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Abstract. We establish various properties of the p-adic algebraic K-
theory of smooth algebras over perfectoid rings living over perfectoid
valuation rings. In particular, the p-adic K-theory of such rings is ho-
motopy invariant, and coincides with the p-adic K-theory of the p-adic
generic fibre in high degrees. In the case of smooth algebras over per-
fectoid valuation rings of mixed characteristic the latter isomorphism
holds in all degrees and generalises a result of Nizioł.
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1 Introduction

In this note, we record some results concerning the p-adic K-theory of certain
p-adic rings. Our starting point is the following result.

Theorem 1.1 (Quillen, Hiller [Hil81], Kratzer [Kra80]). If A is a perfect Fp-
algebra, then Ki(A) is a Z[1/p]-module for all i > 0.

Theorem 1.1 is proved using the action of the Adams operations on K-theory.
In particular, one shows that ψp is given by the Frobenius, and therefore is
an isomorphism. The mixed characteristic analog of a perfect Fp-algebra is a
perfectoid ring, and many foundational results for perfect Fp-algebras can be
generalised to perfectoid rings. We begin by giving the following generalisation
of Theorem 1.1 to mixed characteristic. In the statement, K(−;Fp) denotes
the cofiber K(−)/p of multiplication by p on non-connective K-theory K(−).
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Theorem 1.2 (Theorem 5.10). If O is a perfectoid valuation ring and A is a
perfectoid O-algebra,1 then the map K(A;Fp)→ K(A[1/p];Fp) is 0-truncated.2

Theorem 1.2 holds more generally for any ring A whose derived p-completion
satisfies the hypotheses of the theorem, as the conclusion of the theorem is in-
sensitive to replacing A by its derived p-completion. In the case where A is the
absolute integral closure of a complete discrete valuation ring of mixed charac-
teristic, Theorem 1.2 is proved by different methods in [Niz98] and [Hes06]. In
fact, the result in [Niz98] works more generally for smooth algebras, and plays a
crucial role in the approach to the crystalline conjecture of p-adic Hodge theory
in op. cit.

Theorem 1.3 (Nizioł [Niz98, Lem. 3.1]). Let OK be a complete discrete valua-
tion ring with field of fractions K; let K be an algebraic closure of K, and OK

the integral closure of OK in K. For any smooth OK-algebra R, the canonical
map K(R)→ K(R⊗OK

K) becomes an equivalence after profinite completion.

Theorem 1.3 is proved using localisation sequences in K-theory after descend-
ing R to the integral closure of OK in a finite extension of K; more generally,
one can replace OK by any absolutely integrally closed valuation ring (Corol-
lary 3.3). Combining this argument with the tilting correspondence [Sch12] to
reduce to characteristic p and the inseparable local uniformisation of Temkin
[Tem13, Tem17], we give the following generalisation of (the p-adic case of)
Theorem 1.3 as well as of Theorem 1.2. We remark that the theorem holds
more generally for algebras which are p-completely smooth in a suitable sense
(see Corollary 3.10 and Remark 5.13).

Theorem 1.4 (Theorem 3.9 and Theorem 5.10). Let O be a perfectoid valuation
ring.

1. If p 6= 0 in O, then for any smooth O-algebra R, the canonical map
K(R;Fp)→ K(R[1/p];Fp) is an equivalence.

2. For any perfectoid O-algebra A and smooth A-algebra R of relative dimen-
sion ≤ d, the canonical map K(R;Fp)→ K(R[1/p];Fp) is d-truncated.

For any ring R, the canonical map K(R)→ K(R[1/p]) becomes an equivalence
after K(1)-localisation [BCM20, LMMT20], but in general the conclusion that

1For us, a “perfectoid valuation ring” is a valuation ring O which is simultaneously a
perfectoid ring in the sense of [BMS18, Def. 3.5]: O is p-adically complete, there is an element
̟ in O such that ̟p divides p, the Frobenius map on O/p is surjective, and the kernel of
θ : Ainf(O) → O is principal; such a valuation ring is p-adically complete and separated.
Equivalently, it is either a perfect valuation ring of characteristic p, or its field of fractions is
a perfectoid field of characteristic 0 having ring of integers O√

pO
. A “perfectoid O-algebra”

is a perfectoid ring A equipped with the structure of a O-algebra.
2Recall that a map f : M → N of spectra is d-truncated if the fiber fib(f) satisfies

πifib(f) = 0 for i > d. Equivalently, πif : πiX → πiY is an isomorphism for i > d + 1
and an injection for i = d+ 1.
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they agree in sufficiently high degrees requires further assumptions. The proof
deduces part 2 from part 1 using cdh-descent and separate arguments in the case
of valuation rings. These arguments also lead to the following result comparing
algebraic and homotopy K-theory for perfectoid rings; since the comparison
between K and KH of a noetherian ring is known to be related to singularities,
the following result gives a sense in which perfectoid rings behave like regular
ones.

Theorem 1.5 (Proposition 5.1, Corollary 5.6, and Theorem 5.12). Let R be a
smooth algebra over either

1. a perfect Fp-algebra; or

2. W (A) where A is a perfect Fp-algebra; or

3. a perfectoid ring which is an algebra over some perfectoid valuation ring.

Then the map K(R;Fp) → KH(R;Fp) is an equivalence (in case 1, even
K(R)→ KH(R) is an equivalence).

Notation

We let Catperf∞ denote the ∞-category of small, stable idempotent-complete
∞-categories, and exact functors between them. We denote by K the noncon-
nective K-theory functor, defined on Catperf∞ as in [BGT13] and taking values
in spectra. Similarly, we denote by KH the homotopy K-theory of [Wei89],
defined more generally on Z-linear ∞-categories [Tab15].
Throughout, we let K(−;Zp) and KH(−;Zp) denote the p-completions of K-
theory and homotopy invariant K-theory. Similarly, we denote by K(−;Fp)
and KH(−;Fp) their mod p reductions.
All rings in this paper will be commutative. Given a ring R, we let D(R)
denote its derived ∞-category. Given a ring R (or more generally an E∞-ring)
and an ideal I ⊂ R, we let Perf(R on I) denote the ∞-category of perfect R-
module spectra M which are I-power torsion: in other words, for any x ∈ I,
M [x−1] = 0. We will only use this definition when I is the radical of a finitely
generated ideal J , in which case Perf(R on I) is the kernel of Perf(Spec(R))→
Perf(Spec(R)\V (J)). Given a localizing invariant E (cf. [BGT13, Def. 8.1]), we
write E(R on I) = E(Perf(R on I)). Given a map of pairs (R, I)→ (S, J) such
that rad(IS) = J , base-change induces a functor Perf(R on I)→ Perf(S on J)
and a consequent map in any localizing invariant.
We adopt the convention in this paper that localizing invariants commute with
filtered colimits.
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2 Localisation sequences

In this section, we review some basic properties of coherent rings and their
K-theory, in particular proving the localisation results Proposition 2.5 and
Proposition 2.6. All of these are direct analogs of standard properties [Qui73]
of the K-theory and G-theory of noetherian schemes; we will need to apply
them to valuation rings. In Appendix A, we indicate how to prove these results
and some generalisations using dévissage results about the K-theory of stable
∞-categories (which will not be used in the rest of the paper); in this section
we only use classical dévissage theorems.
A ring is said to be coherent if every finitely generated ideal is finitely presented,
cf. [Sta18, Tag 05CU], which implies that the category of finitely presented
modules is abelian. We will say that a coherent ring R is weakly regular if R
has finite flat (or weak) dimension. Equivalently, by [Gla89, Cor. 2.5.6], the
projective dimensions of finitely presented R-modules are uniformly bounded
(necessarily by the flat dimension). A ring R is said to be stably coherent if
every finitely presented R-algebra is coherent. It is sufficient to check coherence
of finitely generated polynomial algebras over R. The class of stably coherent
rings is closed under localisations, quotients by finitely generated ideals, and
finitely presented extensions [Gla89, Thms. 2.4.1 & 2.4.2]. We will primarily
be interested in weakly regular stably coherent rings; this includes all regular3

rings of finite Krull dimension, but also valuation rings by the following results.

Proposition 2.1. Any valuation ring is stably coherent and of flat dimension
6 1.

Proof. The stable coherence is [Gla89, Th. 7.3.3]. Every torsion-free module
over a valuation ring is flat [Sta18, Tag 0549], whence the second claim.

Proposition 2.2. Let A be a stably coherent ring with flat dimension d0, and
let R be a smooth algebra of relative dimension4 ≤ d over A. Then R has flat
dimension 6 d+ d0; in particular, R is weakly regular.

Proof. Let M be a finitely presented R-module. It suffices to show that if M
is flat as an A-module, then M has projective dimension 6 d as an R-module.

3Throughout the article, we adopt the convention that regular rings are assumed to be
Noetherian.

4We say that a smooth A-algebra R has relative dimension ≤ d if all fibers R ⊗A κ(p),
where κ(p) runs over the residue fields of A, have Krull dimension ≤ d.
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By [Gla89, Cor. 2.5.10], it suffices to show that for every maximal ideal m of R,
one has Tord+1

R (M,R/m) = 0. Now R/m pulls back to a prime ideal p ⊂ A

with residue field κ(p). Since M is flat over A, we have Tord+1
R (M,R/m) =

Tord+1
R⊗Aκ(p)(M ⊗A κ(p), R/m). However, this vanishes since R ⊗A κ(p) is a

smooth algebra over the field κ(p) of dimension ≤ d and consequently it has
global dimension ≤ d.

Corollary 2.3. Any smooth algebra over a valuation ring is weakly regular
stably coherent.

The K-theory of weakly regular stably coherent rings behaves in a similar way to
that of regular Noetherian rings, as exemplified by the following result. Given
a coherent ring R, we define the G-theory G(R) to be the connective K-theory
of the abelian category of finitely presented R-modules. The first two parts of
the next result appear as [Wei89, Ex. 1.4]; compare also [AGH19, Th. 3.33] and
[KM21, Th. 3.3] for treatments, and [BS22] for some similar results mainly in
the case of rings of weak global dimension at most one.

Proposition 2.4. If R is a weakly regular stably coherent ring, then

1. K−i(R) = 0 for i > 0; that is, the canonical map K≥0(R) → K(R) from
connective K-theory to K-theory is an equivalence;

2. the canonical map K(R)→ KH(R) is an equivalence;

3. the canonical map K≥0(R)→ G(R) is an equivalence.

Proof. We have already explained that the first two parts may be found in
[Wei89, Ex. 1.4], where we implicitly use Proposition 2.2. They are also special
cases of Theorem A.1 and Corollary A.2.
The third part follows from Quillen’s dévissage theorem, as the hypotheses
imply that any object in the abelian category of finitely presented R-modules
admits a finite length resolution by finite projective modules. Alternatively it
is a special case of Theorem A.1.

We may now present the localisation sequences which will be required later.

Proposition 2.5. Let R be a weakly regular stably coherent ring and let I ⊂ R
a finitely generated ideal. Then there is a natural fiber sequence G(R/I) →
K(R)→ K(Spec(R) \ V (I)).

Proof. We write G(Spec(R) \ V (I)) for the connective K-theory of the abelian
category of finitely presented quasi-coherent sheaves on Spec(R) \ V (I). This
abelian category is the Serre quotient of the abelian category of finitely pre-
sented R-modules by the subcategory of those objects which are I-power tor-
sion; see in particular [Sta18, Tag 01PD] for the result that finitely presented
quasi-coherent sheaves can be extended so that K0(R) → K0(Spec(R) \ V (I))
is surjective.
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The classical localisation and dévissage theorems [Qui73, Thms. 4 and 5] there-
fore provide a fiber sequence G(R/I) → G(R) → G(SpecR \ V (I)). Finally,
Proposition 2.4 implies that G(R) ≃ K(R) and that G(Spec(R) \ V (I)) ≃
K(Spec(R) \ V (I)) (in the latter case use induction on the s of a finite affine
open cover of Spec(R) \ V (I), again using [Sta18, Tag 01PD] to eliminate any
possible problem with failure of surjectivity on K0).

Proposition 2.6. If R is a ring and t ∈ R is a nonzerodivisor such that R/t is
weakly regular stably coherent, then there are natural fiber sequences K(R/t)→
K(R) → K(R[1/t]) and KH(R/t) → KH(R) → KH(R[1/t]). Consequently, we
have a pullback square

K(R)

��

// K(R[1/t])

��

KH(R) // KH(R[1/t]).

(1)

Proof. Note first that R/tn is stably coherent for each n > 1 by [BMS18,
Lem. 3.26]. By the localisation theorem of [Gra76], the connective cover of the
fiber of K(R) → K(R[1/t]) (i.e., the connective cover of K(R on tR)) is the
K-theory of the exact category E of finitely presented R-modules M such that
M [1/t] = 0 and such that M has Tor-dimension 6 1.
Consider the category A of all finitely presented R-modules which are t-power
torsion. In other words, A is the union of the categories of finitely presented
R/tn-modules over all n > 0. Our coherence hypotheses thus show that A is
an abelian category, and A contains E as an exact subcategory.
We observe that every object in A has finite Tor-dimension as an R-module.
Indeed, suppose M ∈ A is a finitely presented R-module with M [1/t] = 0. We
may assume tM = 0. Then our weak regularity hypothesis implies that M
has finite Tor-dimension as an R/t-module, and hence as an R-module. Using
this, we can show that every object in A admits a finite resolution by objects
in E. If M ∈ A has Tor-dimension > 2, then we can choose a surjection
(R/ti)n ։ M (for appropriate i, n ≫ 0); the kernel K will belong to A and
have Tor-dimension at least one less, whence the claim by induction.
Thus we can apply the dévissage theorem in the form of [Qui73, Sec. 4] to see
that K(E)

∼−→ K(A). By dévissage again, we have K(A) = G(R/t), which is
K(R/t) by Proposition 2.4 because R/t is stably coherent and weakly regular.
In conclusion, we have shown that the canonical map K(R/t) → K(R on tR)
identifies the left side with the connective cover of the right side.
To obtain the result in nonconnective degrees, and so complete the proof, we
claim that the canonical map Ki(R/t) → Ki(R on tR) is an isomorphism for
all i ≤ 0. The case i = 0 has already been proved, so we proceed inductively
by Bass delooping via the fundamental theorem of K-theory [TT90, Thm. 6.1];
this gives exact sequences

Ki(A[u])⊕Ki(A[u
−1])→ Ki(A[u

±1])→ Ki−1(A)→ 0
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for any ring A, and more generally

Ki(A[u] on IA[u])⊕Ki(A[u
−1] on IA[u−1])→ Ki(A[u

±1] on IA[u±1])

→ Ki−1(A on I)→ 0

for any finitely generated ideal I ⊆ A. Assuming that the claim has been
proved in any fixed degree i ≤ 0 (for all pairs R, t as in the statement of the
proposition), one immediately obtains the claim in degree i − 1 by comparing
the Bass exact sequences for K(R/t) and K(R on tR), noting that the inductive
hypothesis for the pair R[u], t implies that Ki(R[u]/t) → Ki(R[u] on tR[u]) is
an isomorphism, and similarly for R[u−1] and R[u±1].

3 Smooth algebras over valuation rings

In this section we study the K-theory of smooth algebras over valuation rings,
and in particular prove Theorem 1.4(1).
The proof of the following lemma is close to that of [Niz98, Lem. 3.1]:

Lemma 3.1. Let (A1,m1)→ (A2,m2) be a finite flat map of regular local rings;
let R1 be a smooth A1-algebra and set R2 = R1⊗A1

A2. Then the canonical map
(given by extension of scalars) K(R1 on m1R1) → K(R2 on m2R2) is divisible
by the integer d = lenA2

(A2/m1A2).

Proof. Consider the functor of stable ∞-categories

F : Perf(R1/m1R1)→ Perf(R1 on m1R1)
(−)⊗A1

A2−−−−−−−→ Perf(R2 on m2R2).

By dévissage, the first map induces an equivalence on K-theory. The com-
posite functor F : Perf(R1/m1) → Perf(R2 on m2R2) is equivalently given by
the tensor product functor (−) ⊗A1/m1

A2/m1A2. We need to show that F
induces a map on K-theory which is divisible by d; it suffices to show that in
K0(Fun(Perf(R1/m1),Perf(R2 on m2R2))), the class [F ] is divisible by d.
Any finite length A2/m1A2-module M induces a functor (−) ⊗A1/m1

M : Perf(R1/m1) → Perf(R2 on m2R2), from which we obtain a class in
K0(Fun(Perf(R1/m1),Perf(R2 on m2R2))); moreover, this process takes short
exact sequences of modules to sums in the K0-group. Since A2/m1A2 has a
finite filtration with associated graded given by d copies of A2/m2, it follows
that [F ] is equal to d times the class of the functor (−)⊗A1/m1

A2/m2.

An ind-regular local ring is a local ring which is a filtered colimit of regular
rings (without loss of generality, one can take a filtered colimit of regular local
rings under local homomorphisms).

Proposition 3.2. Let A be an ind-regular local ring with maximal ideal mA,
and let d ≥ 1; assume that mA is the radical of a finitely generated ideal in A,
and that every element of mA is a dth power. Then K(R on mAR)/d = 0 for
every smooth A-algebra R, i.e., K(R)/d

∼→ K(Spec(R) \ V (mAR))/d.
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Proof. Let x be a class in πn(K(R on mAR)/d) for some integer n; we need
to show that x vanishes. By assumption A is a filtered colimit of regular
local rings, so there exists a regular local ring (A0,m0), a map of local rings
(A0,m0)→ (A,mA), a smooth A0-algebra R0 with R0 ⊗A0

A ≃ R, and a class
x0 ∈ πn(K(R0 on m0R0)/d) such that x0 is carried to x under the canonical
map

K(R0 on m0R0)/d→ K(R on mAR)/d. (2)

As mA is the radical of a finitely generated ideal, we may further assume that
rad(m0A) = mA.
If A0 is a field then we automatically have x = 0, so suppose dim(A0) > 1.
Let α ∈ m0 \ m2

0, and define the local ring (A1,m1) via A1 = A0[t]/(t
d2 − α).

Note that A1 is a regular local ring (with t part of a system of parameters),
and that A0 → A1 is finite flat with d2 = len(A1/m0A1). Our assumptions
imply that the map (A0,m0)→ (A,mA) factors over the inclusion (A0,m0)→
(A1,m1). Therefore, the map (2) factors over the map K(R0 on m0R0)/d →
K(R1 on m1R1)/d, where R1 = R0⊗A0

A1. But this map is zero by Lemma 3.1.

Consequently we recover [Niz98, Lem. 3.1], generalized to arbitrary absolutely
integrally closed valuation rings.

Corollary 3.3. Let V be an absolutely integrally closed valuation ring, and
let R be a smooth V -algebra. Then the canonical map K(R)→ K(R⊗V Frac(V ))
is an equivalence after profinite completion.

Proof. Writing V as a filtered colimit of finite rank absolutely integrally closed
valuation rings, we may assume that V has finite rank. In particular, in this
case the maximal ideal mV ⊂ V is the radical of (t), for any t ∈ mV which
does not belong to a smaller prime ideal. Using induction on the rank of
the valuation (note by elementary properties of valuation rings that V [1/t] is a
valuation ring of rank one lower than V , unless V is a field in which case we are
done), we are therefore reduced to showing that K(R on mVR) = fib(K(R)→
K(R[1/t])) vanishes after profinite completion. But V is ind-regular by a result
of Temkin [Tem17] as observed by Elmanto and Hoyois (see [AD21, Cor. 4.2.4]
for a discussion), so Proposition 3.2 applies for all d > 1 to complete the
proof.

Corollary 3.4. Let V be a perfect valuation ring of characteristic p, and
let R be a smooth V -algebra. Then K(R;Zp) → K(R ⊗V Frac(V );Zp) is an
equivalence.

Proof. This is proved exactly as in Corollary 3.3, where we use Proposition 3.2
with d = p. Here we use purely inseparable local uniformisation [Tem13] to see
that V is ind-smooth over Fp.

Remark 3.5 (Motivic refinements). Let X be a qcqs scheme over Fp, and
suppose that X is the filtered limit of a diagram of smooth Fp-schemes along
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affine transition maps. Then, defining motivic cohomology Z(i)mot(X) as the
filtered colimit of the motivic cohomologies of the smooth Fp-schemes, we see
from [FS02] and [Lev08] (again by taking the filtered colimit), that K(X) admits
a “motivic filtration” whose graded pieces griK(X) are Z(i)mot(X)[2i] for i ≥ 0.
When K-theory admits such a motivic filtration it is natural to ask whether our
results can be upgraded to filtered equivalences. For example, for R a smooth
algebra over a perfect valuation ring V of characteristic p, the motivic refine-
ment of Corollary 3.4 states that Z(i)mot(R)/p

∼−→ Z(i)mot(R ⊗V Frac(V ))/p
for all i ≥ 0; in this remark we show that this is indeed true.
Repeating the proof of Corollary 3.4, it is enough to establish the following
motivic variant of Proposition 3.2 (in the characteristic p context): let A be
an ind-smooth local Fp-algebra, such that A is perfect and its maximal ideal
mA is the radical of a finitely generated ideal. Then, for any smooth (or ind-
smooth) A-algebra R, the canonical maps Z(i)mot(R)/p → Z(i)mot(Spec(R) \
V (mAR))/p are equivalences for all i ≥ 0.
To prove this, we can assume that R is local and essentially smooth over A.
Then, by the Geisser–Levine theorem [GL00], the motivic filtration on K(R;Fp)

is just the Postnikov filtration. Since we already know that K(R;Fp)
∼−→

K(Spec(R) \ V (mAR);Fp) by Proposition 3.2, it remains to to show that the
motivic filtration on K(Spec(R) \ V (mAR);Fp) is also the Postnikov filtra-
tion, or in other words that Z(i)mot(Spec(R) \ V (mAR))/p is concentrated
in cohomological degree i. In one direction, we know (again by [GL00]) that
Z(i)mot(Spec(R) \ V (mAR))/p is concentrated in cohomological degrees > i;
it remains to prove the bound in the other direction. Now we can write the
pair (A,mA) as a filtered colimit of of essentially smooth, local Fp-algebras
(A0,mA0

) with maps (A0,mA0
) → (A,mA) such that mA0

generates mA up
to radical; we similarly write R as a filtered colimit of algebras R0 which are
essentially smooth and local over such A0. Then the Gysin sequence in motivic
cohomology (see [MVW06, Thm. 15.15])

Z(i − d)mot(R0/mA0
)[−d]/p→ Z(i)mot(R0)/p

→ Z(i)mot(Spec(R0) \ V (mA0
R0))/p

(where d = dim(A0)) shows that Z(i)mot(Spec(R0) \ V (mA0
R0))/p is concen-

trated in cohomological degrees ≤ i. Passing to the limit yields the same bound
for Z(i)mot(Spec(R) \ V (mAR))/p and so completes the proof.

Although we will not need it, we record a final corollary of Proposition 3.2 which
extends Corollary 3.4 to smooth algebras over arbitrary ind-smooth perfect do-
mains. To bridge the gap between the punctured spectrum of Proposition 3.2
and the full field of fractions we must first prove the next lemma. For a noethe-
rian spectral space X of finite Krull dimension and x ∈ X , we let Xx denote
the space of all generisations of x, i.e., the intersection of all open subsets con-
taining x; note that Xx is itself a noetherian spectral space with the subspace
topology. We recall also if X is irreducible, then constant sheaves on X have
no higher cohomology [Sta18, Tag 02UU], so constant sheaves and presheaves
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of spectra are the same, and constant sheaves are pushed forward from the
generic point.

Lemma 3.6. Let X be an irreducible, noetherian spectral space of finite Krull
dimension. Let G be a sheaf of spectra on X; we extend G by continuity to all pro-
open subsets of X. Suppose that for each x ∈ X, we have G(Xx)

∼−→ G(Xx\{x}).
Then G is constant. That is, for every nonempty open subset U ⊂ X, we have
G(X)

∼−→ G(U).

Proof. Let η be the generic point of X , and let Gη denote the stalk of G at
the generic point. We claim that G is the constant sheaf (or presheaf) with
value Gη. Note also that equivalences of sheaves of spectra can be detected on
stalks by our assumptions and [Lur09, Cor. 7.2.4.20].
To prove the claim, we induct on the Krull dimension of X . For each x ∈ X
with x 6= η, we need to see that the generisation map Gx = G(Xx) → Gη is
an equivalence. However, by induction on the dimension of X , we find that G

defines the constant presheaf on the pro-open subset Xx \{x} ⊂ X , which is an
irreducible, noetherian spectral space of smaller Krull dimension.5 Therefore,
by induction, Gx

∼−→ G(Xx \ {x}) ∼−→ Gη as desired.

Corollary 3.7. Let A be a perfect integral domain which is ind-smooth
over Fp, and let R be a smooth A-algebra. Then K(R;Zp) → K(R ⊗A

Frac(A);Zp) is an equivalence.

Proof. Equivalently, the assertion is that K(R;Fp)
∼−→ K(R[1/t];Fp) for any

nonzero t ∈ A. As such, we may reduce to the case where A is the perfection of
a smooth domain over Fp. Then Spec(A) is a noetherian, irreducible spectral
space of finite Krull dimension. We have a sheaf of spectra F on Spec(A)
which sends an open subset U ⊂ Spec(A) to F(U) = K(Spec(R)×Spec(A)U ;Fp).
Proposition 3.2 (with d = p) and Lemma 3.6 imply that F is a constant presheaf.

We now return to smooth algebras over valuation rings and prove the main
results of the section.

Proposition 3.8. Let V be a perfect valuation ring of characteristic p, let
t ∈ V be nonzero, and let R be a smooth V/t-algebra. Then G(R;Zp) = 0.

Proof. We can lift R to a smooth V -algebra R by [Sta18, Tag 07M8]. The V -
algebra R is weakly regular stably coherent (Corollary 2.3). By Proposition 2.5
we have a localisation sequence G(R) → K(R) → K(R[1/t]), and the result
now follows from Corollary 3.4 (for the valuation rings V and V [1/t]) which
shows K(R;Zp)

∼−→ K(R[1/t];Zp).

The next result establishes Theorem 1.4(1).

5Geometrically, X = Spec(A) for some domain A, in which case A, in which case Xx \{x}
corresponds to Spec(Ap) \ {p} for some p ∈ Spec(A).
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Theorem 3.9. Let O be a perfectoid valuation ring and let R be a smooth
O-algebra. Then the map K(R;Zp)→ K(R⊗O Frac(O);Zp) is an equivalence.

Proof. We may assume that O is of mixed characteristic, since the positive
characteristic case has already been handled in Corollary 3.4. Let t = up ∈ O

be a unit multiple of p admitting a compatible sequence of p-power roots
(see [BMS18, Lem. 3.9]) and let t♭ = (t, t1/p, t1/p

2

, . . . ) be the correspond-
ing element of the tilt O♭. Note that Frac(O) = O[1/p] = O[1/t]. Then O♭

is a perfect valuation ring of characteristic p and the multiplicative untilting
map #: O♭ → O induces an isomorphism of rings O♭/t♭O♭ ∼= O/pO [ČS19,
(2.1.2.2)]. So we may view R/tR ∼= R/pR as a smooth O♭/t♭O♭-algebra, whence
G(R/tR;Zp) = 0 by Proposition 3.8. Then the localisation sequence of Propo-
sition 2.5 completes the proof.

We also record the following strengthening of Theorem 3.9.

Corollary 3.10. Let O be a perfectoid valuation ring, t ∈ O a nonzero el-
ement, and R a t-torsion-free O-algebra such that O/tO → R/tR is smooth.
Then the map K(R;Zp)→ K(R[1/t];Zp) is an equivalence.

Proof. We may lift R/tR to a smooth O-algebra R′ by [Sta18, Tag 07M8].
Then, by the infinitesimal lifting criterion for smoothness, we may lift the
identification R′/tR′ = R/tR to a morphism R′ → R̂ where the hat denotes
t-adic completion. This in turn induces a morphism R̂′ → R̂, which is an
isomorphism since both sides are t-torsion-free and it is an isomorphism modulo
t. Considering the following diagram in which the outer two squares

K(R′) //

��

K(R̂′)

��

K(R̂)

��

K(R)oo

��

K(R′[1/t]) // K(R̂′[1/t]) K(R̂[1/t]) K(R[1/t])oo

are cartesian, the problem reduces to showing that K(R′;Zp)
∼−→ K(R′[1/t];Zp).

If O has positive characteristic then this follows from Corollary 3.4 for both O

and O[1/t]. If O[1/t] = O[1/p] then this follows from Theorem 3.9. It remains
to treat the case that O is of mixed characteristic and that t 6∈

√
pO. In this

case, pO ⊆ pO[1/t] ⊆ O, whence O[1/t] is p-adically complete and separated
and thus is a perfectoid valuation ring. Therefore we conclude in this case by
applying Theorem 3.9 to both O and O[1/t].

4 Cdh sheaves on perfect schemes

In this section we present some cdh-descent properties for localizing invariants
on perfect schemes and on their Witt vectors. We first recall the definition of
the cdh-topology in the non-noetherian setting. Throughout, we will use the
Nisnevich topology in the non-noetherian setting, cf. [Lur18, Sec. 3.7].
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Definition 4.1 (The cdh-topology). An abstract blow-up square of schemes

Y ′

��

// X ′

f

��

Y
i

// X

(3)

is a cartesian square where i is a finitely presented closed embedding and f
is a proper finitely presented morphism inducing an isomorphism X ′ \ Y ′ ∼→
X \Y . The cdh topology on the category Schqcqs of qcqs schemes is the topology
generated by the Nisnevich topology and by {Y → X, X ′ → X} as one runs
over all abstract blow-up squares of qcqs schemes. We will also work with the
restriction of these topologies to Schqcqs

A , the category of qcqs schemes over a
base ring A.

Proposition 4.2. Let A be a base ring and let D be a complete ∞-category.
If E : Schqcqs,op

A → D is a Nisnevich sheaf, then the following are equivalent:

1. E is a cdh sheaf;

2. E sends all abstract blow-up squares in Schqcqs
A to cartesian squares of D;

Proof. Since we are already assuming that E is a Nisnevich sheaf, the equiv-
alence of (1) and (2) is a result of Voevodsky about cd-structures [Voe10,
Cor. 5.10]. We refer to [AHW17, Thm. 3.2.5] for a modern treatment.

The cdh sheaves of interest to us will satisfy the following excision property.

Definition 4.3 (Excision). Given a base ring A and a functor F from the
category of A-algebras to some stable ∞-category D, we say that F satisfies
excision if the following holds. For every map of pairs f : (B, I) → (C, J),
where B, C are A-algebras and I ⊂ B, J ⊂ C are ideals such that f car-
ries I isomorphically onto J , then F carries the square (usually called a Milnor
square)

B

��

// C

��

B/I // C/J,

to a cartesian square in D.

Given a ring A (commutative as always), we will study certain localizing
invariants ModPerf(A)(Cat

perf
∞ ) → D, where D is a stable ∞-category and

ModPerf(A)(Cat
perf
∞ ) is the ∞-category of A-linear stable ∞-categories, i.e.,

modules over the stably symmetric monoidal ∞-category Perf(A) viewed as
an algebra object of Catperf∞ . See, for example, [LT19, Rmk. 1.7] or [CMNN20,
Sec. 3.2] for further details. In this section we will be interested in the case
where A is a perfect ring or its ring of Witt vectors.
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Recall that an Fp-scheme X is called perfect if the absolute Frobenius ϕ : X →
X is an isomorphism. Given an arbitrary Fp-scheme X , its perfection is the
scheme Xperf := lim←−ϕ

X . See [BS17, Sec. 3] for an account of the theory of
perfect schemes.
Here is the main theorem of this section, showing that localizing invariants of
perfections are cdh sheaves.

Theorem 4.4. Let A be a perfect Fp-algebra, C a W (A)-linear stable ∞-

category such that C[ 1p ] ≃ 0, and E : ModPerf(W (A))(Cat
perf
∞ ) → D a localizing

invariant of W (A)-linear stable ∞-categories valued in a stable ∞-category D.
Then there is a cdh sheaf F : Schqcqs,op

A → D characterised by

F(SpecB) = E(C⊗Perf(W (A)) Perf(W (Bperf)))

for all A-algebras B; moreover, F satisfies excision.

Proof. Firstly, by writing C as a colimit as in [BCM20, Prop. 2.15], we can
assume that C is a Wn(A)-linear ∞-category for some n ≫ 0; here we im-
plicitly use that a filtered colimit of cdh sheaves is a cdh sheaf, which fol-
lows from Proposition 4.2 as cartesian squares are preserved under filtered
colimits, and since Nisnevich descent can be tested via Nisnevich excision
[Lur18, Th. 3.7.5.1]. The goal is to construct a cdh sheaf given on affines
by SpecB 7→ E(C⊗Perf(Wn(A))Perf(Wn(Bperf))); this has the advantage that it
extends to qcqs A-schemes X by replacing Wn(Bperf) by the scheme Wn(Xperf).
We may moreover replace E by E(C⊗Perf(Wn(A))−) so that E is now a localizing
invariant of Perf(Wn(A))-linear ∞-categories and our goal is to show simply
that the functor

Schqcqs
A → D, X 7→ E(Wn(Xperf)) := E(Perf(Wn(Xperf)))

is a cdh sheaf which satisfies excision.
The construction X 7→ E(Wn(Xperf)) satisfies Nisnevich descent by a result
of Thomason–Trobaugh [TT90], cf. [CMNN20, App. A]. To verify cdh-descent,
we need to show that any abstract blow-up square (3) is carried to a cartesian
square in D.
We prove this using Bhatt–Scholze’s v-descent for quasi-coherent complexes on
perfect schemes [BS17, Cor. 11.28]. Since Y → X and X ′ → X are finitely
presented, loc. cit. implies that the square

QCoh(Wn(Xperf))

��

// QCoh(Wn(X
′
perf))

j∗

��

QCoh(Wn(Yperf)) // QCoh(Wn(Y
′
perf))

is a pullback of ∞-categories, where j∗ is pullback along Y ′
perf → X ′

perf. Fur-
thermore, the right adjoint j∗ of j∗ is fully faithful: indeed, j∗j∗ ≃ id since
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C⊗L
B C ≃ C for any surjection of perfect rings B → C [BS17, Lem 3.16]. That

is, the square
Perf(Wn(Xperf))

��

// Perf(Wn(X
′
perf))

��

Perf(Wn(Yperf)) // Perf(Wn(Y
′
perf))

in ModPerf(Wn(A))(Cat
perf
∞ ) is excisive in the sense of [Tam18, Def. 14] (note

that all our schemes are qcqs, so Ind(Perf(−)) = QCoh(−)), and so Tamme’s
excision criterion [Tam18, Thm. 18] shows that

E(Wn(Xperf))

��

// E(Wn(X
′
perf))

��

E(Wn(Yperf)) // E(Wn(Y
′
perf))

is indeed cartesian, as required to complete the proof of cdh-descent.
Given an excision situation of A-algebras, (B, I) → (C, J), then (Bperf, I

′ :=√
IBperf) → (Cperf, J

′ :=
√
JCperf) is an excision situation (note that

the radical I ′ is precisely the kernel of Bperf → (B/I)perf, and similarly
for J ′), and then so is (Wn(Bperf),Wn(I

′)) → (Wn(Cperf),Wn(J
′)). We

claim that Wn(Bperf) → Wn(Bperf)/Wn(I
′) = Wn((B/I)perf) is Tor-unital

in the sense of [Tam18, Def. 21]. Indeed, to show that the canonical map
Wn((B/I)perf)⊗L

Wn(Bperf)
Wn((B/I)perf)→ Wn((B/I)perf) is an equivalence it

is enough to check after base change along Z/pn → Z/p, as which point we ob-
tain the equivalence (B/I)perf⊗L

Bperf
(B/I)perf ≃ (B/I)perf of [BS17, Lem 3.16].

It now follows from Tamme’s excision condition [Tam18, Thm. 28] that

E(Wn(Bperf)) //

��

E(Wn(Cperf))

��

E(Wn((B/I)perf)) // E(Wn((C/J)perf))

is indeed cartesian, as desired.

Question 4.5. Given an abstract blow-up square of qcqs Fp-schemes as in
Definition 4.1 but without the assumption that f : X ′ → X is finitely presented,
is it true that applying QCoh(−perf) gives a pullback square of ∞-categories?
Under the additional assumption that f : X ′ → X is finitely presented this is
precisely [BS17, Cor. 11.28], which was used above.

The above result will be useful in reducing questions to henselian valuation
rings in light of the next result, which we quote for convenience. We refer to
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[EHIK21, Sec. 2.3] for an introduction to Jaffard’s notion of valuative dimen-
sion; note that the perfection of any finitely generated Fp-algebra has finite
valuative dimension, given by its Krull dimension (indeed, there is a one-to-
one correspondence between the valuation subrings of a field of characteristic p
and of its perfection, or else more generally we could apply [Jaf60, Prop. 4,
p. 54]). A cdh-sheaf on Schqcqs

A is said to be finitary if it preserves filtered
colimits of A-algebras.

Proposition 4.6 ([EHIK21, Cor. 2.4.19]). If A is an Fp-algebra of finite val-
uative dimension, then a map of finitary cdh-sheaves Schqcqs,op

A → S (for S the
∞-category of spaces) which is an equivalence on henselian valuation rings is
an equivalence.

5 Applications

In this section, we complete the proofs of our main theorems concerning alge-
braic K-theory.

5.1 Characteristic p

We begin with two propositions about the K-theory of perfect schemes; the
results in mixed characteristic will then follow by an elaboration of the argu-
ments.

Proposition 5.1. Let R be a smooth algebra over a perfect Fp-algebra A. Then
the canonical map K(R)→ KH(R) is an equivalence.

Proof. Taking a filtered colimit, it suffices to prove the result when A is the
perfection of a finitely generated Fp-algebra. Theorem 4.4, with C = Perf(R)
and Perf(R[T ]) respectively, implies that the functors X 7→ K(Xperf⊗AR) and
X 7→ K(Xperf ⊗A R[T ]), from finitely presented A-schemes to spectra, are cdh
sheaves; recall here that Perf(Xperf)⊗Perf(A) Perf(R) ≃ Perf(Xperf ⊗A R) and
similarly for R[T ], by e.g., [Lur17, Th. 4.8.4.6]. To check that the canonical
map K(R)→ K(R[T ]) is an equivalence, we therefore reduce by Proposition 4.6
to proving that K(Vperf ⊗A R)

∼−→ K(Vperf ⊗A R[T ]) for all henselian valuation
rings V under A; but that is a special case of Proposition 2.4(2) since Vperf is
a valuation ring.

Question 5.2 (Cartier smooth algebras). Can Proposition 5.1 be extended
to those Fp-algebras R which are Cartier smooth in the sense of [KM21], i.e.,
those for which the cotangent complex LR/Fp

is a flat R-module and the Cartier
isomorphism for de Rham cohomology holds?

Question 5.3 (Motivic refinement). Let R be as in Proposition 5.1, or more
generally Cartier smooth as in the previous question. Then the Geisser–
Levine theorem [GL00] holds Zariski locally on SpecR by [KM21], and so
the Zariski local Postnikov filtration on K(R;Fp) deserves to be termed the
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“motivic filtration”. Does the equivalence K(R;Fp)
∼→ K(R[T ];Fp) (following

from Proposition 5.1) upgrade to a filtered equivalence, i.e., are the canonical
maps RΓZar(SpecR,Ω

i
log) → RΓZar(SpecR[T ],Ω

i
log) equivalences? When A is

a perfect valuation ring, the answer is ‘yes’: perfect valuation rings are ind-
smooth [Tem13], so the motivic filtration defined at the top of Remark 3.5 is
A1-invariant.

Regarding the K-theory of perfect schemes themselves (rather than smooth
schemes over them), we record the following calculation since it has not explic-
itly appeared previously; the cdarc topology, which is a completely decomposed
analogue of the arc topology [BM21], is defined in [EHIK21].

Corollary 5.4. 1. For any perfect qcqs Fp-scheme X, there is a natural
equivalence K(X ;Z/pr) ≃ RΓcdh(X,Z/p

r), where the right side denotes
cdh cohomology on Schqcqs

X of the constant sheaf Z/pr.

2. The presheaf X 7→ K(Xperf;Z/p
r) on Schqcqs,op

Fp
satisfies cdarc descent.

Proof. Theorem 4.4 implies that K((−)perf;Z/p
r) is a cdh sheaf on Schqcqs,op

Fp
.

For any qcqs Fp-scheme X there is a map Z/pr = K(Fp;Z/p
r) →

K(Xperf;Z/p
r), which induces a map RΓcdh(−,Z/pr) → K((−)perf;Z/p

r) of
cdh sheaves.
Note that both these sheaves commute with filtered colimits of rings, the latter
because K-theory is finitary and the former by [Sta18, Tag 0737]; furthermore,
both these sheaves take values in D(Z/pr)60, the latter by Theorem 1.1. Since
both these cdh sheaves satisfy Milnor excision (the latter by Theorem 4.4), “(1)
implies (3)” of the main theorem of [EHIK21] therefore implies that they are
both in fact cdarc sheaves. This completes the proof of part (2).
We have also reduced part (1) to the case that X = SpecA is the spectrum
of a perfect Fp-algebra; writing A as a filtered colimit of perfections of finite
type Fp-algebras then allows us to even assume that A has finite valuative
dimension. Then viewing RΓcdh(−,Z/pr) → K((−)perf;Z/p

r) as a map of
cdh sheaves on Schqcqs

A , Proposition 4.6 reduces the problem to checking that
Z/pr → K(Vperf;Z/p

r) is an equivalence for all henselian valuation rings V
under A. But Vperf is again a valuation ring, hence weakly regular stably
coherent by Proposition 2.1 and so has no negative K-groups by Proposition 2.4;
then Theorem 1.1 shows that indeed Z/pr

≃→ K(Vperf;Z/p
r), as desired.

In [BS17, Corollary 5.6], Bhatt and Scholze prove that if A is the perfection of
a regular Fp-algebra, then there is a localisation fiber sequence

K(A)→ K(W (A))→ K(W (A)[1/p]).

More precisely, they show that the canonical map K(A)→ K(W(A) on pW (A))
is an equivalence; this is used to define their determinant line bundle on the Witt
vector affine Grassmannian. We will prove more generally that this assertion is
true for any perfect Fp-algebra A, and even for algebras over W (A) satisfying
a “p-smoothness” condition as in Corollary 3.10.
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Proposition 5.5. Let A be any perfect Fp-algebra, and let R be a p-torsion-
free W (A)-algebra such that A → R/pR is smooth. Then the canonical map
K(R/pR)→ K(R on pR) is an equivalence, so there is a localisation sequence
K(R/pR)→ K(R)→ K(R[1/p]).

Proof. Since we can replace R by its p-completion, it suffices to assume that R
is p-complete. The functor that sends the perfect Fp-algebra A to isomorphism
classes of p-complete W (A)-algebras R with R/p smooth over A commutes
with filtered colimits in A, since it is also isomorphic to the functor of smooth
A-algebras. Using this observation, and the fact that K(R on pR) commutes
with filtered colimits in p-complete R, we may reduce to the case where A is
the perfection of a finitely generated Fp-algebra.
Theorem 4.4, with C = Perf(R/pR) and Perf(R on pR) respectively, im-
plies that there are cdh sheaves on Schqcqs

A given on affines by SpecB 7→
K(Bperf ⊗A R/pR) and K(W (Bperf)⊗W (A) R on p).6 To prove that the canon-
ical map K(R/pR) → K(R on pR) is an equivalence, we therefore reduce by
Proposition 4.6 to proving that K(Vperf⊗AR/pR)

∼−→ K(W (Vperf)⊗W (A)R on p)
for all henselian valuation rings V under A. This follows from Proposition 2.6
with t = p.

Corollary 5.6. Let A and R be as in the statement of Proposition 5.5.

1. There is a localisation sequence KH(R/pR)→ KH(R)→ KH(R[ 1p ]).

2. The canonical map K(R;Zp)→ KH(R;Zp) is an equivalence.

Proof. Part (1) follows by applying Proposition 5.5 to R[T0, . . . , Tn] for all
n ≥ 0 and taking the geometric realisation.
Part (2) then follows by comparing the localisation sequences in K(−;Zp) and
KH(−;Zp). Indeed we know that K(R/pR)

∼−→ KH(R/pR) by Proposition 5.1,
while K(R[1/p];Zp) → KH(R[1/p];Zp) is an equivalence thanks to [Wei89,
Prop. 1.6].

Remark 5.7. Proposition 5.1 and Proposition 5.5 belong to a general class of
results: for many purposes, perfect rings and their rings of Witt vectors behave
similarly to regular rings. For example, in [BS17, Prop. 11.31], it is shown that
perfectly finitely presented perfect Fp-algebras have finite global dimension.
The above results are indications of a similar phenomenon in algebraic K-theory.
Note however that perfect rings can have nontrivial nonconnective K-theory.

The next result refines the classical Theorem 1.1.

Proposition 5.8. Let R be a smooth algebra of relative dimension ≤ d over a
perfect Fp-algebra. Then K(R;Fp) is d-truncated.

6Here, and on occasion below, we break with our convention and replace for example
K(W (Bperf) ⊗W (A) R on p(W (Bperf) ⊗W (A) R)) by K(W (Bperf) ⊗W (A) R on p) for read-
ability.
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Proof. We may assume by passage to a filtered colimit that the perfect base
algebra A is the perfection of a finitely generated Fp-algebra. In this case, the
Zariski topos of R is hypercomplete since Spec(R) has finite Krull dimension
and is noetherian, [Lur09, Cor. 7.2.4.20]. We therefore reduce to showing that
K(Rp;Fp) is d-truncated for each prime ideal p ⊂ R. This may be shown
in two ways. Either one has by [KM21, Th. 2.1] the analog of the Geisser–
Levine theorem [GL00], computing the mod-p K-groups of Rp as the module of
logarithmic differential forms, i.e., Kn(Rp;Fp) ≃ Ωn

Rp,log
for n ≥ 0; but these

vanish when n > d. Alternatively, we could avoid [KM21, Th. 2.1] by instead
using Theorem 4.4 and Proposition 4.6 to reduce to the case that A is a perfect
valuation ring, hence ind-smooth [Tem13], and apply the usual Geisser–Levine
theorem.

5.2 Mixed characteristic

Next we treat the mixed characteristic results. Given a perfectoid valuation
ring O of mixed characteristic we briefly recall the tilting correspondence, for
which we refer to [BMS18, Sec. 3] and [ČS19, Sec. 2.1] for further details. As
in the proof of Theorem 3.9 we may rescale p by a unit so that it admits a
compatible sequence of p-power roots, and we let t♭ be the corresponding of
the tilt O♭ so that the untilting map induces an isomorphism O♭/t♭

∼−→ O/p.
For a perfect O♭-algebra A, we let A♯ = W (A) ⊗W (O♭),θ O denote its untilt.
The untilt depends only on the (classical) t♭-adic completion of A, and A 7→ A♯

establishes an equivalence between t♭-adically complete and separated perfect
O♭-algebras and perfectoid O-algebras; this restricts to an equivalence between
perfect O♭-algebras in which t♭ = 0 and perfectoid (equivalently, perfect) O-
algebras in which p = 0.
The following result exemplifies the approach through which we may study
localizing invariants over a mixed characteristic perfectoid valuation ring via
the cdh topology over its tilt.

Proposition 5.9. Let E a localizing invariant of Z-linear stable ∞-categories
valued in spectra, and fix d,m ∈ Z; make the following assumption:

For every perfectoid valuation ring V and every smooth V -algebra
RV such that V/pV → RV /pRV has relative dimension ≤ d, the
spectrum E(RV on pRV ) is m-truncated.

Then, for every perfectoid valuation ring O, every perfectoid O-algebra A, and
every smooth A-algebra R such that A/pA→ R/pR has relative dimension ≤ d,
the spectrum E(R on pR) is m-truncated.

Proof. We treat a series of cases, culminating in a complete proof. For O, A,
R as in the statement of the proposition, Theorem 4.4 with C = Perf(R on pR)
implies that there exists a cdh sheaf FO,A,R on Schqcqs

A♭ given on an affine SpecB
by

E(Perf(R on pR)⊗Perf(W (A♭)) Perf(W (Bperf))) = E(B#
perf ⊗A R on p),
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and that this sheaf satisfies excision.
Case 1: p = 0 in A, i.e., A is a perfect Fp-algebra. Replacing O by O/

√
pO we

may clearly also suppose that p = 0 in O, i.e., that O is a perfect valuation ring
over Fp. The assertion to be proved is that E(R) is m-truncated. Writing O as
a filtered colimit of perfect valuation rings Oi of finite rank, and then writing A
as a filtered colimit of perfectly finitely presented Oi-algebras for varying i, we
reduce to the case that O has finite rank and A is a perfectly finitely presented
O-algebra. Therefore A has finite valuative dimension [EHIK21, Corol. 2.3.3]
and Proposition 4.6 applies to the cdh sheaf Ωm+1Ω∞FO,A,R: so the desired m-
truncatedness of E(R) follows from the assumedm-truncatedness of E(Vperf⊗A

R), as V varies over henselian valuation rings under A.
Case 2: O is mixed characteristic of rank one, and A is p-torsion-free. Sim-
ilarly to the previous case, we begin by reducing to a finitely presented sit-
uation. Write the tilt A♭ as a filtered colimit of perfectly finitely presented
O♭-algebras B♭

i , so that A is the (classical) p-completion of the filtered col-
imit colimiB

♯
i of the perfectoid O-algebras B♯

i . Since colimiB
♯
i is p-torsion-free

(otherwise its p-completion A would also contain p-torsion; this implicitly uses
that the p-power torsion in any perfectoid is killed by p, so that colimiB

♯
i has

bounded p-power torsion), we may argue just as at the beginning of the proof of
Corollary 3.10 to find a smooth colimiB

♯
i -algebra R′ equipped with an isomor-

phism R̂′ ∼= R̂ of A-algebras, where the hats denote p-adic completions. Since
Perf(R′ on pR′) ≃ Perf(R̂′ on pR̂′) ≃ Perf(R̂ on pR̂) ≃ Perf(R̂ on pR̂), the
first and third isomorphisms being [Bha16, Lem. 5.12], the problem reduces to
showing that E(R′ on pR′) is m-truncated. Descending R′ to a smooth algebra
over B♯

i for i ≫ 0 and taking the filtered colimit, we may henceforth assume
in this case that A is the untilt of a perfectly finitely presented O♭-algebra B.7

Since O♭ has finite rank (even rank one), therefore B has finite valuative dimen-
sion; then the m-truncatedness of E(R on pR) follows as in Case 1, namely by
applying Proposition 4.6 and using the hypothesis that E(V #

perf ⊗A R on p) is
m-truncated as V varies over henselian valuation rings under A.
Case 3: O is mixed characteristic of rank one, but no conditions on A. The
perfectoid ring A fits into a Milnor square with surjective arrows

A //

��

A

��

A0
// A0

where A is a p-torsion-free perfectoid ring, and A0 and A0 are perfect Fp-
algebras [ČS19, 2.1.3]; tilting each term forms a Milnor square of perfect Fp-

7A♭ is not in general equal to B, but rather to its t♭-adic completion in the notation of

the opening paragraph of the subsection. We also remark that by replacing A by B♯
i in this

fashion might mean that A is no longer p-torsion-free, but this condition is not required in
the remainder of the proof.
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algebras [loc. cit]. The sheaf FO,A,R satisfies excision, so the square

E(R on pR) //

��

E(A⊗A R on p)

��

E(A0 ⊗A R) // E(A0 ⊗A R)

is cartesian. The top right term is m-truncated by case 2, and the bottom two
terms are m-truncated by case 1. Therefore the top left term is m-truncated.
Case 4: The general case. If p = 0 in O then we may appeal to case 1. Otherwise,
similarly to case 3, we use an excision trick, this time applied to the Milnor
square of valuation rings

O //

��

Op

��

O/p // k(p)

where p =
√
pO. Note that Op is a perfectoid valuation ring of mixed character-

istic of rank one (argue as at the end of Corollary 3.10 to see p-completeness),
and the bottom two terms are perfect valuation rings. Base changing along
O→ A, we claim that

A //

��

A⊗O Op

��

A⊗O O/p // A⊗O k(p)

is an Milnor square of perfectoid rings. Firstly, the terms are perfectoid rings
after p-adic completion by [ČS19, Prop. 2.1.11(2)]; so the bottom two terms,
which are Fp-algebras, are perfect. But A⊗OOp is already p-adically complete
since p(A ⊗O Op) ⊆ A and A is p-adically complete; so A ⊗O Op is perfectoid.
Secondly, the square is a Milnor square because it is a base-change of a Milnor
square and since A⊗L

O
O/p is discrete.8 Tilting each term forms a Milnor square

of perfect Fp-algebras [ČS19, Prop. 2.1.4]. The sheaf FO,A,R satisfies excision,
so the square

E(R on pR) //

��

E(A⊗A R on p)

��

E(A0 ⊗A R) // E(A0 ⊗A R)

8In fact, if B0, B1, B2 are perfectoid rings with maps B0 → B1, B0 → B2, the derived
tensor product B1 ⊗L

B0
B1 has discrete derived p-completion; in fact, this follows from the

result for perfect Fp-algebras [BS17, Lem. 3.16], which implies the analogous results for their
Wit vectors, and [BMS18, Lem. 3.13].

Documenta Mathematica 27 (2022) 1923–1951



The K-Theory of Perfectoid Rings 1943

is cartesian. The top right term is m-truncated by case 2, and the bottom two
terms are m-truncated by case 1. Therefore the top left term is m-truncated.

Theorem 5.10. Let O be a perfectoid valuation ring, A a perfectoid O-algebra,
and R a smooth A-algebra such that A/pA→ R/pR has relative dimension ≤ d.
Then K(R;Fp)→ K(R[1/p];Fp) is d-truncated.

Proof. We are claiming that K(R on pR;Fp) is d-truncated. It suffices
to check that the hypothesis of Proposition 5.9 are satisfied, namely that
K(RV on pRV ;Fp) is d-truncated whenever RV is a smooth algebra over a
perfectoid valuation ring V such that V/pV → RV /pRV has relative dimen-
sion ≤ d. This follows from Theorem 3.9 (in the case of mixed characteristic V )
and Proposition 5.8 (in the case of V of characteristic p).

Lemma 5.11. Let V be a valuation ring and R a smooth V -algebra. Then, for
any t ∈ V , the map K(R on tR)→ KH(R on tR) is an equivalence.

Proof. By comparing R and R[1/t], we see that it suffices to prove the stronger
statement that K(R)

∼−→ KH(R) and K(R[ 1t ])
∼−→ KH(R[ 1t ]). This follows from

Corollary 2.3 and Proposition 2.4.

Theorem 5.12. Let O be a perfectoid valuation ring, A a perfectoid O-algebra,
and R a smooth A-algebra. Then the canonical map K(R;Zp)→ KH(R;Zp) is
an equivalence.

Proof. We consider the spectra-valued localizing invariant NK of Z-linear stable
∞-categories

NK: C 7→ hocofib(K(C;Fp)→ K(C⊗Perf(Z) Perf(Z[T ]);Fp).

Lemma 5.11 (with t = p) shows that NK(V on pV ) vanishes on any valuation
ring V , whence we may apply Proposition 5.9 with any value of m and so
deduce that NK(R on pR) vanishes. In other words, the square

K(R;Zp) //

��

K(R[T ];Zp)

��

K(R[ 1p ];Zp) // K(R[ 1p ][T ];Zp)

is cartesian. The bottom horizontal arrow is an equivalence since K(−;Zp) is
homotopy invariant on Z[ 1p ]-algebras [Wei89, Prop. 1.6], so the top horizontal
arrow is also an equivalence.

Remark 5.13 (The p-smooth case). Similarly to Corollary 3.10, Theorems 5.10
and 5.12 remain true more generally if the A-algebra R is merely required to
be p-smooth rather than smooth. Here we say that an A-algebra R is p-smooth
if it satisfies the following equivalent conditions:
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1. there exists a smooth A-algebra R′ such that the derived p-adic comple-
tions9 of R and R′ are equivalent as animated A-algebras;

2. the A/pA-algebra R⊗L

A A/pA is discrete and smooth.

To obtain the stronger versions of the theorems from the smooth versions, we
use characterisation (1) and the equivalence Perf(R on pR) ∼→ Perf(R̂ on pR̂),
resulting from the equivalence R̂⊗L

RR/pR ≃ R/pR and a strong form of Thoma-
son’s excision theorem [Bha16, Lem. 5.12(2)] (and similarly forR′ in place ofR);
here hats denote derived p-adic completions. In the case of Theorem 5.12 we
also use the analogous equivalences for R[T ] and R′[T ], as well as the fact that
K(−;Zp) is homotopy invariant on Z[ 1p ]-algebras.
Lacking a simple reference, we explain why conditions (1) and (2) are indeed
equivalent.10 It is clear that (1) implies (2), so suppose that R is an A-algebra
satisfying condition (2). Let R′ be any smooth A-algebra lifting the smooth
A/pA-algebra R ⊗L

A A/pA [Sta18, Tag 07M8]. By derived deformation theory
(cf. [Lur, Sec. 3.4]) the canonical map R′ → R′/pR′ = R⊗L

AA/pA = R̂⊗L

AA/pA

may be lifted to a morphism R′ → R̂, which induces a morphism R̂′ → R̂. The
fibre F of the latter morphism satisfies F⊗L

AA/pA ≃ 0; therefore F⊗L

AA/
Lp ≃ 0

(as A/Lp is a bounded complex with cohomologies being A/pA-modules), and
so F ≃ 0 since it is derived p-complete.

Question 5.14. Do Theorems 5.10 and 5.12 hold for any perfectoid ring A,
without assuming that it is an algebra over a perfectoid valuation ring O? This
assumption appeared in the proof of case 2 of Proposition 5.9, where it was
used to reduce to a situation of finite valuative dimension. Indeed, the theorems
therefore remain true for any perfectoid ring A which receives a map A0 → A
from another perfectoid ring A0 having the property that A♭

0 has finite valuative
dimension.

A Localisation sequences via t-structures

In the appendix, we explain how to deduce the dévissage results of Section 2
(and slight generalisations) from the theorem of the heart due to Barwick
[Bar15] and Antieau–Gepner–Heller [AGH19]. Let C be a presentable sta-
ble ∞-category equipped with a t-structure that is compatible with filtered
colimits. We say that C is regular coherent if C is compactly generated and
the t-structure on C restricts to a bounded t-structure on the compact objects
Cω ⊂ C. In particular, this implies that all compact objects are truncated,
and that the truncations of a compact object remain compact. Consequently,
the compact objects of the heart C♥ form an abelian category C♥ω, and C♥

9For the sake of clarify, we remark that the derived p-completion of an A-module M
is holimn M/Lpn where M/Lpn := M ⊗L

Z[T ],T 7→pn
Z is the Koszul complex associated to

multiplication by pn
10The proof works over any base ring A, though we remark that if its p-power torsion is

not bounded then the derived p-completions appearing in (1) might not be discrete.
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is the Ind-completion of C♥ω. For example, if R is a weakly regular coherent
ring, then the derived ∞-category D(R) of R-module spectra with its usual
t-structure is regular coherent.
For each connective E∞-ring S, one has the presentable stable ∞-category
C⊗S of S-module objects in C, which also inherits a t-structure where connec-
tivity and coconnectivity are checked along restriction of scalars C ⊗ S → C.
Let S[t] denote the suspension spectrum of the commutative monoid Z>0

and S[t1, . . . , tn] be the n-fold smash product of S[t]; similarly we define
S[t±1

1 , . . . , t±1
n ] by inverting the generators. We say that C is stably regular

coherent if C⊗ S[t1, . . . , tn] is regular coherent for each n > 0. For example, if
R is a weakly regular stably coherent ring, then D(R) is stably regular coherent.
An important example is that there is an analog of Hilbert’s basis theorem: if
C is regular coherent and C♥ω is noetherian, then C is stably regular coherent
[AGH19, Cor. 3.17].

Theorem A.1 (Barwick [Bar15] and Antieau–Gepner–Heller [AGH19]). Let C
be a presentable stable ∞-category equipped with a t-structure which is compati-
ble with filtered colimits. Suppose C is stably regular coherent. Then the canon-
ical map identifies the (connective) K-theory of the abelian category (C♥)ω with
the K-theory of the stable ∞-category Cω. In particular, Ki(C

ω) = 0 for i < 0.

Proof. Our assumptions yield that Cω admits a bounded t-structure with heart
C♥ω. By the connective theorem of the heart [Bar15], it follows that K(C♥ω) =
K>0(C

ω). It remains to show that K−i(C
ω) = 0 for i < 0. This is proved exactly

as in the proof of [AGH19, Th. 3.6]; we reproduce a sketch of the argument for
the convenience of the reader.
We prove Ki(C

ω) = 0 for i < 0 by induction. First, by [AGH19, Th. 2.35], it
follows that K−1(C

ω) = 0. Suppose i < −1. Consider the localisation sequence
in Catperf∞ given by Perf(S[x] on 0) → Perf(S[x]) → Perf(S[x±1]). Tensoring
with Cω, we obtain another localisation sequence in Catperf∞ , leading to a fiber
sequence

K(Perf(S[x] on 0)⊗ Cω)→ K(Perf(S[x])⊗ Cω)→ K(Perf(S[x±1])⊗ Cω).

As in the proof of [AGH19, Th. 3.6], it follows that K(Cω) is a retract of
K(Perf(S[x] on 0)⊗Cω) and that this summand maps to zero in K(Perf(S[x])⊗
Cω). In particular, it follows that Ki(C

ω) is a summand of a quotient of
Ki+1(Perf(S[x

±1])⊗Cω). However, our hypotheses imply that Perf(S[x±1])⊗Cω

is the subcategory of compact objects in C⊗ S[x±1], which is stably regular co-
herent by assumption. Inductively, it follows Ki+1(Perf(S[x

±1]) ⊗ Cω) = 0,
whence Ki(C

ω) = 0 as desired.

Corollary A.2. Let C be a presentable Z-linear stable ∞-category equipped
with a t-structure which is compatible with filtered colimits, and suppose C is
stably regular coherent. Then K(Cω)

∼−→ KH(Cω).
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Proof. It suffices to show that K(Cω)
∼−→ K((C ⊗Z Z[x])ω), and the classical

proof in algebraic K-theory works. We switch now to geometric notation (writ-
ing schemes instead of rings). By our assumptions above, we have a fiber
sequence

K(Cω)→ K(Perf(P1
Z
)⊗Z Cω)→ K(Perf(A1

Z
)⊗Z Cω), (4)

where the first map is obtained from the pushforward Perf(Z) → Perf(P1
Z
)

at the section ∞. Indeed, this follows from Thomason–Trobaugh localisation
[TT90] and Theorem A.1, since Perf(P1

Z
on ∞)⊗ZC

ω is the compact objects of
the stably regular coherent∞-category of y-torsion objects in C⊗Z Z[y] (for y
a coordinate near ∞ on P1

Z
). In particular, this gives a bounded t-structure

on Perf(P1
Z

on ∞)⊗Z Cω whose heart is the category of objects in C♥ω with a
nilpotent endomorphism; now use Quillen dévissage [Qui73, Sec. 5] to identify
its K-theory with that of Cω.
Now we have two maps f1, f2 : Cω → Perf(P1

Z
) ⊗Z Cω given by tensoring with

the structure sheaf and given by pushing forward at ∞. By the projective
bundle formula for P1

Z
, these establish an equivalence (f1, f2) : K(Cω)⊕2 ∼−→

K(Cω⊗ZPerf(P1
Z
)). Combining this with (4), we find that pullback induces an

equivalence K(Cω)
∼−→ K(Cω ⊗Z Perf(A1

Z
)) as desired.

Finally, we explain how to deduce Proposition 2.5 and a generalisation of Propo-
sition 2.6.

Alternative proof of Proposition 2.5. By Thomason–Trobaugh localisation
[TT90], the fiber of K(R)→ K(SpecR \ V (I)) is given by the K-theory of the
stable∞-category Perf(R on I) of perfect R-module spectra which are I-power
torsion. These are the compact objects in the presentable stable ∞-category
D(R)I−tors ⊂ D(R) of I-power torsion objects. Our assumption implies that
the usual t-structure on D(R)I−tors is stably regular coherent in the above
sense. In particular, Perf(R on I) has a bounded t-structure with heart given
by the abelian category Modfp(R)I−tors of finitely presented R-modules which
are I-power torsion. It follows from Theorem A.1 and Quillen dévissage [Qui73,
Sec. 5] that G(R/I) ≃ K(Modfp(R)I−tors) ≃ K(Perf(R on I)).

Proposition A.3. Let R be a ring and let I ⊂ R be a finitely generated regular
ideal. Suppose R/I is stably coherent and weakly regular. Then there is a fiber
sequence of spectra

K(R/I)→ K(R)→ K(Spec(R) \ V (I)),

and similarly in KH.

Proof. We have a fiber sequence K(R on I) → K(R) → K(Spec(R) \ V (I)).
Thus, it suffices to show that K(R/I)

∼−→ K(R on I).
Consider the presentable stable ∞-categories D(R)I−tors of I-power torsion
objects in D(R) and D(R/I). Then Perf(R on I) is the compact objects in
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D(R)I−tors and Perf(R/I) is the compact objects in D(R/I). We show that
D(R)I−tors,D(R/I) (with the natural t-structures) are stably regular coherent.
For D(R/I), this is part of our assumption. Since the hypotheses of the result
apply to a polynomial ring over R, it suffices to show that D(R)I−tors is regular
coherent, i.e., that it admits a bounded t-structure.
First, since I is a regular ideal, I/I2 is a finitely generated projective R/I-
module, and Symi

R/I(I/I
2)

∼−→ Ii/Ii+1 for each i > 0. We argue that R/Ii is
a coherent ring for each i > 1 by induction. For i = 1 this is the assumption.
If R/Ii is coherent, then consider the short exact sequence 0 → Ii/Ii+1 →
R/Ii+1 → R/Ii → 0. Our assumptions give that Ii/Ii+1 is a finitely presented
(indeed, finitely generated projective) R/I-module, whence a finitely presented
R/Ii-module [BMS18, Lem. 3.25(i)]. Therefore, by [BMS18, Lem. 3.26], it
follows that R/Ii+1 is coherent.
It follows that we have an abelian category A of finitely presented R-modules
which are annihilated by In for some n≫ 0 (it is then equivalent to assuming
they are finitely presented R/In-modules, [BMS18, Lem. 3.25(i)]). We claim
that the usual t-structure on D(R)I−tors restricts to a bounded t-structure on
Perf(R on I) with heart A. We observe that any object M ∈ A is perfect
as an R-module; this reduces to the case where M is an R/I-module, when
it follows because R/I is regular coherent and is perfect as an R-module by
regularity of I. This easily implies that the homology groups of any object of
Perf(R on I) belong to Perf(R on I), whence the claim.
Thus, we have shown that D(R)I−tors,D(R/I) are stably regular coherent. The
hearts in the compact objects Perf(R on I) and Perf(R/I) are given by A and
the category of finitely presented R/I-modules respectively. Using Quillen
dévissage and Theorem A.1, we conclude.

Remark A.4. Much of the argument in the proof of Proposition A.3 can
be established instead with the recent main theorem of [BL21], which gives
a criterion for when, for a coconnective ring spectrum A, the canonical
map π0(A) → A induces an equivalence on K-theory. The hypotheses of
their theorem holds in the setting of the proposition for the canonical map
R/I → RMapR(R/I,R/I), the derived endomorphism spectrum of the R-
module R/I. But, Perf(RMapR(R/I,R/I)) ≃ Perf(R on I) by derived Morita
theory.
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