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1 Introduction

Let p be a prime number. This work concerns p-divisible groups, alias Barsotti-
Tate groups, over a complete discrete valuation ringOK in mixed characteristic,
with perfect residue field k of characteristic p. More generally, we consider p-
divisible groups H endowed with additional endomorphism structure ι : OF →
End(H), where OF is the ring of integers of a finite field extension F of Qp. To
any such pair (H, ι) we associate two invariants up to (OF -equivariant) isogeny,
the Hodge polygon Hdg(H, ι) and the Newton polygon Newt(H, ι); each of them
consists in a collection of “slopes” (with multiplicities) and can be visualised
as a concave polygonal curve, starting from the origin, in the Euclidean plane.
The main property relating these two polygons is that they lie one above the
other and share the end point. When they share a further point z and this
is a break point of the Newton polygon, we say that (H, ι) is Hodge-Newton
reducible (at z). In this case, we prove that there exists an ι-stable sub-p-
divisible group H1 of H corresponding to the division of the polygons in their
parts before and after z, that is, a Hodge-Newton filtration of (H, ι). More
precisely:

Theorem 4.9. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF and suppose that (H, ι) is Hodge-Newton reducible at z. Then,
there exists a unique ι-stable sub-p-divisible group H1 of H such that, if ι1 de-
notes the restriction of ι to H1, then Newt(H1, ι1), Hdg(H1, ι1) and HN(H1, ι1)
equal respectively the part of Newt(H, ι), Hdg(H, ι) and HN(H, ι) between the
origin and z. Furthermore, if H2 denotes the quotient of H by H1, with induced
OF -action ι2, then Newt(H2, ι2), Hdg(H2, ι2) and HN(H2, ι2) equal respectively
the rest of Newt(H, ι), Hdg(H, ι) and HN(H, ι) after z (up to a shift of coordi-
nates setting the origin in z).

The third polygon featuring in the statement, the Harder-Narasimhan polygon
HN(H, ι), is related to the strategy behind the proof. This, indeed, is based
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on the Harder-Narasimhan theory for finite flat group schemes developed by
Fargues, but let us postpone this discussion to a second moment.
In presence of an OF -equivariant polarisation λ : H

∼−→ H∨ (where the dual
p-divisible group H∨ is endowed with the dual OF -action, possibly twisted by
a field involution of F ), the three polygons gain some symmetry. This leads to
an enhanced version of the theorem, where a division of the polygons into three
parts corresponds to the existence of an ι-stable filtration H1 ⊆ H ′

1 ⊆ H , with λ
inducing crossed isomorphisms between the graded pieces and their duals (see
Corollary 4.12).
Looking at the special fibre, the theorem reconnects with the Hodge-Newton
decomposition from [3, §1]; in particular, the reduction to k of the filtration
obtained here is OF -equivariantly split (see the discussion in §4.5).

In order to put the above results into context, let us give some historical co-
ordinates. The notion of Hodge-Newton reducibility first appeared in Katz’s
work [19, §1.6] (1979), in the context of F -crystals over a perfect field k of
characteristic p. To these objects are associated a Hodge polygon and a New-
ton polygon, satisfying the same main property as described before (in this
context, this is known as Mazur’s inequality). Under an identical hypothe-
sis on the polygons as above, Katz proves the existence of a “Hodge-Newton”
decomposition of the relative F -crystal into two components, whose polygons
correspond respectively to the part before and after the internal contact point
given by the assumption. In case such an F -crystal is the Dieudonné module
of a p-divisible group over k , this result recovers the multiplicative-bilocal-étale
decomposition.
This finding was later generalised by Kottwitz, in [21] (2003), to F -crystals
with additional endomorphism structure for the ring of integers of a finite
unramified extension F of Qp and possibly endowed with a polarisation. By
this time, however, new points of view on the subject had developed. Kottwitz’s
result is formulated in terms of affine Deligne-Lusztig sets, objects constructed
by means of a reductive group over a local field and determined by a defining
datum. The additional structure is encoded in the reductive group, in this case
the restriction of scalars from F to Qp of a general linear group GLn, or a
general symplectic group GSp2n in presence of a polarisation. The definitions
of the Hodge and the Newton polygons, as well as the notion of Hodge-Newton
reducibility, are also translated in the group-theoretic language, thus taking into
account the additional structure; for the groups in question, all this can still
be visualised in terms of polygons. An affine Deligne-Lusztig set can then be
seen as a set of F -crystals with additional structure, whose Hodge and Newton
polygons are fixed by the defining datum. From this point of view, the Hodge-
Newton decomposition is expressed as a bijection between the affine Deligne-
Lusztig set associated to a Hodge-Newton reducible datum and one relative to
a Levi subgroup, which collects F -crystals admitting a decomposition.
Mantovan and Viehmann, in [24] (2010), further generalised Kottwitz’s result
to endomorphism structures for more general unramified Zp-algebras and to
families of F -crystals in characteristic p (a statement in families could also be
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found in Katz’s original article, without additional structure, and in Csima’s
work [7], for polarised objects). Most importantly, however, the two authors
proved that their Hodge-Newton decomposition can be lifted to a filtration of
p-divisible groups over a complete Noetherian local W (k)-algebra (here, W (k)
denotes the ring of Witt vectors with coefficients in k). Their argument is
based on an explicit description of the universal deformation of a p-divisible
group over k with unramified endomorphism structure.

This result is used in Mantovan’s work [23] (2008), to study the generic fibre of
certain Rapoport-Zink spaces. First conceived in the book [31] (1996), to whose
authors they owe their name, these spaces are formal schemes over (a finite
extension of) Z̆p, parametrising p-divisible groups with additional structure
and rigidified by a quasi-isogeny to a fixed “frame” object modulo p (here, Z̆p

denotes the ring of integers of the completion of the maximal unramified ex-
tension of Qp). A Rapoport-Zink space is determined by a local PEL datum,
which prescribes the kind of additional structure in form of polarisation, endo-
morphism structure and level structure (whence the acronym “PEL”) and fixes
a number of combinatorial invariants, including the Hodge and the Newton
polygons.

In fact, the connection with Rapoport-Zink spaces extends to a broader level.
If, on the one hand, the Hodge-Newton filtration over a good class of W (k)-
algebras leads to properties of their generic fibre (for Hodge-Newton reducible
PEL data), on the other hand, the Hodge-Newton decomposition over k corre-
sponds to properties of their special fibre (here, k is the algebraic closure of the
finite field Fp, so W (k) = Z̆p). Indeed, the k -valued points of a Rapoport-Zink
space are in bijection with a corresponding affine Deligne-Lusztig set, at least
in the cases concerned up to this point; we will come back to this matter in a
more general framework.

Further progress in the same direction as Mantovan and Viehmann was made
by Shen in [34] (2013). Here, besides an application to the generic fibre of
Rapoport-Zink spaces, we find a new proof of the existence of the Hodge-
Newton filtration, for p-divisible groups over a complete valuation ring (of
rank 1) OK in mixed characteristic, with perfect residue field k of character-
istic p. The setup is still that of unramified endomorphism structure and the
Hodge and the Newton polygons are defined through the reduction of the p-
divisible group to k . However, instead of obtaining the Hodge-Newton filtration
over OK by lifting the Hodge-Newton decomposition over k , Shen proves its
existence directly, by means of the Harder-Narasimhan theory for finite flat
group schemes, developed by Fargues in [10] (2010).

In the more recent articles [17] (2018) and [18] (2019), Hong further extended
the conclusions of Mantovan, Viehmann and Shen to a wider class of addi-
tional structures and the relative generalised Rapoport-Zink spaces (namely of
unramified Hodge type). For this purpose, the same author developed a tool,
called “EL realisation”, to reduce the problem to the previously known cases.

All the results mentioned so far deal with additional endomorphism structures
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of unramified type. The notion of Hodge-Newton reducibility, however, was
meanwhile formalised in a more general context by Rapoport and Viehmann,
in [30, Definition 4.28] (2014), including possible ramification. The definition
is formulated in a group-theoretic way, building upon Kottwitz’s language, as
a property of local Shimura data, a more general version of local PEL data. A
local Shimura datum determines a local Shimura variety, a concept developed
in the same paper, which, in the PEL case, should be realised as the generic
fibre of a Rapoport-Zink space. The work of Rapoport and Viehmann also
explains, in the more general context of the Harris-Viehmann conjecture, how
the Hodge-Newton reducibility should affect the l-adic cohomology of local
Shimura varieties with infinite level structure. In this sense, the results of
Mantovan, Shen and Hong include advances in this direction, in the unramified
case.
A notion of Hodge-Newton reducibility in ramified settings can also be found,
relatively to F -crystals over k , in the article [3] (2017) by Bijakowski and
Hernandez. This does not exactly match the definition in [30], in that the Hodge
polygon considered by Bijakowski and Hernandez is a different invariant (we
will add more details on this below). Using their notion, anyway, the authors
prove the existence of a decomposition of F -crystals with possibly ramified
endomorphism structure, generalising Katz’s original result.
The Hodge-Newton reducibility condition from [30], instead, features in the
work of Görtz, He and Nie [16] (2019). Here, allowing ramified setups, the
Hodge-Newton decomposition for a very large class of affine Deligne-Lusztig
varieties is proved; in fact, these objects acquired in the meantime the geo-
metric structure of perfect schemes over k , inside the Witt vector affine flag
variety (cf. [38] and [2], note that we are considering here the mixed character-
istic version of affine Deligne-Lusztig varieties). In the article it is conjectured,
in full generality, that the bijection between the k -valued points of Rapoport-
Zink spaces and the corresponding affine Deligne-Lusztig sets upgrades to an
isomorphism of perfect schemes, between the perfection of the special fibre on
one side and an affine Deligne-Lusztig variety on the other. This brings us to
the motivation of our own work.

The Hodge-Newton decomposition for affine Deligne-Lusztig varieties attached
to a ramified datum, along with the conjectural consequences on the special
fibre of Hodge-Newton reducible Rapoport-Zink spaces, suggests that, as in
the unramified case, a corresponding statement should hold at the level of the
generic fibre. As we saw in the previous overview, this investigation starts from
the existence of the Hodge-Newton filtration for p-divisible groups over mixed
characteristic base rings. In this sense, the present work could have a natural
application to the study of the generic fibre of Rapoport-Zink spaces with finite
level structure (application which is in fact in the author’s plans). Passing to
infinite level structure, this could lead to further progress towards the Harris-
Viehmann conjecture, comparing with the work of Gaisin and Imai [15] in this
direction (especially in light of the methods elaborated by Chen, Fargues and
Shen in [5], but see also [35] and [4], based on the theory of vector bundles over
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the Fargues-Fontaine curve).
Let us mention, in addition, that the conclusions of this work can be interpreted
in terms of p-adic Galois representations. Indeed, the category of p-divisible
groups over OK is equivalent to the category of Galois stable Zp-lattices in
certain crystalline representations of the absolute Galois group of K (cf. [33,
Corollary 6.2.3]).

The first issue that we address in this document are the definitions of the
Newton polygon and the Hodge polygon for p-divisible groups over OK with
additional endomorphism structure. In order to do this, we make use of the
equivalence of categories between p-divisible groups over OK up to isogeny and
a certain abelian subcategory of weakly admissible filtered isocrystals over K,
the field of fractions of OK . The definitions, as well as the main property
relating the two polygons, can be dealt with at the level of (weakly admissible)
filtered isocrystals, for which reason the first section is devoted to these objects.
As for the Newton polygon, it arises from a functorial formalism (namely the
slope decomposition for isocrystals) and is therefore not affected by the addi-
tional endomorphism structure, except for a simple rescaling process. The sit-
uation is different for the Hodge polygon, which is based on the group-theoretic
definition of µ̄ from [30, 2.4]; here, µ is a dominant geometric cocharacter of the
reductive group over Qp encoding the additional structure (see Remark 2.11 for
the translation to the group-theoretic setting). Passing from µ to µ̄ amounts
to an averaging process over the Galois conjugates of µ; in this case, the ad-
ditional endomorphism structure plays a more decisive role. This discrepancy
between the definitions of the two polygons is also behind the fact that a p-
divisible group might be Hodge-Newton reducible only if considered with some
additional endomorphism structure, losing this property when neglecting the
same additional structure. In the group-theoretic language of [30], the Newton
polygon corresponds to the Newton point from loc. cit. 2.1. In this sense, our
definitions of the Newton polygon and the Hodge polygon agree with those of
the corresponding invariants of local Shimura data.
Let us remark that the Newton polygon is actually an invariant of the reduction
of the p-divisible group to k (or, in terms of filtered isocrystals, an invariant
of the underlying isocrystal). For unramified endomorphism structures, even
the Hodge polygon can be defined at the level of p-divisible groups over k (or,
more generally, of F -crystals over k), although it is in general not an invariant
up to isogeny at this level (cf. Remark 3.3 and Example 3.11). This is in
fact the approach that we find in the previous literature (in particular [24]
and [34]), based on the group-theoretic concept of Hodge point from [29]. A
generalisation of this definition to possibly ramified setups can be found in
[3]; this notion, however, does not match the Hodge polygon considered here.
Indeed, our definition recovers the one for p-divisible groups over k only in the
unramified case, but in general it does not give an invariant of the reduction,
as illustrated in Example 3.4.

Concerning the proof of Theorem 4.9, we followed essentially the same ap-
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proach as in Shen’s work (cf. [34]), fixing some details about the main input
from Harder-Narasimhan theory, even for the unramified case (see Corollary 4.4
below). Given its rather formal nature, in fact, the argument in loc. cit. adapts
well to the more general situation considered here. Let us summarise the un-
derlying strategy.
The Hodge-Newton reducibility assumption for p-divisible groups overOK with
endomorphism structure concerns whole equivariant isogeny classes of objects.
One can then use the fact that the category of p-divisible groups over OK up
to isogeny admits a Harder-Narasimhan formalism (cf. [11]); in other words,
to each object is associated a third polygon, the Harder-Narasimhan polygon,
whose break points correspond to unique sub-p-divisible groups up to isogeny.
The first step consists in proving that the point where the Hodge-Newton re-
ducibility assumption is realised is also a break point of the Harder-Narasimhan
polygon (or rather of a rescaled version of it, as determined by the endomor-
phism structure). This yields a sub-p-divisible group up to isogeny, which, due
to the functorial nature of the formalism, is stable under any additional endo-
morphism structure. This step is taken care of in §4.2, at the level of weakly
admissible filtered isocrystals; in fact, both the Harder-Narasimhan formalism
and the notion of Hodge-Newton reducibility can be set up in this context.
In order to upgrade this subobject up to isogeny to an actual sub-p-divisible
group, we make use of the fact that finite flat group schemes of p-power order
over OK also admit a Harder-Narasimhan formalism (cf. [10]). Moreover, the
polygons associated to the p-power torsion parts of a p-divisible group converge
from above to the Harder-Narasimhan polygon of the p-divisible group itself.
This family of polygons provides now a finer invariant, bounded from below by
the Harder-Narasimhan polygon of the p-divisible group (hence uniformly over
an isogeny class).
The next step consists in finding a (similarly uniform) upper bound for the
family of polygons under consideration. This upper bound is indeed represented
by the Hodge polygon, as proved in §3.4. This section is the technical heart
of the whole argument; in fact, this is essentially the only point where the
endomorphism structure really plays a role, as functoriality takes care of it
in the other steps (see Example 3.15 for an analysis of the situation in an
emblematic case, namely that of p-divisible OF -modules).
The double bound obtained on the Harder-Narasimhan polygons of the p-power
torsion parts forces these polygons to pass through the critical point as well.
In order to conclude the existence of the required sub-p-divisible group, we
finally prove the following statement, which can be seen as a refinement of
the multiplicative-bilocal-étale filtration for p-divisible groups over OK (cf. Re-
mark 4.5).

Corollary 4.4. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF . Suppose that z is a break point of HN(H, ι) which also lies
on HN(H [p], ι). Then, there exists a unique ι-stable sub-p-divisible group H1

of H such that, if ι1 denotes the restriction of ι to H1, then HN(H1, ι1) equals
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the part of HN(H, ι) between the origin and z. Furthermore, if H2 denotes the
quotient of H by H1, with induced OF -action ι2, then HN(H2, ι2) equals the
rest of HN(H, ι) after z (up to a shift of coordinates setting the origin in z).

Here, HN(H [p], ι) denotes the Harder-Narasimhan polygon of the p-torsion
part of (H, ι). This result is already contained implicitly in the proof of [34,
Theorem 5.4], although, as acknowledged to us by the author of loc. cit., the
argument therein only works in the case that z is a break point of the (renor-
malised) Harder-Narasimhan polygon of (H [pi], ι), for some i ≥ 1. In order to
fill this gap, we combined the argument in loc. cit. with some methods from
the algorithm in [11, §3] (cf. Remark 4.3).
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1.1 Setup and notation

The following setup will be in force throughout the document:

• p is a fixed prime number;

• k is a perfect field of characteristic p;

• W (k) is the ring of Witt vectors with coefficients in k , with fraction
field K0;

• K is a totally ramified extension of K0 of degree e, with ring of inte-
gers OK ;

• σ : W (k)→W (k) denotes the lift of the Frobenius map (x 7→ xp) : k → k ,
the same notation is used for the extension of σ to K0;

• F is a finite extension of Qp of degree d, with ring of integers OF .
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The Newton set. For n ∈ N, we denote by:

Qn
+ := { (ai)ni=1 ∈ Qn | a1 ≥ · · · ≥ an }

the set of decreasing n-tuples of rational numbers. An element (ai)
n
i=1 ∈ Qn

+

can be interpreted as the concave polygon [0, n] → R starting at (0, 0) and
proceeding with slope ai on [i − 1, i]. Here, by a concave polygon we mean
a piecewise affine linear, continuous, concave function [0, N ] → R (for some
N ∈ N), such that 0 7→ 0; we will often make no distinction between the
function and its graph. There is an obvious notion of break point, from which we
exclude the extremal points. The concave polygons corresponding to elements
of Qn

+ are those defined on [0, n] and whose break points lie in Z×Q.
The set Qn

+ is partially ordered by the following rule:

(ai)
n
i=1 ≤ (bi)

n
i=1 if

j
∑

i=1

ai ≤
j

∑

i=1

bi for all 1 ≤ j ≤ n and
n
∑

i=1

ai =
n
∑

i=1

bi.

In terms of the corresponding polygons, the relation means “lying below” and
sharing the end point. With this meaning, we extend the partial order to the
set of concave polygons defined on [0, n].

Note on the normalisation. This paper follows the conventions adopted
for the Harder-Narasimhan formalism for weakly admissible filtered isocrystals,
as it is set up in [11, §5.2.3]. This has the following consequences:

1. The Newton polygon of an isocrystal is defined inverting the sign of the
slopes of its isotypical components (as opposed to the usual definition).
Then, in the context of weakly admissible filtered isocrystals, the Newton
polygon can be compared directly to the Harder-Narasimhan polygon (see
Proposition 2.7).

2. For consistency when dealing with filtered isocrystals, the type of a fil-
tration is also defined inverting the sign of its jumps (as opposed to the
definition in [8, §I.1]).

3. The functor from p-divisible groups over k to isocrystals is set up using
covariant Dieudonné theory and shifting the slopes by −1 (see (3.3)); the
functor from p-divisible groups overOK to filtered isocrystals is set up ad-
justing the jumps of the filtration consistently, in order to obtain a weakly
admissible object. Via these functors, on the one hand the Newton poly-
gon for isocrystals considered here recovers the classical Newton polygon
for p-divisible groups (see Remark 4.14). On the other hand, the Harder-
Narasimhan polygons of the p-power torsion parts of a p-divisible group
H over OK (as defined in [10, §4]) converge to the Harder-Narasimhan
polygon of the corresponding weakly admissible filtered isocrystal (see the
proof of Proposition 3.8). Finally, our definition of the Hodge polygon,
which goes through the notion of type mentioned above, also recovers the
classical invariant in the unramified case (see Remark 3.3).
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We remark that this normalisation agrees with the one adopted in [34].

2 Filtered isocrystals

2.1 Isocrystals

Recall that an isocrystal over k is a finite dimensional K0-vector-space N ,
together with a σ-linear bijective endomorphism ϕ : N → N . The height of
(N,ϕ) and its dimension are respectively:

ht(N,ϕ) := dimK0
N ∈ N and dim(N,ϕ) := vp(detϕ) ∈ Z;

here, choosing a K0-basis of N , one can write the matrix of ϕ in the usual
way and the p-adic valuation of its determinant will be independent of the
chosen basis. The isocrystals over k form a Qp-linear abelian category Isoc(k),
with morphisms given by K0-linear maps compatible with ϕ. The dimension
function is additive on short exact sequences.
An isocrystal (N,ϕ) is isotypical (or isoclinic) if there exist integers r, s with
s > 0 and a W (k)-lattice M ⊆ N such that ϕsM = prM . In this case, we have
r/s = dim(N,ϕ)/ ht(N,ϕ) ∈ Q and call this number the slope of (N,ϕ).

The Newton polygon. Because k is perfect, every isocrystal (N,ϕ) over k
has a unique slope decomposition:

(N,ϕ) =
⊕

λ∈Q

(Nλ, ϕλ) (2.1)

into isotypical sub-isocrystals (Nλ, ϕλ) of slope λ (cf. [39, 6.22]); this is functo-
rial in the sense that there are no nonzero morphisms between isotypical isocrys-
tals of different slope (cf. loc. cit. 6.20). Say that λ1 < · · · < λm are the slopes
appearing nontrivially in the decomposition (called the Newton slopes of (N,ϕ))
and let hi := ht(Nλi

, ϕλi
), i = 1, . . . ,m, and h := ht(N,ϕ) = h1 + · · · + hm.

Then, we define the Newton polygon of (N,ϕ) to be:

Newt(N,ϕ) := (−λ(h1)
1 , . . . ,−λ(hm)

m ) ∈ Qh
+,

the superscript denoting the number of repetitions. This polygon is the con-
cave envelope of the points (ht(N ′, ϕ′),− dim(N ′, ϕ′)) over all sub-isocrystals
(N ′, ϕ′) of (N,ϕ). Note that the break points of Newt(N,ϕ) lie in Z×Z and we
have Newt(N,ϕ)(h) = − dim(N,ϕ). We remark that compared to the usual
definition of Newton polygon for isocrystals, here we invert the sign of the
slopes. As pointed out in the note at the end of the introduction, this is in
accordance with other conventions adopted throughout in the paper.
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2.2 Isocrystals with coefficients

Definition 2.1. An isocrystal over k with coefficients in F is a triple (N,ϕ, ι)
consisting of an isocrystal (N,ϕ) over k and a map of Qp-algebras ι : F →
End(N,ϕ).

The isocrystals over k with coefficients in F form an F -linear abelian category
Isoc(k)F , with morphisms given by maps of isocrystals compatible with ι. For
objects of this category we still have the notions of height and dimension, which
simply refer to those of the underlying isocrystal.
It is sometimes useful (particularly in view of Remark 2.4 below) to consider
isocrystals with coefficients from another point of view, which we borrow from
[8, §VIII.5]. First of all, note that the underlying vector space of an isocrystal
over k with coefficients in F has a module structure over K0 ⊗Qp

F , thanks to
the Qp-linear F -action. Let us study this ring in more detail.

Let fF := f(F |Qp) be the inertia degree of F over Qp and write KσfF

0 for
the σfF -fixed subfield of K0; this is a finite unramified extension of Qp, say

of degree f , with f dividing fF . In fact, we have KσfF

0 = Kσf

0 , the σf -fixed
subfield of K0. Note that f can be strictly smaller than fF , without necessarily
K0 = Kσf

0 being the case (e.g. if k = Fp(T
1/p∞

), the field obtained from the
field of rational functions Fp(T ) over Fp adjoining the pj-th root of T for all
j ≥ 1).
Fix now an embedding τ0 : K

σf

0 → F . We obtain all the embeddings of Kσf

0

in F as τi := τ0 ◦σ−i : Kσf

0 → F , for i ∈ Z/fZ. Set then K
(i)
F := K0⊗Kσf

0
,τi

F ,

for i ∈ Z/fZ, and KF := K
(0)
F ; all these are unramified field extensions of F .

Indeed, τi(Kσf

0 ) is contained in the maximal unramified subextension F nr of
F |Qp and the minimal polynomial of F nr|Kσf

0 is irreducible over K0, because
the coefficients of any nontrivial monic factor would be fixed by σfF and hence
would lie in KσfF

0 = Kσf

0 . Thus, K
(i)
Fnr := K0 ⊗Kσf

0
,τi

F nr is a field and, in

particular, an unramified extension of F nr. Then, K(i)
F = K

(i)
Fnr ⊗Fnr F is an

unramified field extension of F . We have an isomorphism:

Kσf

0 ⊗Qp
F ∼=

f−1
∏

i=0

F

b⊗ a 7→ (τi(b)a)i,

which extends to a decomposition:

K0 ⊗Qp
F ∼=

f−1
∏

i=0

K
(i)
F . (2.2)

The automorphism σ ⊗ id on the left-hand side corresponds to the product of
the isomorphisms:

σ ⊗ id : K
(i)
F = K0 ⊗Kσf

0
,τi

F −→ K0 ⊗Kσf

0
,τi+1

F = K
(i+1)
F
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on the right-hand side. In particular, σf ⊗ id induces an automorphism
σF : KF → KF , the Frobenius of KF over F .

Definition 2.2. A σF -KF -space is a pair (NF , ϕF ) consisting of a finite
dimensional KF -vector-space NF and a σF -linear bijective endomorphism
ϕF : NF → NF .

The σF -KF -spaces form an F -linear abelian category σF -KF -Sp, with mor-
phisms given by KF -linear maps compatible with ϕF . This category is in fact
equivalent to Isoc(k)F , as we will see shortly.
Consider the following maps of rings:

ε0 : K0 ⊗Qp
F ∼=

f−1
∏

i=0

K
(i)
F

pr0−−→ KF , ρ : KF −→
f−1
∏

i=0

K
(i)
F
∼= K0 ⊗Qp

F

x 7→ ((σi ⊗ id)(x))i.

We use them to define functors:

ε0,∗ : Isoc(k)F −→ σF -KF -Sp

(N,ϕ, ι) 7→ (N ⊗K0⊗QpF,ε0 KF , ϕ
f ⊗ σF )

and:

ρ∗ : σF -KF -Sp −→ Isoc(k)F

(NF , ϕF ) 7→ (NF ⊗KF ,ρ (K0 ⊗Qp
F ), ϕ, ι).

Here, NF ⊗KF ,ρ (K0 ⊗Qp
F ) has an obvious structure of K0-vector-space and

ϕ is given with respect to the decomposition:

NF ⊗KF ,ρ (K0 ⊗Qp
F ) ∼=

f−1
∏

i=0

NF ⊗KF ,σi⊗id K
(i)
F

as the product of the maps:

id⊗ (σ ⊗ id) : NF ⊗KF
K

(i)
F −→ NF ⊗KF

K
(i+1)
F for i = 0, . . . , f − 2,

ϕF ⊗ (σ ⊗ id) : NF ⊗KF
K

(f−1)
F −→ NF ⊗KF

KF = NF .

Finally, ι is given by the natural F -multiplication on K0 ⊗Qp
F .

Lemma 2.3 ([8, 8.5.4]). The functors ε0,∗ and ρ∗ are quasi-inverse F -linear
equivalences of categories between Isoc(k)F and σF -KF -Sp.

Remark 2.4. As an important consequence of this lemma, given any (N,ϕ, ι) ∈
Isoc(k)F , we may always write N ∼= NF ⊗KF ,ρ (K0⊗Qp

F ) for some KF -vector-
space NF . In particular, N is free as a module over K0 ⊗Qp

F , so its K0-
dimension is a multiple of dimK0

(K0 ⊗Qp
F ) = [F : Qp] = d. In other words,

ht(N,ϕ) ∈ dN.
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Note that if F is a totally ramified extension of Qp, this is more easily granted
by the fact that K0 ⊗Qp

F is itself a field. At the other extreme, assume
that F is unramified over Qp and admits an embedding into K0 (e.g. if k

is algebraically closed). Then, fixing F ⊆ K0, we have a decomposition into
sub-K0-vector-spaces:

N =
⊕

i∈Z/dZ

Ni, with Ni =
{

v ∈ N
∣

∣ ∀a ∈ F : ι(a)(v) = σi(a)v
}

.

Moreover, ϕ induces σ-linear bijections Ni → Ni+1, so that dimK0
Ni is con-

stant for i ∈ Z/dZ and again dimK0
N = d · dimK0

N0 ∈ dN. The formalism
above combines these last two arguments in the general case.

The Newton polygon. Let (N,ϕ, ι) be an isocrystal over k with coefficients
in F , of height h = dn (note that h ∈ dN by the previous remark). By
functoriality of the slope decomposition (2.1) of (N,ϕ), the action of F via ι
restricts to each isotypical component (Nλ, ϕλ). These components are hence
again isocrystals with coefficients in F , whose height is then a multiple of d.
Thus, in the Newton polygon of (N,ϕ), each entry is repeated a multiple of d

times. In light of this, if Newt(N,ϕ) = (−λ(h1)
1 , . . . ,−λ(hm)

m ) ∈ Qh
+, we define

the Newton polygon of (N,ϕ, ι) to be:

Newt(N,ϕ, ι) := (−λ(h1/d)
1 , . . . ,−λ(hm/d)

m ) ∈ Qn
+.

Equivalently:

Newt(N,ϕ, ι) : x 7−→ 1

d
Newt(N,ϕ)(dx).

Note that the break points of Newt(N,ϕ, ι) lie in Z × 1
dZ. Furthermore, we

have that Newt(N,ϕ, ι)(n) = − dim(N,ϕ)/d.

2.3 Filtered vector spaces

Let here K2|K1 be any field extension and let us recall the category
FilVectK2|K1

of K2-filtered K1-vector-spaces. Objects are finite dimensional
K1-vector-spaces V equipped with a Z-filtration Fil•VK2

= (FiliVK2
)i∈Z of

VK2
:= V ⊗K1

K2 by sub-K2-vector-spaces, which is decreasing (i.e. FiliVK2
⊇

Fili+1VK2
for every i ∈ Z), exhaustive and separated (i.e. respectively FiliVK2

=
VK2

and FiljVK2
= 0 for some integers i ≤ j). A morphism between two ob-

jects (V ′,Fil•V ′
K2

), (V,Fil•VK2
) is given by a K1-linear map f : V ′ → V whose

base change fK2
: V ′

K2
→ VK2

is compatible with the filtrations, meaning that
fK2

(FiliV ′
K2

) ⊆ FiliVK2
for all i ∈ Z; if fK2

(FiliV ′
K2

) = fK2
(V ′

K2
) ∩ FiliVK2

for
all i ∈ Z, then we say that f is a strict morphism.
The category FilVectK2|K1

is K1-linear and quasi-abelian, with short exact
sequences given by short sequences of strict morphisms which are exact on the
underlying vector spaces. In this case, the first term and the last term of the
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sequence are called respectively a subobject and a quotient object of the middle
term.
For (V,Fil•VK2

) ∈ FilVectK2|K1
and i ∈ Z, we set:

gri VK2
:= FiliVK2

/Fili+1VK2
and deg(V,Fil•VK2

) :=
∑

i∈Z

i ·dimK2
gri VK2

∈ Z,

called respectively the i-th graded piece and the degree of (V,Fil•VK2
). Note

that a short sequence is exact if and only if it induces exact sequences on all
the i-th graded pieces. In particular, the degree function is additive.
The indices i ∈ Z such that gri VK2

6= 0 are called the jumps of the filtration.
If these are, say, i1 < · · · < im and we let nj := dimK2

grij VK2
, j = 1, . . . ,m,

and n := dimK1
V = n1 + · · ·+ nm, then the type of (V,Fil•VK2

) is defined to
be:

f(V,Fil•VK2
) := (−i(n1)

1 , . . . ,−i(nm)
m ) ∈ Qn

+.

The break points of f(V,Fil•VK2
) lie in Z × Z and f(V,Fil•VK2

)(n) =
− deg(V,Fil•VK2

). Moreover, if:

0 −→ (V ′,Fil•V ′
K2

) −→ (V,Fil•VK2
) −→ (V ′′,Fil•V ′′

K2
) −→ 0

is a short exact sequence of K2-filtered K1-vector-spaces, then:

f(V ′,Fil•V ′
K2

) = (−i(n
′

1)
1 , . . . ,−i(n

′

m)
m )

and:
f(V ′′,Fil•V ′′

K2
) = (−i(n

′′

1 )
1 , . . . ,−i(n

′′

m)
m )

with n′
j + n′′

j = nj for all 1 ≤ j ≤ m. Note that compared to the definition of
the type of a filtration from [8, §I.1], here we invert the sign of the jumps. This
is for consistency with our definition of the Newton polygon for isocrystals,
especially in consideration of the following sections.
We remark that if K ′

2 is a field extension of K2 and K ′
1 is a field extension

of K1 contained in K ′
2, then the obvious base change functor FilVectK2|K1

→
FilVectK′

2
|K′

1
is exact and preserves the type.

Lemma 2.5. Let (V,Fil•VK2
) be a K2-filtered K1-vector-space and (V ′,Fil•V ′

K2
)

a subobject. Set n′ := dimK1
V ′. Then:

− deg(V ′,Fil•V ′
K2

) ≤ f(V,Fil•VK2
)(n′),

with equality if and only if the type of (V ′,Fil•V ′
K2

) equals the restriction of
f(V,Fil•VK2

) to [0, n′].

Proof. It is enough to observe that the type of (V ′,Fil•V ′
K2

) is a polygon with
the same slopes as f(V,Fil•VK2

), but with lower (possibly zero) multiplicity.
In numbers, let i1 < · · · < im be the jumps of (V,Fil•VK2

) and nj :=
dimK2

grij VK2
, for j = 1, . . . ,m. The jumps of (V ′,Fil•V ′

K2
) are among those
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of (V,Fil•VK2
), with n′

j := dimK2
grij V ′

K2
≤ nj , j = 1, . . . ,m, and n′ =

n′
1+· · ·+n′

m. Let l ∈ { 1, . . . ,m } be such that n1+· · ·+nl−1 < n′ ≤ n1+· · ·+nl

(the case n′ = 0 being trivial). Then, the claimed inequality reads:

−
m
∑

j=1

ijn
′
j ≤ −

l−1
∑

j=1

ijnj − il(n
′ − (n1 + · · ·+ nl−1)).

Now, for j ≤ l− 1 we have ij < il, whereas for j ≥ l+1 we have ij > il. Thus:

l−1
∑

j=1

ij(nj − n′
j) ≤ il

l−1
∑

j=1

(nj − n′
j) and

m
∑

j=l+1

ijn
′
j ≥ il

m
∑

j=l+1

n′
j . (2.3)

Altogether:

l−1
∑

j=1

ijnj + il(n
′ − (n1 + · · ·+ nl−1))−

m
∑

j=1

ijn
′
j =

=

l−1
∑

j=1

ij(nj − n′
j) + il(n

′ − (n1 + · · ·+ nl−1)− n′
l)−

m
∑

j=l+1

ijn
′
j ≤

≤ il(n
′ − (n′

1 + · · ·+ n′
l)) = 0, (2.4)

which is the desired inequality. If f(V ′,Fil•V ′
K2

) equals the restriction of
f(V,Fil•VK2

) to [0, n′], then:

− deg(V ′,Fil•V ′
K2

) = f(V ′,Fil•V ′
K2

)(n′) = f(V,Fil•VK2
)(n′).

Conversely, if − deg(V ′,Fil•V ′
K2

) = f(V,Fil•VK2
)(n′), then we have equality in

(2.4) and hence in (2.3). In particular, n′
j = nj for j ≤ l− 1 and n′

j = 0 for j ≥
l + 1, which implies that f(V ′,Fil•V ′

K2
) equals the restriction of f(V,Fil•VK2

)
to [0, n′].

2.4 Filtered isocrystals

A filtered isocrystal over K is an isocrystal (N,ϕ) over k , together with a
decreasing, exhaustive and separated Z-filtration Fil•NK of NK = N⊗K0

K by
sub-K-vector-spaces. The filtered isocrystals over K form a Qp-linear category
FilIsocK , with morphisms given by maps of isocrystals whose base change to K
is compatible with the filtrations; a morphism is strict if so is the resulting map
in FilVectK|K0

. In fact, FilIsocK is a quasi-abelian category too, with short
exact sequences given by short sequences of strict morphisms which are exact
on the underlying isocrystals; we deduce the meaning of subobject and quotient
object.
The forgetful functors:

FilIsocK −→ Isoc(k) and FilIsocK −→ FilVectK|K0

(N,ϕ,Fil•NK) 7−→ (N,ϕ) (N,ϕ,Fil•NK) 7−→ (N,Fil•NK)
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are exact. Given a filtered isocrystal (N,ϕ,Fil•NK) over K, say with
ht(N,ϕ) = h, we define its Newton polygon to be:

Newt(N,ϕ,Fil•NK) := Newt(N,ϕ) ∈ Qh
+

and its Hodge polygon to be:

Hdg(N,ϕ,Fil•NK) := f(N,Fil•NK) ∈ Qh
+.

Furthermore, we define its Newton number to be:

tN (N,ϕ,Fil•NK) := dim(N,ϕ) ∈ Z

and its Hodge number to be:

tH(N,ϕ,Fil•NK) := deg(N,Fil•NK) ∈ Z.

In this way, the Hodge polygon and number only depend on the underlying
filtered vector space, whereas the Newton polygon and number are invariants
of the underlying isocrystal. By the properties already known, we see that the
break points of both polygons lie in Z × Z and that the Newton number and
the Hodge number are additive on short exact sequences. Moreover:

Newt(N,ϕ,Fil•NK)(h) = −tN (N,ϕ,Fil•NK)

and:
Hdg(N,ϕ,Fil•NK)(h) = −tH(N,ϕ,Fil•NK).

2.5 Weakly admissible filtered isocrystals

A filtered isocrystal (N,ϕ,Fil•NK) over K is called weakly admissible if for all
subobjects (N ′, ϕ′,Fil•N ′

K) we have:

tH(N ′, ϕ′,Fil•N ′
K) ≤ tN (N ′, ϕ′,Fil•N ′

K),

with equality holding for (N,ϕ,Fil•NK) itself. Let FilIsocw-a
K denote the full

subcategory of FilIsocK consisting of the weakly admissible objects. This is an
abelian category, with kernels and cokernels coinciding with those in FilIsocK ;
moreover, if two out of three objects of a short exact sequence in FilIsocK
are weakly admissible, then the third object is weakly admissible too (cf. [13,
§4.2]).
A fundamental implication of weak admissibility is expressed by the following
inequality of polygons, which is part of the characterisation given in [13, §4.3]
(taking into account a different normalisation). It can also be seen as an easy
consequence of Lemma 2.5 (see the proof of Proposition 2.10 for the argument
in a more general setting).

Proposition 2.6. Let (N,ϕ,Fil•NK) be a weakly admissible filtered isocrystal
over K. Then:

Newt(N,ϕ,Fil•NK) ≤ Hdg(N,ϕ,Fil•NK).
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The Harder-Narasimhan polygon. As explained in [11, §5.2.3], the
category of weakly admissible filtered isocrystals over K admits a Harder-
Narasimhan formalism for the slope function µ = −tN/ ht = −tH/ ht. More
precisely, to each nonzero object N = (N,ϕ,Fil•NK) ∈ FilIsocw-a

K we associate
its slope:

µ(N ) :=
−tN (N,ϕ,Fil•NK)

ht(N,ϕ)
=
−tH(N,ϕ,Fil•NK)

ht(N,ϕ)
∈ Q

and say that N is semi-stable of slope µ(N ) if for every subobject N ′ ⊆ N
we have µ(N ′) ≤ µ(N ). In general, there exists a unique Harder-Narasimhan
filtration:

0 = N0 ( N1 ( · · · ( Nm = N (2.5)

in FilIsocw-a
K , such that each Ni/Ni−1 is semi-stable, say of slope µi, with

µ1 > · · · > µm. Some functoriality of this filtration follows from the fact that
if N ′ and N ′′ are two semi-stable objects with µ(N ′) > µ(N ′′), then there
are no nontrivial morphisms N ′ → N ′′. Now, for N as above, with Harder-
Narasimhan filtration as in (2.5), let h := ht(N,ϕ) and let hi be the height of
the underlying isocrystal of Ni/Ni−1, for i = 1, . . . ,m. Then, we define the
Harder-Narasimhan polygon of N to be:

HN(N ) := (µ
(h1)
1 , . . . , µ(hm)

m ) ∈ Qh
+.

This polygon is the concave envelope of the points (ht(N ′, ϕ′),−tN (N ′)) over
all subobjects N ′ = (N ′, ϕ′,Fil•N ′

K) of N in FilIsocw-a
K . Its break points lie in

Z× Z and we have HN(N )(h) = −tN(N ) = −tH(N ).

Given an object N = (N,ϕ,Fil•NK) ∈ FilIsocw-a
K , every subobject N ′ =

(N ′, ϕ′,Fil•N ′
K) gives rise to a sub-isocrystal (N ′, ϕ′) of (N,ϕ), hence the point

(ht(N ′, ϕ′),−tN(N ′)) = (ht(N ′, ϕ′),− dim(N ′, ϕ′)) lies below Newt(N,ϕ) =
Newt(N ). We easily deduce the following inequality of polygons.

Proposition 2.7. Let (N,ϕ,Fil•NK) be a weakly admissible filtered isocrystal
over K. Then:

HN(N,ϕ,Fil•NK) ≤ Newt(N,ϕ,Fil•NK).

Remark 2.8. It may be useful, at this point, to mention another instance
of Harder-Narasimhan formalism which is implicitely related to the one in-
troduced above, although it will not play an active role in our discussion.
Namely, given any field extension K2|K1, the category of K2-filtered K1-
vector-spaces admits a Harder-Narasimhan formalism for the slope function
µ = deg / dim (cf. [8, §I.3]). Similarly as above, to each nonzero ob-
ject (V,Fil•VK2

) ∈ FilVectK2|K1
is associated an element of the Newton set

Qn
+, where n = dimK1

V , called the HN-vector of (V,Fil•VK2
). This is not

to be confused with the type of (V,Fil•VK2
); in fact, Lemma 2.5 implies that,
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setting up the formalism with respect to −µ (in order to comply with our
normalisation), then the HN-vector of (V,Fil•VK2

) lies below its type.
Now, given a weakly admissible filtered isocrystal (N,ϕ,Fil•NK) over K, its
Harder-Narasimhan polygon HN(N,ϕ,Fil•NK) can be recovered as the HN-
vector of a certain associated C-filtered Qp-vector-space, where C is the com-
pletion of an algebraic closure of K (note that we are not talking about the un-
derlying K-filtered K0-vector-space (N,Fil•NK)); for the details of this, which
go beyond the scope of this article, we refer to [11, Propositions 10 and 11].
The HN-vector (with respect to −µ) of the underlying filtration (N,Fil•NK),
instead, yields yet another polygon, which lies above HN(N,ϕ,Fil•NK) (by a
similar argument as for Proposition 2.7, since −tN = −tH for weakly admissi-
ble objects) and below Hdg(N,ϕ,Fil•NK) (by Lemma 2.5). These observations
will not be used in the sequel.

2.6 Filtered isocrystals with coefficients

Definition 2.9. A filtered isocrystal over K with coefficients in F is a pair
(N , ι) consisting of a filtered isocrystal N = (N,ϕ,Fil•NK) over K and a map
of Qp-algebras ι : F → End(N,ϕ,Fil•NK).

The filtered isocrystals over K with coefficients in F form an F -linear quasi-
abelian category FilIsocK,F , with morphisms given by maps of filtered isocrys-
tals compatible with ι; the notions of exactness, subobject and quotient object
come from those in FilIsocK by neglecting ι.
We have an exact forgetful functor:

FilIsocK,F −→ Isoc(k)F

(N,ϕ,Fil•NK , ι) 7−→ (N,ϕ, ι),

where ι also denotes the induced F -action on the underlying isocrystal (N,ϕ).
Given (N , ι) = (N,ϕ,Fil•NK , ι) ∈ FilIsocK,F , say with ht(N,ϕ) = dn, we
define its Newton polygon to be:

Newt(N , ι) := Newt(N,ϕ, ι) ∈ Qn
+.

Equivalently:

Newt(N , ι) : x 7−→ 1

d
Newt(N )(dx).

Thus, the Newton polygon only depends on the underlying isocrystal. More-
over, as we already know for isocrystals with coefficients in F , the break points
of Newt(N , ι) lie in Z × 1

dZ and we have Newt(N , ι)(n) = − dim(N,ϕ)/d =
−tN (N )/d.

The Hodge polygon. Let (N , ι) = (N,ϕ,Fil•NK , ι) be a filtered isocrystal
over K with coefficients in F and pick a field extension K ′ of K containing all
embeddings τ of F in an algebraic closure of K. Then, ι extends linearly to an
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action on the K ′-vector-space NK′ = N ⊗K0
K ′, which respects the induced

filtration Fil•NK′ . We obtain decompositions of K ′-vector-spaces:

NK′ =
⊕

τ : F→K′

Nτ , with Nτ = { v ∈ NK′ | ∀a ∈ F : ι(a)(v) = τ(a)v } ;

Fil•NK′ =
⊕

τ : F→K′

Fil•Nτ , with Fil•Nτ = Nτ ∩ Fil•NK′ .

(2.6)
Now, as seen in Remark 2.4, N is free as a module over K0⊗Qp

F , so that NK′

is free over K ′ ⊗Qp
F ∼=

∏

τ K
′ (b ⊗ a 7→ (bτ(a))τ ); in particular, dimK′ Nτ

is constant over all embeddings τ , say equal to n (thus, ht(N,ϕ) = dn). Let
fτ ∈ Qn

+ be the type of (Nτ ,Fil
•Nτ ) ∈ FilVectK′|K′ . Then, we define the

Hodge polygon of (N , ι) to be:

Hdg(N , ι) :=
1

d

∑

τ

fτ ∈ Qn
+.

This is independent of the choice of K ′, due to the invariance of the type of a
filtration under base change. In fact, Hdg(N , ι) only depends on the underlying
filtered vector space of N and the compatible F -action on it; however, we used
that the same action respects the operator ϕ on N , in order to ensure the
equidimensionality of Nτ for varying τ . Finally, note that the break points of
Hdg(N , ι) lie in Z× 1

dZ and we have Hdg(N , ι)(n) = −tH(N )/d.

2.7 Weakly admissible filtered isocrystals with coefficients

A filtered isocrystal over K with coefficients in F is called weakly admissible if
the underlying filtered isocrystal is weakly admissible. We denote by FilIsocw-a

K,F

the full subcategory of FilIsocK,F consisting of the weakly admissible objects.
This is an abelian category, with kernels and cokernels coinciding with those
in FilIsocK,F .
Using Lemma 2.5, we can easily generalise the fundamental inequality between
the Newton polygon and the Hodge polygon to this setting.

Proposition 2.10. Let (N , ι) = (N,ϕ,Fil•NK , ι) be a weakly admissible fil-
tered isocrystal over K with coefficients in F . Then:

Newt(N , ι) ≤ Hdg(N , ι).

Proof. Let n := ht(N,ϕ)/d and note first that:

Newt(N , ι)(n) = −tN(N )/d = −tH(N )/d = Hdg(N , ι)(n),

the central equality due to weak admissibility; thus, the two polygons share
their end point. By concavity, it is then enough to show that each break point
of Newt(N , ι) lies below Hdg(N , ι).
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Let (x, y) be a break point of Newt(N , ι); by definition, we find an F -
stable sub-isocrystal (N ′, ϕ′) of (N,ϕ) such that x = ht(N ′, ϕ′)/d and y =
− dim(N ′, ϕ′)/d. Let Fil•N ′

K := N ′
K ∩Fil•NK be the induced filtration, so that

N ′ := (N ′, ϕ′,Fil•N ′
K) is a sub-filtered-isocrystal of N ; moreover, ι restricts to

an F -action ι′ on N ′.
Fix now a field extension K ′ of K containing all embeddings τ of F in an
algebraic closure of K and let:

NK′ =
⊕

τ : F→K′

Nτ , Fil•NK′ =
⊕

τ : F→K′

Fil•Nτ ,

N ′
K′ =

⊕

τ : F→K′

N ′
τ , Fil•N ′

K′ =
⊕

τ : F→K′

Fil•N ′
τ

be the decompositions as in (2.6). Note that N ′
τ = N ′

K′ ∩ Nτ and Fil•N ′
τ =

N ′
τ ∩ Fil•Nτ , so (N ′

τ ,Fil
•N ′

τ ) is a subobject of (Nτ ,Fil
•Nτ ) in FilVectK′|K′ ,

with dimK′ N ′
τ = x. By Lemma 2.5, then:

− deg(N ′
τ ,Fil

•N ′
τ ) ≤ fτ (x)

for every τ , where fτ is the type of (Nτ ,Fil
•Nτ ). On the other hand, weak

admissibility gives:

dy = − dim(N ′, ϕ′) = −tN (N ′) ≤ −tH(N ′) = − deg(N ′,Fil•N ′
K).

Finally, since deg(N ′,Fil•N ′
K) =

∑

τ deg(N
′
τ ,Fil

•N ′
τ ), we get:

y ≤ 1

d

∑

τ

fτ (x) = Hdg(N , ι)(x),

which means exactly that the point (x, y) lies below the polygon Hdg(N , ι).

Remark 2.11. If K0 = Q̆p is the completion of the maximal unramified exten-
sion of Qp, then the inequality proved above is an instance of the more general
fact that the p-adic period domain associated to a pair (b, {µ}) for a reductive
group G over Qp is nonempty if and only if the σ-conjugacy class [b] is “ac-
ceptable” with respect to {µ} (cf. [30, 3.1]). Here, the group G is given by the
restriction of scalars ResF |Qp

GL(V ), where V is any F -vector-space such that
V ⊗Qp

K0 identifies with the K0 ⊗Qp
F -module N . Then, ϕ corresponds to an

element b ∈ G(K0) and {µ} is the conjugacy class of any geometric cocharacter
of G whose induced grading on NK′ splits the filtration Fil•NK′ , for a suitable
field extension K ′ of K. In this setup, the filtration Fil•NK determines a K-
valued point of the p-adic period domain and [b] being acceptable with respect
to {µ} translates into the inequality stated in the proposition.

The Harder-Narasimhan polygon. Let (N , ι) = (N,ϕ,Fil•NK , ι) be a
weakly admissible filtered isocrystal over K with coefficients in F , say with
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ht(N,ϕ) = h = dn. By functoriality of the Harder-Narasimhan filtration (2.5)
of N , the action of F via ι restricts to each piece of this filtration, forcing the
height of the respective underlying isocrystal to be a multiple of d. Thus, in
the Harder-Narasimhan polygon of N , each entry is repeated a multiple of d
times. In light of this, if HN(N ) = (µ

(h1)
1 , . . . , µ

(hm)
m ) ∈ Qh

+, we define the
Harder-Narasimhan polygon of (N , ι) to be:

HN(N , ι) := (µ
(h1/d)
1 , . . . , µ(hm/d)

m ) ∈ Qn
+.

Equivalently:

HN(N , ι) : x 7−→ 1

d
HN(N )(dx).

This polygon is the concave envelope of the points (ht(N ′, ϕ′)/d,−tN (N ′)/d)
over all subobjects (N ′, ι′) = (N ′, ϕ′,Fil•N ′

K , ι′) of (N , ι) in FilIsocw-a
K,F . More-

over, its break points lie in Z × 1
dZ and we have HN(N , ι)(n) = −tN (N )/d =

−tH(N )/d.

Because both the Newton polygon and the Harder-Narasimhan polygon of a
weakly admissible filtered isocrystal with coefficients in F are a rescaled version
(by the same factor 1/d) of their counterparts obtained neglecting the action
of F , Proposition 2.7 implies directly the same inequality in this setting.

Proposition 2.12. Let (N , ι) = (N,ϕ,Fil•NK , ι) be a weakly admissible fil-
tered isocrystal over K with coefficients in F . Then:

HN(N , ι) ≤ Newt(N , ι).

3 p-divisible groups

Let R be a complete Noetherian commutative local ring, with residue field
of characteristic p. We denote by p−divR the category of p-divisible groups,
alias Barsotti-Tate groups, over SpecR (or “over R” for short); we write htH
for the height and H∨ for the Cartier dual of any object H ∈ p−divR (as
defined in [36, §2.3]). This is a Zp-linear category, with the hom-sets being
torsion free Zp-modules. Let then p−divR ⊗ Qp denote the Qp-linear cate-
gory of p-divisible groups over R “up to isogeny”: objects are again p-divisible
groups over R, but for H1, H2 two of them we set Homp−divR⊗Qp

(H1, H2) :=
Homp−divR

(H1, H2)⊗Zp
Qp = Homp−divR

(H1, H2)[
1
p ] and extend the composi-

tion maps by linearity. We have an obvious functor p−divR → p−divR ⊗Qp.
Recall that every p-divisible group H = (H [pi])i≥1 over R, say with H [pi] =
SpecAi, can be viewed as a formal group Spf A over R, where A = lim←−i≥1

Ai.
If H is connected, then Spf A is a formal Lie group, i.e. A is isomorphic to
the profinite R-algebra of formal power series R[[X1, . . . , Xr]], for some r ≥ 1
called the dimension of Spf A (cf. [36, §2.2]). In general, there exists a unique
exact sequence of p-divisible groups over R:

0 −→ H◦ −→ H −→ Hét −→ 0 (3.1)
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where H◦ is connected and Hét is étale (cf. loc. cit.). The dimension of H ,
denoted by dimH , is by definition the dimension of the formal Lie group corre-
sponding to H◦; we have dimH+dimH∨ = htH (loc. cit. Proposition 3). Next,
let I ⊆ A be the augmentation ideal and set ωH := I/I2. Then, ωH = ωH◦ ;
in particular, this is a free R-module of rank dimH . On the other hand, set
Lie(H) := Ker((Spf A)(R[ε]/(ε2)) → (Spf A)(R)), the map being induced by
ε 7→ 0; this is again a free R-module of rank dimH , which in fact identifies nat-
urally with the dual of ωH . The constructions of ωH and Lie(H) define additive
functors to the category of finitely generated R-modules and are compatible
with base change along maps of local rings (that is, ring homomorphisms re-
specting the maximal ideal). Finally, note that if p is nilpotent in R, then
H◦ is the same as the formal completion of H along the identity section, as
considered in [27, §II] (this follows from loc. cit. 4.4, 4.7, 4.11).
Let us next analyse some specific cases of our setup, namely when R = k is
a perfect field of characteristic p or R = OK is the ring of integers of a finite
totally ramified extension K of K0 = W (k)[ 1p ].

p-divisible groups over k . Recall that to each p-divisible group H over
k Dieudonné theory associates a finite free W (k)-module D(H) of rank htH ,
together with an injective σ-linear endomorphism ϕH : D(H) → D(H) such
that ϕHD(H) ⊇ pD(H). This kind of objects are called Dieudonné modules
over k ; they form a Zp-linear category, with morphisms given by W (k)-linear
maps compatible with the σ-linear endomorphism. The association above is in
fact functorial and induces a Zp-linear equivalence of categories between p−divk
and Dieudonné modules over k ; moreover, we have a natural identification of
k -vector-spaces:

D(H)/ϕHD(H) ∼= ωH∨ (3.2)

(cf. [12, §III]; we are considering here the covariant version of the equivalence,
which is obtained by composing the contravariant functor with duality). Now,
every Dieudonné module (D, ϕ) gives rise to an isocrystal (N,ϕ) := (D ⊗W (k)

K0, ϕ⊗id), whose Newton slopes lie in [0, 1]. Indeed, each isotypical component
(Nλ, ϕλ) of (N,ϕ) contains a W (k)-lattice Mλ := D ∩ Nλ with the property
that pMλ ⊆ ϕλMλ ⊆ Mλ. Here, the second inclusion implies that the slope
λ of (Nλ, ϕλ) is nonnegative, while the first inclusion (which is equivalent to
pϕ−1

λ Mλ ⊆ Mλ) implies that λ ≤ 1. In fact, the converse statement also
holds, namely, if (Nλ, ϕλ) is an isotypical isocrystal of slope λ ∈ [0, 1], then
it contains a W (k)-lattice Mλ ⊆ Nλ such that pMλ ⊆ ϕλMλ ⊆ Mλ. Indeed,
by definition there exist integers r, s and a W (k)-lattice M ⊆ Nλ such that
ϕs
λM = prM , with s > 0 and r/s = λ ∈ [0, 1], i.e. 0 ≤ r ≤ s. Then, the W (k)-

lattice Mλ :=
∑s−r

i=0 ϕi
λM+

∑r−1
i=1 p−iϕs−r+i

λ M ⊆ Nλ satisfies the requirements.
Thus, shifting the slopes by −1 (for normalisation reasons), Dieudonné theory
induces a Qp-linear equivalence of categories:

p−divk ⊗Qp
∼−−→ Isoc(k)[−1,0]

H 7−→ (D(H)⊗W (k) K0, p
−1(ϕH ⊗ id)),

(3.3)
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where Isoc(k)[−1,0] denotes the full subcategory of Isoc(k) consisting of the
isocrystals whose Newton slopes lie in [−1, 0], an abelian subcategory of Isoc(k).
Note that, if (N,ϕ) is the isocrystal associated to a p-divisible group H via the
functor above, then, taking k -dimensions in (3.2), we get that dim(N,ϕ) =
− htH + dimH∨ = − dimH .

p-divisible groups over OK . Every p-divisible group H over OK gives rise
to a natural exact sequence of finite free OK-modules:

0 −→ ωH∨ −→M(H) −→ Lie(H) −→ 0, (3.4)

where M(H) is the Lie algebra of the universal extension of H (cf. [27, §IV.1];
we obtain the sequence above by taking the projective limit of all the similar se-
quences over OK/prOK , for r ≥ 1). In addition, there is a natural isomorphism
of OK-modules M(H) ∼= D(Hk )⊗W (k)OK , whose reduction to k identifies the
image of ωH∨

k
in M(H)⊗OK

k with V D(Hk )/pD(Hk ) ⊆ D(Hk )/pD(Hk); here,

Hk denotes the reduction of H to k and V = pϕ−1
Hk

the “Verschiebung” map of
D(Hk ) (cf. [26, II.15.3], [1, 4.3.10]). Thus, if (N,ϕ) is the isocrystal over k as-
sociated to Hk as in (3.3), we get a filtered isocrystal N := (N,ϕ,Fil•NK) over
K by setting Fil0NK to be the image of ωH∨ ⊗OK

K in NK
∼= M(H)⊗OK

K,
with Fil−iNK = NK and FiliNK = 0 for all i ≥ 1; let us check that this is
weakly admissible. First of all:

tH(N ) = −(dimK NK − dimK(ωH∨ ⊗OK
K))

= − htH + dimH∨ = − dimH = dim(N,ϕ) = tN (N ).

Next, a subobject N ′ ⊆ N is given by a sub-isocrystal (N ′, ϕ′) ⊆ (N,ϕ),
together with the induced filtration Fil•N ′

K = N ′
K ∩ Fil•NK . Set D′ := N ′ ∩

D(Hk ), a direct summand of the free W (k)-module D(Hk ), and E′ := N ′
K ∩

ωH∨ , a direct summand of the free OK-module ωH∨ . Let then D̄′ := D′/pD′

and Ē′ := E′ ⊗OK
k . We have a commutative diagram of inclusions:

ωH∨

k
VD(Hk )/pD(Hk ) D(Hk )/pD(Hk )

Ē′ D̄′,

∼

which shows that Ē′ ⊆ V D′/pD′ (as V D′ = D′ ∩ V D(Hk )). In addition, V −1

induces an isomorphism V D′/pD′ ∼= D′/ϕHk
D′ of k -vector-spaces, so:

dimk (Ē′) ≤ dimk(D
′/ϕHk

D′) = vp(det(ϕHk
|D′)) = vp(det pϕ

′) =

= ht(N ′, ϕ′) + dim(N ′, ϕ′).

Then:

tH(N ′) = − dimK N ′
K+dimK(N ′

K∩ωH∨⊗OK
K) = − ht(N ′, ϕ′)+dimk (Ē′) ≤
≤ dim(N ′, ϕ′) = tN (N ′).
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We obtain a Qp-linear functor:

p−divOK
⊗Qp −→ FilIsoc

w-a,[−1,0]
K

H 7−→ (N,ϕ,Fil•NK),
(3.5)

where FilIsoc
w-a,[−1,0]
K denotes the full subcategory of FilIsocw-a

K consisting of
those weakly admissible filtered isocrystals whose underlying filtration has
jumps in { −1, 0 }, an abelian subcategory of FilIsocw-a

K ; note that this restric-
tion on the jumps implies that the Newton slopes of the underlying isocrystal
lie in [−1, 0], by Proposition 2.6 (the converse does not hold: for example, as-
sume that k is algebraically closed and consider the simple isotypical isocrystal
of height 2 and dimension −1 as in [39, 6.27], together with any filtration with
jumps −2 and 1). The functor just defined is compatible with (3.3), if we re-
duce p-divisible groups along OK → k on one side and forget the filtration on
the other. Moreover, if H ∈ p−divOK

⊗ Qp maps to the filtered isocrystal N ,
we have tH(N ) = tN (N ) = − dimH .

Remark 3.1. The functor (3.5) is in fact an equivalence of categories. This
was first conjectured by Fontaine in [13, §5.2], who already observed fully
faithfulness. Later, in [14], he introduced the category of “crystalline” p-adic
representations Repcris(GK) of the absolute Galois group GK of K, together
with a functor Dcris : Repcris(GK) → FilIsocw-a

K such that, for H a p-divisible
group over OK and Vp(H) its rational Tate module, Dcris(Vp(H)) is the filtered
isocrystal associated to H∨ as in (3.5) (after shifting the filtration and the New-
ton slopes of the latter by +1). Now, a theorem of Colmez and Fontaine (cf.
[6] and consider there the case N = 0) ensures that every weakly admissible fil-
tered isocrystal over K is “admissible”, meaning that it belongs to the essential
image of Dcris. In turn, a result of Kisin says that every crystalline represen-
tation V of GK with Hodge-Tate weights in { 0, 1 } (which is equivalent to the
underlying filtration of Dcris(V ) having jumps in { 0, 1 }) is isomorphic to the
rational Tate module of a p-divisible group over OK (cf. [20, 2.2.6]). It follows
that (3.5) is also essentially surjective.

3.1 p-divisible groups with endomorphism structure

Definition 3.2. Let R be a complete Noetherian commutative local ring, with
residue field of characteristic p. A p-divisible group over R with endomorphism
structure for OF is a pair (H, ι) consisting of a p-divisible group H over R and
a map of Zp-algebras ι : OF → End(H).

Note that, because End(H) is a torsion free Zp-module, the map ι is auto-
matically injective; in other words, the OF -action on H corresponding to ι is
faithful. We denote by p−divR,OF

the OF -linear category formed by the ob-
jects just defined, with morphisms given by maps of p-divisible groups over R
compatible with ι (or OF -equivariant). Let then p−divR,OF

⊗ F be the F -
linear category of p-divisible groups over R with endomorphism structure for
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OF “up to equivariant isogeny”: this is constructed, as before, from p−divR,OF

by inverting p in the homomorphisms.
The functors (3.3) and (3.5) introduced above upgrade to F -linear equivalences
of categories:

p−divk ,OF
⊗ F

∼−−→ Isoc(k)
[−1,0]
F , (3.6)

where Isoc(k)[−1,0]
F denotes the full subcategory of Isoc(k)F consisting of objects

whose underlying isocrystal has Newton slopes in [−1, 0], an abelian subcate-
gory of Isoc(k)F , and:

p−divOK ,OF
⊗ F

∼−−→ FilIsoc
w-a,[−1,0]
K,F , (3.7)

where FilIsoc
w-a,[−1,0]
K,F denotes the full subcategory of FilIsocw-a

K,F consisting of
objects whose underlying filtration has jumps in { −1, 0 }, an abelian subcate-
gory of FilIsocw-a

K,F . The fact that these functors are equivalences of categories
is a formal consequence of (3.3) and (3.5) being themselves equivalences (see
Remark 3.1 for the latter), apart from a small consideration about essential
surjectivity. Namely, an object of the right-hand side category corresponds,
by what we formally know, to some p-divisible group H together with a map
ι : F → End(H)⊗Zp

Qp of Qp-algebras. Now, since End(H) is a finitely gener-
ated Zp-module, e.g. because we know that the hom-sets of (filtered) isocrystals
are finite-dimensional Qp-vector-spaces, we have that prι(OF ) ⊆ End(H) for
r ≥ 0 sufficiently large. Then, (H, prι) belongs to the left-hand side category
and maps to some object which is isomorphic (via p−r) to our target.
The two functors (3.6) and (3.7) are compatible with respect to the reduction
of p-divisible groups along OK → k on one side and forgetting the filtration on
the other.

The polygons. For (H, ι) a p-divisible group over OK with endomorphism
structure for OF , we define its Newton polygon, its Hodge polygon and its
Harder-Narasimhan polygon through the functor (3.7), to be those of the cor-
responding weakly admissible filtered isocrystal (N , ι) over K with coefficients
in F ; they live in Qn

+, where dn = htH is also the height of the underlying
isocrystal of N , a multiple of d by Remark 2.4. By definition, all these are
invariants up to OF -equivariant isogeny. Moreover, tracking the normalisation
of the above-mentioned functor, we see that Newt(H, ι)(n) = Hdg(H, ι)(n) =
HN(H, ι)(n) = dimH/d. Finally, note that Newt(H, ι) only depends on the
reduction (Hk , ι) of (H, ι) to k (denoting again by ι the induced OF -action
on Hk ).

Remark 3.3. If F is unramified over Qp, the Hodge polygon is classically
defined at the level of p-divisible groups over k as follows. Assume for simplicity
that k is algebraically closed and fix an embedding F ⊆ K0; note that we have
an isomorphism of W (k)-algebras:

W (k) ⊗Zp
OF
∼=

∏

i∈Z/dZ

W (k), b⊗ a 7→ (bσi(a))i.
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Now, for (H, ι) ∈ p−divk ,OF
, say with htH = dn, the Dieudonné module (D, ϕ)

of H inherits a Zp-linear OF -action from ι, which makes D a module over the
above ring. We obtain a decomposition of W (k)-modules:

D =
⊕

i∈Z/dZ

Di, with Di =
{

v ∈ D
∣

∣ ∀a ∈ OF : ι(a)(v) = σi(a)v
}

.

Moreover, ϕ restricts to σ-linear injective maps ϕ : Di → Di+1, so that
rkW (k) Di = n for all i ∈ Z/dZ. Let then ri := dimk Di/ϕDi−1 and
fi := (1(n−ri), 0(ri)) ∈ Qn

+ and set:

Hdg(H, ι) :=
1

d

∑

i∈Z/dZ

fi ∈ Qn
+.

This definition agrees with the one for p-divisible groups over OK , in the sense
that for (H, ι) ∈ p−divOK ,OF

we have Hdg(H, ι) = Hdg(Hk̄ , ι), where (Hk̄ , ι)
is the reduction of (H, ι) to an algebraic closure k̄ of k . Indeed, let K ′ be a
finite field extension of K containing F and fix F ⊆ K ′. The OK′ -module
ωH∨,OK′

:= ωH∨ ⊗OK
OK′ has a Zp-linear OF -action induced by ι and, since

OK′ ⊗Zp
OF
∼=

∏

i∈Z/dZOK′ (similarly to before), we obtain a decomposition
of OK′-modules:

ωH∨,OK′
=

⊕

i∈Z/dZ

ωH∨,i,

with:
ωH∨,i =

{

v ∈ ωH∨,OK′

∣

∣ ∀a ∈ OF : ι(a)(v) = σi(a)v
}

,

where σ denotes, without ambiguity, the Frobenius automorphism of F over
Qp. Now, on the one hand ωH∨,i ⊗OK′

k̄ ∼= D(H
k̄
)i/ϕH

k̄
D(H

k̄
)i−1 via

ωH∨,OK′
⊗OK′

k̄ = ωH∨

k̄

and the natural identification (3.2). On the other hand,
if (N,ϕ,Fil•NK , ι) is the filtered isocrystal with coefficients in F associated to
(H, ι), we see that ωH∨,i ⊗OK′

K ′ ∼= Fil0Nσi , with notation as in (2.6). Hence,
for all i ∈ Z/dZ, we have that dimk̄ D(Hk̄ )i/ϕH

k̄
D(Hk̄ )i−1 = dimK′ Fil0Nσi ,

which yields the desired equality of polygons.
In particular, this shows that if F is unramified over Qp, then the Hodge
polygon of a p-divisible group over OK with endomorphism structure for OF

only depends on its reduction (Hk , ι) to k . This is not true for a general
extension F |Qp, as the following example illustrates.

Example 3.4. Let k = F̄p be an algebraic closure of Fp, so that K0 = Q̆p is the
completion of the maximal unramified extension of Qp. Choose

√
p a square

root of p and let K = K0(
√
p). Let then F = Qp(π), also with π2 = p. We

have two embeddings τ0 : π 7→ √p and τ1 : π 7→ −√p of F in K.
Consider the Dieudonné module (D, ϕ) over k given by D = W (k)2 and the
σ-linear endomorphism ϕ : e1 7→ e2, e2 7→ pe1, where e1, e2 is the standard
basis. We let π act on (D, ϕ) by π : e1 7→ e2, e2 7→ pe1; since π2 acts as p, this
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defines a map of Zp-algebras ι : OF → End(D, ϕ). Set now v0 :=
√
pe1+e2 and

v1 := −√pe1 + e2, elements of DOK
:= D ⊗W (k) OK = O2

K ; note that these
are eigenvectors for the operator π, with eigenvalue respectively

√
p and −√p.

In particular, the sub-OK-modules L0 := OK · v0 and L1 := OK · v1 of DOK

are π-stable. Observe, in addition, that these submodules are direct summands
of DOK

.
Define now a new Dieudonné module (D′, ϕ′) := (D, ϕ) ⊕ (D, ϕ) over k and
let H ′ be the corresponding p-divisible group over k . We endow (D′, ϕ′) with
the diagonal OF -action induced by ι; this reflects into a Zp-linear OF -action
on H ′ (which we denote again by ι), making (H ′, ι) a p-divisible group with
endomorphism structure for OF . Consider, for i = 0, 1, the filtration L0,i ⊆
D′

OK
:= D′ ⊗W (k) OK = DOK

⊕ DOK
given by L0 in the first factor and Li in

the second factor; we have:

L0,i ⊗OK
k = k · e2 ⊕ k · e2 = VD/pD⊕ V D/pD = V ′D′/pD′,

where V = pϕ−1, V ′ = pϕ′−1. Then, by Grothendieck-Messing theory, there
exist p-divisible groups H0, H1 over OK which reduce to H ′ via OK → k

and whose corresponding exact sequence as in (3.4) is given by the filtration
L0,i ⊆ D′

OK
, for i = 0, 1 respectively (cf. [27, V.1.6]; we apply the theory

over all the rings OK/prOK , r ≥ 1; the resulting compatible families can be
assembled to p-divisible groups over OK by [27, II.4.16]). Since the OF -action
on D′

OK
respects these filtrations, H0 and H1 will carry a Zp-linear OF -action

lifting ι (and hence deserving the same name again), making (H0, ι) and (H1, ι)
two p-divisible groups over OK with endomorphism structure for OF . Finally,
although these two objects have the same reduction to k , we see that:

Hdg(H0, ι) = (1/2, 1/2) ∈ Q2
+, while Hdg(H1, ι) = (1, 0) ∈ Q2

+.

Indeed, setting N := D ⊗W (k) K0, and taking K ′ = K in (2.6), we have that
Nτ0 = L0 ⊗OK

K and Nτ1 = L1 ⊗OK
K.

Back to the main discussion, let us specialise Propositions 2.10 and 2.12 to the
context of p-divisible groups and write the following cumulative statement.

Proposition 3.5. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF . Then:

HN(H, ι) ≤ Newt(H, ι) ≤ Hdg(H, ι).

Remark 3.6. If F is unramified over Qp, then the inequality Newt(H, ι) ≤
Hdg(H, ι) is classically seen as a consequence of the generalised Mazur inequal-
ity (cf. [29, 4.2]). Indeed, as we saw in Remark 3.3, the Hodge polygon of
(H, ι) is determined in this case by the “relative position” of the pair of W (k̄)-
lattices (D(Hk̄ ), ϕH

k̄
D(Hk̄ )) in D(Hk̄ )[

1
p ]. The two inequalities, however, are

conceptually of a different nature. Indeed, the one stated here relates to the
nonemptiness of p-adic period domains (cf. Remark 2.11), which are geomet-
ric objects living over (a finite extension of) K0. Mazur’s inequality, instead,
relates to the nonemptiness of affine Deligne-Lusztig varieties (cf. [22]), which
live over k .
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3.2 p-groups

Let R be a complete Noetherian commutative local ring, with residue field of
characteristic p. We denote by p−grR the category of finite flat group schemes
of p-power order over SpecR and call p-groups over R its objects. For X ∈
p−grR, we write X∨ for its Cartier dual (as defined in [36, §1.2]) and htX for
the height of X , i.e. the logarithm to base p of its order; the height function
is additive on short exact sequences. Moreover, if X has height h, then X =
X [ph] := Ker(ph : X → X), that is, X is ph-torsion (cf. [37, §1]).
Given a p-group X = SpecA over R, with augmentation ideal I ⊆ A, set
ωX := I/I2; this defines an additive functor to the category of finitely generated
R-modules, which is compatible with base change. If X is the kernel of an
isogeny H → H ′ of p-divisible groups over R, then we have an exact sequence
of R-modules:

ωH′ −→ ωH −→ ωX −→ 0. (3.8)

This follows essentially from the fact that, on the level of formal groups, the
isogeny H → H ′ is a “topologically flat” map (cf. [9, VIIB, 1.3.1] and loc.
cit. 2.4).
Assume now that R is a discrete valuation ring. For X ∈ p−grR, denote by Xη

its generic fibre, that is, its base change to the field of fractions of R. Every
closed sub-group-scheme Y of Xη yields a closed sub-p-group Ȳ of X , through
the operation of schematic closure in X (cf. [32, §2]). This induces a bijection
between the closed sub-group-schemes of Xη and the closed sub-p-groups of X ,
preserving closed embeddings; the inverse is given by taking the generic fibre.
Finally, if X is a closed sub-p-group of another object X ′ ∈ p−grR, then the
schematic closure in X coincides with that in X ′.

The degree. Let X be a p-group over OK . Then, because X is p-power
torsion and the functor ω is additive, ωX is a finitely generated torsion OK-
module. Thus, we may define the degree of X to be:

degX :=
1

e
lgωX ∈

1

e
Z,

where lgωX means the length of ωX as OK-module (and remember that e =
[K : K0]). Explicitely,

if: ωX
∼=

r
⊕

i=1

OK/biOK , then: degX =

r
∑

i=1

v(bi),

where the bi’s are elements of OK and v is the valuation of K, normalised at
v(p) = 1. The degree function is additive on short exact sequences and satisfies
degX + degX∨ = htX (cf. [10, Lemme 4]). Moreover, if X ′ u−→ X

v−→ X ′′ is
a sequence of p-groups over OK such that u is a closed embedding, v ◦ u =
0 and v induces an isomorphism Xη/X

′
η

∼−→ X ′′
η on the generic fibre, then
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degX ≤ degX ′ + degX ′′, with equality if and only if the sequence:

0 −→ X ′ u−−→ X
v−−→ X ′′ → 0

is exact (cf. [10, Corollaire 3]).

The Harder-Narasimhan polygon. As explained in [10, §4], the category
of p-groups over OK admits a Harder-Narasimhan formalism for the slope func-
tion µ = deg / ht. More precisely, to each nontrivial object X ∈ p−grOK

we
associate its slope:

µ(X) :=
degX

htX
∈ Q

and say that X is semi-stable of slope µ(X) if for every closed sub-p-group
X ′ ⊆ X we have µ(X ′) ≤ µ(X). In general, there exists a unique Harder-
Narasimhan filtration:

0 = X0 ( X1 ( · · · ( Xm = X (3.9)

by closed sub-p-groups, such that each Xi/Xi−1 is semi-stable, say of slope µi,
with µ1 > · · · > µm. Some functoriality of this filtration follows from the fact
that if X ′ and X ′′ are two semi-stable objects with µ(X ′) > µ(X ′′), then there
are no nontrivial morphisms X ′ → X ′′. Now, for X as above, with Harder-
Narasimhan filtration as in (3.9), let h := htX and let hi := htXi/Xi−1 for
i = 1, . . . ,m. Then, we define the Harder-Narasimhan polygon of X to be:

HN(X) := (µ
(h1)
1 , . . . , µ(hm)

m ) ∈ Qh
+.

This polygon is the concave envelope of the points (htX ′, degX ′) over all closed
sub-p-groups X ′ of X . Its break points lie in Z× 1

eZ and we have HN(X)(h) =
degX . Moreover, the following compatibility with respect to duality holds (cf.
[10, Corollaire 8]):

HN(X∨) = ((1 − µm)(hm), . . . , (1− µ1)
(h1)), or:

HN(X∨) : x 7−→ x+HN(X)(h− x)− degX.

3.3 p-groups with endomorphism structure

Definition 3.7. Let R be a complete Noetherian commutative local ring, with
residue field of characteristic p. A p-group over R with endomorphism structure
for OF is a pair (X, ι) consisting of a p-group X over R and a map of rings
ι : OF → End(H).

We denote by p−grR,OF
the category formed by the objects just defined,

with morphisms given by maps of p-groups over R compatible with ι (or OF -
equivariant).
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The Harder-Narasimhan polygon. Let (X, ι) be a p-group over OK with
endomorphism structure for OF , say with htX = h. We define the Harder-
Narasimhan polygon of (X, ι) to be:

HN(X, ι) : [0, h/d] −→ R

x 7−→ 1

d
HN(X)(dx).

This is a concave polygon, whose break points lie in 1
dZ × 1

deZ; in particular,
we are not talking about an element of the Newton set, in general. Anyway,
the OF -action on X given by ι restricts to each piece of its Harder-Narasimhan
filtration (3.9), by functoriality of the latter (see also [10, §5.3]); this means
that HN(X, ι) is the concave envelope of the points (htX ′/d, degX ′/d) over
the closed sub-p-groups X ′ of X that are stable under ι. Finally, we have
HN(X, ι)(h/d) = degX/d and the following compatibility with respect to du-
ality:

HN(X∨, ι∨) : x 7−→ x+HN(X, ι)(h/d− x)− degX/d,

where ι∨ denotes the OF -action induced by ι on H∨ through functoriality of
Cartier duality.

Truncated p-divisible groups. Let (H, ι) be a p-divisible group over OK

with endomorphism structure for OF , say with htH = dn. For i ≥ 1, the
p-groups H [pi] over OK inherit a linear OF -action from ι; denoting this action
again by ι, we obtain a family (H [pi], ι)i≥1 of p-groups over OK with endo-
morphism structure for OF . We have htH [pi] = idn. On the other hand,
looking at the exact sequence (3.8) associated to the isogeny pi : H → H , we
see that ωH[pi] = ωH/piωH ; since ωH a free OK -module of rank dimH , we
get degH [pi] = i dimH . Now, for i ≥ 1, consider the renormalised Harder-
Narasimhan polygons :

HNr(H [pi], ι) : [0, n] −→ R

x 7−→ 1

i
HN(H [pi], ι)(ix).

These are concave polygons, whose break points lie in 1
idZ × 1

ideZ. Moreover,
we have HNr(H [pi], ι)(n) = dimH/d for every i ≥ 1. The following result from
[11] relates these polygons to the Harder-Narasimhan polygon of (H, ι).

Proposition 3.8. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF and set n := htH/d. Then, for i → ∞, the sequence of
functions:

HNr(H [pi], ι) : [0, n]→ R

converges uniformly to the function:

HN(H, ι) : [0, n]→ R,
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which is equal to their infimum. In fact, for i ≥ 1 and k ≥ 1, we have:

HNr(H [pki], ι) ≤ HNr(H [pi], ι).

Proof. Note first that the polygons under consideration are just a rescaled
version (by the same factor 1/d) of their counterparts obtained neglecting the
action of OF ; since the rescaling process does not affect the properties stated
here, we may indeed neglect the mentioned action.
The convergence statement is [11, Théorème 1]. Then, it follows from loc. cit.
Théorème 5 that the limit coincides with the Harder-Narasimhan polygon of H
as it is defined here; indeed, the functor (3.5) is an equivalence of categories (cf.
Remark 3.1), which makes the function dim / ht on p−divOK

⊗Qp correspond
to the slope function µ on FilIsocw-a

K . For the final statement, see the proof of
loc. cit. Proposition 2.

Remark 3.9. From the convergence statement and the compatibility of the
Harder-Narasimhan polygon of p-groups with respect to duality, we deduce
that similarly, for (H, ι) ∈ p−divOK ,OF

, we have:

HN(H∨, ι∨) : x 7−→ x+HN(H, ι)(htH/d− x)− dimH/d,

where ι∨ denotes the OF -action induced by ι on H∨ through functoriality of
Cartier duality.

The family of polygons (HNr(H [pi], ι))i≥1 concerns (H, ι) as an object of
p−divOK ,OF

and not just up to isogeny; in this sense, it provides more ex-
pendable information about the structure of our p-divisible group. As we just
saw, these polygons are bounded from below by HN(H, ι), which is instead
determined up to isogeny. We now come to finding an upper bound, similarly
uniform over the whole isogeny class (cf. Proposition 3.14).

3.4 Comparison between Harder-Narasimhan and Hodge polygon

Given a p-divisible group (H, ι) over OK with endomorphism structure for OF ,
we would like to compare the two polygons HN(H [p], ι) and Hdg(H, ι) and
ultimately prove Proposition 3.14. The way the endomorphism structure affects
the definitions of these two polygons is radically different, namely a rescaling
process for HN(H [p], ι) and an averaging process for Hdg(H, ι). In order to
address this discrepancy, we make use of different factors depending on whether
the endomorphism structure is of an unramified or a ramified nature.
Before proving the proposition, let us recall from [34] the main argument for
the unramified case. After that, we will review the algebra required to isolate
the ramified component in the general case and prove the key lemma that will
allow us to deal with it.

Let H → H ′ be an isogeny of p-divisible groups over k with kernel X ∈ p−gr
k
,

consider the dual isogeny H ′ ∨ → H ∨ and let D(H ′ ∨) → D(H∨) be the cor-
responding map of Dieudonné modules. Because this map induces an isomor-
phism on the isocrystals, it is injective and its cokernel C is a W (k)-module of
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finite length. We obtain an exact sequence of W (k)-modules:

0 −→ D(H ′ ∨) −→ D(H∨) −→ C −→ 0. (3.10)

Here, in fact, D(H ′ ∨) and D(H∨) coincide with the contravariant Dieudonné
modules of H ′ and H respectively. Hence, C can be identified with the con-
travariant Dieudonné module of the p-group X (cf. [12, §III.1]); in particular,
we have that lgW (k) C = htX (loc. cit. Théorème 1(iii)).
Assume now that H and H ′ are endowed with endomorphism structure for OF

and that H → H ′ is OF -equivariant. Then, the sequence above has an induced
Zp-linear OF -action, which makes it a sequence of W (k)⊗Zp

OF -modules.
If we assume further that F is unramified over Qp and admits an embedding
into K0, then, fixing F ⊆ K0, we have an isomorphism of W (k)-algebras:

W (k)⊗Zp
OF
∼=

∏

i∈Z/dZ

W (k), b ⊗ a 7→ (bσi(a))i. (3.11)

Thus, the sequence (3.10) splits as a direct sum of exact sequences:

0 −→ D(H ′ ∨)i −→ D(H∨)i −→ Ci −→ 0, i ∈ Z/dZ, (3.12)

with OF acting through σi : OF →W (k) on the i-th component.
The following lemma applies when these sequences arise from a situation
over OK . It is the core of the proof of [34, 3.10]; for convenience, we re-
port it here as an isolated statement, together with its argument. The example
that comes after illustrates that the same conclusion might fail, if we do not
make sure that the isogeny in question possesses an OF -equivariant lift to OK .

Lemma 3.10. Assume that F is unramified over Qp and admits an embedding
into K0; fix F ⊆ K0. Let (H, ι) and (H ′, ι′) be p-divisible groups over OK with
endomorphism structure for OF and H → H ′ an OF -equivariant isogeny with
kernel X. Let then Hk → H ′

k
denote the reduction of the isogeny to k and

consider the exact sequences of W (k)-modules:

0 −→ D(H ′ ∨
k )i −→ D(H∨

k )i −→ Ci −→ 0, i ∈ Z/dZ,

as in (3.12). Then, lgW (k) Ci =
1
d htX for every i ∈ Z/dZ.

Proof. For i ∈ Z/dZ, the σ-linear endomorphism ϕ := ϕH∨

k
of D(H∨

k
) restricts

to injective maps ϕ : D(H∨
k
)i−1 → D(H∨

k
)i. Reasoning similarly for D(H ′ ∨

k
)

and using that the map D(H ′ ∨
k

) → D(H∨
k
) is compatible with the σ-linear

endomorphisms, we obtain commutative diagrams:

0 D(H ′ ∨
k

)i−1 D(H∨
k
)i−1 Ci−1 0

0 D(H ′ ∨
k

)i D(H∨
k
)i Ci 0

ϕ ϕ ϕ
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with exact rows and the first two columns being injective. Now, the argument
of Remark 3.3 shows that the numbers dimk D(H

∨
k
)i/ϕD(H

∨
k
)i−1 are deter-

mined by the filtered isocrystal with coefficients in F associated to (H∨, ι∨),
where ι∨ denotes the dual action induced by ι. However, since H∨ and H ′ ∨ are
OF -equivariantly isogenous, the respective associated filtered isocrystals with
coefficients in F are isomorphic. In particular:

dimk D(H
∨
k )i/ϕD(H

∨
k )i−1 = dimk D(H

′ ∨
k )i/ϕD(H

′ ∨
k )i−1

for every i ∈ Z/dZ. By the commutative diagram above, we conclude that
lgCi = lgCi−1, i.e. lgCi is constant over i ∈ Z/dZ. Finally, since these lengths
sum to htX , we must have lgCi =

1
d htX for every i ∈ Z/dZ.

Example 3.11. Let k = F̄p, so that K0 = Q̆p, and let F = Qp2 be the
quadratic unramified extension of Qp; fix an embedding F ⊆ K0. Let (N,ϕ)
be the isocrystal over k given by N := K4

0 , with canonical basis e1, f1, e2, f2,
and:

ϕ : e1 7→ pf1, f1 7→ e1, e2 7→ f2, f2 7→ pe2.

Let then F act on N through the fixed embedding F ⊆ K0 on 〈e1, e2〉 and
through σ on 〈f1, f2〉; note that this action respects the σ-linear endomor-
phism ϕ and hence defines a map of Qp-algebras ι : F → End(N,ϕ). Consider
now the two ϕ-stable and OF -stable W (k)-lattices M,M ′ ⊆ N generated re-
spectively by { e1, f1, e2, f2 } and { e1, pf1, e2, f2 }. Let then (H, ι) and (H ′, ι′)
be the p-divisible groups over k with endomorphism structure for OF whose
contravariant Dieudonné modules are respectively M and M ′, together with
the restriction of ϕ, where ι and ι′ correspond to the restriction of ι to the
respective Dieudonné module. Now, the inclusion M ′ ⊆ M translates into an
OF -equivariant isogeny H → H ′. However, the cokernel M/M ′ (which rep-
resents the module C of (3.10)) is given by a k -vector-space of dimension 1,
generated by f1. Thus, the conclusion of the previous lemma does not hold
in this case (only the component relative to i = 1 has nonzero length). In
particular, the isogeny H → H ′ cannot afford an OF -equivariant lift to OK .
Let us also point out that, computing the Hodge polygons with the defini-
tion outlined in Remark 3.3 (after dualising, since there we used the covariant
Dieudonné module), we obtain:

Hdg(H∨, ι∨) = (1, 0) and Hdg(H ′ ∨, ι′ ∨) = (1/2, 1/2),

where ι∨, ι′ ∨ denote the dual OF -action of ι, ι′ respectively. Thus, the clas-
sical definition of the Hodge polygon for p-divisible groups over k with endo-
morphism structure for OF does not provide, in general, an invariant up to
OF -equivariant isogeny.

Back to the main discussion, let now F be any finite extension of Qp. Denote
by F nr the maximal unramified subextension (or inertia subfield) of F |Qp and
by OFnr its ring of integers, so that F nr|Qp is an unramified extension of degree
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f(F |Qp), the inertia degree of F |Qp, and F |F nr is a totally ramified extension
of degree e(F |Qp), the ramification index of F |Qp.
Assume that K contains all embeddings τ of F in an algebraic closure. In
particular, F nr admits an embedding into K0; note that, given υ0 : F

nr → K0,
we obtain all the embeddings of F nr in K0 as σi ◦ υ0 for 1 ≤ i ≤ f(F |Qp).
Then, applying (3.11) to F nr and base changing along OFnr → OF , we get the
following isomorphism of W (k)-algebras:

W (k)⊗Zp
OF
∼=

∏

υ : Fnr→K0

W (k)⊗υ,OFnr OF , (3.13)

where υ runs through all the embeddings of F nr in K0. In the language of
§2.2, here we have that f = fF , as any embedding of F nr into K0 identifies
F nr with Kσf

0 . In fact, the isomorphism above is compatible with (2.2), up to
inverting p and identifying each factor W (k)⊗υ,OFnr OF [

1
p ] = K0⊗υ,Fnr F with

the corresponding K
(i)
F . A consequence of (3.13) is that every W (k) ⊗Zp

OF -
module P decomposes as:

P =
⊕

υ

Pυ, with Pυ = { w ∈ P | ∀a ∈ OFnr : (1⊗ a)w = (υ(a)⊗ 1)w } ,

(3.14)
where each Pυ is a module over the ring W (k) ⊗υ,OFnr OF . Note that this is
a discrete valuation ring; in fact, it is the ring of integers of a totally ramified
extension of K0 of degree e(F |Qp). After base change along W (k)→ OK , the
isomorphism (3.13) extends to:

OK ⊗Zp
OF
∼=

∏

υ

OK ⊗υ,OFnr OF , (3.15)

inducing a similar decomposition of every OK⊗Zp
OF -module into a direct sum

of modules over the rings OK ⊗υ,OFnr OF .
Fix now υ : F nr → K0 and consider the following isomorphism of K-algebras:

K ⊗υ,Fnr F ∼=
∏

τ |υ

K, b⊗ a 7→ (bτ(a))τ ,

where τ |υ stands for the embeddings of F in K which restrict to υ on F nr.
If M is an OK ⊗υ,OFnr OF -module, then MK := M ⊗OK

K is a module over
the above ring and therefore we have a decomposition:

MK =
⊕

τ |υ

MK,τ , (3.16)

with:
MK,τ = { w ∈MK | ∀a ∈ F : (1 ⊗ a)w = (τ(a) ⊗ 1)w } .

Note that even when M is torsion free, so that M ⊆ MK , this decomposition
does not, in general, descend to a decomposition of M itself. For instance, let
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M = OK⊗υ,OFnr OF and consider the same quadratic setup as in Example 3.4,
i.e. F = Qp(π) with π2 = p. Our current assumptions imply that K contains
a square root

√
p of p. Then, OF acts via the embedding τ1 : π 7→ √p on

OK · (√p ⊗ 1 + 1 ⊗ π) ⊆ M and via the other embedding τ2 : π 7→ −√p on
OK ·(−√p⊗1+1⊗π) ⊆M ; these two submodules, however, do not sum to the
whole of M . Nevertheless, this example describes essentially the case where we
can apply the following lemma, that is, when the OK ⊗υ,OFnr OF -module M
arises as the base change of a finite free W (k) ⊗υ,OFnr OF -module P . In this
situation, the next statement ensures a similar regularity property to the one
established by the previous lemma.

Lemma 3.12. Assume that K contains all embeddings τ of F in an algebraic
closure and fix υ : F nr → K0. Let g : P → Q be a surjective homomorphism of
modules over the ring W (k)⊗υ,OFnr OF , with P finitely generated and free and
Q of finite length. Consider the base change g′ : POK

→ QOK
along W (k) →

OK and write:

PK := POK
⊗OK

K =
⊕

τ |υ

PK,τ

as in (3.16). Let I ⊆ { τ : F → K | τ |υ } and set PI := POK
∩⊕τ∈I PK,τ ⊆ PK .

Then:

lgOK
g′(PI) =

|I|
e(F |Qp)

lgOK
QOK

,

where |I| denotes the cardinality of I.

Proof. Set, for short, WOF ,υ(k) := W (k) ⊗υ,OFnr OF . This being a discrete
valuation ring and, hence, a principal ideal domain, we may find a WOF ,υ(k)-
basis of P such that, under the corresponding identification P ∼= WOF ,υ(k)

r

(if r ∈ N is the rank of P ), the homomorphism g is represented by a canonical
projection:

g : WOF ,υ(k)
r −→

r
⊕

j=1

WOF ,υ(k)/(aj),

for some elements aj ∈WOF ,υ(k) different from zero (as Q is of finite length).
Then, we may write:

g′ : (OK ⊗υ,OFnr OF )
r −→

r
⊕

j=1

(OK ⊗υ,OFnr OF )/(a
′
j),

where a′j is the image of aj under the inclusion WOF ,υ(k) ⊆ OK⊗υ,OFnrOF , for
j = 1, . . . , r. The construction of PI , as well as g′(PI), is compatible with this
presentation of the map as a direct sum of r components. Thus, by additivity
of the length function, we may work independently on each factor and assume,
without loss of generality, that the map g is of the form:

g : WOF ,υ(k)→WOF ,υ(k)/(a),
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for some element a ∈ WOF ,υ(k). Letting a′ ∈ OK ⊗υ,OFnr OF be the image of
a, we then have a short exact sequence of OK ⊗υ,OFnr OF -modules:

0 −→ OK ⊗υ,OFnr OF
a′

−−→ OK ⊗υ,OFnr OF
g′

−−→ (OK ⊗υ,OFnr OF )/(a
′) −→ 0.

(3.17)
Set now d′ := e(F |Qp) and choose an ordering τ1, . . . , τd′ of the set
{ τ : F → K | τ |υ } such that I =

{

τ1, . . . , τ|I|
}

. We consider the filtration
of OK ⊗υ,OFnr OF -modules:

OK ⊗υ,OFnr OF = POK
= Pd′ ⊇ · · · ⊇ P0 = 0 (3.18)

given by Ps := POK
∩⊕s

l=1 PK,τl ⊆ PK , s = 0, . . . , d′, so that P|I| = PI .
Regarding these objects as OK-modules, the above definition gives a filtration
by direct summands; in fact, for s = 1, . . . , d′, the inclusion POK

⊆ PK induces
an embedding of the graded piece Ps/Ps−1 into PK,τs , ensuring that Ps/Ps−1

is torsion free. In addition, since this embedding is OF -linear, we see that the
ring OK ⊗υ,OFnr OF acts on Ps/Ps−1 via the map:

τ ′s : OK ⊗υ,OFnr OF → OK , b⊗ c 7→ bτs(c).

Choose now an OK-basis of POK
adapted to the above filtration. Then, as an

OK-linear homomorphism, the first map of (3.17) (that is, multiplication by a′

on OK ⊗υ,OFnr OF ) is represented by a triangular matrix A, with the entries
τ ′1(a

′), . . . , τ ′d′(a′) on the diagonal. In particular, we have:

lgOK
QOK

= lgOK
(OK⊗υ,OFnrOF )/(a

′) = e·v(detA) = e·
d′

∑

l=1

v(τ ′l (a
′)), (3.19)

where v is the valuation of K, normalised at v(p) = 1. On the other hand,
restricting g′ to PI ⊆ POK

and observing that PI ∩ a′POK
= a′PI , we obtain a

new exact sequence of OK-modules:

0 −→ PI
a′

−−→ PI
g′

−−→ g′(PI) −→ 0.

Here, the endomorphism a′ : PI → PI may be represented by a triangular
matrix AI , with the entries τ ′1(a

′), . . . , τ ′|I|(a
′) on the diagonal. In particular,

we have:

lgOK
g′(PI) = e · v(detAI) = e ·

|I|
∑

l=1

v(τ ′l (a
′)). (3.20)

Recall now that a′ comes from an element a of WOF ,υ(k), which is the ring of
integers of a field extension K ′

0 of K0 of degree d′. Moreover, the restrictions
of the maps τ ′l to WOF ,υ(k), for l = 1, . . . , d′, correspond to the different
embeddings of K ′

0 in K over K0. Thus, all the elements τ ′l (a
′) ∈ OK have the

same valuation. The desired formula follows then from (3.19) and (3.20).
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Remark 3.13. In the preceding proof, it is essential that a′ ∈ OK ⊗υ,OFnr OF

comes from some a ∈ WOF ,υ(k), in order for the various elements τ ′l (a
′) ∈ OK

to have the same valuation. Consider, for instance, the usual quadratic case
F = Qp(π) with π2 = p, where we have two embeddings τ1 : π 7→ √p and
τ2 : π 7→ −√p of F in K. For a′ =

√
p⊗ 1 + 1⊗ π ∈ OK ⊗Zp

OF , then, we get
that τ ′1(a

′) = 2
√
p, whereas τ ′2(a

′) = 0.

We can now prove the following crucial proposition.

Proposition 3.14. Let (H, ι) be a p-divisible group over OK with endomor-
phism structure for OF . Then:

HN(H [p], ι) ≤ Hdg(H, ι).

Proof. Set h := htH and let (N , ι) be the filtered isocrystal over K with
coefficients in F associated to (H, ι) via (3.7), so that Hdg(H, ι) = Hdg(N , ι).
Up to replacing K by a finite extension K ′, we may assume that K contains all
embeddings τ of F in an algebraic closure. Indeed, on the one hand, this step
is anyway embedded in the definition of Hdg(N , ι); moreover, the underlying
filtration of N is determined by H through the embedding ωH∨ →֒ M(H) as
in (3.4), which is compatible with respect to base change along OK → OK′ .
On the other hand, HN(H [p], ι) can only increase after the same base change
(but in fact it does not, cf. [10, Proposition 6]).
We need to prove that for every ι-stable closed sub-p-group X ′ of H [p] we have:

degX ′

d
≤ Hdg(N , ι)

(

htX ′

d

)

. (3.21)

Set X := H [p]/X ′ and consider the dual p-group X∨ and the dual p-divisible
group H∨, with the dual action ι∨ induced by ι. Then, X∨ is an ι∨-stable closed
sub-p-group of H [p]∨, inducing an OF -equivariant isogeny H∨ → H∨/X∨ with
kernel X∨. After reducing to k , we obtain an exact sequence of W (k)⊗Zp

OF -
modules:

0 −→ D(H ′
k ) −→ D(Hk ) −→ C −→ 0 (3.22)

as in (3.10), where H ′ := (H∨/X∨)∨. Moreover, because X∨ ⊆ H [p]∨ and the
functor D is Zp-linear, we have that C is a p-torsion module.
Let now F nr denote the inertia subfield of F |Qp, with ring of integers OFnr . By
the decomposition in (3.14), the exact sequence above splits as a direct sum of
exact sequences:

0 −→ D(H ′
k )υ −→ D(Hk )υ −→ Cυ −→ 0 (3.23)

of W (k)⊗υ,OFnr OF -modules, where υ runs through all the embeddings of F nr

in K0. This decomposition coincides with that in (3.12), if we restrict ι to
OFnr . In particular, by Lemma 3.10, we have:

lgW (k) Cυ =
1

[F nr : Qp]
htX∨ =

1

[F nr : Qp]
htX (3.24)
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for all υ’s.
The OF -equivariant isogeny H∨ → H∨/X∨ also induces an exact sequence of
modules over OK ⊗Zp

OF :

0 −→ ωH∨/X∨ −→ ωH∨ −→ ωX∨ −→ 0

as in (3.8), the first map being injective because ωH∨/X∨ and ωH∨ are free OK-
modules of the same rank and ωX∨ is torsion. Taking into consideration the
natural exact sequence (3.4), we obtain a commutative diagram of OK⊗Zp

OF -
modules:

0 ωH∨/X∨ ωH∨ ωX∨ 0

0 M(H ′) M(H) COK
0

with exact rows, where the first two columns are direct summands (as free
OK-modules) and hence the last column is injective as well; the notation COK

for the quotient of M(H) by M(H ′) is justified by the fact that the lower
row identifies with the base change of (3.22) along W (k) → OK . Due to
the isomorphism (3.15), this diagram splits as a direct sum of commutative
diagrams:

0 ωH∨/X∨,υ ωH∨,υ ωX∨,υ 0

0 M(H ′)υ M(H)υ COK ,υ 0

(3.25)

of modules over OK ⊗υ,OFnr OF , for υ varying as before. The properties of the
previous diagram are preserved and the lower row identifies now with the base
change of (3.23) along W (k)→ OK .
Recall that the underlying filtered vector space of (N , ι) is given by the K0-
vector-space N := D(Hk )[

1
p ] (whose base change NK := N ⊗K0

K identifies

with M(H)K := M(H) ⊗OK
K), with Fil0NK = ωH∨,K := ωH∨ ⊗OK

K,
Fil−iNK = M(H)K and FiliNK = 0 for all i ≥ 1. Write:

M(H)K =
⊕

τ : F→K

M(H)K,τ , ωH∨,K =
⊕

τ : F→K

ωH∨,K,τ

as in (2.6), set hτ := dimK ωH∨,K,τ and remember that dimK M(H)K,τ = h/d
for all τ ’s. Then:

Hdg(N , ι)

(

htX ′

d

)

= Hdg(N , ι)

(

h− htX

d

)

=
1

d

∑

τ

min

{

h

d
− hτ ,

h− htX

d

}

.
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On the other side:

degX ′

d
=

1

d
(dimH − degX) =

1

d
(h− dimH∨ − htX + degX∨).

However, dimH∨ = rkOK
ωH∨ = dimK ωH∨,K =

∑

τ hτ , so:

h− dimH∨ − htX =
∑

τ

(

h− htX

d
− hτ

)

.

Thus, (3.21) may be rewritten as:

degX∨ ≤
∑

τ

min

{

htX

d
, hτ

}

. (3.26)

Observe now that:

degX∨ =
1

e
lgωX∨ =

1

e

∑

υ

lgωX∨,υ

and, using (3.24):
htX

d
=

lgCυ

d′
=

lgCOK ,υ

ed′
,

where d′ := [F : F nr] is the ramification index of F over Qp and the lengths are
meant as W (k)-modules or, when applicable, as OK-modules (in fact, since K
is totally ramified over K0, this does not really matter, as the only simple
module is k in both cases). As a consequence, grouping the right-hand side of
(3.26) to a sum over υ, it suffices to show that for every embedding υ of F nr

in K0 we have:

lgωX∨,υ ≤
∑

τ |υ

min

{

lgCOK ,υ

d′
, ehτ

}

, (3.27)

where τ |υ are the embeddings of F in K which restrict to υ on F nr.
Fix υ : F nr → K0 and, for the sake of brevity, set:

ω := ωH∨,υ, ω̄ := ωX∨,υ, M := M(H)υ, M̄ := COK ,υ

for the OK ⊗υ,OFnr OF -modules in the right square of (3.25). Note that:

MK := M ⊗OK
K =

⊕

τ |υ

M(H)K,τ , ωK := ω ⊗OK
K =

⊕

τ |υ

ωH∨,K,τ

and this coincides with the decomposition described in (3.16). We shall prove
that for every subset I ⊆ { τ : F → K | τ |υ } we have:

lg ω̄ ≤ |I|
d′

lg M̄ +
∑

τ |υ,τ /∈I

ehτ ,
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where |I| denotes the cardinality of I.
Fix then such a subset I and set MI := M ∩⊕

τ∈I M(H)K,τ ⊆ MK ; here,
since M is a torsion freeOK-module, we have an inclusion M ⊆MK . Moreover,
this inclusion induces an embedding of M/MI into

⊕

τ |υ,τ /∈I M(H)K,τ . In
particular, the OK-module M/MI is torsion free, meaning that MI is a direct
summand of M . In a similar fashion, set ωI := ω ∩⊕

τ∈I ωH∨,K,τ ⊆ ωK , a
direct summand of the free OK-module ω by the same argument as above.
Observe, in addition, that ωI ⊗OK

K =
⊕

τ∈I ωH∨,K,τ , so that:

rkOK
ωI =

∑

τ∈I

hτ and rkOK
ω/ωI =

∑

τ |υ,τ /∈I

hτ .

Denote by M̄I the image of MI in M̄ and by ω̄I the image of ωI in ω̄. In order
to estimate the length of ω̄, we are going to analyse separately the contributions
of ω̄I and ω̄/ω̄I .
On the one hand, the surjection ω ։ ω̄ factors to ω/ωI ։ ω̄/ω̄I . Since ω̄/ω̄I

is a p-torsion module, the latter map factors further through (ω/ωI)/p(ω/ωI).
Thus:

lg ω̄/ω̄I ≤ lg(ω/ωI)/p(ω/ωI) = lgOK/pOK · rkOK
ω/ωI = e ·

∑

τ |υ,τ /∈I

hτ .

On the other hand, the injection ω̄ →֒ M̄ restricts to ω̄I →֒ M̄I ; indeed,
because the map ω → M is OF -linear, it sends ωI to MI . Hence, we have
that lg ω̄I ≤ lg M̄I . Recall now that the map M → M̄ identifies with the base
change along W (k) → OK of the surjective homomorphism of W (k) ⊗υ,OFnr

OF -modules D(Hk )υ → Cυ from (3.23). Recall, in addition, that D(Hk )υ is
finitely generated and free as a module over W (k). But W (k) ⊗υ,OFnr OF is
again a discrete valuation ring, finite over W (k). Therefore, as a W (k)⊗υ,OFnr

OF -module, D(Hk )υ is still torsion free and, hence, free. In turn, being finitely
generated and p-torsion, Cυ is a W (k)⊗υ,OFnr OF -module of finite length. We
may then apply Lemma 3.12 and deduce that:

lg M̄I =
|I|
d′

lg M̄.

Altogether:

lg ω̄ = lg ω̄I + lg ω̄/ω̄I ≤ lg M̄I + e ·
∑

τ |υ,τ /∈I

hτ =
|I|
d′

lg M̄ +
∑

τ |υ,τ /∈I

ehτ

and this concludes the proof of the proposition.

Example 3.15. Let us take a closer look at a particular class of p-divisible
groups with endomorphism structure for OF , namely that of p-divisible “OF -
modules” (cf. [31, 3.57]). In our context of base ring OK , this class is defined
when OK has the structure of an OF -algebra: it consists of objects (H, ι) ∈
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p−divOK ,OF
such that theOF -action induced by ι on Lie(H) is via the structure

map OF → OK ; for instance, Lubin-Tate formal groups satisfy this condition.
We warn the reader that the terminology “p-divisible OF -module” is used in
[24] with reference to a general p-divisible group with endomorphism structure
for OF .
Now, if (H, ι) is a p-divisible OF -module over OK , say with htH = dn, then
Hdg(H, ι) has only two slopes, namely 1/d and 0. Indeed, pick a field exten-
sion K ′ of K containing all embeddings τ of F in an algebraic closure of K and
consider the exact sequence of K ′-vector-spaces:

0 −→ ωH∨,K′ −→M(H)K′ −→ Lie(H)K′ −→ 0,

obtained as the base change of (3.4) along OK → K ′. This sequence carries a
Qp-linear F -action induced by ι and splits as a direct sum of exact sequences:

0 −→ ωH∨,K′,τ −→M(H)K′,τ −→ Lie(H)K′,τ −→ 0

indexed by the embeddings τ of F in K ′, with F acting through τ : F → K ′ on
the respective component. Recall that Hdg(H, ι) is defined to be the average
over τ of the types fτ of the filtered vector spaces (M(H)K′,τ ,Fil

•M(H)K′,τ )
given by Fil0M(H)K′,τ = ωH∨,K′,τ , with Fil−iM(H)K′,τ = M(H)K′,τ and
FiliM(H)K′,τ = 0 for i ≥ 1. In our case, we have that Lie(H)K′,τ = 0 for all
τ ’s except for the embedding τ0 corresponding to the structure map OF → OK .
Thus, fτ = (0, . . . , 0) ∈ Qn

+ for all τ 6= τ0 and fτ0 = (1, . . . , 1, 0, . . . , 0) ∈
Qn

+, the number of 1’s being equal to dimK′ Lie(H)K′,τ0 = dimK′ Lie(H)K′ =
dimH . So we get:

Hdg(H, ι) =
1

d

∑

τ

fτ =

(

1

d
, . . . ,

1

d
, 0, . . . , 0

)

∈ Qn
+,

the number of 1/d’s being again equal to dimH .
This particular case exemplifies the main difficulty inherent to the proof of
the above proposition: here, it lies in the denominator d of the first slope of
Hdg(H, ι). Indeed, in view of the statement of the proposition, this denom-
inator means that the degree of any (ι-stable) sub-p-group X ′ of H [p] must
be controlled by a factor 1/d, compared to the height of X ′ itself. Note that
in absence of any endomorphism structure, this factor is normally 1 (cf. [10,
Corollaire 2]). In our argument, the necessary control is achieved through the
machinery of the preceding lemmas.
The opposite situation to consider is when Lie(H) is free as an OK ⊗Zp

OF -
module. Then, with notation as above, each component Lie(H)K′,τ has the
same dimension, so that Hdg(H, ι) has only slopes 1 and 0, the number of 1’s
being equal to dimH/d = rkOK⊗ZpOF

Lie(H). In this case, the previous propo-
sition simply recovers the analogous statement neglecting ι.
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4 Hodge-Newton filtration

4.1 Filtrations of p-divisible groups via Harder-Narasimhan the-

ory

Let (H, ι) be a p-divisible group over OK with endomorphism structure for OF

and let (N , ι) be its associated filtered isocrystal over K with coefficients
in F , via (3.7). Suppose that z = (x, y) is a break point of the Harder-
Narasimhan polygon HN(H, ι) = HN(N , ι). By definition (and compatibility
of the Harder-Narasimhan filtration with the F -action), this corresponds to
a subobject (N1, ι1) ⊆ (N , ι) in FilIsocw-a

K,F , such that HN(N1, ι1) is the re-
striction of HN(N , ι) to [0, x] and, if (N2, ι2) denotes the quotient of (N , ι)
by (N1, ι1), then HN(N2, ι2) is the rest of HN(N , ι) after z, up to a shift of
coordinates setting the origin in z, i.e.:

HN(N2, ι2) : t 7→ HN(N , ι)(t + x)− y, t ∈ [0, htH/d− x].

A crucial question for our purpose is the following: when is (N1, ι1) the fil-
tered isocrystal with coefficients in F associated to an ι-stable sub-p-divisible
group H1 of H?
For instance, this is the case when H is “of HN type”, that is, when HN(H) =
HN(H [pi]) for all i ≥ 1 (cf. [11, §2.3]). In this situation, the Harder-Narasimhan
filtrations of the p-groups H [pi] build up to a filtration of H by sub-p-divisible
groups, which are ι-stable by functoriality of the former filtrations. Taking
the associated filtered isocrystals, we obtain the Harder-Narasimhan filtration
ofN . More generally, there may exist a sub-p-divisible group H1 of H satisfying
our requirements, even without the p-groups H1[p

i] being necessarily part of
the Harder-Narasimhan filtration of H [pi]. In fact, because the valuation of K
is discrete, [11, Théorème 4] grants that every p-divisible group H over OK is
isogenous to some H ′ of HN type; a closer look at the proof of the statement,
i.e. the algorithm in [11, §3], reveals that this can be made compatible with
an OF -action. If e < p − 1, then, we know from [32, 3.3.6] that the kernel
and the cokernel of every map in p−grOK

are again p-groups (that is, they are
flat over OK). This allows us to take the image, through any OF -equivariant
isogeny H ′ → H , of the filtration of H ′ obtained as above; the result will give,
once more, a filtration of H as desired. Without putting any restriction on
e, instead, a sufficient condition answering our question can be found in the
configuration of HN(H [p]), relatively to HN(H). The next proposition goes in
this direction, moving from a similar procedure as the mentioned algorithm,
but let us first make some further observations.

Remark 4.1. 1. The property required in the question characterises H1

uniquely among the ι-stable sub-p-divisible groups of H . Indeed, if H ′
1

is another candidate, then the identity of (N1, ι1) corresponds, by fully
faithfulness of (3.7), to morphisms between H1 and H ′

1 that are compati-
ble with the inclusion in H , so we must have H ′

1 = H1. Furthermore, the
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composition of functors p−divOK
→ p−divOK

⊗ Qp → FilIsoc
w-a,[−1,0]
K

sends exact sequences of p-divisible groups to exact sequences of filtered
isocrystals; this can be checked formally, considering that the target is
an abelian category and that the induced maps on the hom-sets are just
given by inverting p in finite free Zp-modules (recall that the second func-
tor is an equivalence of categories, cf. Remark 3.1). In particular, if H2

denotes the quotient of H by H1, with induced OF -action ι2, then (N2, ι2)
is the filtered isocrystal with coefficients in F associated to (H2, ι2).

2. Suppose now that H1 is an ι-stable sub-p-divisible group of H with the
property that (htH1/d, dimH1/d) = z and denote by ι1 the restriction
of ι to H1. Let (N ′, ι′) be the filtered isocrystal with coefficients in F as-
sociated to (H1, ι1); this is a subobject of (N , ι) in FilIsocw-a

K,F . Then, the
Harder-Narasimhan polygon of (N ′, ι′) lies below HN(N , ι); moreover, its
end point is z, so that HN(N ′, ι′) ≤ HN(N1, ι1). This implies that the
minimal slope of HN(N ′, ι′) is at least that of HN(N1, ι1), which in turn
is strictly greater than the maximal slope of HN(N2, ι2). By functoriality
of the Harder-Narasimhan filtration, it follows that (N ′, ι′) ⊆ (N1, ι1).
However, since the underlying isocrystals have the same height dx, this
is in fact an equality. Thus, the condition that (htH1/d, dimH1/d) = z
is enough to ensure that (N1, ι1) is the filtered isocrystal with coefficients
in F associated to (H1, ι1).

Proposition 4.2. Let (H, ι) be a p-divisible group over OK with endomor-
phism structure for OF and let (N , ι) be its associated filtered isocrystal
over K with coefficients in F . Suppose that z = (x, y) is a break point of
HN(H, ι) = HN(N , ι) and let (N1, ι1) ⊆ (N , ι) be the corresponding subobject
in FilIsocw-a

K,F . If z lies on HN(H [p], ι), then there exists a unique ι-stable sub-
p-divisible group H1 of H whose associated filtered isocrystal with coefficients
in F is (N1, ι1).

Proof. We first reduce to the following situation: either z is a break point of
HN(H [p], ι) or the slope of HN(H [p], ι) at z is strictly greater than the first
slope of HN(H, ι) after z.
If none of these is the case, then, since HN(H, ι) ≤ HN(H [p], ι) by Proposi-
tion 3.8 and z is a break point of HN(H, ι), the slope of HN(H [p], ι) at z must
be strictly less than the last slope of HN(H, ι) before z. Consider then the
dual p-divisible group H∨, with the dual action ι∨ induced by ι. Recalling the
compatibility of the Harder-Narasimhan polygon with respect to duality (cf.
Remark 3.9), we see that (H∨, ι∨) satisfies the assumptions of the proposition
at the point z∨ = (x∨, y∨) given by:

x∨ = htH/d− x,

y∨ = htH/d− x+HN(H, ι)(x) − dimH/d = dimH∨/d− x+ y.

Moreover, the slope of HN(H [p]∨, ι∨) at z∨ is strictly greater than the first
slope of HN(H∨, ι∨) after z∨, so we are in the situation described above.
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Suppose now that we find an ι∨-stable sub-p-divisible group H ′
1 of H∨ as

claimed in the statement relative to (H∨, ι∨) and z∨. Then, H1 := (H∨/H ′
1)

∨

is an ι-stable sub-p-divisible group of H , with:

htH1 = htH − htH ′
1 = htH − dx∨ = dx

and:

dimH1 = htH1 − dimH∨
1

= dx− dimH∨ + dimH ′
1 = dx − dimH∨ + dy∨ = dy.

By the previous remark, this is enough to prove the proposition for (H, ι).
Thus, by possibly passing to the dual p-divisible group, we may assume that
we are in the situation described above.

Let us now define a sequence of ι-stable closed sub-p-groups Gi of H [pi], for
i ≥ 1; these will form a first approximation of H1.
Since HN(H, ι) and HN(H [p], ι) share the point z and they meet at their end
point, there must be a break point of HN(H [p], ι) at z or after (by the previous
reduction step); let z1 = (x1, y1) be the first such point (possibly z1 = z). We
denote by µ the last slope of HN(H [p], ι) before z1, so that µ is strictly greater
than the first slope of HN(H, ι) after z. Recall that, by Proposition 3.8, we
have:

HN(H, ι) ≤ HNr(H [pi], ι) ≤ HN(H [p], ι)

for every i ≥ 1. In particular, z lies on every polygon HNr(H [pi], ι), which then
has both a slope valued at least µ (before z) and a slope with value strictly
less than µ (as it meets the other polygons at the end point). For i ≥ 1, let
zi = (xi, yi) be the break point of HNr(H [pi], ι) such that all its slopes before
zi are greater than or equal to µ and all its slopes after zi are strictly less than
µ; then, x ≤ xi ≤ x1 and zi lies on HN(H [p], ι), i.e. HN(H [p], ι)(xi) = yi.
Indeed, if the slope of HNr(H [pi], ι) right after z is strictly less than µ, then
zi = z. Otherwise, it means that both HNr(H [pi], ι) and HN(H [p], ι) proceed
with slope µ after z, the former until zi and the latter until z1; but since
HNr(H [pi], ι) lies below the other polygon, then we must have that xi ≤ x1,
i.e. zi must lie on the segment between z and z1 (possibly zi = z1). Note that in
particular, unless zi = z, the slope of HNr(H [pi], ι) between x and xi is µ, which
we recall being strictly greater than the slope of HN(H, ι) on the same interval.
Thus, because the polygons HNr(H [pi], ι) converge uniformly to HN(H, ι) as
i→∞ (by Proposition 3.8 again), we also have that z = limi→∞ zi.
For i ≥ 1, let Gi ⊆ H [pi] be the ι-stable closed sub-p-group corresponding to the
break point zi of HNr(H [pi], ι); by definition, htGi = idxi and degGi = idyi.
For every other index j > i, the choice of zi implies that the minimal slope
of Gi is at least µ, which in turn, by the choice of zj , is strictly greater than
the maximal slope of H [pj ]/Gj. By functoriality of the Harder-Narasimhan
filtration (see also [10, Proposition 8]), the closed embedding H [pi] → H [pj ]
restricts to Gi → Gj ; similarly, the map pi : H [pj] → H [pj−i] restricts to
pi : Gj → Gj−i.
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We claim that, for j > i ≥ 1, we have:

Gi = Gj [p
i] := Ker

(

pi : Gj → Gj−i

)

.

Consider the restriction piη : Gj,η → Gj−i,η of the map pi : Gj → Gj−i to the
generic fibre (that is, its base change to K). Let C be the schematic closure
in Gj of the kernel Ker(piη) and let D be the schematic closure in Gj−i of the
image Im(piη). Note that Gi,η ⊆ Ker(piη) ⊆ H [pi]η, which gives the sequence of
closed embeddings Gi ⊆ C ⊆ H [pi] of p-groups over OK . Moreover, the map
pi : Gj → Gj−i factors through the closed sub-p-group D ⊆ Gj−i and we have
a sequence:

0 −→ C u−−→ Gj
pi

−−→ D −→ 0 (4.1)

of p-groups over OK , with u a closed embedding, pi ◦ u = 0 and such that pi

induces an isomorphism Gj,η/Cη ∼−→ Dη on the generic fibre, as Cη = Ker(piη)

and Dη = Im(piη). Thus:
htGj = ht C + htD (4.2)

and:
degGj ≤ deg C + degD, (4.3)

with equality if and only if the sequence (4.1) is exact (cf. [10, Corollaire 3]).
Now, because C andD are closed sub-p-groups of H [pi] and H [pj−i] respectively,
we have:

deg C ≤ HN(H [pi])(ht C) = idHNr(H [pi], ι)(ht C/id)
≤ idHN(H [p], ι)(ht C/id) (4.4)

and:

degD ≤ HN(H [pj−i])(htD) = (j − i)dHNr(H [pj−i], ι)(htD/(j − i)d)

≤ (j − i)dHN(H [p], ι)(htD/(j − i)d).
(4.5)

Altogether, using the concavity of HN(H [p], ι) and (4.2):

deg C + degD ≤ jd

(

i

j
HN(H [p], ι)

(

ht C
id

)

+
j − i

j
HN(H [p], ι)

(

htD
(j − i)d

))

≤ jdHN(H [p], ι)(ht C/jd+ htD/jd)
= jdHN(H [p], ι)(htGj/jd)

= jdHN(H [p], ι)(xj)

= jdyj = degGj .
(4.6)

Hence, we have equality in (4.3) and the sequence (4.1) is exact. In particular,
C = Gj [p

i]; we remark that this already implies the flatness of Gj [p
i]. Since Gi

is a closed sub-p-group of C, it suffices to show that ht C ≤ htGi in order to
conclude that Gi = C = Gj [p

i].
Note that, as a consequence of the previous argument, we have equality all
over in (4.6) and hence in (4.4) and (4.5) as well. In particular, the polygon
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HN(H [p], ι) is a straight line between htD/(j − i)d and ht C/id, with xj lying
in the interior of this segment, unless the three points coincide.
We first show that ht C/id ≤ x1. Assume by contradiction that ht C/id > x1.
Since D is a closed sub-p-group of Gj−i, we have:

htD/(j − i)d ≤ htGj−i/(j − i)d = xj−i ≤ x1 < ht C/id,

with z1 = (x1, y1) a break point of HN(H [p], ι). But this polygon is a straight
line on [htD/(j − i)d, ht C/id], so we must have htD/(j − i)d = x1. However,
this would contradict xj being in the interior of the mentioned segment, as
xj ≤ x1.
We can now show that ht C ≤ htGi or, equivalently, that ht C/id ≤ xi.
Assume by contradiction that ht C/id > xi. The polygons HN(H [p], ι) and
HNr(H [pi], ι) share the point zi = (xi, yi); however, the slope of HN(H [p], ι) on
[xi, ht C/id] is at least µ (as ht C/id ≤ x1), whereas the slope of HNr(H [pi], ι)
on the same segment is strictly less than µ (by definition of zi). Therefore,
HNr(H [pi], ι)(ht C/id) < HN(H [p], ι)(ht C/id), contradicting the fact that we
have an equality in (4.4). This proves that ht C ≤ htGi and hence that
Gi = C = Gj [p

i] as claimed.

We now proceed to refining the sequence of p-groups Gi, i ≥ 1, to an ι-stable
sub-p-divisible group H1 = (Ki)i≥1 of H , with (htH1/d, dimH1/d) = z. Given
the observations of Remark 4.1, this is sufficient in order to conclude the proof
of the proposition.
By the previous step, multiplication by p induces closed embeddings:

p : Gi+1/Gi −→ Gi/Gi−1

for i > 1. Thus, the sequence of numbers ai := htGi+1/Gi = htGi+1 − htGi,
i ≥ 1, is nonincreasing; since we are talking about natural numbers, there exists
an index i0 ≥ 1 such that ai = ai0 for every i ≥ i0. We obtain the following
formula:

htGi = htGi0 + (i− i0)ai0 = iai0 + htGi0 − i0ai0

for every i ≥ i0. Then:

xi =
htGi

id
=

ai0
d

+
htGi0 − i0ai0

id
−−−→
i→∞

ai0
d
.

At the same time, we already observed that the sequence of points zi = (xi, yi),
i ≥ 1, converges to z = (x, y) as i→∞; hence, ai0/d = x.
For i ≥ 1, we define the following p-group over OK :

Ki := Gi+i0/Gi0 .

Note that:
htKi = htGi+i0 − htGi0 = iai0 = idx.
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Moreover, because xi0 , xi+i0 ∈ [x, x1] and, unless x = x1, the polygon
HN(H [p], ι) is a straight line (of slope µ) on this segment, we also have:

degKi = degGi+i0 − degGi0 = (i + i0)dyi+i0 − i0dyi0

= id

(

i+ i0
i

HN(H [p], ι)(xi+i0 )−
i0
i
HN(H [p], ι)(xi0 )

)

= idHN(H [p], ι)

(

i+ i0
i

xi+i0 −
i0
i
xi0

)

= idHN(H [p], ι)(x) = idy.

For j > i ≥ 1, we have obvious closed embeddings Ki → Kj which induce the
identification Ki = Kj [p

i]. Thus, the family (Ki)i≥1 of p-groups over OK is a
p-divisible group H1 of height dx and dimension dy, with H1[p

i] = Ki. Finally,
for i ≥ 1, the map:

pi0 : Ki = Gi+i0/Gi0 −→ Gi ⊆ H [pi]

is a closed embedding, which defines an ι-stable closed sub-p-group of
H [pi]. Therefore, H1 is an ι-stable sub-p-divisible group of H , with
(htH1/d, dimH1/d) = (x, y) = z. This concludes the proof of the proposi-
tion.

Remark 4.3. The proof of the previous proposition follows a similar procedure
to the first step of the algorithm in [11, §3], with the difference that here we
“jump” to a given break point z of the Harder-Narasimhan polygon. The crucial
point is to obtain a family of closed sub-p-groups Gi of H [pi], with the property
that Gi = Gj [p

i] for j > i ≥ 1. In order to show that this property holds for
the constructed family, we used a similar argument to that in the proof of [34,
5.4]. Here, we also deal with the case that the polygon HNr(H [pi]) does not
have a break point at z for any index i ≥ 1, as for instance in the following
configuration (not to scale).

z

zi

i→∞

HN(H)

HNr(H [pi])
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The previous proposition has its own relevance for the study of p-divisible
groups over OK via Harder-Narasimhan theory. Let us make this more explicit
by reformulating it in a more self-contained fashion.

Corollary 4.4. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF . Suppose that z is a break point of HN(H, ι) which also lies
on HN(H [p], ι). Then, there exists a unique ι-stable sub-p-divisible group H1

of H such that, if ι1 denotes the restriction of ι to H1, then HN(H1, ι1) equals
the part of HN(H, ι) between the origin and z. Furthermore, if H2 denotes the
quotient of H by H1, with induced OF -action ι2, then HN(H2, ι2) equals the
rest of HN(H, ι) after z (up to a shift of coordinates setting the origin in z).

Remark 4.5. Note that, for every p-divisible group H over OK , the slopes of
HN(H [p]) are bounded between 0 and 1 (e.g. because HN(H [p]) ≤ Hdg(H) and
the latter polygon has only slopes 1 and 0, alternatively see [10, Corollaire 2]).
In particular, since HN(H) ≤ HN(H [p]), the assumption of the previous corol-
lary is always verified for the first break point of HN(H) after the slope 1 and
its last break point before the slope 0. In this case, the statement recovers the
multiplicative-bilocal-étale filtration of H (a refined version of (3.1) obtained
by further considering the same sequence for (H◦)∨ and dualising back). A
posteriori, knowing that this filtration is compatible with reducing to Hk via
OK → k and with passing to the pi-torsion H [pi], one deduces that the break
points in question are also break points of Newt(H) and HN(H [pi]), for i ≥ 1.

4.2 Hodge-Newton reducible filtered isocrystals

Let us now introduce the Hodge-Newton reducibility hypothesis in the discus-
sion. This hypothesis concerns the Hodge and the Newton polygon and can
therefore by formulated at the level of filtered isocrystals. We first analyse its
effects in this setting, following the same argument as in [34, §5.1].

Definition 4.6. A weakly admissible filtered isocrystal (N , ι) over K with
coefficients in F is Hodge-Newton reducible if there exists a break point of
Newt(N , ι) which also lies on Hdg(N , ι). If z is such a point, we say that
(N , ι) is Hodge-Newton reducible at z.

Proposition 4.7. Let (N , ι) be a weakly admissible filtered isocrystal over K
with coefficients in F and suppose that (N , ι) is Hodge-Newton reducible at
z = (x, y). Then, z is also a break point of the Harder-Narasimhan poly-
gon HN(N , ι). Furthermore, if (N1, ι1) denotes the corresponding subobject in
FilIsocw-a

K,F , then Newt(N1, ι1) and Hdg(N1, ι1) equal respectively the restric-
tion of Newt(N , ι) and Hdg(N , ι) to [0, x]. If (N2, ι2) denotes the quotient of
(N , ι) by (N1, ι1), then Newt(N2, ι2) and Hdg(N2, ι2) equal respectively the rest
of Newt(N , ι) and Hdg(N , ι) after z (up to a shift of coordinates setting the
origin in z).
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Proof. Write N = (N,ϕ,Fil•NK). Since z is a break point of Newt(N , ι) =
Newt(N,ϕ, ι), we have a decomposition:

(N,ϕ, ι) = (N1, ϕ1, ι1)⊕ (N2, ϕ2, ι2)

in Isoc(k)F , with Newt(N1, ϕ1, ι1) equal to the restriction of Newt(N , ι) to [0, x]
and Newt(N2, ϕ2, ι2) equal to the rest of Newt(N , ι) after z, up to a shift of
coordinates setting the origin in z; in particular, dimK0

N1 = ht(N1, ϕ1) = dx.
We endow N1,K with the induced filtration Fil•N1,K := N1,K ∩ Fil•NK , so
that N1 := (N1, ϕ1,Fil

•N1,K) is a sub-filtered-isocrystal of N . Since ι1 re-
spects this filtration, we obtain a subobject (N1, ι1) of (N , ι) in FilIsocK,F .
Let then (N2, ι2) ∈ FilIsocK,F be the quotient of (N , ι) by (N1, ι1) and note
that the underlying isocrystal with coefficients in F of (N2, ι2) identifies with
(N2, ϕ2, ι2). Thus, Newt(N1, ι1) = Newt(N1, ϕ1, ι1) equals the restriction of
Newt(N , ι) to [0, x] and Newt(N2, ι2) = Newt(N2, ϕ2, ι2) equals the rest of
Newt(N , ι) after z (up to the usual shift of coordinates).

We claim that (N1, ι1) is weakly admissible; note that this implies that (N2, ι2)
is weakly admissible too. In addition, the following argument allows us to find
the Hodge polygon of these two objects.
Since N1 is a sub-filtered-isocrystal of N , which is weakly admissible, we have
that tH(N1) ≤ tN (N1) and only need to check the opposite inequality. Pick a
field extension K ′ of K containing all embeddings τ of F in an algebraic closure
of K and let:

NK′ =
⊕

τ : F→K′

Nτ , Fil•NK′ =
⊕

τ : F→K′

Fil•Nτ ,

N1,K′ =
⊕

τ : F→K′

N1,τ , Fil•N1,K′ =
⊕

τ : F→K′

Fil•N1,τ

be the decompositions as in (2.6). Note that N1,τ = N1,K′ ∩Nτ and Fil•N1,τ =
N1,τ∩Fil•Nτ , so (N1,τ ,Fil

•N1,τ ) is a subobject of (Nτ ,Fil
•Nτ ) in FilVectK′|K′ ,

with dimK′ N1,τ = dimK0
N1/d = x. By Lemma 2.5, then:

− deg(N1,τ ,Fil
•N1,τ ) ≤ fτ (x) (4.7)

for every τ , where fτ is the type of (Nτ ,Fil
•Nτ ). Thus, using that z = (x, y)

also lies on Hdg(N , ι):

tN (N1) = −dNewt(N1, ι1)(x) = −dy
= −dHdg(N , ι)(x) = −

∑

τ

fτ (x)

≤
∑

τ

deg(N1,τ ,Fil
•N1,τ )

= deg(N1,Fil
•N1,K) = tH(N1).

(4.8)

This proves the claim.
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As a consequence, we have an equality in (4.8) and hence in (4.7) for every τ .
By Lemma 2.5 again, the type of (N1,τ ,Fil

•N1,τ ) equals then the restriction
of fτ to [0, x]. Summing over τ and dividing by d, we obtain that Hdg(N1, ι1)
equals the restriction of Hdg(N , ι) to [0, x].
Denote now by Fil•N2,K the filtration of N2 and let:

N2,K′ =
⊕

τ : F→K′

N2,τ , Fil•N2,K′ =
⊕

τ : F→K′

Fil•N2,τ

be the decomposition as in (2.6), with respect to the F -action given by ι2.
Note that (N2,τ ,Fil

•N2,τ ) is the quotient of (Nτ ,Fil
•Nτ ) by (N1,τ ,Fil

•N1,τ )
in FilVectK′|K′ for every τ . Since we already know that the type of
(N1,τ ,Fil

•N1,τ ) equals the restriction of fτ = f(Nτ ,Fil
•Nτ ) to [0, x], it follows

from the behaviour of the type in short exact sequences that f(N2,τ ,Fil
•N2,τ )

equals the rest of fτ after (x, fτ (x)), up to a shift of coordinates setting the ori-
gin in (x, fτ (x)). Summing over τ and dividing by d, we obtain that Hdg(N2, ι2)
equals the rest of Hdg(N , ι) after z, up to a shift of coordinates setting the ori-
gin in z.

We can finally show that z is a break point of HN(N , ι) and that (N1, ι1) is
the corresponding subobject of (N , ι) in FilIsocw-a

K,F . This is enough to finish
the proof of the proposition, as we already know that the Newton polygon and
the Hodge polygon of (N1, ι1) and (N2, ι2) = (N , ι)/(N1, ι1) are as claimed in
the statement.
Because (N1, ι1) is a subobject of (N , ι) in FilIsocw-a

K,F , we have:

−tN (N1)/d ≤ HN(N , ι)(ht(N1, ϕ1)/d) = HN(N , ι)(x).

Now, on the one hand:

−tN (N1)/d = Newt(N1, ι1)(x) = Newt(N , ι)(x) = y;

on the other hand, by Proposition 2.12:

HN(N , ι)(x) ≤ Newt(N , ι)(x) = y.

Thus, equality holds and, in particular, z = (x, y) lies on HN(N , ι). But z
is a break point of Newt(N , ι) and, by Proposition 2.12 again, HN(N , ι) ≤
Newt(N , ι). Hence, z is break point of HN(N , ι) as well.
Lastly, note that (N1, ι1) is a subobject of (N , ι) in FilIsocw-a

K,F with the prop-
erty that (ht(N1, ϕ1)/d,−tN(N1)/d) = z. By functoriality of the Harder-
Narasimhan filtration (see also the argument in the second part of Remark 4.1),
it follows that (N1, ι1) is the subobject of (N , ι) corresponding to z. This con-
cludes the proof of the proposition.

4.3 Hodge-Newton reducible p-divisible groups

Definition 4.8. A p-divisible group (H, ι) over OK with endomorphism struc-
ture for OF is Hodge-Newton reducible if its associated filtered isocrystal over K
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with coefficients in F is Hodge-Newton reducible, i.e. there exists a break point
of Newt(H, ι) which also lies on Hdg(H, ι). If z is such a point, we say that
(H, ι) is Hodge-Newton reducible at z.

The Hodge-Newton reducibility is an assumption that regards the whole equiv-
ariant isogeny class of a p-divisible group (H, ι) over OK with endomorphism
structure for OF . Using Propositions 3.8 and 3.14, we deduce a constraint on
HN(H [p], ι), hence concerning (H, ι) itself. We can then apply Proposition 4.2
and obtain the following theorem.

Theorem 4.9. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF and suppose that (H, ι) is Hodge-Newton reducible at z. Then,
there exists a unique ι-stable sub-p-divisible group H1 of H such that, if ι1 de-
notes the restriction of ι to H1, then Newt(H1, ι1), Hdg(H1, ι1) and HN(H1, ι1)
equal respectively the part of Newt(H, ι), Hdg(H, ι) and HN(H, ι) between the
origin and z. Furthermore, if H2 denotes the quotient of H by H1, with induced
OF -action ι2, then Newt(H2, ι2), Hdg(H2, ι2) and HN(H2, ι2) equal respectively
the rest of Newt(H, ι), Hdg(H, ι) and HN(H, ι) after z (up to a shift of coordi-
nates setting the origin in z).

Proof. Let (N , ι) be the filtered isocrystal with coefficients in F associated to
(H, ι). By Proposition 4.7, z is a break point of HN(N , ι) = HN(H, ι). Let
then (N1, ι1) be the corresponding subobject of (N , ι) in FilIsocw-a

K,F and let
(N2, ι2) be the quotient of (N , ι) by (N1, ι1).
By Propositions 3.8 and 3.14, we have:

HN(H, ι) ≤ HN(H [p], ι) ≤ Hdg(H, ι).

Since z lies on both HN(H, ι) and Hdg(H, ι), this implies that z also lies on
HN(H [p], ι). Then, by Proposition 4.2, there exists a unique ι-stable sub-p-
divisible group H1 of H whose associated filtered isocrystal with coefficients
in F is (N1, ι1). Furthermore, if H2 denotes the quotient of H by H1, with
induced OF -action ι2, then (N2, ι2) is the filtered isocrystal with coefficients in
F associated to (H2, ι2). Denoting by ι1 the restriction of ι to H1, it follows
then from Proposition 4.7 that the polygons of (H1, ι1) and (H2, ι2) are as
claimed.
As for uniqueness, the prescription on the Harder-Narasimhan polygon of
(H1, ι1) ensures that its associated filtered isocrystal with coefficients in F is
the (N1, ι1) considered above. The uniqueness of H1 follows then from Propo-
sition 4.2.

4.4 The polarised case

Assume here that F carries a field involution ( )∗ : F → F , possibly equal to the
identity of F . For n ∈ N and an element f = (ai)

n
i=1 ∈ Qn

+ of the Newton set,
we define its dual element to be f∨ := (1− an+1−i)

n
i=1 ∈ Qn

+ or, as a polygon:

f∨ : x 7→ x+ f(n− x)− f(n).
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We clearly have f∨∨
= f . If f ∈ Qn

+ satisfies f = f∨, we say that f is
symmetric.
For R a complete Noetherian commutative local ring with residue field of char-
acteristic p and (H, ι) a p-divisible group over R with endomorphism struc-
ture for OF , let ι∨ : OF → End(H∨) be the OF -action on the dual p-divisible
group H∨ induced by ι through functoriality of Cartier duality; denote by ι∨,∗

the composition ι∨ ◦ ( )∗. Then, (H∨, ι∨,∗) is a new p-divisible group with
endomorphism structure for OF .
When R = OK , Remark 3.9 shows that the Harder-Narasimhan polygon
of (H∨, ι∨,∗) is the dual of HN(H, ι) ∈ Qn

+, where n = htH/d (and recall
that HN(H, ι)(n) = dimH/d). In fact, the twist introduced by ( )∗ in the
endomorphism structure does not really affect the Harder-Narasimhan poly-
gon, which depends on the OF -action only by means of the rescaling factor
1/d = 1/[F : Qp]. We will now see that the other polygons behave in the same
way with respect to duality.

Isocrystals and duality. Let (N,ϕ) be an isocrystal over k . The dual
isocrystal is given by the dual K0-vector-space N∨ := HomK0

(N,K0), together
with the σ-linear endomorphism ϕ∨ : f 7→ σ◦f ◦V , where V = pϕ−1 is the Ver-
schiebung map of (N,ϕ). If (N,ϕ) is isotypical of slope λ = r/s, then (N∨, ϕ∨)
is isotypical of slope 1−λ = (s−r)/s. Indeed, if M ⊆ N is a W (k)-lattice with
ϕsM = prM , then the W (k)-lattice M∨ := { f ∈ N∨ | f(M) ⊆W (k) } ⊆ N∨

satisfies ϕs−rM∨ = prM∨. In general, if the Newton slopes of (N,ϕ) are
λ1 < · · · < λm, then those of (N∨, ϕ∨) will be 1 − λm < · · · < 1 − λ1, with
the height of the isotypical component associated to 1−λi equal to that of the
isotypical component of (N,ϕ) associated to λi, for 1 ≤ i ≤ m.

The Newton polygon and duality. Let (H, ι) be a p-divisible group over
OK with endomorphism structure for OF and recall that Newt(H, ι) is defined
to be the Newton polygon of the isocrystal (D(Hk ) ⊗W (k) K0, p

−1(ϕHk
⊗ id))

over k , with the induced F -action, where (D(Hk ), ϕHk
) is the Dieudonné

module of the reduction Hk of H to k . Now, if (D(H∨
k
), ϕH∨

k
) is the

Dieudonné module of the dual p-divisible group H∨
k

over k , then the isocrys-
tal ((D(H∨

k
) ⊗W (k) K0, (ϕH∨

k
⊗ id)) identifies naturally with the dual of

((D(Hk ) ⊗W (k) K0, (ϕHk
⊗ id)), as defined in the previous paragraph (cf. [12,

§III, Proposition 6.4]). Thus, shifting the slopes by −1 and computing the
Newton polygons (including the rescaling due to the endomorphism structure),
we obtain that Newt(H∨, ι∨,∗) = Newt(H, ι)∨ ∈ Qn

+, where n = htH/d (and
recall that Newt(H, ι)(n) = dimH/d).

The Hodge polygon and duality. Let (H, ι) be a p-divisible group over
OK with endomorphism structure for OF , If K ′ is a sufficiently large field
extension of K, then the base change of the exact sequence (3.4) along OK →
K ′ carries a Qp-linear F -action induced by ι and splits as a direct sum of exact
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sequences:

0 −→ ωH∨,K′,τ −→M(H)K′,τ −→ Lie(H)K′,τ −→ 0 (4.9)

indexed by the embeddings τ of F in K ′, with F acting through τ : F → K ′

on the respective component. Recall now that we have a natural identification
ωH
∼= HomOK

(Lie(H),OK) of finite free OK-modules, which, after base change
along OK → K ′, gives ωH,K′

∼= HomK′(Lie(H)K′ ,K ′). By compatibility with
respect to the F -action induced by ι on both sides, this splits as a direct sum
of isomorphisms:

ωH,K′,τ
∼= HomK′(Lie(H)K′ ,K ′)τ = HomK′(Lie(H)K′,τ ,K

′)

indexed by τ as above and with F acting through τ : F → K ′ on the respective
component. Using the exactness of (4.9), we get that:

dimK′ ωH,K′,τ = dimK′ HomK′(Lie(H)K′,τ ,K
′)

= dimK′ Lie(H)K′,τ

= dimK′ M(H)K′,τ − dimK′ ωH∨,K′,τ

= htH/d− dimK′ ωH∨,K′,τ

(4.10)

for all τ ’s. Then, computing the types of the relevant filtrations and averaging
over τ , we obtain that Hdg(H∨, ι∨,∗) = Hdg(H, ι)∨ ∈ Qn

+, where n = htH/d
(and recall that Hdg(H, ι)(n) = dimH/d). Here, the twist introduced by ( )∗

results in a permutation of the types defining the Hodge polygon; its influence,
therefore, is cleared in the averaging process.

Definition 4.10. Let R be a complete Noetherian commutative local ring
with residue field of characteristic p, let (H, ι) be a p-divisible group over R
with endomorphism structure for OF and consider the OF -action given by
ι∨,∗ = ι∨ ◦ ( )∗ on the dual p-divisible group H∨. A polarisation on (H, ι)
is an OF -equivariant isomorphism λ : H → H∨ such that, under the natural
identification H∨∨ ∼= H , we have that λ∨ = −λ (i.e. λ is antisymmetric). We
call (H, ι, λ) a polarised p-divisible group over R with endomorphism structure
for OF .

Remark 4.11. The choice of defining a polarisation on a p-divisible group to
be antisymmetric (as opposed to symmetric, i.e. such that λ∨ = λ) follows the
book [31]. This is based on the fact that if H is the p-divisible group associated
to an abelian scheme A, then a symmetric map from A to its dual induces an
antisymmetric map H → H∨ (cf. [28, Proposition 1.12]). In particular, since
polarisations on abelian schemes are defined to be symmetric, then a principal
polarisation on A induces a polarisation on H as defined here.

If (H, ι, λ) is a polarised p-divisible group over OK with endomorphism struc-
ture for OF , then the isomorphism (H, ι) ∼= (H∨, ι∨,∗) given by the po-
larisation λ implies that the Newton polygon, the Hodge polygon and the
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Harder-Narasimhan polygon of (H, ι) coincide with the respective polygons of
(H∨, ι∨,∗). According to the compatibility relations found above, this means
that these polygons are symmetric elements of Qn

+, where n = htH/d. In
particular, if (H, ι) is Hodge-Newton reducible at z = (x, y), then it is also
Hodge-Newton reducible at the symmetric point z∨ = (x∨, y∨) given by:

x∨ = htH/d− x, y∨ = dimH/d− x+ y. (4.11)

Thus, applying Theorem 4.9 for both points and using the uniqueness property,
we find the following corollary.

Corollary 4.12. Let (H, ι, λ) be a polarised p-divisible group over OK with
endomorphism structure for OF , suppose that (H, ι) is Hodge-Newton reducible
at z = (x, y) and let z∨ = (x∨, y∨) be the symmetric point as in (4.11). Assume
without loss of generality that x ≤ x∨. Then, there exists a unique filtration of
(H, ι) by sub-p-divisible groups with endomorphism structure for OF :

(H1, ι1) ⊆ (H ′
1, ι

′
1) ⊆ (H, ι)

satisfying the following property: if H2 denotes the quotient of H ′
1 by H1, with

induced OF -action ι2, and H3 denotes the quotient of H by H ′
1, with induced

OF -action ι3, then Newt(Hi, ιi), Hdg(Hi, ιi) and HN(Hi, ιi) equal respectively
the parts of Newt(H, ι), Hdg(H, ι) and HN(H, ι) between the origin and z if
i = 1, between z and z∨ if i = 2 (up to a shift of coordinates setting the
origin in z) and between z∨ and (htH/d, dimH/d) if i = 3 (up to a shift of
coordinates setting the origin in z∨). Furthermore, if H ′

2 denotes the quotient of
H by H1, endowed with the induced OF -action, then λ induces OF -equivariant
isomorphisms:

H3
∼= H∨

1 and H ′
2
∼= H ′ ∨

1 ,

where H∨
1 and H ′ ∨

1 carry the OF -action given respectively by ι∨,∗
1 and ι′ ∨,∗

1 . In
addition, λ induces a polarisation on (H2, ι2).

Remark 4.13. With notation as above, note that the polarisation λ induces
an isomorphism ωH

∼−→ ωH∨ of OK-modules, which is OF -equivariant up to
the involution ( )∗ of F . Now, if this involution is trivial (that is, equal to
the identity of F ), then we get from (4.10) that dimK′ ωH∨,K′,τ = htH/2d for
all embeddings τ of F in a sufficiently large extension K ′ of K. In this case,
therefore, we must have that htH ∈ 2dN and:

Hdg(H, ι) = (1(htH/2d), 0(htH/2d)).

In particular, if ( )∗ is trivial then the above corollary simply recovers the
multiplicative-bilocal-étale filtration of H , in its symmetric version due to the
polarisation (and together with its compatibility with additional endomorphism
structures). Indeed, because HN(H, ι) ≤ Newt(H, ι), then z must be the first
break point of HN(H, ι) after the slope 1 and z∨ its last break point before the
slope 0 (see also Remark 4.5).
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4.5 The special fibre

In this final section, we would like to compare the reduction to k of the filtration
obtained in Theorem 4.9 with other known results at the level of p-divisible
groups over k . This will ultimately lead to the fact that the reduction of our
filtration is split. Let us first make a preliminary observation about the Newton
polygon.

Remark 4.14. Let (H, ι) be a p-divisible group over OK with endomorphism
structure for OF and write Hk for the reduction of H to k . By definition, a
slope λ features in the polygon Newt(H, ι) if and only if −λ is a Newton slope
of the isocrystal (D(Hk ) ⊗W (k) K0, p

−1(ϕHk
⊗ id)) over k (recall the minus

sign in the original definition of the Newton polygon for isocrystals). Now, the
factor p−1 accounts for a shift of the Newton slopes by −1, so that the above
is equivalent to 1 − λ being a Newton slope of the isocrystal (D(Hk ) ⊗W (k)

K0, (ϕHk
⊗ id)). But, as observed in the previous section, these are exactely

the Newton slopes of the dual isocrystal, which in turn can be identified with
(D(H∨

k
) ⊗W (k) K0, ϕH∨

k
⊗ id). Note, finally, that the latter is the isocrystal

associated to (D(H∨
k
), ϕH∨

k
), which coincides with the contravariant Dieudonné

module of Hk .

Comparison with the slope filtration. Let now (H, ι) ∈ p−divOK ,OF

be Hodge-Newton reducible. Then, the previous observation allows to recognise
the reduction H1,k ⊆ Hk to k of the filtration from Theorem 4.9 as part of the
slope filtration of Hk from [40, Corollary 13]. This is immediate from the
configuration of the Newton polygons stated in the theorem; in fact, these
polygons are really an invariant of the reduction of the respective p-divisible
group and they are only affected by ι in terms of a rescaling factor.

Comparison with the Hodge-Newton decomposition. More specifi-
cally, keep the notation from above and consider the induced OF -actions ι
on Hk and ι1 on H1,k . Then, (H1,k , ι1) is one piece of the Hodge-Newton
decomposition of (Hk , ι) obtained (in terms of F -crystals with OF -action) in
[3, 1.3.2]. In particular, the filtration H1,k ⊆ Hk is OF -equivariantly split.
Here, we should warn that the Hodge polygon (and consequently the notion of
Hodge-Newton reducibility) considered in loc. cit. does not, in general, coin-
cide with the one defined here. The former polygon, in fact, is an invariant of
p-divisible groups (or, more generally, F -crystals) over k with endomorphism
structure for OF . If F is unramified over Qp, we saw in Remark 3.3 that this
is also the case for our definition and the two polygons amount indeed to the
same invariant. In general, Example 3.4 shows that the two definitions cannot
coincide. However, the following considerations allow us to relate Theorem 4.9
to [3, 1.3.2].
First of all, enlarging the field K if necessary, write ωH =

⊕

υ ωH,υ using
(3.15) and, for each υ : F nr → K0, consider the decomposition ωH,K,υ :=
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ωH,υ ⊗OK
K =

⊕

τ |υ ωH,K,τ from (3.16). For every υ, then, choose an or-

dering
{

τυ,1, . . . , τυ,e(F |Qp)

}

of the embeddings τ : F → K with τ |υ and set
dυ,i := dimK ωH,K,τυ,i

for 1 ≤ i ≤ e(F |Qp). Now, the fact that (Hk , ι) comes
from the object (H, ι) over OK ensures that the F -crystal (D(H∨

k
), ϕH∨

k
), to-

gether with the OF -action induced by ι, satisfies a Pappas-Rapoport condition,
as defined in [3, 1.2.1], for the tuple of integers consisting of the dυ,i’s. To
be precise, this condition is given by the reduction to k , for each υ, of the
increasing filtration of ωH,υ defined by ωH,υ,j := ωH,υ ∩

⊕j
i=1 ωH,K,τυ,i

, for
0 ≤ j ≤ e(F |Qp). Recall, indeed, that we have an OF -equivariant identi-
fication ωHk

∼= D(H∨
k
)/ϕH∨

k
D(H∨

k
). Moreover, argueing as in the proof of

Lemma 3.12, we see that the definition above yields a filtration of ωH,υ by
OK-direct-summands, with rkOK

ωH,υ,j/ωH,υ,j−1 = dimK ωH,K,τυ,j
= dυ,j for

all j = 1, . . . , e(F |Qp) and with OF acting on each of these graded pieces
through the corresponding embedding τυ,j; in particular, after reducing to k ,
any uniformiser of OF acts as zero on the graded pieces. The presence of the
Pappas-Rapoport condition ensures, by [3, 1.3.1], that the Hodge polygon of
(D(H∨

k
), ϕH∨

k
), as defined in [3, 1.1.7], is bounded between its “OF -Newton

polygon” and the “Pappas-Rapoport polygon” associated to the tuple (dυ,i)υ,i.
Before comparing these invariants (introduced respectively in [3, 1.1.9] and [3,
§1.2]) with those of (H, ι) in use here, note that the polygons considered in
loc. cit. are convex; one can pass from one point of view to the other by sim-
ply reversing the order of the slopes (and the inequalities). Then, on the one
hand, Remark 4.14 and [3, 1.1.12] allow to recognise the OF -Newton polygon
of (D(H∨

k
), ϕH∨

k
) as (the convex version of) Newt(H, ι). On the other hand, a

simple computation using the formula (4.10) shows that the Pappas-Rapoport
polygon associated to (dυ,i)υ,i is (the convex version of) Hdg(H, ι). In partic-
ular, if (H, ι) is Hodge-Newton reducible, then so is (D(H∨

k
), ϕH∨

k
) in the sense

of [3, 1.3.2], with respect to the same break point of the Newton polygon (up to
reversing the order of the slopes). Indeed, the double bound assured above im-
plies that the Hodge polygon of (D(H∨

k
), ϕH∨

k
) passes through this break point

too. In conclusion, the decomposition of (D(H∨
k
), ϕH∨

k
) following from [3, 1.3.2]

corresponds, by Dieudonné theory, to a decomposition of (Hk , ι). It is then im-
mediate from the configuration of the Newton polygons (and the uniqueness of
the slope filtration), that one piece of this decomposition is (H1,k , ι1).
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