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Abstract. We investigate two closely related setups. In the first one
we consider a TASEP-style system of particles with specified initial
and final configurations. The probability of each history of the system
is assumed to be equal. We show that the rescaled trajectory of the
second class particle converges (as the size of the system tends to
infinity) to a random arc of an ellipse.

In the second setup we consider a uniformly random Young tableau of
square shape and look for typical (in the sense of probability) sliding
paths and evacuation paths in the asymptotic setting as the size of the
square tends to infinity. We show that the probability distribution of
such paths converges to a random meridian connecting the opposite
corners of the square. We also discuss analogous results for non-square
Young tableaux.
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1 Introduction

This article is the full version of a 12-page extended abstract [MŚ20] which was
published in the proceedings of the 32nd International Conference on Formal
Power Series and Algebraic Combinatorics, FPSAC 2020.
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Figure 1: (a) The initial configuration of the particle system. The first class
particles are depicted as filled blue circles, the holes are depicted as empty
circles. The striped red circle denotes the second class particle. (b) The final
configuration of the particle system.

The results of the current paper concern two distinct setups which are closely
connected. The first one, presented in Section 1.1, involves a certain interacting
particle system. The second one, presented in Section 1.3, involves random
Young tableaux.

1.1 TASEP system with the uniform distribution over histories

1.1.1 The setup

For given integers N,M ≥ 1 we consider the particle system depicted on Fig-
ure 1. There are N +M − 1 nodes, labeled by the integers from the set

{−N + 1, . . . , 0, 1, . . . ,M − 1}. (1.1)

In the initial configuration (which corresponds to the time t = 1) the N − 1
nodes which correspond to the negative integers are occupied by the first class
particles, the M − 1 nodes which correspond to the positive integers are empty
(or, equivalently, are occupied by holes), and the node which corresponds to
zero is occupied by the second class particle, see Figure 1a.
In each step exactly one of the following transitions occurs:

• any particle (first or second class) may jump right to the next node pro-
vided that this node is empty, see Figures 2a and 2b, or

• a first class particle may jump right to the next node provided that this
node is occupied by the second class particle. In this case the second
class particle has to yield and jumps one node to the left, see Figure 2c.

The second class particle is an analogue of a passenger with a cheap second
class ticket who has to yield the seat to any passenger with a more expensive
first class ticket.
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Figure 2: Three allowed types of transitions: (a) a first class particle can jump
to the right if the next node is free, (b) the second class particle can jump to
the right if the next node is free, (c) the first class particle can jump to the
right if the next node is occupied by the second class particle; in this case the
second class particle has to yield and the particles exchange their places.

It is not very difficult to show that no matter which transitions occur, the
system terminates at time tmax = MN (that is after MN − 1 transitions)
in the configuration shown on Figure 1b in which no additional transition is
allowed.
By the history we will understand the information about the state of the par-
ticle system over all values of the time t ∈ {1, . . . , tmax}, see Figure 3 for an
example. We consider the finite set of all possible histories of the particle sys-
tem and associate to each such a history equal probability. In other words, we
consider a version of the TASEP (which is an acronym for Totally Asymmetric
Simple Exclusion Process) system [Spi70] with modified transition probabili-
ties. In our setting, the transition probabilities are nonlocal, i.e., they do not
only depend on a finite neighbourhood of the sites which are modified.

1.1.2 Why second class particles?

Macroscopic quantities describing an interacting particle system (such as par-
ticle density) are usually described by nonlinear partial differential equations
(PDEs for short). For example, the famous Burgers equation [Bur48] describes
the density profile in the hydrodynamical limit for the asymmetric simple ex-
clusion process [BF87]. Weak solutions of nonlinear PDEs can develop singu-
larities, often referred to as shocks. The shocks can be found by looking for
the crossings of the characteristic lines of the PDE.
Ferrari [Fer92] discovered that a second class particle, depending on the place
in which it begins its journey, can identify microscopically the location of the
shock or describe the behavior of the characteristic lines of the limiting hydrody-
namic equation. Ferrari and Fontes showed in [FF94] that this hydrodynamical
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Figure 3: Sample history of the particle system for N = 4 and M = 8. The
trajectories of the first class particles are shown as solid blue lines, the tra-
jectory of the second class particle is shown as the thick red line. The thick
green rectangle indicates the bounding box. The dashed line indicates the arctic
ellipse which corresponds to the shape parameter θ = M

N = 2.
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Figure 4: An analogue of Figure 3 for N = 15 and M = 30.
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limit converges to the traveling wave solution of the inviscid Burgers equation.
This connection was later transferred to more general settings by Rezakhanlou
[Rez95], Ferrari and Kipnis [FK95], Seppäläinen [Sep01] and others. Further-
more, the second class particle enters naturally in the study of the fluctuations
of the current of particles [FF94].
A pictorial interpretation of TASEP as a traffic model is given in [MG05].
The particles are interpreted as cars on a single-line highway with no possibility
of passing (which corresponds to the exclusion rule) and the shock corresponds
to the front of the traffic jam. The motion of the shock is referred to as the
propagation of the shock or the rarefaction wave (or rarefaction fan) depending
whether the shock moves to the left or is being resorpted. The second class
particle identifies the shock and allows to qualitatively describe its motion.
Mountford and Guiol [MG05] studied in fact a more advanced physical inter-
pretation of the TASEP model as a moving interface on the plane (space-time).
This gave them a powerful tool to analyze the shocks in the TASEP process in
terms of the last passage percolation.
A nice heuristic (as well as rigorous) explanation of the shocks behavior and
the importance of the second class particles in this context can be found in the
book of Liggett [Lig99, Part III].

1.1.3 The asymptotic setup

We assume that (Mi) and (Ni) are two sequences of positive integers which
tend to infinity and such that their ratio

lim
i→∞

Mi

Ni
= θ > 0

converges to some positive limit which we call the shape parameter. For t ∈
{1, . . . ,MiNi} we denote by ui(t) ∈ {−Ni + 1, . . . ,Mi − 1} the position of the
second class particle at time t. In order to keep the notation lightweight we will
sometimes omit the index i and instead of Mi, Ni, ui(t) we will write shortly
M,N, u(t).

Until now we parameterized the space using the integer parameter x ∈ {−N +
1, . . . ,M − 1} and the time using the integer parameter t ∈ {1, . . . ,MN},
however for asymptotic questions it is more convenient to pass to the rescaled
coordinates

X =
x√
MN

∈
[
− 1√

M/N
,
√
M/N

]
,

T =
t

tmax
∈ [0, 1],

see Figures 3 and 4. The rectangle

Bθ =

{
(X,T ) : X ∈

[
− 1√

θ
,
√
θ

]
, T ∈ [0, 1]

}
(1.2)
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which shows the range in which the coordinates X and T vary asymptotically
will be called the bounding box ; on Figures 3 to 5 it is shown as the green
rectangle.
For each value of the parameter s ∈ [−1, 1] we define a function

Ξs : [0, 1] →
[
− 1√

θ
,
√
θ

]

given by

Ξs(T ) = 2
√
T (1− T ) s+

θ − 1√
θ

T,

see Figure 5.

1.1.4 The main result 1: the trajectory of the second class par-
ticle

Theorem 1.1. We keep the assumptions and notations from Section 1.1.3.
Then there exists a sequence (Si) of random variables with the property that
the supremum distance

sup
T∈[0,1]

∣∣∣∣
1√
MiNi

ui
(
⌈TMiNi⌉

)
− ΞSi(T )

∣∣∣∣

converges in probability to zero, as i→ ∞.
The probability distribution of Si is supported on the interval [−1, 1] and for
i→ ∞ it converges to the standard semicircular distribution with the density

fSC(x) =
2

π

√
1− x2 for x ∈ [−1, 1]. (1.3)

This theorem is illustrated on Figure 5. Its proof is postponed to Section 11.
This result is analogous to the results of Ferrari and Kipnis [FK95], as well
as Mountford and Guiol [MG05] for the usual TASEP system starting from a
decreasing shock profile.

1.1.5 The limit trajectories

Each curve Ξs for the parameter s ∈ [−1, 1] \ {0} is an arc of an ellipse which
fits into the bounding box Bθ, passes through the points

(0, 0),

(
θ − 1√
θ
, 1

)
, (1.4)

and is tangent there to the bottom and the top edge of the bounding box Bθ.
In the degenerate case s = 0 the curve Ξ0 is a straight line connecting the
aforementioned two points (1.4). The union of the two extreme curves Ξ−1

and Ξ1 is the unique ellipse (which we call the arctic ellipse) which is inscribed
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Figure 5: The dashed lines are arcs of ellipses Ξs for the shape parameter
θ = 2. The shown values of the parameter s ∈ F−1

SC

{
0/10, 1/10, . . . , 10/10

}
are

the deciles of the semicircle distribution (above FSC : [−1, 1] → [0, 1] denotes
the cumulative distribution function of the semicircle distribution (1.3)). The
shaded region forms the arctic ellipse. The four black dots are the points
where the arctic ellipse is tangent to the bounding box. The solid zigzag lines
are trajectories of the second class particle for N = 500 and M = 1000. These
trajectories were selected from a sample of 1000 simulations; each of them
corresponds to an appropriate empirical decile of the distribution of the second
class particle at time T = 1

2 .
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into the bounding box Bθ and is tangent to its bottom and its top side in the
aforementioned two points (1.4), see Figure 5. In the special case θ = 1 the
scaling of the axes can be chosen in such a way that the arctic ellipse becomes
a circle which we call the “the arctic circle”. Our use of this name is not a
coincidence since it turns out to be indeed related to the celebrated arctic
circle theorem [Rom12].

1.2 Random sorting networks

Theorem 1.1 can be regarded as the solution to a toy version of the prob-
lem of random sorting networks considered by Angel, Holroyd, Romik, and
Virág [AHRV07]. More specifically, we consider the symmetric group SN+M−1

viewed as the set of permutations of the set of nodes (1.1) and the permutation
ρN,M ∈ SN+M−1 defined as

ρN,M (i) =





i+M if i ∈ {−N + 1, . . . ,−1},
M −N if i = 0,

i−N if i ∈ {1, . . . ,M − 1}

which describes the change of the positions of the particles and holes during
the passage from the initial configuration shown on Figure 1a to the final con-
figuration shown on Figure 1b. For an integer s ∈ {−N +1, . . . ,M − 2} denote
the adjacent transposition at location s by τs = (s, s+ 1) ∈ SN+M−1.
Any history of the particle system considered in Section 1.1.1 can be encoded
by the sequence s1, . . . , stmax−1 ∈ {−N +1, . . . ,M −2}, where st and st+1 are
the nodes which are interchanged in t-th transition. It is easy to check that

ρN,M = τstmax−1τstmax−2 · · · τs2 τs1 (1.5)

and the corresponding sequence of partial products

id, τs1 , τs2τs1 , . . . , τstmax−1τstmax−2 · · · τs2 τs1 (1.6)

is a shortest path from the identity permutation id to ρN,M in the Cayley graph
of the symmetric group SN+M−1 generated by adjacent transpositions.
Conversely, each shortest path (1.6) in the Cayley graph gives a valid history of
the particle system. Any such a shortest path will be called a sorting network.
The trajectory of the second class particle

(
u(t) : t ∈ {1, . . . , tmax}

)
=

(
0, τs1(0), τs2τs1(0), . . . , τstmax−1 · · · τs2τs1(0)

)
(1.7)

corresponds in this language to the sequence of images of 0 under the action of
the entries of the sequence (1.6).
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Angel, Holroyd, Romik, and Virág [AHRV07] considered a more difficult ver-
sion of this setup in which the permutation ρN,M is replaced by the reverse
permutation ρ ∈ SN+M−1 given by

ρ(i) =M −N − i

and—among several other results—stated some conjectures concerning the
asymptotic behavior of the right-hand side of (1.7) for a random sorting net-
work, i.e., a random shortest path from the identity permutation id to the
reverse permutation ρ, sampled with the uniform distribution. We focus today
on [AHRV07, Conjecture 1] which is a direct analogue of our Theorem 1.1.
A minor difference is that the limit curves which appear in Theorem 1.1 form a
one-parameter family of arcs of ellipses while the limit curves which appear in
[AHRV07, Conjecture 1] form a one-parameter family of sine curves. (At first
sight it might appear that the family of curves in [AHRV07] has two parame-
ters, but one of these parameters can be eliminated by the requirement about
the positions of the endpoints.)
The aforementioned conjecture [AHRV07, Conjecture 1] was proved only very
recently by Dauvergne and Virág [DV20] who used methods quite different
from those which we use in the current paper.

1.3 Sliding paths and evacuation paths in random tableaux

As promised, we turn now to the second interest area of the current paper,
namely to random Young tableaux.

1.3.1 Notations related to Young diagrams and tableaux

We assume the reader’s basic knowledge of tableaux theory, including par-
titions, (skew) Young diagrams, standard (skew) Young tableaux, RSK al-
gorithm, jeu de taquin, rectification, Littlewood–Richardson coefficients and
basics of the representation theory of the symmetric groups.

We denote the set of partitions of n by Yn. We draw Young diagrams on the
Cartesian plane using the French convention, that is, we draw them from the
bottom to the top, see Figure 6a.
For any Young diagram λ we denote the set of standard Young tableaux of
shape λ by Tλ. The shape of a tableau T will be denoted by sh(T ) and its size
by | sh(T )|, or shortly |T |.
Let T be a tableau. If p is a number which appears exactly once in T (which
will always be the case in our considerations), we define the position of the box
with the number p as the Cartesian coordinates of the bottom-left corner of
the unique square which contains p; we denote this position by posp(T ). For
example, for T from Figure 6b, pos5(T ) = (2, 0).
We will have a particular interest in Young diagrams and tableaux of square
shape. By �N ∈ YN2 we denote the square diagram with side of length N .
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Figure 6: (a) The Young diagram λ = (4, 3, 1, 1) shown in the Cartesian coor-
dinate system. (b) Example of a standard Young tableau of shape λ.

1.3.2 Sliding paths and evacuation paths

One of the operations heavily used in the study of Young tableaux is jeu de
taquin [Ful97, Section 1.2], which acts on Young tableaux in the following way
(see Figures 8a and 8b): we remove the bottom-left box of the given tableau T
and obtain a hole in its place. Then we look at the two boxes: the one to
the right and the one above the hole, and choose the one which contains the
smaller number. We slide this smaller box into the location of the hole, see
Figure 7. As a result, the hole moves in the opposite direction. We continue
this operation as long as there is some box to the right or above the hole. The
path which was traversed by the ‘traveling hole’ will be called the sliding path,
see Figure 8a. The result of jeu de taquin applied to a tableau T will be denoted
by j(T ), see Figure 8b.
If T is a standard tableau then j(T ) is no longer standard because the number-
ing of its boxes starts with 2; however, if we decrease each entry of j(T ) by 1
then it becomes standard. This observation allows us to define the dual promo-
tion ∂∗ : Tλ → Tλ which is a bijection on the set of standard Young tableaux of
any fixed shape λ. The idea is to put once again the box with the number |T |
to the aforementioned standardized version of the tableau j(T ) in the place
where we removed a box during jeu de taquin, see Figure 8c.
For a given tableau T ∈ Tλ with n = |λ| boxes the jeu de taquin transforma-
tion j can be iterated n times until we end with the empty tableau. During
each iteration the box with the biggest number n either moves one node left or
down, or stays put. Its trajectory

evac(T ) =
(
posn(T ), posn

(
j(T )

)
, . . . , posn

(
jn−1(T )

))
(1.8)
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Figure 7: Elementary step of the jeu de taquin transformation: (a) the initial
configuration of boxes, (b) the outcome of the slide in the case when r < s, (c)
the outcome of the slide in the case when s < r. Copyright c©2014 Society for
Industrial and Applied Mathematics. Reprinted from [Śni14] with permission.
All rights reserved.
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Figure 8: (a) A standard Young tableau T of shape λ = (5, 4, 2, 1). The
highlighted boxes form the sliding path. (b) The outcome j(T ) of the jeu de
taquin transformation. (c) The result ∂∗(T ) of the dual promotion applied
to T .

will be called the evacuation path.

1.3.3 The main results 2 and 3: asymptotics of sliding paths and
evacuation paths

Observe that if we draw the boxes of a given square tableau T ∈ T�N
as

little squares of size 1
N then the corresponding sliding path is a zigzag line

connecting the opposite corners of the unit square [0, 1]2. Let T ∈ T�N
be

a random standard Young tableau of square shape (sampled with the uniform
probability distribution on T�N

which will be denoted PN ). Our goal is to find
asymptotics of such random zigzag lines in the limit as N → ∞, see Figure 9.
We will show that there exists a family of smooth lines, called meridians,
which connect the opposite corners of the unit square, with the property that
the probability distribution of the scaled sliding path for a random tableau
converges, as N → ∞, to a random meridian.
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An analogous result holds true for the scaled evacuation path for a random
square tableau: during iteratively applied jeu de taquin operations j, the
biggest box of the tableau asymptotically moves along a random meridian.
A version of this result applies also to the other boxes of the tableau; it follows
that the time evolution of the tableau in the iterated applications of jeu de
taquin

T, j(T ), j2(T ), . . . , jN
2

(T ) (1.9)

converges in probability, as N → ∞, to dynamics of an incompressible liquid
which flows along the meridians.

For the details of our results, see Theorems 2.3 and 2.4 in Section 2.

1.3.4 Not only squares

For simplicity and concreteness we stated our main results concerning random
Young tableaux only for large random Young tableaux of square shape. How-
ever, the proofs presented in the paper were written with a more general case
in mind to cover random tableaux of shape which is a balanced Young diagram
(see Section 3 for the definition and Figure 10 on page 2197 for a teaser). To
some extent our attempt was successful; our method of proof works in the case
when the limit shape of the tableaux fulfills some regularity conditions or when
some calculations can be performed explicitly. For example, this is the case for
the random tableaux of rectangular shape. Unfortunately, for the general case
of balanced Young diagrams some technical difficulties remain. We present the
details in Section 10.

1.4 The content of the paper

The paper is organized as follows.
In Section 2 we state the main results (Theorems 2.3 and 2.4) about the typical
shapes of the evacuation paths and sliding paths in square Young tableaux.
In Section 3 we give basic definitions on permutations and representation the-
ory.
In Section 4 we introduce a ‘surfers’ language which we will use to describe
dynamics of the box with the biggest entry (which we will call ‘the surfer’) and
the smaller boxes (‘the water’). In this spirit we also introduce the story of the
multisurfers which will play a crucial role in our proofs and considerations. We
will use this new multisurfer story later as a point of reference for the original
problem of the (single) surfer in order to prove Theorem 4.1 concerning the
position of the surfer along its journey. We sketch the proof in Section 4.4.
In Section 5 we show the way in which we will embed simultaneously both
the story of the single surfer and the story of the multisurfers into a common
universe.
In Section 6 we provide Theorem 6.2 concerning the distribution of the multi-
surfers on the water. We use here the Jucys–Murphy elements to give a direct
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Figure 9: The nine zigzag lines are sample sliding paths for random square
tableaux of size N = 100, selected so that they cross the anti-diagonal
near the corresponding meridians (smooth thick curves) with the longitudes
ψ ∈ {1/10, 2/10, . . . , 9/10}. The gray lines are the meridians with the longitudes
ψ ∈ {2/100, 4/100, . . . , 98/100}. See also the blue-to-red family of curves on Fig-
ure 13.

Documenta Mathematica 27 (2022) 2183–2273



Second Class Particles, Evacuation and Sliding Paths 2197

Figure 10: Sample sliding paths in random Young tableaux of an L-shape with
3600 boxes.

link between the statistical properties of the multisurfers and the symmetric
group characters evaluated on certain polynomials in the Jucys–Murphy ele-
ments.
In Section 7 we use the aforementioned results from Sections 5 and 6 to prove
Theorem 4.1.
In Section 8 we prove Theorem 2.3 concerning typical evacuation paths.
Section 9 is devoted to the proof of Proposition 9.1 which shows the equivalence
between the problems of finding the sliding paths and the evacuation paths in
random Young tableaux of given shape.
In Section 10 we extend our main results (Theorem 10.6) concerning typical
evacuation and sliding paths to some subset of C-balanced Young tableaux.
In Section 11 we provide the link between the trajectory of the second class
particle in an interacting particle system and the sliding path for a random
Young tableau and prove Theorem 1.1.

2 The limit shape of sliding paths and evacuation paths

2.1 Asymptotics of a single box in the evacuation trajectory

As we mentioned in Section 1.3, we will focus on random standard Young
tableaux of square shape �N sampled according to the uniform measure PN .
The symbol TN will be reserved for such a uniformly random square Young
tableau of shape �N .
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Figure 11: The Cartesian and the Russian coordinate systems on the plane.

The position of each of the boxes in the evacuation path (1.8) coincides with
the position of a specific box in the standard Young tableau obtained by iter-
ating the dual promotion ∂∗:

posN2

(
ji(TN )

)
= posN2−i

(
∂∗i(TN )

)
. (2.1)

Since ∂∗ : T�N
→ T�N

is a bijection, for each i ≥ 0 the latter standard tableaux
∂∗i(TN) is also a uniformly random square Young tableau. It follows that the
solution to the (much simpler) problem of understanding the asymptotics of a
single element of the evacuation trajectory (1.8) follows from the work of Pittel
and Romik [PR07], see also Section 2.3 below. In the current section we will
recall the details of their work and we will use it to state our second main result,
Theorem 2.3 (which addresses the more complex problem of understanding the
whole evacuation trajectory (1.8)) and the third main result, Theorem 2.4.

2.2 The circles of latitude gα

The Russian coordinate system is given by the following transformation of the
Cartesian plane (warning: our notations differ from those of Pittel and Romik
[PR07] who scale the coordinates below by an additional factor 1/

√
2):

u := x− y, v := x+ y,

see Figure 11.

For each 0 ≤ α ≤ 1 and u ∈
[
−2
√
α(1 − α), 2

√
α(1 − α)

]
define

kα,u :=
√
4α(1− α)− u2
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and for any 0 < α < 1 the function

hα :
[
−2
√
α(1 − α), 2

√
α(1− α)

]
→ R

given by

hα(u) :=





2u
π arctan

(
1−2α
kα,u

· u
)
+ 2

π arctan
(
kα,u

1−2α

)
if 0 < α < 1

2 ,

2− 2u
π arctan

(
2α−1
kα,u

· u
)
− 2

π arctan
(
kα,u

2α−1

)
if 1

2 < α < 1,

1 if α = 1
2 .

(2.2)
In the expression above there may occur kα,u = 0 in the denominator; in
such case (for fixed α ∈ (0, 1)) we consider the appropriate limit: if u0 =
±2
√
α(1 − α) then

hα(u0) := lim
u→u0

hα(u) =

{
u0 for 0 < α < 1

2 ,

2− u0 for 1
2 < α < 1.

Additionally we define the one-point functions h0(0) := 0 and h1(0) := 2.
For any α ∈ [0, 1] we consider the curve which in the Russian coordinate system
is defined as

gRus

α :=
{(
u, hα(u)

)
: |u| ≤ 2

√
α(1 − α)

}
⊂ R

2 (2.3)

and, equivalently, in the Cartesian coordinates is given by (see Figures 12
and 13)

gα :=

{(
u+ hα(u)

2
,
hα(u)− u

2

)
: |u| ≤ 2

√
α(1 − α)

}
⊂ [0, 1]2.

We call gα the circle of latitude with the latitude α.

Roughly speaking, for each α ∈ [0, 1] the (scaled down) α-level curve (which
separates the boxes with entries ≤ αN2 from the boxes bigger than this thresh-
old, see Figure 12) in a uniformly random square tableau TN converges in prob-
ability, as N → ∞, to the circle of latitude gα, see [PR07, Theorem 1] for a
precise statement.

2.3 The random position of the box ⌊αN2⌋, the limit measure να

Pittel and Romik [PR07, Theorem 2] also found the explicit formula for
the limit distribution of the scaled down location

1

N
pos⌊αN2⌋ (TN )

of the entry ⌊αN2⌋ in a uniformly random square Young tableau TN , as
N → ∞. This limit distribution turns out to be supported on the circle of
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Figure 12: A scaled down sample random square tableau of size N = 10. The
zigzag lines are the level curves for α ∈ {1/4, 2/4, 3/4}. The smooth lines are
the corresponding circles of latitude gα, see also the orange-to-green family of
curves on Figure 13.
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latitude gα and thus it is uniquely determined by the probability distribution
of the u-coordinate. The latter, denoted by να, turns out to be the semicircular

distribution on the interval
[
−2
√
α(1 − α), 2

√
α(1 − α)

]
with the density

fνα(u) :=
kα,u

2πα(1− α)
. (2.4)

2.4 Geographic coordinates on the square

For any point p = (x, y) ∈ [0, 1]2 of the unit square there is exactly one α =
α(p) ∈ [0, 1] such that p lies on the curve gα. We say that the latitude of p
is equal to α. With the notations of Pittel and Romik [PR07] the latitude
α(x, y) = L(x, y) is just the limit height function of random square standard
Young tableaux.
The longitude of p, which we denote by

ψ(p) = να
(
(−∞, x− y]

)
= Fνα(x− y),

is defined as the mass of the points on the curve gα which have their
u-coordinate not greater than the u-coordinate of the point p or, equivalently,
in terms of the cumulative distribution function Fνα of the measure να. Notice
that ψ((0, 0)) = ψ((1, 1)) = 1. The set of points of the unit square [0, 1]2 with
equal longitude ψ is a curve called the meridian ψ, see Figures 9 and 13.
For given α ∈ (0, 1) and ψ ∈ [0, 1] we denote by

Pα,ψ =
(
xψα , y

ψ
α

)
∈ [0, 1]2

the unique point of the unit square [0, 1]2 with the latitude α and the longi-
tude ψ. We set additionally P0,ψ = (0, 0) and P1,ψ = (1, 1) for any ψ ∈ [0, 1].
We denote by

uψα := xψα − yψα and vψα := xψα + yψα

the u- and v-coordinate of the point
(
xψα, y

ψ
α

)
= Pα,ψ.

Remark 2.1. We will not use the following observation, but fans of cartography
may find it interesting: for reasons which will hopefully become obvious later
on, the map

[0, 1]2 ∋ (α, ψ) 7→ Pα,ψ ∈ [0, 1]2

is equiareal which manifests by equality of the areas of the curvilinear rectangles
on Figure 13.

Remark 2.2. The result of Pittel and Romik [PR07, Theorem 2] is a special case
of a general phenomenon of existence of the level curves (circles of latitudes)
for random Young tableaux of specified shape. Biane [Bia98] proved that such
level curves exist for any balanced sequence of Young diagrams, see Section 10
for more information.
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x

y

1

1

Figure 13: The geographic coordinate system on the unit square [0, 1]2.
The blue-to-red family of thick colored curves connecting the bottom left
and the upper right corner are the meridians with the longitudes ψ ∈
{1/10, 2/10, . . . , 9/10}. The gray lines are the meridians with the longitudes
ψ ∈ {2/100, 4/100, . . . , 98/100}, cf. Figure 9. The orange-to-green family of
thick colored curves are the circles of latitudes gα with the latitudes α ∈
{1/10, 2/10, . . . , 9/10}. The thin, gray lines are the circles of latitude gα with
the latitudes α ∈ {2/100, 4/100, . . . , 98/100}, see Figure 12. The shown meridi-
ans and circles of latitude split the square into a 50 × 50 grid of curvilinear
rectangles with equal areas.
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2.5 The second main result. Typical evacuation path

For a given tableau TN ∈ T�N
and t ∈ [0, 1) we denote by

Xt = Xt(TN) =
1

N
posN2

(
j⌊tN

2⌋(TN)
)
∈ [0, 1]2 (2.5)

the scaled down position of the point from the evacuation path evac(TN),
cf. (1.8). Clearly, the parameter t indicates how many boxes were removed
so far and therefore we can relate to it as the time.

Our second main result states that, asymptotically, the scaled evacuation path
in a random square tableau is a random meridian, see Figure 9.

Theorem 2.3. For each N ∈ N there exists a random variable ΨN : T�N
→

[0, 1] such that the supremum distance

sup
t∈[0,1]

∣∣∣Xt(TN )− P1−t,ΨN (TN )

∣∣∣ (2.6)

converges in probability to zero, as N → ∞. More explicitly: for each ε > 0

lim
N→∞

PN

{
TN ∈ T�N

: sup
t∈[0,1]

∣∣∣Xt(TN )− P1−t,ΨN (TN )

∣∣∣ > ε
}
= 0.

The probability distribution of the random variable ΨN converges, as N → ∞,
to the uniform distribution on the unit interval [0, 1].
In other words (with a small abuse of notation), the random trajectory(
Xt(TN )

)
t∈[0,1]

with respect to the supremum norm converges in distribution

to a random meridian
(
P1−t,ψ

)
t∈[0,1]

when N → ∞, that is shortly,

(
Xt(TN )

)
t∈[0,1]

d−−−−→
N→∞

(
P1−t,ψ

)
t∈[0,1]

,

where ψ is a random variable with the uniform U(0, 1) distribution.

The proof is postponed to Section 8 and the preparations to it will take the
majority of time.

2.6 The third main result. Typical sliding path

Let T be a standard Young tableau with n boxes. Sometimes when investigating
the sliding path, we are concerned not only about its shape, but also we would
like to be able to tell which entries were placed in the rearranged boxes. This
motivates the notion of the sliding path in the lazy parametrization (or shortly
the lazy sliding path) which is a sequence of boxes q(T ) := (q1, . . . ,qn) ⊂ N2

where qi is the last box along the sliding path corresponding to T (cf. Figure 8a)
which contains a number ≤ i, cf. [RŚ15, Section 3.3].
Our third main result is stated in the language of lazy sliding path and says
that, asymptotically, the scaled sliding path in a random square tableau is, just
like in Theorem 2.3, a random meridian, see Figure 9.
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Theorem 2.4. For each N ∈ N there exists a random variable Ψ̃N : T�N
→

[0, 1] such that the supremum distance

sup
t∈[0,1]

∣∣∣∣
1

N
q⌈tN2⌉(TN)− Pt,Ψ̃N (TN )

∣∣∣∣

converges in probability to zero, as N → ∞.
The probability distribution of the random variable Ψ̃N converges, as N → ∞,
to the uniform distribution on the unit interval [0, 1].
In other words (with a small abuse of notation), the lazy sliding path(
q⌈tN2⌉(TN )

)
t∈[0,1]

with respect to the supremum norm converges in distri-

bution to a random meridian
(
Pt,ψ

)
t∈[0,1]

when N → ∞, that is shortly,

1

N
q⌈tN2⌉(TN )

d−−−−→
N→∞

Pt,ψ

where ψ is a random variable with the uniform U(0, 1) distribution.

The proof is postponed to Section 9.2 and is based on showing that the random
lazy sliding path and the (reversed) random evacuation path have the same
distribution, cf. Proposition 9.1. In other words, we show that the problem
of finding typical sliding paths is equivalent to the problem of finding typical
evacuation paths from Theorem 2.3.

2.7 Conjecture on the independence of the iterated sliding paths.

Recall from Section 1.3.2 that the dual promotion ∂∗ is a bijection defined by a
two-step procedure in which first we apply the jeu de taquin and then we add
the box which was removed from the initial tableau T . We can iterate ∂∗ on
the random tableau TN and get the sequence of iterated sliding paths

q(TN) , q
(
∂∗(TN )

)
, q

(
(∂∗)2(TN )

)
, . . . . (2.7)

Since ∂∗ is a bijection, Theorem 2.4 provides asymptotics of the distribution of
each element of the sequence (2.7) separately. The following conjecture aims
to provide asymptotic information about their joint distribution.

Conjecture 2.5. For each integer k ≥ 1 the probability distribution of the
random vector

(
Ψ̃N (TN), Ψ̃N

(
∂∗(TN )

)
, . . . , Ψ̃N

(
(∂∗)k−1(TN )

))

converges, as N → ∞, to the uniform distribution on the unit cube [0, 1]k.

Romik and the second named author proved an analogue of this conjecture in
the case of the Plancherel-distributed random infinite tableaux, see [RŚ15, the
comment below Theorem 1.5] and Section 2.8 for more details.
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2.8 Something old, something new, something borrowed: sliding
paths for random infinite tableaux

The problem of the asymptotic shape of a sliding path (analogous to the one
from Theorem 2.4) was studied before by Romik and the second named au-
thor [RŚ15, Section 1.3] for a certain infinite random Young tableau, more
specifically for the recording tableau Q(x1, x2, . . . ) obtained by applying the
Robinson–Schensted correspondence to an infinite sequence (x1, x2, . . . ) of inde-
pendent, identically distributed random variables with the uniform distribution
on the unit interval [0, 1]. Such a choice corresponds to sampling the random
Young tableau according to, so called, the Plancherel measure.
In such a setting the sliding path happens to converge almost surely to a straight
line with a random direction [RŚ15, Theorem 1.1], in other words the analogue
of our meridians in the context of the Plancherel measure is given by the straight
lines emanating from the origin of the coordinate system.

One of the main difficulties in the proof of Theorem 2.4 will be the construction
of the random variables Ψ̃N which provide the longitude of the meridian along
which the sliding path travels. This difficulty is absent in [RŚ15] because
in that context the analogue of the longitude turns out to be simply equal
to x1, the first entry of the random sequence to which the Robinson–Schensted
correspondence is applied.
It would be tempting to repeat the approach from [RŚ15] in our context, for
example one could proceed as follows. Let

π(N) =
(
π
(N)
1 , . . . , π

(N)
N2

)

be a uniformly random element of the set of extremal Erdős–Szekeres per-
mutations, i.e., permutations with the property that the corresponding
tableaux associated via the Robinson–Schensted correspondence have the
square shape �N . Then the corresponding recording tableau TN = Q(π(N)) is,
as required, a uniformly random standard Young tableau of square shape �N .
A naive guess would be that one possible choice for the random variable Ψ̃N is
again (a rescaled version of) the first entry of the permutation, i.e., π(N)

1 .
Uniformly random extremal Erdős–Szekeres permutations were investigated by
Romik [Rom06] who proved, among other results, that the probability distri-

bution of 1
N2π

(N)
1 converges to the point measure concentrated in 1

2 . For this

reason it seems that the random variables π(N)
1 do not carry any information

which would be useful for our purposes, hence the approach from [RŚ15] is not
applicable here directly, and the construction of the random variables Ψ̃N must
follow different ideas.

Despite this fundamental difference, an astute reader may notice that our proof
of Theorem 2.3 follows a path parallel to the one of [RŚ15, Theorem 5.1]. For
example, the counterpart of our Proposition 6.5 (which can be viewed as a result
about a certain random process of removal of boxes from a Young diagram) is
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[RŚ15, Theorem 4.4] (which concerns a certain random process of addition of
boxes to a Young diagram).

3 Preliminaries

3.1 Permutations, Young diagrams and Young tableaux, contin-
ued

We continue Section 1.3.1 where some basic definitions were introduced.
By N we denote the set of positive integers and we denote N0 := N ∪ {0}. For
any natural number n, we define the set [n] := {1, . . . , n}. From the following
on (unlike in Section 1.2) we will view the symmetric group Sn as the group
of permutations of the set [n]. We define the length of a permutation π to be
the minimal number of factors necessary to write π as a product of (arbitrary,
not necessarily adjacent!) transpositions, and denote it by |π|.
For any Young diagram λ, we denote the number of standard Young tableaux of
shape λ by fλ = |Tλ|. If T ∈ Tλ and 0 ≤ p ≤ |λ| we consider the restriction of T
to its p least boxes by removing the entries which are bigger than p, and denote
the obtained tableau by T |≤p (clearly, it is also a standard Young tableau).
For C ≥ 1 we say that a Young diagram λ is C-balanced if λ has at most C

√
|λ|

rows and at most C
√

|λ| columns.
For a tableau T and an integer p which appears exactly once in T (which will
always be the case in our considerations) we define the u-coordinate of the box
with the entry p as

uTp := x− y for (x, y) = posp(T ).

Note that in the literature, for instance in [CSST10], such a u-coordinate is
called the content.
We will also consider skew tableaux obtained by removing some boxes from
Young tableaux. Let T ∈ Tλ be a standard Young tableau. If T with
the boxes with entries a1, . . . , ai removed is a skew tableau, we denote it by
T \ {a1, . . . , ai}. Clearly, T \ {p+ 1, . . . , |λ|} = T |≤p is also a standard Young
tableau.

3.2 Representation theory

If G is a finite group and ρ : G → EndV is its representation on a finite-
dimensional complex linear space V , then by

ξV (g) := Tr ρ(g), g ∈ G,

we denote its character (we write just ξ if it is clear which representation we
consider). We also consider the normalized character χ

V
: G→ C given by

χ
V
:=

1

dimV
· ξV =

1

ξV (id)
· ξV .
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Additionally, for any element of the group algebra

f =
∑

g∈G
fgg ∈ CG

we denote by χ
V
(f) the extension of the character by linearity given by

χ
V
(f) :=

∑

g∈G
fg χV

(g) ∈ C.

On the vector space of functions G := {f : G → C} we consider the standard
scalar product given by

〈f, g〉 := 1

|G|
∑

h∈G
f(h) g(h), for f, g ∈ G,

where c denotes the complex conjugation.
We will denote by Ĝ the family of irreducible representations (irreps for short)
of G. It is known that the system of irreducible characters {ξVx}x∈Ĝ is or-
thonormal. Therefore for the normalized irreducible characters the following
holds:

〈
χ

V1
, χ

V2

〉
=





1
dimV1

if χ
V1

= χ
V2
,

0 otherwise.

Let V be a finite-dimensional representation and let

V =
⊕

x∈Ĝ

mxVx

be its decomposition into irreducible components, where mx ∈ N0 denotes the
multiplicity of x. By a random irreducible component of V we will understand
a random element of Ĝ sampled according to the probability measure PV which
is proportional to the total dimension of all copies of a given irrep in V :

PV (x) :=
mx dimVx
dim V

= (dim Vx)
2 ·
〈
χ

V
, χx
〉

for x ∈ Ĝ. (3.1)

The trivial representation will be denoted by triv. If H is a subgroup of G then
we denote by ρ ↓GH the restriction of a representation ρ to H (if G is fixed we
just write ρ ↓H).

For λ ∈ Yn we denote by ρλ : Sn → EndVλ the irreducible representation of
the symmetric group Sn corresponding to the Young diagram λ and by χ

λ
its

normalized character.
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3.3 Asymptotics of characters and the approximate factoriza-
tion property

We will use two results concerning asymptotics of characters. The first one, due
to Feráy and the second named author, gives an upper bound on the irreducible
characters.

Fact 3.1 ([FŚ11, Theorem 1]). There exists a constant a > 0 such that for any
Young diagram λ and any permutation π ∈ S|λ|

∣∣χ
λ
(π)
∣∣ ≤

[
amax

(
r(λ)

|λ| ,
c(λ)

|λ| ,
|π|
|λ|

)]|π|
(3.2)

where r(λ) and c(λ) stand, accordingly, for the number of rows and the number
of columns of λ.

The second result, due to Biane (and its generalization due to the second-
named author), shows that the character calculated on the product of two
fixed permutations with disjoint supports approximately factorizes.

Fact 3.2 ([Bia98, Corollary 1.3], [Bia01, Section 0], [Śni06, Theorem 1]). Let
C ≥ 1 and m ∈ N. There exists a constant K > 0 such that for each C-balanced
Young diagram λ and all permutations σ, τ ∈ S|λ| with disjoint supports and
satisfying |σ|, |τ | ≤ m we have

∣∣χ
λ
(στ) − χ

λ
(σ)χ

λ
(τ)
∣∣ ≤ K

(√
|λ|
)|σ|+|τ |+2

.

4 The longitude and surfing

Our strategy towards the proof of Theorem 2.3 is to pass to the geographic co-
ordinates of the point Xt = Xt(TN) from the scaled evacuation trajectory (2.5).
Having the choice between the latitude and the longitude, we start with the
more challenging problem of understanding how the longitude ψ(Xt) changes
over time t.
Instead of considering the longitude ψ(Xt) directly, it will be more convenient
to study the following random variable which we call the theoretical longitude:

Ψth
N (t) := Fν

1−t

(
u(Xt)

)
, (4.1)

where u(Xt) denotes the u-coordinate of Xt = Xt(TN ), and Fν
1−t

is the cu-
mulative distribution function of the limit measure ν1−t which was defined in
Section 2.3. Notice that if in time t the box with the biggest number is posi-
tioned exactly on the circle of latitude α = 1 − t, that is, α(Xt) = 1 − t, then
the theoretical longitude coincides with the longitude, i.e., Ψth

N (t) = ψ(Xt).
Heuristically one would expect that Ψth

N (t) ≈ ψ(Xt) for N → ∞.
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Roughly speaking, the following result states that (away from the polar regions
which correspond to t = 0 and t = 1) the theoretical longitude of Xt does not
change too much over time.

Theorem 4.1. Assume that 0 < t1 < t2 < 1. Then for each ε > 0

lim
N→∞

PN

{
TN ∈ T�N

:
∣∣Ψth

N (t2)−Ψth
N (t1)

∣∣ > ε

}
= 0.

In other words, the difference Ψth
N (t2) − Ψth

N (t1) converges in probability to 0
when N → ∞, that is shortly,

Ψth
N (t2)−Ψth

N (t1)
P−−−−→

N→∞
0.

The proof is quite involved; Sections 4 to 7.2 are a preparation while the proof
of Theorem 4.1 itself will be given in Sections 7.3 and 7.4. The remaining part
of the current section is devoted to a rough sketch of the proof.

Clearly, Theorem 4.1 is equivalent to the conjunction of the following two state-
ments for ε > 0:

lim
N→∞

PN

{
TN ∈ T�N

: Ψth
N (t2)−Ψth

N (t1) > ε

}
= 0, (4.2)

lim
N→∞

PN

{
TN ∈ T�N

: Ψth
N (t2)−Ψth

N (t1) < −ε
}

= 0. (4.3)

We start with the proof of the upper bound (4.2). Then we will use the sym-
metry of the problem in order to prove the lower bound (4.3).

4.1 The single surfer scenario

We would like to present the problem of the evacuation path in a different, more
vivid light. We will speak about a square pool of side N (=the square Young
diagram �N) filled with N2 − 1 particles of water (=the Young tableau TN
with the largest entry removed), a passive surfer (=the box with the biggest
entry N2) and its trajectory (or behavior) when the pool is being drained
(=iteratively applying jeu de taquin). Our goal in Theorem 2.3 is to show
that, when the pool is big enough, the surfer has some typical paths along
which he/she moves as the pool is being drained.
In our proof of Theorem 4.1 we start our analysis at time t1 when jeu de taquin
was already applied

m1 := ⌊t1N2⌋ (4.4)

times. Our starting point is therefore the standard tableau

T ′
N := ∂∗m1(TN )

∣∣
≤N2−m1

(4.5)
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with N2 −m1 boxes (compare with (1.9)). We denote

w1 = N2 −m1 − 1. (4.6)

In this way the boxes with numbers 1, . . . , w1 correspond to the water and the
box with the maximal number w1 + 1 to the surfer. The position of the latter
box will be called the initial position of the surfer and we will refer to the
tableau T ′

N as the initial surfer configuration. By removing the box with the
surfer

W ′
N := T ′

N \ {w1 + 1} (4.7)

we get a standard Young tableau which encodes the initial configuration of
the water.
As time goes by, at the time t2 the jeu de taquin was already applied

m2 := ⌊t2N2⌋

times and we investigate the tableau

T ′′
N = ∂∗m2(TN )

∣∣
≤N2−m2

= ∂∗m2−m1(T ′
N )
∣∣
≤N2−m2

with w2 + 1 boxes, where

w2 = N2 −m2 − 1. (4.8)

The boxes with the numbers 1, . . . , w2 correspond to the remaining particles of
water and the box with the maximal number w2 +1 corresponds to the surfer;
the position of the latter box will be called the final position of the surfer.

Our aim is to relate the final position of the surfer at the time t2 to its initial
position at the time t1, preferably in the language of the theoretical longitude.
As a point of reference we will introduce an additional multisurfer story which
happens in a parallel universe in which we pay attention to k surfers.

4.2 Pieri tableaux

We consider the partial order on the plane R2 defined by:

(x1, y1) � (x2, y2) ⇐⇒ (x1 ≤ x2 ∧ y1 ≥ y2) .

Let k be a fixed natural number and M be a tableau in which the k largest
entries are numbered by consecutive integers l + 1, . . . , l + k. We say that the
tableau M is a k-Pieri tableau if these k largest boxes are placed in the increas-
ing order with respect to � (i.e., they are placed from north-west to south-east)
or, equivalently, their u-coordinates are ordered increasingly, that is:

uMl+1 < · · · < uMl+k.

If the value of the number k is clear from the context, we will shortly say
that M is Pieri.
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It is easy to check that if M has at least k+1 boxes then M is a k-Pieri tableau
if and only if j(M) is a k-Pieri tableau.

For standard Young tableaux we will consider the following more general notion.
For a (skew) standard Young tableau T with n boxes and positive integers w
and k such that w + k ≤ n we say that T is a (w + 1, w + k)-Pieri tableau if

uTw+1 < · · · < uTw+k. (4.9)

The set of (w + 1, w + k)-Pieri standard tableaux of (skew) shape λ will be

denoted by T̃ (w+1,w+k)
λ .

4.3 The multisurfer scenario

For the multisurfer scenario let k = k(N) be a sequence of positive integers
such that

lim
N→∞

k = ∞ and lim
N→∞

k2

N
= 0. (4.10)

For a fixed value of N we consider the N × N square pool filled with N2 − k
particles of water on which k surfers (=k boxes with the biggest entries) are
positioned in the increasing order. Formally speaking, by

T̃�N
= T̃ (N2−k+1,N2)

�N

we denote the set of standard Young tableaux of the square shape �N which are
k-Pieri, and by P̃N the uniform distribution on the set T̃�N

. We assume that
MN is a random tableau sampled with the uniform probability distribution P̃N

on the set T̃�N
In this scenario, in order to refer to the k surfers, we will use

the name multisurfers.
We start our analysis when jeu de taquin was already applied m1+1− k times
with m1 given again by (4.4) (notice that m1 + 1 − k ≥ 0 for N big enough).
Our starting point is therefore the tableau

M ′
N := ∂∗m1+1−k(MN )

∣∣
≤N2−m1−1+k

(4.11)

with N2−m1−1+k = w1+k boxes. We will refer to this tableau as the initial
multisurfer configuration. In this way, just as in the single surfer scenario,
the boxes with the numbers 1, . . . , w1 correspond to the water (in particular,
there is the same number of water particles as in the single surfer scenario).
On the other hand, the boxes with the numbers w1 + 1, . . . , w1 + k correspond
to the multisurfers. By removing the multisurfers

W̃ ′
N :=M ′

N \ {w1 + 1, . . . , w1 + k} (4.12)

we get a standard Young tableau which encodes the initial configuration of
the water.
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As time goes by, at the time t2 the jeu de taquin was already applied m2+1−k
times and we investigate the tableau

M ′′
N = ∂∗m2+1−k(MN )

∣∣
≤w2+k

= ∂∗m2−m1(M ′
N )
∣∣
≤w2+k

(4.13)

which consists of w2+k boxes which correspond to w2 particles of water and k
multisurfers; we will refer to this tableau as the final multisurfer configuration.

4.4 Sketch of the proof of the upper bound (4.2)

4.4.1 The collective behavior of the multisurfers is not very ran-
dom

Since the number of the multisurfers is small in comparison to the number
of the rows/columns, as a first-order approximation we may treat the set of
positions of k multisurfers at any fixed time as a collection of k independent
copies of the position of a single surfer. We can expect therefore that the law of
large numbers is applicable and, as k → ∞, the multisurfer empirical measure
(which is a random measure which encodes the scaled down u-coordinates of
the multisurfers) converges in probability to the probability distribution of the
position of the single surfer. In other words: the collective behavior of the
multisurfers is much less random than the behaviour of the single surfer. This
phenomenon is beneficial and will allow us to use the multisurfers as a moving
frame of reference for tracing the position of the single surfer over time.
The above naive first-order approximation clearly cannot be true if k = k(N)
grows too fast with the size N of the square. Nevertheless, in Theorem 6.2 we
will show that if k = k(N) grows at the right speed then a version of the law of
large numbers indeed holds true. The proof of Theorem 6.2 is quite technically
involved and the whole Section 6 is devoted to its proof.

4.4.2 The multisurfers provide information about the surfer

Let us fix some common initial configuration of the water for both the surfer
and the multisurfers. In another first-order approximation let us assume for a
moment that the density of the multisurfers is small enough that during the
time interval [t1, t2] all neighboring pairs of multisurfers are separated so that
the multisurfers do not touch each other. If this is indeed the case and there
are no interferences between the multisurfers then the time evolution of each
multisurfer clearly coincides with the time evolution of the single surfer who
would have the same initial position; by reversing the optics this means that
we have a very direct information about some specific single surfer trajectories
(namely, the ones which start from the positions of the multisurfers) in terms
of the dynamics of the multisurfers, which we understand pretty well thanks
to the aforementioned Theorem 6.2.
It is very convenient that for a fixed initial configuration of the water, the
trajectory of the single surfer depends in a monotonic way on the initial position
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of the surfer. For this reason it is possible to get some partial information also
about the single surfer trajectories starting from the points between the initial
positions of two multisurfers. If the number k = k(N) of the multisurfers tends
to infinity as N → ∞ such neighboring multisurfers should not be too far (in
comparison to the size N of the square) which is enough to prove Theorem 4.1.

4.4.3 The single surfer and the multisurfer scenario on the same
water configuration

Above we used the idea of considering the single surfer scenario and the mul-
tisurfer scenario on the same configuration of water. This idea sounds self-
contradictory because each of these two scenarios gives rise to a different prob-
ability distribution on the set of configurations of the water. In Section 5 we
shall explain how to overcome this difficulty and to (asymptotically) couple
the surfer and the multisurfers on a single probability space. The resulting
object can be visualized as water on which in two parallel universes there is (i)
a single surfer, and (ii) k multisurfers. The single surfer and the multisurfers
are like ghosts to one another and do not interact. Furthermore, as long as the
multisurfers do not touch each other, the relative position (with respect to the
partial order ≺ on the plane) of the surfer and the ghosts of the multisurfers
does not change over time: overtaking of the surfer by the multisurfers is not
allowed.

4.4.4 Overtaking is allowed in one direction only

The above discussion was based on a simplistic assumption that the multisurfers
do not touch each other. Regretfully, in the real world this is not the case;
multisurfers might influence each other and hence the multisurfer trajectories
might differ from the single surfer trajectories on the same configuration of the
water.

On the bright side, the assumption that the multisurfers are ordered as in the
definition of the Pieri tableaux implies that the movement of each multisurfer
depends only on (1) the configuration of the water, and (2) on these multisurfers
which are to the north-west; the other multisurfers which are south-east have
no influence on its dynamics. Furthermore, the impact of the multisurfers
is unidirectional: the presence of the north-west multisurfer-neighbor can only
push the multisurfer in the south-east direction. For the ‘coupling’ of the stories
of the single surfer and the multisurfers on the common water this means that
the ghosts of the multisurfers are allowed to overtake the surfer, but only in one
direction. More precisely, the number of the multisurfers which are north-west
to the single surfer can only decrease over time (see Lemma 7.1 for the formal
description of the above heuristics).
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4.4.5 The order in which the proof of the upper bound (4.2) will
be conducted

The rigorous proof of (4.2) will be conducted in the following order. First in
Section 5 we will develop the content of Section 4.4.3. Then in Section 6 we will
deal with the collective behavior of the multisurfers described in Section 4.4.1.
In Section 7.1 we will work out the dynamics contained in Section 4.4.4. Finally,
in the rest of Section 7 we will formally justify the heuristics from Section 4.4.2
and complete the proof.

5 Single surfer versus the multisurfer scenario

In Sections 4.1 and 4.3 we considered two random tableaux: T ′
N and M ′

N

defined on two different probability spaces (which correspond to the single
surfer and the multisurfer scenario respectively). In order to proceed with the
ideas sketched in Section 4.4.3 we need to define some random tableaux T′

N and
M′

N on a common probability space with (almost) the same distributions as
T ′
N and M ′

N and such that the corresponding configurations of water coincide.
A solution to this problem is provided by Proposition 5.1 below which is also
the main result of the current section. We will compare the distributions with
respect to the total variation distance.

Suppose that X and Y are random variables (possibly defined on different
probability spaces) taking values in some finite set S with probability distribu-
tions PX and PY respectively. We define the total variation distance between
the random variablesX and Y [Dur10, Section 3.6.1] (or, alternatively, between
the probability distributions PX and PY ) as

δ(X,Y ) = δ(PX ,PY ) :=

1

2

∑

s∈S

∣∣PX(s)− PY (s)
∣∣ = max

Z⊂S

∣∣PX(Z)− PY (Z)
∣∣ . (5.1)

Sometimes we will also denote this quantity by δ(X,PY ), etc.

Proposition 5.1. For each C ≥ 1 and ∆ ∈ (0, 1) there exists a constant d > 0
with the following property.

Let λ be a C-balanced Young diagram and let k, w, a be positive integers such
that w < (1−∆) |λ| and w ≤ a ≤ |λ| − k.

Then there exists a pair of random tableaux T and M which are defined on the
same probability space with the following properties:

(a) T is a uniformly random element of Tλ;

(b) M is a random element of T̃ (a+1,a+k)
λ ;
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(c) the total variation distance between the distribution of M and the uniform

distribution on T̃ (a+1,a+k)
λ fulfills the bound

δ
(
M,PT̃ (a+1,a+k)

λ

)
< d

k2√
|λ| − w

; (5.2)

(d) T
∣∣
≤w = M

∣∣
≤w holds true almost surely.

The proof is postponed to Section 5.3. In the next two subsections we prepare
to it by proving general lemmas on the probabilities of some particular events
in the multisurfers scenario (Section 5.1) and comparing the distributions of
water beneath surfer(s) in both scenarios (Section 5.2). It turns out that these
distributions are similar in terms of the total variation distance which asymp-
totically converges to 0, see Lemma 5.5.

5.1 Probability that a random tableau is Pieri

Lemma 5.2. Let λ/µ be a skew Young diagram with n boxes and let 1 ≤ k ≤ n.
Then the cardinality of the set

T̃ (w+1,w+k)
λ/µ for w ∈ {0, . . . , n− k} (5.3)

does not depend on the choice of w.

Proof. There is a simple bijection between the set T̃ (w+1,w+k)
λ/µ and the set of

semistandard skew tableaux of shape λ/µ and of weight (1w, k, 1n−w−k) which

is defined as follows. For a tableau T ∈ T̃ (w+1,w+k)
λ/µ we replace each entry from

the set {w+1, . . . , w+k} by the same number w+1, and we replace each entry
i ∈ {w + k + 1, . . . , n} by i+ 1− k. It follows therefore that the cardinality of
(5.3) is equal to the coefficient

[
x1 · · ·xwxkw+1xw+2 · · ·xn+1−k

]
sλ/µ

in the expansion of the skew Schur function in the basis of monomials. Since
the skew Schur function is a symmetric polynomial, the proof is completed.

Lemma 5.3. For any c > 0 and n ∈ N

∑

π∈Sn

c|π| < exp

(
n2c

2

)
. (5.4)

Proof. The classical formula for the generating function of the Stirling numbers
of the first kind gives

∑

π∈Sn

c|π| =
∑

0≤k≤n−1

[
n

n− k

]
ck = (1 + c)(1 + 2c) · · ·

(
1 + (n− 1)c

)
<

ece2c · · · e(n−1)c < exp

(
n2c

2

)
.
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Some notions defined for ordinary Young diagrams have their natural coun-
terparts in the skew setup, given as follows. For C ≥ 1 we say that a skew
Young diagram λ/µ is C-balanced if λ/µ has at most C

√
|λ/µ| rows and at

most C
√
|λ/µ| columns. Moreover we denote by Pλ/µ the uniform measure on

the set of standard Young tableaux of skew shape λ/µ.

We calculate now the probability of choosing a Pieri tableau from the set of
standard Young tableaux of a specified skew shape.

Lemma 5.4. For each C ≥ 1 there exists a constant c > 0 with the following
property. Let λ/µ be a C-balanced skew Young diagram with n boxes. Let k
and w be integers such that 1 ≤ k < 4

√
n and 0 ≤ w ≤ n− k. Then

∣∣∣∣k! Pλ/µ
(
T̃ (w+1,w+k)
λ/µ

)
− 1

∣∣∣∣ < c
k2√
n
. (5.5)

Proof. The proof uses heavily the definition of the rectification of tableau. We
refer the reader to [Ful97, page 15].
Let T be a uniformly random standard tableau of skew shape λ/µ. It is easy
to check that T is (w+1, w+ k)-Pieri if and only if the rectified tableau rectT
is (w + 1, w + k)-Pieri (see Section 4.2 for the definition of Pieri tableaux). In
the following we will describe the probability distribution of rectT .
We denote by cλµν the Littlewood–Richardson coefficient. By [Ful97, Sec-
tion 5.1, Proposition 2 and Corollary 1] the rectification map defines a bijection
between the set Tλ/µ of skew tableaux of shape λ/µ and the disjoint union

⊔

ν

cλµνTν

consisting of cλµν copies of each Tν , i.e., the set of tableaux of shape ν.
It follows that a random tableau with the same distribution as rectT can be
generated by the following two step procedure. Firstly, we select a random
Young diagram ν with the probability distribution

P(ν) =
cλµνf

ν

fλ/µ
. (5.6)

Secondly, we select a uniformly random standard tableau with the shape ν.
In particular, the probability that rectT is a (w + 1, w + k)-Pieri tableau is a
weighted arithmetic mean (over certain diagrams ν) of the probability that a
uniformly random element of Tν is a (w + 1, w + k)-Pieri tableau. It follows
that it is enough to prove a version of the inequality (5.5) in which the skew
diagram λ/µ is replaced by any diagram ν with a nonzero probability (5.6); we
will do it in the following.

We start with an observation that in the process of rectification the number of
rows and the number of columns of a tableau cannot increase. Since λ/µ is C-
balanced, it follows that any Young diagram ν with a nonzero probability (5.6)
is also C-balanced.
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By Lemma 5.2 it is enough to consider the case w = 0. Let T be a uniformly
random standard tableau of shape ν and let ξ = shT |≤k be the positions of
the first k boxes of T . The tableau T is (1, k)-Pieri if and only if ξ = (k)
is the one-row diagram. The remaining difficulty is therefore to identify the
probability distribution of ξ.
The link between the combinatorics of standard Young tableaux and the irre-
ducible representations of the symmetric groups (in particular, the branching
rule) implies that the probability distribution of ξ coincides with the measure
PVν↓Sk

on the irreducible components of Vν↓Sk
which was defined in (3.1).

Equation (3.1) gives therefore an exact formula

k!P
(
T ∈ T̃ (1,k)

ν

)
= k!PVν↓Sk

(triv) = k!
〈
χν
y
Sk

, χtriv

〉
=

∑

π∈Sk

χν(π) χtriv(π) = 1 +
∑

π∈Sk
π 6=id

χν(π). (5.7)

In the following we will find an asymptotic bound for the second summand on
the right-hand side.

Since |π| ≤ k < 4
√
n, by Fact 3.1 there exists a universal constant a > 0 (which

depends only on C) such that for any π ∈ Sk

∣∣χν(π)
∣∣ ≤

(
a√
n

)|π|
. (5.8)

It follows that the second summand on the right-hand side of (5.7) is bounded
by ∣∣∣∣∣

∑

π∈Sk
π 6=id

χν(π)

∣∣∣∣∣ ≤
∑

π∈Sk

(
a√
n

)|π|
− 1 ≤ e

ak2
√

n − 1 = O

(
k2√
n

)
,

where we used Lemma 5.3 and the assumption that k2√
n
= O(1).

5.2 Comparison of distributions of water beneath surfer(s) in
both scenarios

The following lemma shows that in the asymptotic setting the probability dis-
tributions of water beneath surfer(s) in the single surfer and the multisurfer
scenarios are nearly equal.

Lemma 5.5. For each C ≥ 1 and ∆ ∈ (0, 1) there exists a constant d > 0 with
the following property.
Let λ be a C-balanced Young diagram and k, w and a be positive integers such
that w < (1 −∆) |λ| and w ≤ a ≤ |λ| − k. Denote by T a uniformly random

element of Tλ and by M a uniformly random element of T̃ (a+1,a+k)
λ . The total
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variation distance between the distributions of the restricted tableaux T
∣∣
≤w and

M
∣∣
≤w fulfills the bound

δ
(
T
∣∣
≤w,M

∣∣
≤w

)
< d

k2√
|λ| − w

. (5.9)

Proof. We start with an observation that the total variation distance is trivially
bounded from above by 1. It follows that (provided d ≥ 1) it is enough to
consider the case when k4 ≤ |λ| − w.

Notice that the probability distribution PT̃ (a+1,a+k)
λ

(·) coincides with the con-

ditional probability PTλ

(
·
∣∣ T̃ (a+1,a+k)

λ

)
. Therefore, for any µ ∈ Yw such that

µ ⊆ λ and any S ∈ Tµ we have, by the Bayes rule, that

PT̃ (a+1,a+k)
λ

(
M
∣∣
≤w = S

)
=

PTλ

(
M ∈ T̃ (a+1,a+k)

λ

∣∣∣ M
∣∣
≤w = S

)

PTλ

(
T̃ (a+1,a+k)
λ

) · PTλ

(
M
∣∣
≤w = S

)
.

By elementary algebra this equality can be rewritten as

PT̃ (a+1,a+k)
λ

(
M
∣∣
≤w = S

)
− PTλ

(
M
∣∣
≤w = S

)
=

PT̃ (a+1,a+k)
λ

(
M
∣∣
≤w = S

)[
1− k! PTλ

(
T̃ (a+1,a+k)
λ

)]
+

+ PTλ

(
M
∣∣
≤w = S

)[
k! PTλ

(
M ∈ T̃ (a+1,a+k)

λ

∣∣∣M
∣∣
≤w = S

)
− 1

]
. (5.10)

Our strategy is to find an upper bound for the absolute value of the right-hand
side.

The conditional probability in the second summand on the right-hand side, i.e.,

PTλ

(
M ∈ T̃ (a+1,a+k)

λ

∣∣∣ M
∣∣
≤w = S

)
, (5.11)

is equal to the conditional probability that the restricted tableau M |>w is an
(a + 1, a + k)-Pieri tableau. In order to calculate this conditional probability
we notice that the conditional probability distribution of the restricted tableau
M |>w (under the condition M

∣∣
≤w = S) is the uniform measure on the set of

tableaux of shape λ/µ such that their entries form the multiset (w + 1, . . . , n).
In other words, the probability distribution of the random tableau

(
M |>w

)
− w

(which is obtained by decreasing each entry of M |>w by w) is given by PTλ/µ
.

In this way we proved that (5.11) is equal to

PTλ/µ

(
T̃ (a+1−w,a+k−w)
λ/µ

)
. (5.12)
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By comparing the number of rows and columns, as well as the number of boxes
of the skew diagram λ/µ with their counterparts for λ it follows that λ/µ is
C′-balanced with

C′ = C

√
|λ|

|λ| − w
<

C√
∆
.

A fortiori λ and λ/µ are C′′-balanced, where C′′ is the right-hand side of the
above inequality.

We apply Lemma 5.4 twice: for both expressions in the square brackets on the
right-hand side of (5.10). It follows that there exists a universal constant c > 0
(which depends only on C′′) such that

∣∣∣∣PT̃ (a+1,a+k)
λ

(
M
∣∣
≤w = S

)
− PTλ

(
M
∣∣
≤w = S

)∣∣∣∣ ≤

PT̃ (a+1,a+k)
λ

(
M
∣∣
≤w = S

) ck2√
|λ|

+ PTλ

(
M
∣∣
≤w = S

) ck2√
|λ| − w

.

The above discussion was based on the initial assumption that d ≥ 1. It
follows that by summing over all choices of S we get (5.9) for d := max(1, 2c),
as required.

5.3 Proof of Proposition 5.1

Proof of Proposition 5.1. We will sample the random tableaux T and M by
the following two-step procedure. Firstly, we sample T with the uniform prob-
ability measure on Tλ, that is P(T = T ) := PTλ

(T ) for any T ∈ Tλ. After
the tableau T was selected, we sample the tableau M with the conditional
probability

P

(
·
∣∣ T = T

)
:= PT̃ (a+1,a+k)

λ

(
·
∣∣∣
{
M ∈ T̃ (a+1,a+k)

λ :M |≤w = T|≤w
})

.

In this way the condition (d) is fulfilled trivially.

Therefore the probability distribution of M is given by

P (M =M) =

PTλ

{
T ∈ Tλ : T |≤w =M |≤w

}
×

PT̃ (a+1,a+k)
λ

(
M
∣∣∣
{
T ∈ T̃ (a+1,a+k)

λ : T |≤w =M |≤w
})

. (5.13)
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The probability measure PT̃ (a+1,a+k)
λ

can be written in an analogous way as

PT̃ (a+1,a+k)
λ

(M) =

PT̃ (a+1,a+k)
λ

{
T ∈ T̃ (a+1,a+k)

λ : T |≤w =M |≤w
}
×

PT̃ (a+1,a+k)
λ

(
M
∣∣
{
T ∈ T̃ (a+1,a+k)

λ : T |≤w =M |≤w
})

. (5.14)

It follows that the process of sampling M as well as the process of sampling the
uniformly random element of T̃ (a+1,a+k)

λ can be viewed as a two-step procedure:
we first sample the positions of the boxes 1, . . . , w and in the second step the
remaining boxes. Notice that in both sampling procedures in the second step we
sample the remaining boxes with the same conditional distribution. It follows
that the total variation distance between the measures (5.13) and (5.14) is
bounded from above by the total variation distance (5.9) from Lemma 5.5
which completes the proof.

6 The distribution of the u-coordinates of the multisurfers

Our main result in this section is Theorem 6.2 which shows that the multisurfer
empirical measure (i.e., the distribution of the u-coordinates of the multisurfers)
after draining a (1 − α)-fraction of the water converges to the limit measure
να (the limit distribution of the u-coordinate of the single surfer on the level
curve gα, cf. Section 2.3). Also Proposition 6.5 might be interesting from the
viewpoint of algebraic combinatorics as it provides a direct link between the
statistical properties of uniformly random (a, b)-Pieri tableaux of some fixed
shape and the celebrated Jucys–Murphy elements.
The following assumption on the ‘amount of water’ and the number of mul-
tisurfers will be central in the forthcoming results (Theorem 6.2 and Proposi-
tions 7.2 and 6.3).

Assumption 6.1. Let c > 0 be the constant in Lemma 5.4 obtained for C = 1
for which (5.5) holds. We assume that k = k(N) and w = w(N) are sequences
of positive integers which fulfill

lim
N→∞

k(N) = ∞ and k <

√
N

2c
and w + k < N2.

6.1 Counting multisurfers gives the longitude

Let w = w(N) and k = k(N) be sequences of nonnegative integers such that

0 < w+k < N2. Let MN be a uniformly random tableau from T̃ (w+1,w+k)
�N

. We
use a shorthand notation un := uMN

n for the u-coordinate of the box with the
number n in the tableau MN . For u ∈ R we define the random variable GN (u)
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to be the fraction of the multisurfers which have their scaled u-coordinate
smaller than u, that is

GN (u) :=
1

k
max

{
p ∈ {1, . . . , k} :

1

N
uw+p ≤ u

}
. (6.1)

Clearly, GN is the cumulative distribution function of the random measure mN

on R

mN :=
1

k

∑

1≤p≤k
δN−1 uw+p

where δx denotes the delta measure concentrated at x.

Theorem 6.2. Let α ∈ (0, 1). Let w = w(N) and k = k(N) fulfill Assump-
tion 6.1 and

lim
N→∞

w

N2
= α.

Then for each ε > 0

PT̃ (w+1,w+k)

�N

{
MN : sup

x∈R

∣∣Fνα(x)−GN (x)
∣∣ > ε

}
= O

(
1

k
+
k2

N

)

with the constant in the O-notation depending only on α and ε.
In particular, if k(N) → ∞ and k(N) = o(

√
N), i.e., (4.10) is satisfied, then

the random sequence of cumulative distribution functions GN with respect to the
supremum norm converges in probability to the cumulative distribution function
Fνα when N → ∞, that is shortly,

sup
x∈R

∣∣Fνα(x) −GN (x)
∣∣ P−→ 0.

In order to prove this result we will compare the (random) moments of the
empirical measure mN and the moments of the measure να which gives the
asymptotics of the u-coordinate of a single box, cf. Section 2.3. In Proposi-
tion 6.3 below we shall calculate the moments of the empirical measure mN .
In Section 6.8 we will complete the proof of Theorem 6.2.

6.2 Moments of the empirical measure GN

For each β ∈ N we define the β-th moment of the random measure mN as

Mβ :=Mβ(w, k) :=

∫

R

zβ dmN (z) =
1

k
N−β

∑

1≤p≤k
uβw+p.

Notice that Mβ is also a random variable. The following result expresses the
first two moments of the random variable Mβ(w, k) (which is related to the
problem of multisurfers) in terms of the first moment of the random variable
Mβ(w, 1) (which is related to the much simpler problem of a single surfer).
This proposition is crucial to the proof of Theorem 6.2.
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Proposition 6.3. Let w = w(N) and k = k(N) fulfill Assumption 6.1. For
each β ∈ N, we have

E
P̃N
Mβ(w, k) = EPNMβ(w, 1) +O

(
k2

N

)
; (6.2)

Var
P̃N
Mβ(w, k) = O

(
1

k
+
k2

N

)
(6.3)

with the constants in the O-notation depending only on β.

Remark 6.4. The counterpart of the above proposition in the paper of Romik
and the second named author is [RŚ15, Theorem 4.6]. There the error terms

for the expected value and variance are much smaller, accordingly, O
(
k
N

)
and

O
(

1
k + k

N

)
. There are two reasons for which our error terms are much bigger,

of the form, accordingly, O
(
k2

N

)
and O

(
1
k + k2

N

)
.

• In the proof of Proposition 6.5 we will view the probability distribution
of the multisurfers as a conditional distribution of the boxes with certain
numbers in a uniformly random standard skew tableau with a specified
shape under the condition that these boxes are suitably ordered (i.e.,
the tableau is Pieri). Unfortunately, the probability of the latter event
depends heavily on the shape of the diagram and we do not have a very
good control over the error term, see Lemma 5.4.

Using our terminology in their context, the placement of the multisurfers
by Romik and the second named author can also be seen as a conditional
process: one first adds k boxes to a given Young diagram λ by k inde-
pendent steps of the Plancherel growth process, and then conditions that
these boxes are suitably ordered. In this case, however, the conditioning
does not create additional difficulties because the probability of the event
that the newly created boxes are Pieri is equal to 1

k! and does not depend
on the shape of λ.

• The error O
(
k2

N

)
also appears during the application of Proposition 6.9.

Romik and the second named author make use of [RŚ15, Theorem 4.4]
which is a counterpart of ours Proposition 6.5. They deal with the char-
acter of the left-regular representation which obviously is not troublesome
and need not be estimated.

The proof of Proposition 6.3 is quite long. In Sections 6.3 to 6.5 we gather
some tools helpful in proving Proposition 6.3. In particular, the goal of Sec-
tion 6.3 is to provide a connection between the statistical properties of the
multisurfers and the representation theory (see Proposition 6.5). Section 6.4
gives background for calculating the character χ

�N
of the cosets appearing
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in (6.4). Section 6.5 is devoted mostly to an analysis of the permutations aris-
ing from the powers of Jucys–Murphy elements. Eventually, in Section 6.6 we
give the proof of (6.2) and in Section 6.7 the proof of (6.3) which completes
the proof of Proposition 6.3.

6.3 Multisurfers and the representation theory

The following result, Proposition 6.5, provides a link between the statistical
properties of the multisurfers and the representation theory of the symmetric
groups.

Let w, k, n be positive integers such that w + k ≤ n. With a small abuse of
notation we denote by Sw the group of permutations of the set {1, . . . , w} and
by Sk the group of permutations of the set {w + 1, . . . , w + k}. In this way
Sw and Sk are commuting subgroups of Sw+k ⊂ Sn. We define the element
of the symmetric group algebra

pSk
=

1

k!

∑

σ∈Sk

σ ∈ CSn.

Jucys–Murphy elements often appear in the modern approach to the represen-
tation theory of the symmetric groups (see [CSST10]). They form a commuting
family of the elements of the symmetric group algebra CSn given by the fol-
lowing formal sums of transpositions:

Jk :=
∑

1≤i<k
(i, k) = (1, k) + · · ·+ (k − 1, k) ∈ CSn for 1 ≤ k ≤ n.

Proposition 6.5. Let w, k, n be positive integers such that w + k ≤ n. Let
W (x1, . . . , xk) be a symmetric polynomial in k variables. Let λ ∈ Yn be a Young
diagram and T be a random element (sampled with the uniform distribution)

of the set T̃ (w+1,w+k)
λ of (w + 1, w + k)-Pieri tableaux of shape λ. Then

E W
(
uTw+1, . . . , u

T
w+k

)
=
χ

λ

(
W (Jw+1, . . . , Jw+k) · pSk

)

χ
λ

(
pSk

) (6.4)

=
χ

λ

(
W (Jw+1, . . . , Jw+k) · pSk

)

PTλ

(
T̃ (w+1,w+k)
λ

) .

The proof is postponed until the end of the current section until we gather the
necessary tools.

We start with the following fundamental property of Jucys–Murphy elements.

Fact 6.6 ([Juc74]). Let λ ∈ Yn be a Young diagram, and let u1, . . . , un be the
u-coordinates of its boxes (listed in an arbitrary order). Let W (x1, . . . , xn) be
a symmetric polynomial in n variables. Then:
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• W (J1, . . . , Jn) ∈ CSn belongs to the center of the group algebra.

• The operator ρλ
(
W (J1, . . . , Jn)

)
is a multiple of the identity operator, so

it can be identified with a complex number. The value of this number is
equal to

χ
λ

(
W (J1, . . . , Jn)

)
=W (u1, . . . , un). (6.5)

Lemma 6.7. Let µ ∈ Yw+k be a Young diagram and let W (x1, . . . , xk) be a
symmetric polynomial in k variables. Then the operator

ρµ
(
W (Jw+1, . . . , Jw+k)

)

acts on each irreducible component Vν of the restriction Vµ
ySw+k

Sw
as a multiple

of the identity operator and can be identified with the complex number

W
(
u
µ/ν
w+1, . . . , u

µ/ν
w+k

)
. (6.6)

Above, for a diagram ν with w boxes such that ν ⊂ µ we denote by

u
µ/ν
w+1, . . . , u

µ/ν
w+k the u-coordinates of the boxes of the skew diagram µ/ν (listed

in an arbitrary order).

Proof. We will show that the lemma holds in the particular case when W is
the power-sum symmetric function, that is

W (x1, . . . , xk) := pβ(x1, . . . , xk) :=
∑

1≤i≤k
xβi

for some β ∈ N0. Since the power-sum symmetric functions generate the al-
gebra of the symmetric polynomials and the representation ρµ is an algebra
homomorphism, in this way we will prove that the lemma holds true in gen-
eral.
Clearly,

W (Jw+1, . . . , Jw+k) = pβ (Jw+1, . . . , Jw+k) =

pβ (J1, . . . , Jw+k)− pβ (J1, . . . , Jw) .

By Fact 6.6, the operator pβ (J1, . . . , Jw+k) acts on the component Vµ as mul-
tiplication by the factor

pβ

(
uµ1 , . . . , u

µ
w+k

)
=

∑

1≤i≤w+k

(
uµi
)β
. (6.7)

Again by Fact 6.6, for any ν ∈ Yw, the operator pβ (J1, . . . , Jw) acts on the
component Vν as multiplication by the factor

pβ (u
ν
1 , . . . , u

ν
w) =

∑

1≤i≤w
(uνi )

β . (6.8)
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Let ν ⊂ µ. The multiset of the u-coordinates of the boxes of µ is the union
of (i) the multiset of the u-coordinates of the boxes of ν, and (ii) the multiset
of the u-coordinates of the boxes of µ/ν. Therefore, by subtracting (6.8) from
(6.7), we get that the operator pβ (Jw+1, . . . , Jw+k) acts on the component Vν
of the restriction Vµ ↓Sw+k

Sw
as multiplication by the scalar

pβ

(
u
µ/ν
w+1, . . . , u

µ/ν
w+k

)
=
∑

1≤i≤k

(
u
µ/µ
w+i

)β
,

as required.

Proof of Proposition 6.5. Observe that any tableau T ∈ T̃ (w+1,w+k)
λ can be

split into the following three parts: (i) a standard tableau P with entries from
{1, . . . , w}; we denote its shape by ν, (ii) a skew tableau Q which is k-Pieri
with entries in {w+1, . . . , w+k}; we denote its shape by µ/ν, and (iii) a skew
tableau R with the entries > w + k with shape λ/µ.
For fixed partitions µ and ν it is easy to count the number of tableaux P which
contribute to (i) and the number of tableaux R which contribute to (iii): their
cardinalities are by definition given by fν and fλ/µ respectively.
The number of k-Pieri tableaux Q which contribute to (ii) is slightly more
challenging: it is equal to 1 if µ/ν has at most one box in each column and
is equal to zero otherwise. A combinatorial interpretation of the Littlewood–
Richardson coefficient cµν,(k) for a single-row partition (k) (or, nomen omen, the
Pieri rule) implies that this coefficient coincides with the latter cardinality.
In this way we proved that the left-hand side of (6.4) is given by

E W
(
uTw+1, . . . , u

T
w+k

)
=

1∣∣∣T̃ (w+1,w+k)
λ

∣∣∣

∑

T∈T̃ (w+1,w+k)
λ

W
(
uTw+1, . . . , u

T
w+k

)
=

1∣∣∣T̃ (w+1,w+k)
λ

∣∣∣

∑

µ∈Yw+k

µ⊂λ

∑

ν∈Yw
ν⊂µ

fλ/µ fν cµν,(k)W
(
u
µ/ν
w+1, . . . , u

µ/ν
w+k

)
. (6.9)

We will now investigate the numerator on the right hand side of (6.4). Each
multiplicity fλ/µ in the decomposition of the restriction of Vλ into irreducible
components

Vλ
ySN2

Sw+k
=
⊕

µ∈Yw

µ⊂λ

fλ/µVµ

is equal to the number of skew standard Young tableaux of shape λ/µ. Since
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W (Jw+1, . . . , Jw+k) · pSk
∈ CSw+k, we get that

Cλ := χ
λ

(
W (Jw+1, . . . , Jw+k) · pSk

)
=

1

dimVλ
TrVλ

ρλ

(
W (Jw+1, . . . , Jw+k) · pSk

)
=

1

fλ

∑

µ∈Yw+k

µ⊂λ

fλ/µTrVµ ρλ

(
W (Jw+1, . . . , Jw+k) · pSk

)
. (6.10)

The multiplicities in the decomposition of the restricted representation into
irreducible components

Vµ
ySw+k

Sw×Sk
=
⊕

ν∈Yw
ξ∈Yk

cµν,ξVν ⊗ Vξ

are given by Littlewood–Richardson coefficients. Therefore, since pSk
is a pro-

jection to the trivial representation, its image is given by

pSk

(
Vµ
)
= pSk

(
Vµ
ySw+k

Sw×Sk

)
=
⊕

ν∈Yw

cµν,(k)Vν ⊗ V(k) =
⊕

ν∈Yw

cµν,(k)Vν . (6.11)

By combining (6.10), (6.11), and Lemma 6.7 we get the following closed formula
for the numerator on the right-hand side of (6.4)

Cλ =
1

fλ

∑

µ∈Yw+k

µ⊂λ

∑

ν∈Yw

fλ/µ cµν,(k) f
νW

(
u
µ/ν
w+1, . . . , u

µ/ν
w+k

)
. (6.12)

On the other hand, by (6.12) evaluated for the constant polynomial W ≡ 1, we
get the following formula for the denominator on the right-hand side of (6.4)

χ
λ

(
pSk

)
=

1

fλ

∑

µ∈Yw+k

µ⊂λ

∑

ν∈Yw

fλ/µcµν,(k)f
ν =

1

fλ
·
∣∣∣T̃ (w+1,w+k)
λ

∣∣∣ (6.13)

where the last equality comes from (6.9) evaluated for W ≡ 1. Observe also
that

PTλ

(
T̃ (w+1,w+k)
λ

)
=

∣∣∣T̃ (w+1,w+k)
λ

∣∣∣
fλ

. (6.14)

Equations (6.9), (6.12), (6.13) and (6.14) complete the proof of (6.4).
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6.4 Character on a coset

Let us call small the elements of the set {1, . . . , w} and big the elements of
the set {w+ 1, . . . , w+ k}. As before, we view the symmetric group Sk as the
subgroup of Sw+k which consists of the permutations which can permute only
the big elements.
For a Young diagram λ ∈ Yn and a permutation π ∈ Sw+k we define the value
of the character χ

λ
on a left coset πSk ∈ Sw+k/Sk as an appropriate sum

over the coset, that is
χ

λ
(πSk) :=

∑

σ∈πSk

χ
λ
(σ).

This definition is motivated by Proposition 6.5 because expressions of a similar
flavor (up to the factor 1

k! ) appear on the right-hand side of (6.4). Our goal in
this section is to understand the asymptotics of such characters on cosets.

For a left coset πSk ∈ Sw+k/Sk we define its length as

‖πSk‖ := w −#(cycles of π which consist of only small elements). (6.15)

It is easy to check that if π1Sk = π2Sk then the cycles of π1 which consist
of only small elements coincide with the analogous cycles of π2; it follows that
the above definition does not depend on the choice of the representative π of
the coset.
Remind that for a permutation π we denote by |π| the length of π, i.e., the
minimal number of transpositions required to write π as their product.

Lemma 6.8. For each left coset πSk

‖πSk‖ = min
{
|σ| : σ ∈ πSk

}
. (6.16)

There exists a unique permutation π0 ∈ πSk for which the minimum on the
right-hand side is achieved; the permutation π0 = π0(πSk) with this property
will be called minimal for the coset πSk.
This minimal permutation has the following additional properties:

(a) for each σ ∈ Sk,
|π0σ| = ‖πSk‖+ |σ| . (6.17)

(b) If π is such that each of its cycles permutes at most one big element, then
π = π0 is the minimal element.

Proof. We begin with the proof of the first assertion of the lemma. The permu-
tation π can be written as a product of disjoint cycles π = π1 · · ·πℓπℓ+1 · · ·πL,
where π1, . . . , πℓ are the cycles which permute at least one big element, and
πℓ+1, . . . , πL permute only small elements.

Fix i ∈ {1, . . . , ℓ}. Then πi is a cycle of the form

πi =
(
p1,1, . . . , p1,r1, q1, p2,1, . . . , p2,r2 , q2, . . . , pn,1, . . . , pn,rn , qn

)
,
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for some n ∈ N and r1, . . . , rn ∈ N0, some big numbers q1, . . . , qn and some
small numbers pr,s. Define

τi := (qn, qn−1, . . . , q1) ∈ Sk

as the cycle permuting (in the reverse direction) the big elements of the cycle πi.
Clearly,

πiτi =
(
p1,1, . . . , p1,r1 , q1

)
· · ·
(
pn,1, . . . , pn,rn , qn

)

gives a product of disjoint cycles, each permuting exactly one big element.

Then
π0 := (π1τ1) · · · (πℓτℓ)πℓ+1 · · ·πL ∈ πSk (6.18)

provides a decomposition into disjoint cycles which has the property that each
cycle permutes at most one big element. Hence for any σ ∈ Sk which permutes
only big elements, the decomposition into disjoint cycles of the product π0σ ∈
πSk is obtained by merging appropriate cycles of π0, it follows therefore that

|π0σ| = |π0|+ |σ| . (6.19)

As a consequence, the minimum on the right-hand side of (6.16) is achieved
on π0 and it is the unique permutation with this property, as required.

We shall now show that the equality (6.16) holds true. It is enough to prove it
in the special case when as the coset representative we take π0 given by (6.18).
In this special case (6.16) is equivalent to

‖π0Sk‖ = |π0| . (6.20)

The explicit decomposition into disjoint cycles (6.18) implies that the left-hand
side is equal to

w − (L− ℓ).

On the other hand, (6.18) implies that π0 has exactly L−ℓ cycles which permute
only small elements and k additional cycles, one for each big element. It follows
that the right-hand side of (6.20) is equal to

|π0| = (w + k)−
(
L− ℓ+ k

)
= w − (L− ℓ)

which concludes the proof of (6.16).

Property (a) is now a direct consequence of (6.19) and (6.20).

For the proof of property (b), if π is such that each of its cycles permutes at
most one big element then our construction gives π = π0 so π is the minimal
representative of the coset.

The next proposition gives an insight to the irreducible characters correspond-
ing to square diagrams evaluated on left cosets.
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Proposition 6.9. For each positive integer L there exists a constant CL with
the following property.
Let positive integers w and k be arbitrary and let π0 ∈ πSk be the minimal
representative of a left coset πSk ∈ Sw+k/Sk. If ‖πSk‖ ≤ L and N2 ≥ w+ k
and N > k2 then

∣∣∣χ
�N

(πSk)− χ
�N

(π0)
∣∣∣ < CLk

2

N‖πSk‖+1
, (6.21)

∣∣∣χ
�N

(πSk)
∣∣∣ < 2CL

N‖πSk‖ . (6.22)

Proof. Let d = d(L) ≥ 1 be a constant (which depends only on L) big enough
so that it guarantees that

L+ k ≤ dN.

By Fact 3.1, Lemma 6.8(a) and Lemma 5.3 we have

∣∣∣χ
�N

(πSk)− χ
�N

(π0)
∣∣∣ ≤

∑

σ∈Sk
σ 6=id

∣∣∣χ
�N

(π0σ)
∣∣∣ ≤

∑

σ∈Sk
σ 6=id

(
ad

N

)|π0σ|
≤

(
ad

N

)‖πSk‖

exp

(
adk2

2N

)
− 1


 =

(ad)‖πSk‖+1

2

k2

N‖πSk‖+1

exp
(
adk2

2N

)
− 1

adk2

2N

.

Since ex−1
x is a bounded function on the interval

(
0, ad2

]
, we get (6.21) as

required.
By (6.21) and Fact 3.1 we get

∣∣∣χ
�N

(πSk)
∣∣∣ < CLk

2

N‖πSk‖+1
+

(
ad

N

)|π0|
=

1

N‖πSk‖

(
CL

k2

N
+ (ad)‖πSk‖

)
.

It follows that we can increase the value of the constant CL in such a way that
both (6.21) and (6.22) are fulfilled.

6.5 Products of Jucys–Murphy elements

6.5.1 Set partitions

For calculations of the moments (6.2) and (6.3) we will need to better un-
derstand the sum of products

∑k
p=1 J

β
w+p. We will use similar concepts and

notions to the ones from [RŚ15, Section 4.9]. Notice that

Jβw+p =
∑

1≤j1,...,jβ≤w+p−1

(j1, w + p) · · · (jβ , w + p). (6.23)
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We denote the summands contributing to the right-hand side of (6.23) in
the following way. For any p and a sequence j = (j1, . . . , jβ) ∈ [w + p − 1]β

define
σp,j := (j1, w + p) · · · (jβ , w + p). (6.24)

We also denote

ZΣ(j) :=
{
r ∈ {1, . . . , β} : jr ≤ w

}
;

ZΠ(j) :=
{
r ∈ {1, . . . , β} : jr > w

}
.

The sets ZΣ(j) and ZΠ(j) indicate which elements of the sequence j are, re-
spectively, small and big. Notice that ZΣ ∪ ZΠ = {1, . . . , β} and, since ZΣ(j)
and ZΠ(j) are disjoint, ∣∣ZΣ(j)

∣∣ +
∣∣ZΠ(j)

∣∣ = β.

We consider the equivalence relation ∼ on ZΣ(j) (respectively, on ZΠ(j)) given
by

m ∼ n ⇐⇒ jm = jn.

We denote by Σ(j) and Π(j) the sets of the equivalence classes of the relation ∼
on, respectively, ZΣ(j) and ZΠ(j). Then the numbers of the equivalence classes

∣∣Σ(j)
∣∣ =

∣∣{j1, . . . , jβ} ∩ {1, . . . , w}
∣∣ ,

∣∣Π(j)
∣∣ =

∣∣{j1, . . . , jβ} ∩ {w + 1, . . . , w + k}
∣∣

indicate how many different small / big elements appear in the sequence j.

We say that A is a set a set-partition of X , and denote it by A ∈ SPar(X), if A
is a collection of disjoint non-empty subsets of X such that

⋃
A = X .

We call (A,B) a pair of complementary set-partitions of X if A ∪ B is a set-
partition of X such that

(⋃
A
)
∩
(⋃

B
)
= ∅.

This terminology may be a bit misleading since neither A nor B need to be
a set-partition of X . Note also that we allow the situations when A = ∅ or
B = ∅. For example, consider a sequence j ∈ [w + p − 1]β, then the pair(
Σ(j),Π(j)

)
is a pair of complementary set-partitions of [β].

For a pair (Σ,Π) of complementary set-partitions of [β] we will say that the
sequence j ∈ [w+ p− 1]β is of type (Σ,Π) if Σ = Σ(j) and Π = Π(j). If this is
the case, we will use a shorthand notation j ∈ (Σ,Π).

Lemma 6.10. Let p1, p2 ∈ {1, . . . , k} and s ∈ [w+p1−1]β, and t ∈ [w+p2−1]β.
Suppose that s and t are of the same type. Denote σ1 := σp1,s and σ2 := σp2,t.
Then

(a) There exists a permutation g ∈ Sw ×Sk such that g(w + p1) = w + p2
and g(sm) = tm for m ∈ {1, . . . , β};
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(b) Permutations σ1 and σ2 are conjugate by g, that is σ1 = g−1σ2g;

(c) ‖σ1Sk‖ = ‖σ2Sk‖.
Proof. Denote

A≤w := [w] \ {sm : m = 1, . . . , β};
B≤w := [w] \ {tm : m = 1, . . . , β}.

Since Σ(s) = Σ(t), we have
∣∣A≤w

∣∣ =
∣∣B≤w

∣∣, so there exists a bijection
δ1 : A≤w → B≤w. For the same reason, there exists a bijection δ2 : A>w → B>w
between analogously defined sets

A>w := {w + 1, . . . , w + k} \
(
{sm : m = 1, . . . , β} ∪ {w + p1}

)
;

B>w := {w + 1, . . . , w + k} \
(
{tm : m = 1, . . . , β} ∪ {w + p2}

)
.

Then g : Sw+k → Sw+k given by

g(x) :=





w + p2 if x = w + p1,

tm if x = sm for some m ∈ {1, . . . , β},
δ1(x) if x ∈ A≤w,

δ2(x) if x ∈ A>w

clearly fulfills the properties required in (a) and it is easy to check that (b)
indeed holds true.
In order to prove (c) it is enough to notice that (b) implies that σ1 and σ2 have
the same number of cycles permuting only small elements.

6.5.2 Inequalities concerning the character of Jβw+p

In the proof of Proposition 6.3 we will deal with the numbers of the form O(Nx)
where the exponent is given by the right-hand-side of (6.25). Our next aim is
to show that these exponents are always nonpositive and only in some special
cases are equal to 0.

Lemma 6.11. Let x1, x2, . . . ∈ {1, . . . , w+k} and y1, y2, . . . ∈ {w+1, . . . , w+k}
be infinite sequences. Define a function f : N0 → Z by

f(ℓ) := 2#
(
{x1, . . . , xℓ} ∩ {1, . . . , w}

)
+

#
(
{x1, . . . , xℓ} ∩ {w + 1, . . . , w + k}

)
−

‖(x1, y1) · · · (xℓ, yℓ)Sk‖ − ℓ. (6.25)

Then f ≤ 0 and f is weakly decreasing.

Moreover, suppose that ℓ ∈ N is such that xℓ+1 ∈ {x1, . . . , xℓ} and xℓ+1

and yℓ+1 belong to different cycles in the cycle decomposition of the product
(x1, y1) · · · (xℓ, yℓ). Then f(ℓ + 1) < f(ℓ) and, in particular, f(n) < 0 for all
n ≥ ℓ+ 1.
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Proof. Let ℓ be a non-negative integer; we will show that f(ℓ+ 1) ≤ f(ℓ).

Consider first the case xℓ+1 > w. Then

(x1, y1) · · · (xℓ+1, yℓ+1)Sk = (x1, y1) · · · (xℓ, yℓ)Sk

so

f(ℓ+ 1) =

{
f(ℓ)− 1 if xℓ+1 ∈ {xi : i ≤ ℓ},
f(ℓ) otherwise,

(6.26)

thus f(ℓ+ 1) ≤ f(ℓ), as required.

Assume now that xℓ+1 ≤ w. Our strategy is to compare the cycle decomposi-
tion of the products

(x1, y1) · · · (xℓ, yℓ) and (x1, y1) · · · (xℓ+1, yℓ+1) (6.27)

and to deduce in this way (via the definition (6.15)) the relationship between
the coset lengths

‖(x1, y1) · · · (xℓ+1, yℓ+1)Sk‖ and ‖(x1, y1) · · · (xℓ, yℓ)Sk‖.

Consider the following two cases.

• Suppose xℓ+1 /∈ {xi : i ≤ ℓ}. Then the cycle decomposition of the
permutation on the right-hand side of (6.27) arises from its counterpart
on the left-hand side by merging the fixpoint xℓ+1 with the cycle which
contains yℓ+1. It follows that

‖(x1, y1) · · · (xℓ+1, yℓ+1)Sk‖ = ‖(x1, y1) · · · (xℓ, yℓ)Sk‖+ 1

hence f(ℓ+ 1) = f(ℓ), as required.

• Suppose xℓ+1 ∈ {xi : i ≤ ℓ}. The cycle decomposition of the right-hand
side of (6.27) is obtained from its counterpart on the left-hand side either
by merging two cycles or by splitting one cycle into two cycles. Each
of these two operations can change the number of cycles which permute
only small elements by at most 1. It follows that

‖(x1, y1) · · · (xℓ+1, yℓ+1)Sk‖ ≥ ‖(x1, y1) · · · (xℓ, yℓ)Sk‖ − 1

so f(ℓ+ 1) ≤ f(ℓ), as required.

This completes the proof that f is weakly decreasing.
Since f(0) = 0 it follows that f ≤ 0 and the proof of the first part of the lemma
is complete.

We will prove the second part of the lemma by revisiting the above proof.
If xℓ+1 > w then by (6.26), f(ℓ) = f(ℓ− 1)− 1, as required.
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On the other hand, when xℓ+1 ≤ w the cycle decomposition of the right-hand
side of (6.27) is obtained from its counterpart on the left-hand side by merging
two cycles: the one containing xℓ+1 with the one containing yℓ+1. Therefore
the number of cycles which consist of only small elements at the right-hand
side of (6.27) is bounded from above by its counterpart for the left-hand side
of (6.27). Hence

‖(x1, y1) · · · (xℓ+1, yℓ+1)Sk‖ ≥ ‖(x1, y1) · · · (xℓ, yℓ)Sk‖

and so f(ℓ+ 1) ≤ f(ℓ)− 1, as required.

Corollary 6.12. Let x1, . . . , xℓ ∈ {1, . . . , w + k} and y1, . . . , yℓ ∈ {w +
1, . . . , w + k}. Denote

|Σ| := #
(
{x1, . . . , xℓ} ∩ {1, . . . , w}

)
;

|Π| := #
(
{x1, . . . , xℓ} ∩ {w + 1, . . . , w + k}

)
;

‖σSk‖ := ‖(x1, y1) · · · (xℓ, yℓ)Sk‖.

Then for N ≥ 1

N2 |Σ| k|Π| N−‖σSk‖−ℓ ≤
(
k

N

)|Π|
.

6.6 The mean value of Mβ – the proof of (6.2)

Proof of (6.2). Our goal is to calculate the expected value of the moment
Mβ(w, k) (recall Section 6.2). By Proposition 6.5,

E
P̃N
Mβ (w, k) =

1

PN

(
T̃ (w+1,w+k)
�N

) · 1
k
N−βχ

�N

(
J pSk

)
=

=
1

k! PN

(
T̃ (w+1,w+k)
�N

) · 1
k
N−βχ

�N
(JSk) (6.28)

where (recall the definition (6.24) of σp,j)

J :=

k∑

p=1

Jβw+p =

k∑

p=1

∑

j∈[w+p−1]β

σp,j ∈ CSw+k.

Since �N is C-balanced with C = 1, by Lemma 5.4 the denominator on the
right-hand side of (6.28) fulfills

k! PN

(
T̃ (w+1,w+k)
�N

)
= 1+ O

(
k2

N

)
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with the constant in the O-notation equal to c from Lemma 5.4. By Assump-
tion 6.1 the right hand side is separated from 0 and therefore

1

k! PN

(
T̃ (w+1,w+k)
�N

) = 1 +O

(
k2

N

)
. (6.29)

Equation (6.32) from Proposition 6.13 below provides the necessary asymp-
totics of the numerator and completes the proof of (6.2).

We consider an analogue of J in which each summand is replaced by the
minimal element of the appropriate coset

J0 := π0 (J ) =
k∑

p=1

∑

j∈[w+p−1]β

π0
(
σp,j

)
∈ CSw+k.

The following proposition provides the missing element of the above proof
of (6.2).

Proposition 6.13. Let β ∈ N be fixed. Let k,N ∈ N be such that N2 > w + k
and k2 < N . Then

χ
�N

(J0) = kNβ

[
EPNMβ(w, 1) +O

(
k

N

)]
; (6.30)

χ
�N

(JSk) = χ
�N

(J0) +O

(
kNβ k

2

N

)
; (6.31)

χ
�N

(JSk) = kNβ


EPNMβ(w, 1) +O

(
k2

N

)
 (6.32)

with the constants in the O-notation depending only on β.

The remaining part of this section is devoted to its proof.

6.6.1 Decomposition of χ
�N

(J0)

Denote

A :=
k∑

p=1

∑

j∈[w]β

χ
�N

(
π0
(
σp,j

))
;

and for a pair of complementary set-partitions (Σ,Π) of [β] let us also denote

B(Σ,Π) :=
k∑

p=1

∑

j∈(Σ,Π)

χ
�N

(
π0
(
σp,j

))
. (6.33)
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With these notations

χ
�N

(J0) = A+
∑

(Σ,Π)
Π 6=∅

B(Σ,Π). (6.34)

Notice that the number of summands is finite, depends only on β and does not
depend on N or k. Therefore, it is enough to find the asymptotics for each
individual summand on the right-hand side.

6.6.2 Asymptotics of A

By Lemma 6.8(b), π0
(
σp,j

)
= σp,j for all j ∈ [w]β . Since the character is

constant on each conjugacy class, the contribution of the summands in A to
the character is the same for each value of p and

A =

k∑

p=1

χ
�N


 ∑

j∈[w]β

σp,j


 = k · χ

�N

(
Jβw+1

)
.

We apply Proposition 6.5 for k = 1; in this special case pS1 = id and
χ

�N
(pS1) = 1, thus

A = k EPNu
β
w+1 = kNβ

EPNMβ(w, 1). (6.35)

6.6.3 Asymptotics of B(Σ,Π)

Let j ∈ [w + p− 1]β. By Lemma 6.8 the coset length

‖σp,jSk‖ ≤
∣∣σp,j

∣∣ ≤ β

is uniformly bounded from above by the number of factors in (6.24). By Fact 3.1
and Lemma 6.8 it follows that there exists a universal constant Cβ such that

∣∣∣∣χ�N

(
π0
(
σp,j

))∣∣∣∣ ≤ CβN
−‖σp,jSk‖

holds true for each j ∈ [w + p− 1]β .
Let us fix a pair (Σ,Π) of complementary set-partitions of [β]. The number of
the summands on the right-hand side of (6.33) is equal to the following sum of
falling factorials

k∑

p=1

(w)|Σ| · (p)|Π| ≤ N2|Σ| k|Π|+1.

By combining these observations with Corollary 6.12 we conclude that

∣∣∣B(Σ,Π)
∣∣∣ ≤ CβN

−‖σp,jSk‖ ·N2|Σ| k|Π|+1 ≤ Cβ kN
β

(
k

N

)|Π|
. (6.36)
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The last two arguments imply also that for any p ∈ {1, . . . , k}

∑

j∈(Σ,Π)

k2

N‖σp,jSk‖+1
≤ k2

N
Nβ

(
k

N

)|Π|
. (6.37)

6.6.4 Proof of Proposition 6.13

Proof of Proposition 6.13. The asymptotics of the summands which contribute
to the right-hand side of (6.34) is provided by the equality (6.35) and the
estimate (6.36) (for pairs (Σ,Π) of complementary set-partitions of [β] with
Π 6= ∅). In this way the proof of (6.30) is complete.

By Proposition 6.9 there exists Hβ > 0 such that

∣∣∣χ
�N

(JSk)− χ
�N

(J0)
∣∣∣ ≤ Hβ

k∑

p=1

∑

j∈[w+p−1]β

k2

N‖σp,jSk‖+1
. (6.38)

The summands on the right-hand side can be grouped according to the type
(Σ,Π) of the sequence j. For a fixed value of β there are only finitely many
possible types, and the total contribution of the sequences j of a specific type
(Σ,Π) is bounded from above by (6.37) which completes the proof of (6.31).

Equation (6.32) is a direct consequence of (6.30) and (6.31).

6.7 The variance of Mβ – the proof of (6.3)

We will mimic the concepts from Section 6.6, however, the calculations will be
more involved.

Proof of (6.3). We first calculate the second moment of Mβ. By Proposi-
tion 6.5 and then (6.29)

E
P̃N
Mβ(w, k)

2 =
1

k! PN

(
T̃ (w+1,w+k)
�N

) · 1

k2
N−2βχ

�N

(
J 2

Sk

)
=


1 +O

(
k2

N

)
 1

k2
N−2βχ

�N

(
J 2

Sk

)
(6.39)

where (recall the definition (6.24) of σp,j)

J 2 :=




k∑

p=1

Jβw+p




2

=

k∑

p1,p2=1

∑

s∈[w+p1−1]β

t∈[w+p2−1]β

σp1,sσp2,t ∈ CSw+k.
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Equation (6.42) from Proposition 6.14 below provides the necessary asymp-
totics of the numerator in (6.39) and gives us

E
P̃N
Mβ(w, k)

2 =
1

k
EPNM2β(w, 1) +

(
1− 1

k

)(
EPNMβ(w, 1)

)2
+O

(
k2

N

)

with the constant in the O-notation depending only on β. By (6.2) we finally
get

Var
P̃N
Mβ(w, k) = E

P̃N
Mβ(w, k)

2 −
(
E
P̃N
Mβ(w, k)

)2
=

1

k

[
EPNM2β (w, 1)−

(
EPNMβ (w, 1)

)2]
+O

(
k2

N

)
= O

(
1

k
+
k2

N

)

with the constant in the O-notation depending only on β. This completes the
proof of (6.3) (and Proposition 6.3).

We consider an analogue of J 2 in which each summand is replaced by the
minimal element of the appropriate coset

J 2
∗ := π0

(
J 2
)
=

k∑

p1,p2=1

∑

s∈[w+p1−1]β

t∈[w+p2−1]β

π0
(
σp1,sσp2,t

)
∈ CSw+k.

The following proposition provides the missing component of the above proof
of (6.3).

Proposition 6.14. Let β ∈ N and k,N ∈ N be such that N2 ≥ w + k and
k2 < N . Then

χ
�N

(
J 2
∗

)
= k2N2β

[
1

k
EPNM2β (w, 1)+

(
1− 1

k

)(
EPNMβ(w, 1)

)2
+O

(
k

N

)]
; (6.40)

χ
�N

(
J 2

Sk

)
= χ

�N

(
J 2
∗

)
+O

(
k2N2β k

2

N

)
; (6.41)

χ
�N

(
J 2

Sk

)
= k2N2β

[
1

k
EPNM2β (w, 1)+

(
1− 1

k

)(
EPNMβ(w, 1)

)2
+O

(
k2

N

)]
(6.42)

with the constants in the O-notation depending only on β.

The remaining part of this section is devoted to its proof.
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6.7.1 Decomposition of χ
�N

(
J 2
∗
)

For any p1, p2 ∈ {1, . . . , k} denote

Pp1,p2(β) := [w + p1 − 1]β × [w + p2 − 1]β

and let

A :=

k∑

p=1

∑

s,t∈[w]β

χ
�N

(
π0
(
σp,sσp,t

))
;

Let us define the concatenation of sequences a = (a1, . . . , ax) and b =
(b1, . . . , by) as the sequence a ⊔ b := (a1, . . . , ax, b1, . . . , by). For any pair
of complementary set-partitions (Σ,Π) of the set [2β] let us denote

B(Σ,Π) :=

k∑

p1,p2=1

∑

(s,t)∈Pp1,p2(β),

s⊔t∈ (Σ,Π)

χ
�N

(
π0
(
σp1,sσp2,t

))
(6.43)

and if Σ is a set-partition of [2β] denote

CΣ :=
∑

p1,p2∈{1,...,k},
p1 6=p2

∑

s,t∈[w]β,
s⊔t∈(Σ,∅)

χ
�N

(
π0
(
σp1,sσp2,t

))
. (6.44)

With these notations

χ
�N

(
J 2
∗

)
= A+

∑

(Σ,Π)
Π 6=∅

B(Σ,Π) +
∑

Σ

CΣ. (6.45)

Notice that the number of summands on the right hand side of (6.45) is finite,
depends only on β and does not depend on N or k. Therefore, it is enough to
find the asymptotics for each individual summand on the right-hand side.

6.7.2 Asymptotics of A

We proceed in the same way as in Section 6.6.2 to get an exact formula

A = kN2β
EPNM2β(w, 1). (6.46)

6.7.3 Asymptotics of B(Σ,Π)

We follow the lines from Section 6.6.3.
Let us fix some pair (Σ,Π) of complementary set-partitions of [2β]. By Fact 3.1
and Lemma 6.8 there exists Cβ > 0 such that each summand corresponding to
(s, t) ∈ Pp1,p2(β) such that s ⊔ t ∈ (Σ,Π) fulfills the asymptotic bound

∣∣∣∣χ�N

(
π0
(
σp1,sσp2,t

))∣∣∣∣ ≤ CβN
−‖σp1,sσp2,tSk‖.
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On the other hand, the number of the summands on the right-hand side
of (6.43) is bounded from above by

k∑

p1,p2=1

w|Σ| ·max{p1, p2}|Π| ≤ N2|Σ| k|Π|+2.

By combining these observations with Corollary 6.12 used for the concatenated
sequence s ⊔ t we conclude that

∣∣∣B(Σ,Π)
∣∣∣ ≤ Cβ k

2N2β

(
k

N

)|Π|
. (6.47)

The last two arguments imply also that

k∑

p1,p2=1

∑

(s,t)∈Pp1,p2(β),

s⊔t∈ (Σ,Π)

k2

N‖σp1,sσp2,tSk‖+1
≤ k2

N
· k2N2β

(
k

N

)|Π|
. (6.48)

These estimations show that if a pair (Σ,Π) of complementary set-partitions of
[2β] is such that Π 6= ∅ then the contribution of B(Σ,Π) to (6.45) is of relatively
small order.

6.7.4 Asymptotics of CΣ. Connected set-partitions of [2β]

We will need to be much more subtle in calculating (and estimating) the sum-
mand CΣ. We will treat the summand CΣ in two different ways depending on
the structure of Σ.
Let Σ be a set-partition of [2β]. We say that Σ is connected if there exists a
block π ∈ Σ which contains simultaneously some element of the set {1, . . . , β}
and some element of the set {β + 1, . . . , 2β}, that is formally, π ∩ [β] 6= ∅ and
π ∩ {β + 1, . . . , 2β} 6= ∅. Each such a block π ∈ Σ will be called a link. If Σ
does not have any links then we say that Σ is disconnected.

6.7.5 Asymptotics of CΣ for connected Σ

Let us fix a connected set-partition Σ of [2β]. We set

nΣ := min
{
i ∈ {β + 1, . . . , 2β} : ∃π∈Σ (i ∈ π and π is a link in Σ)

}
.

In other words, nΣ indicates the least number i > β belonging to some link π
of Σ.
Notice that for distinct p1, p2 and a pair of sequences (s, t) such that s ⊔ t ∈
(Σ, ∅) the assumptions of the second part of Lemma 6.11 are fulfilled for the se-
quences (xi) = s ⊔ t and (yi) = (p1, . . . , p1, p2, . . . , p2), and ℓ := β + nΣ − 1.
Therefore an inequality

2 |Σ| − ‖σp1,sσp2,tSk‖ − 2β ≤ −1
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holds for any (s, t) such that s ⊔ t ∈ (Σ, ∅) with Σ connected.
We now follow the lines in Section 6.7.3 to get the upper bound

∣∣∣CΣ
∣∣∣ ≤ Cβ (k2 − k)N2β−1 (6.49)

which holds for each connected set-partition Σ of the set [2β]. This shows that
the contribution of CΣ with connected Σ to (6.45) is of relatively small order.

6.7.6 Asymptotics of CΣ for disconnected Σ

We will show that

∑

Σ:
Σ is disconnected

CΣ = (k2 − k)N2β

((
EPNMβ(w, 1)

)2
+O

(
N−2

))
(6.50)

with the constant in the O-notation depending only on β.
Recall that the CΣ, defined in (6.44), is the sum of characters χ

�N
evaluated on

the minimal permutations π0
(
σp1,sσp2,t

)
. When Σ is disconnected and p1 6= p2,

in the permutation σp1,sσp2,t each cycle permutes at most one big element, so
by Lemma 6.8(b) σp1,sσp2,t is the minimal permutation. Hence whenever Σ is
disconnected

CΣ =
∑

p1,p2∈{1,...,k},
p1 6=p2

∑

s,t∈[w]β,
s⊔t∈(Σ,∅)

χ
�N

(
σp1,sσp2,t

)
.

For any set partition Σ of [2β] let us define

C̃Σ :=
∑

p1,p2∈{1,...,k},
p1 6=p2

∑

s,t∈[w]β,
s⊔t∈(Σ,∅)

χ
�N

(
σp1,s

)
χ

�N

(
σp2,t

)
.

Then by Proposition 6.5 applied twice for k = 1

∑

Σ

C̃Σ =
∑

p1,p2∈{1,...,k},
p1 6=p2


 ∑

s∈[w]β

χ
�N

(
σp1,s

)



 ∑

t∈[w]β

χ
�N

(
σp2,t

)

 =

(k2 − k)N2β
(
EPNMβ(w, 1)

)2
. (6.51)

Our aim is to show that (6.51) is a good approximation for the left-hand-side
of (6.50).

By Fact 3.2 there exists a constant Kβ > 0 which depends only on β (in
particular it does not depend on N or k) such that for any distinct p1, p2 and
a pair of sequences (s, t) such that s ⊔ t ∈ (Σ, ∅) with Σ disconnected
∣∣∣χ

�N

(
σp1,sσp2,t

)
− χ

�N

(
σp1,s

)
χ

�N

(
σp2,t

)∣∣∣ ≤ Kβ

(
N−|σp1,s|−|σp2,t|−2

)
.
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Let us denote for any set-partition Σ of [2β]

RΣ :=
∑

p1,p2∈{1,...,k},
p1 6=p2

∑

s,t∈[w]β,
s⊔t∈(Σ,∅)

N−|σp1,s|−|σp2,t|−2.

With the introduced notation the following inequality holds

∣∣∣∣∣∣∣∣

∑

Σ

C̃Σ −
∑

Σ:
Σ is disconnected

CΣ

∣∣∣∣∣∣∣∣
≤

∑

Σ:
Σ is disconnected

KβR
Σ +

∑

Σ:
Σ is connected

∣∣∣C̃Σ
∣∣∣ .

(6.52)
We now investigate the asymptotics of the sums on the right-hand-side
of (6.52).

6.7.7 Asymptotics of the right-hand-side of (6.52)

Observe that if Σ is connected and (s, t) is a pair of sequence such that s⊔ t ∈
(Σ, ∅) then

|Σ| = |Σ(s ⊔ t)| ≤ |Σ(s)|+ |Σ(t)| − 1.

We follow the lines from Section 6.6.3 to get the upper bound

∣∣∣C̃Σ
∣∣∣ ≤ C2

β (k2 − k)N2β−2 (6.53)

for any connected Σ with universal constant Cβ > 0 depending only on β.
On the other hand, by Lemma 6.8(b) and (6.37) for any set-partition Σ of [2β]

RΣ ≤ (k2 − k)


 ∑

s∈[w]β

N−|σp1,s|−1



2

≤ (k2 − k)N2β−2. (6.54)

Inserting approximations (6.53) for connected Σ and (6.54) for disconnected Σ
into (6.52) and taking into account (6.51) proves (6.50).

6.7.8 Asymptotics of the sum
∑

Σ

CΣ

By (6.49) and (6.50) we get

∑

Σ

CΣ = (k2 − k)N2β

((
EPNMβ(w, 1)

)2
+O

(
N−1

))
. (6.55)
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6.7.9 Finishing the proof of Proposition 6.14

Proof of Proposition 6.14. Inserting the equality (6.46) and approximations
(6.47) (for complementary set-partitions (Σ,Π) with Π 6= ∅) and (6.55) into
(6.45) we conclude that (6.40) holds true.
By Proposition 6.9 there exists Cβ > 0 such that

∣∣∣∣χ�N

(
J 2

Sk

)
− χ

�N

(
J 2
∗

)∣∣∣∣ ≤ Cβ

k∑

p1,p2=1

∑

(s,t)∈Pp1,p2(β)

k2

N‖σp1,sσp2,tSk‖+1
.

(6.56)
The summands on the right-hand side can be grouped according to the types
(Σ,Π) of the sequences s⊔ t. By (6.48) the right-hand side of (6.56) estimates
by k2

N k2N2β which ends the proof of (6.41).
Equation (6.42) is a direct consequence of (6.40) and (6.41).

This finishes the proof of Proposition 6.3

6.8 Proof of Theorem 6.2

The proof is based on [RŚ15, Section 4.10]. We start with a general fact.

Lemma 6.15. Let ε > 0 and µ be a compactly supported probability measure
on R. Let x ∈ R be a continuity point of the cumulative distribution function
Fµ of µ. Then there exist δ > 0 and an integer A > 0 with the following
property:
if m is a probability measure on R such that its moments (up to order A) are
δ-close to the moments of µ then

∣∣Fµ(x)− Fm(x)
∣∣ ≤ ε

where Fm is the cumulative distribution function of m.

Proof. If this would not be the case, there would exist a sequence of probability
measures which converges to µ in moments, but would not converge to µ in the
weak topology of probability measures. This is not possible, since µ is com-
pactly supported and therefore uniquely determined by its moments [Dur10,
Section 3.3.5].

We now prove Theorem 6.2.

Proof of Theorem 6.2. We mimic the proof of [RŚ15, Theorem 4.1]. Pittel and
Romik [PR07, Theorem 2] found explicitly the limit distribution να which de-
scribes the u-coordinate of the (scaled) position of the box with the entry ⌊αN2⌋
in a uniformly random tableau TN ∈ T�N

as the semicircle distribution (2.4)
(recall Section 2.3). In our setting this result describes the u-coordinate of the
surfer after draining 1 − α fraction of water. Since ‘the amount of remaining
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water w’ is such that w
N2 → α, the β-th moment γβ of the distribution να

equals

γβ :=

∫
xβ dνα(x) = lim

N→∞
EPNMβ(w, 1).

By Proposition 6.3 we get using Chebyshev’s inequality that for any ε > 0 and
β ∈ N

PT̃ (w+1,w+k)

�N

(∣∣Mβ(w, k)− γβ
∣∣ > ε

)
= O

(
1

k
+
k2

N

)
.

The cumulative distribution function Fνα of the semicircle measure να is con-
tinuous and therefore any x ∈ R is its continuity point. Let x ∈ R and let A
and δ be the constants given by Lemma 6.15. Then by the union bound

PT̃ (w+1,w+k)

�N

{ ∣∣Fνα(x)−GN (x)
∣∣ > ε

}
≤

A∑

β=1

PT̃ (w+1,w+k)

�N

(∣∣Mβ(w, k)− γβ
∣∣ > δ

)
= O

(
1

k
+
k2

N

)
(6.57)

with the constant in the O-notation depending only on ε.

For the proof of Theorem 6.2 we need to obtain the uniform version of (6.57)
in which the event on the left hand side is taken with supremum over x ∈ R.
This can be easily done by choosing a finite set X ⊆ R with the property that
its image Fνα is an ǫ-net for the interval [0, 1]; such a set exists because Fνα is
continuous. The pointwise result (6.57) implies that the following estimate for
the supremum over the finite set X holds true:

PT̃ (w+1,w+k)

�N

{
MN : sup

x∈X

∣∣Fνα(x)−GN (x)
∣∣ > ε

}
= O

(
1

k
+
k2

N

)
. (6.58)

Let x1 < · · · < xℓ be the elements of X . The assumption about the set X
implies that

Fνα(x1) < ǫ, Fνα(xi+1) < Fνα(xi) + 2ǫ, Fνα(xℓ) > 1− ǫ. (6.59)

The elements of X divide the real line into ℓ+ 1 intervals:

(−∞, x1], [x1, x2], . . . , [xℓ−1, xℓ], [xℓ,∞).

By considering each interval separately, using monotonicity of the cumulative
distribution function Fνα and the monotonicity of GN , as well as (6.59) it
follows that

sup
x∈R

∣∣Fνα(x)−GN (x)
∣∣ < 2ǫ+ sup

x∈X

∣∣Fνα(x) −GN (x)
∣∣ .

In this way (6.58) completes the proof.
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7 Proof of Theorem 4.1

The current section is devoted to the proof of Theorem 4.1.

7.1 Overtaking only in one direction

We start with a precise statement of the heuristic ideas from Section 4.4.4.

Lemma 7.1. Fix k, n ∈ N. Let tableaux T ∈ Tµ of shape µ with n+1 boxes and

M ∈ T̃ (n+1,n+k)
ν of shape ν with n+ k boxes be such that

T |≤n =M |≤n.
If 1 ≤ p ≤ k is such that

posT (n+ 1) � posM (n+ p) � · · · � posM (n+ k)

then jeu de taquin preserves the latter relations, that is

posj(T )(n+ 1) � posj(M)(n+ p) � · · · � posj(M)(n+ k).

Proof. Clearly, j(T )
∣∣
≤n = j(M)

∣∣
≤n. Notice also that the boxes in jeu de taquin

paths for tableaux T and M match at least to the boxes ≤ n. As mentioned
in Section 4.2, j(M) is a k-Pieri tableau, so

posj(M)(n+ p) � · · · � posj(M)(n+ k)

and therefore it remains to prove that

posj(T )(n+ 1) � posj(M)(n+ p). (7.1)

We consider the following two cases:

1. The box n + 1 in T slid during jeu de taquin, i.e., posT (n+ 1) 6=
posj(T )(n+ 1). Consider two subcases:

1a) The box n + 1 in T slid to the left; in this case it does not matter
how (and if) the box n+ p in M slid and (7.1) holds.

1b) The box n+1 in T slid to the bottom. Then we use the assumption
that M is k-Pieri to show that if posM (n + p) = posT (n + 1) then
n + p in M also slid to the bottom and (7.1) holds. On the other
hand if posT (n+1) ≺ posM (n+p) then the box n+p in M must be
strictly to the right of n+ 1 in T and it does not matter if it slides
or not, so (7.1) also holds.

2. The box n+1 in T did not slide, i.e., posT (n+1) = posj(T )(n+1). In this
case, the sliding path in T ends on some box ≤ n which is strictly left-top
or strictly right-bottom to the posT (n + 1). Hence, if posT (n + 1) =
posM (n + p) then the box n + p in M does not slide. Otherwise, (by
the initial relation) it must be strictly to the right (and weakly to the
bottom) of posT (n+ 1) and it does not matter if it slides or not. All in
all, (7.1) holds.
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7.2 Relative position of the surfer

We recommend the reader to recall the notions in Section 4 and heuristics for
the proof of Theorem 4.1 in Section 4.4.
Let 0 < t1 < t2 < 1 and denote

w := ⌈(1 − t1)N
2⌉ − 1.

Let k be a positive integer such that w + k ≤ N2. By Proposition 5.1 used for
C = 1, ∆ = t1, a = w and λ = �N there exists a pair of random tableaux T,
M defined on the same probability space with the following properties:

(A1) T is a uniformly random element of T�N
;

(A2) M is a random element of T̃ (w+1,w+k)
�N

sampled according to the distri-
bution which fulfills the following total variation distance bound

δ

(
M,PT̃ (w+1,w+k)

�N

)
≤ d

k2√
N2 − w

for some universal constant d > 0 which depends only on t1;

(A3) T
∣∣
≤w = M

∣∣
≤w holds true almost surely.

Since the dual promotion ∂∗ is a bijection, by (A1) the tableau T|≤w+1 has the
same distribution as the initial configuration of the single surfer T ′

N (see (4.5))
and by (A2) the tableau M

∣∣
≤w+k

has approximately the same distribution
(up to the total variation distance in (A2)) as the initial configuration of the
multisurfers M ′

N (see (4.11)). Moreover, by (A3) the initial configurations of
water are the same for both stories. Therefore we will refer to the box w + 1
in T as the surfer and to the boxes w+ 1, . . . , w+ k in M as the multisurfers.
Recall that the definition (6.1) of the random variableGN (u) depends implicitly
on the choice of the tableauMN . For an integer 0 ≤ q ≤ w we denote by GqN (u)
this random variable obtained by substituting MN with jq(M). We underline
here that MN and jq(M) need not have the same distribution. We also define
G̃ q
N to be the fraction of the multisurfers which are to the left of the surfer,

more precisely

G̃ q
N := GqN

(
1

N
u
jq(T)
w+1

)
=

1

k
max

{
p ∈ {1, . . . , k} : u

jq(M)
w+p ≤ u

jq(T)
w+1

}
. (7.2)

The following proposition gives a relation between G̃ q
N and the theoretical

longitude of the surfer on the common probability space of the surfer and
multisurfers defined in the beginning of this section.

Proposition 7.2. Let s ≥ 0 and t > 0 be such that s + t < 1. Let w(N) =
⌈(1 − t)N2⌉ − 1 for N ∈ N and let k = k(N) fulfill Assumption 6.1. Let
q = q(N) be a sequence of non-negative integers such that

0 ≤ q(N) ≤ ⌊(1− t)N2⌋ and lim
N→∞

q

N2
= s.
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Then for any ε > 0

P


(T,M) :

∣∣∣∣∣G̃
q
N − Fν

1−t−s

(
1

N
u
jq(T)
w+1

)∣∣∣∣∣ > ε


 = O

(
1

k
+
k2

N

)

and the constant in the O-notation depends only on s, t+ s and ε.

Proof. By Equation (7.2)

P


(T,M) :

∣∣∣∣∣G̃
q
N − Fν

1−t−s

(
1

N
u
jq(T)
w+1

)∣∣∣∣∣ > ε


 =

P


(T,M) :

∣∣∣∣∣G
q
N

(
1

N
u
jq(T)
w+1

)
− Fν

1−t−s

(
1

N
u
jq(T)
w+1

)∣∣∣∣∣ > ε


 .

The latter is bounded from above by

P

(
(T,M) : sup

x∈R

∣∣∣GqN (x)− Fν
1−t−s

(x)
∣∣∣ > ε

)
. (7.3)

The random event in (7.3) is expressed purely in terms of the random
tableau jq(M) and does not involve the random tableau T. For this reason the
probability in (7.3), due to the condition (A2) on page 2245 and the bijectivity
of the dual promotion ∂∗, is equal to

PT̃ (w−q+1,w−q+k)

�N

(
MN : sup

x∈R

∣∣∣GN (x)− Fν
1−t−s

(x)
∣∣∣ > ε

)
+O

(
k2

N

)

with the constant in the O-notation depending only on t. Since lim w−q
N2 =

1− t− s > 0 we can apply Theorem 6.2 which completes the proof.

7.3 Proof of the upper bound (4.2) in Theorem 4.1

Let k = k(N) be such that k(N) → ∞ and k(N) = o(
√
N), i.e., (4.10) is satis-

fied. We will use the results from Section 7.2 to prove the upper bound (4.2).
Let q := ⌊t2N2⌋ − ⌊t1N2⌋. Recall that w = ⌈(1− t1)N

2⌉ − 1 (cf. Section 7.2).
By (A1) from Section 7.2 we can translate the probability on the left-hand-side
of (4.2) into the setting of T in the following way

PN

(
T ∈ T�N

: Ψth
N (t2)−Ψth

N (t1) > ε
)
=

P

(
(T,M) : Fν

1−t2

(
1

N
u
jq(T)
w+1

)
− Fν

1−t1

(
1

N
uTw+1

)
> ε

)
;

note that the event on the right-hand side does not involve the tableau M. The
latter probability can be estimated from above via the union bound by the sum
of probabilities of the following three events:
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• the fraction of the multisurfers in the final position (i.e., in time t2) which
are to the left of the surfer is ‘unusually small’, that is

A :=

{
(T,M) : Fν

1−t2

(
1

N
u
jq(T)
w+1

)
− G̃ q

N >
ε

2

}
;

• the number of the multisurfers which are to the left of the surfer increases
over time, more precisely

B :=
{
(T,M) : G̃ q

N − G̃ 0
N > 0

}
;

• the fraction of the multisurfers in the initial position (i.e, in time t1)
which are to the left of the surfer is ‘unusually big’, that is

C :=

{
(T,M) : G̃ 0

N − Fν
1−t1

(
1

N
uTw+1

)
>
ε

2

}
.

By Proposition 7.2 the probabilities of the events A and C are of order

O
(

1
k + k2

N

)
. By Lemma 7.1 the event B = ∅ is impossible. The choice of

the sequence k as in the beginning of this subsection implies that the upper
bound (4.2) holds.

7.4 Proof of the lower bound (4.3) in Theorem 4.1

For any Young diagram λ and tableau T ∈ Tλ we will denote by λtr and T tr,
respectively, the diagram and the tableau obtained by a transposition of the
diagram λ and the tableau T .
The transposition of tableaux gives a natural bijection between the sets Tλ and
Tλtr of standard tableaux, respectively, of shape λ and its transpose λtr. More-
over, under the transposition the u-coordinate of the given box in a standard
tableau T changes its sign, namely for any n ∈ {1, . . . , |T |}

uTn = −uT tr

n . (7.4)

In particular, the u-coordinate of the surfer u(Xt) changes its sign under the
transposition, i.e., u(Xt) = −u(Xtr

t ) where Xtr
t denotes the position of the

surfer in the transposed tableau T tr.
Recall that for any α ∈ (0, 1) by να we denote the limit measure found by Pittel
and Romik on the circle of latitude α, see Section 2.3. The pushforward of the
measure να under the involution R ∋ z 7→ −z is a measure ν̃α which fulfills the
following equality

ν̃α
(
(−∞, u]

)
= να

(
[−u,∞)

)
for all u ∈ R. (7.5)

Notice that by (7.4) the measure ν̃α is the limit measure on the circle of lati-
tude α for the transposed sequence of Young diagrams (�tr

N). (Clearly, in the
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case of square Young diagram �tr
N = �N and να = ν̃α, however, we proceed

the proof as for a general, not only square, shape.)
Let us denote the position of the surfer in the transposed tableau by X∗

t ,
cf. (2.5), and the theoretical longitude of the surfer in the transposed tableau
by η, i.e.,

η(t) := Fν̃1−t

(
u(X∗

t )
)

for t ∈ [0, 1].

Observe that by (7.5) and the continuity of Fν1−t

η(t) = 1− Fν1−t

(
−u(X∗

t )
)
. (7.6)

Equation (4.2) applied to the transposed tableaux gives

lim
N→∞

PN

{
T ∈ T�tr

N
: η(t2)− η(t1) > ε

}
= 0.

On the other hand by (7.6) and then (7.4) we get

η(t2)− η(t1) =
[
1− Fν1−t2

(
−u(X∗

t2)
)]

−
[
1− Fν1−t1

(
−u(X∗

t1)
)]

=

Fν1−t1

(
u
(
(X∗

t1)
tr
))

− Fν1−t2

(
u
(
(X∗

t2)
tr
))
.

Since (X∗
t )

tr reflects the position of the surfer in the original (not-transposed)
tableau we have

η(t2)− η(t1) = Ψth
N (t1)−Ψth

N (t2).

Since we consider the uniform distribution on the set of tableaux, this ends the
proof of the lower bound (4.3) and completes the proof of Theorem 4.1.

8 Proof of Theorem 2.3

8.1 Plan for the proof of Theorem 2.3

We will make the following steps in the proof of Theorem 2.3:

(S1) Pick a candidate for the random variable ΨN : T�N
→ [0, 1].

(S2) Prove a pointwise version of Theorem 2.3: with the help of Lemma 8.1
and Theorem 4.1 we will show that the chosen candidate gives a good
approximation of surfer’s position for an arbitrary t ∈ (0, 1), i.e.,

∀t∈(0,1) lim
N→∞

PN

(
TN ∈ T�N

:
∣∣∣Xt(TN)− P1−t,ΨN (TN )

∣∣∣ > ε

)
= 0.

(8.1)
The proof will be given in Section 8.5.
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(S3) Prove the full (i.e., the original) version of Theorem 2.3, i.e.,

lim
N→∞

PN

(
TN ∈ T�N

: sup
t∈[0,1]

∣∣∣Xt(TN )− P1−t,ΨN (TN )

∣∣∣ > ε

)
= 0.

We will start with a finite ε-net of the family of level curves {hα : α ∈
[0, 1]} parameterized by 0 = α0 < α1 < · · · < αp < αp+1 = 1. By the pre-
vious point, (8.1) holds uniformly for t ∈ {α0, . . . , αp+1} in a finite set.
Then for the intermediate moments of time αi < t < αi+1 we will use
the monotonicity of the sliding path and in this way justify that (8.1)
holds uniformly over t ∈ (0, 1). This proof will be given in Section 8.6.

In the very end, in Section 8.7, we will show that the probability distribution
of the random variable ΨN converges to the uniform distribution on the unit
interval [0, 1].

8.2 Auxiliary notation

In the proof we will switch between the position of the surfer in the XY and
the UV coordinate systems as well as in the geographic coordinates. For any
t ∈ (0, 1) let us introduce the notation for the true and the theoretical u− and
v−coordinate; namely we define the following functions T�N

→ R by

ut := u(Xt) ,

vt := v(Xt)
and

utht :=
(
Fν

1−t

)−1(
Ψth
N (t)

)
,

vtht := h1−t
(
utht
)

(recall that Ψth
N (t) = Fν

1−t
(ut), cf. (4.1), and see Section 2.2 for the definition

of ht). Denote additionally for any t ∈ [0, 1]

(xt, yt) := Xt and
(
xtht , y

th
t

)
:=

(
vtht − utht

2
,
utht + vtht

2

)
.

8.3 The surfer’s position can be asymptotically recovered from
the theoretical longitude

We start with the result which shows that, in principle, it is possible to recover
the the true position of the surfer Xt in the time t ∈ (0, 1) from its theoretical
longitude Ψth

N (t).

Lemma 8.1. Let 0 < t < 1. For any ε > 0

lim
N→∞

PN

(
TN ∈ T�N

: ut(TN ) 6= utht (TN )
)
= 0 (8.2)

and

lim
N→∞

PN

(
TN ∈ T�N

:
∣∣∣vt(TN)− vtht (TN )

∣∣∣ > ε

)
= 0. (8.3)
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Proof. Let 0 < t < 1 and ε > 0. We start with the proof of (8.2). Recall
that the position of the surfer Xt corresponds to the position of the box with
the number ⌈(1− t)N2⌉ in the tableau (∂∗)⌊tN

2⌋(TN ), cf. (2.5), and so by
[PR07, Theorem 2] the random variable ut converges in distribution to the
measure ν1−t which has no atoms and has a compact connected support

supp(ν1−t) =
[
−2
√
t(1− t), 2

√
t(1− t)

]
.

Observe that since ν1−t has no atoms, whenever ut ∈ supp(ν1−t) then by the
definition

utht = F−1
ν
1−t

(
Ψth
N (t)

)
= ut. (8.4)

On the other hand, by portmanteau theorem [Bil99, Theorem 2.1]

PN

(
TN ∈ T�N

: ut(TN ) ∈ supp(ν1−t)
) N→∞−−−−→ 1 (8.5)

since supp(ν1−t) is the ν1−t-continuity set. A conjunction of (8.4) and (8.5)
proves (8.2).

Equation (8.3) follows from the result of Biane [Bia98, Theorem 1.5.1]. We
will shortly describe it here, but the more developed discussion and precise
statements formulated using our notation are placed in Section 10.
The boundary of a Young diagram λ seen in the (u, v)-coordinate system
can be viewed as a non-negative 1-Lipschitz function ωλ, see Figure 14. The
function ωλ is initially defined on the interval I given by the range of the u-
coordinates of λ, but it can be extended to a function defined on the real line R

by gluing ωλ|I with the modulus function x 7→ |x|. This extended function
ωλ : R → R+ is called the profile of λ, cf. Section 10.1.
The restriction T |≤⌈(1−t)N2⌉ of the random tableau T has a (random) shape

λ1−t := shT |≤⌈(1−t)N2⌉

whose (random) profile ωλ1−t is such that the following equality in terms of the
u- and v-coordinates of the surfer (in time t) holds true:

vt(TN ) = ωλ1−t

(
ut(TN)

)
.

On the other hand if ut(TN ) = utht (TN ) then

vtht (TN ) = h1−t(u
th
t (TN )) = h1−t(ut(TN)).

We proved in (8.2) that the set of tableaux TN ∈ T�N
for which ut(TN ) =

utht (TN ) has asymptotically full probability. Therefore with asymptotically full
probability the following inequality holds

∣∣∣vt(TN)− vtht (TN )
∣∣∣ ≤ sup

x∈R

∣∣ωλ1−t(x) − h1−t(x)
∣∣ . (8.6)

By the aforementioned result [Bia98, Theorem 1.5.1] (see Proposition 10.1 for
the precise general statement) the right-hand-side of (8.6) converges in proba-
bility to 0. This completes the proof of (8.3) and Lemma 8.1.
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Figure 14: A Young diagram λ = (4, 3, 1) shown in the Russian convention.
The blue solid line represents its profile ωλ. The (u, v)-coordinate system cor-
responding to the Russian convention and the XY - coordinate system corre-
sponding to the French convention are shown.

8.4 A candidate for the random variable ΨN (TN ), development of
(S1)

Pick any t0 ∈ (0, 1) and define for TN ∈ T�N

ΨN(TN ) := Ψth
N (t0)(TN ).

We will show that the random variable ΨN has the desired properties from
Theorem 2.3.
For any t ∈ [0, 1] we define the approximated u- and v-coordinate of the surfer
as

uΨt :=
(
Fν

1−t

)−1

(ΨN) ,

vΨt := h1−t
(
uΨt

)
.

These definitions were chosen in such a way that that the approximated position
of the surfer in the XY coordinate system

(
xΨt , y

Ψ
t

)
:=

(
vΨt − uΨt

2
,
uΨt + vΨt

2

)
= P1−t,ΨN (TN )

is the point which appears in the statement of Theorem 2.3 and Eq. (8.1).
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With this notation the expression in the modulus in the event in (8.1) takes
the form

∣∣∣Xt(TN )− P1−t,ΨN (TN )

∣∣∣ = 1√
2

∣∣∣∣(ut, vt)−
(
uΨt , v

Ψ
t

)∣∣∣∣ .

8.5 The proof of (S2) – the pointwise version of Theorem 2.3

Let ε > 0 and t ∈ (0, 1). By the triangle inequality,
∣∣∣ut(TN )− uΨt (TN )

∣∣∣ ≤
∣∣∣ut(TN )− utht (TN )

∣∣∣+
∣∣∣utht (TN )− uΨt (TN )

∣∣∣ (8.7)

and
∣∣∣vt(TN )− vtht (TN )

∣∣∣ ≤
∣∣∣vt(TN )− vtht (TN )

∣∣∣ +
∣∣∣vtht (TN )− vΨt (TN )

∣∣∣ . (8.8)

By Lemma 8.1, in each of the above two inequalities the first summand on the
right-hand side converges in probability to 0, that is,

∣∣∣ut(TN)− utht (TN)
∣∣∣ P−→ 0 and

∣∣∣vt(TN)− vtht (TN )
∣∣∣ P−→ 0.

The second summands on the right hand side of (8.7) and (8.8) are the distances
between the values of uniformly continuous functions, respectively, ψ 7→ uψt and
the composition ψ 7→ h1−t(u

ψ
t ) evaluated at the arguments

Ψth
N (t) and Ψth

N (t0) = ΨN .

By Theorem 4.1 with t1 = min(t, t0) and t2 = max(t, t0) the distance between
these two arguments converges in probability to 0, i.e.,

Ψth
N (t)−ΨN

P−→ 0.

Therefore we get
∣∣∣utht (TN )− uΨt (TN )

∣∣∣ P−→ 0 and
∣∣∣vtht (TN)− vΨt (TN)

∣∣∣ P−→ 0.

As the result
∣∣∣ut(TN )− uΨt (TN )

∣∣∣ P−→ 0 and
∣∣∣vt(TN )− vΨt (TN )

∣∣∣ P−→ 0

which completes the proof (8.1) which is the pointwise version of Theorem 2.3.

8.6 The proof of (S3) – the full version of Theorem 2.3

8.6.1 Uniform continuity of the geographic coordinate system

We start with showing that the geographic coordinate system on the square
(recall Section 2.4) is uniformly continuous.

Documenta Mathematica 27 (2022) 2183–2273



Second Class Particles, Evacuation and Sliding Paths 2253

Lemma 8.2. The function

[0, 1]× [0, 1] ∋ (α, ψ) 7→ Pα,ψ =
(
xψα , y

ψ
α

)

is uniformly continuous.

Proof. Since the mapping
(
xψα , y

ψ
α

)
7→ 1√

2

(
uψα, v

ψ
α

)
is an isometry (as a rotation

in R2), it is enough to show that each coordinate of the function

[0, 1]× [0, 1] ∋ (α, ψ) 7→
(
uψα, v

ψ
α

)
=

(
uψα, h1−α

(
uψα

))

is uniformly continuous. Since the domain of this mapping is compact, we need
only to show that both functions uψα and vψα are continuous.
Recall that the limit distribution να has density (2.4). It is easy to show that
for any α ∈ (0, 1) the cumulative distribution function Fνα of να fulfills the
equation

Fνα(u) = FSC

(
u

2
√
α(1 − α)

)
for all |u| ≤ 2

√
α(1 − α)

where FSC denotes the cumulative distribution function of the standard semi-
circle distribution with the density (1.3). This implies that for any ψ ∈ [0, 1]
and α ∈ (0, 1) we get

ψ = Fν1−α

(
uψα

)
= FSC

(
uψα

2
√
α(1− α)

)
,

which after applying F−1
SC gives

uψα = 2
√
α(1 − α) · F−1

SC (ψ). (8.9)

Moreover, by the definition P0,ψ = (0, 0) ∈ R2 and P1,ψ = (1, 1) ∈ R2 (cf. Sec-
tion 2.4), hence (8.9) holds for all ψ ∈ [0, 1] and α ∈ [0, 1]. Since the mapping
[0, 1] ∋ ψ 7→ F−1

SC (ψ) is continuous, the mapping (α, ψ) 7→ uψα is also continuous.

The function (α, u) 7→ hα(u) is continuous on the domain

♦ :=
{
(α, u) : α ∈ [0, 1] and |u| ≤ 2

√
α(1− α)

}
.

Hence the mapping (α, ψ) 7→ vψα is continuous on [0, 1]2 as the composition of
two continuous functions:

♦ ∋ (α, u) 7→ hα(u) and (α, ψ) 7→ (1− α, uψα) ∈ ♦.
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8.6.2 The proof of (S3) – the full version of Theorem 2.3

Let ε > 0. By Lemma 8.2 the function

[0, 1]× [0, 1] ∋ (α, ψ) 7→ Pα,ψ

is uniformly continuous, so there exists δ > 0 such that

∀s,t∈[0,1] |s− t| < δ =⇒ ∀ψ∈[0,1]

∣∣Ps,ψ − Pt,ψ
∣∣ < ε. (8.10)

Let us take a finite δ-net 0 = α1 < · · · < αn = 1 of the interval [0, 1]. By the
pointwise version (S2) of Theorem 2.3, which we proved in Section 8.5,

∣∣∣Xαi(TN )− P1−αi,ΨN (TN )

∣∣∣ P−→ 0 for i ∈ {1, . . . , n} (8.11)

(the latter holds for i = 1 and i = n by the definition of Pα,ψ, cf. Section 2.4).
Therefore there exists a subset T ∗

N ⊆ T�N
of asymptotically full measure which

consists of tableaux TN with the property that for each i ∈ {1, . . . , n}
∣∣∣xαi(TN )− xΨαi

(TN )
∣∣∣ < ε and

∣∣∣yαi(TN )− yΨαi
(TN )

∣∣∣ < ε. (8.12)

By the monotonicity of the sliding path for any i ∈ {1, . . . , n − 1} and t ∈
[αi, αi+1]

xαi+1 ≤ xt ≤ xαi and yαi+1 ≤ yt ≤ yαi . (8.13)

By (8.12) and (8.13) for any TN ∈ T ∗
N and any i ∈ {1, . . . , n − 1} and t ∈

[αi, αi+1] the following system of inequalities is satisfied:




−ε+
(
xΨαi+1

− xΨt

)
≤ xt − xΨt ≤

(
xΨαi

− xΨt

)
+ ε;

−ε+
(
yΨαi+1

− yΨt

)
≤ yt − yΨt ≤

(
yΨαi

− yΨt

)
+ ε.

Since for any t ∈ [0, 1]

Xt = (xt, yt) and P1−t,ΨN (TN ) =
(
xΨt , y

Ψ
t

)

and by (8.10) for any i ∈ {1, . . . , n− 1} and t ∈ [αi, αi+1]

max

{∣∣∣xΨαi
− xΨt

∣∣∣ ,
∣∣∣xΨαi+1

− xΨt

∣∣∣ ,
∣∣∣yΨαi

− yΨt

∣∣∣ ,
∣∣∣yΨαi+1

− yΨt

∣∣∣
}
< ε

we infer that for TN ∈ T ∗
N

sup
t∈[0,1]

∣∣∣Xt(TN )− P1−t,ΨN (TN )

∣∣∣ < 2ε.

This completes the proof of (S3) since T ∗
N has asymptotically full probability.
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8.7 Limit distribution of the random variable ΨN

We will show the second component of Theorem 2.3, namely that the random
variable ΨN converges in distribution to the uniform distribution on the unit
interval [0, 1].
Let GN denote the cumulative distribution function of the random variable
ΨN : T�N

→ [0, 1]. For any z ∈ [0, 1] we have (recall (4.1))

GN (z) = PN

(
TN : Fν

1−t0

(
ut0(TN )

)
≤ z
)
=

PN

(
TN ∈ T�N

: ut0(TN ) ≤
(
Fν

1−t0

)−1

(z)

)
. (8.14)

By [PR07, Theorem 2], the distribution of the random variable ut0 converges
weakly (as N → ∞) to the measure ν

1−t0
which has no atoms, so the right-hand

side of (8.14) converges to

Fν
1−t0

(
F−1
ν
1−t0

(z)

)
= z

which is the cumulative distribution function of the uniform measure U(0, 1).
This completes the proof of the second component of Theorem 2.3, and hence
the proof of Theorem 2.3.

9 The correspondence between evacuation and sliding paths

The results which we consider in this section hold for general, not necessarily
square tableaux. For a tableau T ∈ Tλ with n = |λ| boxes we denote by

revevac(T ) =
(
posn

(
jn−1(T )

)
, . . . , posn

(
j1(T )

)
, posn(T )

)

the evacuation path (1.8) written in the reverse order.
The following result shows an intimate relationship between the sliding paths
and the evacuation paths and, in particular, implies equivalence of Theo-
rems 2.3 and 2.4 (see Section 9.2 for the proof).

Proposition 9.1. Let λ be a fixed Young diagram and let T ∈ Tλ be a random
standard Young tableau sampled according to the uniform measure on Tλ. Then
the probability distributions of the lazy sliding path q(T ) and the evacuation path
revevac(T ) coincide.

Proof. We will construct a certain bijection ε∗ : Tλ → Tλ on the set of standard
tableaux of shape λ. Clearly, the random tableaux T and ε∗(T ) have the same
distribution. By Proposition 9.3 below for any standard tableau T the lazy
sliding path q(T ) and the reversed evacuation path revevac

(
ε∗(T )

)
are equal.

This completes the proof.

In the remaining part of this section we will present the details of the map ε∗

and we will prove that Proposition 9.3 indeed holds true.
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9.1 Dual evacuation

The dual evacuation has a beautiful algorithmic description in terms of the ma-
nipulations of the boxes of T , cf. [PW11, Definition 2.10], however we will not
make use of it. For our purposes it is more convenient to define the dual evac-
uation ε∗ implicitly by Robinson–Schensted–Knuth correspondence as follows.
For a permutation σ = (σ1, . . . , σn) ∈ Sn we denote

σ♯ := (n+ 1− σn, . . . , n+ 1− σ1) ∈ Sn.

If σ corresponds to a pair (P,Q) under RSK, then σ♯ corresponds to(
ε∗(P ), ε∗(Q)

)
under RSK, see [Sta99, A1.2.10].

We will use the following fact (see [Sag01, Proposition 3.9.3] for the proof).

Fact 9.2 ([Sch63]). For any σ = (σ1, . . . , σn) ∈ Sn the identity

(j ◦Q) (σ) = Q(σ2, . . . , σn) (9.1)

holds up to renumbering of the boxes on the left-hand side, so that the resulting
tableau becomes standard.

Proposition 9.3.
q(T ) = revevac

(
ε∗(T )

)
.

Proof. For any tableaux R,S we will use a shorthand notation

R/S = shR/ shS

for the skew diagram obtained by subtracting their shapes. In all examples
below this skew diagram R/S = {�} consists of a single box; we will write
shortly � = R/S.
Let T = Q(σ) be a recording tableau of some permutation σ; with these nota-
tions ε∗(T ) = Q

(
σ♯
)
.

By (9.1), the lazy sliding path fulfills for i ∈ [n]

qi(T ) = Q(σ1, . . . , σi) /j
(
Q(σ1, . . . , σi)

)
=

Q(σ1, σ2, . . . , σi) /Q(σ2, . . . , σi) . (9.2)

On the other hand, by (9.1), applying jeu de taquin n − i times to ε∗(T ) =
Q
(
σ♯
)
, leads to the tableau (up to renumbering boxes on the left-hand side so

that the tableau becomes standard)

jn−i
(
ε∗(T )

)
= Q(n+ 1− σi, . . . , n+ 1− σ2, n+ 1− σ1) .
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The position of the box with the maximal entry in a recording tableau can
be found by comparing this tableau to the recording tableau of a truncated
sequence; it follows that

posn j
n−i (ε∗(T )

)
= Q(n+ 1− σi, . . . , n+ 1− σ2, n+ 1− σ1) /

Q(n+ 1− σi, . . . , n+ 1− σ2) . (9.3)

By the result of Schensted [Sch61, Lemma 7] and Greene theorem [Gre74,
Theorem 3.1] the shapes of the tableaux which contribute to the right-hand
sides of (9.2) and (9.3) are equal which concludes the proof.

9.2 Proof of Theorem 2.4

Proof of Theorem 2.4. Let N ∈ N. Let ΨN : T�N
→ [0, 1] be the random

variable which is given by Theorem 2.3. We define the random variable
Ψ̃N : T�N

→ [0, 1] by

Ψ̃N(TN ) := ΨN (ε∗(TN )).

Since ε∗ is a bijection,

PN

{
TN ∈ T�N

: sup
t∈[0,1)

∣∣∣Xt(TN )− P1−t,ΨN (TN )

∣∣∣ > ε
}
=

PN

{
TN ∈ T�N

: sup
t∈[0,1)

∣∣∣Xt(ε
∗(TN ))− P1−t,ΨN (ε∗(TN ))

∣∣∣ > ε
}
=

PN

{
TN ∈ T�N

: sup
t∈[0,1)

∣∣∣∣
1

N
q⌈(1−t)N2⌉(TN )− P1−t,Ψ̃N (TN )

∣∣∣∣ > ε
}
=

PN

{
TN ∈ T�N

: sup
t∈(0,1]

∣∣∣∣
1

N
q⌈tN2⌉(TN )− Pt,ΨN (TN )

∣∣∣∣ > ε
}
,

where the second equality is a consequence of Proposition 9.3. By Theorem 2.3
the left-hand side converges to 0 in the limit N → ∞; on the other hand the
right-hand side is the probability which appears in Theorem 2.4.

10 Generalizations of the main results
for non-square tableaux

10.1 Continuous diagrams

We call a function ω : R → R a continuous diagram [Ker93a, Ker98] if

• ω is a 1-Lipschitz function, i.e.,

|ω(u1)− ω(u2)| ≤ |u1 − u2| for all u1, u2 ∈ R;

• ω(u) = |u| for sufficiently large |u|.
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We will denote the set of continuous diagrams by CY; we endow this set with
the L∞-metric. (Our definition is more specific than the one of Kerov [Ker93a]
who allows to additionally translate our centered continuous diagrams along
the real line.)
Any (usual) Young diagram λ seen in the (u, v)-coordinate system is a 1-
Lipschitz function defined on some interval (given by the range of the u-
coordinates of λ) and has slopes equal to ±1. It can be extended outside
its initial domain by a modulus function x 7→ |x|. In this way we obtain a
continuous diagram ωλ to which we will refer as the profile of λ, see Figure 14
on Page 2251.
Let s > 0. For a continuous diagram ω we define the scaling of ω by s as the
following continuous diagram denoted by sω

sω : R ∋ u 7→ s · ω
(
s−1u

)
.

Let (λN ) be a sequence of Young diagrams with the property that the sequence
of the corresponding rescaled profiles

(
1√
|λN |

ωλN

)

converges to a continuous diagram Λ in the L∞-metric, that is,

sup
u∈R

∣∣∣∣∣
1√
|λN |

ωλN

(√
|λN | u

)
− Λ(u)

∣∣∣∣∣
N→∞−−−−→ 0.

We will call Λ the limit shape for the sequence of Young diagrams (λN ) and
denote such convergence by 1√

|λN |
λN → Λ.

10.2 The asymptotic setup

Let C ≥ 1 be a fixed constant. For each integer N ≥ 1 let λN be a C-balanced
Young diagram. We assume that

lim
N→∞

|λN | = ∞

and that there exists a limit shape Λ ∈ CY for the sequence (λN ), i.e., that
1√
|λN |

λN → Λ.

Our goal in Section 10 is to find counterparts of Theorems 2.3 and 2.4 in which
the sequence (�N ) of square diagrams is replaced by the sequence (λN ) of
C-balanced Young diagrams.

10.3 The limit curves

The result of Pittel and Romik concerning the existence of the level curves
[PR07, Theorem 1(i)], cf. Section 2.2, is a special case of a more general phe-
nomenon. Using the results of Biane [Bia98, Theorem 1.2 and Theorem 1.5.1]
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one can show that under the assumptions from Section 10.2 there exists a fam-
ily of level curves for a uniformly random Young tableau of the shape λN (in
the limit as N → ∞). The following proposition describes precisely this result.

Proposition 10.1. Let (λN ) be a sequence of C-balanced Young diagrams such
that |λN | → ∞ and 1√

|λN |
λN → Λ for some continuous diagram Λ ∈ CY (i.e.,

(λN ) fulfills the assumptions in Section 10.2). Then for any α ∈ [0, 1] there
exists a continuous diagram Λα ∈ CY such that

1√
|λN |

sh
(
TN
∣∣
≤⌊α·|λN |⌋

)
P−→ Λα

where TN is a uniformly random element of TλN .

We will say that Λα is the α-level curve for the sequence (λN ) or, shortly,
the α-level curve for the diagram Λ. Note that Λ0 is the empty diagram and
Λ1 = Λ.
For example, in the case when λN = �N is a square Young diagram, the α-level
curve for (λN ) is the curve hα, cf. Section 2.2.

Remark 10.2. Biane proved his results [Bia98, Theorem 1.2 and Theorem 1.5.1]
with the tools of the free probability theory [MS17], but Proposition 10.1 can be
also showed using the beam models [Sun18] or by solving a gradient variational
problem [KP21].

10.4 The limit measures on the level curves

To every continuous diagram we can associate two special measures: the tran-
sition measure and the cotransition measure. Each of them has very natural
interpretation in the case of the usual Young diagrams.

10.4.1 Transition measure of a continuous diagram

To any continuous diagram ω ∈ CY, one can associate a probability measure
µω, called the transition measure of ω [Ker93b, Bia98], as the unique compactly
supported measure on R such that its Cauchy transform

Gµω (z) :=

∫

R

1

z − x
dµω(x)

is given by the equation

Gµω (z) =
1

z
exp

∫

R

1

x− z
σ′(x) dx =

1

z
exp

∫

R

1

(x− z)2
σ(x) dx

where σ(u) := (ω(u)− |u|)/2.
The motivations for this notion are related to random walks on the set of Young
diagrams: the atoms of the transition measure µωλ

of a usual Young diagram λ
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correspond to the Markov’s transition probabilities in the Plancherel growth
process starting in λ [Ker93b, Section 3.2].
The mapping which to a continuous diagram ω assigns the transition measure
µω is a homeomorphism [Ker93b, Section 2.3]. Moreover, a continuous diagram
is uniquely determined by its transition measure.

10.4.2 Cotransition measure of a continuous diagram

For a continuous diagram ω ∈ CY we define its area as the area of the region
between the profile and the x- and the y-axis:

A(ω) =

∫

R

(
ω(x)− |x|

)
dx.

The cotransition measure νω of ω is defined as the unique probability mea-
sure with the Cauchy transform Gνω given by the following equation [Rom04,
Equation (8)]:

A(ω)

2
Gνω (x) = x− 1

Gµω (x)
. (10.1)

By convention, the cotransition measure of the empty diagram νω∅ = δ0 is
defined to be the measure concentrated in 0.
The cotransition measure νωλ

of a usual Young diagram λ is the distribution of
the u-coordinate of the box with the maximal entry |λ| in a uniformly random
standard tableau of shape λ, cf. [Rom04, page 628 and the comment below
Eq. (6)]. In particular, the measure να introduced in Section 2.3 to which we
referred as the limit measure is the cotransition measure corresponding to the
continuous diagram hα (more precisely, to the proper extension of the function
hα given by (2.2) by x 7→ |x| and x 7→ 2− |x|).
Be advised that diagrams of different shape may have the same cotransition
measure. For example, the square Young diagram �N has the same cotransition
measure νω�N

= δ0 concentrated at the point u = 0, no matter which size of
the square N ∈ N we choose. However, if we restrict our considerations to the
set of (centered) continuous diagrams of fixed positive area, then any diagram
is uniquely determined by its cotransition measure and this correspondence is
a homeomorphism [Rom04, Theorem 6].

10.4.3 The limit measures on the level curves of continuous dia-
gram

The combined results of Kerov, Biane and Romik described in Sections 10.3,
10.4.1 and 10.4.2 give the following quite precise picture of a random tableau
of a balanced shape.

Proposition 10.3. Let (λN ) fulfill the assumptions in Section 10.2 and let TN
be a uniformly random element of TλN , and let α ∈ [0, 1]. We denote by

ξα := ξα(N) := sh
(
TN
∣∣
≤iN

)
.
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the random shape of the restricted tableau TN
∣∣
≤iN where

iN = ⌊α · |λN |⌋.

Then:

(i) The rescaled random shape 1√
|λN |

ξα converges in probability to the α-level

curve Λα.

(ii) The rescaled Markov transition measure of the random Young diagram ξα
converges in probability (with respect to the weak topology) to the transi-
tion measure µΛα corresponding to Λα.

(iii) The rescaled cotransition measure of the random Young diagram ξα con-
verges in probability (with respect to the weak topology) to the cotransition
measure νΛα corresponding to Λα.

(iv) The rescaled u-coordinate of the box of TN which contains the number iN
converges in distribution to the cotransition measure νΛα , i.e.,

1√
|λN |

uTN

iN

d−−−−→
N→∞

νΛα .

Note that the second result of Pittel and Romik which gives explicitly the
limit measure on the α-level curve for the square diagram [PR07, Theorem 2],
cf. Section 2.3 is a special case of Proposition 10.3(iv).
From now on we will refer to the cotransition measure νΛα corresponding to
the α-level curve Λα for a continuous diagram Λ as the limit (or cotransition)
measure on the level curve Λα.
The cumulative distribution function of the limit measure νΛα will be denoted
by FΛα , i.e.,

FΛα(u) := νΛα

(
(−∞, u]

)
for each u ∈ R.

The density of the limit measure νΛα will be denoted by fΛα , whenever this
density exists.

10.5 The geographic coordinate system

We will endow a continuous diagram Λ with the system of geographic coordi-
nates, cf. Section 2.4. For this purpose we view the shape Λ as the following
compact subset of the (x, y)-Cartesian plane

ΛCart :=
{
(x, y) ∈ R2 : |x− y| < x+ y < Λ(x− y)

}
=

{
(x, y) ∈ [0,∞)2 : x+ y < Λ(x− y)

}
.

(Recall that u = x−y and v = x+y are the (u, v) coordinates, cf. Section 2.2.)
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For any α ∈ [0, 1] we define the quantile function for the limit measure νΛα by
the formula

QΛα(ψ) := inf
{
u ∈ supp(νΛα) : FΛα(u) ≥ ψ

}
for ψ ∈ [0, 1] (10.2)

where supp(µ) denotes the support of the measure µ. In particular, QΛ0 ≡ 0.
For given α ∈ [0, 1] and ψ ∈ [0, 1] there is exactly one point p = (x, y) ∈ ΛCart

such that

• p lies on the level curve Λα seen in the XY -coordinates system, i.e.,

x+ y = Λα(x− y);

• the u-coordinate of p is given by the quantile function:

u(p) = x− y = QΛα(ψ).

We will denote this point by Pα,ψ := (xψα , y
ψ
α ) ∈ ΛCart. In particular, by the

definition of νΛ0 = δ0 we have P0,ψ = (0, 0) ∈ R2 for any ψ ∈ [0, 1]. Additionally
we denote by

uψα := xψα − yψα and vψα := xψα + yψα

the u- and v-coordinate of the point Pα,ψ.
We will refer to the mapping [0, 1]2 ∋ (α, ψ) 7→ Pα,ψ ∈ ΛCart as to the geographic
coordinates system.

Remark 10.4. There may be some problems with defining the counterparts of
the longitude and the latitude (the geographic coordinates) of the point p ∈
ΛCart like we did in Section 2.4. We defined the latitude as the unique α ∈ [0, 1]
for which p lies on the level curve hα (more precisely, on the restriction of the
level curve hα to the support of the corresponding cotransition measure να). We
are not sure if such a uniqueness holds in a general case when Λ is an arbitrary
continuous diagram. To make things worse, the definition of the longitude
depends on the limit measure νΛα(p)

corresponding to the α(p)-level curve (the
circle of latitude with the latitude α(p), cf. Sections 2.2 and 2.4). In the case
worst scenario, not only there is an ambiguity for the choice of latitude α(p),
but also the corresponding limit measure νΛα(p)

may have atoms which affects
the definition of the latitude. In particular, an attempt of using these direct
counterparts of the definitions from Section 2.4 in the more general context
may lead to the situation in which several points have the same geographic
coordinates or some geographic coordinates (α, ψ) are not used. The case of
the L-shape diagram, see Figure 10 on Page 2197, is an example of the first
problem.

Problem 10.5. Let Λ be a continuous diagram. Show that for any point

p ∈ ΛUV :=
{
(u, v) : u ∈ R and |u| < v < Λ(u)

}
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there is a unique α ∈ [0, 1] with the property that

p ∈
{
(u,Λα(u)) : u ∈ supp(νΛα)

}
.

In other words, show that for any point p ∈ ΛUV there exists a unique level curve
Λα (for some α ∈ [0, 1]) which restricted to the support of the corresponding
cotransition measure νΛα contains p.

10.6 Extension of the main results

Theorem 10.6. Let (λN ) fulfill the assumptions in Section 10.2 and assume
that

(⋆) the geographic coordinates system is continuous, i.e., the map [0, 1]2 ∋
(α, ψ) 7→ Pα,ψ, is continuous.

Then the analogues of Theorems 2.3 and 2.4 hold true, i.e., if TN is a uniformly
random element of TλN then:

• there exists a family of random variables ΨN : TλN → [0, 1] indexed by
N ∈ N such that

sup
t∈[0,1]

∣∣∣Xt(TN)− P1−t,ΨN (TN )

∣∣∣ P−→ 0, (10.3)

• there exists a family of random variables Ψ̃N : TλN → [0, 1] indexed by
N ∈ N such that

sup
t∈[0,1]

∣∣∣∣
1

N
q⌈t|λN |⌉(TN )− Pt,Ψ̃N (TN )

∣∣∣∣
P−→ 0.

The probability distribution of the random variable ΨN (respectively, Ψ̃N ) con-
verges, as N → ∞, to the uniform distribution on the unit interval [0, 1].

Proof. The proof of Theorem 2.3 is applicable in this more general case — one
shall replace all occurrences of the �N by λN and change the references to the
limit measures. We enumerate below the properties of square Young diagrams
which played the crucial role in the proof of Theorem 2.3.

• �N is a 1-balanced Young diagram (we used this property in Proposi-
tion 5.1 and Theorem 6.2);

• the cotransition measure να corresponding to the level curve hα has no
atoms (we used this property in the proofs of Theorem 6.2 and Lemma 8.1
as well as in Section 7.4) and has a connected support (we used this
property in Lemma 8.2);

• the distribution of uα — the u-coordinate of the surfer in time α —
converges to the cotransition measure ν1−α (we used this property in
Lemma 8.1);
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• the uniform continuity of the geographic coordinates system, i.e., the
uniform continuity of the mapping (α, ψ) 7→ Pα,ψ, cf. Lemma 8.2.

Notice that the counterparts of all these properties are present in our new set-
ting. In particular, the distribution of the u-coordinate of the surfer converges
to the proper limit measure by Proposition 10.3. Moreover, the assumption (⋆)
on the continuity of the geographic coordinates system assures that for any
α ∈ [0, 1] the support of the limit measure νΛα is connected.

10.7 Example: random rectangular tableaux

For any real numbers a, b > 0 let �a×b denote the rectangle with the left bottom
corner positioned in (0, 0) ∈ R2 and with sides a and b (on X and Y axis,
respectively, when seen in the (x, y)-coordinates system).
Let (Mi) and (Ni) be two sequences of positive integers which fulfill the condi-
tions from Section 1.1.3, i.e., Mi → ∞ and Ni → ∞, and there is some (shape
parameter) θ > 0 such that

lim
i→∞

Mi

Ni
= θ.

We define for i ∈ N

λi := �Mi×Ni

to be the rectangular Young diagram which has Mi columns and Ni rows.
The following theorem generalizes Theorem 2.4 (which is a special case for
Mi = Ni = i).

Corollary 10.7. For i ∈ N let Ti be a uniformly random tableau of the shape
�Mi×Ni . Then the u-coordinate of the rescaled lazy sliding path 1√

MiNi
q(Ti)

with respect to the supremum norm converges in probability to the random func-
tion

t 7→ ΞS(t) = 2
√
t(1− t) S +

θ − 1√
θ

t (10.4)

where S denotes the random variable with the standard semicircular distribu-
tion, cf. (1.3).

Proof. We will check that the assumptions of Theorem 10.6 are fulfilled and
find the explicit formula for the geographic coordinates system.

Clearly, the sequence
(

1√
MiNi

�Mi×Ni

)
converges to the limit shape Λ = �a×b

with a :=
√
θ and b := 1/

√
θ. We apply Lemma 10.8 below to see that

• the geographic coordinates system on �a×b is continuous,

• for any ψ ∈ [0, 1] and α ∈ [0, 1] the ψ-th quantile uψ of the cotransition
measure νΛα is given by

uψ = 2
√
α(1 − α)F−1

SC (ψ) +
θ − 1√
θ
α
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where FSC denotes the cumulative distribution function of the standard
semicircle distribution, cf. (1.3).

Notice that if U is a random variable with the uniform U(0, 1) distribution then
F−1
SC (U) has the standard semicircle distribution.

By Theorem 10.6 (its second and third part) the u-coordinate of the (rescaled)
lazy sliding path 1√

MiNi
q(Ti) with respect to the supremum norm converges in

probability to the random function (10.4).

Lemma 10.8. Let a, b > 0 and Λ := ω�a×b
be the profile of �a×b. Then for any

α ∈ (0, 1) the cotransition measure νΛα corresponding to the α-level curve Λα
has the density

fν
Λα
(x) =

1

2
√
ab · α(1− α)

fSC

(
x− α(a− b)

2
√
ab · α(1 − α)

)
(10.5)

where fSC is the density of the standard semicircular distribution, cf. (1.3).

Proof. The following calculations use (10.1) and some relations between the
R-transform and the Cauchy transform of the appropriate transition measures,
see [MS17, Section 3] for the theory.
The Cauchy transform of the transition measure µΛ of the rectangular diagram
is given by [Rom04, Equation (2)]

G(z) := GµΛ(z) =
z − (a− b)

(z − a)(z + b)
. (10.6)

It is an analytic function and in some neighborhood of ∞ it is invertible [MS17,
Section 3, Theorem 17(i)]. Moreover, there exists a neighborhood U ⊂ C of 0
for which G|G−1(U) is invertible [MS17, Section 3, Theorem 17(ii)] and we can
calculate the R-transform of the measure µΛ with the formula [MS17, Section 3,
Theorem 17(iii)]

R(z) := RµΛ(z) = G−1(z)− 1

z
for z ∈ U \ {0}.

Substituting in the latter z with G(z′) (for some z′ ∈ G−1(U \ {0})) we get the
relation

z = R
(
G(z)

)
+

1

G(z)
for z ∈ G−1(U \ {0}). (10.7)

We use this equality in order to substitute each occurrence of the variable z on
the right-hand side of (10.6); by clearing of the denominator we obtain

R(G) +
1

G
− (a− b) = G ·

(
R(G) +

1

G
− a

)(
R(G) +

1

G
+ b

)
, (10.8)

where we used the shorthand notation G = G(z). By the choice of U as
the neighborhood of 0 we get that (10.8) is fulfilled with G replaced by any

Documenta Mathematica 27 (2022) 2183–2273



2266 Ł. Maślanka, P. Śniady

complex number z ∈ U\{0}, i.e., the R-transform fulfills the following quadratic
equation for any z ∈ U \ {0}

R(z) +
1

z
− (a− b) = z ·

(
R(z) +

1

z
− a

)(
R(z) +

1

z
+ b

)
. (10.9)

Now, we will calculate the Cauchy transform of the transition measure µΛα on
the level curve Λα. Denote by Rα and Gα, respectively, the R-transform and
the G-transform of µΛα . The R-transforms of the transition measures µΛ and
µΛα are related by the following correspondence [Bia98, Theorem 1.2]

Rα(z) := RµΛα
(z) = R(α · z) for z ∈ U \ {0}.

Let us put α · z instead of z in (10.9) (this substitution is legal since the
neighborhood U can be taken to be a convex set). Equation (10.9) implies
therefore that Rα(z) is a solution to the following quadratic equation

Rα(z) +
1

αz
− (a− b) =

αz

(
Rα(z) +

1

αz
− a

)(
Rα(z) +

1

αz
+ b

)
(10.10)

for any z ∈ U \ {0}.
In (10.10) we substitute each occurrence of the variable z by Gα(z); this sub-
stitution is valid as long as |z| is big enough so that Gα(z) ∈ U \ {0}. Let us
denote additionally Hα = 1

Gα
; then we use the relation (10.7) and substitute

each occurrence of Rα
(
Gα(z)

)
by z −Hα(z). Then (10.10) takes the form

Hα(z)

(
z − (a− b) +

(
1

α
− 1

)
Hα(z)

)
=

α

(
z − a+

(
1

α
− 1

)
Hα(z)

)(
z + b+

(
1

α
− 1

)
Hα(z)

)
(10.11)

which holds if |z| is big enough. For any z big enough, the latter is a quadratic
equation inHα(z) which has two solutions given by explicit (but complicated, so
we omit writing them here) formulas. These solutions come from two branches
of the complex square root. The function Hα must be analytic in some neigh-
borhood of ∞ and therefore can be given by only one (family) of these solu-
tions. Moreover, Hα must have a proper asymptotics, more precisely [MS17,
Section 3.1, Lemma 3]

lim
y→∞

Hα(iy)

y
= i,

which allows us to choose the proper solution.
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The formula for Hα gives also an explicit formula for the Cauchy transform of
the cotransition measure νΛα on the level curve Λα as (cf. (10.1))

Gν
Λα
(z) =

1

αab

(
z −Hα(z)

)
.

The function Gν
Λα

is analytic (since Hα is analytic); we will use its analytic

continuation to the upper halfplane C+.
With this (complicated) formula for Gν

Λα
we can now recover the density of the

cotransition measure νΛα using the Stieltjes inversion formula [MS17, Section 3,
Theorem 6]. One can easily show that this density is the properly rescaled and
translated standard semicircle distribution, cf. (1.3).

10.8 What if the geographic coordinates system is not uniformly
continuous?

The situation when the geographic coordinates system (α, ψ) 7→ Pα,ψ ∈ ΛCart

(recall Section 10.5) is not uniformly continuous is not rare. One among many
examples is the limit shape Λ which is the L-shape, cf. Figure 10 on Page 2197.
In this case there are some α-level curves (for α big enough) for which the
corresponding cotransition measure is supported on two disjoint intervals. This
forces the function ψ 7→ Pα,ψ to have a discontinuity related to the hole between
the intervals. Therefore in such situation Theorem 10.6 does not apply since
the assumption (⋆) is not fulfilled.

Problem 10.9. Find a counterpart of the assumption (⋆) for which the con-
clusion of Theorem 10.6 holds true.

11 The correspondence between Young tableaux and particle
systems. Proof of Theorem 1.1

We will first describe a bijection which links a recording tableau with a unique
history of a particular Totally Asymmetric Simple Exclusion Process, recall
Section 1.1. We will base on the articles of Rost [Ros81], as well as Romik
and the second named author [RŚ15, Section 7]. Then, in Section 11.3 we will
prove Theorem 1.1.

11.1 The correspondence between a Young diagram with a dis-
tinguished corner and a configuration of particles – Rost’s
mapping

Let λ be a non-empty Young diagram and � be one of its inner corners, i.e., �
is a cell of λ such that the shape λ \� is still a Young diagram, see Figure 15
below. Following [RŚ15, Section 7.1], we will present the two-step algorithm in
which to the pair (λ,�) we assign a configuration of holes and particles with
exactly one second class particle. To our best knowledge the foundations for
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u

u

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 15: Above: the Young diagram (4, 4, 2) and its marked inner corner in
the second row. In the middle: the corresponding configuration of particles on
the shifted lattice Z′ via Rost’s mapping. The marked inner corner corresponds
to the pair of nodes in the rectangle. Below: the corresponding configuration
of particles (including the second class particle) on the lattice Z.

this mapping were first laid in [Ros81, Remark 1], and therefore we will call it
Rost’s mapping.
In the first step of the Rost’s mapping, given a Young diagram λ we draw its
profile ωλ in the Russian coordinates system (see Figure 14 on Page 2251 and
Section 10.1 for the definition of the profile). To the profile ωλ there corresponds
a unique configuration of holes and (first class) particles on Z′ := Z+ 1

2 which
appears in the following way. For each m ∈ Z exactly one of the following two
cases holds true:

• in the case when the slope of the profile ωλ on the interval [m,m+ 1] is
equal to −1 then we put a (first class) particle at the site m + 1

2 of the
lattice Z′ := Z+ 1

2 ;

• in the case when the slope of the profile ωλ on the interval [m,m+ 1] is
equal to +1 then we put a hole at the site m+ 1

2 (in other words, the site
m+ 1

2 is vacant).

The distinguished inner corner � corresponds in the above particle system to
a hole–particle pair. We outline this hole–particle pair with a red rectangle,
see the top and the middle part of Figure 15.
In the second step of Rost’s mapping we define a particle configuration on Z.
We start with merging the hole–particle pair outlined in the red rectangle into
the single particle which we will call the second class particle. We put it in
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the middle of the initial interval containing the hole-particle pair. Then we
translate all holes and particles which are placed to the left of the second class
particle by + 1

2 and we translate all holes and particles which are placed to
the right of the second class particle by − 1

2 . These steps are illustrated in
the middle and bottom part of Figure 15. In this way we end up with the
configuration of particles on Z with a single second class particle.

11.2 The correspondence between the standard tableaux and the
histories of TASEP

Recall that for a standard tableau T and a positive integer p ≤ |T | we define
the restricted tableau T |≤p to be the tableau which consists of only these boxes
of T which have entries ≤ p.
For a standard tableau T with n ≥ 1 boxes and any p ∈ {1, . . . , n} let us define

λ(p) := λ(p)(T ) := sh
(
T |≤p

)
,

�(p) := �(p)(T ) := qp(T ),

that is,
(
λ(p),�(p)

)
is the pair which consists of the Young diagram λ(p)(T )

which is the shape of the restricted tableau T |≤p and the last box along the
sliding path in T which contains a number ≤ p, cf. Section 2.6.
Let T be a standard tableau with n ≥ 1 boxes. For any t ∈ {1, . . . , n} let
us consider the system of particles Pt := Pt(T ) which corresponds to the pair
(λ(t),�(t)) via Rost’s mapping defined in Section 11.1. Notice that the initial
configuration P1 is such that the second class particle is located at the site
u = 0, all negative nodes are occupied by the first class particles and all positive
nodes are occupied by holes. Such configuration is called the Dirac sea. Observe
that for any t ∈ {1, . . . , n− 1} the neighboring states Pt and Pt+1 differ by one
of the three transitions described in Section 1.1.1 (cf. Figure 2 on Page 2185,
see [RŚ15, Sections 7.2 and 7.3] for a step-by-step proof). Therefore the family
(Pt)t∈{1,...,n} is a history of the particle system starting from the Dirac sea.
Given the above observation, it is easy to see that the mapping which to the
standard tableau T with n boxes associates the history

(
Pt(T )

)
t∈{1,...,n} of the

particle system is a bijection between the set of standard tableaux with n boxes
and the possible n-step histories of particle systems starting from the Dirac sea.
Moreover, for a tableau T and any t ∈ {1, . . . , |T |} the u-coordinate of the box
qt(T ) in the lazy sliding path is the position of the second class particle in time
t in the corresponding TASEP, see [RŚ15, Proposition 7.1].

11.3 Proof of Theorem 1.1

Proof of Theorem 1.1. Let us denote by TM×N the set of standard tableaux of
M×N rectangular shape (where M is a number of columns and N is a number
of rows).
In the following we discard the particles and holes which do not occupy the
nodes (1.1). In this way the correspondence defined in Section 11.2 gives a
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bijection between TMi×Ni and the set of histories of the particle system con-
sidered in Section 1.1.1. In this correspondence for any t ∈ {1, . . . ,MiNi} the
position of the second class particle in time t in the TASEP corresponds to
the u-coordinate of the box qt(T ) in the lazy sliding path. In the special case
Mi = Ni = i when Mi ×Ni = �i an application of Theorem 2.4 completes the
proof. In the general case we apply Corollary 10.7 instead.
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