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Abstract. In this paper we will show that for a quasicompact qua-
siseparated scheme X the hypercomplete pro-étale ∞-topos, as in-
troduced by Bhatt and Scholze, is equivalent to the ∞-category of
continuous representations of the Galois category Gal(X) of X with
values in the ∞-category of pyknotic spaces. In particular this proves
that internally to pyknotic spaces, the hypercomplete pro-étale ∞-
topos of X is an ∞-category of presheaves.
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1 Introduction

Main results

For a quasicompact quasiseparated scheme X , the Galois category Gal(X)
of X , as introduced in [1], is defined to be the∞-category of points of the étale
∞-topos Xét of X . This ∞-category turns out to be a 1-category and admits
a rather concrete description: The objects are given by geometric points of the
scheme X and the morphisms by specializations of such. In [1], the authors
refined Gal(X) to a pro-∞-category whose underlying ∞-category recovers
the ∞-category of points of Xét. We can therefore make use of the ideas
of condensed or pyknotic mathematics introduced in [2], [4], [13] and consider
Gal(X) as a pyknotic∞-category. Recall that a pyknotic∞-category is defined
to be a hypersheaf of ∞-categories on the site of profinite sets and we can
consider Gal(X) as such via the assertion

K 7→ Fun(K,Gal(X))

for a pro-finite set K. Here we denote by Fun(K,Gal(X)) the ∞-category of
functors of pro-∞-categories from K to Gal(X).

Documenta Mathematica 27 (2022) 2067–2106



2068 S. Wolf

Given two pyknotic ∞-categories C and D, we can form the ∞-category
Functs(C,D) of continuous funtors between them (see Definition 3.3). Let Sπ
denote the ∞-category of π-finite spaces. We can regard Sπ as a discrete py-
knotic∞-category Sdiscπ , by considering the constant sheaf on profinite sets with
value Sπ. In this language the exodromy equivalence (see [1, Corollary 0.5.2,
Corollary 13.6.3]) says that there is a natural equivalence

Functs(Gal(X),Sdiscπ ) ≃ Xconstr
ét

between the ∞-category of continuous functors from Gal(X) to Sdiscπ and the
∞-category of constructible étale sheaves on X .
As explained in [1], the above equivalence holds in greater generality in the
setting of so called spectral ∞-topoi (see [1, Theorem 0.4.7, Definition 9.2.1]).
These are ∞-topoi X , equipped with a geometric morphism f∗ : X → Sh(S),
where S is a spectral topological space, such that f∗ exhibits the ∞-category
Pt(X) as an S-stratified space (see [1, Proposition 9.2.5] for the precise state-
ment). In this case X is called a spectral S-stratified ∞-topos. The main ex-
ample to keep in mind is the canonical geometric morphism Xét → XZar for a
qcqs scheme X , from Xét to the∞-topos XZar of Zariski-sheaves on X . To any
spectral S-stratified∞-topos X , one can associate a pro-∞-category Π̂S

(∞,1)(X ),
called the profinite S-stratified shape of X , whose underlying ∞-category re-
covers the ∞-category of points of X . In this setting Barwick-Glasman-Haine
show that there is an equvialence

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

≃ XS -constr

between the ∞-category of continuous representations of the profinite S-
stratified shape Π̂S

(∞,1)(X ) of X and the ∞-category XS -constr of S-

constructible objects in X [1, Theorem 0.4.7 and Definition 9.4.7]. In the
case X = Xét, this recovers the previous equivalence.
The goal of this paper is to extend the results above to a larger class of sheaves.
For this we recall from [2, Construction 4.1.4] that we can equip the∞-category
of pyknotic spaces Pyk(S) with the structure of a pyknotic ∞-category via the
assertion

K 7→ Pyk(S)/K .

We denote the resulting pyknotic∞-category by Pyk(S). The main theorem of
this paper identifies the∞-category of continuous representations of Π̂S

(∞,1)(X )

with values in Pyk(S) as follows:

Theorem 1.1. Let S be a spectral topological space and X an S-stratified spec-
tral∞-topos. Then the exodromy equivalence induces an equivalence of∞-topoi

X pyk ≃
−−→ Functs

(

Π̂S
(∞,1)(X ),Pyk(S)

)

between the pyknotification X pyk of X and the ∞-category of continuous func-
tors from the profinite stratified shape Π̂S

(∞,1)(X ) to the ∞-category of pyknotic
spaces.
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Here the pyknotification 1 is defined as the ∞-category of hypersheaves on
the category of pro-S-constructible sheaves Pro(XS -constr) where the topol-
ogy is generated by finite families that are jointly effective epimorphisms (see
Definition 2.10). The 1-categorical analogue of this construction was already
considered in [13, §7.1]. It follows from Example 7.1.7 of loc. cit. that for a

qcqs scheme X , the pyknotification Xpyk
ét is equivalent to the ∞-topos of pro-

étale hypersheaves Xhyp
proét on X as defined by Bhatt-Scholze in [3]. This means

that the process of passing from a spectral ∞-topos to its pyknotification can
be viewed as a generalization of the passage from the étale to the pro-étale∞-
topos for a scheme X . Combining this alternative description of Xhyp

proét with
Theorem 1.1 we arrive at the following Corollary:

Corollary 1.2. Let X be a qcqs scheme. Then the exodromy equivalence
induces an equivalence of ∞-topoi

X
hyp
proét

≃
−−→ Functs(Gal(X),Pyk(S)).

In particular, the above theorem says that from a pyknotic point of view, the
hypercomplete pro-étale ∞-topos is naturally equivalent to the ∞-category of
internal copresheaves on the pyknotic ∞-category Gal(X).
This result has several interesting implications, some of which we try to explain
in this article. First of all, many of the convenient properties of the pro-étale
topos are now purely formal consequences of Theorem 1.1. For example the
fact that the pro-étale topos is locally weakly contractible [3, Proposition 4.2.8]
can easily be deduced using our main result (see section 5). Also it is a direct
corollary of Theorem 1.1 that, contrary to the étale setting, for any morphism
f : X → Y of schemes the functor

f∗ : Y hyp
proét → X

hyp
proét

has the surprising property that it commutes with all small limits (Corol-
lary 4.18). This generalizes [3, Corollary 6.1.5] where this was shown for closed
immersions only. Our main theorem furthermore gives a conceptual explana-
tion why the pro-étale topos has so many convenient categorical properties. It
is, in the pyknotic sense, just an ∞-category of presheaves and thus inherits
many nice properties of the much simpler ∞-topos Pyk(S) of pyknotic spaces.
Furthermore this opens the way to understanding the pro-étale topos using
pyknotic higher category theory (i.e. higher category theory internal to the ∞-
topos Pyk(S)). We will develop the basics of higher category theory internal
to an ∞-topos in ongoing joint work with Louis Martini [14, 15, 16, 17].
The language of pyknotic or condensed mathematics which we use in this article
was developed by Barwick and Haine in [2] and independently at the same
time by Clausen and Scholze in [4]. The only real difference between the two
approaches is the way in which set-theoretic issues are dealt with. Since we will

1The pyknotification was introduced in [2, Construction 3.3.2] under the name solidifica-

tion.
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directly build on the results in [1] which are all formulated in the framework
of [2], we will do the same in this paper. The 1-categorical versions of many
ideas and constructions in this paper already appear in [13, §6 and 7]. Most
notably the pyknotic category Gal(X) is already introduced there under the
name StoneXconstr

ét
. This construction is then used to prove an analogue of the

exodromy equivalence in this setting. See [13, Theorem 2.2.2] and [2, §4.3].

Technical Outline

In the second section we will study categories of pro-objects and in particular
effective epimorphisms in them. This will allow us to construct the effective
epimorphism topology on Pro(X0) for a bounded∞-pretopos X0 and thus define
the pyknotification of a bounded coherent∞-topos. It is quite elementary and
may be mostly skipped by experts.
The main technical result heavily used in the proof of Theorem 1.1 is an alter-
native description of the ∞-category of continuous functors

Functs(C,Pyk(S))

for a pyknotic∞-category C. Namely we will see that it is equivalent to a suit-
ably defined∞-category of continuous left fibrations over C (see Theorem 3.11).
Providing this description and exploring a few consequences will be subject of
the third section.
In the fourth section we will proof Theorem 1.1. The rough idea will be that
the Exodromy equivalence together with the embedding Sπ →֒ Pyk(S) will
provide an embedding

XS -constr ≃ Functs
(

Π̂S
(∞,1)(X ),Sπ

)

−֒→ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

,

which will extend to a fully faithful (see Proposition 3.32) embedding

Pro(XS -constr) −֒→ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

.

Since the pyknotification is by definition given by taking sheaves with respect
to the effective epimorphism topology on Pro(XS -constr), we would now like
to apply Theorem 4.1, which would prove that Pro(XS -constr) equipped with
the effective epimorphism topology is also a generating site for the right hand
side above. For this we have to show that the assumptions of Theorem 4.1 are
satisfied which will occupy the vast majority of this section.

Set theoretic conventions

We will follow the set-theoretic conventions of [2]. In particular we fix a tiny and
a small universe, respectively determined by two strongly inaccessible cardinals

δ0 < δ1.
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We recall that, for a strongly inaccessible cardinal δ, a δ-∞-topos is a left exact
accessible localization of Fun(C,Sδ) for a δ-small∞-category C. We will simply
say ∞-topos instead of δ1-∞-topos.
By convention, a spectral S-stratified ∞-topos X will by always be
a δ0-∞-topos. In particular, the ∞-category XS -constr of S-constructible
sheaves will always be tiny.
Recall that the ∞-category of pyknotic spaces Pyk(S) is defined to be the
∞-topos of hypersheaves with values in Sδ1 on the site of tiny profinite sets
equipped with finite jointly epimorphic families as coverings. Any profinite
set can be covered by an extremally disconnected set K and these have the
property that any epimorphism T ։ K of profinite sets has a section. Writing
Proj for the category of tiny extremally disconnected sets we therefore have an
equivalence

Pyk(S) = Fun×
(

Projop,Sδ1
)

.

It follows that Pyk(S) is hypercomplete and even postnikov-complete. See [2,
§2.2] for more background on pyknotic spaces.
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2 Pro-objects and Pyknotification

The majority of the material presented in this section has been worked out in
the 1-categorical case by Lurie in [13, §6.1] and most of the arguments in this
section are just very straight-forward adaptions of the ones presented there.

Recollection 2.1. Let C be a tiny ∞-category. We define the ∞-category
Pro(C) of pro-objects in C to be the essentially unique ∞-category equipped
with a functor i : C → Pro(C) such that for any∞-category with tiny cofiltered
limits D, precomposition with i induces an equivalence

Fun′(C,D)
i∗
−→ Fun(C,D).

Here Fun′(C,D) denotes the∞-category of tiny cofiltered limit preserving func-
tors. The∞-category Pro(C) exists by the dual of [10, Proposition 5.3.6.2] and
is equivalent to Ind(Cop)op. In particular Pro(C) is small and locally tiny but
in general not tiny.
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Recollection 2.2. Recall from [12, Definition A.6.1.1] that an ∞-category
X0 is called an ∞-pretopos if

i) The ∞-category X0 has finite limits.

ii) Finite coproducts exist in X0 and are universal and disjoint.

iii) Groupoid objects in X0 are effective and their geometric realizations are
universal.

An ∞-pretopos X0 is called bounded if X0 is small and every object in X0 is
n-truncated for some integer n. If X is a coherent ∞-topos in the sense of [12,
Definition A.2.0.12], the full subcategory of X coh

<∞ spanned by the truncated
and coherent objects is a bounded ∞-pretopos [12, Example 7.4.4]. In fact
any bounded ∞-pretopos arises this way by [12, Theorem 7.5.3]. For more
background on ∞-pretopoi and coherent ∞-topoi, the reader may consult [12,
Appendix A] or [1, §3]

Example 2.3. If X is a qcqs scheme, the∞-topos Xét of étale sheaves on X is
coherent. In this case the ∞-category Xcoh

ét,<∞ of truncated coherent objects is

equivalent to the∞-categoryXconstr
ét of constructible étale sheaves on X , which

is therefore an ∞-pretopos. In fact we more generally have an equivalence

X coh
<∞ ≃ X

S -constr

for any spectral S-stratified ∞-topos X → Sh(S) [1, Corollary 9.5.5].

If X0 is an ∞-pretopos, the ∞-category Pro(X0) is in general not an ∞-
pretopos. The goal of this section is to show that even though this is case, the
notion of effective epimorphism still yields a reasonable Grothendieck-topology
on Pro(X0).

2.4. Let C be an ∞-category with finite limits and geometric realizations of
groupoid objects. Recall that a morphism f : X → Y in C is called an effective
epimorphism, if the canonical morphism

|Č(f)•| −→ Y

is an equivalence, where Č(f)• denotes the Čech-nerve of f .

Lemma 2.5. Let X0 be a tiny bounded ∞-pretopos. Let f• : I →
Fun(∆1,Pro(X0)) be a tiny cofiltered diagram of effective epimorphisms. Then
limi fi, considered as a morphism in Pro(X0), is an effective epimorphism.

Proof: This is a straight-forward adaption of the argument given in [12, Prop.
E.5.5.3]: Let us denote the source and target of f• by X• and Y•, respectively.
Let us write U• for the Čech-nerve of f = limi fi. We would like to show that,
for every C ∈ Pro(X0), the induced morphism

mapPro(X0)(limi
Xi, C) −→ lim

n∈∆
mapPro(X0)(Un, C)
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is an equivalence. We observe that we may immediately assume that C ∈ X0 ⊆
Pro(X0). We now write U•,i for the Čech-nerve of fi. Since we assumed that C
is cocompact, the above map may be identified with the composite

colim
i

mapPro(X0)(Xi, C) −→ colim
i

lim
n∈∆

mapPro(X0)(Ui,n, C)

α
−−→ lim

n∈∆
colim

i
mapPro(X0)(Ui,n, C).

Since every fi was assumed to be an effective epimorphism, the first map is an
effective epimorphism. Thus it suffices to see that α is an equivalence. Now,
since X0 is bounded, there is an n ∈ N such that C is n-truncated. We may
thus replace the Ui,n with their n-truncations τ≤n(Ui,n). It follows from [8,
Proposition A.1] that in the commutative diagram

colim
i

lim
n∈∆

mapPro(X0)(Ui,n, C) lim
n∈∆

colim
i

mapPro(X0)(Ui,n, C)

colim
i

lim
n∈∆≤n

mapPro(X0)(Ui,n, C) lim
n∈∆≤n

colim
i

mapPro(X0)(Ui,n, C)

α

the horizontal arrows are equivalences and the bottom vertical arrow is an
equivalence as well since taking limits over ∆≤n commutes with filtered colim-
its. This completes the proof.

Let us quickly recall the following from [12, Proposition A.6.2.1]:

Proposition 2.6. Let X0 be an ∞-pretopos. Then X0 admits a factorization
system (SL, SR) (in the sense of [10, §5.2.8]), where SL is the collection of
effective epimorphisms and SR the collection of (−1)-truncated morphisms.

Proposition 2.7. Let X0 be a tiny bounded ∞-pretopos. Then the following
hold:

i) The collection of effective epimorphisms and (−1)-truncated morphisms
form a factorization system on Pro(X0).

ii) A morphism in Pro(X0) is an effective epimorphism if and only if it can
be written as a tiny inverse limit of effective epimorphisms in X0.

iii) Effective epimorphisms are stable under pullback in Pro(X0).

Proof: It is clear that effective epimorphisms and (−1)-truncated morphisms
are stable under retracts. Furthermore we observe that effective epimorphisms
are left orthogonal to (−1)-truncated morphisms in any∞-category with finite
limits and geometric realizations. So let f : X → Z be a morphism in Pro(X0).
By (the dual of) [12, Proposition 4.2.2] we can write f ≃ limi hi ◦ limj gj , where
hi is a (−1)-truncated morphism in X0 and gj is an effective epimorphism in X0.
By Lemma 2.5 it follows that limi gi is an effective epimorphism. Furthermore
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the diagonal limi Yi → limi Yi ×limi Zi limi Yi may be identified with the limit
of the diagonals Yi → Yi ×Zi Yi and is thus an equivalence. This proves i).
One direction of ii) is simply Lemma 2.5 combined with the observation that
the inclusion X0 →֒ Pro(X0) preserves effective epimorphisms. For the other
direction assume that f : X → Z is an effective epimorphism. We now pick
a factorization f ≃ (limi hi) ◦ (limi gi) as above. By i) it follows from [10,
Proposition 5.2.8.6] that limi hi is both an effective epimorphism and (−1)-
truncated. Thus it is left orthogonal to itself, so it is an equivalence, which
completes the proof of ii).
For iii) we may use [10, Proposition 5.3.5.15] again to assume that we are given
a cofiltered diagram I → Fun(Λ2

2,X0) depicted as

X•

T• Z•

f•

γ•

such that the induced map limiXi → limi Zi is an effective epimorphism. We
have to show that the induced map

lim
i
Ti ×limi Zi lim

i
Xi −→ lim

i
Ti

is an effective epimorphism. Again we get a functorial factorization

Xi
gi
−−→ Yi

hi−−→ Zi

where gi is an effective epimorphism and hi is (−1)-truncated for all i. We now
consider the diagram

lim
i
(Ti ×Zi Xi) lim

i
Xi

lim
i
(Ti ×Zi Yi) lim

i
Yi

lim
i
Ti lim

i
Zi .

g′ g=limi gi

h′ h=limi hi

Since f = h ◦ g is an effective epimorphism, it follows like in the proof of ii)
that h is an equivalence. Thus h′ is an equivalence. Since X0 is an∞-pretopos,
it follows that g′ is an inverse limit of effective epimorphisms and so the claim
follows from Lemma 2.5.

Lemma 2.8. Let X0 be a tiny ∞-pretopos. Then finite coproducts are universal
in Pro(X0).
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Proof: Again we may use [10, Proposition 5.3.5.15] to reduce to the case where
we are given a cofiltered family of diagrams

Xi ∐X
′
i

Yi Zi

fi f ′
i

γi

and have to show that the induced map

(

lim
i
Yi×limi Zi lim

i
Xi

)

∐
(

lim
i
Yi×limi Zi lim

i
X ′

i

)

→ lim
i
Yi×limi Zi lim

i

(

Xi∐X
′
i

)

is an equivalence. But this map can be identified with the limit of the induced
morphisms

(Yi ×Zi Xi)∐ (Yi ×Zi X
′
i) −→ Yi ×Zi (Xi ∐X

′
i)

which are equivalences, as X0 is an ∞-pretopos.

Finally we observe that, as a consequence of [9, Proposition 5.2.8.6] and Propo-
sition 2.7, the collection of effective epimorphisms in Pro(X0) is closed under
composition and it is clearly closed under finite coproducts. We may thus apply
[12, Proposition A.3.2.1] to get the following:

Corollary 2.9. Let X0 be a bounded ∞-pretopos. Define a collection of mor-
phisms {Ci → D}i∈I in Pro(X0) to be covering if and only if there is a finite
subset J ⊆ I such that the induced map

∐

j∈J

Cj −→ D

is an effective epimorphism in Pro(X0). This defines a topology on Pro(X0).

Definition 2.10. Let X0 be a tiny bounded ∞-pretopos. We call the topol-
ogy on Pro(X0) from Corollary 2.9 the effective epimorphism topology. For a
bounded coherent δ0-∞-topos X , we define the pyknotification of X to be the
∞-topos

X pyk = Shhypeff

(

Pro(X coh
<∞)

)

.

Remark 2.11. The pyknotification of a bounded coherent ∞-topos appeared
first in [2, Construction 3.3.2] under the name solidifcation. Since the word
solidification is also used in [4] in an unrelated way, a different name is used
here.

Example 2.12. In the case where X = S, the∞-category of bounded coherent
objects in S is the ∞-category of π-finite spaces Sπ. Let us write S

∧

π for the
∞-category Pro(Sπ) of profinite spaces. It is shown in [1, Proposition 13.4.9]
that any profinite set admits an effective epimorphism from a profinite set. In
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other words the full subcategory Pro(Setfin) ⊆ S∧π is a basis for the effective
epimorphism topology. It follows that we have an equivalence of ∞-topoi

Spyk ≃ Pyk(S).

Example 2.13. More generally for a qcqs schemeX , any object in Pro(Xconstr
ét )

admits an effective epimorphism from an object in Pro(Xconstr
≤0 ) by [2, Propo-

sition 3.3.8]. It follows that Xpyk
ét is the hypercomplete ∞-topos associated to

the 1-topos Sheff(Pro(X
constr
≤0 ), Set) introduced in [13, §7.1]. Thus [13, Exam-

ple 7.1.7] shows that Xpyk
ét is equivalent to the hypercomplete ∞-topos Xhyp

proét

of pro-étale sheaves on X defined by Bhatt-Scholze in [3].

Remark 2.14. In principle we can also consider a version of the pyknotification
where we consider the∞-topos Sheff(Pro(X0)) of all sheaves with respect to the
effective epimorphism topology instead of just hypersheaves. However there are
reasons to prefer the hypercomplete version in Definition 2.10. For example in
many cases of interest the ∞-topos X pyk will be postnikov complete and even
have a set of compact projective generators (see Theorem 5.7), which makes it
convenient to work with. This will not hold for the non-hypercomplete version
in general [2, Warning 2.2.2].

3 Continuous Straightening-Unstraightening

Recall that the ∞-category Pyk(S) of pyknotic spaces is equivalent to the
∞-category Fun×(Projop,S) of product preserving presheaves on Proj. This
encourages the following definition [2, Definition 2.3.1]:

Definition 3.1. Let C be any ∞-category with finite products. A pyknotic
object in C is a functor Projop → C that preserves finite products. We write
Pyk(C) = Fun×(Projop, C) for the ∞-category of pyknotic objects in C. We
will simply refer to pyknotic objects in Cat∞ as pyknotic ∞-categories.

Definition 3.2. We call a pyknotic ∞-category C small, if C(K) is a small
∞-category for every K ∈ Proj.

Recollection 3.3. Let C and D be pyknotic ∞-categories. Recall from [1,
Definition 13.3.16] that the ∞-category of continuous functors from C to D is
given by

Functs(C,D) =

∫

K

Fun
(

C(K),D(K)
)

.

By [6, Proposition 2.3] the maximal subgroupoid underlying Functs(C,D) is
equivalent to the mapping space mapPyk(Cat∞)(C,D). In particular the objects

in Functs(C,D) are simply morphisms of pyknotic ∞-categories, so natural
transformations C(−)→ D(−).
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Example 3.4. The ∞-category Pyk(S) of pyknotic spaces may be equipped
with a pyknotic structure given by the functor Pyk(S)/− that takes an ex-
tremally disconnected space K to Pyk(S)/K and a morphism f : K → K ′ to
the functor

f∗ : Pyk(S)/K −→ Pyk(S)/K′

given by pulling back along f . We denote this pyknotic∞-category by Pyk(S).

Recollection 3.5 ([1, Construction 13.3.10]). Let C be an ∞-category with
finite products. Evaluating at the point defines a functor

Γ∗ : Pyk(C)→ C.

For X ∈ Pyk(C), we will refer to Γ∗(X), as the underlying object of X . If C is
presentable, the functor Γ∗ admits a left adjoint that we will denote

(−)disc : C → Pyk(C).

For X ∈ C, we refer to Xdisc as the discrete pyknotic object attached to X .
Furthermore the pyknotic object Xdisc admits an explicit description: Let K ∈
Proj and say that K = limi∈I Ki, where every Ki is a finite set. Then we have

Xdisc(K) ≃ colim
i∈I

XKi

where XKi denotes the product
∏

Ki
X .

Definition 3.6. We will say that a continuous functor

f : C −→ D

in Pyk(Cat∞) is a left fibration, if for every K ∈ Proj the functor

C(K) −→ D(K)

is a left fibration. We will write Lfibcts(C) for the full subcategory of
Pyk(Cat∞)/C spanned by the left fibrations.

Example 3.7. Let C be an ordinary ∞-category and p : F → C an ordinary
left fibration. Then this induces a functor Fdisc → Cdisc of discrete pyknotic
categories. Let K ∈ Proj and say that K = limi∈I Ki, where Ki is a finite set
for every i. Then the induced functor Fdisc(K)→ Cdisc(K) is given by

colim
i
FKi −→ colim

i
CKi

which, as a filtered colimit of left fibrations, is equivalent to a left fibration.
Thus the continuous functor Fdisc → Cdisc is a left fibration.

The following example will be heavily used in the fourth section:
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Example 3.8. If C is an ∞-category, we write Tw(C) for the twisted arrow
∞-category of C [11, Tag 03JG]. For a pyknotic ∞-category C ∈ Pyk(Cat∞),
we may consider the continuous twisted arrow ∞-category Twcts(C). This is
the pyknotic ∞-category given by the assignment

K 7−→ Tw(C(K)).

It comes equipped with a canonical functor

Twcts(C) −→ Cop × C

that is a continuous left fibration by [11, Tag 03JQ].

Recollection 3.9. Recall that, for a small ∞-category C, there is a natural
equivalence

Un: Fun(C,Cat∞)
≃
−−→ CoCart(C)

between Fun(C,Cat∞) and the∞-category CoCart(C) of cocartesian fibrations
over C. We will denote the inverse of Un by St. For a functor f : C → Cat∞
we call Un(f) the unstraightening of f . Furthermore the functor Un restricts
to an equivalence

Fun(C,S)
≃
−→ Lfib(C)

between Fun(C,S) and the ∞-category of left fibrations over C. By [11,
Tag 028T] this equivalence can be explicitly described as follows. A functor

f : C → S is sent to the left fibration Un(f)
p
−→ C determined by the pullback

square

Un(f) S∗

C S .

π

f

p

Here S∗ denotes the∞-category of pointed spaces and π is the forgetful functor.
We call π the universal left fibration.

Definition 3.10. We define the pyknotic ∞-category of pointed pyknotic
spaces to be the pyknotic ∞-category

Pyk(S∗) : Projop → Cat∞; K 7→ Fun×((Proj/K)op,S∗) ≃ Pyk(S)(K)∗/.

The functor π : S∗ → S induces a continuous left fibration πcts : Pyk(S)∗ →
Pyk(S) that we call the universal continuous left fibration.

The goal of this section is to prove the following pyknotic analogue of the

equivalence Lfib(C)
≃
−→ Fun(C,S):

Theorem 3.11. Let C be a small pkynotic ∞-category. Then there is a canon-
ical equivalence

Uncts : Functs(C,Pyk(S))
≃
−−→ Lfibcts(C)
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that may be described as follows. A continuous functor f : C → Pyk(S) is sent
to the left fibration Uncts(f)→ C determined by the pullback square

Uncts(f) Pyk(S∗)

C Pyk(S) .

πcts

f

The inverse sends a continuous left fibration F → C to the continuous functor
whose component at f : K ′ → K ∈ Tw(Proj) is given by the assignment

C(K)× (Proj/K′)op −→ S

(xK , α : T → K ′) 7−→ St(F(T ))
(

(f ◦ α)∗(xK)
)

.

For the proof we will need a few more technical details:

Lemma 3.12. Let p : E → C and q : B → C be two cocartesian fibrations and
let f : E → B be a functor over C that preserves cocartesian edges. Assume
that, for every c ∈ C, the induced functor fc : Ec → Bc is equivalent to a left
fibration. Then f is equivalent to a left fibration.

Proof: We learned this argument from Alexander Campbell. We consider the
associated diagram of marked simplicial sets

E♮ B♮

C♯

p

f

q

(here we use the the notation from [10, §3.1]). By the small object argument,
we can find a factorization

E′

E♮ B♮

f ′

f

ι

where ι is marked left anodyne and f ′ has the right lifting property with re-
spect to marked left anodyne morphisms. Thus, by (the dual of) [10, Proposi-
tion 3.1.1.6], the underlying map of simplicial sets f ′ : E′ → B is in particular
an isofibration. Furthermore it follows that the composite

q ◦ f ′ : E′ −→ C♯

has the right lifting property with respect to marked left anodyne morphisms
and thus the underlying map of simplicial setsE′ → C is a cocartesian fibration.
So, by [10, Remark 3.1.3.4] and [10, Proposition 3.1.3.5], we get that ι induces
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an equivalence on the underlying ∞-categories. Thus we may replace f by f ′

to assume that f is an isofibration. As a consequence, the induced map

fc : Ec −→ Bc

is an isofibration which is equivalent to a left fibration and hence a left fibration
itself. Thus we can apply [10, Proposition 2.4.2.8] and [10, Proposition 2.4.2.11]
to see that f is a locally cocartesian fibration.
Since the fibers of f are ∞-groupoids, it suffices to see that f is a cocartesian
fibration. We will now prove that every edge γ of E is locally f -cocartesian.
Then the claim will follow from [11, Tag 01V6]. So let γ : x → y be an edge
in E. Since f is a locally cocartesian fibration, we may pick a locally cocartesian
lift δ of f(γ). This yields a diagram

Λ2
0 E

∆2 ∆1 B

τ

f

σ f(γ)

where σ is the degeneracy given by collapsing the 1 → 2 edge and τ is given
by the diagram

y′

x y

δ

γ

But now, since δ is locally f -cocartesian, there exists a dotted lift in the above
diagram. This gives rise to a 2-simplex

y′

x y

ε

γ

δ

in E, where δ is locally f -cocartesian and f(ε) = idf(y). Since the functor

fp(y) : Ep(y) −→ Bp(y)

is by assumption equivalent to a left fibration and thus conservative, it follows
that ε is an equivalence. Therefore γ is also locally f -cocartesian.

Let us now recall the following result from [5, Theorem 1.1]:

Theorem 3.13. Let C be an ∞-category and let F : C → Cat∞ be a functor.
There is a natural equivalence

colim
Tw(C)

F (−)× C−/
≃
−−→ Un(F )

of functors Fun(C,Cat∞)→ Cat∞. Here Un(F ) denotes the total space of the
cocartesian fibration classifying F .
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We will need to slightly improve Theorem 3.13:

Corollary 3.14. Let C be an ∞-category and let F : C → Cat∞ be a functor.
There is a natural equivalence

colim
Tw(C)

F (−)× C−/
≃
−−→ Un(F )

of cocartesian fibrations over C. In particular for any f : x → y in C, the
canonical functor

cf : F (x)× Cy/ → colim
Tw(C)

F (−)× C−/
≃
−−→ Un

perserves cocartesian edges.

Proof: For any cocartesian fibration p : X → C there is a natural equivalence

mapCoCart(C)(colim
Tw(C)

F (−)× C−/, X)

≃ lim
Tw(C)

mapCoCart(C)(F (−)× C−/, X)

≃ lim
Tw(C)

mapCat∞(F (−),FunCoCart(C)(C−/, X))

≃ mapFun(C,Cat∞)(F, St(X)).

Here the second equivalence follows by adjunction and the last equivalence
follows from [5, Lemma 9.10] and [6, Proposition 2.3]. This proves the first part
of the claim. The second part follows since the explicit formula in Theorem 3.13
shows that the forgetful functor CoCart(C)→ Cat∞/C preserves colimits.

We also recall the following well-known fact:

Lemma 3.15. Let q : E → D and p : D → C be a cocartesian fibrations and
α : ∆1 → D a p-cocartesian edge. Then the functor classified by the cocartesian
fibration

∆1 ×D E → ∆1

is given by taking fibers over α(0) in the commutative square

Epα(0) Epα(1)

Dpα(0) Dpα(1) .

p(α)!

p(α)!

Proof: The above square may be identified with the composite

Epα(0) = Map♭C(∆
{0}, E♮) Map♭C((∆

1)♯, E♮) Map♭C(∆
{1}, E♮)

Dpα(0) = Map♭C(∆
{0},D♮) Map♭C((∆

1)♯,D♮) Map♭C(∆
{1},D♮)

Documenta Mathematica 27 (2022) 2067–2106



2082 S. Wolf

after choosing sections of the left horziontal maps which are induced by pre-
composition with ∆{0} → (∆1)♯ and thus trivial fibrations. Here we use the
notation from [10, §3.1.3]. Since α is p-cocartesian we get an induced map
(∆1)♯ → D♮ of marked simplicial sets which induces a commutative cube

Eα(0) Map♭∆1((∆1)♯, (∆1 ×D E)
♮)

Map♭C(∆
0, E♮) Map♭C((∆

1)♯, E♮)

∗ Map♭∆1((∆1)♯, (∆1)♯)

Map♭C(∆
0, C♮) Map♭C((∆

1)♯,D♮)

where the left and the right face are cartesian. We get an analogous cube for
the right square in the top rectangle from which the claim follows after choosing
sections of the horizontal trivial fibrations above.

The following two observations will be needed in order to prove the explicit
description of the functor Uncts.

Lemma 3.16. The right adjoint of the functor Un: Fun(C,Cat∞) → Cat∞
sends an ∞-category X to the functor Fun(C−/,X ).

Proof. For any functor F : C → Cat∞ there is a natural equivalence

mapCat∞(Un(F ),X ) ≃ lim
Tw(C)

map(F (x) × Cy/,X )

≃ mapFun(C,Cat∞)(F (−),Fun(C−/,X )).

Here the first equivalence follows from Theorem 3.13 and the second equivalence
follows from [6, Propsotion 2.3].

Let us denote the right adjoint of the forgetful functor

F : CoCart(C)→ Cat∞

by R : Cat∞ → CoCart(C).

Lemma 3.17. Suppose we are given a left fibration f : A → B of ∞-categories.
Then commutative square

R(A) A

R(B) B

induced by the adjunction F ⊣ R is a pullback.
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Proof. The composite R(B)×BA → R(B)→ C is again a cocartesian fibration.
Since R(B)×BA → R(B) is a left fibration, an edge in R(B)×BA is cocartesian
if and only if its image in R(B) is cocartesian by [10, Proposition 2.4.1.3]. Thus
for any other cocartesian fibration p : E → C we have a pullback square

mapCoCart(C)(E , R(B)×B A) mapCat∞(E ,A)

mapCoCart(C)(E , R(B)) mapCat∞(E ,B)

Under the natural equivalence mapCoCart(C)(E , R(−)) ≃ mapCat∞(E ,−) the
lower horizontal map identifies with the identity and the right vertical map
with the map induced by composition with R(f). Thus we have a natural
equivalence

mapCoCart(C)(E , R(B)×B A) ≃ mapCoCart(C)(E , R(A))

which proves the claim.

The strategy is now to first prove a version of Theorem 3.11 where we re-
place Pyk(S) by Fun(Projop,S). In this case the claim will be a rather direct
consequence of Theorem 3.13.

Definition 3.18. Let C,D : Projop → Cat∞ be functors.

i) We denote by Lfibpre-cts(C) the full subcategory of Fun(Projop,Cat∞)/C
spanned by the objectwise left fibrations.

ii) For C,D : Projop → Cat∞ we define

Funpre-cts(C,D) =

∫

K

Fun(C(K),D(K)).

As in Recollection 3.3, we see that the objects of Funpre-cts(C,D) are simply
natural transformations C(−)→ D(−).

Proposition 3.19. Let C : Projop → Cat∞ be a functor. Then there is a
canonical equivalence

Unpre-cts : Funpre-cts(C,Fun((Proj/−)
op,S))

≃
−→ Lfibpre-cts(C).

that may be described as follows. A natural transformation C(−) →
Fun((Proj/−)

op),S) is sent to the pullback

Unpre-cts(f) Fun((Proj/−)
op,S∗)

C(−) Fun((Proj/−)
op,S) .

π∗

f
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in Fun(Projop,Cat∞). The inverse sends F → C ∈ Lfibpre-cts(C) to the natural
transformation, whose component at f : K ′ → K ∈ Tw(Proj) is given by the
assignment

C(K)× (Proj/K′)op −→ S

(xK , α : T → K ′) 7−→ St(F(T ))
(

(f ◦ α)∗(xK)
)

.

Proof: Let q : C̃ → Projop denote the cocartesian fibration classifying C. By
Theorem 3.13, we get an equivalence

∫

K

Fun
(

C(K),Fun((Proj/K)op,S)
)

≃ Fun
(

colim
Tw(C)

C(−)× Projop−/,S
)

≃ Lfib(C̃).

By straightening-unstraightening Lfibpre-cts(C) is equivalent to the subcategory
of Cat∞/C̃ spanned by all functors

f : F −→ C̃

such that the following are satisfied: The composite q ◦ f : F → Projop is a
cocartesian fibration, the morphism f : F → C̃ preserves cocartesian edges and,
for every K ∈ Projop, the induced map

FK −→ C̃K

is equivalent to a left fibration. The morphisms in Lfibpre-cts(C) are the functors
E → E′ over C̃ such that, after composing with q, the functor E → E′ over
Projop preserves cocartesian edges. By Lemma 3.12, it now follows that every
object in Lfibpre-cts(C) is equivalent to a left fibration over C̃. Furthermore, for
any two left fibrations

g : E −→ C̃ and h : E′ −→ C̃,

any functor f : E → E′ over C̃ lies in Lfibpre-cts(C). This follows from [10,
Proposition 2.4.1.3] and [10, Proposition 2.4.2.4], since an edge γ in E is f ◦ g-
cocartesian if and only if g(γ) = h(f(γ)) is q-cocartesian and analogously for E′.
So Lfibpre-cts(C) and Lfib(C̃) are equivalent full subcategories of Cat∞/C̃ . Thus
we get an equivalence of ∞-categories

Ψ: Lfibpre-cts(C)
≃
−−→ Funpre-cts(C,Fun((Proj/−)

op,S)).

Furthermore it is easy to check that, on the level of objects, Ψ agrees with
assignment of the inverse given in the theorem. The above argument and
Recolletion 3.9 also show that Unpre-cts sends a natural transformation f : C →
Fun(Proj/−,S) corresponding to a functor F : C̃ → S to the objectwise left

fibration Unpre-cts(f) → C determined by the pullback C̃ ×S S∗ → C̃ of the
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universal left fibration along F . By Lemma 3.17, we thus have a commutative
diagram in Cat∞

C̃ ×S S∗ R(S∗) S∗

C̃ R(S) S

where all squares are cartesian. Therefore Lemma 3.16 shows that under the
straightening/unstraightening equivalence the left pullback square translates
to a pullback square

Unpre-cts(f) Fun((Proj/−)
op,S∗/)

C(−) Fun((Proj/−)
op,S)

f

as claimed.

Proof of Theorem 3.11: We first show that the inverse functor in Proposi-
tion 3.19 restricts to an equivalence

Uncts : Functs(C,Pyk(S))
≃
−−→ Lfibcts(C).

This means that we have to show that a left fibration

f : F̃ → C̃

classifies a pyknotic∞-category when composed with C̃ → Projop if and only if
for every α : K ′ → K in Tw(Projop) the left fibration given by pulling back f
along the canonical map

cα : C(K)× (Proj/K′)op → C̃

classifies a functor Fα : C(K) × (Proj/K′)op → S which preserves products in
the second variable. Since cα preserves cocartesian edges by Corollary 3.14, it
follows from Lemma 3.15 that for any edge

T ′ T

K ′
γ′ γ

in Proj/K′ and fixed x ∈ C(K) the induced map

Fα(x, T ) −→ Fα(x, T
′)
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can be identified with the map which is induced by the commutative diagram

F(T ) F(T ′)

C(T ) C(T ′)

after passing to the fibers over γ∗α∗(x) ∈ C(T ). This shows the claim, since
for any T0 and T1 in (Proj/K′)op the map F(T0 ∐ T1) → F(T0)× F(T1) is an
equivalence if and only if it is an equivalence after passing to fibers over any
x ∈ C(T0 ∐ T1) in the square

F(T0 ∐ T1) F(T0)×F(T1)

C(T0 ∐ T1) C(T0)× C(T1) .
≃

The remaining claim about the exipicit description of Uncts is now clear since
the square

Pyk(S∗) Fun((Proj/−)
op,S∗)

Pyk(S) Fun((Proj/−)
op,S)

is a pullback in Fun(Projop,Cat∞).

Since over a space any morphism is equivalent to a left fibration, we obtain the
following consequence:

Corollary 3.20. Let F be a pyknotic space. Then there is a canonical equiv-
alence

Pyk(S)/F
≃
−−→ Functs

(

F,Pyk(S)
)

.

Remark 3.21. Let f : C → D be a functor of pyknotic∞-categories. It follows
from the natuarlity in Theorem 3.13, that the equivalences of Theorem 3.11 fit
into a commutative square

Functs
(

D,Pyk(S)
)

Functs
(

C,Pyk(S)
)

Lfibcts(D) Lfibcts(C)

≃≃

f∗

where the lower hoziontal functor is given by pulling back a continuous left
fibration along the continuous functor f .
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Example 3.22. Let C be a pyknotic∞-category. Then the continuous functor
Cop × C → Pyk(S) classified by the continuous twisted diagonal Twcts(C) →
Cop × C may be described as follows: For K ∈ Proj, the component at K is
given by

C(K)op × C(K) −→ Pyk(S)/K

(x, y) 7−→
(

(f : T → K) 7→ mapC(T )(f
∗x, f∗y)

)

.

We will now start collecting some first consequences of Theorem 3.11.

Remark 3.23. Let C be an ordinary∞-category. Then the canonical projection
map

pr∗ : Functs
(

Cdisc,Pyk(S)
)

−→ Fun
(

C,Pyk(S)
)

is an equivalence of categories. Thus the adjunction between the underlying
space and the discrete functor induces an adjunction

Disc∗ : Fun(C,S) −⇀↽− Fun(C,Pyk(S)) :Un∗ .

Furthermore we observe that we have a canonical commutative diagram

Lfib(C) Fun(C,S)

Lfibcts(Cdisc) Fun
(

C,Pyk(S)
)

Gr

ev∗

≃

Un∗

where the horizontal lower arrow is the equivalence from Theorem 3.11 and
ev∗ is the functor given by evaluating at ∗. It follows that we may pass to left
adjoints vertically to obtain a commutative diagram

Lfib(C) Fun(C,S)

Lfibcts(Cdisc) Fun
(

C,Pyk(S)
)

.

Gr

L disc∗

≃

Furthermore, the left adjoint L admits an explicit description given by

(F → C) 7−→
(

Fdisc → Cdisc
)

and thus agrees with the construction from Example 3.7.

Recollection 3.24. Recall from [1, Definition 2.1.5] that a stratified space is
an ∞-category Π together with a conservative functor Π → P to a partially
ordered set P . We say that Π→ P is π-finite if P is finite, Π has only finitely
many objects up to equivalence and all mapping spaces of Π are π-finite. We
write Strπ for the full subcategory of Fun(∆1,Cat∞) spanned by the π-finite
stratified spaces.
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Lemma 3.25. Let q : F → Π be a left fibration with π-finite fibers and let Π→ P

be a π-finite stratified space. Then F → P is a π-finite stratified space.

Proof: The only thing that is not obvious is that the mapping space mapF(x, y)
is π-finite for all x, y ∈ F . Since q is a left fibration every morphism in F is
q-cocartesian. Thus for every f : x→ y in mapF (x, y), the square

mapFp(y)
(y, y) mapF (x, y)

∗ mapΠ
(

f(x), f(y)
)

f∗

q(f)

is a pullback in S by [10, Proposition 2.4.4.2]. By assumption, the bottom right
and the top left corner are π-finite and thus the claim follows.

Lemma 3.26. Consider the continuous functor j : Sdiscπ → Pyk(S) corre-
sponding under adjunction to the embedding (−)disc : Sπ → Pyk(S). Then
j(K) : Sdiscπ (K)→ Pyk(S)/K is fully faithful for every K ∈ Proj.

Proof. Write K = limi∈I Ki as an inverse limit of finite sets. Recall that

Sdiscπ (K) ≃ colim
i
SKi
π .

For i ∈ I, the functor j(K)(x) sends a π-finite space x over Ki to the pyknotic
space over K given by the pullback

j(K)(x) x

K Ki .

In particular j(K) factors through the full subcategory S∧π /K ⊆ Pyk(S)/K
spanned by the profinite spaces over K. Now let x, y ∈ Sdiscπ (K). Since I
is filtered we may assume that there is some i ∈ I such that x, y ∈ SKi

π .
Replacing I by I/i, we may furthemore assume that i is the final object. For
a map j → i in I, let us denote the pullback x×Ki Kj by xj and analogously
for y. We have to see that the map

colim
j

map
S

Kj
π

(xj , yj)→ mapS∧
π /K

(

j(K)(x), j(K)(y)
)

induced by jK is an equivalence. Composing with the projection j(K)(y)→ y

induces an equivalence

mapS∧
π /K

(

j(K)(x), j(K)(y)
) ≃
−→ mapS∧

π /Ki

(

j(K)(x), y).

Analogously composing with the projections yj → y induces an equivalence

colim
j

map
S

Kj
π

(xj , yj)
≃
−→ colim

j
map

S
Ki
π

(xj , y)
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We obtain a commutative square

colim
j

map
S

Kj
π

(xj , yj) mapS∧
π /K

(

j(K)(x), j(K)(y)
)

colim
j

map
S

Ki
π

(xj , y) mapS∧
π /Ki

(

j(K)(x), y) .

≃≃

But it is clear that the lower horizontal map is an equivalence, since j(K)(x) ≃
limj xj in S∧π /Ki

and y is cocompact in S∧π /Ki
.

Remark 3.27. One can give an alternative prove of Lemma 3.26 as follows. Let
K be an extremally diconnected set. By [1, Proposition 4.4.18] the∞-category
Sdiscπ (K) is equivalent to the full subcategory Lcc(K) of the ∞-topos Sh(K)
of sheaves on K spanned by the locally constant constructible sheaves in the
sense of [12, Definition 2.5.1]. Then [7, Corollary 4.4] provides a fully faithful
embedding

Sh(K) →֒ Pyk(S)/K .

Therefore we also have a fully faithful embedding Sdiscπ (K) →֒ Pyk(S)/K and
one can check that this embedding agrees with the functor j(K).

Corollary 3.28. Let C be a pkynkotic ∞-category. Then composition with
j : Sdiscπ → Pyk(S) induces a fully faithful functor

j∗ : Functs(C,Sdiscπ )→ Functs(C,Pyk(S)).

Proof. For K ∈ Proj, the functor

j(K)∗ : Fun(C(K),Sdiscπ (K))→ Fun(C(K),Pyk(S)/K)

is fully faithful by Lemma 3.26. Therefore j∗ is fully faithful as an end of fully
faithful functors.

3.29. Let S be a spectral topological space and X a spectral S-stratitified ∞-
topos [1, Definition 9.2.1]. Consider the profinite straitified shape Π̂S

(∞,1)(X ) ∈

Pro(Strπ) of X [1, Definition 10.1.4]. Say that Π̂S
(∞,1)(X ) ≃ limi(Ci → Si)

where Ci → Si is a π-finite stratified space. Recall that, by [1, Lemma 13.6.1],
the canonical functor

colim
i∈I

Fun
(

Ci,Sπ
)

−→ Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

is an equivalence. It follows from Remark 3.23 and Theorem 3.11 that we get
the following explicit description of the essential image of the functor j∗:
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Lemma 3.30. With notations as in 3.29, consider the fully faithful functor

j∗ : Functs(Π̂S
(∞,1)(X ),S

disc
π )→ Functs(Π̂S

(∞,1)(X ),Pyk(S)).

Then a continuous functor F : Π̂S
(∞,1)(X ) → Pyk(S) is in the essenital image

of j∗ if and only if there is a discrete left fibration Fi −→ Ci with π-finite fibers
such that the continuous left fibration

F = lim
j∈I/i

Fi ×Ci Cj ≃ Fi ×Ci Π̂
S
(∞,1)(X )→ Π̂S

(∞,1)(X )

classifies F . In particular F → S is a profinite stratified space by Lemma 3.25.

Recollection 3.31. Recall from [1, Definition 2.3.7] that an ∞-category C is
called layered, if every endomorphism in C is an equivalence. An ∞-category C
is called π-finite if it has finitely many objects up to equivalence and all its
mapping spaces are π-finite. We write Layπ for the full subcategory spanned
by the π-finite and layered ∞-categories. Note that for any π-finite stratified
space Π→ P , Π is layered and π-finite.

Proposition 3.32. The embedding Functs(Π̂S
(∞,1)(X ),S

disc
π ) →

Functs(Π̂S
(∞,1)(X ),Pyk(S)) extends to a fully faithful tiny limit preserving

embedding

ι : Pro
(

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

)

−֒→ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

.

Proof: We have to see that, for a cofiltered diagram Y• : J →
Functs(Π̂S

(∞,1)(X ),S
disc
π ) and and object X ∈ Functs(Π̂S

(∞,1)(X ),S
disc
π ), the

canonical map

colim
j

map
Functs

(

Π̂S
(∞,1)

(X ),Sdisc
π

)(Yj , X)

(1)
−−→ map

Functs
(

Π̂S
(∞,1)

(X ),Pyk(S)
)

(

lim
j
Yj , X

)

is an equivalence. Using Lemma 3.30 and Theorem 3.11, we see that the em-
bedding

Functs
(

Π̂S
(∞,1)(X ),Sπ

)

−֒→ Pyk(Cat∞)/Π̂S
(∞,1)

(X )

factors through the full subcategory Pro(Layπ)/Π̂S
(∞,1)

(X ) ⊆

Pyk(Cat∞)/Π̂S
(∞,1)

(X ) (see [1, Proposition 13.5.2]). Again by Lemma 3.30,

there is a map of stratified spaces

Π̂S
(∞,1)(X ) Ci

S Pi
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and a discrete left fibration Xi → Ci with π-finite fibers such that the map (1)
is given by the canonical map

colim
j

mapFuncts(Π̂S
(∞,1)

(X ),Sdisc
π )(Yj , X)

≃ colim
j

mapPro(Layπ)/Ci
(Yj , Xi)

→mapPro(Layπ)/Ci
(lim

j
Yj , Xi)

≃mapFuncts(Π̂S
(∞,1)

(X ),Pyk(S))(limj
Yj , X),

which is an equivalence as Xi and Ci are in Layπ.

4 The Proof of Theorem 1.1

The strategy of the proof of Theorem 1.1 is to apply [12, Proposition A.3.4.2]:

Theorem 4.1. Let T be a hypercomplete ∞-topos. Let C ⊆ T be a full subcat-
egory satisfying the following:

i) The ∞-category C is essentially small.

ii) All objects in C are coherent.

iii) The subcategory C ⊆ T is closed under finite coproducts and under fiber
products.

iv) Every object in T admits a cover by objects in C.

Then the composite

T
h
−−→ Fun(T op,S)

restrict
−−−−−→ Psh(C)

induces an equivalence of ∞-topoi

T −→ Shhypcan (C).

Here can denotes the topology given by declaring a family {Ui → X}i in C to
be covering if there is a finite subset J ⊆ I such that the induced morphism

∐

j∈J

Uj −→ X

is an effective epimorphism in T .

4.2. We will now show that the full subcategory

ιPro
(

Functs
(

Π̂S
(∞,1)(X ),Sπ

)

)

⊆ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

satisfies the conditions above. Note that i) and iii) are obvious.
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To see condition ii) and iv), we make the following useful observation:

Lemma 4.3. Let f : C → D be a morphism of small pyknotic ∞-categories.
Then the functor

f∗ : Functs(D,Pyk(S))→ Functs(C,Pyk(S))

has both a left and a right adjoint.

Proof: For any morphism α : K ′ → K in Proj the functor

α∗ : Pyk(S)/K → Pyk(S)/K′

has both a left and a right adjoint and so does for any T ∈ Proj the functor

Fun(C(K),Pyk(S)/T )→ Fun(C(K ′),Pyk(S)/T )

given by precomposing with the functor C(α). Of course the analogous state-
ments hold for D in place of C. It follows that the diagram indexing the limit

∫

K

Fun(C(K),Pyk(S)/K)

factors through both inclusions PrL → Cat∞ and PrR → Cat∞ (and similar
for D). Furthermore the functor

f∗
K : Fun(D(K),Pyk(S)/T )→ Fun(C(K),Pyk(S)/T )

also has a left and a right adjoint for any K,T ∈ Proj. Since the inclusions
PrL → Cat∞ and PrR → Cat∞ preserve limits by [10, Proposition 5.5.3.13]
and [10, Proposition 5.5.3.18], it follows that the induced map on limits

f∗ : Functs(D,Pyk(S))→ Functs(C,Pyk(S))

is a morphism in both PrL and PrR, as desired.

4.4. Let us write Π̂S
(∞,1)(X )

≃ for the maximal pyknotic sub ∞-groupoid of

Π̂S
(∞,1)(X ). Then precomposition with the canonical functor

Π̂S
(∞,1)(X )

≃ −→ Π̂S
(∞,1)(X )

induces a functor

U : Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

−→Functs
(

Π̂S
(∞,1)(X )

≃,Pyk(S)
)

≃Pyk(S)/Π̂S
(∞,1)

(X )≃

which preserves all limits and colimits by Lemma 4.3. In particular it commutes
with the truncation functors τ≤n by [10, Proposition 5.5.6.28]. For every K ∈
Proj, the induced functor

Fun(Π̂S
(∞,1)(X )(K),Pyk(S)/K)→ Fun(Π̂S

(∞,1)(X )
≃(K),Pyk(S)/K)
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is conservative, it follows that U is conservative as an end of conserva-
tive functors. As Pyk(S)/Π̂S

(∞,1)
(X )≃ is a postnikov complete ∞-topos, it is

now easy to check using [10, Proposition 5.5.6.26] that the presentable ∞-
category Functs

(

Π̂S
(∞,1)(X ),Pyk(S)

)

is a postnikov complete ∞-topos as well.
In particular it is hypercomplete.

Remark 4.5. We will now show that iv) of Theorem 4.1 is satisfied. The
rough idea is the following: Since the ∞-category Functs(Π̂S

(∞,1)(X ),Pyk(S))
is internally to pyknotic spaces an ∞-category of presheaves, every object
should be an internal colimit of representables indexed by an internal di-
agram. In particular if we restrict the indexing diagram to its underlying
pyknotic set, every object F should receive an effective epimorphism from
a coproduct of representables indexed by a pyknotic set. Furthermore since
the pyknotic ∞-category Π̂S

(∞,1)(X ) is profinite, the representable presheaves

will have values in Pro(Functs(Π̂S
(∞,1)(X ),Sπ)). This means that for any

F ∈ Functs(Π̂S
(∞,1)(X ),Pyk(S)) we have an effective epimorphism

∐

k∈K

Fk ։ F

whereK is some pyknotic set and Fk is in Pro(Functs(Π̂S
(∞,1)(X ),Sπ)). However

∐

k∈K Fk might not necessarily be in Pro(Functs(Π̂S
(∞,1)(X ),Sπ)). To fix this

we can futher cover the pyknotic set K by profinite sets Kα, so that we get an
effective epimorphism

∐

α

(

∐

k∈Kα

Fk

)

։ F .

It remains to see that
∐

k∈Kα
Fk is contained in Pro(Functs(Π̂S

(∞,1)(X ),Sπ))
if Kα is a profinite set, which we will see in Proposition 4.12. Since we do not
have enough pyknotic higher category theory at hand yet to make all of this
precise, this does not constitute a full proof. Developing pyknotic higher cate-
gory theory more generally will be the subject of our future work. However for
our purposes we will get away with using coproducts indexed by pyknotic sets
only. This simplifies things as the coproduct functor can simply be understood
as the functor

Lfibcts(K × Π̂S
(∞,1)(X ))→ Lfibcts(Π̂S

(∞,1)(X ))

given by composing with the projection K × Π̂S
(∞,1)(X )→ Π̂S

(∞,1)(X ). We will
now execute this strategy:

4.6. Let C be a pyknotic ∞-category and let F → C be a left fibration. We
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define Twcts(F , C) to be the pullback in the diagram

Twcts(F , C) Twcts(C)

Fop × C Cop × C .

Then the commutative square

Twcts(F) Twcts(C)

Fop ×F Cop × C

induces a morphism ϕ : Twcts(F)→ Twcts(F , C) in Lfibcts(Fop × C).

Lemma 4.7. With the notation from above, the map ϕ is an equivalence.

Proof: It suffices to check this levelwise for every K ∈ Proj. Thus the claim
immediately follow from the next lemma.

Lemma 4.8. Let F → D be a left fibration of ∞-categories, then the map
Tw(F )→ Tw(F,D) defined as in 4.6 is an equivalence.

Proof: Let x ∈ F be an object. Then, by construction, we get pullback squares

Df(x)/ Tw(F,D)

D F op ×D
{x}×id

and
Fx/ Tw(F )

F F op × F

D F op ×D .

{x}×id

{x}×id

So we observe that pulling back the comparison map α : Tw(F ) → Tw(F,D)
along the inclusion

D
{x}×id
−−−−−→ F op ×D

is the functor
Fx/ −→ Df(x)/

induced by f , which is an equivalence because f is a left fibration. In particular
it follows that α is fiberwise an equivalence and thus an equivalence.

Documenta Mathematica 27 (2022) 2067–2106
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Lemma 4.9. Let f : F → G be a morphism in Lfibcts(C). Then f is an effec-
tive epimorphism in the ∞-topos Lfibcts(C) if and only if f(K) is essentially
surjective for every K ∈ Proj.

Proof: Let us denote by C≃ the maximal pyknotic sub-∞-groupoid. Then, as
in 4.4, the inclusion

i : C≃ −֒→ C

induces a conservative, limit and colimit preserving functor

U : Lfibcts(C) −→ Pyk(S)/C≃

given by pulling back along i. This functor thus detects effective epimorphisms.
Recall that, for an ordinary left fibration A→ B of ∞-categories, the square

A≃ A

B≃ B

is a pullback square. It follows that the induced map U(f) is given by

f≃ : F≃ −→ G≃

over C≃. We note that the morphism f≃ is an effective epimorphism in
Pyk(S)/C≃ if and only if it is an effective epimorphism in Pyk(S) after ap-
plying the forgetful functor

Pyk(S)/C≃ −→ Pyk(S).

So f is an effective epimorphism if and only if f≃ is an effective epimorphism
considered as a map in Pyk(S). Since the inclusion

Pyk(S) −֒→ Fun(Projop,S)

preserves sifted colimits and finite limits, it follows that f≃ is an effective
epimorphism if and only if f≃(K) is an effective epimorphism for all K. But
this happens if and only if f(K) is essentially surjective for all K.

4.10. For the sake of brevity, let us write C = Π̂S
(∞,1)(X ). Now let F → C be

an object in Lfibcts(C). As in 4.6, we consider the commutative diagram

Twcts(F) Fop ×F

Fop × C .

Let us now pick a collection of profinite sets {Kα}α∈A with an effective epi-
morphism

ψ :
∐

α

Kα −→ (Fop)
≃
.
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Then pulling back the above triangle along
∐

αKα×C → (Fop)
≃
×C → Fop×C

leads to the commutative triangle

P = Twcts(F)×Fop×C

(

∐

α

Kα

)

× C
∐

α

Kα ×F

∐

α

Kα × C .

Let us furthermore write

Pα = Twcts(F)×Fop×C Kα × C

such that P =
∐

α Pα. By composing with the projections we in particular get
induced morphisms

P −→ F and Pα −→ F

of continuous left fibrations over C.

Proposition 4.11. With the notations from above, the map P → F is an
effective epimorphism in Lfibcts(C).

Proof: By construction we have a commutative square

P
∐

α

Kα ×F

Twcts(F) Fop ×F .

In particular P → F factors as P → Twcts(F) → F . The morphism
Twcts(F) → F is clearly an effective epimorphism by Lemma 4.9. Further-
more, since

∐

α

Kα −→ F
op

is levelwise essentially surjective, the induced map P → Twcts(F) is levelwise
essentially surjective as well.

Proposition 4.12. The left fibration Pα → C is contained in
Pro(Functs(C,Sπ)).

Proof: To simplify notations, we will say that C → S ≃ (Ci → Si)i in Pro(Strπ)
where all Ci → Si are π-finite stratified spaces. First we observe that, since
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the twisted arrow construction is compatible with limits, it follows that the
canonical map

Twcts(C) −→ lim
i
Twcts(Ci)×Cop

i ×Ci
Cop × C

is an equivalence. Using Lemma 4.7, we see that Pα is given by the pullback
square

Pα Twcts(C)

Kα × C Fop × C Cop × C .

Thus it suffices to see that P i
α, given by the pullback square

P i
α Twcts(Ci)

Kα × C Copi × Ci

lies in Pro(Functs(C,Sπ)) when composed with the projection Kα×C → C. For
this we observe that, since the twisted arrow functor Tw(−) commutes with
filtered colimits the canonical map Tw(Ci)

disc → Twcts(Cdisci ) is an equivalence.
Thus the functor Twcts(Ci)→ C

op
i × Ci is a discrete left fibration with π-finite

fibers. Let us say that Kα = {Kj
α}j∈J as a profinite set. Then the map

Kα → Fop → Copi factors through some Kα → Kj0
α . It follows that the

induced map
P i
α −→ lim

j∈J/j0

(

Kj
α × C ×Cop

i ×Ci
Twcts(Ci)

)

is an equivalence. Thus it suffices to see that the composite

Kj
α × C ×Cop

i ×Ci
Twcts(Ci) −→ Kj

α × C −→ C

is contained Pro(Functs(C,Sπ)) for all j. But by construction all squares in the
diagram

Kj
α × C ×Cop

i ×Ci
Twcts(Ci) Kj

α × Ci ×Cop
i ×Ci

Twcts(Ci)

Kj
α × C Kj

α × Ci

C Ci

are pullback squares and thus the claim follows, as the map

Kj
α × Ci ×Cop

i ×Ci
Twcts(Ci) −→ Kj

α × Ci −→ Ci

is a discrete left fibration with π-finite fibers.
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Combining the last two propositions, we obtain the following:

Corollary 4.13. Every object in the ∞-topos Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

admits a cover by objects in Pro
(

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

))

.

We will now show that ii) of Theorem 4.1 is satisfied:

Proposition 4.14. The fully faithful embedding

ι : Pro
(

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

)

−֒→ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

factors through the full subcategory spanned by the coherent objects.

Proof: We will show that all objects in Pro(Functs(Π̂S
(∞,1)(X ),S

disc
π )) are n-

coherent using induction on n. Let us start with n = 0. Recall that the functor

U : Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

−→ Pyk(S)/Π̂S
(∞,1)

(X )≃

is conservative and preserves all limits and colimits by Lemma 4.3. Thus
it suffices to see that, for an object F ∈ Pro(Functs(Π̂S

(∞,1)(X ),S
disc
π )), the

pyknotic space U(F) over Π̂S
(∞,1)(X )

≃ is quasi-compact. We now observe

that the functor U takes objects in Functs(Π̂S
(∞,1)(X ),S

disc
π ) to objects in

Functs(Π̂S
(∞,1)(X )

≃,Sdiscπ ) ⊆ S∧π /Π̂S
(∞,1)

(X )≃ . Since the inclusion

S∧π /Π̂S
(∞,1)

(X )≃ −→ Pyk(S)/Π̂S
(∞,1)

(X )≃

preserves limits, it follows that U takes objects in Pro(Functs(Π̂S
(∞,1)(X ),S

disc
π ))

to objects in the full subcategory S∧π /Π̂S
(∞,1)

(X )≃ . Now [1, Corollary 13.4.10]

and [12, Remark 2.0.5, Proposition 2.2.2 and Proposition 3.1.3] imply that
all object in S∧π /Π̂S

(∞,1)
(X )≃ are coherent and thus in particular quasi-compact.

This completes the case n = 0. The induction step is now clear from [12,
Corollary A.2.1.4].

To complete the proof of Theorem 1.1, we will need a few more technical details:

Lemma 4.15. Let X• : I → bPretopδ0
∞ be a tiny filtered diagram in the ∞-

category of tiny bounded ∞-pretopoi. Let X = colimiXi denote the colimit in
bPretopδ0

∞ and let f : C → D be an effective epimorphism in X. Then there
is an i0 ∈ I and an effective epimorphism fi0 : Ci0 → Di0 mapping to f under
the canonical functor

ki0 : Xi0 −→ X.

Proof: By [12, Proposition A.8.3.1], the inclusion bPretop
δ0
∞ → Catδ0∞ pre-

serves filtered colimits. Thus we may find a morphism fj0 : Cj0 → Dj0 such
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that kj0 (fj0) is equivalent to f . Since kj0 is a morphism of ∞-pretopoi, we get
an equivalence

kj0(Č(fj0)•) ≃ Č(f)•

of simplicial objects in X . Furthermore, since kj0 is a morphism of∞-pretopoi,
it preserves finite limits and effective epimorphisms and thus geometric real-
izations of groupoid objects. It follows that the canonical map

c : |Č(fj0)•| −→ Dj0

becomes an equivalence after applying kj0 . Thus there is a map γ : j0 → i0
such that Xγ(c) is an equivalence and since Xγ is a morphism of ∞-pretopoi,
it follows that Xγ(fj0) is an effective epimorphism, as desired.

Corollary 4.16. Let K = {Ki}i be a profinite space. Then the fully faithful
functor

Functs(K,Sdiscπ ) −→ Pyk(S)/K

preserves effective epimorphisms.

Proof: By Lemma 4.15, it suffices to see that, for all i, every effective epimor-
phism f in Fun(Ki,Sπ) maps to an effective epimorphism in Pyk(S)/K . Denote
by pi : K → Ki the projection. Since we have a commutative diagram

Fun(Ki,S
disc
π ) Pyk(S)/Ki

Functs(K,Sdiscπ ) Pyk(S)/K

p∗
i

ϕ

p∗
i

it suffices to see that the top horizontal functor ϕ preserves effective epimor-
phism. Picking a section of the canonical morphism Ki → π0(Ki) and precom-
posing with it, we may assume that Ki is a finite set. In this case ϕ is identified
with the product of finitely many copies of the inclusion

Sπ −→ Pyk(S),

which clearly preserves effective epimorphisms. This completes the proof.

We finally arrive at the following:

Proposition 4.17. A morphism f : X → Y in the ∞-category
Pro(Functs(Π̂S

(∞,1)(X ),Sπ)
disc) is an effective epimorphism if and only if

ι(f) is an effective epimorphism in the ∞-topos Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

.

Proof: Let us first assume that ι(f) is an effective epimorphism. We then may
factor f ≃ g ◦ h, where h is an effective epimorphism and g is (−1)-truncated.
Since the inclusion ι preserves finite limits, it follows that ι(g) is (−1)-truncated
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as well. But by [10, Corollary 6.2.3.12], the map ι(g) is an effective epimorphism
because ι(f) is. This implies that ι(g), and thus g, is an equivalence, as desired.
Now we show that ι preserves effective epimorphisms. Again we consider the
inclusion K = Π̂S

(∞,1)(X )
≃ →֒ Π̂S

(∞,1)(X ). Pre-composing with this inclusion
induces a morphism of ∞-pretopoi

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

−→ Functs(K,Sdiscπ ).

So it follows from Proposition 2.7 that the induced functor

Pro
(

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

)

−→ Pro
(

Functs(K,Sdiscπ )
)

preserves effective epimorphisms. We may thus reduce to showing that the
induced functor

j : Pro
(

Functs(K,Sdiscπ )
)

−→ Pyk(S)/K

preserves effective epimorphisms. By Corollary 4.16, the inclusion

k : Functs(K,Sdiscπ ) −֒→ Pyk(S)/K .

preserves effective epimorphisms. Furthermore k factors through the full sub-
category S∧π /K and hence so does j. By Lemma 2.5 and since effective epimor-
phisms in slice categories are detected by the projections, it suffices to see that
the inclusion S∧π → Pyk(S) preserves effective epimorphisms, which is clear by
[1, Corollary 13.4.10].

We have finally collected all the necessary ingredients that are needed to prove
our main theorem:

Proof of 1.1: The Exodromy Theorem provides an equivalence of tiny ∞-
pretopoi

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

≃ X coh
<∞.

We have seen above that the full subcategory

Pro
(

Functs
(

Π̂S
(∞,1)(X ),S

disc
π

)

)

−֒→ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

satisfies the assumptions of Theorem 4.1 and thus we get an equivalence

Shhypcan

(

Pro(Functs
(

Π̂S
(∞,1)(X ),S

disc
π )

)

)

≃ Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

.

Thus it remains to see that the topologies can and eff on
Pro(Functs(Π̂S

(∞,1)(X ),Sπ)) agree, but this is just a reformulation of Proposi-
tion 4.17.

As a first easy consequence, we obtain the following:
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Corollary 4.18. Let f : X → Y be any morphism of schemes. Then the
induced pull-back functor

f∗ : Y hyp
proét −→ X

hyp
proét

has both a left and a right adjoint.

Proof: By the adjoint functor theorem [10, Corollary 5.5.2.9] it suffices to see
that f∗ preserves all limits and colimits. We may cover X by affine opens
ji : Ui → X such that for every i we have an affine open ti : Vi → Y and a
commutative diagram

X Y

Ui Vi .

f

fi

tiji

Since the j∗i are jointly conservative and restrictions to open subschemes com-
mute with all limits and colimits, it suffices to see that each j∗i ◦ f

∗ preserves
limts. Because j∗i ◦f

∗ ≃ f∗
i ◦ t

∗
i , it suffices to see that f∗

i preserves all limits and
colimits and we may therefore assume that X and Y are affine, so in particular
quasi-compact. In this case f∗ corresponds to the functor

Gal(f)∗ : Functs
(

Gal(Y ),Pyk(S)
)

−→ Functs
(

Gal(X),Pyk(S)
)

given by precomposing with Gal(f) : Gal(X) → Gal(Y ) via Corollary 1.2.
Thus the claim follows from Lemma 4.3.

Remark 4.19. We will now roughly sketch how to circumvent the enlargement
of universes which appears in our results, following [2, §1.4]. Let X be a spectral
∞-topos and let β be an uncountable regular cardinal such that Π̂S

(∞,1)(X ) is a

β-small inverse limit of π-finite layered ∞-categories. Let Pro(X coh
<∞)β denote

the small subcategory spanned by the β-cocompact objects. We define

X pyk,β = Shhypeff (Pro(X coh
<∞)β)

and observe that Π̂S
(∞,1)(X ) naturally defines a sheaf of ∞-categories on

Pro(Sπ)β , i.e. an ∞-category object in Spyk,β. Furthermore let us write
Pyk(S)β = Spyk,β We can then reproduce the results of §3 and §4 in this
framework to obtain an equivalence

X pyk,β ≃ Functs
β (Π̂S

(∞,1)(X ),Pyk(S)β)

of ∞-topoi where we write

Functs
β (Π̂S

(∞,1)(X ),Pyk(S)β) ≃

∫

T∈(S∧
π )β

Fun(Π̂S
(∞,1)(X )(T ),Pyk(S)

β
/T ).
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Considering the left Kan-extensions along Pro(X coh
<∞)λ0 →֒ Pro(X coh

<∞)λ1 for any
β < λ0 < λ1, we obtain an equivalence

X pyk,acc := colim
λ>β

X pyk,λ = Shhyp,acceff (Pro(X coh
<∞))

≃
−→ colim

λ>β
Functs

λ (Π̂S
(∞,1)(X ),Pyk(S)λ).

Furthermore the filtered colimit

colim
λ>β

Pyk(S)λ = Shhyp,acceff (S∧π )

is given by the ∞-category of accessible sheaves on S∧π , which we can further
identify with the ∞-category of condensed spaces Cond(S) of Clausen and
Scholze. We may consider Cond(S) as a hypersheaf with respect to the effective
epimorphism topology on S∧π as follows. Denote by Cond(S)λ the sheaf given
by left Kan-extension of

Pyk(S)λ : Pro(Sπ)λ → Cat∞; K 7→ Pyk(S)λ/K

along (S∧π )λ → S
∧
π and define

Cond(S) ≃ colim
λ

Cond(S)λ.

We may also consider Π̂S
(∞,1)(X ) as a sheaf of ∞-categories on S∧π via left

Kan-extension. The resulting sheaf is therefore an accessible sheaf and thus κ-
compact for some regular cardinal κ. It follows that the ∞-category of natural
transformations

FunCond(Π̂S
(∞,1)(X ),Cond(S)) =

∫

K∈S∧
π

Fun(Π̂S
(∞,1)(X )(K),Cond(S)(K))

is equivalent to the filtered colimit

colim
λ>κ

Functs
λ (Π̂S

(∞,1)(X ),Pyk(S)λ).

Thus the above equivalence shows that we have an equivalence

X pyk,acc ≃ FunCond(Π̂S
(∞,1)(X ),Cond(S)).

5 Local Contractibility

We consider the following ∞-categorical analogue of [3, Definition 3.2.1]:

Definition 5.1. Let X be an∞-topos. Then an object P ∈ X is called weakly
contractible, if the functor

mapX (P,−) : X −→ S

preserves geometric realizations of simplicial objects. We say that X is locally
weakly contractible, if every object X ∈ X admits a cover by coherent weakly
contractible objects.
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Remark 5.2. If P ∈ X is weakly contractible it follows that mapX (P,−) pre-
serves effective epimorphisms. As an easy consequence we obtain the following
Lemma.

Lemma 5.3. Let P ∈ X be weakly contractible. Then every effective epimor-
phism p : Y → P splits.

Proof: By Remark 5.2 the induced morphism

mapX (Y, P )
p∗
−→ mapX (Y, Y )

is an effective epimorphism in S, so surjective on connected components. In
particular idY admits a preimage s : Y → P under p∗, as desired.

Lemma 5.4. Let X be a locally n-coherent ∞-topos. Then (n + 1)-coherent
objects in X are stable under retracts. In particular coherent objects are stable
under retracts in a locally coherent ∞-topos.

Proof: Let k ≤ n + 1. We will show that retracts of k-coherent objects are
k-coherent using induction over k. The case k = 0 is clear, since retracts of
quasi-compact objects are quasi-compact. So let 0 < k ≤ n and assume that
retracts of k-coherent objects are k-coherent. Let X be a retract of a (k + 1)-
coherent object X ′. Since X is locally k-coherent, it suffices by [12, Corollary
A.2.1.4] to see that for every cospan

U −→ X ←− V

where U and V are k-coherent, the pullback U×X V is k-coherent. But since X
is a retract of X ′, the pullback U ×X V is a retract of U ×X′ V , which is k-
coherent as X ′ is (k + 1)-coherent. So U ×X V is k-coherent by assumption
and thus X is (k + 1)-coherent, as desired.

Construction 5.5. Let X be a spectral ∞-topos. Let K = Π̂S
(∞,1)(X )

≃. We
again consider the induced functor

U : Functs
(

Π̂S
(∞,1)(X ),Pyk(S)

)

−→ Pyk(S)/K .

induced by pre-composition with K → Π̂S
(∞,1)(X ). By Lemma 4.3, the functor

U admits a left adjoint L.

Lemma 5.6. Let P be a weakly contractible and compact object of Pyk(S)/K .
Then L(P ) is a weakly contractible, compact and coherent object of
Functs

(

Π̂S
(∞,1)(X ),Pyk(S)

)

.

Proof: Since the right adjoint U of L preserves colimits by Lemma 4.3,
it is clear that L(P ) is weakly contractible and compact. Since X pyk ≃
Functs(Π̂S

(∞,1)(X ),Pyk(S)) is locally coherent (see [12, Theorem A.3.4.1]), it
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follows that we may find a collection {Xi}i∈I of coherent objects, such that the
induced morphism

p :
∐

i∈I

Xi −→ L(P )

is an effective epimorphism. Since L(P ) is weakly contractible, there is a a
section

s : L(P ) −→
∐

i∈I

Xi

of p by Lemma 5.3. Because L(P ) is furthermore compact, it follows that there
is some finite J ⊆ I such that s factors though

∐

i∈J Xi and thus L(P ) is a
retract of the latter. Since finite coproducts of coherent objects are coherent,
it follows that L(P ) is coherent by Lemma 5.4.

We are now ready to show the following:

Theorem 5.7. Let X be a spectral ∞-topos. Then X pyk is locally weakly con-
tractible.

Proof: By Theorem 1.1, we equivalenty have to see that the ∞-topos
Functs(Π̂S

(∞,1)(X ),Pyk(S)) is locally weakly contractible. By Lemma 5.6 it

suffices to see that, for every F ∈ Functs(Π̂S
(∞,1)(X ),Pyk(S)), there is a col-

lection of compact weakly contractible objects Pi ∈ Pyk(S)/K and an effective
epimorphism

∐

i

L(Pi) −→ F .

For this, we may pick a collection Pi ∈ Pyk(S)/K and an effective epimorphism

β :
∐

i

Pi −→ U(F),

which by adjunction corresponds to a morphism

α :
∐

i

L(Pi) ≃ L

(

∐

i

Pi

)

−→ F .

We claim that α is an effective epimorphism. Because U detects effective
epimorphisms, it suffices to see that U(α) is an equivalence. But then we
obtain a commutative triangle

∐

i

Pi U

(

L

(

∐

i

Pi

))

U(F)

β

η

U(α)

and since β is an effective epimorphism, the map U(α) is an effective epimor-
phism as well, as desired.
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Universitätsstraße 31
93053 Regensburg
Germany
sebastian1.wolf@mathematik.uni-r.de

Documenta Mathematica 27 (2022) 2067–2106

https://arxiv.org/abs/2209.05103
sebastian1.wolf@mathematik.uni-r.de

