay|be + ac|aslab + ac|oy|be

+ 3ab|B4lac + be|Ba|ac — 6ba|By|ab + ba|B4|bec — 3ac|Ba|ab — 5ab|yslba
+ 4ab|vys|ac — 4bc|ya|ba — 2bc|vslac — 3balya|ab + 6balys|be — 8ac|ya|ab
+ 4alag|bac + b|Ba|abe — c|yalaba — wiclé'|c.

FACT 4.8. Let p = p® : A — A be the derivation of A defined by p®(c) = aba
and pb(z) = 0 for x € B\ {c}. Then the elements qu, = ¢S, € P} in (4.4)
can be chosen as follows. First, qgn = an =0 for n € N. Moreover,

qg = ab|a|l + a|Bla + 1]aba,
¢S, = baaB|l — blaz|b + ¢|Ba|c + aly2la + claBla + alay|c + 1|ay|ab,
4Sp = 2ablo|1 + claz|a + b|Ba|c + blaS|a + 1| Bz|ab,
qg,y = ba|B2|1 + alas|c + ¢|B2|b + alay|b + 2|as|ba,
q33 = ablafz|1 — ba|Ps|1 + a|Bs|a — a|ys|b — blys|a — blaeB|c — c|a2B]b

— blafz|b — 1|B3|ab + 1|af:|ba,
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quﬁ = aclas|l + ablasy|1 4 2¢|as|c 4 2a|Bs|c + 2¢|Ps|a + 2a|asy|a + blagy|c
+ c|aay|b + alafa|b + blafa|a — 1|as|(ab + be) + 1]asy|ba,

45, = 3ablas|1 + 2ba|Bs|1 — alas|c — clas|a — b|Bs|c — | Bs|b + 3|as|ba
+ 2|Bs|ab,

S, = 2bc|Bs|1 + 2bajazy|1 + 3b|a|c + 3c|os|b + 3blazy|b — 2| B3] (ba + ac)
+ 2[azv|ab,

@, o = 2bac|azfsla + abalazBa|c — Sbaclasla — 3abe|Balb — 2baclasBlb
+ 8ab|ay|ba — 6ab|aylac + 6bc|ag|ba + 3balay|be + 3ac|aylbe
+ 3ab|B4|ac + 3be|Ba|ac + 10ba|B4)ab — 8ba|B4|be + 8ac|Ba|ab
— 4ab|yalba — 2ab|azf2|ba — Sa|aslbac — 3b|Salabe — 2b|asy|bac

+ 2a|as b2 |0ac + clag B |aba — wial€e |a.
2a|as Ba|b Balab :

FACT 4.9. Let p = p” : A — A be the derivation of A defined by p”(a) =
aba — abe, p"(ab) = p"(ac) = abac, p"(ba) = —abac and p"(x) = 0 for z €
B\ {a,ab,ba,ac}. Then the elements qu,. = q, ., € P} in (4.4) can be chosen
as follows. First, qgn = qun =0 for n € N. Moreover,

q" = abla|1 — ably|1 + a|Bla — a|B|c + 1|alba — 1]albe,
ql, = ablas|l + aclaz|1 — alaBla — 1|az|be + 2|az|ba,
a4 = balB2|1 — balya|1 + (ba + ac)|aB|1 + alas|e + ¢l fa|b + | falc — alralc
+ b|y2|b — ¢|y2|b + clafla — claB|c + alay|b + c|lay|b + 1|asz|ba
— 1|v2|ba + 1|aB|(ba + ac),
q?m = ablag|l — ablya|1 + clazg|a — c|as|c + b|B2]c + blaf|a — blaB|c + 1|B2|ab
+ 1|af|ac,
45, = ablas|l + aclaz|l — 1|as|be + 2|az|ba,
qZQB = ab|as|l 4 2ba|B5|1 + 2bc|B3|1 — balvys|1 + 2balagy|l — ablaBz|l — alas|c
+ 3blas|c + clas|b — a|Bs|a — alB3|b + b|Bs|a — b|Bs|c — 2¢|Bs]b + ¢|Bs|c
— alafb + alysle — bslb + 2chsla + clazBle — alazrlb + alasnle
+ blazy|b — alaBz|c + blafz|c — c|afz|b + 2|as|ba + 1[Bs]ab — 3|ys|ab
— 1]aaB|be + 1|azB|ba + 2|azfac,
qzﬂ = ac|az|l — ba|ys|1 — (ab + bc)|azB|1 + balaBa|l — blas|a + 3blas]|c
+ 2c|as|b + clas|c + a|Bs|c + ¢|Bsla — a|ys|a + 2a]ys|c — 2b]y3|b
+ 2c|ysla + blaeBb — clazfBla + 2¢|asBlc + alazy|a + blasy|b + blasy|e
+ clayla + blafala — 2|ys|ab + 2|azfBlac,
qlp, = ablos|1 + ba|Bs|1 — 2ab|ys|1 — alas|c — clas|a + 2c|as|c — alys|b
+ blysle + clazy|b + 1]as|ba + 1|Bs|ab — 1|vs|ba,
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qzjley = 2abc|agfa|a — 3abc|azfalc — abalazBz|a + 2abalaefa]b — Sbac|aus|b

— Thaclau|c + babe|Ba|c + 3abalysla — 3abalvya|b + 8ablos|ab

+ 3ablau|be + be|au|be — 2balas|ba + daclay|ba + 6aclaylac 4+ 9ab|Ba|ab
— 4be|B4]ab — 5be|Ba|be — 4balB4|ba — Tha|Bslac + 14ab|vy,|ab

+ Tbe|valab — balvysba — ba|ys|ac — 8aclyy|ba + TablasfBlac

— 3bclagflba + belasBlac 4 2baasSlab 4+ 3balasBlbe + balasBlba

+ 3balagflac + 3aclagflbe — 6ac|asflba — 3ac|asblac — ablasy|ab

+ 5ablagy|be — 9ablasy|ba — Sablasy|ac + 3belasy|ab + 6bc|asy|be

— 2bc|asy|ba — 2balagylab — 2balasy|be + 6ac|aszy|ab + Tablasfa|ab
+ 2ab|aafa|bec — ba|asBa|ba + 2ba|asfa|ac + dac|asfa|ac — 2b|aylbac
+ c|aglbac + alBslabe — 2¢|Bylabe + 4dalvys]aba + 2b|y4|aba

+ 2a|azfBa]abe — 2¢|azfBa|abe — alasfa|aba — 2b|agBa|bac — c|asBalbac
+ w13|€'|(ba + ac — be).

We will now apply the previous results to compute the Gerstenhaber brackets
of X; for i € [4,7] with all the other generators of the Hochschild cohomology

of A.

PROPOSITION 4.10. The Gerstenhaber bracket [X;, X;] € HH*(A) for i € [4,7]
and j € [1,14] is given by

[Xi’Xj] =

0,

2X;,

4X1 X9,

X1X10,

— X1 (X9 + X10),

2X1Xit5,

2X1(Xg + X10),

X1Xo,

718 X4 X10,

4X1X13 —4X2X13 — 8X X120,
7 ((1/3) X215 — (4/3)XoX10),
X9 X2,

where 7, = 1 if i € [4,5] and 76 = —1.

if (i,5) €([4, 7] x [1,7])
U ([4,6] x 9, 11]).

ifi €[4,7] and j =8,
ift="Tandj=9,
ift="7and j =10,
ifi=7andj=11,

if i € [4,5] and j =12,
ift =06 and j =12,
ift=7andj=12,

if i € [4,6] and j = 13,
ifi=7and j =13,

if i € [4,6] and j = 14,
ift=7and j =14,

Proof. Given i € [4,7], let p* be the derivation of Fact 4.6, Fact 4.7, Fact 4.8,
and Fact 4.9, respectively. Note that G(p')i; = —Y;. By Theorem 2.13,
[-Y;,Y;] is precisely the cohomology class of p'Y; — Y;pi, for i € [4,7] and
j € [1,13], where n is the cohomological degree of Y; and p! is obtained
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from (4.4) together with Fact 4.6 for ¢ = 4, Fact 4.7 for ¢ = 5, Fact 4.8 for

1 =6, and Fact 4.9 for ¢ = 7. It is explicitly given by

0, if j € [1,77U{9},
—9X,, if j =8,
af|(ab + bc) — aylac, if j =10,
=X X5l = —apf)ab — aylba, if j =11,
as|(be — ba — ac), if j =12,
3aey|aba — 5afs|bac, if j =13,
and
0, if j € [1,7]U {10},
—2X5, if j =8,
X5, X,] = —apflbe + ay|(ba + ac), if j =9,
—aflab — ay|ba, if j =11,
—fa2l(ab + bc — ac), if 7 =12,
—5agf|abe + 3agy|aba, if j =13,
as well as
0, if j € [1,7] U {11},
—9X,, if j =8,
X, X,] = afB|(bec — ab) — ay|(2ba + ac), lf_j =9,
—apf|(ab+ be) + avylac, if j = 10,
~Y2|(bc — ba — ac) — af|ba — aylab, if j =12,
—10agy|aba — 2aBs|bac, if j = 13,

together with

[— X7, X13] = as|(abe — 2aba) + asf|(2bac — 6aba) — azy|(abe + 4bac)

+ 5afs|(abe — aba),

and
0. it € [1,7],
—2X7, if j =8,
az|(be — ab — ac — 2ba) — ap|(ba + ac) + ary|be, if j =9,
[7X77XJ] = e
aflac — ay|(ab + be), if j = 10,
aflba + ay|ab, if j =11,
(af + a)|(be — ba — ac), if j = 12.
Next, we will compute ¢ = [=Y;, Y14] = p'Y14 — Yiup! for i € [4,7]. Using

Fact 4.6, it is easy to see that ¢*(1|84]1) = @*(1]|l) = ¢*(will€'|]1) = 0,
whereas Fact 4.7 gives us immediately the identities ¢°(1]a4|1) = ¢°(1]y4|1) =
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©®(wille'|l) = 0, Fact 4.8 tells us that @O(1lasll) = @O(1|Bfl) =
@O (wille'|l) = 0, and Fact 4.9 yields that " (1|B4]1) = ¢7(1|y4|1) = 0 and
©"(w11]€'|1) = 3(bc — ba — ac). For i € {4,7} and u € B \ {B4,74} (resp.,
i=5and u € BY \ {as,7a},i=06and u € B\ {ay, B1}), we have that

o' (Lul1) = (p"Y1a — Yiapl) (1ull) = —Yia(q,) = =N},

where \¥ € k is the coefficient of wi1|€'|1 in ¢/,. It is easy to check that

padh(1]as|l) = baclas|l + abe|Bs|1 + abalasy|l + vi,,

padh(1|asB|1) = —2abalaz|1 + 3abe|ys|1 + bac|azB|1 + abe|azy|1
+ 2abalafs|l + v, 5,

padh(1|asy|1) = —2abal|B3|1 + 2bac|ys|1 + 2aba|asB|1 4 bac|azy|1
4
+ abelaBe|l + v, s
p305 (1| agBa|1) = —2bac|as|1 — 2abe|B3]1 4 4abalyz|1 + 2abcazB|1

+ 2baclafa|1 + vi2ﬁ2,

and

p505(1|B4]1) = bac|as|1 + abe|B3|1 + abalaoy|1 + V3,5
p365(1|asB|1) = —2abalas|1 + 2abe|ys|1 + bac|azB|1 + abalaBs|l + V2,50
0568 (1]azy|1) = abc|as|1 — 2abalBs|1 + 2bac|ys|1 + 2abalazB|1 + bac|aoy|1
+ abclafBa|l + Ugm,
0505(1|caB2]1) = —3bac|as|1 — 2abe|Bs|1 + 3abalys|1 + 2abe|asf]1
— aba|agy|1 + baclaBa|1 + 02252,
as well as

p565(1|74]1) = —abc|Bs|1 + abalys|1 + bac|af|1 + vfm,
6

)

p§5§(1|agﬂ|1) = 4abalas|l — 2bac|B3|1 + 2abc|agy|1l + 2abalaBa|1 + Vpy s
)
)

0505(1|azy[1) = —abe|as|1 + 2abalBs|1 + abalas |1 + baclagy|1 + vfm,

p§52(1|a2ﬁ2|1 = 4bac|as|1 + 4abc|B3|1 4+ dabalagy|l + v22ﬂ2,
together with

P55 (1| aall) = (aba — abe)|as|l + v7 ,

p308(1]azB|1) = —abe|as|1 4 3bac|as|1 + 3aba|Bs|1 + 2abe|Bs|1 — abalys|1
— 2bac|ys|1 — abc|az Bl + 2abalagy|1 + v, 5,

padh(1]azy|1) = 2abalas|1 4 2bac|as|1 + 2abe|Bs|1 — 2bac|Bs|1 — 2abalys|1
— 2abc|ys)|1 — abelazB|1 + abalagy|1 + abclagy|l 4+ abalabsa|1
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— baclafBs|1 +’Ua3w
p385 (1) azB2|1) = abalas|l — abe|as|1 4 abalBs|1 — abe|ys|1 + va2ﬁ2,
Where ’Ui S @je[[o,2]] (AJ X (ALB)* X Agfj) lf’L S {4,7} and u e %lf \ {ﬂ4,’}/4},
orifi=>5and u € By \ {as,V4}, or if i =6 and u € By \ {au, f1}.

Since, ¢, is of the form ¢}, = B!, +A%w; 1|¢'|1 by degree reasons, where B!, € K},
and we have by definition that §4(¢’,) = p565(1|u|1), we see that

di(By) = 04(qn) — A fo(L'|1) = psdy (Lull) = X! f(Le[1)  (4.5)

for i € [4,7]. Using the explicit expression of the differential d} given in [3],
Fact 3.1, it is clear that the coefficients of aba|ys|1 and abalazy|1 in d4(B)
coincide for all B € K%. Comparing the coefficients of aba|ys|1 and aba|azy|1
in both sides of the equation (4.5), together with the expression of f&(1]€'[1)
given in [3], (3.2), we get

/\24 _ )\?4 _ 7}\%4 =1/3, /\?sﬂ )\043’7 0, /\azﬂ2 = —7,4/3,
A =2022 = 0 and AP = A9 =1,

for i € [4,6], where 7, =1 if ¢ € [4,5] and 76 = —1. Hence, we obtain that

P (Uaall) = =1/3, ¢ (Uaspll) = ¢*(Lazy[1) = 0, ¢*(L]azba|l) = 4/3,

P (11B4]1) = =1/3, ¢*(L]asBll) = ¢*(L]aszy|1) = 0, ¢*(1]azfe|1) = 4/3,

P (Ual1) =1/3,  *(Lasfll) = ¢°(1azy[1) =0, ¢°(1|azfell) = —4/3,
P (Uaall) = ¢ (Uazf2ll) =0 and  ¢(1asf|1) = 7 (L]asy|1) =

In consequence, we get

[ X4, X14] = (4/3)a2fa|1 — (1/3)aull,
[~ X5, X14] = (4/3)a2Ba|1 — (1/3)Bal1,
[ ] = (1/3)7al1 — (4/3)caf2|1,
[ ]

— X7, X14] = —(asf + azy)|1 + 3wie'|(be — ba — ac).

Using the coboundaries g3, € B2 for j € [4,6] and ehs € B3 for k € [7,8]
given in [3], Subsubsection 5.3.1, (4.3) as well as the identities

a2ﬁ|abc = X4X10, a4|1 = Xg, and 04262|1 = X9X10, (46)
which follow from [3], Fact 6.3 and (6.2), we can rewrite several brackets as

[— X4, X10] = afB](ab + be) — ay|ac — g§72 =0,
[~ X4, X11] = —ap|ab — ary[ba + Qiz =0,
[— X4, X12] = aa|(be — ba — ac) — g§ o = —2az|(ab + ba) = —2X1 Xo,
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[— X4, X13] = 3agy|aba — 5afs|bac — 56?73 — 362,3 = —8asf|abc = —8X 4 X1,
[—X4,X14] = (4/3)0{2ﬂ2|1 - (1/3)0&4|1 = (4/3)X9X10 - (1/3)X§
Analogously, using the coboundaries giQ € B2 for j € {4,5,7} and egs € B3

given in [3], Subsubsection 5.3.1, (4.3), (4.6) and the identity 34|]1 = X%, given
in [3], Fact 6.3, we get that

[~ X5, Xo] = —aBlbc + avy|(ba + ac) — giz + 9?,2 =0,
[~ X5, X11] = —aflab— av|ba+ g, = 0,
[~ X5, X12] = = Ba(ab + bc — ac) — g7 5 = —2Bs[(ab + ba) = —2X1 X10,
[— X5, X13] = —bawfabe + 3agy|aba — 36273 = —8ayf|abc = —8X4 X0,
[- ]

X5, X14] = (4/3)aB|1 — (1/3)Ball = (4/3)XoX10 — (1/3)X 2.

Moreover, using the coboundaries gj2-72 e B2 for j € [1,5] and 6273 € S%g
for k € [7,8] given in [3], Subsubsection 5.3.1, (4.3), (4.6) and the identity
4|1 = X% given in [3], Fact 6.3, we obtain

[~ X6, Xo] = aB|(be — ab) — an|(2ba + ac) + 29 5 — g5, = 0,

[— X6, X10] = —aB|(ab+ bc) + aylac + g§,2 =0,

[~ X6, X12] = 72|(be — ba — ac) — aplba — arylab — 2g7 , — 2655 — g5 »

= —2(ag + B2)|(ab 4+ ba) = —2X7(Xg + X19),

[— X6, X13] = —10c27y|aba — 2af2|bac — 26%3 + 106273 = 8 flabe = 8X4 X0,
[— X6, X14] = (1/3)7a[1 — (4/3)a2fa|1 = (1/3) X7} — (4/3) X9 X10.
Finally, using the coboundaries g7, € B2 for j € [1,6] \ {3} and ehs € B3 for
k € [1,4] U9, 10] given in [3], Subsubsection 5.3.1, (4.3) and

as|(aba — abe) = X7Xg, aglaba + Pslbac = X7(Xg + X10) — 2X6X12,

(a3 + B3)|aba = XsX12, (3B + azy)|1 + 3wie'|(ba — be + ac) = XoX12,
given in [3], Fact 6.3, or in [3], (6.2), together with the second element in the
fifth and the eighth line, the first element in the ninth line of [3] (6.5), we have
that

[— X7, Xo] = as|(bc — ab — ac — 2ba) — aB|(ba + ac) + ay|be — giQ — g§72

= —4as|(ab + ba) = —4X1 Xo,
[~ X7, X10] = aflac — ar|(ab + be) — g3 5, = —Pa|(ab + ba) = —X1 X10,
[~ X7, X11] = aBlba+ ar|ab+ g7 5 + g5 » = (a2 + B2)|(ab + ba)
= X1(Xo + X10),
[~ X7, X12] = (aB + a)|(be — ba — ac) — g7 5 + gi o — 955 = —2|(ab + ba)
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= —X1Xo,
[— X7, X13] = as|(abe — 2aba) + asf|(2bac — 6aba) — asy|(abe + 4bac)
+ 5aB2| (abe — aba) — (1/3)(23€3 5 + 11€3 5 — 325 5 — 16€] 5
- 563,3 + 66?0,3)
= (8/3)as|(aba — abc) — (32/3)(ag + B3)|aba
—(16/3)(cg)aba + B3)bac)
= —(8/3)X7(Xo + 2X10) = —4X1 X153 + 4 X2 X13 + 8X4 X1,
[~ X7, X14] = — (3B + a37)|1 + 3wie'|(be — ba — ac) = — X9 X12.
The proposition is thus proved. O
REMARK 4.11. Note that vanishing of [X;, X;] for i € [4,7] and j € [3,7] in
Proposition 4.10 also follows from a simple degree argument based on Corol-

lary 2.5 and the Hilbert series of the Hochschild cohomology given in [3],
Cor. 5.9.

4.3 GERSTENHABER BRACKETS

We will finally compute the remaining Gerstenhaber brackets. We start with
the following result, which is a sort of descending argument.

LEMMA 4.12. Let H = ®pen,H™ be a Gerstenhaber algebra with bracket |,].
Letx € H"™', y € H", a, € H°, a, € H' and 2 € H™ satisfy that a,x = ayy,
and there is a vector subspace M C H" ™~ such that [y, 2] € M and the map
Ha, : M — H™™ sending v € M to ayv is injective. Then, [y, z| is the unique
element v € M satisfying that ayv coincides with

(_1)m71(%[$, 2] + [az, z]x — [ay, z]y) (4.7
Proof. By (2.2) we get that

lazz, 2] = [ag, 2] + az[z, 2] and [ayy, 2] = [ay, 2]y + (—1)m_1ay[y,z].

These identities together with a,x = a,y imply
ayly, 2] = (=1)""(aslw, 2] + [as, 2o — [ay, 2]y).

Hence, the right member is in the image of the injective map p,,, and the
result follows. O

REMARK 4.13. We will apply the previous lemma to the case when H = HH®(A)
is the Hochschild cohomology of a graded algebra A, so H is endowed with an
extra grading, called internal (see Corollary 2.5), the elements x,y, z, ay, a, are
homogeneous for both gradings and M C H™™ 1 is the subspace of internal
degree equal to the sum of those of y and z. In this case, the methods given in
Subsections 2.2 and 2.3 allow to compute the last two brackets of (4.7), whereas
the first one will usually vanish by degree reasons.
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PROPOSITION 4.14. Let A = FK(3) be the Fomin-Kirillov algebra on 3 gen-
erators. Then, we have the Gerstenhaber brackets [X;,X;] = 0 for i,j €
[9,14] \ {13} and

2X7, if j €19,11],

C6X X104+ 6Xo X4+ 2XoX 10, if j = 12,
(X1, X;] = 1X14 2X14 oX12, U

0, if =13,

4(Xg 4+ X10 + X11) X4, if j = 14.

Proof. Recall that, by Corollary 2.5, the Gerstenhaber bracket satisfies that
[,] : HL x H'2 — Hpitne— !, where H}i has internal degree m; — n; for
t = 1,2. Using this degree argument together with the Hilbert series of the
Hochschﬂd cohomology computed in [3], Cor. 5.9, we easily see that [X;, X;] =

0 for 4,5 € [9,14] \ {13}. Moreover, [X;3, X13] = 0 by (2.1).

It remains to compute [X13, X,] for all j € [9, 14]\{13}. Note first the identities

[Xs, Xo] X153 — 6[ X3, X9]X14 = 2X9 X313 + 12X, X4 = 2X8X§,
[Xs, X10) X135 — 6[X3, X10]X14 = 2X10X13 + 12X5X14 = 2Xs X7,
[Xs, X11] X135 — 6[X3, X11] X14 = 2X11 X153 — 12X6X14 = 2Xs X1y,
[Xg, X12]X13 — 6[X3, X12] X14 = 2X12X13 — 12X7X 14 + 6 X1 Xg X1y
—6X2XsX14

=2XgX11 X2 +6X1 X X1y

=2Xg X7, — 4XsXoX10

= 2Xg X9 X2 — 6X1 X X14 +6X2XgX 14,
(X5, X14] X153 — 6[X3, X14] X14 = 4Xs(Xo + X10 + X11) X 14,

(4.8)

where the first equality of the first fourth lines as well as that of the last line
follows from Propositions 4.4 and 4.5, and we used the first element of the
seventh and the eighth line of [3], (6.5), as well as its last four elements, for the
remaining equalities. The penultimate element of the ninth line of [3], (6.5),
also tells us that 6X3X14 = XsX13 € HH*(A).

Notice now that, by degree reasons, [X13, X;] € Hg for j € [9,12] and Hj
is precisely the subspace of HH*(A) spanned by the elements X2, X7, X7,
X9X12 - 3X1X14 + 3X2X14, X9X10, X1X14 and X2X14. On the other hand,
[X13, X14] € HS, = w}HZ, by degree reasons, and w}HE is the subspace of
HH4(A) spanned by X9X14, X10X14, X11X14 and X12X14. Let us denote by
iM C HH*(A) the subspace given by H{ if j € [9,12] and by HS, if j = 14.
Since the elements Xng, X8X120, X8X121, X8X9X12—3X1X8X14+3X2X8X14,
XgXoX10, X1XgX14, and X2XgX14 are linearly independent, by the second
equalities of the first four lines of (4.8) together with [3], (6.7) and (6.8), the map
iM — HH®(A) given by left multiplication by Xg is injective for j € [9,12].
Simﬂarly, the elements X8X9X14, X8X10X14, X8X11X14 and X8X12X14 are
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linearly independent, by [3], (6.8), so the map M — HH’(A) given by left
multiplication by Xg is also injective.

Finally, applying Lemma 4.12 to x = X4, y = Xi3, 2 = Xj, a; = 6X3,
ay = Xg and M =7 M for j € [9,14] \ {13}, together with the fact remarked at
the beginning of the proof that [X14, X;] = 0 and (4.8), the result follows. O

We can summarize the calculations of the Gerstenhaber brackets on HH®(A)
done in Propositions 4.4, 4.5, 4.10 and 4.14 in the following table, where the
brackets strictly below the diagonal are not displayed since they can be obtained
using Lemma 2.2.

P IP.SHEP. CHED. CHED. FEED CHED. CHED. CHED. CHE.0) Xio Xn X1 X3 X
X, 00 0 0 0 0 0 2X; 0 0 0 0 4X:(Xo + X10) 0
X, 0 0 0 0 0 0 2X 0 0 0 0 4X1 Xy 0
X3 0 0 0 0 0 4X3 -2X; -2X; 2X¢ 2X7 - X1 Xs + Xo X5 4X3(Xg + X190+ Xu1) Xi3 - (2/3)Xs(Xo + X190+ X11)
X, 000 0 0 2% 0 0 0 21X 8X,X1o (1/3)X2 - (4/3) XX
X; 00 0 2 0 0 0 21Xy 8X, X (1/3)X2) - (4/3)Xo X1y
Xs 0 0 2X 0 0 0 2X,1(Xy + Xuo) -8X, X1 (4/3)XoX 19 - (1/3)X},
X 02X 4XXy XXy —Xi(Xo+Xy) XX 1X, X33 — 4XaX13 - 8X, X1 XoX2
Xs 02X 2Xy 2X1 2X1 2Xy4 6Xu
Xo 0 0 0 0 _ax? 0
Xi 0 0 0 X3 0
Xy 0 0 -2X3 0
Xz 0 6X1X14 - 6X5X14 - 2XoX 1o 0
Xi3 0 4(Xo + X0 + X)X
Xy 0

Table 4.1: Gerstenhaber brackets [p, ¢].

PROPOSITION 4.15. There is mo generator of the Gerstenhaber bracket on
the Hochschild cohomology HH®(A) of A = FK(3), i.e. there is no map
A :HH*(A) — HH*(A) of degree —1 such that

[z.9] = (=) (A(zy) — Az)y — (1) lzA(y)) (4.9)

for all homogeneous elements x,y € HH®*(A), where |x| is the cohomological
degree of x. In particular, there is no Batalin-Vilkovisky structure on HH®(A)
inducing the Gerstenhaber bracket.

Proof. Assume that (4.9) holds. Obviously, A(HH(A)) = 0. Applying the
results in Table 4.1 and (4.9), we get —4X3 = [Xg, X3] = A(X5)X3, and
0 = [Xi,Xj] = A(Xl)XJ for i € [[4,7H and j € [[1,3]}, since XgXg =
X;X; = 0 in that case (see the first two lines of [3], (6.5)). Hence, A(Xs) €
—4 + span, (X1, X2, X3) and A(X;) € span, (X1, X9, X3) for ¢ € [4,7], where
spany (X1, X2, X3) is the k-subspace spanned by X1, X5, X3. Moreover,

—2X4 = [X3, Xo] = A(X3X9) — X3A(Xg) = A(X3Xo),
2X, = [X4,X8] = —A(X4X8) + A(X4)X8 — X4A(X8) (410)
— CA(X1Xs) + A(X4)Xs + 4X4,

where we used that X3X; = X3X;, = 0 for ¢ € [1,3] and k € [4,8], by
the first two lines of [3], (6.5). Since X3Xq = X4Xg € HH?*(A) (see the
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penultimate element of the third line of [3], (6.5)), adding the equations (4.10),
we obtain A(X4)X8 + 4X4 = 0. The identity A(X4) = lel + kQXQ + ngg
for ki, ks, ks € k, which we proved before, implies that ki X7 Xg + ko XoXg +
4X, = 0. This is impossible since the elements X; Xg, XoXg and X, are
linearly independent in HH'(A) (see [3], (6.7)). The proposition thus follows.

O
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