p-Selmer Group and Modular Symbols

Ryotaro Sakamoto

Received: May 13, 2022 Revised: July 20, 2022

Communicated by Otmar Venjakob

ABSTRACT. We prove that the dimension of the p -Selmer group of an elliptic curve is controlled by certain analytic quantities associated with modular symbols as conjectured by Kurihara.

2020 Mathematics Subject Classification: 11R23, 11R34, 11G05, 11G40

Keywords and Phrases: p-Selmer group, modular symbols, elliptic curves, Euler systems, Kolyvagin systems, Mazur–Tate conjecture

1 INTRODUCTION

In modern number theory, it is an attractive area of research to connect L-values with Selmer groups. For instance, the Birch and Swinnerton-Dyer conjecture relates arithmetic data of an elliptic curve over a number field to the behavior of its L-function at $s = 1$. In the present paper, we prove that the dimension of the (classical) p-Selmer group $\text{Sel}(\mathbb{Q}, E[p])$ of an elliptic curve E/\mathbb{Q} is controlled by certain analytic quantities associated with modular symbols as conjectured by Kurihara in [\[10\]](#page-30-0).

1.1 Main result

In order to explain the main result in detail, we first introduce some notations and hypotheses. Let E/\mathbb{Q} be an elliptic curve and let $S_{bad}(E)$ denote the set of primes at which E has bad reduction. For each prime $\ell \in S_{bad}(E)$, we denote by $\mathrm{Tam}_\ell(E) := [E(\mathbb{Q}_\ell): E^0(\mathbb{Q}_\ell)]$ the Tamagawa number for E/\mathbb{Q}_ℓ . As in the paper [\[10\]](#page-30-0) of Kurihara, we consider a prime $p > 3$ satisfying the following conditions:

1892 R. Sakamoto

- (a) p is a good ordinary prime for E .
- (b) The action of $Gal(\overline{Q}/Q)$ on $E[p]$ is surjective.
- (c) $p \nmid \#E(\mathbb{F}_p) \prod_{\ell \in S_{\text{bad}}(E)} \text{Tam}_{\ell}(E).$

Let $\mathcal{P}_{1,0}$ denote the set of Kolyvagin primes, that is,

$$
\mathcal{P}_{1,0} := \{ \ell \notin S_{bad}(E) \mid E(\mathbb{F}_{\ell})[p] \cong \mathbb{F}_p \text{ and } \ell \equiv 1 \pmod{p} \}.
$$

We define $\mathcal{N}_{1,0}$ to be the set of square-free products in $\mathcal{P}_{1,0}$. We fix a generator $h_\ell \in \text{Gal}(\mathbb{Q}(\mu_\ell)/\mathbb{Q})$ for each prime $\ell \in \mathcal{P}_{1,0}$, and we obtain a surjective homomorphism (induced by the discrete logarithm to the base h_{ℓ})

$$
\overline{\log}_{h_{\ell}} \colon \operatorname{Gal}(\mathbb{Q}(\mu_{\ell})/\mathbb{Q}) \xrightarrow{\sim} \mathbb{Z}/(\ell-1) \longrightarrow \mathbb{F}_p; h_{\ell}^a \mapsto a \bmod p.
$$

Let f_E denote the newform of weight 2 associated with E/\mathbb{Q} . Take an integer $d \in \mathcal{N}_{1,0}$. For any integer a with $(a, d) = 1$, we write $\sigma_a \in \text{Gal}(\mathbb{Q}(\mu_a)/\mathbb{Q})$ for the element satisfying $\sigma_a(\zeta) = \zeta^a$ for any $\zeta \in \mu_d$ and put

$$
[a/d] := 2\pi\sqrt{-1} \int_{\sqrt{-1}\infty}^{a/d} f_E(z) \,\mathrm{d}z.
$$

The assumption (b) implies that $\text{Re}([a/d])/\Omega_E^+ \in \mathbb{Z}_p$, where Ω_E^+ is the Néron period of E (cf. [\[23\]](#page-31-0)). Following Kurihara in [\[10\]](#page-30-0), we define an analytic quantity δ_d which relates to L-values by

$$
\widetilde{\delta}_d := \sum_{\substack{a=1 \\ (a,d)=1}}^d \frac{\text{Re}([a/d])}{\Omega_E^+} \cdot \prod_{\ell \mid d} \overline{\log}_{h_\ell}(\sigma_a) \in \mathbb{F}_p,
$$

Kurihara remarked in [\[10\]](#page-30-0) that it is easy to compute the analytic quantity $\widetilde{\delta}_d$ (see [\[10,](#page-30-0) §5.3]), and gave the following conjecture.

CONJECTURE1.1 ([\[10,](#page-30-0) Conjecture 1]). There is an integer $d \in \mathcal{N}_{1,0}$ with $\widetilde{\delta}_d \neq 0$.

Concerning this conjecture, Kurihara proved in [\[10\]](#page-30-0) that the non-degeneracy of the p-adic height pairing and the Iwasawa main conjecture for E/\mathbb{Q} imply Conjecture [1.1.](#page-1-0) In the paper [\[5\]](#page-30-1), Chan-Ho Kim, Myoungil Kim, and Hae-Sang Sun called δ_d Kurihara number at d and gave a simple and efficient numerical criterion to verify the Iwasawa main conjecture for E/\mathbb{Q} by using δ_d , namely, they proved in [\[5\]](#page-30-1) that Conjecture [1.1](#page-1-0) implies the Iwasawa main conjecture for E/\mathbb{Q} . Moreover, Chan-Ho Kim and Nakamura in [\[6\]](#page-30-2) generalized this numerical criterion to the additive reduction case. In the present paper, we give the following answer to Conjecture [1.1.](#page-1-0)

THEOREM 1.2 (Corollary [4.3\)](#page-26-0). Conjecture [1.1](#page-1-0) is equivalent to the Iwasawa main conjecture for E/\mathbb{O} .

Remark 1.3. Skinner and Urban proved in [\[22\]](#page-31-1) that if there exists a prime $q \neq p$ such that $\text{ord}_q(N_E) = 1$ and $E[p]$ is ramified at q, then the Iwasawa main conjecture for E is valid. Here N_E is the conductor of E/\mathbb{Q} .

Next, let us explain the relation between the structure of the p-Selmer group Sel(Q, $E[p]$) and the analytic quantities δ_d . For that, we use the following terminology of Kurihara in [\[10\]](#page-30-0).

DEFINITION 1.4. We say that an integer $d \in \mathcal{N}_{1,0}$ is δ -minimal if $\widetilde{\delta}_d \neq 0$ and $\widetilde{\delta}_e = 0$ for any positive proper divisor e of d.

Recall that, by the definition of the p-Selmer group, the localization map at ℓ induces a natural homomorphism

$$
\mathrm{Sel}(\mathbb{Q}, E[p]) \longrightarrow E(\mathbb{Q}_{\ell}) \otimes_{\mathbb{Z}} \mathbb{F}_p.
$$

Let $d \in \mathcal{N}_{1,0}$ be a δ -minimal integer. Kurihara proved in [\[10\]](#page-30-0) that the natural homomorphism

$$
\mathrm{Sel}(\mathbb{Q}, E[p]) \longrightarrow \bigoplus_{\ell \mid d} E(\mathbb{Q}_{\ell}) \otimes_{\mathbb{Z}} \mathbb{F}_p \tag{1}
$$

is injective (see Remark [4.5\)](#page-27-0), and he conjectured in [\[10,](#page-30-0) Conjecture 2] that the homomorphism [\(1\)](#page-2-0) is an isomorphism. By the definition of $\mathcal{P}_{1,0}$, we have

$$
\dim_{\mathbb{F}_p}(E(\mathbb{Q}_\ell) \otimes_{\mathbb{Z}} \mathbb{F}_p) = 1
$$

for each prime divisor $\ell \mid d$, and hence this conjecture is equivalent to that

$$
\dim_{\mathbb{F}_p}(\mathrm{Sel}(\mathbb{Q}, E[p])) = \nu(d),
$$

where $\nu(d)$ denotes the number of distinct prime divisors of d. Kurihara showed in [\[10,](#page-30-0) Theorem 4] that [\(1\)](#page-2-0) is an isomorphism in some special cases. In the present paper, we solve this conjecture.

THEOREM 1.5 (Theorem [4.8\)](#page-28-0). For any δ -minimal integer $d \in \mathcal{N}_{1,0}$, we have the natural isomorphism

$$
\mathrm{Sel}(\mathbb{Q}, E[p]) \stackrel{\sim}{\longrightarrow} \bigoplus_{\ell \mid d} E(\mathbb{Q}_{\ell}) \otimes_{\mathbb{Z}} \mathbb{F}_p,
$$

and hence $\dim_{\mathbb{F}_p} (\mathrm{Sel}(\mathbb{Q}, E[p])) = \nu(d)$.

Remark 1.6. Theorem [1.5](#page-2-1) implies that for any integer $d \in \mathcal{N}_{1,0}$ with $\widetilde{\delta}_d \neq 0$, we have

$$
\dim_{\mathbb{F}_p}(\mathrm{Sel}(\mathbb{Q}, E[p])) \le \nu(d).
$$

Note that the analytic quantity $\tilde{\delta}_d$ is computable, as the author mentioned above.

Remark 1.7. After the author had got almost all the results in the present paper, Chan-Ho Kim told the author that he also proved the same result (see [\[7\]](#page-30-3)). Remark 1.8. The analogue of Theorem [1.5](#page-2-1) for ideal class groups does not hold. Kurihara has given a counter-example in [\[10,](#page-30-0) §5.4]. In Remark [4.9,](#page-28-1) we explain an important property to prove Theorem [1.5.](#page-2-1)

By using the functional equation for modular symbols (see [\[13,](#page-30-4) (1.6.1)]), Kuri-hara showed in [\[10,](#page-30-0) Lemma 4] that $w_E = (-1)^{\nu(d)}$ for any δ -minimal integer $d \in \mathcal{N}_{1,0}$. Here w_E denotes the (global) root number of E/\mathbb{Q} . Hence, as an application of Theorem [1.5,](#page-2-1) we obtain the following result concerning the parity of the order of vanishing of L-function $L(E/\mathbb{Q}, s)$ at $s = 1$:

COROLLARY 1.9. Suppose that the Iwasawa main conjecture for E/\mathbb{Q} holds true. Then we have

$$
\dim_{\mathbb{F}_p}(\mathrm{Sel}(\mathbb{Q}, E[p])) \equiv \mathrm{ord}_{s=1}(L(E/\mathbb{Q}, s)) \pmod{2}
$$

Moreover, if the p-primary part of the Tate–Shafarevich group for E/\mathbb{Q} is finite, then we have

$$
rank_{\mathbb{Z}}(E(\mathbb{Q})) \equiv ord_{s=1}(L(E/\mathbb{Q}, s)) \pmod{2}.
$$

Proof. Since we assume that the Iwasawa main conjecture for E/\mathbb{Q} holds true, Theorem [1.2](#page-1-1) shows that there is a δ -minimal integer $d \in \mathcal{N}_{1,0}$. Then, Theorem [1.5,](#page-2-1) combined with the fact that $w_E = (-1)^{\nu(d)}$, implies that $w_E = (-1)^{\dim_{\mathbb{F}_p}(\text{Sel}(\mathbb{Q}, E[p]))}$. Since $w_E = (-1)^{\text{ord}_{s=1}(\hat{L}(E/\mathbb{Q}, s))}$, we have $\dim_{\mathbb{F}_p}(\mathrm{Sel}(\mathbb{Q}, E[p])) \equiv \mathrm{ord}_{s=1}(L(E/\mathbb{Q}, s)) \pmod{2}.$ \Box

Remark 1.10. Corollary [1.9](#page-3-0) has already been proved by Nekovář in $[14]$ (see also [\[15\]](#page-30-6)), assuming only the condition (a). However, the proof of Corollary [1.9](#page-3-0) is completely different from that of [\[14,](#page-30-5) Theorem A].

The proof of Theorem [1.5](#page-2-1) is based on the theory of Kolyvagin systems of rank 0 developed in [\[21\]](#page-31-2). In §[2,](#page-5-0) we introduce the theory of Kolyvagin systems. In §[3,](#page-16-0) we construct a Kolyvagin system of rank 0 from modular symbols. In §[4,](#page-25-0) we discuss the relation between this Kolyvagin system and the set of the analytic quantities $\{\delta_d\}_{d \in \mathcal{N}_{1,0}}$, and we give a proof of Theorem [1.5.](#page-2-1) Moreover, by using the Kolyvagin system constructed in §[3,](#page-16-0) we construct an explicit basis of the p-Selmer group (see Corollary [4.10\)](#page-29-0).

1.2 A MOD p analog of the Mazur–Tate refined conjecture of BSD type

As in the previous subsection, let E/\mathbb{Q} be an elliptic curve satisfying the conditions (a), (b), and (c). For each integer $d \in \mathcal{N}_{1,0}$, the Mazur–Tate modular element $\theta_{\mathbb{Q}(\mu_d)}$ is defined by

$$
\widetilde{\theta}_{\mathbb{Q}(\mu_d)} := \sum_{\substack{a=1 \\ (a,d)=1}}^d \frac{\text{Re}([a/d])}{\Omega_E^+} \sigma_a \in \mathbb{Z}_p[\text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q})],
$$

and Mazur and Tate conjectured in [\[13\]](#page-30-4) a refined Birch and Swinnerton-Dyer conjecture consisting of two parts, by using $\theta_{\mathbb{Q}(\mu_d)}$. One of the two parts concerns the order of vanishing of $\theta_{\mathbb{Q}(\mu_d)}$ (the rank-part). More precisely, the following is the rank-part of the Mazur-Tate conjecture.

CONJECTURE 1.11 (Mazur–Tate). Let $\mathcal{I}_d := \ker(\mathbb{Z}_p[\text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q})] \longrightarrow \mathbb{Z}_p)$. Then

$$
\widetilde{\theta}_{\mathbb{Q}(\mu_d)} \in (\mathcal{I}_d)^{r_E},
$$

where $r_E := \text{rank}_{\mathbb{Z}}(E(\mathbb{Q}))$.

Remark 1.12.

- (1) Under the validity of the $\mu = 0$ conjecture, Kurihara proved Conjecture [1.11](#page-4-0) (see [\[10,](#page-30-0) Remark 2] and [\[13,](#page-30-4) Proposition 3]).
- (2) Since we only consider integers in $\mathcal{N}_{1,0}$ in the present paper, Conjecture [1.11](#page-4-0) is proved by Ota when $p \ge r_E$ (see [\[16,](#page-30-7) Theorem 1.2]).

By using Ota's results in $[16]$, we show the following theorem which is a mod p analog of Conjecture [1.11.](#page-4-0)

THEOREM 1.13. Let $\overline{\mathcal{I}}_d := \ker(\mathbb{F}_p[\text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q})] \longrightarrow \mathbb{F}_p)$. We have

$$
\widetilde{\theta}_{\mathbb{Q}(\mu_d)} \bmod p \in (\overline{\mathcal{I}}_d)^{r_p},
$$

where $r_p := \dim_p(\text{Sel}(\mathbb{Q}, E[p]))$.

Proof. Note that $r_p - 1 \leq \dim_p(\ker(\text{Sel}(\mathbb{Q}, E[p]) \longrightarrow E(\mathbb{Q}_p)/p))$ since $E(\mathbb{Q}_p)/p \cong \mathbb{F}_p$. Then by [\[16,](#page-30-7) Proposition 3.3, Theorem 4.9, Corollary 5.13], we have

$$
\widetilde{\theta}_{\mathbb{Q}(\mu_d)} \mod p \in (\overline{\mathcal{I}}_d)^{r_p-1}.
$$

Moreover, the p-parity conjecture (see $[14]$) and the functional equation of the modular element $\theta_{\mathbb{Q}(\mu_d)}$ (see [\[16,](#page-30-7) Proposition 5.16]) show that

$$
\widetilde{\theta}_{\mathbb{Q}(\mu_d)} \bmod p \in (\overline{\mathcal{I}}_d)^{r_p}
$$

(see the proof of $[16,$ Theorem 5.17]).

Remark 1.14. In the statement of $[16,$ Theorem 4.9, there is the assumption that $\max_{\ell \in S} \{e_{\ell}(D)\} < p$. This assumption is only used to prove [\[16,](#page-30-7) Lemma 3.1], which states a certain relation between Darmon–Kolyvagin derivatives. However, since $q = p$ in our case, [\[16,](#page-30-7) Lemma 3.1] holds true without any assumption, and hence the conclusion of [\[16,](#page-30-7) Theorem 4.9] is valid without the assumption that $\max_{\ell|S}\{e_{\ell}(D)\} < p$.

Documenta Mathematica 27 (2022) 1891–1922

 \Box

Theorem [1.13](#page-4-1) is equivalent to that the maximum value of the set of the vanishing orders of $\theta_{\mathbb{Q}(\mu_d)}$ mod p is at least r_p , namely,

$$
r_p \le \max\{r \ge 0 \mid \widetilde{\theta}_{\mathbb{Q}(\mu_d)} \mod p \in (\overline{\mathcal{I}}_d)^r \text{ for any } d \in \mathcal{N}_{1,0}\}.
$$

As a corollary of the main result of the present paper, we show the opposite inequality.

THEOREM 1.15. Suppose that the Iwasawa main conjecture for E/\mathbb{Q} holds true. Then we have

$$
r_p = \max\{r \ge 0 \mid \widetilde{\theta}_{\mathbb{Q}(\mu_d)} \bmod p \in (\overline{\mathcal{I}}_d)^r \text{ for any } d \in \mathcal{N}_{1,0}\}.
$$

Proof. Since we assume the validity of the Iwasawa main conjecture for E/\mathbb{Q} , we have a δ -minimal integer $d \in \mathcal{N}_{1,0}$ by Theorem [1.2.](#page-1-1) Then

$$
\nu(d) = r_p
$$

by Theorem [1.5.](#page-2-1) Hence it suffices to show that $\theta_{\mathbb{Q}(\mu_d)} \mod p \notin (\overline{\mathcal{I}}_d)^{\nu(d)+1}$. This fact follows from the definition of the δ -minimality, Remark [3.1,](#page-17-0) and Lemmas [3.13](#page-22-0) and [3.14.](#page-23-0) П

Acknowledgement

The author would like to thank Masato Kurihara for his careful reading of the paper and his many helpful suggestions. The author would also like to thank Chan-Ho Kim for helpful comments. The author would like to thank the referee for helpful comments and suggestions. The author was supported by JSPS KAKENHI Grant Number 20J00456.

2 The theory of Kolyvagin system

In this section, we recall the theory of Kolyvagin systems. The contents of this section are based on [\[11,](#page-30-8) [21\]](#page-31-2).

Let $p > 3$ be a prime satisfying the hypotheses (a), (b) and (c). For notational simplicity, we put

$$
M/p^m := M/p^m M
$$

for any abelian group M. Fix integers $n \geq 0$ and $m \geq 1$. Let \mathbb{Q}_n denote the n-th layer of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . We then put

$$
R := \mathbb{Z}_p/p^m[\text{Gal}(\mathbb{Q}_n/\mathbb{Q})] \text{ and } T := \text{Ind}_{G_{\mathbb{Q}_n}}^{G_{\mathbb{Q}}} (E[p^m]).
$$

Note that T satisfies the hypotheses $(H.0) - (H.3)$ in [\[11,](#page-30-8) §3.5]. However, T does not satisfy the hypothesis (H.4) in [\[11,](#page-30-8) §3.5] when $p = 3$.

2.1 Selmer structures

We introduce two Selmer structures on T. Recall that a Selmer structure $\mathcal F$ on T is a collection of the following data:

- a finite set $S(\mathcal{F})$ of rational primes containing $S_{bad}(E) \cup \{p\},\$
- a choice of R-submodule $H^1_{\mathcal{F}}(G_{\mathbb{Q}_\ell},T)$ of $H^1(G_{\mathbb{Q}_\ell},T)$ for each prime $\ell \in$ $S(\mathcal{F}).$

Here, for any field K, we denote by \overline{K} a separable closure of K and set G_K := $Gal(\overline{K}/K)$. For each prime $\ell \notin S(\mathcal{F})$, we set

$$
H^1_{\mathcal{F}}(G_{\mathbb{Q}_{\ell}},T) := H^1_{\text{ur}}(\mathbb{Q}_{\ell},T) := \text{ker}\left(H^1(G_{\mathbb{Q}_{\ell}},T) \longrightarrow H^1(G_{\mathbb{Q}_{\ell}^{\text{ur}}},T)\right),
$$

where $\mathbb{Q}_{\ell}^{\text{ur}}$ denotes the maximal unramified extension of \mathbb{Q}_{ℓ} . We define the Selmer module $H^1_{\mathcal{F}}(G_{\mathbb{Q}},T)$ by

$$
H^1_{\mathcal{F}}(G_{\mathbb{Q}},T):=\ker\left(H^1(G_{\mathbb{Q}},T)\longrightarrow \bigoplus_{\ell}H^1(G_{\mathbb{Q}_{\ell}},T)/H^1_{\mathcal{F}}(G_{\mathbb{Q}_{\ell}},T)\right).
$$

Set $T^{\vee}(1) := \text{Hom}(T, \mu_{p^{\infty}})$. For each prime ℓ , we define

$$
H^1_{\mathcal{F}^*}(G_{\mathbb{Q}_{\ell}},T^\vee(1))\subset H^1(G_{\mathbb{Q}_{\ell}},T^\vee(1))
$$

to be the orthogonal complement of $H^1_{\mathcal{F}}(G_{\mathbb{Q}_\ell},T)$ with respect to the local Tate pairing. Hence we obtain the dual Selmer structure \mathcal{F}^* on $T^{\vee}(1)$. Throughout this paper, we regard \mathcal{F}^* as a Selmer structure on T by using the isomorphism $T \cong T^{\vee}(1)$ induced by the Weil pairing.

THEOREM2.1 ([\[11,](#page-30-8) Theorem 2.3.4]). Let \mathcal{F}_1 and \mathcal{F}_2 be Selmer structures on T satisfying

$$
H^1_{\mathcal{F}_1}(G_{\mathbb{Q}_\ell},T) \subset H^1_{\mathcal{F}_2}(G_{\mathbb{Q}_\ell},T)
$$

for all primes ℓ . Then we have an exact sequence of R-modules

$$
\begin{aligned} 0 \longrightarrow H^1_{\mathcal{F}_1}(G_\mathbb{Q}, T) \longrightarrow H^1_{\mathcal{F}_2}(G_\mathbb{Q}, T) \longrightarrow \bigoplus_\ell H^1_{\mathcal{F}_2}(G_{\mathbb{Q}_\ell}, T) / H^1_{\mathcal{F}_1}(G_{\mathbb{Q}_\ell}, T) \\ & \longrightarrow H^1_{\mathcal{F}_1^*}(G_\mathbb{Q}, T)^\vee \longrightarrow H^1_{\mathcal{F}_2^*}(G_\mathbb{Q}, T)^\vee \longrightarrow 0, \end{aligned}
$$

where ℓ runs over all the rational primes satisfying $H^1_{\mathcal{F}_1}(G_{\mathbb{Q}_\ell},T) \neq$ $H^1_{\mathcal{F}_2}(G_{\mathbb{Q}_\ell},T)$. Here $(-)^\vee := \text{Hom}(-,\mathbb{Q}_p/\mathbb{Z}_p)$.

LEMMA2.2 ([\[1,](#page-29-1) §3.2], [\[11,](#page-30-8) Lemma 3.5.3]). For any Selmer structure $\mathcal F$ on T , the canonical map $E[p] \longrightarrow T$ induces an isomorphism

$$
H^1_{\mathcal{F}^*}(G_{\mathbb{Q}}, E[p]) \xrightarrow{\sim} H^1_{\mathcal{F}^*}(G_{\mathbb{Q}}, T)[\mathfrak{m}_R].
$$

Here \mathfrak{m}_R denote the maximal ideal of R. In particular, $H^1_{\mathcal{F}^*}(G_{\mathbb{Q}}, E[p]) = 0$ if and only if $H^1_{\mathcal{F}^*}(G_{\mathbb{Q}},T)=0.$

1898 R. Sakamoto

Following Mazur and Rubin, we define the transversal local condition $H^1_{\text{tr}}(G_{\mathbb{Q}_\ell}, T)$ and a Selmer structure $\mathcal{F}^a_b(c)$ on T.

DEFINITION 2.3.

- (1) For any integer d, we write $\mathbb{Q}(d)$ for the maximal p-subextension of $\mathbb{Q}(\mu_d)$.
- (2) For any prime ℓ , define

$$
H^1_{\text{tr}}(G_{\mathbb{Q}_{\ell}},T) := \text{ker}\left(H^1(G_{\mathbb{Q}_{\ell}},T) \longrightarrow H^1(G_{\mathbb{Q}(\ell)\otimes \mathbb{Q}_{\ell}},T)\right).
$$

We also set $H^1_{\gamma^*}(G_{\mathbb{Q}_\ell},T) := H^1(G_{\mathbb{Q}_\ell},T)/H^1_*(G_{\mathbb{Q}_\ell},T)$ for $*\in \{\text{ur},\text{tr}\}.$

(3) Let a, b, and c be pairwise relatively prime (square-free) integers. Define the Selmer structure $\mathcal{F}_{b}^{a}(c)$ on T by the following data:

$$
- S(\mathcal{F}_b^a(c)) := S(\mathcal{F}) \cup \{ \ell \mid abc \},
$$

$$
- H^1_{\mathcal{F}_b^a(c)}(G_{\mathbb{Q}_\ell}, T) := \begin{cases} H^1(G_{\mathbb{Q}_\ell}, T) & \text{if } \ell \mid a, \\ 0 & \text{if } \ell \mid b, \\ H^1_{\text{tr}}(G_{\mathbb{Q}_\ell}, T) & \text{if } \ell \mid c, \\ H^1_{\mathcal{F}}(G_{\mathbb{Q}_\ell}, T) & otherwise. \end{cases}
$$

Note that $(\mathcal{F}_{b}^{a}(c))^{*} = (\mathcal{F}^{*})_{a}^{b}(c)$. For simplicity, we will write \mathcal{F}^{a} , \mathcal{F}_{b} , $\mathcal{F}(c)$, ... instead of $\mathcal{F}_1^a(1)$, $\mathcal{F}_b^1(1)$, $\mathcal{F}_1^1(c)$, ..., respectively.

DEFINITION 2.4 (classical Selmer structure). We define the classical Selmer structure \mathcal{F}_{cl} on T by the following:

- $S(\mathcal{F}_{\text{cl}}) := S_{\text{bad}}(E) \cup \{p\},\$
- $H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}_\ell},T) := \text{im} \left(\bigoplus_{\mathfrak{l} \mid \ell} E(\mathbb{Q}_{n,\mathfrak{l}})/p^m \hookrightarrow H^1(G_{\mathbb{Q}_\ell},T) \right)$ for each prime $\ell \in S(\mathcal{F}_{\text{cl}}).$

By definition, the Selmer module $H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}},T)$ coincides with the classical p^m . Selmer group $\text{Sel}(\mathbb{Q}_n, E[p^m])$ associated with the elliptic curve E/\mathbb{Q}_n . We also note that $\mathcal{F}_{\text{cl}} = \mathcal{F}_{\text{cl}}^*$.

DEFINITION 2.5 (canonical Selmer structure). We define the canonical Selmer structure \mathcal{F}_{can} on T by

$$
\mathcal{F}_{\mathrm{can}}=\mathcal{F}_{\mathrm{cl}}^p.
$$

LEMMA 2.6. For any prime $\ell \neq p$, we have

$$
H^1_{\mathcal{F}_{\text{can}}}(G_{\mathbb{Q}_{\ell}},T) = H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}_{\ell}},T) = H^1_{\text{ur}}(G_{\mathbb{Q}_{\ell}},T).
$$

Proof. By definition, it suffices to show that $E(K)/p^m = H^1_{ur}(G_K, E[p^m])$ for any unramified p-extension K/\mathbb{Q}_ℓ . Note that $\#H^1_{\text{ur}}(G_K, E[p^m]) =$ $#H^0(G_K, E[p^m]) = #E(K)/p^m$ since $\ell \neq p$. Hence it suffices to show that $E(K)/p^m \subset H^1_{\text{ur}}(G_K, E[p^m])$. Since we assume that $\ell \neq p$ and $p \nmid \text{Tam}_{\ell}(E)$, we have $E(\mathbb{Q}_{\ell}^{\text{ur}})/p^m = \widetilde{E}(\overline{\mathbb{F}}_{\ell})/p^m = 0$, where \widetilde{E} denotes the reduction of E at ℓ . This fact implies $E(K)/p^m \subset H^1_{\text{ur}}(G_K, E[p^m])$.

Remark 2.7. Let K/\mathbb{Q}_ℓ be an unramified extension. The assumption that $p \nmid \text{Tam}_{\ell}(E)$ implies that $E(\mathbb{Q}_{\ell}^{\text{ur}})[p^{\infty}]$ is divisible. This fact shows that

$$
H^1_{\text{ur}}(G_K, T_p(E)) = \ker(H^1(G_K, T_p(E)) \longrightarrow H^1(G_{\mathbb{Q}_\ell^{\text{ur}}}, T_p(E)) \otimes \mathbb{Q}_p)
$$

and im $(H^1_{\text{ur}}(G_K, T_p(E)) \longrightarrow H^1(G_K, E[p^m])) = H^1_{\text{ur}}(G_K, E[p^m])$. Therefore, by Lemma [2.6,](#page-7-0) the canonical Selmer structure in the present paper is the same as the Selmer structure induced by the canonical Selmer structure defined in [\[11,](#page-30-8) Definition 3.2.1].

Note that we have the canonical injection $E[p] \hookrightarrow T$.

DEFINITION 2.8. We say that a Selmer structure $\mathcal F$ on T is cartesian if the homomorphism

$$
\mathrm{coker}\left(H^1_{\mathcal{F}}(G_{\mathbb{Q}_\ell},T)\longrightarrow H^1(G_{\mathbb{Q}_\ell},E[p])\right)\longrightarrow H^1(G_{\mathbb{Q}_\ell},T)/H^1_{\mathcal{F}}(G_{\mathbb{Q}_\ell},T)
$$

induced by $E[p]$ \longrightarrow T is injective for any prime $\ell \in S(\mathcal{F})$.

PROPOSITION 2.9. The Selmer structure \mathcal{F}_{can} on T is cartesian.

Proof. Since we assume $p \nmid \#E(\mathbb{F}_p)$, we have $H^2(G_{\mathbb{Q}_p}, E[p]) \cong H^0(G_{\mathbb{Q}_p}, E[p]) =$ 0. This fact implies coker $(H^1_{\mathcal{F}_{can}}(G_{\mathbb{Q}_p}, T) \longrightarrow H^1(\hat{G}_{\mathbb{Q}_p}, E[p]) = 0.$ Take a prime $\ell \in S_{bad}(E)$. Since \mathbb{Q}_n/\mathbb{Q} is unramified at ℓ , Lemma [2.6](#page-7-0) shows that there are natural injections

$$
coker (H^1_{\mathcal{F}_{can}}(G_{\mathbb{Q}_\ell}, T) \longrightarrow H^1(G_{\mathbb{Q}_\ell}, E[p])) \longrightarrow H^1(G_{\mathbb{Q}_\ell^{\mathrm{ur}}}, E[p])
$$

and

$$
H^1(G_{\mathbb{Q}_{\ell}},T)/H^1_{\mathcal{F}_{\text{can}}}(G_{\mathbb{Q}_{\ell}},T) \longrightarrow H^1(G_{\mathbb{Q}_{\ell}^{\text{ur}}},T) \cong \bigoplus_{\mathfrak{l} \mid \ell} H^1(G_{\mathbb{Q}_{\ell}^{\text{ur}}},E[p^m]).
$$

Since $p \nmid \text{Tam}_{\ell}(E)$, the module $E(\mathbb{Q}_{\ell}^{\text{ur}})[p^{\infty}]$ is divisible. Hence $E(\mathbb{Q}_{\ell}^{\text{ur}})[p^m] \xrightarrow{\times p}$ $E(\mathbb{Q}_{\ell}^{\text{ur}})[p^{m-1}]$ is surjective, and $H^1(G_{\mathbb{Q}_{\ell}^{\text{ur}}}, E[p]) \longrightarrow H^1(G_{\mathbb{Q}_{\ell}^{\text{ur}}}, E[p^m])$ is injective. This completes the proof. \Box

2.2 STRUCTURE OF LOCAL POINTS

Let K/\mathbb{Q} be a finite abelian *p*-extension and put

$$
G := \operatorname{Gal}(K/\mathbb{Q}).
$$

Let \widehat{E} denote the formal group associated with E/\mathbb{Q}_p and put

$$
\widehat{E}(\mathfrak{m}_{K_{\mathfrak{p}}}) := \bigoplus_{\mathfrak{p} \mid p} \widehat{E}(\mathfrak{m}_{K_{\mathfrak{p}}}).
$$

Here m_L denotes the maximal ideal of the ring of integers of L for any algebraic extension L/\mathbb{Q}_p .

LEMMA 2.10. We have $\widehat{E}(\mathfrak{m}_{\mathbb{Q}_p})/p = (\widehat{E}(\mathfrak{m}_{K_p})/p)^G$.

Proof. Since $p \nmid \#E(\mathbb{F}_p)$, Tan proved in [\[24,](#page-31-3) Theorem 2 (a)] that

$$
H^1(G_{\mathbb{Q}_p}, \widehat{E}(\mathfrak{m}_{\overline{\mathbb{Q}}_p})) = 0.
$$

Take a prime $\mathfrak{p} \mid p$ of K and put $G_{\mathfrak{p}} := \text{Gal}(K_{\mathfrak{p}}/\mathbb{Q}_p)$. The injectivity of the inflation map $H^1(G_{\mathfrak{p}}, \widetilde{E}(\mathfrak{m}_{K_{\mathfrak{p}}})) \longrightarrow H^1(G_{\mathbb{Q}_p}, \widetilde{E}(\mathfrak{m}_{\overline{\mathbb{Q}}_p}))$ implies $H^1(G_{\mathfrak{p}}, \widetilde{E}(\mathfrak{m}_{K_{\mathfrak{p}}})) =$ 0. Since $K_{\mathfrak{p}}/\mathbb{Q}_p$ is a p-extension and $E(\mathbb{Q}_p)[p] = 0$, the module $E(K_{\mathfrak{p}})$ is p-torsion-free. Hence the vanishing of $H^1(G_{\mathfrak{p}}, \widehat{E}(\mathfrak{m}_{K_{\mathfrak{p}}}))$ implies

$$
\widehat{E}(\mathfrak{m}_{\mathbb{Q}_p})/p = (\widehat{E}(\mathfrak{m}_{K_{\mathfrak{p}}})/p)^{G_{\mathfrak{p}}}.
$$

Since

$$
\widehat{E}(\mathfrak{m}_{K_p})/p \cong \widehat{E}(\mathfrak{m}_{K_{\mathfrak{p}}})/p \otimes_{\mathbb{F}_p} \mathbb{F}_p[G/G_{\mathfrak{p}}],
$$

we see that $\widehat{E}(\mathfrak{m}_{\mathbb{Q}_p})/p = (\widehat{E}(\mathfrak{m}_{K_p})/p)^G$.

 \Box

PROPOSITION 2.11. The $\mathbb{Z}_p[G]$ -module $\widehat{E}(\mathfrak{m}_{K_p})$ is free of rank 1.

Proof. For any finitely generated $\mathbb{F}_p[G]$ -module M, put M^* := $\text{Hom}_{\mathbb{F}_p[G]}(M,\mathbb{F}_p[G])$. Since $\mathbb{F}_p[G]$ is a zero-dimensional Gorenstein local ring, we have $M \cong M^{**}$ by Matlis duality. Applying this fact to $((\widehat{E}(\mathfrak{m}_{K_p})/p)^*)_G$ and $E(\mathfrak{m}_{K_p})/p$, we obtain

$$
((\widehat{E}(\mathfrak{m}_{K_p})/p)^*)_G \cong (((\widehat{E}(\mathfrak{m}_{K_p})/p)^*)_G)^{**}
$$

$$
\cong ((\widehat{E}(\mathfrak{m}_{K_p})/p)^{**})^G)^*
$$

$$
\cong (\widehat{E}(\mathfrak{m}_{K_p})/p)^G)^*.
$$

By Lemma [2.10,](#page-9-0) we have $((\widehat{E}(\mathfrak{m}_{K_p})/p)^G)^* = (\widehat{E}(\mathfrak{m}_{\mathbb{Q}_p})/p)^* \cong (\mathbb{F}_p)^* \cong \mathbb{F}_p$. Hence $(\widehat{E}(\mathfrak{m}_{K_p})/p)^*$ is a cyclic $\mathbb{F}_p[G]$ -module. Furthermore, the fact that $\widehat{E}(\mathfrak{m}_{K_p}) \cong \mathbb{Z}_p^{[K: \mathbb{Q}]}$ as \mathbb{Z}_p -modules implies that

$$
(\widehat{E}(\mathfrak{m}_{K_p})/p)^* \cong \mathbb{F}_p[G].
$$

Therefore, $\widehat{E}(\mathfrak{m}_{K_p})/p$ is also free of rank 1, and the $\mathbb{Z}_p[G]$ -module $\widehat{E}(\mathfrak{m}_{K_p})$ is cyclic. Since $\widehat{E}(\mathfrak{m}_{K_p}) \cong \mathbb{Z}_p^{[K: \mathbb{Q}]}$, we conclude that $\widehat{E}(\mathfrak{m}_{K_p}) \cong \mathbb{Z}_p[G]$. \Box

DEFINITION 2.12. For any integer $m \geq 1$, we put

$$
H^1_f(G_{\mathbb{Q}_p}, \mathrm{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m])) := \mathrm{im} \left(\widehat{E}(\mathfrak{m}_{K_p})/p^m \longrightarrow H^1(G_{\mathbb{Q}_p}, \mathrm{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m])) \right).
$$

We also define $H^1_{/f}(G_{\mathbb{Q}_p}, \text{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m]))$ to be

$$
H^1(G_{\mathbb{Q}_p}, \mathrm{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m]))/H^1_f(G_{\mathbb{Q}_p}, \mathrm{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m])).
$$

Remark 2.13. Since we assme $p \nmid \#E(\mathbb{F}_p)$, we have $H^1_f(G_{\mathbb{Q}_p}, T) = H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}_p}, T)$ when $K = \mathbb{Q}_n$.

Corollary 2.14.

(1) The $\mathbb{Z}_p/p^m[G]$ -modules

$$
H^1_f(G_{\mathbb{Q}_p}, \mathrm{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m])) \quad and \quad H^1_{/f}(G_{\mathbb{Q}_p}, \mathrm{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m]))
$$

are free of rank 1.

(2) For any subfield $K' \subset K$, we have natural isomorphisms

$$
H^1_f(G_{\mathbb{Q}_p}, \text{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m]))_{\text{Gal}(K/K')} \xrightarrow{\sim} H^1_f(G_{\mathbb{Q}_p}, \text{Ind}_{G_{K'}}^{G_{\mathbb{Q}}}(E[p^m])),
$$

$$
H^1_{/f}(G_{\mathbb{Q}_p}, \text{Ind}_{G_K}^{G_{\mathbb{Q}}}(E[p^m]))_{\text{Gal}(K/K')} \xrightarrow{\sim} H^1_{/f}(G_{\mathbb{Q}_p}, \text{Ind}_{G_{K'}}^{G_{\mathbb{Q}}}(E[p^m])).
$$

Proof. For simplicity, we put $T_K := Ind_{G_K}^{G_Q}(T_p(E))$. We note that $T_K/p^m \cong \text{Ind}_{G_K}^{G_\mathbb{Q}}(E[p^m])$. Since $H^2(G_{\mathbb{Q}_p}, E[p]) \cong H^0(G_{\mathbb{Q}_p}, E[p]) = 0$ and $\mathbf{R}\Gamma(G_{\mathbb{Q}_p},T_K)\otimes^{\mathbb{L}}_{\mathbb{Z}_p[G]}\mathbb{F}_p\cong\mathbf{R}\Gamma(G_{\mathbb{Q}_p},E[p]),$ the perfect complex $\mathbf{R}\Gamma(G_{\mathbb{Q}_p},T_K)$ is of perfect amplitude in [1, 1]. Hence, for any ideal I of $\mathbb{Z}_p[G]$, we have

$$
H^1(G_{\mathbb{Q}_p},T_K)\otimes_{\mathbb{Z}_p[G]}\mathbb{Z}_p[G]/I \stackrel{\sim}{\longrightarrow} H^1(G_{\mathbb{Q}_p},T_K/IT_K).
$$

Furthermore, the local Euler characteristic formula implies that $H^1(G_{\mathbb{Q}_p}, T_K/T_K)$ is a free $\mathbb{Z}_p[G]/I$ -module of rank 2. By Proposition [2.11,](#page-9-1) the $\mathbb{Z}_p/p^m[G]$ -module $H^1_f(G_{\mathbb{Q}_p}, T_K/p^m)$ is free of rank 1. Since $\mathbb{Z}_p/p^m[G]$ is a self-injective ring, $H^1_{/f}(\hat{G}_{\mathbb{Q}_p}, T_K/p^m)$ is also free of rank 1.

Let us show the claim (2). By claim (1), the exact sequence of $\mathbb{Z}_p/p^m[G]$ modules

$$
0 \longrightarrow H^1_f(G_{\mathbb{Q}_p}, T_K/p^m) \longrightarrow H^1(G_{\mathbb{Q}_p}, T_K/p^m) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T_K/p^m) \longrightarrow 0
$$

is split. Hence we obtain the exact sequence of free $\mathbb{Z}_p/p^m[\text{Gal}(K'/\mathbb{Q})]$ -modules

$$
0 \longrightarrow H_f^1(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \longrightarrow H^1(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \longrightarrow 0.
$$

$$
\longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \longrightarrow 0.
$$

Since $H^1(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \stackrel{\sim}{\longrightarrow} H^1(G_{\mathbb{Q}_p}, T_{K'}/p^m)$, the homomorphism

$$
H^1_f(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \longrightarrow H^1_f(G_{\mathbb{Q}_p}, T_{K'}/p^m)
$$

is injective. Hence by claim (1), we obtain isomorphisms

$$
H^1_f(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \xrightarrow{\sim} H^1_f(G_{\mathbb{Q}_p}, T_{K'}/p^m)
$$

$$
H^1_{/f}(G_{\mathbb{Q}_p}, T_K/p^m)_{\mathrm{Gal}(K/K')} \xrightarrow{\sim} H^1_{/f}(G_{\mathbb{Q}_p}, T_{K'}/p^m).
$$

Documenta Mathematica 27 (2022) 1891–1922

 \Box

1902 R. Sakamoto

COROLLARY 2.15. The Selmer structure \mathcal{F}_{cl} on T is cartesian.

Proof. By Proposition [2.9,](#page-8-0) it suffices to show that the homomorphism

$$
H^1_{/f}(G_{\mathbb{Q}_p}, E[p]) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T)
$$

is injective. Note that this map factors through $H^1_{/f}(G_{\mathbb{Q}_p}, E[p^m])$. By Corol-lary [2.14,](#page-10-0) the canonical homomorphism $H^1_{/f}(G_{\mathbb{Q}_p}, E[p^m]) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T)$ is injective. Let us show that $H^1_{/f}(G_{\mathbb{Q}_p}, E[p]) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, E[p^m])$ is injective. Since $H^1(G_{\mathbb{Q}_p}, E[p^m])$ is a free \mathbb{Z}_p/p^m -module and $H^1(G_{\mathbb{Q}_p}, E[p^m]) \otimes$ $\mathbb{F}_p \cong H^1(G_{\mathbb{Q}_p}, E[p]),$ the canonical homomorphism $H^1(G_{\mathbb{Q}_p}, E[p]) \longrightarrow$ $H^1(G_{\mathbb{Q}_p}, E[p^m])$ is injective. By definition, we have

$$
H^1_f(G_{\mathbb{Q}_p}, E[p^m]) \otimes \mathbb{F}_p = \widehat{E}(\mathfrak{m}_{\mathbb{Q}_p})/p^m \otimes \mathbb{F}_p = \widehat{E}(\mathfrak{m}_{\mathbb{Q}_p})/p = H^1_f(G_{\mathbb{Q}_p}, E[p]).
$$

Since $H^1_f(G_{\mathbb{Q}_p}, E[p^m]) \cong \mathbb{Z}_p/p^m$ by Corollary [2.14,](#page-10-0) we see that the canonical homomorphism $H^1_{/f}(G_{\mathbb{Q}_p}, E[p]) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, E[p^m])$ is injective. \Box

2.3 Kolyvagin systems of rank 1

In this subsection, we recall the definition of Kolyvagin systems of rank 1 introduced by Mazur and Rubin in [\[11\]](#page-30-8). We set

$$
\mathcal{P}_{m,n} := \{ \ell \notin S_{\text{bad}}(E) \mid E(\mathbb{F}_{\ell})[p^m] \cong \mathbb{Z}/p^m \text{ and } \ell \equiv 1 \pmod{p^{\max\{m,n+1\}}}\}.
$$

For any prime $\ell \in \mathcal{P}_{m,n}$, the R-module $H^1_{\text{ur}}(G_{\mathbb{Q}_\ell},T) \cong T/(\text{Fr}_\ell-1)T$ is free of rank 1. Moreover, by [\[11,](#page-30-8) Lemmas 1.2.1, 1.2.3 and 1.2.4], we have

$$
H^1(G_{\mathbb{Q}_{\ell}},T) = H^1_{\text{ur}}(G_{\mathbb{Q}_{\ell}},T) \oplus H^1_{\text{tr}}(G_{\mathbb{Q}_{\ell}},T)
$$

and the R-modules $H^1_{\text{tr}}(G_{\mathbb{Q}_\ell},T)$, $H^1_{/\text{ur}}(G_{\mathbb{Q}_\ell},T)$, and $H^1_{/\text{tr}}(G_{\mathbb{Q}_\ell},T)$ are free of rank 1. Let $\mathcal{N}_{m,n}$ denote the set of square-free products in $\mathcal{P}_{m,n}$. For each integer $d \in \mathcal{N}_{m,n}$, we put

$$
G_d := \bigotimes_{\ell \mid d} \mathrm{Gal}(\mathbb{Q}(\ell)/\mathbb{Q}).
$$

For any prime $\ell \in \mathcal{P}_{m,n}$, we have two homomorphisms

$$
v_{\ell} \colon H^{1}(G_{\mathbb{Q}}, T) \xrightarrow{\mathrm{loc}_{\ell}} H^{1}(G_{\mathbb{Q}_{\ell}}, T) \longrightarrow H^{1}_{/\mathrm{ur}}(G_{\mathbb{Q}_{\ell}}, T),
$$

$$
\varphi_{\ell}^{\mathrm{fs}} \colon H^{1}(G_{\mathbb{Q}}, T) \xrightarrow{\mathrm{loc}_{\ell}} H^{1}(G_{\mathbb{Q}_{\ell}}, T) \xrightarrow{\mathrm{pr}_{\mathrm{ur}}} H^{1}_{\mathrm{ur}}(G_{\mathbb{Q}_{\ell}}, T) \xrightarrow{\phi_{\ell}^{\mathrm{fs}}} H^{1}_{/\mathrm{ur}}(G_{\mathbb{Q}_{\ell}}, T) \otimes_{\mathbb{Z}} G_{\ell}.
$$

Here ϕ_{ℓ}^{fs} is the finite-singular comparison map defined in [\[11,](#page-30-8) Definition 1.2.2] and pr_{ur} denotes the projection map with respect to the decomposition $H^1(G_{\mathbb{Q}_\ell},T) = H^1_{\text{ur}}(G_{\mathbb{Q}_\ell},T) \oplus H^1_{\text{tr}}(G_{\mathbb{Q}_\ell},T).$

DEFINITION 2.16. We define the module $\text{KS}_1(T, \mathcal{F}_{\text{can}})$ of Kolyvagin systems of rank 1 to be the set of elements

$$
(\kappa_d)_{d \in \mathcal{N}_{m,n}} \in \prod_{d \in \mathcal{N}_{m,n}} H^1_{\mathcal{F}_{\text{can}}(d)}(G_{\mathbb{Q}}, T) \otimes_{\mathbb{Z}} G_d
$$

satisfying the finite-singular relation

$$
v_{\ell}(\kappa_d) = \varphi_{\ell}^{\mathrm{fs}}(\kappa_{d/\ell})
$$

for any integer $d \in \mathcal{N}_{m,n}$ and any prime $\ell \mid d$.

For any integer d, we denote by $\nu(d) \in \mathbb{Z}_{\geq 0}$ the number of prime divisors of d.

LEMMA 2.17. Let $a, b, c \in \mathcal{N}_{m,n}$ be pairwise relatively prime integers with $\nu(a)$ − $\nu(b) \geq 1$. If $H^1_{(\mathcal{F}_{\text{can}}^{\ast})_a^b(c)}(G_{\mathbb{Q}}, E[p]) = 0$, then the R-module $H^1_{(\mathcal{F}_{\text{can}})^a_b(c)}(G_{\mathbb{Q}}, T)$ is free of rank $\nu(a) - \nu(b) + 1$.

Proof. Since \mathcal{F}_{can} is cartesian by Proposition [2.9,](#page-8-0) so is $(\mathcal{F}_{\text{can}})_b^a(c)$ by [\[19,](#page-31-4) Corollary 3.18]. By $[11,$ Proposition 6.2.2], we have

$$
\chi(\mathcal F_{\operatorname{can}}):=\dim_{\mathbb F_p}(H^1_{\mathcal F_{\operatorname{can}}}(G_{\mathbb Q},E[p]))-\dim_{\mathbb F_p}(H^1_{\mathcal F^*_{\operatorname{can}}}(G_{\mathbb Q},E[p]))=1,
$$

and [\[19,](#page-31-4) Corollary 3.21] implies $\chi((\mathcal{F}_{\text{can}})_b^a(c)) = \nu(a) - \nu(b) + 1$. Hence this lemma follows from [\[19,](#page-31-4) Lemma 4.6]. \Box

2.4 Kolyvagin systems of rank 0

In this subsection, we recall the definition of Kolyvagin system of rank 0 in our previous paper [\[21\]](#page-31-2). Fix an isomorphism

$$
H^1_{/\text{ur}}(G_{\mathbb{Q}_\ell},T) \cong R
$$

for each prime $\ell \in \mathcal{P}_{m,n}$. We then have homomorphisms

$$
v_{\ell} \colon H^1(G_{\mathbb{Q}_{\ell}}, T) \longrightarrow H^1_{/\text{ur}}(G_{\mathbb{Q}_{\ell}}, T) \cong R,
$$

$$
\varphi_{\ell}^{\text{fs}} \colon H^1(G_{\mathbb{Q}_{\ell}}, T) \longrightarrow H^1_{/\text{ur}}(G_{\mathbb{Q}_{\ell}}, T) \otimes_{\mathbb{Z}} G_{\ell} \cong R \otimes_{\mathbb{Z}} G_{\ell}.
$$

We put $\mathcal{M}_{m,n} := \{(d,\ell) \in \mathcal{N}_{m,n} \times \mathcal{P}_{m,n} \mid \ell \text{ is coprime to } d \}.$

DEFINITION 2.18. A Kolyvagin system of rank 0 is an element

$$
(\kappa_{d,\ell})_{(d,\ell)\in\mathcal{M}_{m,n}} \in \prod_{(d,\ell)\in\mathcal{M}_{m,n}} H^1_{\mathcal{F}^{\ell}_{\text{cl}}(d)}(G_{\mathbb{Q}},T) \otimes_{\mathbb{Z}} G_d
$$

which satisfies the following relations for any elements $(d, \ell), (d, q), (d\ell, q) \in$ $\mathcal{M}_{m,n}$:

$$
v_{\ell}(\kappa_{d\ell,q}) = \varphi_{\ell}^{\text{fs}}(\kappa_{d,q}),
$$

\n
$$
v_{\ell}(\kappa_{1,\ell}) = v_q(\kappa_{1,q}),
$$

\n
$$
v_q(\kappa_{d\ell,q}) = -\varphi_{\ell}^{\text{fs}}(\kappa_{d,\ell}).
$$

We denote by $\text{KS}_0(T, \mathcal{F}_{\text{cl}})$ the module of Kolyvagin systems of rank 0. For any Kolyvagin system $\kappa \in \text{KS}_0(T, \mathcal{F}_{\text{cl}})$ and any element $(d, \ell) \in \mathcal{M}_{m,n}$, we put

$$
\delta(\kappa)_d := v_\ell(\kappa_{d,\ell}) \in R \otimes_{\mathbb{Z}} G_d.
$$

Note that, by the definition of Kolyvagin system of rank 0, the element $\delta(\kappa)$ is independent of the choice of the prime $\ell \nmid d$. Hence we obtain a homomorphism

$$
\delta\colon\mathrm{KS}_0(T,\mathcal{F}_\mathrm{cl})\longrightarrow\prod_{d\in\mathcal{N}_{m,n}}R\otimes_\mathbb{Z}G_d.
$$

Note that $\mathcal{F}_{\text{cl}} = \mathcal{F}_{\text{cl}}^*$.

LEMMA 2.19. Let $a, b, c \in \mathcal{N}_{m,n}$ be pairwise relatively prime integers with $\nu(a) \ge \nu(b)$. If $H^1_{(\mathcal{F}_{c1})_a^b(c)}(G_{\mathbb{Q}}, E[p]) = 0$, then the R-module $H^1_{(\mathcal{F}_{c1})_b^a(c)}(G_{\mathbb{Q}}, T)$ is free of rank $\nu(a) - \nu(b)$.

Proof. Since $H^1_{(\mathcal{F}_{cl})^b_a(c)}(G_{\mathbb{Q}}, E[p]) = 0$, Lemma [2.2](#page-6-0) shows that $H^1_{(\mathcal{F}_{\text{cl}})^b_a(c)}(G_{\mathbb{Q}},T) = 0.$ Hence applying Theorem [2.1](#page-6-1) with $\mathcal{F}_1 = (\mathcal{F}_{\text{cl}})^a_b(c)$ and $\mathcal{F}_2 = (\mathcal{F}_{\text{can}})_b^a(c)$, we obtain an exact sequence

$$
0 \longrightarrow H^1_{(\mathcal{F}_{\mathrm{cl}})^a_b(c)}(G_{\mathbb{Q}}, T) \longrightarrow H^1_{(\mathcal{F}_{\mathrm{can}})^a_b(c)}(G_{\mathbb{Q}}, T) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T) \longrightarrow 0.
$$

Hence this lemma follows from Corollary [2.14](#page-10-0) and Lemma [2.17.](#page-12-0)

 \Box

Since \mathcal{F}_{cl} is cartesian by Corollary [2.15,](#page-11-0) the following theorem is proved in [\[21,](#page-31-2) Proposition 5.6, Theorem 5.8].

THEOREM 2.20.

(1) For any element $(d, \ell) \in \mathcal{M}_{m,n}$ satisfying $H^1_{(\mathcal{F}_{\text{cl}})_\ell(d)}(G_{\mathbb{Q}}, E[p]) = 0$, the projection map

$$
\mathrm{KS}_0(T,\mathcal{F}_\mathrm{cl})\longrightarrow H^1_{\mathcal{F}_\mathrm{cl}^{\ell}(d)}(G_\mathbb{Q},T)\otimes_\mathbb{Z} G_d
$$

is an isomorphism. In particular, the R-module $KS_0(T, \mathcal{F}_{cl})$ is free of rank 1.

(2) For any basis $\kappa \in \text{KS}_0(T, \mathcal{F}_{\text{cl}})$ and any integer $d \in \mathcal{N}_{m,n}$, we have

$$
R \cdot \delta(\kappa)_d = \text{Fitt}_R^0(H^1_{\mathcal{F}_{\text{cl}}(d)}(G_\mathbb{Q}, T)^\vee).
$$

Remark 2.21. For any Selmer structure F on $E[p]$ with $\chi(\mathcal{F}) \geq 0$, there are infinitely many integers $d \in \mathcal{N}_{m,n}$ satisfying $H^1_{\mathcal{F}^*(d)}(G_{\mathbb{Q}}, E[p]) = 0$ (see [\[11,](#page-30-8) Corollary 4.1.9]).

COROLLARY 2.22. The homomorphism δ is injective.

Proof. Take an integer $d \in \mathcal{N}_{m,n}$ with $H^1_{\mathcal{F}_{cl}(d)}(G_{\mathbb{Q}}, E[p]) = 0$. Then by The-orem [2.20,](#page-13-0) we have $\delta(\kappa)_d \in R^{\times}$. Since the R-module KS₀ (T, \mathcal{F}_{c1}) is free of rank 1 by Theorem [2.20,](#page-13-0) the map δ is injective. \Box

2.5 Map from Kolyvagin systems of rank 1 to Kolyvagin systems of rank 0

Fix an isomorphism

$$
H^1_{/f}(G_{\mathbb{Q}_p},T) \cong R.
$$

Then we obtain a homomorphism $\varphi: H^1(G_{\mathbb{Q}}, T) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T) \cong R$. We also denote by $\varphi: KS_1(T, \mathcal{F}_{\text{can}}) \longrightarrow \prod_{d \in \mathcal{N}_{m,n}} R \otimes_{\mathbb{Z}} G_d$ the homomorphism induced by φ . In this subsection, we construct a natural map $KS_1(T, \mathcal{F}_{can}) \longrightarrow$ $\text{KS}_0(T, \mathcal{F}_{\text{cl}})$ such that the diagram

$$
KS_{1}(T, \mathcal{F}_{\text{can}}) \longrightarrow KS_{0}(T, \mathcal{F}_{\text{cl}})
$$
\n
$$
\downarrow^{\phi} \downarrow^{\delta}
$$
\n
$$
\prod_{d \in \mathcal{N}_{m,n}} R \otimes_{\mathbb{Z}} G_{d}
$$
\n
$$
(2)
$$

commutes. In order to construct this map, we introduce the module of Stark systems.

For any R -module M , we put

$$
M^* := \operatorname{Hom}_R(M, R) \ \text{ and } \ \bigcap\nolimits_R^r M := \left(\bigwedge\nolimits_R^r M^*\right)^*
$$

for any integer $r \geq 0$. Since the functor $M \mapsto M^*$ is exact, an R-homomorphism $\phi: M \longrightarrow F$, where F is free of rank 1, induces a natural homomorphism

$$
\phi \colon {\bigcap}^{r+1}_R M \longrightarrow F \otimes_R {\bigcap}^r_R \ker(\phi).
$$

DEFINITION 2.23. Let F be a Selmer structure on T. For any integers $d \in \mathcal{N}_{m,n}$ and $r \geq 0$, define

$$
W_d := \bigoplus_{\ell \mid d} H^1_{/\text{ur}}(G_{\mathbb{Q}_\ell}, T)^*,
$$

$$
X_d^r(T, \mathcal{F}) := \bigcap_R^{r + \nu(d)} H^1_{\mathcal{F}^d}(G_{\mathbb{Q}}, T) \otimes_R \det(W_d).
$$

Then for any positive divisor e of d, the exact sequence

$$
0 \longrightarrow H^1_{\mathcal{F}^e}(G_{\mathbb{Q}}, T) \longrightarrow H^1_{\mathcal{F}^d}(G_{\mathbb{Q}}, T) \longrightarrow \bigoplus_{\ell \mid \frac{d}{e}} H^1_{/ \text{ur}}(G_{\mathbb{Q}_\ell}, T)
$$

induces a natural homomorphism

$$
\Phi_{d,e}\colon X^r_d(T,\mathcal{F})\longrightarrow X^r_e(T,\mathcal{F})
$$

(see [\[19,](#page-31-4) Definition 2.3]). If $f | e | d$, then we have $\Phi_{d,f} = \Phi_{e,f} \circ \Phi_{d,e}$ (see [19, Proposition 2.4]), and we obtain the module of Stark systems of rank r

$$
SS_r(T, \mathcal{F}) := \lim_{\substack{\longleftarrow \\ d \in \mathcal{N}_{m,n}}} X_d^r(T, \mathcal{F}).
$$

1906 R. Sakamoto

Since we have the isomorphisms

 $H^1_{\textup{ur}}(G_{\mathbb{Q}_\ell},T) \xrightarrow{\phi_\ell^{\textup{fs}}} H^1_{/\textup{ur}}(G_{\mathbb{Q}_\ell},T) \otimes_{\mathbb{Z}} G_\ell \quad \textup{and} \quad H^1_{\textup{ur}}(G_{\mathbb{Q}_\ell},T) \xrightarrow{\sim} H^1_{/\textup{tr}}(G_{\mathbb{Q}_\ell},T)$

for any prime $\ell \mid d$, we see that the exact sequence

$$
0 \longrightarrow H^1_{\mathcal{F}_{\text{can}}(d)}(G_{\mathbb{Q}}, T) \longrightarrow H^1_{\mathcal{F}_{\text{can}}^d}(G_{\mathbb{Q}}, T) \longrightarrow \bigoplus_{\ell \mid d} H^1_{/\text{tr}}(G_{\mathbb{Q}_\ell}, T)
$$

induces a natural homomorphism

$$
\Pi_d\colon X_d^1(T,\mathcal{F}_{\text{can}})\longrightarrow \bigcap_R^1 H^1_{\mathcal{F}_{\text{can}}(d)}(G_{\mathbb{Q}},T)\otimes_{\mathbb{Z}} G_d=H^1_{\mathcal{F}_{\text{can}}(d)}(G_{\mathbb{Q}},T)\otimes_{\mathbb{Z}} G_d,
$$

and we obtain

$$
\text{Reg}_1\colon \text{SS}_1(T,\mathcal{F}_{\text{can}}) \longrightarrow \text{KS}_1(T,\mathcal{F}_{\text{can}}); (\epsilon_d)_{d \in \mathcal{N}_{m,n}} \mapsto ((-1)^{\nu(d)} \Pi_d(\epsilon_d))_{d \in \mathcal{N}_{m,n}}
$$

(see [\[2,](#page-29-2) Proposition 4.3] or [\[12,](#page-30-9) Proposition 12.3]). The following important proposition is proved by Mazur and Rubin in [\[12,](#page-30-9) Proposition 12.4] (see also [\[1,](#page-29-1) Theorem 5.2(i)] and [\[20,](#page-31-5) Theorem 3.17]).

THEOREM 2.24. The map

$$
Reg_1: SS_1(T, \mathcal{F}_{can}) \longrightarrow KS_1(T, \mathcal{F}_{can})
$$

is an isomorphism.

For any integer $d \in \mathcal{N}_{m,n}$, the exact sequence

$$
0 \longrightarrow H^1_{\mathcal{F}_{\mathrm{cl}}(d)}(G_{\mathbb{Q}}, T) \longrightarrow H^1_{\mathcal{F}_{\mathrm{cl}}^d}(G_{\mathbb{Q}}, T) \longrightarrow \bigoplus_{\ell \mid d} H^1_{/\mathrm{tr}}(G_{\mathbb{Q}_\ell}, T)
$$

induces a natural homomorphism

$$
\Pi'_d\colon X_d^0(T,\mathcal{F}_{\text{cl}})\longrightarrow \bigcap\nolimits_R^0 H^1_{\mathcal{F}_{\text{cl}}(d)}(G_\mathbb{Q},T)\otimes_{\mathbb{Z}} G_d = R\otimes_{\mathbb{Z}} G_d.
$$

Hence we obtain a homomorphism

$$
\psi\colon \mathrm{SS}_0(T,\mathcal{F}_{\mathrm{cl}})\longrightarrow \prod_{d\in\mathcal{N}_{m,n}}R\otimes_{\mathbb{Z}}G_d; (\epsilon_d)_{d\in\mathcal{N}_{m,n}}\mapsto (\Pi'_d(\epsilon_d))_{d\in\mathcal{N}_{m,n}}.
$$

In [\[21,](#page-31-2) §5.2], we construct the canonical homomorphism

$$
\text{Reg}_0\colon\text{SS}_0(T,\mathcal{F}_{\text{cl}})\longrightarrow\text{KS}_0(T,\mathcal{F}_{\text{cl}})
$$

such that the diagram

$$
SS_0(T, \mathcal{F}_{cl}) \xrightarrow{\text{Reg}_0} KS_0(T, \mathcal{F}_{cl})
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\Pi_{d \in \mathcal{N}_{m,n}} R \otimes_{\mathbb{Z}} G_d
$$
\n(3)

commutes.

For any integer $d \in \mathcal{N}_{m,n}$, we have an exact sequece

$$
0 \longrightarrow H^1_{\mathcal{F}^d_{\text{cl}}}(G_{\mathbb{Q}}, T) \longrightarrow H^1_{\mathcal{F}^d_{\text{can}}}(G_{\mathbb{Q}}, T) \stackrel{\varphi}{\longrightarrow} R.
$$

This exact sequence induces a homomorphism $X_d^1(T, \mathcal{F}_{\text{can}}) \longrightarrow X_d^0(T, \mathcal{F}_{\text{cl}})$, and we obtain a homomorphism $SS_1(T, \mathcal{F}_{can}) \longrightarrow SS_0(T, \mathcal{F}_{cl})$. By construction, the diagram

$$
SS_{1}(T, \mathcal{F}_{can}) \longrightarrow SS_{0}(T, \mathcal{F}_{cl})
$$
\n
$$
\downarrow R_{eq_{1}} \qquad \qquad \downarrow \psi
$$
\n
$$
KS_{1}(T, \mathcal{F}_{can}) \longrightarrow \prod_{d \in \mathcal{N}_{m,n}} R \otimes_{\mathbb{Z}} G_{d}
$$
\n
$$
(4)
$$

commutes. Since Reg_1 is an isomorphism, by using the commutative diagrams [\(3\)](#page-15-0) and [\(4\)](#page-16-1), we obtain the homomorphism $KS_1(T, \mathcal{F}_{can}) \longrightarrow KS_0(T, \mathcal{F}_{cl})$ such that the diagram [\(2\)](#page-14-0) commutes.

3 Construction of the Kolyvagin system of rank 0 from modular symbols

Let $p \geq 3$ be a prime satisfying the hypotheses (a), (b), and (c). For any finite abelian extension K/\mathbb{Q} , we put

$$
R_K := \mathbb{Z}_p[\mathrm{Gal}(K/\mathbb{Q})] \quad \text{and} \quad T_K := \mathrm{Ind}^{G_\mathbb{Q}}_{G_K}(T_p(E)).
$$

3.1 Modular sysmbols

We recall the definition of the Mazur–Tate elements. For any integer $d \geq 1$, we define the modular element $\theta_{\mathbb{Q}(\mu_d)}$ by

$$
\widetilde{\theta}_{\mathbb{Q}(\mu_d)} := \sum_{\substack{a=1 \\ (a,d)=1}}^d \frac{\text{Re}([a/d])}{\Omega_E^+} \sigma_a \in \mathbb{Q}[\text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q})].
$$

Here $\sigma_a \in \text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q})$ is the element satisfying $\sigma_a(\zeta) = \zeta^a$ for any $\zeta \in \mu_d$. For any integer $e \mid d$, we put

$$
\nu_{d,e} \colon R_{\mathbb{Q}(\mu_e)} \longrightarrow R_{\mathbb{Q}(\mu_d)}; \, x \mapsto \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q}(\mu_e))} \sigma x.
$$

Define $P := \{ \ell \neq p | E$ has good reduction at $\ell \}$ and N denotes the set of square-free products in P. Since $G_{\mathbb{Q}} \longrightarrow GL(E[p])$ is surjective, for any integers $d \in \mathcal{N}$ and $n \geq 1$, we have

$$
\theta_{\mathbb{Q}(\mu_{dp^n})} \in R_{\mathbb{Q}(\mu_{dp^n})}
$$

(see [\[23\]](#page-31-0)). Let $\alpha \in \mathbb{Z}_p^{\times}$ be the unit root of $x^2 - a_p x + p = 0$, where $a_p :=$ $p+1-\#E(\mathbb{F}_p)$. We set

$$
\vartheta_{\mathbb{Q}(\mu_{dp^n})} := \alpha^{-n}(\widetilde{\theta}_{\mathbb{Q}(\mu_{dp^n})} - \alpha^{-1} \nu_{dp^n, dp^{n-1}}(\widetilde{\theta}_{\mathbb{Q}(\mu_{dp^{n-1}})})) \in R_{\mathbb{Q}(\mu_{dp^n})}
$$

Then the set $\{\vartheta_{\mathbb{Q}(\mu_{dp^n})}\}_{n\geq 1}$ is a projective system and we get an element

$$
\vartheta_{\mathbb{Q}(\mu_{dp^{\infty}})} := \varprojlim_{n} \vartheta_{\mathbb{Q}(\mu_{dp^n})} \in \varprojlim_{n} R_{\mathbb{Q}(\mu_{dp^n})} =: \Lambda_{\mathbb{Q}(\mu_{dp^{\infty}})}.
$$

Remark 3.1. Note that for any positive integer $p \nmid d$, we have

$$
\vartheta_{\mathbb{Q}(\mu_d)} = \left(1 - \alpha^{-1}\sigma_p\right)\left(1 - \alpha^{-1}\sigma_p^{-1}\right)\widetilde{\theta}_{\mathbb{Q}(\mu_d)}.
$$

The assumption (c) shows that $\alpha \neq 1 \pmod{p}$, and $(1 - \alpha^{-1}\sigma_p)(1 - \alpha^{-1}\sigma_p^{-1})$ is a unit in $R_{\mathbb{Q}(\mu_d)}$.

For any prime ℓ with $\ell \nmid d$, let $\pi_{\ell d,d} : \Lambda_{\mathbb{Q}(\mu_{\ell d p^\infty})} \longrightarrow \Lambda_{\mathbb{Q}(\mu_{\ell d p^\infty})}$ denote the natural projection map, and we have

$$
\pi_{\ell d,d}(\vartheta_{\mathbb{Q}(\mu_{\ell d p^{\infty}})}) = (a_{\ell} - \sigma_{\ell} - \sigma_{\ell}^{-1})\vartheta_{\mathbb{Q}(\mu_{dp^{\infty}})}.
$$

Here $a_{\ell} := \ell + 1 - \#E(\mathbb{F}_{\ell})$. Following Kurihara in [\[10,](#page-30-0) page 324], for any positive divisor e of d, we put

$$
\alpha_{d,e} := \left(\prod_{\ell \mid \frac{d}{e}} (-\sigma_{\ell}^{-1})\right) \vartheta_{\mathbb{Q}(\mu_{ep^{\infty}})} \in \Lambda_{\mathbb{Q}(\mu_{ep^{\infty}})},
$$

$$
\xi_{\mathbb{Q}(\mu_{dp^{\infty}})} := \sum_{e \mid d} \nu_{d,e}(\alpha_{d,e}) \in \Lambda_{\mathbb{Q}(\mu_{dp^{\infty}})}.
$$

Here e runs over the set of positive divisors of d . We also put

$$
\widetilde{\xi}_{\mathbb{Q}(\mu_{dp^{\infty}})} := \left(\prod_{\ell \mid d} -\ell^{-1}\sigma_{\ell}\right) \xi_{\mathbb{Q}(\mu_{dp^{\infty}})}.
$$

DEFINITION 3.2. For any prime $\ell \in \mathcal{P}$, we define the Frobenius polynomial at ℓ by

$$
P_{\ell}(t) := \det(1 - t\sigma_{\ell}^{-1} | T_p(E)) = 1 - {\ell}^{-1} a_{\ell} t + {\ell}^{-1} t^2.
$$

PROPOSITION 3.3. For any integer $d \in \mathcal{N}$ and any prime $\ell \in \mathcal{P}$ with $\ell \nmid d$, we have

$$
\pi_{d\ell,d}(\widetilde{\xi}_{\mathbb{Q}(\mu_{\ell dp^{\infty}})})=P_{\ell}(\sigma_{\ell}^{-1})\widetilde{\xi}_{\mathbb{Q}(\mu_{dp^{\infty}})}.
$$

Proof. Kurihara showed in [\[10,](#page-30-0) page 325, (7)] that

$$
\pi_{d\ell,d}(\xi_{\mathbb{Q}(\mu_{\ell dp^{\infty}})}) = (-\sigma_{\ell} + a_{\ell} - \ell \sigma_{\ell}^{-1}) \xi_{\mathbb{Q}(\mu_{dp^{\infty}})}
$$

= $(-\ell \sigma_{\ell}^{-1}) P_{\ell}(\sigma_{\ell}^{-1}) \xi_{\mathbb{Q}(\mu_{dp^{\infty}})},$

which implies $\pi_{d\ell,d}(\tilde{\xi}_{\mathbb{Q}(\mu_{\ell dp},\infty)}) = P_{\ell}(\sigma_{\ell}^{-1})\tilde{\xi}_{\mathbb{Q}(\mu_{dp},\infty)}.$

Documenta Mathematica 27 (2022) 1891–1922

.

3.2 Coleman maps

Let K/\mathbb{Q} be a finite p-abelian extension at which p is unramified, and we denote by K_{∞}/K the cyclotomic \mathbb{Z}_p -extension. Put

$$
\Lambda_{K_{\infty}} := \mathbb{Z}_p[[\text{Gal}(K_{\infty}/\mathbb{Q})]] \text{ and } \mathbb{T}_{K_{\infty}} := \varprojlim_n T_{K_n},
$$

where K_n denotes the *n*-th layer of the cyclotomic \mathbb{Z}_p -extension K_{∞}/K . We note that the $\Lambda_{K_{\infty}}$ -module $H^1_{/f}(G_{\mathbb{Q}}, \mathbb{T}_{K_{\infty}}) := \varprojlim_{m,n} H^1_{/f}(G_{\mathbb{Q}_p}, T_{K_n}/p^m)$ is free of rank 1 by Corollary [2.14.](#page-10-0) Let

$$
\widetilde{\xi}_{K_{\infty}} \in \Lambda_{K_{\infty}}
$$

denote the image of $\xi_{\mathbb{Q}(\mu_{dp}^{\infty})}$ under the canonical homomorphism $\Lambda_{\mathbb{Q}(\mu_{dp}^{\infty})} \longrightarrow$ $\Lambda_{K_{\infty}}$, where d is the conductor of K.

The following theorem follows from the works of Perrin-Riou in [\[17\]](#page-30-10) and Kato in [\[4\]](#page-30-11).

Theorem 3.4([\[4,](#page-30-11) Theorem 16.4, Theorem 16.6, and Proposition 17.11]). There exists an isomorphism

$$
\mathfrak{L}_{K_\infty}\colon H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{K_\infty})\otimes_{\mathbb{Z}_p} \mathbb{Q}_p \xrightarrow{\sim} \Lambda_{K_\infty} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p
$$

such that

(i) the diagram

$$
H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{K_{\infty}}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \xrightarrow{\mathfrak{L}_{K_{\infty}}} \Lambda_{K_{\infty}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{L_{\infty}}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \xrightarrow{\mathfrak{L}_{L_{\infty}}} \Lambda_{L_{\infty}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p
$$

commutes for any field $L \subset K$, where the vertical maps are the natural projections,

- (*ii*) $\mathfrak{L}_{\mathbb{Q}_{\infty}}(H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{\mathbb{Q}_{\infty}})) = \Lambda_{\mathbb{Q}_{\infty}},$
- (iii) there is an element $z_{K_{\infty}} \in H^1(G_{\mathbb{Q}}, \mathbb{T}_{K_{\infty}})$ such that $\mathfrak{L}_{K_{\infty}}(\text{loc}_p^{/f}(z_{K_{\infty}})) =$ $\widetilde{\xi}_{K_{\infty}},$ where $\mathrm{loc}_{p}^{/f}$: $H^{1}(G_{\mathbb{Q}}, \mathbb{T}_{K_{\infty}}) \longrightarrow H^{1}_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{K_{\infty}})$ denotes the localization homomorphism.

Remark 3.5.

- (1) The homomorphism $\mathfrak{L}_{K_{\infty}}$ interpolates the dual exponential maps, however this fact is not used in this paper.
- (2) The integrality of the element $z_{K_{\infty}}$ follows from the assumption (b) (see [\[3,](#page-29-3) Theorem 6.1]).

- (3) There are many papers that use $\widetilde{\theta}^{\#}_{\mathbb{Q}(\mu_d)}$ instead of $\widetilde{\theta}_{\mathbb{Q}(\mu_d)}$, where $(-)^{\#}$ denotes the involution on the group ring that sends each group-like element σ to its inverse σ^{-1} . However, $\widetilde{\theta}_{\mathbb{Q}(\mu_d)}$ has a functional equation (see [\[13,](#page-30-4) (1.6.2)]), and hence the difference does not matter.
- 3.3 Euler systems

In this subsection, we recall the definition of Euler systems.

DEFINITION 3.6.

- (1) Let Ω denote the set of fields K in \overline{Q} such that K/\mathbb{Q} is a finite abelian p-extension and $S_{ram}(K/\mathbb{Q}) \subset \mathcal{P}$. Here $S_{ram}(K/\mathbb{Q})$ is the set of primes at which K/\mathbb{Q} is ramified.
- (2) We say that $(c_K)_{K \in \Omega} \in \prod_{K \in \Omega} H^1(G_{\mathbb{Q}}, \mathbb{T}_{K_{\infty}})$ is an Euler system of rank 1 if, for any fields $K_1 \subset K_2$ in Ω , we have

$$
\operatorname{Cor}_{K_2/K_1}(c_{K_2}) = \left(\prod_{\ell \in S_{\operatorname{ram}}(K_2/\mathbb{Q}) \backslash S_{\operatorname{ram}}(K_1/\mathbb{Q})} P_{\ell}(\sigma_{\ell}^{-1})\right) c_{K_1}.
$$

Here $Cor_{K_2/K_1}: H^1(G_{\mathbb{Q}}, \mathbb{T}_{K_{2,\infty}}) \longrightarrow H^1(G_{\mathbb{Q}}, \mathbb{T}_{K_{1,\infty}})$ denotes the homomorphism induced by $\mathbb{T}_{K_{2,\infty}} \longrightarrow \mathbb{T}_{K_{1,\infty}}$. Let $\mathrm{ES}_1(T)$ denote the set of Euler systems of rank 1.

(3) We say that $(c_K)_{K \in \Omega} \in \prod_{K \in \Omega} \Lambda_{K_{\infty}}$ is an Euler system of rank 0 if, for any fields $K_1 \subset K_2$ in Ω , we have

$$
\pi_{K_2, K_1}(c_{K_2}) = \left(\prod_{\ell \in S_{\text{ram}}(K_2/\mathbb{Q}) \backslash S_{\text{ram}}(K_1/\mathbb{Q})} P_{\ell}(\sigma_{\ell}^{-1})\right) c_{K_1}.
$$

Here $\pi_{K_2,K_1} \colon \Lambda_{K_{2,\infty}} \longrightarrow \Lambda_{K_{1,\infty}}$ denotes the canonical projection map. Let $ES_0(T)$ denote the set of Euler systems of rank 0.

Proposition [3.3](#page-17-1) implies the following proposition.

PROPOSITION 3.7. We have $(\widetilde{\xi}_{K_{\infty}})_{K \in \Omega} \in ES_0(T)$.

Let $K \in \Omega$ be a field. Then, by Theorem [2.1,](#page-6-1) for any integers $m \ge 1$ and $n \ge 0$, we have an exact sequence

$$
0 \longrightarrow \text{Sel}(K_n, E[p^m]) \longrightarrow H^1_{\mathcal{F}_{\text{can}}}(G_{\mathbb{Q}}, T_{K_n}/p^m) \longrightarrow H^1_{/f}(G_{\mathbb{Q}_p}, T_{K_n}/p^m) \longrightarrow \text{Sel}(K_n, E[p^m])^{\vee}.
$$

Here $\text{Sel}(K_n, E[p^m])$ is the p^m -Selmer group of E/K_n and

$$
H^1_{\mathcal{F}_{\text{can}}}(G_{\mathbb{Q}}, T_{K_n}/p^m) := \ker \left(H^1(G_{\mathbb{Q}}, T_{K_n}/p^m) \longrightarrow \bigoplus_{\ell \neq p} H^1_{/\text{ur}}(G_{\mathbb{Q}_\ell}, T_{K_n}/p^m) \right).
$$

We set

$$
Sel(K_{\infty}, E[p^{\infty}]) := \varinjlim_{m,n} Sel(K_n, E[p^m]).
$$

Since Sel $(K_{\infty}, E[p^{\infty}])^{\vee}$ is a finitely generated torsion $\Lambda_{K_{\infty}}$ -module, we have

$$
\varprojlim_{m,n} \operatorname{Sel}(K_n, E[p^m]) = 0.
$$

Moreover, [\[18,](#page-30-12) Proposition B.3.4] implies

$$
H^1(G_{\mathbb{Q}}, \mathbb{T}_{K_{\infty}}) = \varprojlim_{m,n} H^1_{\mathcal{F}_{\text{can}}}(G_{\mathbb{Q}}, T_{K_n}/p^m).
$$

Hence we get an exact sequence of $\Lambda_{K_{\infty}}$ -modules

$$
0 \longrightarrow H^1(G_{\mathbb{Q}}, \mathbb{T}_{K_{\infty}}) \stackrel{\text{loc}_{p}^{\prime}f}{\longrightarrow} H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{K_{\infty}}) \longrightarrow \text{Sel}(K_{\infty}, E[p^{\infty}])^{\vee}.
$$
 (5)

For each field $K \in \Omega$, we put

$$
M_{K_{\infty}} := (\mathrm{loc}_{p}^{/f})^{-1} (H^{1}(G_{\mathbb{Q}_p}, \mathbb{T}_{K_{\infty}}) \cap \mathfrak{L}_{K_{\infty}}^{-1}(\Lambda_{K_{\infty}})),
$$

and we obtain an injection

$$
\mathfrak{L} \colon \mathrm{ES}_1(T) \cap \prod_{K \in \Omega} M_{K_{\infty}} \hookrightarrow \mathrm{ES}_0(T); (c_K)_{K \in \Omega} \mapsto (\mathrm{loc}_p^{/f}(\mathfrak{L}_{K_{\infty}}(c_K)))_{K \in \Omega}.
$$

Then Theorem [3.4](#page-18-0) and the injectivity of $\mathrm{loc}^{/f}_{p} \circ \mathfrak{L}_{K_{\infty}}$ imply the following proposition.

PROPOSITION 3.8. There is an Euler system $z_{\xi} \in ES_1(T) \cap \prod_{K \in \Omega} M_{K_{\infty}}$ such that $\mathfrak{L}(z_{\xi}) = (\widetilde{\xi}_{K_{\infty}})_{K \in \Omega}$.

Remark 3.9. Since our p-adic L function $\tilde{\xi}_{K_{\infty}}$ is modified, the Euler system z_{ξ} differs slightly from that of Kato.

3.4 CONSTRUCTION OF $\kappa_{\xi,m,n}$

Fix integers $m \geq 1$ and $n \geq 0$. First, we introduce the Kolyvagin derivative homomorphism (defined by Mazur and Rubin in [\[11\]](#page-30-8))

$$
\mathcal{D}_{m,n}^1\colon \mathrm{ES}_1(T)\longrightarrow \mathrm{KS}_1(T_{\mathbb{Q}_n}/p^m,\mathcal{F}_{\mathrm{can}}).
$$

Recall that $\mathbb{Q}(d)$ is the maximal p-subextension of $\mathbb{Q}(\mu_d)$, and note that $\mathbb{Q}_n =$ $\mathbb{Q}(p^{n+1})$. We fix a generator g_{ℓ} of $G_{\ell} = \text{Gal}(\mathbb{Q}(\ell)/\mathbb{Q})$ for each prime $\ell \in \mathcal{P}_{1,0}$ and denote by $D_\ell \in \mathbb{Z}[G_\ell]$ the Kolyvagin's derivative operator:

$$
D_{\ell}:=\sum_{i=0}^{\#G_{\ell}-1}ig_{\ell}^i.
$$

For any integer $d \in \mathcal{N}_{1,0}$, we also set $D_d := \prod_{\ell | d} D_\ell \in \mathbb{Z}[\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})].$ Let $c \in ES_1(T)$ be an Euler system. For any integer $d \in \mathcal{N}_{m,n}$, we denote by $c_{dp^{n+1}} \in H^1(G_{\mathbb{Q}}, T_{\mathbb{Q}(dp^{n+1})})$ the image of $c_{\mathbb{Q}(d)} \in H^1(G_{\mathbb{Q}}, \mathbb{T}_{\mathbb{Q}(d)})$. Then it is well-known that Euler system relations imply

$$
\kappa(c)_{d,m,n} := D_d c_{dp^{n+1}} \bmod p^m \in H^1(G_{\mathbb{Q}}, T_{\mathbb{Q}(dp^{n+1})}/p^m)^{\mathrm{Gal}(\mathbb{Q}(d)/\mathbb{Q})}.
$$

(see, for example, [\[18,](#page-30-12) Lemma 4.4.2]). Since we have an isomorphism

$$
H^1(G_{\mathbb{Q}}, T_{\mathbb{Q}_n}/p^m) \xrightarrow{\sim} H^1(G_{\mathbb{Q}}, T_{\mathbb{Q}(dp^{n+1})}/p^m)^{\mathrm{Gal}(\mathbb{Q}(d)/\mathbb{Q})},
$$

we can regard $\kappa(c)_{d,m,n}$ as an element of $H^1(G_\mathbb{Q}, T_{\mathbb{Q}_n}/p^m)$. The following theorem is proved by Mazur and Rubin in [\[11,](#page-30-8) Appendix A].

THEOREM 3.10. For any Euler system $c \in ES_1(T)$, we have

$$
\mathcal{D}_{m,n}^1(c) := (\kappa(c)_{d,m,n} \otimes g_d)_{d \in \mathcal{N}_{m,n}} \in \text{KS}_1(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{can}}).
$$

Here $g_d := \prod_{\ell \mid d} g_{\ell}$. Hence we obtain the Kolyvagin derivative homomorphism

$$
\mathcal{D}_{m,n}^1\colon \mathrm{ES}_1(T)\longrightarrow \mathrm{KS}_1(T_{\mathbb{Q}_n}/p^m,\mathcal{F}_{\mathrm{can}}).
$$

Remark 3.11. For any prime $\ell \in \mathcal{P}_{m,n}$, we have

$$
P_{\ell}(t) \equiv (t-1)^2 \pmod{p^m}.
$$

This fact implies that $P_{\ell}(\text{Fr}_{\ell}^{-1})$ vanishes in the module $\mathcal{A}_{\ell,I} / \mathcal{A}_{\ell,I}^2$. Here $\mathcal{A}_{\ell,I}$ denotes the argumentation ideal defined in [\[11,](#page-30-8) Definition A.3]. Hence we see that $\kappa(c)_{d,m,n}$ coincides with κ'_n defined in [\[11,](#page-30-8) page 80, (33)].

Next let us construct a homomorphism

$$
\mathcal{D}_{m,n}^0: \mathrm{ES}_0(T) \longrightarrow \prod_{d \in \mathcal{N}_{m,n}} R_{\mathbb{Q}_n}/p^m \otimes_{\mathbb{Z}} G_d.
$$

Let $c \in ES_0(T)$ be an Euler system and take an integer $d \in \mathcal{N}_{m,n}$. We denote by $c_{dp^{n+1}} \in R_{\mathbb{Q}(dp^{n+1})}$ the image of $c_{\mathbb{Q}(d)} \in \Lambda_{\mathbb{Q}(d)}$.

The following lemma is well-known (see, for example, [\[18,](#page-30-12) Lemma 4.4.2]).

LEMMA 3.12. For any integer $d \in \mathcal{N}_{m,n}$, we have

$$
\delta(c)_{d,m,n} := D_d c_{dp^{n+1}} \bmod p^m \in (R_{\mathbb{Q}(dp^{n+1})}/p^m)^{\mathrm{Gal}(\mathbb{Q}(d)/\mathbb{Q})} \stackrel{\sim}{\longleftarrow} R_{\mathbb{Q}_n}/p^m.
$$

We often regard $\delta(c)_{d,m,n}$ as an element of $R_{\mathbb{Q}_n}/p^m$ by using the isomorphism

$$
R_{\mathbb{Q}_n}/p^m \xrightarrow{\sim} (R_{\mathbb{Q}(dp^{n+1})}/p^m)^{\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})}; x \mapsto xN_d.
$$

Here $N_d := \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} \sigma$.

Lemma 3.13. Let

$$
c = \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \sigma \in R_{\mathbb{Q}(dp^{n+1})}/p^m
$$

where $a_{\sigma} \in R_{\mathbb{Q}_n}/p^m$. If $D_d c \in (R_{\mathbb{Q}(dp^{n+1})}/p^m)^{\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})}$, then we have

$$
D_d c = (-1)^{\nu(d)} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \prod_{\ell \mid d} \overline{\log}_{g_{\ell}}(\sigma).
$$

Here we regard $D_d c$ as an element of $R_{\mathbb{Q}_n}/p^m$ by using the isomorphism

$$
R_{\mathbb{Q}_n}/p^m \xrightarrow{\sim} (R_{\mathbb{Q}(dp^{n+1})}/p^m)^{\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})}; x \mapsto xN_d
$$

and

$$
\overline{\log}_{g_{\ell}}: G_{\ell} \xrightarrow{\sim} \mathbb{Z}/(\ell-1) \longrightarrow \mathbb{Z}/p^m; g_{\ell}^a \mapsto a \bmod p^m
$$

is the surjection induced by the discrete logarithm to the base g_{ℓ} .

Proof. We write $d = \ell_1 \cdots \ell_t$. We put

$$
N_{\ell_i} := \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\ell_i)/\mathbb{Q})} \sigma \text{ and } X_{\ell_i} := g_{\ell_i} - 1.
$$

Note that

$$
D_{\ell_i} X_{\ell_i} \equiv -N_{\ell_i} \pmod{p^m}
$$
 and $D_{\ell_i} X_{\ell_i}^2 \equiv 0 \pmod{p^m}$.

Hence we have

$$
D_d \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \sigma = \sum_{i_1=1}^{\#G_{\ell_1}-1} \cdots \sum_{i_t=1}^{\#G_{\ell_t}-1} a_{g_{\ell_1}^{i_1} \cdots g_{\ell_t}^{i_t}} D_d (1 + X_{\ell_1})^{i_1} \cdots (1 + X_{\ell_t})^{i_t}
$$

$$
= \sum_{i_1=1}^{\#G_{\ell_1}-1} \cdots \sum_{i_t=1}^{\#G_{\ell_t}-1} a_{g_{\ell_1}^{i_1} \cdots g_{\ell_t}^{i_t}} (1 - i_1 N_{\ell_1}) \cdots (1 - i_t N_{\ell_t})
$$

$$
=: \sum_{i=1}^t \sum_{j_i \in \{0,1\}} b_{j_1,\ldots,j_t} N_{\ell_1}^{j_1} \cdots N_{\ell_t}^{j_t}.
$$

Since

$$
b_{1,\ldots,1} = (-1)^{\nu(d)} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \prod_{\ell \mid d} \overline{\log}_{g_{\ell}}(\sigma),
$$

it suffices to show that $b_{j_1,\dots,j_t} = 0$ for any $(j_1,\dots,j_t) \neq (1,\dots,1)$. This follows from the assumption that $D_d c \in (R_{\mathbb{Q}(dp^{n+1})}/p^m)^{\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})}$. In fact, we have $X_{\ell_i}D_d c = 0$ and $X_{\ell_i}N_{\ell_i} = 0$ for any $1 \leq i \leq t$. Hence we have

$$
0=X_{\ell_1}\cdots X_{\ell_t}D_d c=b_{0,\ldots,0}X_{\ell_1}\cdots X_{\ell_t},
$$

and $b_{0,...,0} = 0$. Moreover, since

$$
0 = X_{\ell_2} \cdots X_{\ell_t} D_d c = b_{0,\ldots,0} X_{\ell_2} \cdots X_{\ell_t} + b_{1,0,\ldots,0} N_{\ell_1} X_{\ell_2} \cdots X_{\ell_t},
$$

we have $b_{1,0,...,0} = 0$. Similary, we have $b_{0,1,...,0} = \cdots = b_{0,...,0,1} = 0$. Repeating this argument, we see that $b_{j_1,\ldots,j_t} = 0$ for any $(j_1,\ldots,j_t) \neq (1,\ldots,1)$. \Box

The following lemma is used to prove Theorem [1.15.](#page-5-1)

LEMMA 3.14. Let $\vartheta_{\mathbb{Q}(dp^n)}$ denote the image of $\vartheta_{\mathbb{Q}(\mu_{dp^{n+1}})}$ in $R_{\mathbb{Q}(dp^{n+1})}$. For notational simplicity, we put $c_{d,n} := \vartheta_{\mathbb{Q}(dp^n)} \mod p^m$.

- (1) We have $D_d c_{d,n} \in (R_{\mathbb{Q}(dp^{n+1})}/p^m)^{\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})}$.
- (2) Let $\delta_{d,n}$ denote the element of $R_{\mathbb{Q}_n}/p^m$ satisfying $\delta_{d,n}N_d = D_d c_{d,n}$. Then we have

$$
c_{d,n} \equiv (-1)^{\nu(d)} \delta_{d,n} \cdot X_{\ell_1} \cdots X_{\ell_t} \pmod{(p^m, X_{\ell_1}^2, \dots, X_{\ell_t}^2)},
$$

where we write $d = \ell_1 \cdots \ell_t$ and $X_{\ell_i} := g_{\ell_i} - 1$.

Proof. For any $\ell \in \mathcal{P}_{m,n}$ and $d \in \mathcal{N}_{m,n}$ with $\ell \nmid d$, we have

$$
N_{\ell}(a_{\ell} - \sigma_{\ell} - \sigma_{\ell}^{-1}) \equiv 0 \pmod{p^{m}},
$$

$$
\pi_{\ell d,d}(\vartheta_{\mathbb{Q}(\mu_{\ell d p^{\infty}})}) = (a_{\ell} - \sigma_{\ell} - \sigma_{\ell}^{-1})\vartheta_{\mathbb{Q}(\mu_{d p^{\infty}})}.
$$

Hence the claim (1) follows from the same argument as in [\[18,](#page-30-12) Lemma 4.4.2]). The claim (2) follows from the same argument as in [\[8,](#page-30-13) Lemma 4.4]). П

DEFINITION 3.15. We define the homomorphism

$$
\mathcal{D}_{m,n}^0: \mathrm{ES}_0(T) \longrightarrow \prod_{d \in \mathcal{N}_{m,n}} R_{\mathbb{Q}_n}/p^m \otimes_{\mathbb{Z}} G_d
$$

by $\mathcal{D}_{m,n}^0(c) := (\delta(c)_{d,m,n} \otimes g_d)_{d \in \mathcal{N}_{m,n}}$.

Recall that we have the isomorphism $\mathfrak{L}_{\mathbb{Q}_{\infty}}: H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{\mathbb{Q}_{\infty}}) \stackrel{\sim}{\longrightarrow} \Lambda_{\mathbb{Q}_{\infty}}$ by Theorem [3.4\(](#page-18-0)ii). Since

$$
H^1_{/f}(G_{\mathbb{Q}_p}, \mathbb{T}_{\mathbb{Q}_\infty}) \otimes_{\Lambda_{\mathbb{Q}_\infty}} R_{\mathbb{Q}_n}/p^m \xrightarrow{\sim} H^1_{/f}(G_{\mathbb{Q}_p}, T_{\mathbb{Q}_n}/p^m),
$$

the isomorphism $\mathfrak{L}_{\mathbb{Q}_{\infty}}$ induces an isomorphism

$$
\mathfrak{L}_{\mathbb{Q}_n,m}\colon H^1_{/f}(G_{\mathbb{Q}_p},T_{\mathbb{Q}_n}/p^m)\stackrel{\sim}{\longrightarrow} R_{\mathbb{Q}_n}/p^m,
$$

and hence we obtain a homomorphism

$$
\mathfrak{L}_{\mathbb{Q}_n,m}\colon \mathrm{KS}_1(T_{\mathbb{Q}_n}/p^m,\mathcal{F}_{\mathrm{can}}) \longrightarrow \prod_{d\in\mathcal{N}_{m,n}}R_{\mathbb{Q}_n}/p^m\otimes_{\mathbb{Z}}G_d.
$$

By construction, we have the following proposition.

PROPOSITION 3.16. The diagram

$$
ES_1(T) \cap \prod_{K \in \Omega} M_{K_{\infty}} \xrightarrow{\mathfrak{L}} ES_0(T)
$$

\n
$$
\downarrow \mathcal{D}_{m,n}^1
$$

\n
$$
KS_1(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{can}}) \xrightarrow{\mathfrak{L}_{\mathbb{Q}_n,m}} \prod_{d \in \mathcal{N}_{m,n}} R_{\mathbb{Q}_n}/p^m \otimes_{\mathbb{Z}} G_d
$$

commutes.

THEOREM 3.17. There is a Kolyvagin system $\kappa_{\xi,m,n} \in \text{KS}_0(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{cl}})$ satisfying $\delta(\kappa_{\xi,m,n}) = \mathcal{D}_{m,n}^0((\tilde{\xi}_{K_{\infty}})_{K \in \Omega}).$

Proof. Let $z_{\xi} \in ES_1(T)$ be the Euler system defined in Proposition [3.8.](#page-20-0) Note that $\mathfrak{L}(z_{\xi}) = (\widetilde{\xi}_{K_{\infty}})_{K \in \Omega}$. We define

$$
\kappa_{\xi,m,n} := \Phi \circ \mathcal{D}^1_{m,n}(z_{\xi}).
$$

Here $\Phi: KS_1(T, \mathcal{F}_{can}) \longrightarrow KS_0(T, \mathcal{F}_{cl})$ is the homomorphism associated with the isomorphism $\mathfrak{L}_{\mathbb{Q}_n,m}$: $H^1_{/f}(\widetilde{G}_{\mathbb{Q}_p}, T_{\mathbb{Q}_n}/p^m) \longrightarrow R_{\mathbb{Q}_n}/p^m$ (see §[2.5\)](#page-14-1). The com-mutative diagram [\(2\)](#page-14-0) shows that $\delta \circ \Phi = \mathfrak{L}_{\mathbb{Q}_n,m}$. Hence Proposition [3.16](#page-24-0) implies

$$
\delta(\kappa_{\xi,m,n}) = \delta \circ \Phi \circ \mathcal{D}^1_{m,n}(z_{\xi})
$$

= $\mathfrak{L}_{\mathbb{Q}_n,m} \circ \mathcal{D}^1_{m,n}(z_{\xi})$
= $\mathcal{D}^0_{m,n} \circ \mathfrak{L}(z_{\xi})$
= $\mathcal{D}^0_{m,n}((\tilde{\xi}_{K_{\infty}})_{K \in \Omega}).$

 \Box

Remark 3.18. The Kolyvagin system $\kappa_{\xi,m,n}$ constructed in Theorem [3.17](#page-24-1) is a natural extension of a family of cohomology classes constructed by Kurihara in [\[10\]](#page-30-0) (see also [\[9\]](#page-30-14)). More precisely, for any "admissible" pair $(d, \ell) \in \mathcal{M}_{m,n}$, Kurihara constructed a cohomology class $\kappa_{d,\ell}$ such that it satisfies the relations appeared in the definition of Kolyvagin system of rank 0 and that it relates to modular symbols via the map δ . In our construction, we do not need to impose that the pair $(d, \ell) \in \mathcal{N}_{m,n} \times \mathcal{P}_{m,n}$ is admissible.

3.5 PROPERTIES OF $\kappa_{\xi,m,n}$

Recall that the Iwasawa main conjecture for E/\mathbb{Q} says that

$$
\widetilde{\xi}_{\mathbb{Q}_{\infty}}\Lambda_{\mathbb{Q}_{\infty}} = \text{char}_{\Lambda_{\mathbb{Q}_{\infty}}}(\text{Sel}(\mathbb{Q}_{\infty}, E[p^{\infty}])^{\vee}).
$$

PROPOSITION 3.19. The following are equivalent.

(1) The Kolyvagin system $\kappa_{\xi,m,n} \in \text{KS}_0(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{cl}})$ is a basis for some $m > 1$ and $n > 0$.

- (2) The Kolyvagin system $\kappa_{\xi,m,n} \in \text{KS}_0(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{cl}})$ is a basis for any $m \geq$ 1 and $n \geq 0$.
- (3) There is an integer $d \in \mathcal{N}_{1,0}$ satisfying $\delta(\kappa_{\xi,1,0})_d \neq 0$.
- (4) The Iwasawa main conjecture for E/\mathbb{Q} holds true.

Proof. We put

$$
KS_0(\mathbb{T}_{\mathbb{Q}_{\infty}}, \mathcal{F}_{\text{cl}}) := \varprojlim_{m,n} \text{KS}_0(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{cl}}).
$$

Then Theorem [2.20](#page-13-0) and [\[19,](#page-31-4) Lemma 3.25] (see [\[21,](#page-31-2) Theorem 6.3]) show that the canonical map $\text{KS}_0(\mathbb{T}_{\mathbb{Q}_{\infty}}, \mathcal{F}_{\text{cl}}) \longrightarrow \text{KS}_0(T_{\mathbb{Q}_n}/p^m, \mathcal{F}_{\text{cl}})$ is surjective and the $\Lambda_{\mathbb{Q}_{\infty}}$ -module $KS_0(\mathbb{T}_{\mathbb{Q}_{\infty}}, \mathcal{F}_{\text{cl}})$ is free of rank 1. By construction,

$$
\kappa_{\xi} := (\kappa_{\xi,m,n})_{m \ge 1, n \ge 0} \in \mathrm{KS}_0(\mathbb{T}_{\mathbb{Q}_{\infty}}, \mathcal{F}_{\mathrm{cl}}).
$$

Since $\delta: KS_0(E[p], \mathcal{F}_{cl}) \longrightarrow \prod_{d \in \mathcal{N}_{1,0}} \mathbb{F}_p \otimes_{\mathbb{Z}} G_d$ is injective by Corollary [2.22,](#page-13-1) claims (1) , (2) and (3) are equivalent, and it suffices to show that claim (4) is equivalent to that κ_{ξ} is a basis. We have the canonical homomorphism

$$
\delta_1\colon\mathrm{KS}_0(\mathbb{T}_{\mathbb{Q}_\infty},\mathcal{F}_\mathrm{cl})\longrightarrow\Lambda_{\mathbb{Q}_\infty};\,(\kappa_{m,n})_{m\geq 1,n\geq 0}\mapsto\varprojlim_{m,n}\delta(\kappa_{m,n})_1.
$$

By Theorem [3.17,](#page-24-1) we have

$$
\delta_1(\kappa_{\xi}) = \varprojlim_{m,n} \delta(\kappa_{\xi,m,n})_1 = \varprojlim_{m,n} \mathcal{D}^0_{m,n}((\widetilde{\xi}_{K_{\infty}})_{K \in \Omega})_1 = \widetilde{\xi}_{\mathbb{Q}_{\infty}}.
$$

Let $\kappa \in \text{KS}_0(\mathbb{T}_{\mathbb{Q}_{\infty}}, \mathcal{F}_{\text{cl}})$ be a basis and write $\kappa_{\xi} = a\kappa$ for some $a \in \Lambda_{\mathbb{Q}_{\infty}}$. Then, by Theorem [2.20](#page-13-0) (see $[21,$ Theorem 6.4]), we have

$$
\widetilde{\xi}_{\mathbb{Q}_{\infty}}\Lambda_{\mathbb{Q}_{\infty}}=a\delta_1(\kappa)\Lambda_{\mathbb{Q}_{\infty}}=a\cdot \text{char}_{\Lambda_{\mathbb{Q}_{\infty}}}(\text{Sel}(\mathbb{Q}_{\infty}.E[p^{\infty}])^{\vee}).
$$

Since the characteristic ideal char_{$\Lambda_{\mathbb{Q}_{\infty}}$} (Sel $(\mathbb{Q}_{\infty}.E[p^{\infty}])^{\vee}$) is non-zero, claim (4) is equivalent to that a is unit, i.e., κ_{ξ} is a basis.

4 Main results

4.1 Proof of Theorem [1.2](#page-1-1)

First, let us discuss the relation between $\delta(\kappa_{\xi,1,0})_d$ $\delta(\kappa_{\xi,1,0})_d$ $\delta(\kappa_{\xi,1,0})_d$ and δ_d . As in §1, for each prime $\ell \in \mathcal{P}_{1,0}$, we fix a generator $h_{\ell} \in \text{Gal}(\mathbb{Q}(\mu_{\ell})/\mathbb{Q})$, and it naturally induces the surjection

$$
\overline{\log}_{h_{\ell}}\colon \operatorname{Gal}(\mathbb{Q}(\mu_{\ell})/\mathbb{Q}) \stackrel{\sim}{\longrightarrow} \mathbb{Z}/(\ell-1) \longrightarrow \mathbb{F}_p; h_{\ell}^a \mapsto a \bmod p.
$$

Recall that, for any integer $d \in \mathcal{N}_{1,0}$, the analytic quantity $\widetilde{\delta}_d \in \mathbb{F}_p$ is defined by

$$
\widetilde{\delta}_d := \sum_{\substack{a=1 \\ (a,d)=1}}^d \frac{\operatorname{Re}([a/d])}{\Omega_E^+} \cdot \prod_{\ell \mid d} \overline{\log}_{h_\ell}(\sigma_a).
$$

We put $e_d := \# \text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q}(d))$. Since $p \nmid e_d$, we see that $\widetilde{\delta}_d = 0$ if and only if

$$
e_d^{\nu(d)}\widetilde{\delta}_d = \sum_{\substack{a=1\\(a,d)=1}}^d \frac{\text{Re}([a/d])}{\Omega_E^+} \cdot \prod_{\ell \mid d} \overline{\log}_{h_\ell}(\sigma_a^{e_d}) = 0.
$$

Let $\widetilde{\theta}_d = \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \sigma$ denote the image of $\widetilde{\theta}_{\mathbb{Q}_{(\mu_d)}}$ in $\mathbb{Z}_p[\text{Gal}(\mathbb{Q}(d)/\mathbb{Q})]$ (see §[3.1](#page-16-2) for the definition of $\theta_{\mathbb{Q}_{(\mu_d)}}$). Assume for simplicity that the image of $h_{\ell}^{e_d}$ is the fixed generator $g_{\ell} \in \text{Gal}(\mathbb{Q}(\ell)/\mathbb{Q})$. Recall that we have the surjection

$$
\overline{\log}_{g_{\ell}}\colon \operatorname{Gal}(\mathbb{Q}(d)/\mathbb{Q}) \xrightarrow{\sim} \mathbb{Z}/(\ell-1) \longrightarrow \mathbb{F}_p.
$$

Since $\sigma_a = \sigma_b$ in $Gal(\mathbb{Q}(d)/\mathbb{Q})$ if $\sigma_a^{e_d} = \sigma_b^{e_d}$, we see that

$$
e_d^{\nu(d)}\widetilde{\delta}_d = \sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \cdot \prod_{\ell \mid d} \overline{\log}_{g_{\ell}}(\sigma).
$$

Since we have

$$
D_d \widetilde{\theta}_d \bmod p = (-1)^{\nu(d)} \left(\sum_{\sigma \in \text{Gal}(\mathbb{Q}(d)/\mathbb{Q})} a_{\sigma} \cdot \prod_{\ell \mid d} \overline{\log}_{g_{\ell}}(\sigma) \right) N_d
$$

by Lemmas [3.13](#page-22-0) and [3.14,](#page-23-0) we obtain the following lemma (see also Remark [3.1\)](#page-17-0). LEMMA 4.1. For any integer $d \in \mathcal{N}_{1,0}$, the following are equivalent.

- (1) $\widetilde{\delta}_d \neq 0$.
- (2) $D_d \widetilde{\theta}_d \bmod p \neq 0$.

LEMMA 4.2. For any integer $d \in \mathcal{N}_{1,0}$, the following are equivalent.

- (1) $\widetilde{\delta}_d \neq 0$.
- (2) $\delta(\kappa_{\xi,1,0})_d \neq 0$.

Proof. Since any prime $\ell \in \mathcal{P}_{1,0}$ is congruent to 1 modulo p, the relation $\delta(\kappa_{\xi,1,0}) = \mathcal{D}_{1,0}^0((\tilde{\xi}_{K_{\infty}})_{K \in \Omega})$ in Theorem [3.17](#page-24-1) shows that $\delta(\kappa_{\xi,1,0})_d \neq 0$ if and only if $D_d \vartheta_d \mod p \neq 0$. Hence this lemma follows from Lemma [4.1](#page-26-1) and Remark [3.1.](#page-17-0) \Box

COROLLARY 4.3 (Theorem [1.2\)](#page-1-1). Conjecture [1.1](#page-1-0) holds true, that is, there is an integer $d \in \mathcal{N}_{1,0}$ satisfying $\widetilde{\delta}_d \neq 0$ if and only if the Iwasawa main conjecture for E/\mathbb{Q} holds true.

Proof. This corollary follows from Proposition [3.19](#page-24-2) and Lemma [4.2.](#page-26-2)

Documenta Mathematica 27 (2022) 1891–1922

 \Box

4.2 Proof of Theorem [1.5](#page-2-1)

In this subsection, we give a proof of Theorem [1.5.](#page-2-1) Recall that an integer $d \in \mathcal{N}_{1,0}$ is δ -minimal if $\delta_d \neq 0$ and $\delta_e = 0$ for any positive proper divisor e of d. Note that the existence of a δ -minimal integer implies that the Kolyvagin system $\kappa_{\xi,1,0}$ is a basis of $\text{KS}_0(E[p], \mathcal{F}_c)$ by Proposition [3.19](#page-24-2) and Corollary [4.3.](#page-26-0)

LEMMA 4.4. Let $d \in \mathcal{N}_{1,0}$ be an integer. Then the following are equivalent.

- (1) $\widetilde{\delta}_d \neq 0$.
- (2) $H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) = 0.$

Proof. By Theorem [2.20,](#page-13-0) we have

$$
\mathbb{F}_p \cdot \delta(\kappa_{\xi,1,0})_d = \mathrm{Fitt}_{\mathbb{F}_p}^0(H^1_{\mathcal{F}_{\mathrm{cl}}(d)}(G_{\mathbb{Q}}, E[p])^{\vee}).
$$

Hence this lemma follows from Lemma [4.2.](#page-26-2)

 \Box

Remark 4.5. The injectivity of the homomorphism [\(1\)](#page-2-0) (proved by Kurihara) follows immediately from Lemma [4.4.](#page-27-1) In fact, we have

$$
\ker\left(\text{Sel}(\mathbb{Q}, E[p]) \xrightarrow{(1)} \bigoplus_{\ell \mid d} E(\mathbb{Q}_{\ell}) \otimes \mathbb{F}_p\right) = H^1_{(\mathcal{F}_{\text{cl}})_d}(G_{\mathbb{Q}}, E[p])
$$

$$
\subset H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]).
$$

For any integer $d \in \mathcal{N}_{1,0}$, we set

$$
\lambda(d) := \dim_{\mathbb{F}_p}(H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p])).
$$

LEMMA 4.6. Let $d \in \mathcal{N}_{1,0}$ be an integer and $\ell \in \mathcal{P}_{1,0}$ a prime with $\ell \nmid d$.

(1) If $H^1_{\mathcal{F}_{cl}(d)}(G_{\mathbb{Q}}, E[p]) \neq H^1_{(\mathcal{F}_{cl})_{\ell}(d)}(G_{\mathbb{Q}}, E[p])$, then $\lambda(d\ell) = \lambda(d) - 1$. (2) If $H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) = H^1_{(\mathcal{F}_{\text{cl}})_\ell(d)}(G_{\mathbb{Q}}, E[p])$, then $\lambda(d) \leq \lambda(d\ell)$.

In particular, $\lambda(d) \geq \lambda(1) - \nu(d)$.

Proof. If $H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) \neq H^1_{(\mathcal{F}_{\text{cl}})_\ell(d)}(G_{\mathbb{Q}}, E[p])$, then the localization map

$$
H^1_{\mathcal{F}_{\mathrm{cl}}(d)}(G_{\mathbb{Q}}, E[p]) \longrightarrow H^1_{\mathrm{ur}}(G_{\mathbb{Q}_\ell}, E[p])
$$

is non-zero. Since $\mathcal{F}_{\text{cl}}(d)^* = \mathcal{F}_{\text{cl}}(d)$, claim (1) follows from [\[11,](#page-30-8) Lemma 4.1.7 (iv)]. Claim (2) is trivial since

$$
H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) = H^1_{(\mathcal{F}_{\text{cl}})_{\ell}(d)}(G_{\mathbb{Q}}, E[p]) \subset H^1_{\mathcal{F}_{\text{cl}}(d\ell)}(G_{\mathbb{Q}}, E[p]).
$$

PROPOSITION 4.7. Let $d \in \mathcal{N}_{1,0}$ be an integer satisfying $H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) = 0$. Then there is a positive divisor e of d such that $\nu(e) = \lambda(1)$ and $\lambda(e) = 0$.

Proof. When $\lambda(1) = 0$, one can take $e = 1$. Hence we may assume that $\lambda(1) > 0$. If $H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}}, E[p]) = H^1_{(\mathcal{F}_{\text{cl}})_\ell}(G_{\mathbb{Q}}, E[p])$ for any prime $\ell \mid d$, then

$$
H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}}, E[p]) = \bigcap_{\ell \mid d} H^1_{(\mathcal{F}_{\text{cl}})_\ell}(G_{\mathbb{Q}}, E[p])
$$

= $H^1_{(\mathcal{F}_{\text{cl}})_d}(G_{\mathbb{Q}}, E[p])$

$$
\subset H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p])
$$

= 0.

However, since we assume $\lambda(1) > 0$, we conclude that there is a prime $\ell_1 | d$ such that

$$
H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}}, E[p]) \neq H^1_{(\mathcal{F}_{\text{cl}})_{\ell_1}}(G_{\mathbb{Q}}, E[p]).
$$

Hence Lemma [4.6](#page-27-2) implies $\lambda(\ell_1) = \lambda(1) - 1$. If $\lambda(1) = 1$, then ℓ_1 is a desired divisor of d. Suppose that $\lambda(1) > 1$. Since

$$
H^1_{(\mathcal{F}_{\text{cl}})_{d/\ell_1}(\ell_1)}(G_{\mathbb{Q}}, E[p]) \subset H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) = 0,
$$

the same argument shows that there is a prime ℓ_2 | d/ℓ_1 satisfying

$$
H^1_{\mathcal{F}_{\text{cl}}(\ell_1)}(G_{\mathbb{Q}}, E[p]) \neq H^1_{(\mathcal{F}_{\text{cl}})_{\ell_2}(\ell_1)}(G_{\mathbb{Q}}, E[p]).
$$

Then $\lambda(\ell_1\ell_2) = \lambda(\ell_1)-1$ by Lemma [4.6.](#page-27-2) By repeating this argument, we obtain a sequence $\ell_1, \ldots, \ell_{\lambda(1)}$ of prime divisors of d such that $\lambda(\ell_1) = \lambda(1) - 1$ and $\lambda(\ell_1 \cdots \ell_{i+1}) = \lambda(\ell_1 \cdots \ell_i) - 1$ for any $1 \leq i < \lambda(1)$. Then $e := \ell_1 \cdots \ell_{\lambda(1)}$ is a desired divisor of d. \Box

THEOREM 4.8 (Theorem [1.5\)](#page-2-1). For any δ -minimal integer $d \in \mathcal{N}_{1,0}$, we have

$$
\dim_{\mathbb{F}_p} (\mathrm{Sel}(\mathbb{Q}, E[p])) = \nu(d).
$$

Proof. Let $d \in \mathcal{N}_{1,0}$ be a δ -minimal integer. Then $H^1_{\mathcal{F}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p]) = 0$ by Lemma [4.4.](#page-27-1) Hence Proposition [4.7](#page-28-2) shows that there is a positive divisor e of d such that $\nu(e) = \lambda(1)$ and $\lambda(e) = 0$. Then Lemma [4.4](#page-27-1) implies $\delta_e \neq 0$, and we have $d = e$ by the definition of the δ -minimality. Therefore, we obtain $\nu(d) = \nu(e) = \lambda(1).$ \Box

Remark 4.9. In the multiplicative group case, under the validity of the analogue of Lemma [4.6,](#page-27-2) one can show that the analogue of Theorem [1.5](#page-2-1) ([\[10,](#page-30-0) Conjecture 2]) holds true. However, as mentioned in Remark [1.8,](#page-3-1) there is a counter-example of the analogue of Theorem [1.5.](#page-2-1) This shows that the analogue of Lemma [4.6](#page-27-2) does not hold in general. In the proof of Lemma [4.6,](#page-27-2) we use crucially the fact that the Selmer structure \mathcal{F}_{cl} is self-dual, and hence one can say that the self-duality of the Selmer structure \mathcal{F}_{c} is one of the most important ingredients in order to prove Theorem [1.5.](#page-2-1)

1920 R. Sakamoto

Let $\kappa_{\xi,1,0} = (\kappa_{d,\ell})_{(d,\ell)\in\mathcal{M}_{1,0}} \in \text{KS}_0(E[p], \mathcal{F}_c]$ be the Kolyvagin system con-structed in Theorem [3.17.](#page-24-1) By using the fixed generator $g_\ell \in G_\ell$, we regard G_ℓ as $\mathbb{Z}/\#G_{\ell}$, and hence one can regard $\kappa_{d,\ell} \in H^1_{\mathcal{F}^{\ell}_{\text{cl}}(d)}(G_{\mathbb{Q}}, E[p])$. As discussed by Kurihara in [\[10,](#page-30-0) Theorem 3(2)], by using Theorem [4.8,](#page-28-0) one can construct a basis of the p-Selmer group Sel(Q, $E[p]$) from the Kolyvagin system $\kappa_{\xi,1,0}$.

COROLLARY 4.10. For any δ -minimal integer $d = \ell_1 \cdots \ell_t \in \mathcal{N}_{1,0}$, the set $\{\kappa_{d/\ell_i,\ell_i} \mid 1 \leq i \leq t\}$ is a basis of $\text{Sel}(\mathbb{Q}, E[p])$.

Proof. Applying Theorem [2.1](#page-6-1) with $\mathcal{F}_1 = (\mathcal{F}_{\text{cl}})_d$ and $\mathcal{F}_2 = \mathcal{F}_{\text{cl}}$, we obtain an exact sequence

$$
0 \longrightarrow H^1_{(\mathcal{F}_{\text{cl}})_d}(G_{\mathbb{Q}}, E[p]) \longrightarrow \text{Sel}(\mathbb{Q}, E[p]) \longrightarrow \bigoplus_{\ell \mid d} H^1_{\text{ur}}(G_{\mathbb{Q}}, E[p])
$$

$$
\longrightarrow H^1_{\mathcal{F}^d_{\text{cl}}} (G_{\mathbb{Q}}, E[p])^\vee \longrightarrow \text{Sel}(\mathbb{Q}, E[p])^\vee \longrightarrow 0.
$$

Lemma [4.4](#page-27-1) and Theorem [4.8](#page-28-0) show that $H^1_{\mathcal{F}_{\text{cl}}^d}(G_{\mathbb{Q}}, E[p]) = \text{Sel}(\mathbb{Q}, E[p])$, and we have an isomorphism

$$
\bigoplus_{\ell \mid d} \varphi_{\ell}^{\text{fs}} \colon \text{Sel}(\mathbb{Q}, E[p]) \xrightarrow{\sim} \bigoplus_{\ell \mid d} H^1_{\text{ur}}(G_{\mathbb{Q}}, E[p]) \xrightarrow{\sim} \mathbb{F}_p^t.
$$

Here $t := \nu(d)$. In particular, $\kappa_{d/\ell_i,\ell_i} \in \text{Sel}(\mathbb{Q}, E[p])$ for any integer $1 \leq i \leq t$. Take an integer $1 \leq i \leq t$. Since $H_{\mathcal{F}_{cl}^{\ell_i}(d/\ell_i)}^{\mathcal{I}_{\ell_i}}(G_{\mathbb{Q}}, E[p]) \subset \text{Sel}(\mathbb{Q}, E[p])$, we have

$$
H^1_{\mathcal{F}^{\ell_i}_{\text{cl}}(d/\ell_i)}(G_{\mathbb{Q}}, E[p]) = H^1_{\mathcal{F}^{\ell_i}_{\text{cl}}(d/\ell_i)}(G_{\mathbb{Q}}, E[p]) \cap H^1_{\mathcal{F}_{\text{cl}}}(G_{\mathbb{Q}}, E[p])
$$

=
$$
H^1_{(\mathcal{F}_{\text{cl}})_{d/\ell_i}}(G_{\mathbb{Q}}, E[p]).
$$

Since $\kappa_{d/\ell_i,\ell_i} \in H^1_{(\mathcal{F}_{\text{cl}})_{d/\ell_i}}(G_{\mathbb{Q}}, E[p])$, we have $\varphi_{\ell_j}^{\text{fs}}(\kappa_{d/\ell_i,\ell_i}) = 0$ for any $j \neq i$. The δ -minimality of d and Lemma [4.2](#page-26-2) imply that $\varphi_{\ell_i}^{\text{fs}}(\kappa_{d/\ell_i,\ell_i}) = -\delta(\kappa_{\xi,1,0})_d \neq$ 0. This shows that the set $\{\kappa_{d/\ell_i,\ell_i} \mid 1 \leq i \leq t\}$ is a basis of Sel $(\mathbb{Q}, E[p])$.

REFERENCES

- [1] Burns, David; Sakamoto, Ryotaro; Sano, Takamichi. On the theory of higher rank Euler, Kolyvagin and Stark systems, II. Preprint, 2018. [https:](https://arxiv.org/abs/1805.08448) [//arxiv.org/abs/1805.08448](https://arxiv.org/abs/1805.08448).
- [2] Burns, David; Sano, Takamichi. On the theory of higher rank Euler, Kolyvagin and Stark systems. Int. Math. Res. Not. IMRN 2021, no. 13, 10118– 10206.
- [3] Kataoka, Takenori. Equivariant Iwasawa theory for elliptic curves. Math. Z. 298 (2021), no. 3-4, 1653–1725.

- [4] Kato, Kazuya. p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithm´etiques. III. Astérisque 295 (2004), 117-290.
- [5] Kim, Chan-Ho; Kim, Myoungil; Sun, Hae-Sang. On the indivisibility of derived Kato's Euler systems and the main conjecture for modular forms. Selecta Math. (N.S.) 26 (2020), no. 2, Paper No. 31, 47 pp.
- [6] Kim, Chan-Ho; Nakamura, Kentaro. Remarks on Kato's Euler systems for elliptic curves with additive reduction. J. Number Theory 210 (2020), 249–279.
- [7] Kim, Chan-Ho. The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves. Preprint, 2022. <https://arxiv.org/abs/2203.12159>.
- [8] Kurihara, Masato. On the structure of ideal class groups of CM-fields. Kazuya Kato's fiftieth birthday. Doc. Math. 2003, Extra Vol., 539–563.
- [9] Kurihara, Masato. Refined Iwasawa theory for p-adic representations and the structure of Selmer groups, Münster J. Math. 7 (2014), no. 1, 149–223.
- [10] Kurihara, Masato. The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012, 317–356. Contrib. Math. Comput. Sci., 7. Springer, Heidelberg, 2014.
- [11] Mazur, Barry; Rubin, Karl. Kolyvagin systems, Mem. Amer. Math. Soc. 799 (2004).
- [12] Mazur, Barry; Rubin, Karl. Controlling Selmer groups in the higher core rank case, J. Théor. Nombres Bordeaux 28 (2016), 145–183.
- [13] Mazur, Barry; Tate, John. Refined conjectures of the "Birch and Swinnerton-Dyer type". Duke Math. J. 54 (1987), no. 2, 711–750.
- [14] Nekovář, Jan. On the parity of ranks of Selmer groups. II. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2, 99–104.
- [15] Nekovář, Jan. Selmer complexes. Astérisque 310 (2006), viii+559 pp.
- [16] Ota, Kazuto. Kato's Euler system and the Mazur-Tate refined conjecture of BSD type. Amer. J. Math. 140 (2018), no. 2, 495–542.
- [17] Perrin-Riou, Bernadette. Théorie d'Iwasawa des représentations p-adiques sur un corps local. With an appendix by Jean-Marc Fontaine. Invent. Math. 115 (1994), no. 1, 81–161.
- [18] Rubin, Karl. Euler systems. Annals of Math. Studies, 147. Princeton Univ. Press, 2000.

1922 R. Sakamoto

- [19] Sakamoto, Ryotaro. Stark systems over Gorenstein local rings, Algebra Number Theory 12 (2018), no. 10, 2295–2326.
- [20] Sakamoto, Ryotaro. On the theory of higher rank Euler, Kolyvagin and Stark systems: a research announcement, Algebraic Number Theory and Related Topics 2017, RIMS Kôkyûroku Bessatsu B83 (2020), 141-159.
- [21] Sakamoto, Ryotaro. On the theory of Kolyvagin systems of rank 0, J. Théor. Nombres Bordeaux 33 (2021), no. 3, pt. 2, 1077–1102.
- [22] Skinner, Christopher; Urban, Eric. The Iwasawa main conjectures for GL2. Invent. Math. 195 (2014), no. 1, 1–277.
- [23] Stevens, Glenn. Stickelberger elements and modular parametrizations of elliptic curves. Invent. Math. 98 (1989), no. 1, 75–106.
- [24] Tan, Ki-Seng. A generalized Mazur's theorem and its applications. Trans. Amer. Math. Soc. 362 (2010), no. 8, 4433–4450.

Ryotaro Sakamoto Department of Mathematics University of Tsukuba 1-1-1 Tennodai Tsukuba, Ibaraki 305-8571 Japan <rsakamoto@math.tsukuba.ac.jp>