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1 INTRODUCTION

In modern number theory, it is an attractive area of research to connect L-values
with Selmer groups. For instance, the Birch and Swinnerton-Dyer conjecture
relates arithmetic data of an elliptic curve over a number field to the behavior
of its L-function at s = 1. In the present paper, we prove that the dimension of
the (classical) p-Selmer group Sel(Q, E[p]) of an elliptic curve E/Q is controlled
by certain analytic quantities associated with modular symbols as conjectured
by Kurihara in [10].

1.1 MAIN RESULT

In order to explain the main result in detail, we first introduce some notations
and hypotheses. Let E/Q be an elliptic curve and let Spaq(FE) denote the set
of primes at which E has bad reduction. For each prime ¢ € Sp.q(F), we
denote by Tamy(E) := [E(Qy): E°(Qy)] the Tamagawa number for E/Qy. As
in the paper [10] of Kurihara, we consider a prime p > 3 satisfying the following
conditions:
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1892 R. SAKAMOTO

(a) p is a good ordinary prime for E.

(b) The action of Gal(Q/Q) on E[p] is surjective.

(c) pt #E(Fp) Hzgsbad(E) Tam,(E).

Let P1,0 denote the set of Kolyvagin primes, that is,
Pro:={l & Svaa(E) | E(Fy)[p] =F, and £=1 (mod p)}.

We define N7 o to be the set of square-free products in P; . We fix a gener-
ator hy € Gal(Q(u¢)/Q) for each prime ¢ € P; o, and we obtain a surjective
homomorphism (induced by the discrete logarithm to the base hy)

logy,, : Gal(Q(ur)/Q) —= Z/(¢ — 1) — Fy; h§ + a mod p.

Let fr denote the newform of weight 2 associated with F/Q. Take an integer
d € Ni,. For any integer a with (a,d) = 1, we write o, € Gal(Q(uq)/Q) for
the element satisfying o,(¢) = ¢¢ for any ¢ € pug and put

a/d
[a/d] := 2mv—1 fe(2)dz.
V—T1oo

The assumption (b) implies that Re([a/d])/Q}, € Z,, where Q7 is the Néron

period of £ (cf. [23]). Following Kurihara in [10], we define an analytic quan-
tity d4 which relates to L-values by

d
fo= Y D T, (00) € B

a=1 E 2)d
(a,d)=1

Kurihara remarked in [10] that it is easy to compute the analytic quantity gd
(see [10, §5.3]), and gave the following conjecture.

CONJECTURE 1.1 ([10, Conjecture 1]). There is an integer d € N o with 4 # 0.

Concerning this conjecture, Kurihara proved in [10] that the non-degeneracy
of the p-adic height pairing and the Iwasawa main conjecture for E/Q imply
Conjecture 1.1. In the paper [5], Chan-Ho Kim, Myoungil Kim, and Hae-Sang
Sun called d; Kurihara number at d and gave a simple and efficient numerical
criterion to verify the Iwasawa main conjecture for E/Q by using d4, namely,
they proved in [5] that Conjecture 1.1 implies the Iwasawa main conjecture for
E/Q. Moreover, Chan-Ho Kim and Nakamura in [6] generalized this numerical
criterion to the additive reduction case. In the present paper, we give the
following answer to Conjecture 1.1.

THEOREM 1.2 (Corollary 4.3). Conjecture 1.1 is equivalent to the Iwasawa
main conjecture for E/Q.

DOCUMENTA MATHEMATICA 27 (2022) 1891-1922



p-SELMER GROUP AND MODULAR SYMBOLS 1893

Remark 1.3. Skinner and Urban proved in [22] that if there exists a prime
g # p such that ord,(Ng) = 1 and E[p] is ramified at ¢, then the Iwasawa main
conjecture for E is valid. Here Ng is the conductor of E/Q.

Next, let us explain the relation between the structure of the p-Selmer group
Sel(Q, E[p]) and the analytic quantities d4. For that, we use the following
terminology of Kurihara in [10].

DEFINITION 1.4. We say that an integer d € Ny is 6-minimal if b4 # 0 and

de = 0 for any positive proper divisor e of d.

Recall that, by the definition of the p-Selmer group, the localization map at ¢
induces a natural homomorphism

Sel(Q, Elp]) — E(Q¢) ®z Fp.

Let d € N1 be a §-minimal integer. Kurihara proved in [10] that the natural
homomorphism

Sel(Q, E[p]) — P E(Qr) @2 F, (1)

eld

is injective (see Remark 4.5), and he conjectured in [10, Conjecture 2| that the
homomorphism (1) is an isomorphism. By the definition of P; o, we have

dim]pp (E(Qg) ®Z Fp) =1
for each prime divisor /¢ | d, and hence this conjecture is equivalent to that
dimg, (Sel(Q, E[p])) = v(d),

where v(d) denotes the number of distinct prime divisors of d. Kurihara showed
in [10, Theorem 4] that (1) is an isomorphism in some special cases. In the
present paper, we solve this conjecture.

THEOREM 1.5 (Theorem 4.8). For any d-minimal integer d € N1, we have
the natural isomorphism

Sel(Q, E[p]) = P E(Qe) @z F,,
o)d

and hence dimg, (Sel(Q, E[p])) = v(d).

Remark 1.6. Theorem 1.5 implies that for any integer d € N; o with 5~d # 0,
we have
dimp, (Sel(Q, Ep])) < v(d).

Note that the analytic quantity gd is computable, as the author mentioned
above.
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Remark 1.7. After the author had got almost all the results in the present pa-
per, Chan-Ho Kim told the author that he also proved the same result (see [7]).

Remark 1.8. The analogue of Theorem 1.5 for ideal class groups does not hold.
Kurihara has given a counter-example in [10, §5.4]. In Remark 4.9, we explain
an important property to prove Theorem 1.5.

By using the functional equation for modular symbols (see [13, (1.6.1)]), Kuri-
hara showed in [10, Lemma 4] that wp = (—1)*¥ for any §-minimal integer
d € N1 . Here wg denotes the (global) root number of E/Q. Hence, as an ap-
plication of Theorem 1.5, we obtain the following result concerning the parity
of the order of vanishing of L-function L(E/Q, s) at s = 1:

COROLLARY 1.9. Suppose that the Iwasawa main conjecture for E/Q holds
true. Then we have

dimg, (Sel(Q, E[p])) = ordy—y (L(E/Q, 5)) (mod 2).

Moreover, if the p-primary part of the Tate—Shafarevich group for E/Q is finite,
then we have

rankz(E(Q)) = ords=1(L(E/Q, s)) (mod 2).

Proof. Since we assume that the Iwasawa main conjecture for E/Q holds
true, Theorem 1.2 shows that there is a J-minimal integer d € N . Then,
Theorem 1.5, combined with the fact that wp = (—1)", implies that
wp = (=1)dmsEUQERD)  Since wp = (—1)0de=1(LE/Q5) " we have
dimg, (Sel(Q, E[p])) = ords=1(L(E/Q, s)) (mod 2). O

Remark 1.10. Corollary 1.9 has already been proved by Nekovaf in [14] (see
also [15]), assuming only the condition (a). However, the proof of Corollary 1.9
is completely different from that of [14, Theorem A].

The proof of Theorem 1.5 is based on the theory of Kolyvagin systems of rank 0
developed in [21]. In §2, we introduce the theory of Kolyvagin systems. In §3,
we construct a Kolyvagin system of rank 0 from modular symbols. In §4, we
discuss the relation between this Kolyvagin system and the set of the analytic
quantities {dq}aen, o, and we give a proof of Theorem 1.5. Moreover, by using
the Kolyvagin system constructed in §3, we construct an explicit basis of the
p-Selmer group (see Corollary 4.10).

1.2 A MOD p ANALOG OF THE MAZUR-TATE REFINED CONJECTURE OF
BSD TYPE

As in the previous subsection, let £/Q be an elliptic curve satisfying the con-
ditions (a), (b), and (c). For each integer d € N, the Mazur—Tate modular

element 5(@(” o) is defined by

d
T = . A, ¢ g [Gae(u) @)
@t
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and Mazur and Tate conjectured in [13] a refined Birch and Swinnerton-Dyer
conjecture consisting of two parts, by using 6g(,,). One of the two parts con-

cerns the order of vanishing of 5(@(“ ) (the rank-part). More precisely, the
following is the rank-part of the Mazur-Tate conjecture.

CONJECTURE 1.11 (Mazur-Tate). Let I, := ker(Z,[Gal(Q(uq)/Q)] — Z,).
Then

5@(!&1) € (Id)rE’
where rg := ranky (E(Q)).

Remark 1.12.

(1) Under the validity of the 1 = 0 conjecture, Kurihara proved Conjecture
1.11 (see [10, Remark 2] and [13, Proposition 3]).

(2) Since we only consider integers in N7 o in the present paper, Conjecture
1.11 is proved by Ota when p > rg (see [16, Theorem 1.2]).

By using Ota’s results in [16], we show the following theorem which is a mod p
analog of Conjecture 1.11.

THEOREM 1.13. Let Z4 := ker(F,[Gal(Q(uq)/Q)] — Fp). We have
5@(“(1) mod p € (Td)rp,
where r;, = dim, (Sel(Q, Ep])).

Proof. Note that r, — 1 < dimy(ker(Sel(Q, E[p]) — E(Qp)/p)) since
E(Qp)/p = F,. Then by [16, Proposition 3.3, Theorem 4.9, Corollary 5.13], we
have

Og(yua) mod p € (Zg)"» "

Moreover, the p-parity conjecture (see [14]) and the functional equation of the
modular element g,y (see [16, Proposition 5.16]) show that

%wd) mod pE (fd)rp
(see the proof of [16, Theorem 5.17]). O

Remark 1.14. In the statement of [16, Theorem 4.9], there is the assump-
tion that maxyg{e/(D)} < p. This assumption is only used to prove [16,
Lemma 3.1], which states a certain relation between Darmon—Kolyvagin deriva-
tives. However, since ¢ = p in our case, [16, Lemma 3.1] holds true without
any assumption, and hence the conclusion of [16, Theorem 4.9] is valid without
the assumption that max, g{es(D)} < p.

DOCUMENTA MATHEMATICA 27 (2022) 1891-1922



1896 R. SAKAMOTO

Theorem 1.13 is equivalent to that the maximum value of the set of the van-
ishing orders of fg(,,) mod p is at least 7, namely,

rp < max{r >0 | 5@(;@) mod p € (Z,)" for any d € Ni o}

As a corollary of the main result of the present paper, we show the opposite
inequality.

THEOREM 1.15. Suppose that the Twasawa main conjecture for E/Q holds true.
Then we have

rp = max{r >0 | 5@(%) mod p € (Zy)" for any d € N1}

Proof. Since we assume the validity of the Iwasawa main conjecture for E/Q,
we have a d-minimal integer d € Nj o by Theorem 1.2. Then

v(d) =rp

by Theorem 1.5. Hence it suffices to show that 5@(%) mod p & (Zg)V( D+,
This fact follows from the definition of the §-minimality, Remark 3.1, and
Lemmas 3.13 and 3.14. O
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2 THE THEORY OF KOLYVAGIN SYSTEM

In this section, we recall the theory of Kolyvagin systems. The contents of this
section are based on [11, 21].
Let p > 3 be a prime satisfying the hypotheses (a), (b) and (c). For notational
simplicity, we put

M/p™ = M/p"M

for any abelian group M. Fix integers n > 0 and m > 1. Let Q,, denote the
n-th layer of the cyclotomic Z,-extension of Q. We then put

R:=17,/p"[Gal(Q,/Q)] and T :=TndgS (E[p™]).

1

Note that T satisfies the hypotheses (H.0) — (H.3) in [11, §3.5]. However, T
does not satisfy the hypothesis (H.4) in [11, §3.5] when p = 3.

DOCUMENTA MATHEMATICA 27 (2022) 1891-1922
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2.1 SELMER STRUCTURES

We introduce two Selmer structures on 7. Recall that a Selmer structure F
on T is a collection of the following data:

e a finite set S(F) of rational primes containing Sp.q(E) U {p},

e a choice of R-submodule H%(Gg,,T) of H'(Gg,,T) for each prime ¢ €
S(F).

Here, for any field K, we denote by K a separable closure of K and set G :=
Gal(K/K). For each prime ¢ & S(F), we set

Hz(Gg,,T) := H},(Q¢, T) :=ker (H'(Gg,, T) — H'(Ggu, T)),

where Q}* denotes the maximal unramified extension of Q,. We define the
Selmer module H%(Gg,T) by

H}:(GQaT) :=ker (Hl(GQvT) - @Hl(GQwT)/H]l:(G@mT)> .
4
Set TV(1) := Hom(T, pp ). For each prime ¢, we define
H}:* (GszTV(l)) - Hl(GQwTV(l))

to be the orthogonal complement of Hx(Gg,,T) with respect to the local Tate
pairing. Hence we obtain the dual Selmer structure F* on T (1). Throughout
this paper, we regard F* as a Selmer structure on 7' by using the isomorphism
T = TV(1) induced by the Weil pairing.

THEOREM 2.1 ([11, Theorem 2.3.4]). Let Fy and F2 be Selmer structures on T
satisfying
Hjl"-'l (GQz ) T) - H.}TQ (GQ€7 T)

for all primes €. Then we have an exact sequence of R-modules
0— H}-"l (GQ’ T) - Hjlfg (GQv T) — @ H]l-"z (GQe ) T)/H;-"l (G@zv T)
¢
- H;-'f (GQ’T)V - H}-'; (GQ’T)V — 0,

where £ runs over all the rational primes satisfying H}I(GQZ,T) #*
H} (Gq,,T). Here (—)Y := Hom(—,Q,/Z,).

LeMMA 2.2 ([1, §3.2], [11, Lemma 3.5.3]). For any Selmer structure F on T,
the canonical map Elp] — T induces an isomorphism

H}. (G, Elp)) = H. (G, T)[mg).

Here mp denote the mazimal ideal of R. In particular, Hx:.(Gg, E[p]) = 0 if
and only if Hx.(Gg,T) = 0.
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Following Mazur and Rubin, we define the transversal local condition
HL(Gg,,T) and a Selmer structure F{(c) on T
DEFINITION 2.3.

(1) For any integer d, we write Q(d) for the mazimal p-subextension of Q(uq).

(2) For any prime £, define

Htlr(GQeaT) := ker (Hl(GQevT) - Hl(GQ(5)®Qw T)) :
We also set H}*(GQE,T) = HY(Gg,,T)/H}(Gg,,T) for x € {ur,tr}.

(8) Let a, b, and c be pairwise relatively prime (square-free) integers. Define
the Selmer structure F{(c) on T by the following data:

- S(F(0) == S(F)u il ] abe},

HY(Gq,,T) ift]|a,

0 ife|b,
Htlr(GQe’T) ifl|ec,
H%(Gg,,T) otherwise.

- H}-‘g(c)(GQe’T) =

Note that (Fi(c))* = (F*)b(c). For simplicity, we will write F, Fy,
F(c), ... instead of F{(1), FL(1), Fi(c), ..., respectively.
DEFINITION 2.4 (classical Selmer structure). We define the classical Selmer
structure Fe on T by the following:

o S(Fa) = Spaa(E) U {p},

d H]l-"c](GQwT) = im (@[ME(Qn,[)/pm — Hl(GQwT)) Jor each prime
le S(]:Cl).

By definition, the Selmer module H}-}l(GQ’T) coincides with the classical p™ -
Selmer group Sel(Qy,, E[p™]) associated with the elliptic curve E/Q,. We also
note that Fo = FJ.

DEFINITION 2.5 (canonical Selmer structure). We define the canonical Selmer
structure Fean on T by
Fean = -7:5
LEMMA 2.6. For any prime £ # p, we have
H]l-'can (GQeaT) = H.)l’-'cl(GQw T) = H&r(GQwT)'

Proof. By definition, it suffices to show that E(K)/p™ = H}.(Ggk, E[p™]
for any unramified p-extension K/Q;. Note that #H! (Gk,E]p™]) =
#HC(Gk,E[p™]) = #E(K)/p™ since £ # p. Hence it suffices to show that
E(K)/p™ C HL (Gk,E[p™]). Since we assume that ¢ # p and p t Tamy(E),
we have E(QY)/p™ = E(F;)/p™ = 0, where E denotes the reduction of E at £.
This fact implies E(K)/p™ C H! (G, E[p™]). O
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Remark 2.7. Let K/Qp be an unramified extension. The assumption that
p 1 Tam,(E) implies that E(Q}")[p>] is divisible. This fact shows that

Hy (G, Tp(E)) = ker(H' (G, Tp(E)) — H' (Goyr, Tp(E)) ® Q)

and im (H,(Gk,T,(E)) — H'(Gk,E[p™])) = HL.(Gk, E[p™]). Therefore,
by Lemma 2.6, the canonical Selmer structure in the present paper is the same
as the Selmer structure induced by the canonical Selmer structure defined in
[11, Definition 3.2.1].

Note that we have the canonical injection E[p] — T.

DEFINITION 2.8. We say that a Selmer structure F on T is cartesian if the
homomorphism

coker (HJI":(GQN T) — H1<GQ£’ E[p])) - Hl(GQw T)/H.}’:(GQZ ) T)
induced by Elp] — T is injective for any prime £ € S(F).
PROPOSITION 2.9. The Selmer structure Fean on T is cartesian.

Proof. Since we assume p { #E(F,), we have H?*(Gq,, E[p]) = H%(Gg,, E[p]) =
0. This fact implies coker (H},_(Gq,,T) — H'(Gq,, E[p])) = 0.

Take a prime ¢ € Spaa(F). Since Q,,/Q is unramified at ¢, Lemma 2.6 shows
that there are natural injections

coker (H}:wn (GQZ’ T) - Hl(GQU E[p])) — Hl(GQ};rv E[p])
and
Hl(GQeaT)/H}:can (GQNT) — Hl(GQEraT) = @Hl(GQz‘rv E[pm])

¢

Since p f Tamy(E), the module E(Qy)[p>] is divisible. Hence E(Qy)[p™] =%
E(Q)[p™~1] is surjective, and H'(Ggy, E[p]) — H'(Goyr, E[p™]) is injec-
tive. This completes the proof. O

2.2 STRUCTURE OF LOCAL POINTS

Let K/Q be a finite abelian p-extension and put
G := Gal(K/Q).

Let E denote the formal group associated with £/Q, and put
E(mg,) == P E(mg, ).
plp

Here my, denotes the maximal ideal of the ring of integers of L for any algebraic
extension L/Q,.
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LEMMA 2.10. We have E(mQ )/p=(E (mK )/p)¢.
Proof. Since p{ #E(F,), Tan proved in [24, Theorem 2 (a)] that

H'(Gy,, E(m mg ) = 0.

Take a prime p | p of K and put G, := Gal(Kp/Qp) The injectivity of the infla-
tion map H'(G,, (mK )) — H'(Gy,, ( Qp)) implies Hl(GP,E(pr)) =
0. Since K,/Q, is a p-extension and E(Qp)[p] = 0, the module E(K,) is
p-torsion-free. Hence the vanishing of H!(G,, FE (mK )) implies

E(mg,)/p = (E(mg,)/p)%"

Since
E(mg,)/p = E(mg,)/p s, F,[G/G,,

we see that E(me)/p = (E(mg,)/p)C. O

PROPOSITION 2.11. The Z,[G]-module E(pr) is free of rank 1.

Proof. For any finitely generated F,[G]-module M, put M* =
Homp, (M, F,[G]). Since F,[G] is a zero-dimensional Gorenstein local ring,

we have M = M** by Matlis duality. Applying this fact to ((E(pr)/p)*)G
and E(pr)/p, we obtain

(E(mi,)/p)")e = (E(mi,)/p)")a)*

= ((E(mg,)/p)™)%)"
=~ (E(m,)/p)°)".
By Lemma 2.10, we have ((E(mg,)/p)?)* = (E(mg,)/p)* = (F,)" = F,.
Hence (E(mg,)/p)* is a cyclic Fy[G]-module. Furthermore, the fact that
E(mKP) = ZI[,K: U a5 Zy-modules implies that

(E(mg,)/p)" = F,[C].

Therefore, E(pr)/p is also free of rank 1, and the Z,[G]-module E(pr) is

cyclic. Since E(pr) = ZLK: Y we conclude that E(pr) = Z,|G). O

DEFINITION 2.12. For any integer m > 1, we put
H} (g, ndge, (B[p™)) = im (E(my,) /" — H'(Ga,, IndG2 (Ep™])))
We also define H (GQP,Ind L (E[p™])) to be
1 GQ m 1 G@ m
H(Gy,,Indg, (E[p™]))/H(Gy,, Indg, (E[p™])).
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Remark 2.13. Since we assme p { #E(F,), we have H}(Gq,,T) = Hf, (Gq,,T)
when K = Q,.
COROLLARY 2.14.

(1) The Z,/p™|G]-modules
H}(Gq,,Ind (E[p™) and Hj¢(Go,. Indg (Ep™)
are free of rank 1.
(2) For any subfield K' C K, we have natural isomorphisms
H(Goy dSe (Ep™)) /ey~ H} (G, dC (B[p™)),
G| m ~ G m
H);(Gq,, Indgs (Ep™]))cax/xy — Hj¢(Ga,, Indge (E[p™)).

Proof. For simplicity, we put Tx := Indgi(Tp(E)). We note that

Tk /p™ = Indg (E[p™]). Since H*(Gg,,Elp]) = H(Gq,,E[p]) = 0 and

RI'(Goq,,Tk) ®Hip[c] F, = RI'(Gq,, E[p]), the perfect complex RI'(Gq,,Tk)

is of perfect amplitude in [1,1]. Hence, for any ideal I of Z,[G], we have
H'(Gq,,Tk) ®z,1c) Zp|G]/I — H (G, Tk /ITk).

Furthermore, the local FEuler characteristic formula implies that
H'Y(Gq,,Tk/ITk) is a free Z,[G]/I-module of rank 2. By Proposition 2.11,
the Z,/p™[G]-module H}(Gq,, Tk /p™) is free of rank 1. Since Z,/p™[G] is a
self-injective ring, H/lf(G@p7 Tk /p™) is also free of rank 1.

Let us show the claim (2). By claim (1), the exact sequence of Z,/p™[G]-
modules

0 — Hj(Gg, Tk /p™) — H'(Gq, T /p"™) — H}(Go,, Trc /p™) — 0
is split. Hence we obtain the exact sequence of free Z,, /p™[Gal(K’/Q)]-modules

0 — H(Gq,, Tk /p™)cax/ k) —H (Gg,, Tk /p™)Gai(k/ K1)
— H}¢(Ga,, T /p™)cai(x /57y — O-

Since HI(GQw Tk /P™)Gal(k/K") = Hl(GQp, Tk /p™), the homomorphism
H}(Gq, Tk /p™)cax/xn — Hi(Ga,, Tk [p™)
is injective. Hence by claim (1), we obtain isomorphisms

H}(Ga, Tr /p™)cax/xn — Hi(Gg,, Tk [p™)
Hj(Go,, Tx /™ )cax k) — H)1(Ga,, Trr /p™).-
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COROLLARY 2.15. The Selmer structure Fo on T is cartesian.

Proof. By Proposition 2.9, it suffices to show that the homomorphism

H/lf(GvaE[p]) - H/lf(GQpaT)

is injective. Note that this map factors through H #(Gg,, E[p™]). By Corol-
lary 2.14, the canonical homomorphism H/f(GQ ,E[p ) — H/lf(GQp,T)
is injective. Let us show that H 1(Gg,, Elp]) — H1 1(Gq,, E[p™]) is injec-

tive. Since H'(Gg,, E[p™]) is a free Zy/p™-module and HY(Gq,,Ep™]) ®
F, = H'(Gq,,E[p]), the canonical homomorphism H'(Gg,,El]p]) —
H'(Gq,, E[p™)]) is injective. By definition, we have

H}(Gq,,E[p™]) ®F, = E(mg,)/p™ @ F, = E(mg,)/p = H}(Gq,. Elp)).

Since H}(Gq,, E[p™]) = Z,/p™ by Corollary 2.14, we see that the canonical
homomorphism H #(Ga,, E[p]) — H #(Gq,, E[p™]) is injective. O

2.3 KOLYVAGIN SYSTEMS OF RANK 1

In this subsection, we recall the definition of Kolyvagin systems of rank 1
introduced by Mazur and Rubin in [11]. We set

Ponn = {L & Spaa(E) | E(Fe)[p™] = Z/p™ and £=1 (mod p™*>{mntihy,

For any prime £ € Py, , the R-module H! (Gq,,T) = T/(Fr, — 1)T is free of
rank 1. Moreover, by [11, Lemmas 1.2.1, 1.2.3 and 1.2.4], we have

Hl(GszT) = H&I(GQZ7T) D Htlr(GQevT)

and the R-modules HL(Gg,,T), H/M(GQL,7 T), and H/tr(GQE’ T) are free of
rank 1. Let Nm n denote the set of square-free products in P,, . For each
integer d € /\fmm7 we put

Ga = (¥) Gal(Q(0)/Q)

¢d
For any prime ¢ € Py, ,, we have two homomorphisms
ver HY(Go,T) > HY(Gq,, T) — H),.(Gq,,T),
OB HY(Go, T) 2% HY(Gy,, T) 2 HL (Gg,,T) 9, H)},.(Go,, T) ®z Gy.
Here qbzs is the finite-singular comparison map defined in [11, Definition
1.2.2] and pr,, denotes the projection map with respect to the decomposition

Hl(GQeaT) = H&r(G@z’ T) S Htlr(GQtzv T)'
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DEFINITION 2.16. We define the module KSy (T, Fean) of Kolyvagin systems of
rank 1 to be the set of elements

(ka)aenn € I Hron@(Go:T) @2 Ga
dENm n

satisfying the finite-singular relation

ve(Ka) = @25(&1/@)
for any integer d € Ny, , and any prime £ | d.
For any integer d, we denote by v(d) € Z>( the number of prime divisors of d.
LEMMA 2.17. Let a,b,c € N, ,, be pairwise relatively prime integers with v(a)—

v(b) > 1. IfH(lfgan)g(c)(GQ’E[p]) =0, then the R-module H(lfcan)g”(C)(GQ’T) is

free of rank v(a) — v(b) + 1.

Proof. Since Feay is cartesian by Proposition 2.9, so is (Fean)j(¢) by [19, Corol-
lary 3.18]. By [11, Proposition 6.2.2], we have

X(Fean) := dimg, (Hx, (Go, E[p))) — dimg, (Hx. (G, Elp])) = 1,

and [19, Corollary 3.21] implies x((Fecan)§(c)) = v(a) — v(b) + 1. Hence this
lemma, follows from [19, Lemma 4.6]. O
2.4 KOLYVAGIN SYSTEMS OF RANK 0

In this subsection, we recall the definition of Kolyvagin system of rank 0 in our
previous paper [21]. Fix an isomorphism

H/lur(GQwT) =R
for each prime ¢ € Py, ,,. We then have homomorphisms
v H'(Gy,,T) — H},.(Gg,, T) = R,
pr: H'(Go,, T) — H},(Go,, T) @2 G¢ = R @z Gy
We put M., ., :={(d, ) € Ny X P | £ is coprime to d}.

DEFINITION 2.18. A Kolyvagin system of rank 0 is an element

(ka.)@oesnn € J1 Hiyg(Go.T) 2 Ga
(d0) €M

which satisfies the following relations for any elements (d,£),(d,q),(dl,q) €
Mo

W(Kdz,q) = @gs(fid,q%
ve(K1,0) = vg(K1,q),

vg(Kaeq) = = (Ka,e)-
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We denote by KSo(T, Fe1) the module of Kolyvagin systems of rank 0. For any

Kolyvagin system k € KSo(T, Fu1) and any element (d,{) € My, », we put
0(K)g := ’Ug(lidj) € R®z Gy.

Note that, by the definition of Kolyvagin system of rank 0, the element §(k)q is

independent of the choice of the prime £t d. Hence we obtain a homomorphism
0: KSo(T, Far) — H R®z Gy.
deENm n

Note that Fo = FJ.

LEMMA 2.19. Let a,b,c € Ny, be pairwise relatively prime integers with
v(a) > v(b). If H(}. ) (0) (Gg, E[p]) = 0, then the R-module H(f e () (G, T)
is free of rank v(a) — v(b).

Proof. Since H(l}.cl)g(c)(G@E[p]) = 0, Lemma 22 shows that

H(l}.l)b(c)(GQ,T) = 0. Hence applying Theorem 2.1 with F; = (Fu)i(c)

and Fy = (Fean)f(c), we obtain an exact sequence
0— H(l}'cl)g(c)(GQ7T) — H(lfcan)g(c)(GQvT) — H/lf(GQp,T) — 0.
Hence this lemma follows from Corollary 2.14 and Lemma 2.17. O

Since Fy is cartesian by Corollary 2.15, the following theorem is proved in [21,
Proposition 5.6, Theorem 5.8].

THEOREM 2.20.

(1) For‘ any element (d,£) € My, satisfying H(lj_-d)e(d)(GQ,E[p]) =0, the
projection map

KSo(T, Fo) — }fl(d)(G@, T) @z Gyq
is an isomorphism. In particular, the R-module KSo(T,Fe) is free of
rank 1.
(2) For any basis k € KSo(T, Fe1) and any integer d € Ny, ., we have
R-6(r)a = FittR(Hx, 4 (Gg, T)Y).
Remark 2.21. For any Selmer structure F on E[p| with x(F) > 0, there are

infinitely many integers d € N, , satisfying Hl*(d)(GQ,E[p]) = 0 (see [11,
Corollary 4.1.9]).

COROLLARY 2.22. The homomorphism § is injective.

Proof. Take an integer d € N, with Hy. .()(Ga, E[p]) = 0. Then by The-

orem 2.20, we have §(k)q € R*. Since the R-module KSy (T, Fy) is free of
rank 1 by Theorem 2.20, the map ¢ is injective. O
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2.5 MAP FROM KOLYVAGIN SYSTEMS OF RANK 1 TO KOLYVAGIN SYSTEMS
OF RANK 0

Fix an isomorphism

Hj(Gy,,T) = R.
Then we obtain a homomorphism ¢: H'(Gg,T) — H/lf(GQp,T) ~ R We
also denote by ¢: KS1(T, Fean) — Hde/\/m,n R ®7 G4 the homomorphism in-

duced by ¢. In this subsection, we construct a natural map KS; (7T, Fean) —
KSo(T, Fa) such that the diagram

KSl(Ta ]:can) KSO(T> ]:cl)
X ltg (2)
HdeNm,n R®zGa

commutes. In order to construct this map, we introduce the module of Stark
systems.
For any R-module M, we put

M* := Homg(M, R) and ﬂ;M = (/\RM)

for any integer r > 0. Since the functor M — M™* is exact, an R-homomorphism
¢: M — F, where F is free of rank 1, induces a natural homomorphism

¢ ﬂ:lM — Fog ﬂR ker ().

DEFINITION 2.23. Let F be a Selmer structure onl’. For any integers d € ./\/'m,n
and r > 0, define

Wa = @ H/lur(GQz 1),
0ld

r+v(d)
Xy, F) =,  Hya(Go.T) @rdet(Wa).
Then for any positive divisor e of d, the exact sequence

0— H}:E(GQvT) - ;—'d(GQvT) - @H/lur(GszT)
o d
induces a natural homomorphism
Qg X5(T,F) — X, (T, F)

(see [19, Definition 2.5]). If f | e | d, then we have 4y = O, ;o Py, (see [19,
Proposition 2.4]), and we obtain the module of Stark systems of rank r

SS,. (T, F) := @1 X (T, F).
deNm,n
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Since we have the isomorphisms

(z)fs ~
H&r(GQwT) — H/lur(GQwT) ®z G¢ and H&r(GQuT) - H/ltr(GQevT)

for any prime ¢ | d, we see that the exact sequence

0— H}-'mn(d)(G@aT) - }Tgan (Go, T) — @H}tr(GQz’T)
¢|d

induces a natural homomorphism

1
Hg: Xr}(T7 Fean) — nRH;‘w,(d)(GQ’T) ®z Gaq = H}-‘can(d)(GQaT) ®z Ga,

and we obtain

Reg, : SS1(T, Fean) — KS1(T, Fean); (€d)aen,.. — (=1)"DTa(eq))den,. .

(see [2, Proposition 4.3] or [12, Proposition 12.3]). The following important
proposition is proved by Mazur and Rubin in [12, Proposition 12.4] (see also

[1, Theorem 5.2(i)] and [20, Theorem 3.17]).
THEOREM 2.24. The map

Reg; : SS1(T, Fean) — KS1(T, Fean)
s an isomorphism.

For any integer d € NV,, ., the exact sequence

0— H}-'Cl(d)(GQ’T) - H;-'Ldl (Go, T) — @H/ltr(GQwT)
0ld

induces a natural homomorphism
) 0
Hd' Xd (T, ]:cl) — mRchl(d)(GQ’ T) Rz Gg = R®7 Gy.
Hence we obtain a homomorphism

Y: SSo(T, Fa) — H R ®z Ga; (€a)den,.. — (Ly(€q))den, .-
dENm,n

In [21, §5.2], we construct the canonical homomorphism
RCgO : SSQ (T, ]:cl) I KSO (T, fcl)
such that the diagram

SSo (T, Fut) —5 o KSo(T, Fur)

\ l
5
HdENm,n R ®Z Gd
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commutes.
For any integer d € NV,, ,,, we have an exact sequece

0— H;:dl(GQ’T) - ;—'cdan (GQvT) i) R.

This exact sequence induces a homomorphism X ; (T, Fean) — Xg (T, Fa1), and
we obtain a homomorphism SS1 (T, Fean) — SSo(T, Fe1). By construction, the
diagram

Ssl(T; fcan) E—— SSO(Tv -Fcl)

lmgl lw @

KSl(Ta fcan) L> HdeNm,n Rz Ga

commutes. Since Reg; is an isomorphism, by using the commutative diagrams
(3) and (4), we obtain the homomorphism KS; (T, Fean) — KSo(T, Fe1) such
that the diagram (2) commutes.

3 CONSTRUCTION OF THE KOLYVAGIN SYSTEM OF RANK ) FROM MODULAR
SYMBOLS

Let p > 3 be a prime satisfying the hypotheses (a), (b), and (c). For any finite
abelian extension K/Q, we put

Ry = Z,[Gal(K/Q)] and Ty := Indgl (T,(E)).

3.1 MODULAR SYSMBOLS

We recall the definition of the Mazur-Tate elements. For any integer d > 1, we
define the modular element 6g(,,) by

~ 2. Re(la/d

Tog = Y, s, € QlGaIQ(u) /)
o=

Here 0, € Gal(Q(pq)/Q) is the element satisfying o,(¢) = ¢(* for any ¢ € pgq.

For any integer e | d, we put

Va,e: Rogu.) — Roua)s ©— > aer.
ocGal(Q(ua)/Q(pe))

Define P := {{ # p | E has good reduction at £} and N denotes the set of
square-free products in P. Since Go — GL(E|[p]) is surjective, for any integers
d e N and n > 1, we have

00 (uapn) € B(puapn)
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(see [23]). Let a € ZX be the unit root of 22 — apz 4+ p = 0, where a, :=
p+1—#E(F,). We set
IQpapn) = O (O0(uapn) = ¢ Vapn apn=1 (000 40-1))) € B(uapn)-

Then the set {¥g(, dpn)}nzl is a projective system and we get an element

VQ(uapoe) = UM IQ(ugyn) € M R(uypn) =5 AQ(uapee)-

n n

Remark 3.1. Note that for any positive integer p t d, we have

Yows = (1= a"lop) (1= a™l0, 1) -
The assumption (c) shows that & # 1 (mod p), and (1 —a~'oy,) (1—a"to, ')
is a unit in Rgy,,)-
For any prime £ with £ 1 d, let mpq.q: AQ(upapoe) — AQ(uay) denote the natural
projection map, and we have

2d.d (9Q(prapee)) = (a0 = 00 = 07 )00 yee )

Here ap := ¢+ 1 — #E(F;). Following Kurihara in [10, page 324], for any
positive divisor e of d, we put

age = | JT(=00") | Do) € Agtueye):
04

EQuap) = D Vie(Qde) € Ag(ugyoe)-
eld

Here e runs over the set of positive divisors of d. We also put

g L —1
Euap) = | [T | €Quupee)-
od

DEFINITION 3.2. For any prime £ € P, we define the Frobenius polynomial at £

by
Py(t) == det(l —to, ' | T,(E)) = 1 — € tagt + 07142

PROPOSITION 3.3. For any integer d € N and any prime £ € P with £ 1 d, we
have

e, d(€Q(upapee)) = PZ(Jfl)gQ(udpoo)'
Proof. Kurihara showed in [10, page 325, (7)] that

Wdz,d(f@(#mw)) =(—o¢r+ap— EU[l)fQ(udeO)
= (—KUZI)PZ(Ue_l)gQ(Mde)’

which implies Wdl,d(gf@(umpoo )) = Pg(o‘[l)g(@(udpx ) O
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3.2 COLEMAN MAPS

Let K/Q be a finite p-abelian extension at which p is unramified, and we denote
by Ko /K the cyclotomic Z,-extension. Put

Ak, =Zpy[[Gal(K«/Q)]] and Tk := lim T,,,

n

where K, denotes the n-th layer of the cyclotomic Z,-extension K. /K. We
note that the Ax__-module H/lf (Go,Tk..) := yinm’n H/lf(GQp7 Tk, /p™) is free
of rank 1 by Corollary 2.14. Let

€k. € Ak,

denote the image of 5@(” 4poo) under the canonical homomorphism Ao apoe)
Ak, where d is the conductor of K.

The following theorem follows from the works of Perrin-Riou in [17] and Kato
in [4].

THEOREM 3.4 ([4, Theorem 16.4, Theorem 16.6, and Proposition 17.11]). There
exists an isomorphism

’SKoc : H/lf(GQzﬂTKoo) ®Zp Qp ;} AKoo ®Z:D Qp
such that
(i) the diagram

LKoo

H/lf(GQp’TKoo) ®Zp QP AKoo ®Zp Qp

| |

Lo
H/l_f(GQp7 TLoo) ®Zp QP ALoo ®Zp Qp

commutes for any field L C K, where the vertical maps are the natural
projections,

(it) Lo..(Hj;(Go,, To.)) = Ag..,
(iii) there is an element zx_ € H'(Gq, Tk ) such that Lk __ (locéf(sz)) =

¢k, where locl/jf: H' (G, Tk.) — H/lf(GQP,TKDO) denotes the local-
ization homomorphism.

Remark 3.5.

(1) The homomorphism £k _ interpolates the dual exponential maps, how-
ever this fact is not used in this paper.

(2) The integrality of the element zx__ follows from the assumption (b) (see
[3, Theorem 6.1]).
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(3) There are many papers that use %&(w) instead of 5@(;@)» where (—)# de-
notes the involution on the group ring that sends each group-like element
o to its inverse o ~!'. However, 00(uq) has a functional equation (see [13,
(1.6.2)]), and hence the difference does not matter.

3.3 EULER SYSTEMS
In this subsection, we recall the definition of Euler systems.
DEFINITION 3.6.

(1) Let Q denote the set of fields K in Q such that K/Q is a finite abelian
p-extension and Sram (K/Q) C P. Here Siam(K/Q) is the set of primes
at which K/Q is ramified.

(2) We say that (cx)keq € [1xeq H (Go, Tk..) is an Euler system of rank
1 if, for any fields K1 C Ko in QQ, we have

COI‘K2/K1(CK2) = H Pg(a'e_l) CK, -
‘eesram(K2/Q)\SraHl(Kl/Q)

Here Corg, /i, : H'(Gg, Tk, ..) — H'(Gq, Tk, ..) denotes the homo-
morphism induced by Tk, . — Tk, .. Let ESi(T) denote the set of
Euler systems of rank 1.

(3) We say that (cx)kea € [[xeq Ak is an Buler system of rank 0 if, for
any fields K1 C Ko in §, we have

TK>,Kq (CK2) = H Pz(gé_l) CK.-
£ESram (K2/Q)\Sram (K1/Q)

Here 7k, i, Ak, .., — Ak, . denotes the canonical projection map.
Let ESo(T') denote the set of Euler systems of rank 0.

Proposition 3.3 implies the following proposition.
PRrorosSITION 3.7. We have (gKW)KGQ € ESo(T).

Let K € Q be a field. Then, by Theorem 2.1, for any integers m > 1 and n > 0,
we have an exact sequence

0 — Sel(K,,, E[p™]) — HFf

can

(GQ7 TKn /pm)
— H}:(Gq,, Tk, /p™) — Sel(K,, E[p™))".

Here Sel(K,,, E[p™]) is the p™-Selmer group of E/K,, and

H}CHH(GQvTKn/pm) := ker Hl(GQ7TKn/pm) - @H/lur(GQwTKn/pm)
t#p
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We set

Sel(K o, E[p™)) := lim

Sel(K,, E[p™)).

Since Sel(K oo, E[p™])Y is a finitely generated torsion Ag__-module, we have

lim Sel(K,,, E[p™]) = 0.

Moreover, [18, Proposition B.3.4] implies
H' (G, Tk..) = lim Hz,_ (Gg, Tk, /p™).

m,n
Hence we get an exact sequence of Ag__-modules

loc/f
0 — H'(Go,Tk..) — H);(Gq,,Tk.) — Sel(Keo, Ep™))".  (5)

For each field K € 2, we put

My, = (loc)”) " (H" (G, , Tr..) N £ (M),

oo ::
and we obtain an injection

£ ESl(T) N H Mg — ESo(T); (cx)keq — (10C1/)f(£KOC (CK)))KEQ~
KeQ

Then Theorem 3.4 and the injectivity of 1001/7f oLk imply the following propo-
sition.

PROPOSITION 3.8. There is an Euler system z¢ € ES1(T) N [[xcq Mk, such
that £(z¢) = (k.. )Kkeq-

Remark 3.9. Since our p-adic L function E K., is modified, the Euler system z¢
differs slightly from that of Kato.

3.4 CONSTRUCTION OF K¢ mn

Fix integers m > 1 and n > 0. First, we introduce the Kolyvagin derivative
homomorphism (defined by Mazur and Rubin in [11])

D} . ES1(T) - Ksl(TQn/pmaFcan)-

m,n*

Recall that Q(d) is the maximal p-subextension of Q(ug), and note that Q,, =
Q(p™*!). We fix a generator gy of Gy = Gal(Q(¢)/Q) for each prime £ € Py g
and denote by D, € Z[G/,] the Kolyvagin’s derivative operator:

#Go—1
D@ = Z ig}.

=0
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For any integer d € N, we also set Dy := [1oq De € Z[Gal(Q(d)/Q)].
Let ¢ € ES{(T) be an Euler system. For any integer d € N, ,, we denote
by Capnt1 € Hl(G@7TQ(dpn+l)) the image of CQ(d) € Hl(GQ,T@(d)). Then it is
well-known that Euler system relations imply

K(€)dym,n = Dacgpn+1 mod p™ € H' (GQ,TQ(dan)/pm)Ga](Q(d)/@).
(see, for example, [18, Lemma 4.4.2]). Since we have an isomorphism

H(Gg, Ty, /p™) == H' (G, To(apn+yy/p™) QDD

we can regard £(c)qm.n as an element of H'(Gg,Tg,/p™). The following
theorem is proved by Mazur and Rubin in [11, Appendix A].

THEOREM 3.10. For any Euler system ¢ € ES(T), we have
D}, (€)= (K(C)amn @ ga)acn,.. € KS1(Tq, /™, Fean)-
Here gq := H£|d95- Hence we obtain the Kolyvagin derivative homomorphism
Dyt ES1(T) — KS1(T,, /™, Fean)-
Remark 3.11. For any prime ¢ € Py, 5, we have
Py(t)=(t—1)? (mod p™).

This fact implies that Pg(FI‘Zl) vanishes in the module A ;/ .AZ ;- Here Ay g
denotes the argumentation ideal defined in [11, Definition A.3]. Hence we see
that k(c)d,m,n» coincides with !, defined in [11, page 80, (33)].

Next let us construct a homomorphism

D), BSo(T) — [ Ra./p™ ®zGa.
deNm n

Let ¢ € ESo(T) be an Euler system and take an integer d € N, ,. We denote

by Cgpn+1 € RQ(dpn+1) the image of CQ(d) € AQ(d)-
The following lemma is well-known (see, for example, [18, Lemma 4.4.2]).

LEMMA 3.12. For any integer d € Ny, ,,, we have
8(¢)dm,n := Dgcgpn+1 mod p™ € (RQ(dpn+1)/pm)Gal(Q(d)/@) < Rg, /p™.
We often regard §(¢)dgm.n as an element of Rg, /p™ by using the isomorphism
Rg, /p™ = (Rgapn+1y/p™) S QDD s 2N,
Here Ny := ZUeGal(Q(d)/@) o.
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LEMMA 3.13. Let

c= Z A0 € RQ(dpn+1)/pm
0€Gal(Q(d)/Q)

where a, € Ry, /p™. If Dyc € (RQ(dpnﬂ)/pm)Gal(@(d)/Q), then we have
Dye=(-1)"D 3" a,[]log, (o).
0€Gal(Q(d)/Q)  fld
Here we regard Dgc as an element of Ry, /p™ by using the isomorphism
R, /p™ == (Roapr+1) /p™) DD 2Ny

and
log,,: Gy — Z/({ —1) — Z/p™; g{ — amod p™
1s the surjection induced by the discrete logarithm to the base gy.

Proof. We write d =¥y ---¢,. We put
Ny, = Z o and Xy, =gy — 1.
o€Gal(Q(¢:)/Q)
Note that
Dy, Xy, =—N;, (mod p™) and Dy, X7 =0 (mod p™).

Hence we have

#Ge—1 #Ge,—1

Di D> o= Y Y agZ}--.géde(l*FXel)“"'(1+Xef,)“

0€Gal(Q(d)/Q) i1=1 ig=1

= > D agn i (L—iaNg) - (1= Ng,)
.[1 .[t
i1=1 =1
t
=) bjyeeii NI N
i=1 J7€{011}

Since

b= (-1 Z aO’H@g[(U)7

0€Gal(Q(d)/Q)  £ld

it suffices to show that b;, . ;, = 0 for any (j1,...,7:) # (1,...,1). This follows
from the assumption that Dyc € (Rggpn+1)/p™) @D/ In fact, we have
Xy, Dgc =0 and Xy, Ny, =0 for any 1 <¢ <t¢. Hence we have

0=X¢ - Xp,Dgc=0bg,. 0Xe - Xe,,
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and by, o = 0. Moreover, since

0=Xy, - X¢,Dgc=1bg,. 0Xe, Xe, +b1o

t— a7 TUyeee

olNe, Xy, -+ - X,

,,,,,

we have by ... o = 0. Similary, we have bp1,..0="---=0bpg,.. 0,1 =0. Repeating
this argument, we see that b;, ;, =0 for any (ji,...,j:) # (1,...,1). O

.....

The following lemma is used to prove Theorem 1.15.

LEMMA 3.14. Let Jg(gpn) denote the image of ﬁQ(#dan) in Ro(gpnt1y. For
notational simplicity, we put cqn := Vg(apny mod p™.

(1) We have Dgycq,p € (RQ(danrl)/pm)Gal(@(d)/Q)‘

(2) Let 0q4,,, denote the element of Ry, /p™ satisfying 6q.nNg = Dgca,n. Then
we have

Can = (=1)"Dq, - Xoy -+ Xy

. (mod (p™, X7 ..., X7)),
where we write d = {1 --- 4y and Xy, 1= go, — 1.
Proof. For any { € Py, , and d € Ny, ,, with £1d, we have
Ne(ag—op—0o;') =0 (mod p™),
T, d(9Q(ueapoe)) = (a6 = 00 = 07 )0 400)-

Hence the claim (1) follows from the same argument as in [18, Lemma 4.4.2]).
The claim (2) follows from the same argument as in [8, Lemma 4.4]). O

DEFINITION 3.15. We define the homomorphism

DY, . ESo(T) — H Rg, /p™ ®z G4
dEN n

by D?n,n(c) = (5(C)d,m,n @ gd)dej\/m,n .

Recall that we have the isomorphism £q_ : H/1 (G, To..) — Ag., by The-
orem 3.4(ii). Since

H):(Gg,,To.,) @, Ro,/p™ — H);(Gq,, T, /p™);
the isomorphism £g_ induces an isomorphism
£9..m: H);(Go,, Ty, /p™) — Ro, /p™,

and hence we obtain a homomorphism

£, ,m: KSI(TQn/pmv}—can) — H RQn/pm ®z Gg.
de-/\/m,,n

By construction, we have the following proposition.
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ProrosSITION 3.16. The diagram

ESl(T) mHKEQ MKoc( ESO(T)

£

Ksl(TQn /pm’ Fcan) e HdGNm,n RQn /pm ®z Ga

commutes.
THEOREM 3.17. There is a Kolyvagin system k¢ mn € KSo(Tg, /p™, Fa) sat-
isfying 5(”§,m,n) = Dg@,n((fKoc)KGQ)'
Proof. Let z¢ € ES1(T) be the Euler system defined in Proposition 3.8. Note
that £(z¢) = (k.. )keq. We define

R¢mn = do 'D}n’n(Zg)

Here ®: KS1 (T, Fean) — KSo(T', Fa1) is the homomorphism associated with
the isomorphism L, m : H/lf (Go,.Tq, /p™) — Rq, /p™ (see §2.5). The com-
mutative diagram (2) shows that jo® = £q, . Hence Proposition 3.16 implies
3(igmn) = 800Dy, (2)
= 2@71;7n o D}n,n(zf)
=Dy 0 £(2¢)
=D), . ((Ex)Ken)-

O

Remark 3.18. The Kolyvagin system ¢y n constructed in Theorem 3.17 is a
natural extension of a family of cohomology classes constructed by Kurihara
in [10] (see also [9]). More precisely, for any “admissible” pair (d,¢) € My, p,
Kurihara constructed a cohomology class k4 ¢ such that it satisfies the relations
appeared in the definition of Kolyvagin system of rank 0 and that it relates to
modular symbols via the map ¢. In our construction, we do not need to impose
that the pair (d,¢) € Ny, n X Py is admissible.

3.5 PROPERTIES OF K¢ m.n

Recall that the Iwasawa main conjecture for E/Q says that

E@m Ag.. = charp, (Sel(Q, E[p™])Y).
PrOPOSITION 3.19. The following are equivalent.

(1) The Kolyvagin system kg¢mn € KSo(Tg, /™, Fa) is a basis for some
m>1 andn > 0.
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(2) The Kolyvagin system kg m.n € KSo(Tq, /p™, Fa) is a basis for any m >
1 andn > 0.

(3) There is an integer d € N o satisfying 6(ke1,0)a 7 0.
(4) The Iwasawa main conjecture for E/Q holds true.
Proof. We put

i
m

KSO(TQOC , .7:01) = lim KSO(TQ" /pm, .7:01).

Then Theorem 2.20 and [19, Lemma 3.25] (see [21, Theorem 6.3]) show that
the canonical map KSo(Tq__,Fa) — KSo(Tq, /p™, Fa) is surjective and the
Ag, -module KSo(Tg,,, Fa) is free of rank 1. By construction,

ke = (Kemn)m>1,n>0 € KSo(To. , Fel)-

Since §: KSo(E[p], Fa) — Hde/\ﬂ , Fp @z Gg is injective by Corollary 2.22,
claims (1), (2) and (3) are equivalent, and it suffices to show that claim (4) is
equivalent to that k¢ is a basis. We have the canonical homomorphism

61: KSo(Tq.., Fa) — Age; (Kmn)m>1,n>0 — UM 0(Kmn )1

m,n

By Theorem 3.17, we have

81(ke) = im 0(kg mn)1 = im DY, | ((Ex. ) ken)1 = So...-

Let k € KSo(Tgq.,,Fc1) be a basis and write k¢ = ax for some a € Ag_ . Then,
by Theorem 2.20 (see [21, Theorem 6.4]), we have

EQWAQW = ady(k)Ag.. = a-charpy, (Sel(Qu.E[p™])Y).

Since the characteristic ideal chary, (Sel(Qo.E[p™])") is non-zero, claim (4)
is equivalent to that a is unit, i.e., k¢ is a basis. O]

4  MAIN RESULTS

4.1 PROOF OF THEOREM 1.2

First, let us discuss the relation between §(k¢ 1,0)a and gd. As in §1, for each
prime ¢ € Py o, we fix a generator hy € Gal(Q(u,)/Q), and it naturally induces
the surjection

logy,,: Gal(Q(ue)/Q) — Z/({ — 1) — Fp; h§ — a mod p.
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Recall that, for any integer d € N g, the analytic quantity gd € F, is defined
by

d
=~ Re(la/d —
=y D) T8, (o)
a=1 E ¢|d
(a,d)=1
We put eg := # Gal(Q(1q)/Q(d)). Since p 1 eq, we see that 64 = 0 if and only
if
d
() Re(la/d —
ed(d)éd = E 7(9#/ ) -Hloghz(oad) =0.
a=1 E ¢d
(a,d)=1

Let 6, = Yo eGal(Q(d)/q) %0 denote the image of ﬁQ(#d) in Z,[Gal(Q(d)/Q)]
(see §3.1 for the definition of gde)). Assume for simplicity that the image of
hy* is the fixed generator g, € Gal(Q(¢)/Q). Recall that we have the surjection

g, : Gal(Q(d)/Q) = Z/(¢ — 1) — F,.
Since 0, = 03 in Gal(Q(d)/Q) if o5¢ = 0%, we see that
ezwgd — Z ay - H@gl (o).
o€Gal(Q(d)/Q) ¢|d

Since we have

Dgflg mod p = (—1)" Z ag - H@g[ (o) | Na
c€CalQd)/Q)  fld

by Lemmas 3.13 and 3.14, we obtain the following lemma (see also Remark 3.1).

LEMMA 4.1. For any integer d € N1 g, the following are equivalent.
(1) 54 #0.
(2) D404 mod p # 0.

LEMMA 4.2. For any integer d € N1 g, the following are equivalent.
(1) ba # 0.
(2) 6(req,0)a 7 0.

Proof. Since any prime ¢ € P;o is congruent to 1 modulo p, the relation

d(Ke1,0) = DQ’O((EKOO)KEQ) in Theorem 3.17 shows that (k¢ 1,0)qa # 0 if and
only if Dg¥y mod p # 0. Hence this lemma follows from Lemma 4.1 and Re-
mark 3.1. O

COROLLARY 4.3 (Theorem 1.2). Congecture 1.1 holds true, that is, there is an

integer d € Ny satisfying gd % 0 if and only if the Iwasawa main conjecture
for E/Q holds true.

Proof. This corollary follows from Proposition 3.19 and Lemma 4.2. [
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4.2 PROOF OF THEOREM 1.5

In this subsection, we give a proof of Theorem 1.5. Recall that an integer
d € N1 is 0-minimal if ; # 0 and é. = 0 for any positive proper divisor e
of d. Note that the existence of a §-minimal integer implies that the Kolyvagin
system kg 1,0 is a basis of KSo(E[p], Fa1) by Proposition 3.19 and Corollary 4.3.

LEMMA 4.4. Let d € N1 be an integer. Then the following are equivalent.
(1) 64 #0.
(2) HE, 0(Ga, Blp) = 0.
Proof. By Theorem 2.20, we have
Fy - 8(ke1,0)a = Fitth (Hx,(q)(Go. Elp])Y)-
Hence this lemma follows from Lemma 4.2. O

Remark 4.5. The injectivity of the homomorphism (1) (proved by Kurihara)
follows immediately from Lemma 4.4. In fact, we have

ker | Sel(@, Elp]) > P EQ0) & F, | = Hlx.,, (Go, Elp))
o)d

C Hy,(4)(Ga, Elp]).
For any integer d € N g, we set
A(d) = dimg, (H,, (4 (Go, E[p]))-

LEMMA 4.6. Let d € N1 be an integer and £ € Py a prime with €1 d.

(1) If Bk )G Blp)) # ) o (Gos Elpl), then A(df) = A(d) — 1.

(2) If H: ,(Go, Ep]) = Hx ), 4 (Go, Elp]), then M(d) < A(dY).
In particular, \(d) > \(1) — v(d).
Proof. If H]l-'cl(d) (Go, E[p]) # H(l}-cl)e(d)(GQ’ Elp]), then the localization map

Hy.,()(Ga, Elp]) — Hy,(Ga,, Elp))

is non-zero. Since F¢(d)* = Fu(d), claim (1) follows from [11, Lemma 4.1.7
(iv)]. Claim (2) is trivial since

Hjlrcl(d)(GQvE[p]) = H(l]-‘cl)z(d)(GQ7E[p]) C H}d(de)(GQaE[p])
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PROPOSITION 4.7. Let d € N1 be an integer satisfying Hx 1(d)(G@, E[p]) =0.
Then there is a positive divisor e of d such that v(e) = A\(1) and A(e) =

Proof. When A(1) = 0, one can take e = 1. Hence we may assume that
A(1) > 0. If H (Gg, Elp]) = (Fcl)z(GQ’ [ ]) for any prime ¢ | d, then

Hz,(Gg, Elp]) = (| H{z.,(Go, Elp))
old

= Hz,,),(Gq, Elp])
- H]-'a(d)(GQvE[p])
=0.

However, since we assume A(1) > 0, we conclude that there is a prime ¢; | d
such that

HY, (Go. Elp)) # Hir, (Go. Elp)).

Hence Lemma 4.6 implies A(¢1) = A(1) — 1. If A(1) = 1, then ¢; is a desired
divisor of d. Suppose that A(1) > 1. Since

Hizy 00 (Gas Elp)) € HY, () (Go, Elp]) =

the same argument shows that there is a prime {5 | d/¢; satisfying

H}d(el)(GQa Elp]) # H(lfcl),32(e1)(GQv Elp]).

Then A(¢142) = A(¢1)—1 by Lemma 4.6. By repeating this argument, we obtain
a sequence (1, ..., ¢x) of prime divisors of d such that A(¢;) = A(1) — 1 and
Ay liyr) = Aly---4;) — 1 for any 1 <4 < X(1). Then e := £ --- £y is a
desired divisor of d. O

THEOREM 4.8 (Theorem 1.5). For any §-minimal integer d € N o, we have
dimg, (Sel(Q, E[p])) = v(d).

Proof. Let d € N7 be a é-minimal integer. Then H} «(a)(Ga; E[p]) = 0 by
Lemma 4.4. Hence Proposition 4.7 shows that there is a pomtive divisor e of d
such that v(e) = A(1) and A(e) = 0. Then Lemma 4.4 implies d. # 0, and
we have d = e by the definition of the d-minimality. Therefore, we obtain
v(d) =v(e) = A(1). O

Remark 4.9. In the multiplicative group case, under the validity of the ana-
logue of Lemma 4.6, one can show that the analogue of Theorem 1.5 ([10,
Conjecture 2]) holds true. However, as mentioned in Remark 1.8, there is a
counter-example of the analogue of Theorem 1.5. This shows that the analogue
of Lemma 4.6 does not hold in general. In the proof of Lemma 4.6, we use cru-
cially the fact that the Selmer structure F is self-dual, and hence one can say
that the self-duality of the Selmer structure F is one of the most important
ingredients in order to prove Theorem 1.5.
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Let re1,0 = (Kae)@a,0emo € KSo(E[p], Fa) be the Kolyvagin system con-
structed in Theorem 3.17. By using the ﬁxed generator ge € Gy, we regard Gy
as Z/#G,, and hence one can regard kg, € H ]_., (d)(G@, [p]). As discussed

by Kurihara in [10, Theorem 3(2)], by using Theorem 4.8, one can construct a
basis of the p-Selmer group Sel(Q, E[p]) from the Kolyvagin system k¢ 1,0.

COROLLARY 4.10. For any §-minimal integer d = £y---4; € Ny, the set
{Kaje, e, | 1 <0 <t} is a basis of Sel(Q, E[p]).

Proof. Applying Theorem 2.1 with F; = (Fo1)q and Fo = Fj, we obtain an

exact sequence

0 — Hz),(Ga, Elp]) — Sel(Q, Elp])) — P H\,(Go, E
od

— Hz4(Go, E[p)" — Sel(Q, E[p)* — 0.

Lemma 4.4 and Theorem 4.8 show that H1 Fd (Go, Elp]) = Sel(Q, E[p]), and we

have an isomorphism

P ¢k Sel(@, Efpl) = P H.(Go, Elp)) = F.

eld eld
Here t := v(d). In particular, x4/, ¢, € Sel(Q, E[p]) for any integer 1 <1 <.
Take an integer 1 < ¢ < t. Since H}_ < 0/ )(GQ, E[p]) C Sel(Q, E[p]), we have

H, Flid/e )(GQ’ [ ]) H, Fhid/e) (GQvE[p]) ﬂHle:cl(GQ,E[pD

~ Hiry,. (GosElp).

Since Kqy¢, 0, € H( Faaje, (Gg, E[p]), we have go%;_ (Kaje; ;) = 0 for any j # i.

The §-minimality of d and Lemma 4.2 imply that @2?; (Kaje,,0,) = —6(ke1,0)a 7#
0. This shows that the set {xq/¢, 0, | 1 <4 <t} is a basis of Sel(Q, Efp]). O
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