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1 Introduction

In the first part of the introduction we briefly present some of the results of the
paper. In the second part of the introduction we give a detailed description
as to how the ideas, statements and definitions behind the main results came
to be.

1.1 Main results

Given a number field K we denote by (OK , trK/Q) the pair given by the free
Z-module OK together with the symmetric bilinear pairing given by the trace

trK/Q : OK × OK → Z
(x, y) 7→ TrK/Q(xy).

Some of the results we prove in this paper are stated next.

Theorem (cf.Theorem 5.2). Let K be a degree n totally real Sn number field
and L be any Sn number field. Let ds(K,L) be the integer defined in 1.1.
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(i) Suppose that n ≥ ds(K,L)
2. Then,

(OK , trK/Q) ∼= (OL, trL/Q) if and only if K ∼= L.

(ii) If K does not have wild ramification, then the condition n ≥ ds(K,L)
2

can be improved to n ≥ rad(ds(K,L))
2.

(iii) If K and L do not have wild ramification except possibly for some primes
with ramification index 2 lying over 2, then the condition n ≥ ds(K,L)

2

can also be improved to n ≥ rad(ds(K,L))
2 .

Definition 1.1. Let K be a number field and let dK be its discriminant. For p
a rational prime we let ep(K) be the maximal ramification index of a prime in K
lying over p. For a number field L we define df (K,L) as the product

∏

pvp(dK)

where p runs over the set of odd primes such that ep(K) = 2 = ep(L), and set
ds(K,L) := dK/df(K,L) ∈ Z.

Remark 1.2. Notice that if K and L have the same discriminant d, then
ds(K,L) is bounded by the non-square free part of d, i.e., ds(K,L) ≤

∏

p,vp(d)>1

pvp(d).

As a consequence of the above we have that the integral trace is a complete
invariant for Sn real fields with at worst quadratic ramification.

Theorem (cf.Theorem 5.3). Let K,L be Sn number fields. Suppose that K is
totally real and that the ramification index of every prime in K and L over Q
is at most 2. Then,

(OK , trK/Q) ∼= (OL, trL/Q)

if and only if K ∼= L.

Corollary (Corollary 5.4). The integral trace form is a complete invariant
for totally real number fields of fundamental discriminant.

Example 1.3. Let K and L be the sextic fields defined respectively by the
polynomials x6−3x5−6x4+17x3+2x2−8x+1 and x6−x5−12x4−x3+22x2−1,
and let df := df (K,L) and ds := ds(K,L). The fieldsK and L are totally real of
discriminant d = 23 ·11 ·619 ·11411. In this case ds = 8 and df = 77697499, and
since d is fundamental rad(ds)

2 = 4. The fields K and L are not isomorphic,
for instance a calculation shows that the prime p = 11 has three primes in K
lying over it, while it has two in L, hence their integral traces are not isometric.

Theorem (cf. Theorem 5.5). Let K and L be totally real number fields with
square free different ideal. Then any isometry φ : (K, trK/Q) → (L, trL/Q) such
that φ(OK) = OL is equal to plus or minus an isomorphism of fields K ∼= L.
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1.1.1 Some applications

As a byproduct of the methods used in the proofs of the above results we can
provide, for real number fields with square free different, an explicit description
of the automorphism group of the integral trace.

Theorem (cf.Corollary 5.6). Let K be a totally real number field with square
free different ideal. Then,

Aut
(

(OK , trK/Q)
) ∼= Z/2Z×Aut(K).

In particular, if n > 2 and K is a Sn number field then the automorphism
group of the integral trace is “trivial”.

Example 1.4. Let K be the biquadratic field Q(
√
5,
√
13). This is a totally

real number field with different ideal the principal generated by
√
65. Since√

5 and
√
13 generate prime ideals in OK the different ideal is square free.

Since K is a Galois number field, with Galois group the Klein group, then
Aut

(

(OK , trK/Q)
) ∼= Z/2Z× Z/2Z× Z/2Z.

A consquence of the above result is that for real fields of square free discriminant
the automorphism group of the integral trace is trivial.

Corollary (Corollary 5.7). Let K be a real number field of degree at least 3
and with square free discriminant. Then,

Aut
(

(OK , trK/Q)
) ∼= Z/2Z.

A further application of the results here, which is ongoing work, is a method
to count real number fields with square free discriminant. Using the results of
this paper, together with some control of the local behavior of the trace, we
can apply Siegel’s mass formula to obtain some counting results; at least for
fields of small degree.

1.2 Motivation on definitions and results

One of the main problems in algebraic number theory is to give a satisfactory
way of deciding whether or not two number fields are isomorphic. Inspired
by the style of question of Cornelissen and Marcolli in [10], this query can be
formulated as follows:

Question 1.5. Can one describe an isomorphism between number fields K, L
from an associated mathematical/arithmetical object? In other words, can we
find a complete invariant for number fields?

Several natural objects have been at the center of study of this question by
several authors; e.g., the Dedekind zeta function, the ring of Adeles, the group
of Dirichlet Characters, the absolute Galois group (see [10, 21, 24, 36, 37, 44]).
From all these the only one that is a complete invariant, thanks to a famous
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result of Neukirch and Uchida, see [36, 44], is the absolute Galois group.

All the above invariants have in common that they refine the discriminant; i.e.,
having the same invariant for K and L implies that the two fields have the
same discriminant. Thanks to Hermite and Minkowski it is known that, up to
isomorphism, there are only finitely many number fields of a given discriminant.
This result has led to the study of number fields via their discriminants, and
specifically to the industry of results about the asymptotics of the number
of fields up to a given discriminant bound, sometimes with specific signature
types or Galois groups. Some of the examples of such investigations can be
found in works of Bhargava, Cohen, Davenport-Heilbron, Datskovsky-Wright,
Ellenberg-Venkatesh, Jones, Klüners, Lemke Oliver-Thorne, Malle, P. Harron,
R. Harron, Roberts, Taniguchi-Thorne, Shnidman, Wang and many others (See
[4, 5, 6, 11, 13, 14, 23, 22, 27, 18, 17, 38, 42, 43, 45]). Since the discriminant
of a number field K of degree n is basically the signed co-volume of the lattice
OK inside of Rn it is only natural to study the isometry class of such lattices
as a way to refine the discriminant. In other words the isometry class of the
integral bilinear pairing

trK/Q : OK × OK → Z
(x, y) 7→ TrK/Q(xy).

is the first natural object that comes to mind when dealing with the problem
of dividing the classification of number fields of the same discriminant in a
smaller subclass. This invariant, and the closely related shape, are used for
instance by Ellenberg and Venkatesh in their paper about asymptotics of
number fields of bounded discriminant; see [14, Remark 3.2].

Trace forms over fields, and their applications, have been extensively stud-
ied by many authors; see for instance the works of Eva Bayer-Fluckiger, J.P.
Serre and their co-authors [2, 3, 41] and the work of Robert Perlis and his co-
authors [9]. However, the literature around the classification results about the
integral trace over number fields is scarce. These kinds of classification ques-
tions have been studied by the first named author from four different, basically
disjoint, perspectives:

(i) The first one uses the techniques developed by M. Bhargava in his thesis,
specifically the higher composition laws in cubes and their relation to
cubic fields. See [28] for details and for a proof of

Theorem 1.6. Let K,L be cubic fields such that K has positive funda-
mental discriminant. Then,

(OK , trK/Q) ∼= (OL, trL/Q) if and only if K ∼= L.

(ii) A local-global point of view. Using the Adelization of the orthogonal
group one can show that genus and the spinor genus of the integral trace
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form coincide. Together with the classification genus of the integral trace,
this method permits to deal with the problem in the case of non-real fields
that have no wild ramification. See [31] and [33] for details and a proof
of

Theorem 1.7. Let K,L be two number fields with the same discrimi-
nant d, same signature and without wild ramification. Suppose that the
fields are non-totally real and that they do not have wild primes. Then,

(OK , trK/Q) ∼= (OL, trL/Q) ⇐⇒
Å
αp
K

p

ã
=

Å
αp
L

p

ã

for all odd primes p that divide d.

For extra details of the construction of the elements αp
K see also [35].

(iii) Using that rational quadratic forms can be seen as cohomology classes
in H1(Q,On) and that Artin representations can be seen as elements of
H1(Q,GLn(C)) one can study the relation between Dedekind zeta func-
tions of number fields and their integral traces. See [32] for details and
for a proof of

Theorem 1.8. Let K,L be two number fields. Suppose that K is non-
totally real and that no rational prime has wild ramification in it. Then,

ζK(s) = ζL(s) =⇒ (OK , trK/Q) ∼= (OL, trL/Q).

(iv) Imposing the Galois theoretic conditions, mainly prime power Galois
cyclic extensions, a classification of the integral trace and shape can also
be obtained for such fields. See [34] and [8] for details and a proof of

Theorem 1.9. Let n be a positive integer Let K,L be two Galois number
fields with Galois group isomorphic to Z/nZ and without wild primes.
Then,

(OK , trK/Q) ∼= (OL, trL/Q) if and only if disc(K) ∼= disc(L).

1.2.1 Motivation behind the definition of ds(K,L)

Cases (i) and (iv) have an interesting duality for cubic fields. The former
says that for square free discriminant the trace is a great improvement of the
discriminant, while the latter says that for perfect square discriminants the
trace does not provide new information. Hence, it is interesting to wonder
what happens in the intermediate cases, i.e., neither square free nor perfect
square discriminants. As the following example shows the answer could go
either way
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Example 1.10. Let K1,K2 and K3 be the cubic fields defined respectively
by the cubic polynomials f1 := x3 − 36x − 78, f2 := x3 − 18x − 6 and f3 :=
x3 − 36x − 60. A calculation shows that these fields are not isomorphic, all
have discriminant 22 · 35 · 23 and

(OK1
, trK1/Q)

∼= (OK3
, trK3/Q) 6∼= (OK2

, trK2/Q).

This lead us to think that to generalize case (i) to higher degree number fields
we need to generalize the square free condition of the discriminant; this was in
fact supported by computational evidence. Number fields with square free dis-
criminant have square free different ideal. It turns out, as a simple calculation
shows, that for cubic fields both conditions are equivalent.

Remark 1.11. Let K be a cubic number field. Then, K has square free different
ideal if and only if it has square free discriminant.

A general equivalent condition to having square free different ideal is given
by the following result. We call a number field K tame if no prime has wild
ramification in K.

Proposition 1.12. Let K be a number field. The field K has square free
different ideal if and only if K is tame and for every prime p the maximal
ramification degree is at most 2.

Proof. The result follows from the formula for the exponents of primes appear-
ing in the different ideal. More explicitly, recall that for a prime P in OK lying
over a prime p with ramification degree e, the exponent of P on the different
ideal is at least e− 1. Moreover, it is e− 1 if and only if p ∤ e.

A possible generalization to having square free discriminant could be having
symmetric group as the Galois group and having ramification exponents
bounded by 2. This is explained thanks to the above and since number
fields with fundamental discriminant have Galois group the full symmetric
group. In fact this is the motivation behind Theorem 5.3. The main results
of this paper, Theorem 5.2, pushes this generalization even further. As long
as the part of the discriminant that comes from prime with ramification de-
grees bigger than 2 is not so big, then the integral trace is a complete invariant.

Besides the motivation to find the right generalization to Theorem 1.6, in this
paper we introduce and develop the Casimir pairings. With it we introduce
a fifth approach to the integral trace invariant problem. This new method,
combined with several of the points of view described above, yields to most of
the results of the paper.

1.3 Outline of the paper

In §2 we introduce the theory of Casimir Pairings and show many of its prop-
erties which we will need later on. In §3 we study linearly disjoint number
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fields, the relation of Casimir Pairings with them and we give a general crite-
rion to decide whether or not two number fields are conjugate. In §4 we do a
local-global study of Casimir elements associated to trace pairings over num-
ber fields; this section is the connection between the general theory of Casimir
pairings and number fields. Finally in §5 we provide the proofs to the number
theoretic applications from all the results of the previous sections.

2 Casimir Pairings

Let V be a finite dimensional vector space over a field k endowed with a nonde-
generate bilinear formB, and let V ∗ = Hom(V, k) be its dual. The isomorphism
ΓB : V → V ∗, v 7→ ΓB(v) := B(v, ·) determines a bilinear form on V ∗, namely
the pullback of B via Γ−1

B ; we will denote this form by 〈·, ·〉B and we call it
Casimir pairing associated to B.
For a field k let us denote by FVectBk the category of pairs (V,B) where V
is a finite dimensional k-vector space and B a nondegenerate k-bilinear form
on V with morphisms given by bijective k-linear isometries.

Proposition 2.1. The functor

FVectBk FVectBk

(V,BV ) (V ∗, 〈·, ·〉BV )

7→

(W,BW ) (W ∗, 〈·, ·〉BW )

CS

φ φ∗

mapping (V,B) to (V ∗, 〈·, ·〉B) and an isometry φ : V → W to its dual φ∗ is a
well-defined duality of categories.

Proof. An object (V,B) in FVectBk comes equipped with the k-linear isomor-
phism ΓB, which we are forcing to be an isometry between (V,B) and CS(V,B).
In particular, CS(V,B) is nondegenerate, i.e., the functor is well defined on ob-
jects. To check that it is well defined on morphisms, note that an isometry
φ : (V,B) → (W,B′), by definition, makes the following diagram of k-linear
maps commutative:

V V ∗

W W ∗

ΓB

φ φ∗

ΓB′

.
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Thus if φ is bijective, the map φ∗ : CS(V,B) → CS(W,B′) is also a bijective
isometry. An inverse for CS is given by the functor CSt mapping (V,B) into V ∗

together with bilinear map that makes Γt
B : V → V ∗,Γt

B(v) := B(·, v) into an
isometry.

We stress here that this is a very natural way to endow V ∗ with bilinear
pairings, in a sense made precise by Remark 2.2 below.

Remark 2.2. The functors CSt and CS give a (dual) adjoint equivalence, with
the unit and counit induced by the usual evaluation map V → V ∗∗. In par-
ticular, CS becomes self-dual adjoint when we restrict to symmetric bilinear
forms.

Remark 2.3. Notice that CS commutes with scalar extension, i.e., if k′/k is a
field extension, then the following diagram commutes:

FVectBk FVectBk

FVectBk′ FVectBk′

CS

(−) ⊗k k′ (−) ⊗k k′

CS

.

Let {v1, . . . , vn} be an ordered k-basis of V and let {f1, ..., fn} be its dual basis.
We say that {v∗1 , . . . , v∗n} ⊆ V is the dual basis of {v1, . . . , vn} with respect to B
if fi = B(v∗i , ·) for each i. The next lemma gives us a concrete useful formula
to compute Casimir parings.

Lemma 2.4. Let (V,B) ∈ FVectBk and let {v1, . . . , vn} be a k-basis of V .
Then,

〈ψ, φ〉B =

n
∑

i=1

ψ(v∗i )φ(vi),

where {v∗1 , . . . , v∗n} is the dual basis of {v1, . . . , vn} with respect to B.

Proof. Let {f1, . . . , fn} be the dual basis {v1, . . . , vn}. Since both sides of the
equality are bilinear on φ and ψ, it is enough to check it when φ = fr and
ψ = fs, for each 1 ≤ r, s ≤ n. In this case,

∑n
i=1 φ(v

∗
i )ψ(vi) = fr(v

∗
s ) · 1 and

〈ψ, φ〉B = B(v∗r , v
∗
s ) = fr(v

∗
s ).

Now that we have a natural way to get pairings on V ∗ = Homk(V, k), we
can use it to get parings on more general hom sets Homk(V,W ). We do this
by identifying Homk(V,W ) with V ∗ ⊗k W via the usual isomorphism taking
f ⊗ w ∈ V ∗ ⊗k W to the map v 7→ f(v)w.

Definition 2.5. Let k be a field and (V,B) ∈ FVectBk.
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(i) Given k-bilinear map of vector spaces V1 × V2 → V3, the associated
Casimir pairing is the map

Homk(V, V1)⊗k Homk(V, V2) → V3,

obtained by taking the tensor product

〈·, ·〉B ⊗m : (V ∗ ⊗k V1)⊗k (V
∗ ⊗k V2) → (k ⊗k V3)

of the maps 〈·, ·〉B : V ∗ ⊗k V
∗ → k and m : V1 ⊗k V2 → V3.

(ii) When V1 = V2 = V3 = R is a k-algebra and R × R → R is the multipli-
cation map, we call the corresponding pairing

Homk(V,R)⊗k Homk(V,R) → R,

the Casimir paring on Homk(V,R) associated to B.

Remark 2.6. More explicitly, Lemma 2.4 shows that the Casimir paring associ-
ated to V1⊗V2 → V3 is the map that takes ψ⊗φ ∈ Homk(V, V1)⊗kHomk(V, V2)
to the image of the element

n
∑

i=1

ψ(v∗i )⊗ φ(vi) ∈ V1 ⊗ V2

under V1 ⊗k V2 → V3. Where as before {vi} is any k-basis of V and {v∗i } its
dual with respect to B.

By slight abuse of notation for any k-algebra R we still denote the associated
Casimir paring on Homk(V,R) by 〈·, ·〉B.
Example 2.7. Let g be an n-dimensional Lie algebra over a field k with
char(k) = 0. By Cartan’s criterion the Killing form B on g is nondegener-
ate if and only if g is semisimple. In that case, if we take V = g, R = U(g) its
universal enveloping algebra and ι : g →֒ U(g) the canonical inclusion, then

C := 〈ι, ι〉B ∈ U(g)

is the well known quadratic Casimir element of g. Despite its simplicity, the
Casimir element turns out to play a central role in the modern proofs of several
key theorems in the representation theory of Lie algebras such as Weyl’s the-
orem on complete reducibility (see [20, Section 6.3]), as well as in Weyl’s and
Konstant’s character formulas as shown in the appendix to chapter VI in [20].

Example 2.8. Let (M, g) be a Riemannian manifold. Since the metric g is
everywhere nondegenerate, it gives isomorphisms between the tangent bun-
dle TM and its dual T ∗M = Ω1(M) known as the musical isomorphisms ♭
and ♯. One precisely uses ♯ : Ω1(M) → TM to induce an inner product on
Ω1(M), i.e., the usual inner product of 1-forms is pointwise the Casimir pair-
ing on Ω1

p(M) = Hom(TpM,R) associated to gp.
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Proposition 2.9. For a fixed (V,B) ∈ FVectBk, the formation of Casimir
pairings is functorial on V1 ⊗k V2 → V3. More precisely, for each commutative
diagram

V1 ⊗k V2 V3

V ′
1 ⊗k V

′
2 V ′

3

f ⊗ g

,

the diagram on Casimir pairings

Homk(V, V1)⊗k Homk(V, V2) V3

Homk(V, V
′
1 )⊗k Homk(V, V

′
2) V ′

3

f∗ ⊗ g∗

is also commutative.

Proof. This is already encoded in the definition since the identification we are
using V ∗ ⊗k W = Homk(V,W ) is functorial on W .

The following statements contain the main features of the Casimir pairings that
will be needed latter on.

Corollary 2.10. Let (V,B) ∈ FVectBk, R be a k-algebra and φ, ψ ∈
Homk(V,R).

(i) Functoriality on R: If θ : R → R′ is a homomorphism of k-algebras then

θ (〈ψ, φ〉B) = 〈θ ◦ ψ, θ ◦ φ〉B .

(ii) Scalar extension: If k′/k is a field extension, then

〈ψ ⊗ 1, φ⊗ 1〉B⊗k′ = 〈ψ, φ〉B ⊗ 1 ∈ R⊗k k
′.

Proof. A homomorphism of k-algebras is a map θ making the diagram

R⊗k R R

R′ ⊗k R
′ R′

θ ⊗ θ θ

commutative. Thus part (i) this follows from the functoriality claimed in
Proposition 2.9. Part (ii) is a consequence of the compatibility in Re-
mark 2.3.
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Corollary 2.11. Let R be an algebra over a field k.

(i) The functor from FVectBk to the category of R-modules with bilinear
forms taking (V,B) to R-module Homk(V,R) endowed with its Casimir
pairing 〈·, ·〉B and a map φ : (V,B) → (V ′, B′) to φ∗ is a contravariant
embedding.

(ii) Let (V,B) and (V ′, B′) be objects in FVectBk. A k-linear map φ : V → V ′

is a bijective isometry of k-spaces if only if

φ∗ : Homk(V
′, R) → Homk(V,R)

is a bijective isometry of R-modules, where we endow the hom sets with
the associated Casimir pairings.

Proof. Since k is a field, every k-algebra is faithfully flat over k. Hence the
scalar extension (−) ⊗k R from FVectBk to the category of R-modules with
bilinear forms is an embedding. The functor in (i) is the composition of this
with the duality CS. Since we can tell whether or not an arbitrary k-linear
map is a bijective isometry after a faithfully flat extension of scalars, this
factorization also proves (ii).

More importantly for our purposes, when char(k) 6= 2 and R is a commutative
k-algebra, restricting the functor in part (i) to symmetric bilinear forms yields
a contravariant embedding

QSp∗k →֒ QModR,

from the category nondegenerate quadratic k-spaces and (bijective) isometries
to the category of quadratic R-modules.

2.1 Trace forms

Definition 2.12. Let k be a field and let E be an étale algebra over k. For
any k-algebra R we denote by 〈·, ·〉trE/k

the Casimir pairing on Homk(E,R)
associated to the non-degenerate symmetric bilinear form given by the trace
pairing

trE/k : E × E → k
(x, y) 7→ TrE/k(xy).

Lemma 2.13. Let E be an étale algebra over k. Suppose that Ω/k is a separable
field extension that splits E, i.e., such that E⊗kΩ ∼= Ωn. Then {σ1, . . . , σn} :=
Homk−alg(E,Ω) is an orthonormal Ω-basis of Homk(E,Ω).

Proof. In the case E = kn the algebra is already split over k, the trace
form is the usual dot product on kn and the corresponding isomorphism
kn → Homk(k

n, k) takes the standard i-th basis vector ei to the i-th pro-
jection πi : kn → k. Since {e1, · · · , en} is an orthonormal basis of kn, the
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set {π1, · · · , πn} is an orthonormal basis of Homk(k
n, k). In the general case,

applying HomΩ(−,Ω) to an isomorphism σ : E⊗kΩ → Ωn, we get an isometry
of Ω-spaces

Ωn → HomΩ(Ω
n,Ω)

σ∗

−→ HomΩ(E ⊗k Ω,Ω) = Homk(E,Ω),

which takes the canonical basis {e1, . . . , en} of Ωn to {σ∗(π1), . . . , σ
∗(πn)} =

{σ1, . . . , σn}.

It follows from the above that any k-linear map from E to Ω can be written in
terms of Casimir elements:

Corollary 2.14. Let k,E,Ω and {σ1, . . . , σn} be as above. Then, for all
φ ∈ Homk(E,Ω)

φ =

n
∑

i=1

〈φ, σi〉trE/k
σi.

Remark 2.15. Grothendieck’s formulation of Galois theory gives a duality be-
tween étale k-algebras and finite Gk-sets, where Gk = Gal(ks/k) and ks is a
separable closure of k. There, an étale algebra E corresponds precisely to the
Gk-set Homk−alg(E, ks). The fact that Homk−alg(E, ks) also happens to be
an orthonormal ks-basis for Homk(E, ks) allows us to leverage this correspon-
dence. For instance, a decomposition of E as a product

∏

i Li of separable
extensions Li amounts to a decomposition into transitive Gk-sets

Homk−alg(E, ks) =
⊔

i

Homk−alg(Li, ks),

which in turn induces an orthonormal decomposition of ks-spaces

Homk(E, ks) =⊥
i
Homk(Li, ks).

Corollary 2.16. Let k be a field and let E/k and E′/k be étale algebras same
dimension n. Suppose that Ω/k is a separable field extension splitting both E
and E′. Let φ : E → E′ be an k-linear map. Then the following are equivalent:

(i) The map φ is an isometry between (E, trE/k) and (E′, trE′/k).

(ii) The map φ∗ is an isometry between the Ω-spaces Homk(E,Ω) and
Homk(E

′,Ω).

(iii) The matrix U = (cij) is orthogonal, where cij := 〈σi, τjφ〉trE/k
, and {σi},

{τi} are the sets of homorphisms of k-algebras of E and E′ into Ω.

Proof. The equivalence of (i) and (ii) is a particular case of Corollary 2.11(ii),
and the equivalence of (ii) and (iii) follows from the fact that {σi} and {τi}
are orthonormal bases by Lemma 2.13.
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3 Linear disjointness

When studying separable extensions that are trace isometric we discovered
that linear disjointness makes matters simpler; more specifically in this case
the entries of the matrix of Corollary 2.16(iii) are all in the conjugacy orbit
of a single Casimir value. Also, when dealing with Sn number fields linear
disjointness is equivalent to not being conjugate. In this section we explain all
this in detail.

Corollary 3.1. Let K/k and L/k be separable field extension, and suppose
Ω/k is a separable field extension containing a Galois clousure of KL/k. Let
us denote by ιK and ιL the inclusions from K (resp L) into KL. Suppose that

φ : (K, trK/k) −→ (L, trL/k)

is an isometry and let c ∈ KL be the Casimir element c := 〈ιK , ιLφ〉trK/k
. If

K and L are linearly disjoint over k, then there is an indexing

Homk−alg(KL,Ω) = {θi,j; 1 ≤ i, j ≤ n}

of the set of k- embeddings of KL into Ω such that the matrix U := θi,j(c) is
orthogonal.

Proof. Since K and L are k-linearly disjoint the restriction map

Homk−alg(KL,Ω) → Homk−alg(K,Ω)×Homk−alg(L,Ω); θ 7→ (θ ◦ ιK , θ ◦ ιL)

is a bijection. The result follows from this together with Proposition 2.10(i)
and Corollary 2.16 (iii).

3.1 Linear disjointness and an isomorphism criterion for number

fields

When looking for arithmetic invariants of number fields it is always important
to have in hand a criterion to decide whether or not two fields are conjugate.
As it turns out, for Sn number fields one such a criterion is that the fields are
linearly disjoint. Here we prove something a little bit more general.

Proposition 3.2. Let K,L be number fields of the same degree n such that
Gal(‹K/Q) ∼= Sn (‹K the Galois closure of K) and L/Q has no intermediate
extensions. Then, K 6∼= L if and only if K/Q and L/Q are linearly disjoint.

Proof. “if” : Suppose K and L are linearly disjoint, then K 6∼= L. Otherwise,

K ∼= L ∼= Q[X ]/(p(X))

for some p(X) ∈ Q[X ] and tensoring with L we get K ⊗Q L ∼= L[X ]/(p(X))
which is not a field, as p(X) has a root in L.
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“Only if” : Suppose K 6∼= L. To prove that K and L are linearly disjoint
it is enough to show that so are ‹K and L. Since L/Q has no intermediate

extensions and ‹K/Q is Galois, then L/Q and ‹K/Q are linearly disjoint if and

only if L ∩ ‹K = Q, i.e., if and only if L 6⊂ ‹K.

Now, if n 6= 6, then every subgroup of Sn of index n is conjugate to
H := {σ ∈ Sn : σ(1) = 1} (see [39, Lemma 7.8.5]). Therefore, in that case

L 6⊂ ‹K, otherwise, the subgroups HL := Gal(‹K/L) and HK := Gal(‹K/K) of

index n in Gal(‹K/Q) ∼= Sn would be conjugate, contrary to our assumption.

If n = 6 it turns out, see [39, Lemma 7.8.6], that for the only two conjugacy
classes ∆1 and ∆2 of index 6 in S6, each pair of representatives H1 ∈ ∆1 and
H2 ∈ ∆2 satisfy

36 = [S6 : H1 ∩H2] = [S6 : H1][S6 : H2] = 6 · 6.

If K and L are not linearly disjoint then, arguing as above, L ⊂ ‹K and since K
and L are not isomorphic the groups HL and HK belong to the two different
conjugacy classes of index 6 in Gal(‹K/Q) ∼= S6. By the group theoretic fact
above we conclude that [KL : Q] = [L : Q][K : Q] which contradicts that
assumption that K and L are not linearly disjoint.

Corollary 3.3. Let K,L be degree n, Sn number fields. Then, K 6∼= L if and
only if K/Q and L/Q are linearly disjoint

Proof. Since one point stabilizers are maximal subgroups of Sn, see [12, I,
Corollary 1.5A], it follows from Galois correspondence that K/Q and L/Q
have no intermediate extensions. The result follows from Proposition 3.2.

4 Casimir elements associated to the trace pairing over number

fields

In this section we focus our attention on questions about the integrality of
Casimir values associated to the trace pairing. The strategy here is a game of
local vs global, where we use in our favor that we know well the local behavior
of the integral trace for tame extensions (see [35, §3].)

4.1 Local considerations

Here we use the standard decomposition of the trace as local traces to obtain
information on Casimir pairings from their local counterparts.

4.1.1 p-integrality of Casimir Pairings.

Lemma 4.1. Let K/Qp and L/Qp be finite field extensions with ramification
indexes e := e(K) and e(L) =: e′, and different ideals DK (resp. DL). Suppose
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σ and τ are Qp-embedings of K and L into Qp, and ψ : K → L is a Qp-linear

map taking OK into OL and D−1
K into D−1

L . If either both extensions are tamely
ramified or e = e′ = 2, then the element

ep1−(
1

e+
1

e′ )〈ψ∗(τ), σ〉trK/Qp

is p-integral. If K is unramified, then 〈ψ∗(τ), σ〉trK/Qp
is p-integral.

Proof. Let F be the maximal unramified subextension of K. First let us
assume that L/Qp and K/Qp are tamely ramified. Then by [35, Lemma 3.1],
there exists a uniformizer π of OK and a unit µF ∈ O∗

F such that πe = µF p
and OK = OF [π]. This implies that TrK/F (π

m) = 0 whenever e ∤ m, hence
the dual F -basis with respect to the trace pairing trK/F of the integral basis

{1, . . . , πi, . . . πe−1} for OK over OF is { 1
e , . . . ,

1
eπ

−i, . . . , 1eπ
−(e−1)}.

Let {w1, . . . , wf} be any integral basis for OF over Zp with dual basis
{w∗

1 , . . . , w
∗
f} with respect to the trace pairing trF/Qp

. The set {wiπ
j : 1 ≤

i ≤ f, 0 ≤ j < e} is an integral basis for OK over Zp with dual basis
{ 1
ew

∗
i π

−j : 1 ≤ i ≤ f, 0 ≤ j < e} with respect to trace pairing trK/Qp
. Com-

puting the pairing in such bases we get the sum

〈ψ∗(τ), σ〉trK/Qp
=

∑

i,j

τψ(
w∗

i

eπj
)σ(wiπ

j). (*)

When j = 0, the summand τψ(
w∗

i

e )σ(wi) is already p-integral. This is because

ψ maps OK into OL and F/Qp is unramified, so each w∗
i ∈ D−1

F = OF . While

if j ≥ 1, since by hypothesis x := ψ(
w∗

i

eπj ) ∈ D−1
L and L is tame, vp(x) ≥ − e′−1

e′ .
Thus

vp(xσ(wiπ
j)) ≥ − e′

e′ − 1
+
j

e
≥ −e

′ − 1

e′
+

1

e
= −1 +

Å
1

e
+

1

e′

ã
.

Hence vp(〈ψ∗(τ), σ〉) ≥ −1 +
(

1
e + 1

e′

)

, as claimed.

If now e = e′ = 2, and one of the extensions is wild, then p = 2 and OK

still has basis of the form {1, π} over OF such that π2 ∈ OF ; but now π is
either a uniformizer or a unit. In the former case the same argument above
applies, with the adjustment that we need to multiply by e = 2 and replace
the tameness of L by the inequality v2(DL) ≤ e′−1

e′ + v2(e
′) = 3

2 ; in the latter
case (∗) directly shows that 2〈ψ∗τ, σ〉 is 2-integral.

Finally, if K = F is unramified, then (∗) holds with e = 1 and shows that
〈ψ∗(τ), σ〉 is p-integral.
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Proposition 4.2. Let K,L be number fields of degree n, and let φ :
(K, trK/Q) → (L, trL/Q) be an isometry such that φ(OK ) = OL. Consider
the matrix U representing the Q-linear map

φ∗ : HomQ(L,Q) → HomQ(K,Q)

in the bases that consists of the Q-embeddings of K and L, and let p be a
rational prime ramified in K.

(i) If L/Q and K/Q are both tamely ramified at p, then p1−
2

eU has p-integral
entries. Where e is the largest ramification index of a prime in L or K
dividing p.

(ii) If p = 2, and L/Q and K/Q are both tamely ramified at 2 except for pos-
sibly some wild primes with ramification index 2, then 2U has 2-integral
entries.

Proof. Since we are only concerned with p-integrality, scalar extension com-
patibility (Proposition 2.10(ii)) allows us to replace U with the matrix Up

representing the Qp-linear map

(φ⊗ 1)∗ : HomQp(L⊗Qp,Qp) → HomQp(K ⊗Qp,Qp)

in the bases that consists of Qp-algebra morphisms of K ⊗ Qp and L ⊗ Qp

into Qp. As noted in Remark 2.15, the decomposition of Qp-étale algebras
K⊗Qp =

∏

v|pKv and L⊗Qp =
∏

w|p Lw induces a orthogonal decomposition

of Qp-spaces

HomQp(K ⊗Qp,Qp) =⊥
v|p

HomQp(Kv,Qp)

HomQp(L⊗Qp,Qp) =⊥
w|p

HomQp(Lw,Qp).

This shows that it is enough to consider the pairings 〈(φ⊗ 1)∗(τ)|Kv , σ〉trKv/Qp

for any σ ∈ HomQp(Kv,Qp) and τ ∈ HomQp(Lw,Qp): Since for v
′ 6= v, σ|Kv′

=
0 the corresponding entry of Up is

〈(φ ⊗ 1)∗(τ), σ〉trK⊗Qp/Qp
=

∑

v′|p

〈(φ ⊗ 1)∗(τ)|Kv′
, σ|Kv′

〉trK
v′

/Qp
=

〈(φ⊗ 1)∗(τ)|Kv , σ〉trKv/Qp
.

Now since φ ⊗ 1 is an integral isometry it must map the dual of OK ⊗ Zp =
∏

v|pOLv in K ⊗Qp into the dual of OL ⊗ Zp =
∏

w|pOLv in L⊗Qp, i.e.,

φ⊗ 1 :
∏

v|p

D−1
Kv

→
∏

w|p

D−1
Lw
.
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It follows that the local extensions Kv/Qp, Lw/Qp and the map

ψ : Kv
(φ⊗1)|Kv−−−−−−→

∏

w′|p

Lw′ → Lw

satisfy the hypothesis of Lemma 4.1. Since (φ⊗1)∗ is an isometry and the same
considerations apply to φ−1, the symmetry 〈(φ⊗1)∗(τ), σ〉 = 〈τ, (φ−1⊗1)∗(σ)〉
allows to switch Kv and Lw if necessary and thus reduce to the case when
e(Kv) ≤ e(Lw). Applying the estimates in Lemma 4.1 to

〈(φ⊗ 1)∗τ |Kv , σ|Kv 〉trKv/Qp
= 〈ψ∗(τ), σ〉trKv/Qp

finishes the proof in each case.

4.2 Integrality of Casimir elements

Here we give some conditions to show how far the casimir pairing associated
to an isometry of the trace pairings of a couple of number fields is integral.

Definition 4.3. Let K,L be number fields with fixed embeddings ιK and ιL
into C. Given φ : K → L a Q-linear map we denote by cφ the Casimir element
given by

cφ := 〈ιK , ιLφ〉trK/Q

and we defineMφ to be the least positive integer m such that mcφ is an algebraic
integer.

The radical of a non zero integer m, i.e., the product of all prime divisors of
m, is denoted by rad(m).

Theorem 4.4. Let K,L be number fields of degree n, and let φ : (K, trK/Q) →
(L, trL/Q) be an isometry such that φ(OK) = OL. Then,

(i) The integer Mφ divides ds(K,L).

(ii) If K is tamely ramified, then Mφ | rad(ds(K,L)).

(iii) If K and L are only wildly ramified at 2 and e2(K) = 2 = e2(L), then
Mφ | rad(ds(K,L)).

Proof. Recall that ep(K) is the maximal ramification index of a prime in K
lying over p, and that for L the integer df (K,L) is the product

∏

pvp(dK)

where p runs over the set of odd primes such that ep(K) = 2 = ep(L). Also,
ds(K,L) := dK/df(K,L).

Let (α1, . . . , αn) be an integral basis of K. Recall that

cφ =
n
∑

i=1

α∗
i φ(αi).
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Since each α∗
i belongs to the codifferent ideal D−1

K and [D−1
K : OK ] = dK , we

have that dKcφ is integral. Let p be a rational prime. If p is not ramified in K
then cφ is p integral since dKcφ is, in particular dscφ is p integral. Suppose
that p is ramified.

• If p | df (K,L), then ep(K) = ep(L) = 2. Hence, by Proposition 4.2(i) cφ
is p-integral in particular dscφ is as well.

• If p ∤ df (K,L) then dscφ =
dKcφ
df

is p-integral since dKcφ is integral.

To prove the (ii) suppose that the ramification of p in K is tame. Let p be a
prime of K lying over p. Then

vp(pD−1
K ) = e(p|p)− (e(p|p)− 1) = 1 ≥ 0.

It follows that pcφ is p-integral, and we see that rad(ds(K,L))cφ is integral.
Likewise, if p = 2 and e2(K) = e2(L) = 2, then Proposition 4.2(ii) shows that
2cφ is 2-integral, proving part (iii).

Proposition 4.5. Let K be a totally real number field of degree n, and let L
be a number field such that the extensions L/Q and K/Q are linearly disjoint.
Suppose that there is an isometry

φ : (OK , trK/Q) → (OL, trL/Q).

Then, √
n ≤Mφ.

Moreover, in such a case, the equality holds if and only if Mφcφ = ±1.

Proof. Since the isometry class of the integral trace determines the discrimi-
nant, the signature, and the degree of a field we have that L is totally real with
the same discriminant and degree as K. Let m be a positive integer such that
α = mcφ is an algebraic integer. Let U = (cij) where cij := 〈σi, τjφ〉trK/F

,
and {σi}, {τi} are the sets of complex embeddings of K and L. Since U is
orthogonal, thanks to Corollary 2.16 (iii), it follows that if we let N = mU
then NN t = m2I. Taking traces on both sides we obtain

∑

i,j

(mcij)
2 = tr(NN t) = m2n

Since K/Q and L/Q are linearly disjoint, it follows from the construction of
Corollary 3.1, that the n× n matrix built by the conjugates of α in KL, up to
permutation of its entries, is equal to N . In particular,

trKL/Q(α
2) =

∑

i,j

(mcij)
2.

Since α is integral, and non-zero since U is a non-zero matrix, NKL/Q(α
2) ≥ 1.

Thanks to the AM-GM inequality,

n2 = [KL : Q] ≤ trKL/Q(α
2) = m2n.

Hence
√
n ≤ m and the equality holds if and only if α2 = 1.
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5 Arithmetic consequences

Two useful and closely related quadratic invariants have been derived from the
integral trace form. They are the trace-zero form and the shape of a number
field (an invariant with a more geometric flavor). To define them, let K be a
number field. The trace-zero module of K, denoted O0

K is

{x ∈ OK : trK/Q(x) = 0}.

This module and the quadratic form obtained by restricting the trace pairing
to it (the trace-zero form) played a role in the study of the trace form for
cubic fields in [28], and in the work of Ellenberg-Venkatesh on asymptotics
of number fields [14]. We will use it here to cover a crucial case of our main
theorem.

The shape of K, denoted Sh(K), is the class of the lattice obtained by mapping

O⊥
K = {x ∈ Z+ [K : Q]OK : trK/Q(x) = 0}

under the Minkowski embedding up to rotation, reflections and multiplication
by scalars. When K is totally real, we can equivalently describe Sh(K) as the
isometry class of the quadratic module obtained by restricting the trace paring
to O⊥

K up to multiplication by R×. This invariant, introduced for cubic fields
in [43], has been recently studied for several different purposes (see [5, 17, 34]).

The following proposition shows that for totally fields number fields the integral
trace form is the strongest of these three invariants.

Lemma 5.1. Let K,L be two totally real number fields and suppose φ :
(OK , trK/Q) → (OL, trL/Q) is an isometry. Then, φ(1) = ±1. In particu-
lar, the restriction of φ induces an isometry between the integral trace zero
parts of K and L, and also between the shapes of K and L.

Proof. Because the fields have isometric integral trace forms, they must have
the same degree, say n. Now let α := φ(1) 6= 0. By hypothesis α2 is a totally
positive algebraic integer such that trL/Q(α

2) = trL/Q(φ(1)
2) = trK/Q(1

2) = n.
Hence, from the AM-GM inequality applied to the n conjugates of α2 ∈ L
over Q, we find that the equality in

1 ≤ NL/Q(α
2)

1

n ≤ trL/Q(α
2)

n
= 1

implies α2 ∈ Q and thus α2 = 1. To prove the last claim, note that the
isometry φ maps the elements in OK orthogonal to 1 precisely to the elements
in φ(OK) = OL orthogonal to φ(1) = ±1, i.e., φ(O0

K) = O0
L. Similarly, as

φ(Z + nOK) = φ(1)Z+ nOL = Z+ nOL, we have φ(O⊥
K) = O⊥

L .

We are now ready to prove the main results of the paper:
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Theorem 5.2. Let K be a degree n totally real Sn number field and L be any Sn

number field. Let ds(K,L) be the integer defined in 1.1.

(i) Suppose that n ≥ ds(K,L)
2. Then,

(OK , trK/Q) ∼= (OL, trL/Q) if and only if K ∼= L.

(ii) If K does not have wild ramification, then the condition n ≥ ds(K,L)
2

can be improved to n ≥ rad(ds(K,L))
2.

(iii) If K and L do not have wild ramification except possibly for some primes
with ramification index 2 lying over 2, then the condition n ≥ ds(K,L)

2

can also be improved to n ≥ rad(ds(K,L))
2 .

Proof. This is clear in degrees n = 1, 2, so let us suppose n ≥ 3. We show
the non-trivial implication. Since K and L have isometric integral traces, they
share the same degree, signature and discriminant. If K and L are not iso-
morphic it follows from Corollary 3.3 that they are linearly disjoint. Let φ be
an integral isometry, by Corollary 3.1, there is an orthogonal matrix U whose
entries consist of the values θ(cφ) where θ runs over the set HomQ−alg(E,C).
In particular cφ 6∈ Q, otherwise, θ(cφ) = cφ for all θ which is a contradic-
tion since the matrix U is invertible. Since cφ is not rational it follows from
Proposition 4.5 and from Theorem 4.4 that

√
n < Mφ ≤ ds(K,L).

The improvement on the upper bound of the above is obtained thanks to parts
(ii) and (iii) of Theorem 4.4.

The above together with some previous results on integral traces imply that
the integral trace is a complete invariant for real fields with at worst quadratic
ramification.

Theorem 5.3. Let K,L be degree n, Sn number fields. Suppose that K is
totally real and that the ramification index of every prime in K and L over Q
is at most 2. Then,

(OK , trK/Q) ∼= (OL, trL/Q)

if and only if K ∼= L.

Proof. This is trivial in degrees n = 1, 2, so let us suppose that n ≥ 3. Thanks
to Theorem 5.2, the result follows for n ≥ 4. If n = 3, the restriction on the
ramification indexes implies that the Galois closure ‹K of K is unramified over
Q(

√
dK), hence dK must be fundamental (see [19]). Thus, using Lemma 5.1

we see that the case n = 3 follows from [28, Theorem 6.5].

Corollary 5.4. The integral trace form is a complete invariant for totally
real number fields of fundamental discriminant.
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Proof. Since degree n number fields of fundamental discriminant are Sn num-
ber fields, see [25], and since having fundamental discriminant implies that
ramification indices are at most 2, the result follows from Theorem 5.3.

Theorem 5.5. Let K and L be totally real number fields with square free
different ideal. Then any isometry φ : (K, trK/Q) → (L, trL/Q) such that
φ(OK) = OL is equal to plus or minus an isomorphism of fields K ∼= L.

Proof. From Corollary 2.16(iii) we know that U = (cij) is an orthogonal
matrix, where cij := 〈σi, τj ◦ φ〉trK/Q

and {σ1, . . . , σn} (resp. {τ1, . . . , τn} )
is the set of embeddings of K (resp. L). Moreover, because K and L are
totally real, U ∈ Mn(R) and thus |cij | ≤ 1 for every 1 ≤ i, j ≤ n. On the
other hand, thanks to Proposition 2.10(ii) we have a natural action of the
absolute Galois group GQ := Gal(Q/Q) on the entries of U . More specifically,
if θ ∈ GQ then θ(cij) = ci′j′ where θ ◦ σi = σi′ and θ ◦ τj = τj′ . In partic-
ular, every conjugate of an entry of U is again an entry of U and thus has
absolute value bounded by 1, i.e., |θ(cij)| ≤ 1 for every θ ∈ GQ and 1 ≤ i, j ≤ n.

The fact that the different ideals of K and L are square free implies that
ds(K,L) = 1, thus each cij must be an algebraic integer by Theorem 4.4(i).
From the above paragraph we deduce that each cij is either 0 or a real root of
unity, or equivalently cij ∈ {0,±1}. Furthermore, U being orthogonal implies
that there is only one cij equal to ±1 on each row and on each column of U .
If i is the index such that 〈σi, τ1 ◦ φ〉trK/Q

6= 0, then by Corollary 2.14 we have

τ1 ◦ φ = ±σi,

and thus ∓φ is multiplicative.

Corollary 5.6. Let K be a totally real number field with square free different
ideal. Then,

Aut
(

(OK , trK/Q)
) ∼= Z/2Z×Aut(K).

In particular, if n > 2 and K is a Sn number field then the automorphism
group of the integral trace is “trivial”.

Proof. This follows from Theorem 5.5 by taking K = L.

Corollary 5.7. Let K be a real number field of degree at least 3 and with
square free discriminant. Then,

Aut
(

(OK , trK/Q)
) ∼= Z/2Z.

Proof. Let ‹K be the Galois closure of K, let G be the Galois group of ‹K/Q
and let H be the subgroup of G corresponding to K. Since K has square free
discriminant G is the full symmetric group and H is a one point stabilizer. In
particular, H is self-normalizing in H and thus Aut(K) is the trivial group.
Since square free discriminant implies square free different ideal, the result
follows from Theorem 5.6.
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Since random lattices have “trivial” automorphism group, see for instance [7]
and [1], this corollary is not completely unexpected. A derived question that
comes to mind is whether or not maximal orders of real number fields with
trivial automorphism group are random within the space of positive definite
lattices.

Remark 5.8. Notice that Corollary 5.7 could be stated in a more general form:
as long as H is self normalizing in G, and K has square free different ideal
the same conclusion holds. This follows since for arbitrary K we have that
NG(H)/H ∼= Aut(K).
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