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Abstract. The paper is devoted to metric connections with parallel
skew-symmetric torsion in Lorentzian signature. This is motivated by
recent progress in the Riemannian signature and by possible appli-
cations to supergravity theories. We provide a complete information
about holonomy algebras, torsion and curvature of the considered
connections up to the corresponding objects from the Riemannian
signature. Various examples are constructed. It is shown how to
construct all simply connected Lorentzian naturally reductive homo-
geneous spaces of arbitrary dimension from Riemannian naturally re-
ductive homogeneous spaces. This leads to complete classification of
Lorentzian naturally reductive homogeneous spaces in low dimensions.
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1 Introduction

During the last decades a careful attention of many researchers was taken to
Riemannian connections with torsion and related geometric structures, in par-
ticular the holonomy, e.g., [1, 2, 3, 4]. An important special case is provided
by connections with parallel skew-symmetric torsion, these include, e.g., natu-
rally reductive homogeneous spaces, Sasakian and 3-Sasakian manifolds, nearly
Kähler manifolds and some other. Riemannian naturally reductive homoge-
neous spaces are classified up to dimension 8 [24, 20, 4, 26]. Irreducible holon-
omy groups of Riemannian metric connections with parallel skew-symmetric
torsion were studied in [13]. The general case cannot be reduced to the case of
irreducible holonomy and this situation was studied very recently in [12].
Metric connections with skew-symmetric torsion play an important role in
mathematical physics (string theory, supergravity theory), see [14, 16, 23] and
the references therein. A sector of the Killing spinor and field equations of
certain supergravity theories in dimensions 6 and 10 may be written in the
form

∇Ψ = 0, (H − 2dΦ) ·Ψ = 0, Ric∇ + 2∇gdΦ = 0,

where ∇ is a Lorentzian metric connection with skew-symmetric torsion H , Ψ
is a spinor field, and Φ is a function. The holonomy group of the connection ∇
controls parallel object and the Ricci tensor, hence it may provide information
about the solutions. In type II string theory one investigates manifolds Nk ×
M10−k, where Nk is a k-dimensional space-time and M10−k is a Riemannian
manifolds equipped with a 3-form H defining the connection ∇. It is also
interesting to consider more general backgrounds with the 3-form H defined
on the entire Lorentzian manifold, this would give new interesting solutions
exploiting the Lorentzian nature of the backgrounds [14, 28].
In the present paper we consider Lorentzian manifolds (M, g) with metric con-
nections ∇ that have parallel skew-symmetric torsion T . First in Section 3 we
show that if the holonomy algebra of ∇ is weakly irreducible, i.e., it does not
preserve any non-degenerate subspace of the tangent space, and M is simply
connected, then there exists a ∇-parallel isotropic vector field p, and the tor-
sion is of the form p ∧ ω, where ω is a parallel bivector on the screen bundle
p⊥/ 〈p〉 . Then we describe general structures carrying a parallel isotropic vec-
tor fields and having the just indicated torsion. It turns out that the vector
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field p is also parallel with respect to the Levi-Civita connection ∇g. Thus
the holonomy algebras of the connections ∇g and ∇ are contained in the Lie
algebra so(n) ⋉ Rn. We show that the projections of these algebras to so(n)
coincide and provide examples of structures such that the projections of the
holonomy algebras to Rn do not coincide. Examples of the spaces considered
here include known flat Lorentzian connections with closed torsion as well as
regular homogeneous plane waves. Then in Section 4 we start to assume that
the holonomy algebra g preserves an orthogonal decomposition L ⊕ E of the
tangent space and the induced representation of g in L is weakly irreducible.
In Sections 6, 7, 8 we give a detailed description of the holonomy algebras and
the corresponding torsion and curvature. We provide various examples. We
use the results from [12] to show that in some cases the manifold is foliated
by manifolds of smaller dimension and locally on the leaf space one obtains an
induced metric connection with parallel skew-symmetric torsion. At the same
time, we show that not all statements proved in [12] for Riemannian manifolds
are valid for Lorentzian manifolds.
In Section 10 we study simply connected Lorentzian naturally reductive ho-
mogeneous spaces. Previously such spaces were classified in dimension 3, see
[11, 19], and 4, see [5, 10]. Using the above results we show how to construct
all simply connected Lorentzian naturally reductive homogeneous spaces of ar-
bitrary dimension from Riemannian naturally reductive homogeneous spaces.
We consider in details the spaces of dimension 3, 4, and 5.
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2 Preliminaries

Let us collect basic information about metric connections with parallel skew-
torsion, which may be found, e.g., in [1, 2, 4, 12]. Consider a triple (M, g,∇),
where g is a pseudo-Riemannian metric on a smooth manifold M , and ∇ is a
metric connection on M with parallel skew-symmetric torsion T , i.e., it holds
that

∇g = 0, ∇T = 0, g(T (X,Y ), Z) = −g(T (X,Z), Y ).

The connection ∇ is related to the Levi-Civita connection ∇g by the equality

∇ = ∇g +
1

2
T.
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Following [12] we call the triple (M, g,∇) a geometry with parallel skew-
symmetric torsion. We will denote such geometry also by (M, g, T ). We will
consider T as a tensor field of different types. By abuse of notation we will
write

T (X,Y, Z) = g(T (X,Y ), Z) = g(T (X)Y, Z).

Similar notation will be used for all differential k-forms. We will identify bivec-
tors with skew-symmetric endomorphisms using the equality

(X ∧ Y )Z = g(X,Z)Y − g(Y, Z)X.

The curvature tensors of the connection ∇ and the Levi-Civita connection are
related by the formula

R(X,Y ) = Rg(X,Y ) +
1

4
[T (X), T (Y )]−

1

2
T (T (X)Y ). (1)

This implies
g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ). (2)

The equality
σT (X,Y, Z) = S

XY Z
T (T (X,Y ), Z)

defines a 4-form σT . It holds also that

(T (X) · T )(Y, Z, V ) = σT (Y, Z, V,X). (3)

The condition ∇T = 0 implies

dT = 2σT , ∇gT =
1

2
σT , (4)

and the first Bianchi identity may be written in the form

S
XY Z

R(X,Y )Z = σT (X,Y, Z). (5)

Let (M, g,∇) be a geometry with parallel skew-symmetric torsion. Let g be
the holonomy algebra of the connection ∇ at a point x ∈ M . We identify the
tangent space (TxM, gx) with the pseudo-Euclidean space

(

Rr,s, (·, ·)
)

. Then g

is identified with a subalgebra of so(r, s).
Let g be an arbitrary subalgebra of so(r, s). Let T ∈ ∧2Rr,s ⊗Rr,s be a tensor.
The space of curvature tensors RT (g) with torsion T is defined as the space
of maps R ∈ ∧2Rr,s ⊗ g satisfying the first Bianchi identity (5). If T = 0, we
denote the space RT (g) just by R(g). Let L(RT (g)) be the vector subspace
in g spanned by images of the elements from RT (g). We call a subalgebra
g ⊂ so(r, s) a Berger algebra with torsion T if L(RT (g)) = g.

Proposition 1. Let (M, g) be a pseudo-Riemannian manifold and ∇ a metric
connection on (M, g) with parallel torsion (not necessary skew-symmetric). If
g ⊂ so(r, s) is the holonomy algebra of the connection ∇ at a point x ∈ M ,
then g is a Berger algebra with the torsion Tx.
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Proof. Denote the curvature tensor of the connection∇ by R. By the Ambrose-
Singer theorem on holonomy, the holonomy algebra g of the connection ∇ at
the point x ∈M is spanned by the endomorphisms of TxM of the form

τ−1
γ Ry(X,Y )τγ ,

for all piecewise smooth curves γ starting at the point x and all vectors X,Y ∈
TyM , where y is the end-point of the curve γ. Here τγ denotes the parallel
transport along the curve γ. Since ∇T = 0, it holds that τ−1

γ Ty(τγX, τγY ) =
Tx(X,Y ). Using this and the Bianchi identity we get

S
XY Z

τ−1
γ Ry(τγX, τγY )τγZ = S

XY Z
τ−1
γ Ty(Ty(τγX, τγY ), τγZ) =

= S
XY Z

τ−1
γ Ty(τγTx(X,Y ), τγZ) = S

XY Z
Tx(Tx(X,Y ), Z).

This shows that the map defined by

(X,Y ) 7→ τ−1
γ Ry(τγX, τγY )τγ

is an element of RTx(g). This completes the proof.

Note that if RT (g) is non-empty, then it is an affine space with the correspond-
ing vector space R(g). In particular, if R(g) = 0, then RT (g) is either empty or
contains only one element. The following statement is known [13, Lemma 5.6],
we prove it for completeness.

Corollary 1. In the settings of the proposition, if R(g) = 0, i.e., the space
RTx(g) contains only one element, then ∇R = 0.

Proof. The fact thatRx as well as all elements τ−1
γ Ry(X,Y )τγ belong toR

Tx(g)
implies that τ−1

γ Ry(X,Y )τγ = Rx, i.e., R is ∇-parallel.

An important class of geometries with parallel skew-symmetric torsion form
naturally reductive pseudo-Riemannian homogeneous spaces. Here we are fol-
lowing the exposition from the book [10]. By the Ambrose-Singer theorem
for homogeneous structures, a connected simply connected complete pseudo-
Riemannian manifold (M, g) is a reductive homogeneous manifold if and only
if (M, g) admits a connection ∇ such that it holds

∇g = 0, ∇R = 0, ∇T = 0.

Such a connection ∇ is called an Ambrose-Singer connection (AS-connection).
Suppose that (M, g) is reductive homogeneous and fix an AS-connection∇. Fix
a point o ∈M and denote by m the tangent space ToM . Let g ⊂ so(m) be the
holonomy algebra of the connection∇ at the point o. Since the curvature tensor
of the connection ∇ is parallel, by the Ambrose-Singer theorem on holonomy,

g = imRo = Ro(m,m) = span{Ro(X,Y )|X,Y ∈ m}.
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Since R and T are ∇-parallel, it holds

g · Ro = g · To = 0. (6)

The first and the second Bianchi identities take the form

S
XY Z

Ro(X,Y )Z = S
XY Z

To(To(X,Y ), Z), (7)

S
XY Z

Ro(To(X,Y ), Z) = 0. (8)

Consider the vector space
f = g⊕m. (9)

The above equalities show that the assignment

[A,B] = [A,B]g, [A,X ] = AX,

[X,Y ] = −Ro(X,Y )− To(X,Y ), A,B ∈ g, X, Y ∈ m

defines the Lie bracket on f (here [·, ·]g is the Lie bracket of the Lie algebra g).
It is clear that the decomposition (9) is reductive. The Lie algebra g is called
the transvection algebra of the structure (M, g,∇).
Suppose now that a Lie algebra f with a reductive decomposition (9) is given.
Let F be the simply connected Lie group with the Lie algebra f. Let G ⊂ F
be the connected Lie subgroup corresponding to the subalgebra g ⊂ f. The
reductive decomposition (9) is called regular if the subgroup G ⊂ F is closed.
This is the case if f is a transvection algebra. Suppose that the reductive
decomposition (9) is regular and it holds [m,m]g = g, where

[m,m]g = span{[X,Y ]g|X,Y ∈ m},

and [·, ·]g denotes the projection of the Lie bracket to g. Suppose that the
representation of g in m is faithful, and there is a g-invariant pseudo-Euclidean
metric on the vector space m. These data define the reductive homogeneous
space (F/G, g). Let ∇ be the canonical connection on (F/G, g). The curvature
tensor and the torsion of ∇ are parallel with respect to ∇. The tangent space
at the origin o ∈ F/G is identified with m and it holds

Ro(X,Y ) = −[X,Y ]g, To(X,Y ) = −[X,Y ]m, X, Y ∈ m. (10)

Under that construction, if f is the transvection algebra of a structure (M, g,∇),
then the just constructed structure (F/G, g,∇) is canonically isomorphic to the
initial (M, g,∇). The triple (m, Ro, To) is called the infinitesimal model of the
transvection algebra f (or of the corresponding reductive homogeneous space).
Finally, a reductive pseudo-Riemannian homogeneous space (F/G, g) with a
reductive decomposition (9) is called naturally reductive if it holds that

go([X,Y ]m, Z) = −go([X,Z]m, Y ), ∀X,Y, Z ∈ m,

where [X,Y ]m is the projection of [X,Y ] to m. The AS-connections corre-
sponding to naturally reductive homogeneous spaces are exactly these with
skew-symmetric torsion.
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3 Connections with parallel isotropic vector field p and tor-

sion p ∧ ω

In this section we show that if the manifold M is simply connected and the
holonomy algebra of a structure (M, g,∇) is weakly irreducible, then on M
there exists a ∇-parallel isotropic vector field p, and the torsion is of the from
p ∧ ω for a certain bivector ω. Then we study general structures (M, g,∇)
admitting ∇-parallel isotropic vector fields p and having the torsion p ∧ ω.

Recall that a subalgebra of a pseudo-orthogonal algebra is called weakly ir-
reducible if it does not preserve any proper non-degenerate subspace of the
pseudo-Euclidean space. For a subalgebra of the orthogonal algebra this condi-
tion is equivalent to the irreducibility. Irreducible holonomy algebras of metric
connections with parallel skew torsion in the Riemannian signature were stud-
ied in [13].

Let us recall the classification of weakly irreducible subalgebras g ⊂ so(1, n+
1), n ≥ 1 [7]. If g is irreducible, then g = so(1, n + 1). It is clear that
if g = so(1, n + 1) is the holonomy algebra of a connection with non-zero
parallel skew torsion, then n = 1, and the torsion form is proportional to the
volume form. By this reason we assume that g is weakly irreducible and not
irreducible. In this case g preserves an isotropic line in R1,n+1. Fix a Witt
basis p, e1, . . . , en, q of the Minkowski space R1,n+1. We will denote by Rn the
vector subspace of R1,n+1 spanned by the vectors e1, . . . , en. With respect to
the basis p, e1, . . . , en, q the subalgebra of so(1, n+ 1) preserving the isotropic
line Rp has the following matrix form:

so(1, n+ 1)Rp =











a −Xt 0
0 A X
0 0 −a





∣

∣

∣

∣

∣

∣

a ∈ R

A ∈ so(n)
X ∈ Rn







.

The above matrix may be identified with the bivector

−ap ∧ q +A+ p ∧X,

and we get the decomposition

so(1, n+ 1)Rp = (Rp ∧ q ⊕ so(n))⋉ p ∧ Rn.

There are four types of weakly irreducible subalgebras g ⊂ so(1, n+ 1)Rp:

Type 1. g1,h = (Rp ∧ q ⊕ h)⋉ p ∧ Rn,

Type 2. g2,h = h⋉ p ∧ Rn,

Type 3. g3,h,ϕ = {ϕ(A)p ∧ q +A |A ∈ h} ⋉ p ∧ Rn,

Type 4. g4,h,m,ψ = {A+ p ∧ ψ(A) |A ∈ h}⋉ p ∧ Rm.
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Here h ⊂ so(n) is a subalgebra, ϕ : h → R is a non-zero linear map with
the property ϕ|[h,h] = 0. For the last algebra there exists an orthogonal de-
composition Rn = Rm ⊕ Rn−m such that h ⊂ so(m), and ψ : h → Rn−m is
a surjective linear map with ψ|[h,h] = 0. The subalgebra h ⊂ so(n) coincides
with the so(n)-projection of g and it is called the orthogonal part of g.
Let (M, g,∇) be a Lorentzian geometry with non-zero parallel skew-symmetric
torsion T , dimM = 3 and suppose that the holonomy algebra of ∇ is weakly
irreducible. Then T is proportional to the volume form, and g ⊂ so(1, 2) is one
of the Lie algebras so(1, 2), Rp ∧ q ⋉ Rp ∧ e1, Rp ∧ e1. Thus we may assume
that dimM ≥ 4.

Lemma 1. Let g ⊂ so(1, n + 1)Rp be a weakly irreducible subalgebra, where
n ≥ 2. Suppose that g annihilates a non-zero 3-vector S ∈ ∧3R1,n+1. Then g

is either of type 2 or 4, i.e., it annihilates the isotropic vector p. Moreover, it
holds

S = p ∧ ω,

where ω ∈ ∧2Rn, and the subalgebra h ⊂ so(n) annihilates ω.

Proof. Consider as above a Witt basis p, e1, . . . , en, q of the Minkowski space
R1,n+1. Any 3-vector S ∈ ∧3R1,n+1 may be decomposed as

S = p ∧ q ∧X + p ∧ ω + q ∧ η + ξ, (11)

where X ∈ Rn, ω, η ∈ ∧2Rn, ξ ∈ ∧3Rn. For weakly irreducible algebras of each
of the four types we will consider the equation

g · S = 0.

First consider 3-vectors that are annihilated by p∧V, where V ∈ Rn is non-zero:

(p ∧ V ) · S = p ∧ V ∧X + V ∧ η + p ∧ q ∧ η(V )− p ∧ ξ(V ) = 0. (12)

This is equivalent to the following system of equations:

V ∧X = ξ(V ), η(V ) = 0, V ∧ η = 0.

Substituting V to the third equation, we get

0 = (V ∧ η)(V ) = (V, V )η = 0.

This implies η = 0. Substituting V to the first equation we get (V, V )X = 0.
Thus, X = 0 and the only remaining equation is ξ(V ) = 0. This equation
holds true if and only if ξ ∈ ∧3(V ⊥). Concluding, a 3-vector S on R1,n+1 is
annihilated by an element p ∧ V, where V ∈ Rn if and only if S has the form

S = p ∧ ω + ξ,
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where ω ∈ ∧2Rn, ξ ∈ ∧3(V ⊥). Therefore, a 3-vector S is annihilated by g2,h or
g4,h,ψ only if S = p ∧ ω, where ω ∈ ∧2Rn is annihilated by h. Next, it holds
that

(p ∧ q) · (p ∧ ω) = −p ∧ w.

Therefore, there are no non-zero 3-vectors annihilated by the algebras of types 1
and 3.

Let (M, g,∇) be a Lorentzian geometry with non-zero parallel skew-symmetric
torsion T . Suppose that there exists a ∇-parallel isotropic vector field p. Since
the metric g is ∇-parallel, the distribution p⊥ is ∇-parallel. The bundle E =
p⊥/ 〈p〉 is called the screen bundle, see, e.g., [22]. There is the obvious projection
p⊥ → E. The connection ∇ induces a connection ∇E on E: if X is a vector
field on M and Y is a section of E, then ∇E

XY is the projection to E of the
vector field ∇X Ỹ , where Ỹ is an arbitrary section of p⊥ such that its projection
to E is Y .

Corollary 2. Let (M, g,∇) be a Lorentzian geometry with non-zero parallel
skew-symmetric torsion T , dimM = n + 2 ≥ 4. Let g be the holonomy alge-
bra of ∇. Suppose that g is weakly irreducible and suppose that M is simply
connected. Then on M there exists a ∇-parallel isotropic vector field p and
a ∇E-parallel bivector ω on the screen bundle E = p⊥/ 〈p〉 such that for T it
holds

T = p ∧ ω.

Motivated by the corollary, in the rest of this section we consider a Lorentzian
geometry (M, g,∇) carrying a ∇-parallel isotropic vector field p such that the
torsion is given by a 3-vector

T = p ∧ ω,

where ω ∈ ∧2E is a ∇E -parallel bivector on the screen bundle E = p⊥/ 〈p〉.
It holds that

T (X,Y ) = g(p,X)ω(Y )− g(p, Y )ω(X) + ω(X,Y )p

for all vector fields X and Y on M .
The curvature tensor of ∇ takes the form

R(X,Y ) = Rg(X,Y ) +
1

4
p ∧

(

g(p, Y )ω2(X)− g(p,X)ω2(Y )
)

. (13)

From (3) it follows that
σT = 0.

This and the Bianchi identity imply that the holonomy algebra g of the con-
nection ∇ is a Berger algebra with zero torsion, and consequently g is the
holonomy algebra of the Levi-Civita connection on a Lorentzian manifold, see,
e.g., [17]. From (3) it follows also that T is parallel with respect to the Levi-
Civita connection:

∇gT = 0.
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From (4) it follows that
dT = 0.

It can be shown that conversely each indecomposable Lorentzian geometry with
parallel closed torsion is of the type considered in this section.
Next, the vector field p is parallel with respect to ∇g :

∇g
Xp = ∇Xp−

1

2
T (X, p) = 0.

This shows that (M, g) is a Walker manifold with a parallel isotropic vector
field. Therefore, locally there are coordinates v, x1, . . . , xn, u such that the
metric g takes the form

g = 2dvdu+ h+ 2Adu+H(du)2, (14)

where h =
∑n

i,j=1 hij(x
1, . . . , xn, u)dxidxj is a u-family of local Riemannian

metrics, A =
∑n
i=1 Ai(x

1, . . . , xn, u)dxi is a 1-form, and H = H(x1, . . . , xn, u)
is a local function (see, e.g., [6, 17]). The vector field ∂v is isotropic and parallel.
The 2-form ω may be expressed as

ω = 2
∑

1≤i<j≤n

ωijdx
i ∧ dxj .

We see that both the holonomy algebras of the connections ∇ and ∇g are
contained in so(n) ⋉Rn ⊂ so(1, n+ 1)Rp. Now we are going to compare these
holonomy algebras.
Consider the screen bundle

E = p⊥/ 〈p〉 .

Note that the bundle p⊥ is parallel with respect to both ∇ and ∇g. Denote by
∇g,E the connection on E induced by ∇g. The 2-form ω on E is parallel with
respect to the both connections on E. It holds that

∇E
X = ∇g,E

X , ∀X ∈ Γ(p⊥), ∇E
∂u

= ∇g,E
∂u

+
1

2
ω.

The holonomy algebra holx(∇
g,E) coincides with the so(n)-projection of the

holonomy algebra of the connection ∇g [22]. Likewise, it is not hard to check
that holx(∇

E) coincides with the so(n)-projection of g.

Proposition 2. The holonomy algebras holx(∇
E) and holx(∇

g,E) coincide.

Proof. Let ∇̄ be one of the connections ∇E and ∇g,E . Recall that the covariant
derivative of a field F of endomorphisms of E is given by

∇̄XF = [∇̄X , F ].

Let A be the bundle defined in the following way:

Γ(A) = {A ∈ so(E) | [A,ω] = 0}.
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It is obvious that the both connections ∇g,E and ∇E preserve this bundle, and,
moreover, the restrictions of these connections to A coincide. Also it is obvious
that the curvature tensors of the connections ∇g,E and ∇E on E coincide and
take their values in A. By the Ambrose-Singer theorem on holonomy, the
holonomy algebra holx(∇̄) is spanned by the operators of the form

τ−1
γ (R∇̄

y (X,Y )),

where γ is a piecewise smooth curve starting at x with an end-point y, τγ is the
parallel transport along γ with respect to the connection ∇̄ in the bundle A,
and X,Y ∈ TyM. The statement of the proposition is now obvious.

Recall that the subalgebra holx(∇
g,E) ⊂ so(n) is the holonomy algebra of the

Levi-Civita connection on a Riemannian manifold [21]. Next, the subalgebra
h = holx(∇

E) = holx(∇
g,E) ⊂ so(n) annihilates the 2-from ωx ∈ ∧2Ex. Con-

sider the orthogonal composition

Ex = kerωx ⊕ (kerωx)
⊥.

Since h annihilates ω, it preserves this decomposition. According to the
de Rham decomposition theorem [8],

h = h1 ⊕ h2,

where h1 ⊂ so(kerωx) and h2 ⊂ so((kerωx)
⊥) are Riemannian holonomy

algebras. Moreover, since ωx|(kerωx)⊥ is non-degenerate, it holds that h1 ⊂

u((kerωx)
⊥).

If the holonomy algebra g ⊂ so(1, n+ 1)Rp is not weakly irreducible, then it is
obvious that there exists a g-invariant orthogonal decomposition of the tangent
space

TxM = R1,n+1 = R1,k+1 ⊕ Rn−k

and the corresponding decomposition

g = a⊕ b

such that a ⊂ so(1, k + 1)Rp is a weakly irreducible holonomy algebra of the
Levi-Civita connection of a Lorentzian manifold admitting a parallel isotropic
vector field, and b ⊂ so(n − k) is the holonomy algebra of the Levi-Civita
connection of a Riemannian manifold. The subalgebra (prso(k) a) ⊕ b ⊂ so(n)

annihilates an element from ∧2Rn corresponding to the parallel bivector ω
on E. Using the results from [17] it is easy to see that each R ∈ RT (g) = R(g)
is given by

R(q,X) = P (X) + p ∧K(X), X ∈ Rk,

R(X,Y ) = R1(X,Y )− p ∧ (P (X)Y − P (Y )X), X, Y ∈ Rk,

R(X,Y ) = R2(X,Y ), X, Y ∈ Rn−k,

Documenta Mathematica 27 (2022) 2333–2383



2344 I. Ernst, A. S. Galaev

where R1 + R2 ∈ R(h) = R(prso(k) g) ⊕ R(b), K : Rk → Rk is a symmetric
linear map, and P ∈ P(prso(k) g), where elements of P(prso(k) g) are linear

maps from Rk to prso(k) g satisfying

S
XY Z

g(P (X)Y, Z) = 0.

The following two examples show that in general the holonomy algebras of the
connections ∇ and ∇g do not coincide.

Example 1. Let v, x1, . . . , xn, u be coordinates on M = Rn+2. Suppose that
n = k + 2m, k ≥ 0 and let g be the metric given by

g = 2dvdu+
n
∑

i=1

(dxi)2 +H(du)2,

whereH =
∑k
j=1(x

j)2. It is clear that (M, g) is a product of an indecomposable
Cahen-Wallach space of dimension k+2 and of the Euclidean space of dimension
n− k = 2m. The non-zero curvature operators are

Rg(∂u, ∂xi) = ∂v ∧ ∂xi , i = 1, . . . , k.

In particular, hol(∇g) = p ∧Rk.

Consider the 3-vector

T = −2∂v ∧

m
∑

i=1

∂xk+2i ∧ ∂xk+2i+1

and the connection ∇ = ∇g + 1
2T . It is not hard to check that ∇T = 0. For

the connection ∇ it holds that ∇∂v = 0 and

R(∂u, ∂xi) = ∂v ∧ ∂xi , j = 1, . . . , n.

This and Proposition 2 imply that hol(∇) = p ∧ Rn.

Example 2. Let (M, g) be as in Example 1 with H =
∑n

i=1(x
i)2. It is clear

that hol(∇g) = p ∧ Rn. Let now T = ∂v ∧
∑m

i=1 ∂xk+2i ∧ ∂xk+2i+1 and consider
the connection ∇ as above. The non-zero curvature operators of ∇ are

R(∂u, ∂xi) = ∂v ∧ ∂xi , i = 1, . . . , k.

Moreover, the bivectors ∂v ∧∂xi , i = 1, . . . , k, are ∇-parallel. We conclude that
hol(∇) = p ∧ Rk.

Next we note that the following two known examples are in the scope of the
present section.
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Example 3. It is known that (see, e.g., [14]) a flat Lorentzian geometry
(M, g,∇) with closed skew-symmetric torsion T is locally isometric to a Lie
group with a bi-invariant metric. In the case when (M, g) is locally inde-
composable, (M, g) is locally isometric either to SO(2, 1) with a multiple of
its Killing form or to the simply connected Lie group with the following Lie
algebra:

d2n+2 = R2n ⊕ R⊕ R,

with the Lie bracket given by

[(v, v−, v+), (w,w−, w+)] = (v−J(w) − w−J(v), 0, v · J(w)),

where J is a non-degenerate skew-symmetric endomorphism of R2n. The Lie
group is diffeomorphic to R2n+2, and the metric is given by

g = 2dvdu+

2n
∑

i=1

(dxi)2 − (Jx, Jx)(du)2;

the torsion is equal to

T = du ∧ ω,

where ω is the 2-form associated to J .

Example 4. The metric of a pp-wave locally takes the form

g = 2dvdu+

n
∑

i=1

(dxi)2 +H(du)2, (15)

where H = H(x1, . . . , xn, u). A plane wave is a pp-wave with the function

H =

n
∑

i,j=1

Aij(u)x
ixj ,

where Aij(u) is a symmetric matrix. Regular homogeneous plane wave metrics
were classified in [9], see also [15]. In [18] it is shown that homogeneous plane
waves are reductive. Each regular homogeneous plane wave metric on Rn+2

has the form

g = 2dvdu+
n
∑

i=1

(dxi)2 +A(e−uFx, e−uFx)(du)2,

where A is a symmetric bilinear form and F is a constant skew-symmetric
matrix. The AS-structure is defined by the 3-from

T = du ∧ ω, ω = 2
∑

1≤i<j≤n

Fijdx
i ∧ dxj .
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The curvature tensor of the corresponding connection ∇ is given by

R(∂u, ∂xi) =
1

4
∂v ∧

(

2(e−uF )⊺Ae−uF (∂xi)− F 2(∂xi)
)

,

see Section 10 below. Since ∇R = 0, the holonomy algebra g of the connec-
tion ∇ is given by the image of R at any point. Considering a point with u = 0,
we see that g = p ∧ im(2A− F 2).

4 On the reducible case

Let (M, g,∇) be a Lorentzian geometry with parallel skew-symmetric torsion T .
Let g ⊂ so(1, n + 1) be the holonomy algebra of the connection ∇ at a point
x ∈M .
The geometry (M, g,∇) is called reducible if the holonomy algebra g ⊂ so(1, n+
1) of the connection ∇ is not weakly irreducible, i.e., g preserves a proper non-
degenerate subspace of the tangent space. It is clear that in this case there
exists a non-trivial g-invariant orthogonal decomposition of the tangent space

TxM = L⊕ E. (16)

The geometry (M, g,∇) is called decomposable if the holonomy algebra g ⊂
so(1, n+ 1) preserves an orthogonal decomposition (16) such that it holds

Tx ∈ ∧3L⊕ ∧3E.

Otherwise we say that the geometry is indecomposable.
Recall that according to the de Rham-Wu Theorem (see, e.g., [8]), a pseudo-
Riemannian manifold (N, h) with non weakly irreducible holonomy algebra
is locally a product of pseudo-Riemannian manifolds of lower dimension. As
it is known (see, e.g., [12]), such decomposition generally does not exist for
connections with torsion. Indeed, in the case of the Levi-Civita connection,
non-degenerate holonomy-invariant subspaces of the tangent space determine
(local) parallel distributions, which are involutive, and the manifold becomes
a local product of the integral submanifolds of these distributions. In the
presence of a parallel skew-symmetric torsion T , the ∇-parallel distributions
defined by the g-invariant subspaces L and E are involutive if and only if
Tx(L,L) ⊂ L and Tx(E,E) ⊂ E. If these conditions are satisfied, then L and E
are preserved by the holonomy algebra of the Levi-Civita connection, and by
the Wu Theorem, (M, g) is locally a product of a Lorentzian manifold (M1, g1)
and of a Riemannian manifold (M2, g2). The connection ∇ induces metric
connections on (M1, g1) and (M2, g2) with parallel skew-symmetric torsions T1
and T2 such that T = T1 + T2. Thus a geometry (M, g,∇) is decomposable if
and only if it may be locally decomposed as a product of two other geometries.
Let g be the holonomy algebra of a geometry with parallel skew torsion, and
letW be a g-invariant subspace of the tangent space. In terminology of [12] the
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subspace W (and the corresponding parallel distribution) is called horizontal
if g ∩ so(W ) 6= 0, and it is called vertical otherwise.
Let us formulate one of the main results from [12] (see Theorem 4.8 and Re-
mark 3.15 in [12]). Suppose that (M, g, T ) is a pseudo-Riemannian geometry
with parallel skew-symmetric torsion such that its holonomy algebra preserves
the orthogonal decomposition of the tangent space

TxM = F1 ⊕ F2

and such that the torsion T satisfies

T ∈ ∧3F1 ⊕ ∧3F2 ⊕ (∧2F2 ∧ F1). (17)

Then the vector space F1 determines a (local) parallel and involutive distri-
bution, i.e., we get a foliation F on M and the projection to the leaf space
appears

M →M/F.

The spaceM/F is locally a smooth manifold with a canonically induced geome-
try with parallel skew-symmetric torsion, i.e., the metric g and the component
of the torsion from ∧3F2 are projectable to the base M/F. Moreover, M/F
locally admits a geometry with parallel curvature in the sense of [12, Defini-
tion 4.7], this may be expressed as a specific structure on a local principal
bundle over M/F satisfying certain technical conditions. Conversely, [12, The-
orem 5.1] provides a construction allowing to locally reconstruct the initial
geometry on M from the local geometry with parallel curvature on M/F.

5 A construction

In this section we give a construction that will be used later in order to provide
examples of geometries with special holonomy. At the end of the section we
explain the relation of this construction to constructions from [12] and [27].
Let ∇0 be a metric connection with a parallel skew-symmetric torsion T0 on a
pseudo-Riemannian manifold (M0, g0) of signature (r, s). Let b0 ⊂ so(r, s) be
the holonomy algebra of the connection ∇0 at a point x0 ∈M0. Let n ⊂ so(r, s)
be a commutative subalgebra commuting with b0 and such that σ · T0 = 0 for
all σ ∈ n. Denote by k the dimension of n. We fix an arbitrary basis σ1, . . . , σk
of n. Denote by L0 a copy of the vector space n. Let h be an arbitrary pseudo-
Euclidean metric on L0 of signature (r0, s0). Let V1, . . . , Vk be an orthonormal
basis of L0 (i.e., h(Vi, Vj) = ǫiδij , ǫi = ±1). Since n commutes with b0, the
elements σi determine ∇0-parallel fields of endomorphisms on M0, which we
denote by the same symbols. The vectors V1, . . . , Vk will be considered as the
constant vector fields on the manifold L0.

Lemma 2. Let (N, g,∇) be a pseudo-Riemannian manifold with a metric con-
nection ∇ with a parallel skew-symmetric torsion T . Let σ be a ∇-parallel
2-form on N . Then the form σ is closed if and only if σ · T = 0.

Documenta Mathematica 27 (2022) 2333–2383



2348 I. Ernst, A. S. Galaev

Proof. Using the formulas for the exterior and covariant derivatives of a 2-form,
we get the equality

dσ(X,Y, Z) = (∇Xσ)(Y, Z)− (∇Y σ)(X,Z) + (∇Zσ)(X,Y )

+ σ(T (X,Y ), Z)− σ(T (X,Z), Y ) + σ(T (Y, Z), X).

Next,

σ(T (X,Y ), Z) = g(σT (X,Y ), Z) = −g(T (X,Y ), σZ) = −T (X,Y, σZ).

Since ∇σ = 0, we obtain
dσ = σ · T.

This proves the lemma.

In what follows we assume that the 2-forms σi are exact and we fix 1-forms κi
such that

dκi = σi

(the indices i, j will take the values 1, . . . , k).
Consider the product

M =M0 × L0.

The vector fields on M0 and L0 will be considered as vector fields on M . The
letters W,X, Y, Z will denote vector fields on M0. Let L be the distribution
on M linearly generated by the vector fields of the form

X = X −
∑

i

ǫiκi(X)Vi.

Let L0 be the distribution on M linearly generated by the vector fields
V1, . . . , Vk. The following equality holds

[X,Y ] = [X,Y ]−
∑

i

ǫiσi(X,Y )Vi. (18)

Each field of endomorphisms A on M0 defines a field of endomorphisms A of L
by the equality

A(X) = A(X).

We will extend A to TM by setting A(Vi) = 0.
Let us define a metric g on M such that L is orthogonal to L0 and

g(X,Y ) = g0(X,Y ), g(Vi, Vj) = h(Vi, Vj).

Next we define a 3-form T on M by the following conditions:

T (X,Y , Z) = T0(X,Y, Z),

T (X,Y , Vj) = σj(X,Y ),

T (Vi, Vj , ·) = 0.
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Finally we define a connection ∇ on M to be the unique g-metric connection
with the skew-symmetric torsion T :

∇ = ∇g +
1

2
T. (19)

Lemma 3. The distribution L is parallel with respect to the connection ∇.

Proof. First we will prove that g(∇XY , Vi) = 0 for all Vi and for all X,Y ∈
Γ(TM0). Applying the Koszul formula and (18), we get:

2g(∇g

X
Y , Vi) = X(g(Y , Vi)) + Y (g(X,Vi)) − Vi(g(X,Y ))

+ g([X,Y ], Vi)− g([X,Vi], Y )− g([Y , Vi], X)

= g([X,Y ], Vi) = −σi(X,Y ).

Therefore,
2g(∇XY , Vi) = −σi(X,Y ) + T (X,Y , Vi) = 0.

Similarly it holds that g(∇Vj
Y , Vi) = 0. This proves the lemma.

Lemma 4. The connection ∇ is given by the following equalities:

∇XY = ∇0
XY ,

∇Vj
X = σj(X),

∇Vj = 0.

Proof. The first equality follows from (19) and Lemma 3:

2g(∇XY , Z) = 2g0(∇
g0
X Y, Z) + T (X,Y , Z) = 2g0(∇

g0
X Y +

1

2
T0(X,Y ), Z)

= 2g0(∇
0
XY, Z) = 2g(∇0

XY , Z).

We prove the second equality in the same way:

2g(∇Vj
X,Z) = 2g(∇g

Vj
X,Z) + T (Vj , X, Z)

= Vj(g(X,Z)) +X(g(Vj , Z))− Z(g(Vj , X))

+ g([Vj , X], Z)− g([Vj , Z], X)− g([X,Z], Vj) + σj(X,Z)

= −g([X,Z], Vj) + σj(X,Z) = 2σj(X,Z) = 2g(σj(X), Z).

The equality ∇Vi
Vj = 0 follows easily from the Koszul formula. Finally,

2g(∇XVj , Z) = 2g(∇g

X
Vj , Z) + T (X,Vj , Z)

= X(g(Vj , Z)) + Vj(g(X,Z))− Z(g(X,Vj))

+ g([X,Vj ], Z)− g([X,Z], Vj)− g([Vj , Z], X)− σj(X,Z)

= −g([X,Z], Vj)− σj(X,Z) = 0.

This completes the proof of the lemma.

Documenta Mathematica 27 (2022) 2333–2383



2350 I. Ernst, A. S. Galaev

Lemma 5. The torsion tensor T of the connection ∇ is parallel.

Proof. The lemma can be proved by direct computations like the following one:

(∇WT )(Vj , Y , Z) =W (T (Vj , Y , Z))

− T (∇WVj , Y , Z)− T (Vj ,∇WY , Z)− T (Vj, Y ,∇WZ)

=W (σj(Y, Z))− σj(∇
0
WY, Z)− σj(Y,∇

0
WZ) = (∇0

Wσj)(Y, Z) = 0.

Lemma 6. The curvature tensor R of ∇ satisfies the following conditions:

R(X,Y ) = R0(X,Y ) +
∑

i

ǫiσi(X,Y )σi, R(Vi, ·) = 0. (20)

Proof. The formulas above follow directly from (18) and Lemma 4.

Now we find the holonomy algebra of the connection ∇.

Theorem 1. Let b0 ⊂ so(r, s) be the holonomy algebra of a metric connection
∇0 with a parallel skew-symmetric torsion T0 on a simply connected mani-
fold M0. Let n ⊂ so(r, s) be a commutative subalgebra commuting with b0 and
such that b0 ∩ n = 0. Suppose that the parallel 2-forms on M0 defined by ele-
ments of n are exact. Let Rr0,s0 be a pseudo-Euclidean space of dimension k.
Then the tangent space to M at the point x ∈ M may be identified with the
pseudo-Euclidean space

Rr,s ⊕ Rr0,s0 ;

the holonomy algebra of the connection ∇ constructed just above annihilates
the space Rr0,s0 and coincides with

b0 ⊕ n ⊂ so(r, s) ⊂ so(r + r0, s+ s0).

Proof. Let A be the following subbundle of End(TM):

Γ(A) = {A |A ∈ Γ(so(L)), [A, σi] = 0, i = 1, . . . , k}.

We claim that the subbundle A is parallel. Indeed, if A is a section of A, then

[∇XA, σi] = ∇X [A, σi]− [A,∇Xσi] = 0.

Let x1, . . . , xn be local coordinates on M0 and y1, . . . , yk be coordinates
on L0 corresponding to the vector fields V1, . . . , Vk. Let ∂i = ∂

∂xi . Then

∂1, . . . , ∂n, V1, . . . , Vk is a local frame onM such that L is locally linearly gener-
ated by ∂1, . . . , ∂n. The dual coframe of that frame is dx1, . . . , dxn, ω1, . . . , ωk,
where ωj = dyj+κj . With respect to the chosen frame, the Christoffel symbols
of ∇ are the following:

Γlij = Γ0
l
ij , Γln+α j = σlαj ,
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and all other Christoffel symbols are zero.
Let γ(t), 0 ≤ t ≤ 1, be a smooth curve in M, x = γ(0), y = γ(1). The tangent
vector field to γ(t) may be decomposed as

γ̇(t) = f j(t)∂j + kα(t)Vα

for some functions f j(t), kα(t). Let A(t) = Aji (t)dx
i ⊗ ∂j be a section of A

along the curve γ(t). We will denote by Ȧ(t) the field Ȧji (t)dx
i ⊗ ∂j . Denote

by Γ0j the matrix with elements (Γ0
l
ji). The parallel transport equation in the

bundle A takes the form

Ȧ(t) + f j(t)[Γ0j , A(t)] + kα(t)[σα, A(t)] = 0,

which is just
Ȧ(t) + f j(t)[Γ0j , A(t)] = 0. (21)

This equation coincides with the parallel transport equation for the field of
endomorphisms B(t) = Aji (t)dx

i ⊗ ∂j on M0 along the curve π ◦ γ, where
π : M → M0 is the projection. Denote by τγ and τπ◦γ the parallel transports
of the connections in the bundles of endomorphisms under the consideration.
We conclude that

τγAx = τπ◦γBπ(x),

where Ax ∈ Ax, Bπ(x) is the corresponding endomorphism of Tπ(x)M0,

τπ◦γBπ(x) is the element of Ay corresponding to the endomorphism τπ◦γBπ(x)
of Tπ(y)M0.
By the Ambrose-Singer theorem on holonomy, the holonomy algebra g of M
at x is spanned by the operators of the form:

τ−1
γ (Ry(U, V )),

for all possible piecewise smooth curves γ starting at the point x with an end-
point y and all U, V ∈ TyM. Note that here τγ is the parallel transport in the
bundle A. By the above considerations we get

τ−1
γ (Ry(X,Y )) = (τπ◦γ)−1(R0)π(y)(X,Y ) +

∑

j

ǫjσj(X,Y )σj (22)

for all X,Y ∈ Tπ(y)M0.
Let us prove that g contains n. Fix an endomorphism σi ∈ n. Denote by ni ⊂ n

the vector subspace spanned by the endomorphisms σ1, . . . , σi−1, σi+1, . . . , σk.
We claim that there exists ξi ∈ so(r, s) = so(Lx) such that ξ ∈ (b0 ⊕ ni)

⊥ and
gx(ξi, σi) 6= 0. Indeed, if this is not a case, it holds (b0 ⊕ ni)

⊥ ⊂ σ⊥
i , which

would imply σi ∈ b0 ⊕ ni and give a contradiction. Consider such a vector ξi.
Using Lemma 6, we get

Rx(ξi) = ǫigx(ξi, σi)σi.

This implies that σi ∈ g, and n ⊂ g. Now it is obvious that (22) implies
g = b0 ⊕ n. This proves the theorem.
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As we explained in Section 4, [12, Theorem 5.1] gives a construction of geometry
with parallel skew torsion from a geometry with parallel curvature in the sense
of [12, Definition 4.7]. Let us consider the just constructed structure (M, g,∇).
Let x ∈M . We have the holonomy-invariant decomposition

TxM = Lx ⊕ L0x,

and the torsion satisfies the condition

Tx ∈ ∧3Lx ⊕ (∧2Lx ⊗ L0x).

The distribution L0 is involutive, and the corresponding foliation F consists
of the fibers of the projection M0 × N0 → M0, i.e., M/F = M0. The induced
geometry with parallel skew torsion coincides with the initial (M0, g0,∇

0). Note
that L0 may be consider as an Abelian Lie group with the Lie algebra n. Now,
the geometry with parallel curvature onM0 is defined by the trivial L0-principal
bundle

M0 × L0 →M0

and the connection form γ, where

γ(Vi) = σi ∈ n and γ|L = 0.

Applying [12, Theorem 5.1] to that structure onM0, one gets exactly the struc-
ture (M, g,∇). Thus our construction is a special case of [12, Theorem 5.1].
At the same time we avoid the technical conditions on the principle bundle,
and the explicit expression of the connection allows us to compute torsion,
curvature and holonomy.
Let us recall a construction from [27] (with a slight modification for the pseudo-
Riemannian case). Let (m, R0, T0) be an infinitesimal model of a naturally re-
ductive homogeneous space. Let n ⊂ so(m) be a subalgebra commuting with
b0 = imR0 ⊂ so(m) and annihilating R0 and T0. Denote by L0 a copy of the
vector space n. Suppose that there exists an n-invariant pseudo-Euclidean met-
ric h on L0. Let V1, . . . , Vk be an orthonormal basis of L0, and let σ1, . . . , σk be
the corresponding basis of n. Denote by σ̄1, . . . , σ̄k the corresponding elements
for the representation of n in m⊕ L0. Define the tensors

T = T0 +

k
∑

i=1

σi ∧ Vi + 2Tn,

R = R0 +

k
∑

i=1

ǫiσ̄i ◦ σ̄i,

where the 3-form Tn corresponds to the Lie bracket on n, and ǫi = h(Vi, Vi).
Then the triple (m⊕L0, R, T ) is an infinitesimal model. As in the proof of the
theorem above, if b0 ∩ n = 0, then imR = b0 ⊕ n. If the Lie algebra n is com-
mutative, then Tn = 0, and the expressions for the just given T and R coincide
with the expressions for the torsion and the curvature from the construction of
this section.
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6 Reducible case: L is vertical and dimL ≥ 4

Before we start to study the general reducible structures, we consider the case
when the Lorentzian part is vertical in the sense of [12], this will allow to better
understand Theorem 3 from the next section and also simplify its proof.

Theorem 2. Let (M, g,∇) be a Lorentzian geometry with a parallel skew-
symmetric torsion T , x ∈M, and let g ⊂ so(1, n+ 1) be the holonomy algebra
of the connection ∇ at the point x. Suppose that the holonomy representation
of g in TxM decomposes into a non-trivial orthogonal direct sum

TxM = L⊕ E (23)

of g-modules L = R1,k+1, k ≥ 2, and E = Rn−k such that the representa-
tion of g in the Lorentzian part L is weakly irreducible and g ∩ so(L) = 0,
i.e. the Lorentzian part is vertical in the sense of [12]. Choose a Witt basis
p, e1, . . . , ek, q in L. Then the following holds:

• There exists an orthogonal decomposition

E = E1 ⊕ E0,

dimE0 = k, an orthonormal basis V1, . . . , Vk of E0, a subalgebra b0 ⊂
so(E1), which annihilates some multivectors

ωE1
∈ ∧3E1, θ1, . . . , θk ∈ so(E1), λ ∈ ∧2E.

Moreover, the endomorphisms θ1, . . . , θk are mutually commuting; the Lie
algebra b0 is Berger subalgebra of so(E) with the torsion ωE1

. It holds
that θi · λ = 0, θi · ωE1

= 0 and λ · ωE = 0, where

ωE = ωE1
+

k
∑

i=1

θi ∧ Vi ∈ ∧3E.

• The holonomy algebra g is of the form

g = {p ∧ ψ(A) +A |A ∈ b},

where
b = b0 + 〈θ1, . . . , θk〉 ⊂ so(E1)

and
ψ : b → Rk = 〈e1, . . . , ek〉

is a surjective linear map such that ψ|[b,b] = 0.

• The torsion of ∇ at the point x has the form

T = p ∧ ωRk + p ∧

k
∑

i=1

Xi ∧ Vi + p ∧ λ+ ωE1
+

k
∑

i=1

θi ∧ Vi,

where X1, . . . , Xk is a basis of Rk, and ωRk ∈ ∧2Rk.
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• Each algebraic curvature tensor R ∈ RT (g) is defined by the equalities

R(q,X) =

k
∑

i=1

g(X,Xi)
(

p ∧ ψ(θi) + θi
)

, X ∈ Rk,

R(Y, Z) = p ∧

k
∑

i=1

θi(Y, Z)Xi + C(Y, Z), Y, Z ∈ E1,

where

C(Y, Z) = C0(Y, Z) +

k
∑

i=1

θi(Y, Z)θi,

C0 ∈ RωE1 (b0), and it holds

ψ(C(Y, Z)) =

k
∑

i=1

θi(Y, Z)Xi.

Proof. Let us denote by gL and b the projections of the holonomy algebra g to
so(L) and so(E), respectively. The assumption g∩so(L) = 0 allows us to regard
g ⊂ so(L)⊕so(E) as a graph of a surjective Lie algebra homomorphism ψ̄ : b →
gL. Therefore, gL is a compact Lie algebra. According to the classification of
weakly irreducible subalgebras of so(1, n+1), g has to be conjugate to p∧Rk.
Therefore we have

g = {p ∧ ψ(A) +A |A ∈ b},

where ψ : b → Rk is a linear map such that p ∧ ψ(A) = ψ̄(A). It is clear that
ψ is surjective and ψ|[b,b] = 0.
Decomposition (23) defines the following g-invariant decomposition of space of
3-vectors on TxM :

∧3TxM = ∧3L⊕ (∧2L⊗ E)⊕ (L⊗ ∧2E)⊕ ∧3E.

We get the corresponding decomposition for T :

T = ωL + µ+ ν + ωE. (24)

By assumption, g · T = 0. Therefore, g annihilates each of the four 3-vectors
from (24). Results of Section 3 show that ωL = p ∧ ωRk , where ωRk ∈ ∧2Rk.

Lemma 7. It holds

ν = p ∧ λ, µ = p ∧

k
∑

j=1

ej ∧ µ
j ,

where λ ∈ ∧2E, b · λ = 0; µj ∈ E, b · µj = 0, j = 1, . . . , k.
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Proof. Let us consider the tensor µ. It can be uniquely written in the following
form:

µ = p ∧
k
∑

j=1

ej ∧ µ
pj + p ∧ q ∧ µpq +

k
∑

j=1

ej ∧ q ∧ µ
jq +

k
∑

i,j=1

ei ∧ ej ∧ µ
ij , (25)

where µpj , µjq, µpq, µij ∈ E, µij = −µji. Pick an element ξ = p ∧ ψ(A) + A
of g. Consider the equation

ξ · µ = 0.

Using (25) it can be shown that the equation above comes down to the following
system:

k
∑

j=1

ej ∧ Aµ
pj + ψ(A) ∧ µpq − 2

k
∑

i,j=1

(ei, ψ(A))ej ∧ µ
ij =0,

Aµpq −

k
∑

j=1

(ej , ψ(A))µ
jq = 0,

k
∑

j=1

ej ∧ Aµ
jq =0,

k
∑

i=1

ei ∧ ψ(A) ∧ µ
iq +

k
∑

i,j=1

ei ∧ ej ∧ Aµ
ij =0.

From the third equation it follows that Aµjq = 0. The fourth equation when
applied to arbitrary vectors el, em gives

(ψ(A), el)µ
mq − (ψ(A), em)µlq +Aµlm = 0.

Applying A, we see that A(Aµlm) = 0. Consequently,

0 = (A(Aµlm), µlm) = −(Aµlm, Aµlm),

which implies Aµlm = 0. Using the fourth equation again we see that µiq = 0
for all i. The second equation now is the following: Aµpq = 0. Applying A to
the first equation we obtain

k
∑

j=1

ej ∧ A(Aµ
pj) = 0,

from which it follows that Aµpj = 0. The first equation comes down to

ψ(A) ∧ µpq − 2

k
∑

i,j=1

(ei, ψ(A))ej ∧ µ
ij = 0.

Applying the equality to ψ(A), we obtain

(ψ(A), ψ(A))µpq − 2

k
∑

i,j=1

(ei, ψ(A))(ej , ψ(A))µ
ij = 0.

Documenta Mathematica 27 (2022) 2333–2383



2356 I. Ernst, A. S. Galaev

The second term is zero because µij = −µji. Finally we have µpq = 0, and
µij = 0 follows easily. We have shown that

µ = p ∧

k
∑

j=1

ej ∧ µ
j ,

for some µj ∈ E such that b ·µj = 0, j = 1, . . . , k. The structure of the tensor ν
may be found in a similar way.

Let us denote by E0 the vector subspace of E spanned by the vectors µ1, . . . , µk.
The orthogonal complement of E0 in E will be denoted by E1. We have just
seen that b annihilates E0, i.e., b ⊂ so(E1).
Let us consider an algebraic curvature tensor R ∈ RT (g). The equality (2)
implies

R(p, ·) = R(·|E0
, ·) = R|∧2Rk = R|L×E = 0.

Writing down the Bianchi identity for the vectors q, ei, ej we get

R(q, ei)ej +R(ej, q)ei = ωRk(ωRk(ei), ej)p− ωRk(ωRk(ej), ei)p

− (µj , µi)p+ (µi, µj)p = 0.

This shows that the endomorphism K : Rk → Rk defined by the equality

R(q, ei)|L = p ∧K(ei)

is symmetric. The Bianchi identity written for the vectors Z ∈ E, q, ei implies

R(q, ei)Z = ωE(µ
i, Z),

i.e.,
R(q, ei)|E = ωE(µ

i),

which implies that ωE(µ
i) ∈ b ⊂ so(E1). Consequently,

ωE ∈ ∧3E1 + ∧2E1 ⊗ E0.

Considering the vectors Y, Z ∈ E and q we get

R(Y, Z)q = (λ · ωE)(Y, Z) +

k
∑

j=1

ωE(µ
j , Y, Z)ej.

This shows that λ · ωE = 0, and

R(Y, Z)|L =
k
∑

j=1

(ωE(µ
j)Y, Z)p ∧ ej .

Using (2), we get
R(q, ei)|E = ωE(µ

i),
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i.e.,
K(ei) = ψ(ωE(µ

j)).

From the Ambrose-Singer theorem on holonomy it follows that gL = p ∧ Rk

is spanned by the endomorphisms R(X,Y )|L for all X,Y ∈ TxM, i.e., the

vectors
∑k

j=1(ωE(µ
j)Y, Z)p ∧ ej and ψ(ωE(µ

i)) span Rk. We claim that the

vectors µi, i = 1, . . . , k are linearly independent. Indeed, suppose that there
exist numbers c1, . . . , ck such that

∑k
i=1 ciµ

i = 0 and not all ci are zero. Let

X =
∑k
i=1 ciei. Then X 6= 0 and it is not hard to see that X is orthogonal to

the vectors
∑k

j=1(ωE(µ
j)Y, Z)p ∧ ej . Moreover,

R(q,X) = p ∧K(X) + ωE

(

k
∑

i=1

ciµi

)

= p ∧K(X).

Consequently K(X) = 0. Since K is symmetric, its image is orthogonal to X .
We see that X is orthogonal to the image of the map ψ, and we get a contradic-
tion proving the claim. Similar arguments show that the map ωE |E0

: E0 → b

is injective. We see that dimE0 = k. Let V1, . . . Vk be an orthonormal basis
of E0. Using it, we may rewrite T in the from

T = p ∧ ωRk + p ∧

k
∑

i=1

Xi ∧ Vi + p ∧ λ+ ωE , ωE = ωE1
+

k
∑

i=1

θi ∧ Vi,

where X1, . . . , Xk is a basis of Rk, θ1, . . . , θk are linearly independent endomor-
phisms. The condition g ·T implies b ·θi = 0, b ·λ = 0, b ·ωE1

= 0. From above
we see that

R(q,X)|E =

k
∑

i=1

(X,Xi)θi, X ∈ Rk.

This implies that θi ∈ b. We conclude that θi are mutually commuting. Let
C = prb ◦R|∧2

E
. Writing down the Bianchi identity for 3 vectors from E1, we

get

S
XY Z

C(X,Y )Z = S
XY Z

ωE1
(ωE1

(X,Y ), Z) + S
XY Z

k
∑

i=1

θi(X,Y )θi(Z).

We conclude that

C(X,Y ) = C0(X,Y ) +

k
∑

i=1

θi(X,Y )θi(Z),

where C0 ∈ RωE1 (b). This implies that the algebra b0 generated by the im-
ages of the tensors C0 defined by all R ∈ RT (g) is a Berger algebra with the
torsion ωE1

. It is clear that b0 commutes with the endomorphisms θi, and

b = b0 + 〈θ1, . . . , θk〉 .
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The Bianchi identity written for other triples of vectors does not give any new
conditions. The theorem is proved.

Example 5. Let us construct some of the spaces described in the above the-
orem. Let (N0, b0, T0) be a Riemannian geometry with a parallel skew tor-
sion T0 and holonomy algebra b0 ⊂ so(m), m = dimN0. Let (M0, g0, T0) be
the product of (N0, b0, T0) with the flat Minkowski space R1,k+1. It is clear
that the holonomy algebra of (M0, g0, T0) is b0 ⊂ so(m) ⊂ so(1, k + m + 1).
Let θ1, . . . , θk ∈ so(m) be linearly independent mutually commuting endomor-
phisms commuting with b0. Let n0 = 〈θ1, . . . , θk〉. Suppose that n0 ∩ b0 = 0.
Consider the Lie algebra b = b0 ⊕ n0. Let

ψ : b → Rk

be a surjective linear map which is zero on b0. Let finally

σi = p ∧ ψ(θi) + θi, i = 1, . . . , k.

The construction of Section 5 gives us a geometry (M, g,∇) with the torsion

T = p ∧

k
∑

i=1

ψ(θi) ∧ Vi +

k
∑

i=1

θi ∧ Vi + T0

and the holonomy algebra

g = {p ∧ ψ(A) +A |A ∈ b} ⊂ so(1,m+ 2k + 1).

Let us show that [12, Theorem 4.8] may be applied to connections from this
section. We use the notation of Theorem 2. Let V0 ⊂ E be the subspace con-
sisting of vectors annihilated by b. Let V1 ⊂ E be the orthogonal complement
to V0 in E. We obtain the decomposition

E = V1 ⊕ V0.

It is clear that

λ = λ1 + λ0, λ1 ∈ ∧2V1, λ0 ∈ ∧2V0.

It holds that E0 ⊂ V0. Consider the holonomy-invariant decomposition

TxM = F1 ⊕ F2 = (L ⊕ V0)⊕ V1. (26)

The equality (17) holds true. Consequently F1 determines a foliation F; the
metric g and the part of the torsion determined by T |∧3V1

define a geometry
with parallel skew-torsion locally on the leaf space M/F.
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7 Reducible case: dimL ≥ 4

Theorem 3. Let (M, g,∇) be a Lorentzian geometry with a parallel skew-
symmetric torsion T , x ∈M, and let g ⊂ so(1, n+ 1) be the holonomy algebra
of the connection ∇ at the point x. Suppose that the holonomy representation
of g in TxM decomposes into a non-trivial orthogonal direct sum

TxM = L⊕ E (27)

of g-modules L = R1,k+1, k ≥ 2, and E = Rn−k, such that the induced repre-
sentation of g in the Lorentzian part L is weakly irreducible. Suppose that the
torsion T is not an element of ∧3L ⊕ ∧3E. Denote by b the projection of g
to so(E). Choose a Witt basis p, e1, . . . , ek, q in L and set Rk = 〈e1, . . . , ek〉.
Then the following holds:

• The holonomy algebra g is of the form

g = {p ∧ ψ(A+B) +A+B |A ∈ h, B ∈ b}⋉ p ∧ Rk1

=



































0 −X⊺ −ψ(A+B)⊺ 0 0
0 A 0 X 0
0 0 0 ψ(A+B) 0
0 0 0 0 0
0 0 0 0 B













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A ∈ h,
B ∈ b,
X ∈ Rk1























,

where an orthogonal decomposition

Rk = Rk1 ⊕ Rk2

is fixed, k = k1 + k2, 0 ≤ k2 ≤ k, h ⊂ so(k1) is the holonomy algebra of
the Levi-Civita connection of a Riemannian manifold, and

ψ : h⊕ b → Rk2

is a surjective linear map such that ψ|[h,h] = ψ|[b,b] = 0.

• To decomposition (27) corresponds the decomposition of the torsion T of
the connection ∇ at the point x ∈M ,

T = p ∧ ζ + ωE ,

where ζ ∈ ∧2(Rk ⊕ E) and ωE ∈ ∧3E. There exists a unique orthogonal
decomposition

E = E1 ⊕ E0

such that b ⊂ so(E1),

ωE = ωE1
+ ϕ, ωE1

∈ ∧3E1, ϕ ∈ (∧2E1) ∧ E0,
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and

E0 = ϕ(∧2E1) ∩ prE ζ(R
k).

There exists a Berger subalgebra b0 ⊂ so(E1) with the torsion ωE1
. The

image ϕ(E0) ⊂ ∧2E1 = so(E1) is a commutative subalgebra commuting
with b0, and it holds

b = b0 + ϕ(E0).

Moreover,

b · ωE1
= 0, b · ϕ = 0, b · ζ = 0,

h · ζ = 0, ωE1
(prE1

ζ(Rk)) = 0, (pr∧2E ζ) · ωE = 0.

• Let V1, . . . , Vl be an orthogonal basis of E0. Let θi = ϕ(Vi), and Xi =
pr

Rk ζ(Vi). Then each algebraic curvature tensor R ∈ RT (g) is defined
by the equalities

R(q,X) = P (X) + p ∧K(X) +

l
∑

i=1

g(X,Xi)θi, X ∈ Rk,

R(X,Y ) = R0(X,Y )− p ∧ (P (X)Y − P (Y )X), X, Y ∈ Rk1 ,

R(Y, Z) = p ∧

l
∑

i=1

θi(Y, Z)Xi + C(Y, Z), Y, Z ∈ E1,

where R0 ∈ R(kerψ|h), P ∈ P(h), K : Rk → Rk is a symmetric linear
map such that

pr
Rk2 K(X) = ψ

(

P (X) +

l
∑

i=1

g(X,Xi)θi

)

;

next,

C(Y, Z) = C0(Y, Z) +
l
∑

i=1

θi(Y, Z)θi,

C0 ∈ RωE1 (b0), and it holds

ψ(C(Y, Z)) =

l
∑

i=1

θi(Y, Z) prRk2 Xi.

Proof. Consider the g-invariant decomposition

R1,n+1 = L⊕ E = R1,k+1 ⊕ Rn−k

as above. We assume that the induced representation of g in R1,k+1 is weakly
irreducible and k ≥ 2. Using arguments as in Lemmas 1 and 7 it is not hard to
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show that the condition T 6∈ ∧3L ⊕ ∧3E implies that prso(1,k+1) g annihilates
an isotropic vector p. We see that

g ⊂ (so(k)⋉ p ∧ Rk)⊕ so(E), prp∧Rk g = p ∧ Rk.

Let V0 ⊂ E be the subspace consisting of vectors annihilated by g. We obtain
an orthogonal decomposition

E = Rm ⊕ V0

such that g does not annihilate any non-zero vector in Rm. As in Section 6, it
is easy to see that the torsion has the form

T = p ∧ ωRk + p ∧

k
∑

i=1

ei ∧ µi + p ∧ λ+ ωE ,

where ωRk ∈ ∧2Rk, µi ∈ Rm ⊕ V0, ωE ∈ ∧3E are such that ωRk ,
∑k

i=1 ei ∧ µi,
ωE are annihilated by prso(n) g.
Let us denote

k1 = so(k) ∩ k, k2 = so(m) ∩ k,

h = prso(k) k, b = prso(m) k.

Its easy to see that k1 is an ideal in h. Thus, there is a complementary ideal a.
The same holds for k2 ⊂ b and we will denote the corresponding complementary
ideal by c. The algebra k can be decomposed as a sum of ideals in the following
way

k = k1 ⊕ k2 ⊕ k̃,

and its easy to see that k̃∩ h = k̃∩ b = 0. This means that k̃ is a graph of a Lie
algebra isomorphism a → c.
From the invariance of T we see that ωE has the form

ωE = ωRm +

n0
∑

a=1

θa ∧ Va + ω0,

where ωRm ∈ ∧3Rm, θa ∈ ∧2Rm, ω0 ∈ ∧3V0 and V1, . . . , Vn0
is an orthonormal

basis of V0.

Lemma 8. The Lie algebra k̃ is trivial, i.e., k = k1 ⊕ k2.

Proof. Using the Bianchi identity as in Section 6 it is easy to see that the
projections of curvature operators to so(n) are the following:

prso(n)R(ei, q) = −P (ei)−

n0
∑

a=1

(Va, µi)θa (28)

prso(n)R(ei, ej) = R0(ei, ej) ∈ k1 (29)

prso(n)R(X,Y ) = C(X,Y ) ∈ k2, X, Y ∈ Rm, (30)
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and other curvature operators have zero projections to so(n); here P ∈ P(h),
R0 ∈ R(h), C ∈ RωE (b).
We claim that the Lie algebra k̃ is commutative. The Lie algebra k̃ is spanned
by the elements of the form prk̃R(ei, q), where ei ∈ Rk, R ∈ RT (g). We see
from (28) that

∑n0

a=1(Va, µi)θa ∈ b. Since this element annihilates T , we obtain
that

∑n0

a=1(Va, µi)[θa, θb] = 0. This proves the claim.
It is clear that the subalgebra h ⊂ so(k) is spanned by the images of the
elements P ∈ P(h), R0 ∈ R(h) defined by all R ∈ RT (g). This implies [21]
that h ⊂ so(k) is the holonomy algebra of the Levi-Civita connection of a
Riemannian manifold. The de Rham theorem implies the decompositions

Rn = Rd1 ⊕ · · · ⊕ Rdl ⊕ Rd0 ,

h = h1 ⊕ · · · ⊕ hl,

where hα ⊂ so(dα) is irreducible, α = 1, . . . , l. We assume that basis e1, . . . , ek
is compatible with this decomposition.
Suppose that h′α 6= 0. Then the induced representation of h′α on Rdα is either
irreducible, or h′α = so(mα)⊕so(2) and Rdα = Rmα⊗R2, dα = 2mα [8]. Since h
and k̃ are ideals in k, h′α is a semisimple ideal in h, and k̃ is commutative, we
see that h′α ⊂ k1. Since T is invariant, we conclude that µi = 0 if ei ∈ Rdα .
From this and (28) it follows that prso(n)R(ei, q) = −P (ei) if ei ∈ Rdα . This
implies that hα ⊂ k1.
Suppose that h′α = 0. Then hα = so(2), and Rdα = R2. Without loss of
generality we may assume that α = 1. For each P ∈ P(so(2)), the basis
e1, e2 ∈ R2 may be chosen in such a way that

P (e1) = −ce1 ∧ e2, P (e2) = 0, c ∈ R.

If c = 0, then from (28) it follows that prk̃R(ej, q) = 0. Suppose that c 6= 0.
We have

prso(n)R(e1, q) = −c e1 ∧ e2 −

n0
∑

a=1

(Va, µ1)θa, (31)

prso(n)R(e2, q) = −

n0
∑

a=1

(Va, µ2)θa. (32)

From the equalities R(e1, q) · T = R(e2, q) · T = 0 it follows that

cµ1 =

n0
∑

a=1

(Va, µ1)θaµ2,

−cµ2 =

n0
∑

a=1

(Va, µ2)θaµ1.

Since
∑n0

a=1(Va, µ1)θa,
∑n0

a=1(Va, µ2)θa ∈ b ⊂ so(m), the equations imply
µ1, µ2 ∈ Rm. Consequently, (Va, µ1) = (Va, µ2) = 0, which implies µ1 =
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µ2 = 0. Now from (31) we see that prk̃R(e1, q) = prk̃R(e2, q) = 0. This proves
the lemma.

Thus,
prso(n) g = h⊕ b, h ⊂ so(k), b ⊂ so(m).

We already know that prso(1,k+1) g ⊂ so(1, k + 1) is weakly irreducible and
it annihilates the isotropic vector p. So, prso(1,k+1) g is a weakly irreducible
subalgebra of type 2 or 4. We unify these algebras assuming ψ = 0 for algebras
of type 2. Now it is clear that g ⊂ so(1, n + 1) is as in the statement of the
theorem.
The condition g · T implies now that

k
∑

i=1

ei ∧ µi =
∑

ei∈Rd0

ei ∧ µi, µi ∈ V0.

This expression may be considered as a map from Rd0 to V0. Let us denote
by E′

0 its image, E′
0 ⊂ V0. And consider an orthogonal decomposition

E = E′
1 ⊕ E′

0.

Using this decomposition, T may be rewritten as

p ∧ ωRk + p ∧

n0
∑

a=1

Xa ∧ Va + p ∧ λ+ ωE , ωE = ωE′

1
+

n0
∑

a=1

θa ∧ Va + ω0,

where now V1, . . . , Vn0
is an orthonormal basis of E′

0, X1, . . . , Xn0
∈ Rk are

vectors annihilated by h, λ ∈ ∧2E, ωE′

1
∈ ∧3E′

1, θ1, . . . , θn0
∈ so(E′

1), ω0 ∈

∧3E′
0. By the construction, the vectors X1, . . . , Xn0

are linearly independent.
As above, the Bianchi identity implies

prso(m)R(X, q) = −

n0
∑

a=1

(X,Xa)θa, X ∈ Rk.

Since the vectors X1, . . . , Xn0
∈ Rk are linearly independent, we conclude

that θa ∈ b for all a = 1, . . . , n0. The condition b · T = 0 implies that the
endomorphisms θa, a = 1, . . . , n0, are mutually commuting. As in Section 6 it
can be shown that this implies ω0 = 0.
Consider now the expression

∑n0

a=1 θa∧Va as a map from E′
0 to b. Let E0 ⊂ E′

0

be the orthogonal complement to the kernel of this map. Let finally E1 be the
orthogonal complement to E0 in E and consider the decomposition

E = E1 ⊕ E0.

Now it is obvious that T may be represented as in the statement of the theorem.
The expressions for the curvature tensor may be obtained from the Bianchi
identity as we did it in Section 6.
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Remark 1. The torsion given in the statement of Theorem 3 may be written
in the form

T = p∧

(

ωRk +

l
∑

i=1

Xi ∧ Vi +

s
∑

i=1

Yi ∧ Ui + λ

)

+ωE, ωE = ωE1
+

l
∑

i=1

θi∧Vi,

where ωRk ∈ ∧2Rk, h · ωRk = 0; X1, . . . , Xl, Y1, . . . , Ys ∈ Rk are linearly in-
dependent vectors annihilated by h; V1, . . . , Vl is an orthonormal basis of E0;
θ1, . . . , θl ∈ so(E1) are linearly independent mutually commuting elements com-
muting with b0; U1, . . . , Us ∈ E1 are vectors annihilated by

b = b0 + 〈θ1, . . . , θl〉 ⊂ so(E1);

ωE1
∈ ∧3E1, b ·ωE1

= 0; and λ ∈ ∧2E, b ·λ = 0. Moreover, it holds ωE1
(Ui) =

0, and λ · ωE = 0.

Remark 2. Note that the decomposition (27) is not defined uniquely. Suppose
that a decomposition (27) is fixed. Let as above b ⊂ so(E) be the projection
of the holonomy algebra g to so(E). Let V0 ⊂ E be the subspace consisting
of vectors annihilated by b. Let V1 ⊂ E be the orthogonal complement to V0
in E. We obtain the decomposition

E = V1 ⊕ V0.

In notation of Theorem 3 we have V1 ⊂ E1, and E0 ⊂ V0. Fix a vector X0 ∈ V0
and consider the vector space

Ẽ = V1 ⊕ Ṽ0, Ṽ0 = {X − (X,X0)p|X ∈ V0}.

Let L̃ be the orthogonal complement to Ẽ in R1,n+1. The vector space L̃ is
spanned by the vectors p, e1, . . . , ek, q+X0 −

1
2g(X0, X0)p. We obtain the new

g-invariant decomposition
R1,n+1 = L̃⊕ Ẽ. (33)

Using the decomposition E = V1 ⊕ V0, the tensor ωE may be written as

ωE = ωV1
+ ωV0

+ ϕ,

where ωV1
∈ ∧3V1, ωV0

∈ ∧3V0 ϕ ∈ ∧2V1 ⊗V0. Let Z1, . . . , Zs be an orthonormal
basis of V0. The tensor ϕ may be written in the form ϕ =

∑s
i=1 ηi ∧ Zi. The

condition [b, λ] = 0 implies

λ = λ1 + λ0, λ1 ∈ ∧2V1, λ0 ∈ ∧2V0.

Example 6. Let (M1, g1) be a Lorentzian manifold of dimension k1 + k2 + 2,
k1 ≥ 0, k2 ≥ 0 with the holonomy algebra

g1 = {p ∧ ψ1(A) +A|A ∈ h}⋉ p ∧ Rk1 ⊂ so(1, k1 + k2 + 1),
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where h ⊂ so(k1) is the holonomy algebra of a Riemannian manifold and
ψ1 : h → Rk2 is an arbitrary linear map with ψ1|[h,h] = 0. Such spaces ex-
ist according to [17]. Let (N0, b0, T0) be the product of (M1, g1) and of a
Riemannian geometry with a parallel skew torsion T0 and holonomy algebra
b0 ⊂ so(m), m = dimN0. It is clear that the holonomy algebra of (M0, g0, T0)
is g1 ⊕ b0 ⊂ so(1, k1 + k2 + 1) ⊕ so(m). Let θ1, . . . , θl ∈ so(m) be linearly
independent mutually commuting endomorphisms commuting with b0. Let
n0 = 〈θ1, . . . , θl〉. Suppose that n0 ∩ b0 = 0. Let b = b0 ⊕ n0. Let

ψ2 : b → Rk2

be a linear map which is zero on b0 and such that the map ψ = ψ1 + ψ2 :
h⊕ b → Rk2 is surjective. Let finally

σi = p ∧ ψ(θi) + θi, i = 1, . . . , l.

The construction of Section 5 gives us a geometry (M, g,∇) with the torsion

T = p ∧

l
∑

i=1

ψ(θi) ∧ Vi +

l
∑

i=1

θi ∧ Vi + T0

and the holonomy algebra

g = {p ∧ ψ(A) +A |A ∈ h⊕ b}⋉ p ∧ Rk1

contained in so(1, k1 + k2 + 1)⊕ so(m) ⊂ so(1, k1 + k2 + 1)⊕ so(l +m).

For a geometry from the statement of the theorem, one may consider the de-
composition (26) and as in Section 6 apply to it [12, Theorem 4.8]. Let us now
show that some results from [12] do not hold true in the Lorentzian signature.

Example 7. Let (M0, g0, ωE) be a Riemannian geometry with a parallel skew-
symmetric torsion and a parallel 2-from λ satisfying λ ·ωE = 0. Denote by b its
holonomy algebra. Let (N0, h0, p∧ω) be a Lorentzian geometry as in Section 3
and with the holonomy algebra gL. By Lemma 2, the 2-form λ is closed. Let us
suppose that λ is exact, i.e., there exists a 1-from κ such that dκ = λ. Consider
the manifoldM =M0×N0 and the product of the above geometries. Similarly,
as in Section 5, consider the distribution L on M spanned by the vector fields

X̄ = X − κ(X)p, X ∈ Γ(TM0).

As in Section 5 this defines a geometry with the torsion

ω̄E + p ∧ ω + p ∧ λ̄,

where ω̄E and λ̄ are the tensors on L corresponding to ωE and λ. It is easy
to check that the distributions L and TN0 are parallel with respect to this
connection, and the holonomy algebra of this connection coincides with b⊕gL.
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Suppose that b is irreducible and gL is weakly irreducible. Then both distribu-
tions L and TN0 are horizontal. Since λ 6= 0, the geometry is indecomposable.
In the same time, Lemma 3.6 from [12] implies that if a Riemannian manifold
admits two orthogonal horizontal parallel distributions, then the geometry is
locally decomposable. This shows a substantial difference between Riemannian
and Lorentzian geometries with parallel skew-symmetric torsion.

8 Reducible case: dimL = 2, 3

Theorem 4. Let (M, g,∇) be a Lorentzian geometry with a parallel skew-
symmetric torsion T , and let g ⊂ so(1, n + 1) be the holonomy algebra of the
connection ∇ at a point x ∈M . Suppose that the holonomy representation of g
in TxM decomposes into a non-trivial orthogonal direct sum

TxM = L⊕ E = R1,1 ⊕ Rn (34)

such that the induced representation of g in the Lorentzian part L = R1,1 is
non-trivial, and T 6∈ ∧3E. Then

• There exists a non-zero vector v ∈ E, an orthogonal decomposition E =
Rv ⊕ E1, a Berger subalgebra b0 ⊂ so(E1) with the torsion ωE1

∈ ∧3E1,
an endomorphism θ ∈ ∧2E1 commuting with b0 such that the torsion is
given by

T = p ∧ q ∧ v + θ ∧ v + ωE1
.

• The holonomy algebra g is one of the following:

g1 = Rp ∧ q ⊕ b,

g2 = {ψ(B)p ∧ q +B |B ∈ b},

where the subalgebra b ⊂ so(E1) is spanned by b0 and θ, and ψ : b → R

is a non-zero linear map with ψ|[b,b] = 0.

• Each algebraic curvature tensor R ∈ RT (g) is given by the following
formulas:

R(p, q) = αp ∧ q − g(v, v)θ,

R(X,Y ) = g(v, v)θ(X,Y )p ∧ q + C(X,Y ), X, Y ∈ E,

where

C(X,Y ) = C0(X,Y ) + θ(X,Y )θ, C0 ∈ RωE1 (b0), α ∈ R.

In the case of the holonomy algebra g2 it holds α = −ψ(θ) and
ψ(C(X,Y )) = g(v, v)θ(X,Y ).
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Theorem 5. Let (M, g,∇) be a Lorentzian geometry with a parallel skew-
symmetric torsion T , and let g ⊂ so(1, n + 1) be the holonomy algebra of the
connection ∇ at a point x ∈M . Suppose that the holonomy representation of g
in TxM decomposes into a non-trivial orthogonal direct sum

TxM = L⊕ E = R1,2 ⊕ Rn−1 (35)

such that the induced representation of g in the Lorentzian part L = R1,2 is
weakly irreducible, and T 6∈ ∧3L⊕ ∧3E. Then

• There exists a vector v ∈ E, a Berger subalgebra b0 ⊂ so(E1) with the
torsion ωE1

∈ ∧3E1, where E1 ⊂ E is the orthogonal complement to v in
E. Next, there exist a number α ∈ R, endomorphisms θ ∈ ∧2E1, λ ∈ ∧2E
commuting with b0 such that the torsion is given by

T = p ∧ (αe1 ∧ q + e1 ∧ v + λ) + ωE1
+ θ ∧ v.

• The holonomy algebra g is one of the following:

g = Rp ∧ e1 ⊕ b,

g = {ψ(B)p ∧ e1 +B |B ∈ b},

where b ⊂ so(E1) is the subalgebra spanned by the endomorphisms
g(v, v)θ + αλ and C0(X,Y ) + g(v, v)θ(X,Y )θ for all C0 ∈ RωE1 (b0),
X,Y ∈ E, and ψ : b → R is a non-zero linear map with ψ|[b,b] = 0.

• Each algebraic curvature tensor R ∈ RT (g) is given by

R(q, e1) = βp ∧ e1 + g(v, v)θ + αλ,

R(X,Y ) = g(g(v, v)θX + αλX, Y )p ∧ e1 + C(X,Y ), X, Y ∈ E,

where

C(X,Y ) = C0(X,Y ) + g(v, v)θ(X,Y )θ, C0 ∈ RωE1 (b0), β ∈ R.

In the case of the holonomy algebra g2 it holds β = ψ(g(v, v)θ + αλ) and
ψ(C(X,Y )) = g(g(v, v)θX + αλX, Y ).

The proofs of Theorems 4 and 5 are direct and they use the techniques from
the previous sections. For the proof of Theorem 5 note that the projection of
the torsion to ∧3L is proportional to the volume form.

9 Summary

Now we summarize the information about holonomy algebras form the previous
sections. Let (M, g,∇) be a Lorentzian geometry with non-zero parallel skew-
symmetric torsion T and holonomy algebra g ⊂ so(1, n + 1), then one of the
following possibilities holds:
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1. the holonomy algebra g ⊂ so(1, n+1) is irreducible. This is possible only
for n = 1 and g = so(1, 2); in this case the torsion is proportional to the
volume form.

2. the holonomy algebra g ⊂ so(1, n + 1) is weakly irreducible and not
irreducible. This situation is described in Section 3.

In other cases g preserves a decomposition of the tangent space

R1,n+1 = L⊕ E = R1,k+1 ⊕ Rn−k, 1 ≤ dimL = k + 2 ≤ n− 1

such that the induced representation of g in L is weakly irreducible. In this
case the geometry is reducible. One of the possibilities is

3. The torsion at a point satisfies T ∈ ∧3L ⊕ ∧3E. Then the geometry is
decomposable, i.e., locally it is a product of Lorentzian and Riemannian
geometries with parallel skew-symmetric torsion. In particular, g = gL⊕
b, where gL ⊂ so(L), b ⊂ so(E) are the corresponding holonomy algebras.

Now we may assume that T 6∈ ∧3L⊕∧3E, i.e., the geometry is not decompos-
able. Then the following cases depending on the dimension of L may appear:

4. dimL = 1; in this case g ⊂ so(E) = so(n + 1), and the torsion is of the
form e− ∧ θ + ωE , where e− is a vector from L of norm −1, θ ∈ ∧2E,
ωE ∈ ∧3E, it holds g · θ = 0, g · ωE = 0, θ · ωE = 0; each R ∈ RT (g) is of
the form R = C0 − θ ◦ θ for some C0 ∈ RωE (g+ Rθ).

5. dimL = 2; this case is considered in Section 8;

6. dimL = 3; this case is considered in Section 8;

7. dimL ≥ 4; this case is considered in Section 7.

Corollary 3. Let (M, g,∇) be an indecomposable Lorentzian geometry with
a parallel skew-symmetric torsion T and holonomy algebra g ⊂ so(1, n + 1).
Suppose that M is simply connected. Then there exists a ∇-parallel isotropic
vector field in the cases 2 with (n ≥ 2), 6 and 7 from above. In the case 4 the
vector field p exists if and only if g annihilates a non-zero vector in E. The
∇-parallel isotropic vector field p is also parallel with respect to the Levi-Civita
connection ∇g.

Thus in the most of the cases the geometry is locally defined by a Walker
metric g given by (14) with the parallel isotropic vector field p = ∂v. The
tensors determining the torsion may be considered as ∇-parallel multivectors
on the screen bundle p⊥/ 〈p〉.
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10 Naturally reductive homogeneous spaces

In Section 2 we have seen that a connected and simply connected naturally
reductive homogeneous space is uniquely determined by the corresponding in-
finitesimal model (m, R, T ). Consequently, our task is to describe all infinites-
imal models in the Lorentzian signature, i.e., for m = R1,n+1, n ≥ 1. Above
we have found all holonomy algebras g ⊂ so(1, n+1) of Lorentzian geometries
(M, g,∇) with parallel skew-symmetric torsion, we have described all torsions T
of these geometries, and all curvature tensors R ∈ RT (g). If such g, T , and R
are fixed, then the second equality from (6) and the equality (7) hold true for R
and T . Consequently, (m, R, T ) is an infinitesimal model with the holonomy
algebra g if and only if g · R = 0, g = imR, and (8) holds true. Note that
since R satisfies (2), by [4, Theorem A.2], the property (8) holds true automat-
ically. In what follows we say that a naturally reductive homogeneous space
(M, g) is indecomposable if the corresponding geometry (M, g,∇), where ∇ is
the canonical connection, is indecomposable in the sense of the definition from
Section 4.

Let us give some constructions of infinitesimal models in Lorentzian signature.

Example 8. Let (E1, C0, ωE1
) be an infinitesimal model of Riemannian signa-

ture. Let n ⊂ so(E1) be a commutative subalgebra commuting with b0 = imC0

and annihilating C0 and ωE1
. Choose an Euclidean metric on n. Let dim n = l

and let Rl and E0 be two copies of n. Consider the Minkowski space

R1,n+1 = L⊕ E,

where

L = Rp⊕ Rk ⊕ Rq, Rk = Rk−l ⊕ Rl, k ≥ 2,

E = E1 ⊕ E0.

Let ωRk ∈ ∧2Rk be an arbitrary element. Let ϕ ∈ n ∧ E0 and ζ2 ∈ Rl ∧ E0

correspond to the identity maps under the identifications E0
∼= n and Rl ∼= E0,

respectively. Define the 3-form

ωE = ωE1
+ ϕ ∈ ∧3E

Let λ ∈ ∧2E be an element such that λ·ωE = 0. Let ζ1 ∈ Rk∧E1 be an element
satisfying the conditions b · ζ1 = 0, ωE1

(ζ1(R
k)) = 0, and ζ1(E1) ∩ ζ2(E0) = 0.

Let

T = p ∧ ζ + ωE ,

where

ζ = ωRk
+ ζ1 + ζ2 + λ.

Let V1, . . . , Vl be an orthogonal basis of E0. Let θi = ϕ(Vi), and Xi = ζ2(Vi).
Let K : Rn → Rn be a symmetric linear map such that imK and ζ2(E0)
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span Rk. Define the tensor R with the following non-zero values:

R(q,X) = p ∧K(X) +

l
∑

i=1

g(X,Xi)θi, X ∈ Rk,

R(Y, Z) = p ∧
l
∑

i=1

θi(Y, Z)Xi + C0(Y, Z) +
l
∑

i=1

θi(Y, Z)θi, Y, Z ∈ E1.

It is easy to check that (R1,n+1, R, T ) is an infinitesimal model. The projection
of the holonomy algebra g = imR to so(L) coincides with p ∧Rk.

Example 9. Let (E1, C0, ωE1
) be an infinitesimal model of Riemannian signa-

ture. Let R be the line with the scalar product, and v ∈ R an arbitrary (possibly
zero) vector. Consider the Euclidean space E = E1 ⊕ Rv. Let n = dimE + 1.
Consider the Minkowski space

R1,n+1 = L⊕ E = R1,2 ⊕ E.

Fix endomorphisms θ ∈ ∧2E1, λ ∈ ∧2E commuting with imC0. Let α, β ∈ R.
Define the algebraic torsion

T = p ∧ (αe1 ∧ q + e1 ∧ v + λ) + ωE1
+ θ ∧ v

and curvature

R(q, e1) =βp ∧ e1 + g(v, v)θ + αλ,

R(X,Y ) =g(g(v, v)θX + αλX, Y )p ∧ e1

+ C0(X,Y ) + g(v, v)θ(X,Y )θ, X, Y ∈ E.

It is easy to check that (R1,n+1, R, T ) is an infinitesimal model.

Example 10. Let (E1, C0, ωE1
) be an infinitesimal model of Riemannian sig-

nature, dimE1 = n− 1. Let R be the line with the scalar product, and v ∈ R

an arbitrary non-zero vector. Consider the Minkowski space

R1,n+1 = L⊕ E = R1,1 ⊕ (E1 ⊕ Rv).

Fix an endomorphism θ ∈ ∧2E1 commuting with imC0. Let α ∈ R. Define the
algebraic torsion

T = p ∧ q ∧ v + θ ∧ v + ωE1

and curvature

R(p, q) = αp ∧ q − g(v, v)θ,

R(X,Y ) = g(v, v)θ(X,Y )p ∧ q + C0(X,Y ) + θ(X,Y )θ, X, Y ∈ E.

We get an infinitesimal model (R1,n+1, R, T ).
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Example 11. Let (E = Rn+1, C0, ωE) be an infinitesimal model of Riemannian
signature. Suppose that a θ ∈ ∧2E is given, and it holds θ ·C0 = 0, θ ·ωE = 0.
Consider the Minkowski space

R1,n+1 = L⊕ E = Re− ⊕ Rn+1,

where e− is a vector of norm −1. Define the tensors

T = e− ∧ θ + ωE ,

and
R = C0 − θ ◦ θ.

We get an infinitesimal model (R1,n+1, R, T ).

Theorem 6. Let (M, g) be a connected and simply connected indecomposable
naturally reductive homogeneous Lorentzian space of dimension n+2 ≥ 4. Then
either (M, g) is a symmetric space or one of the following holds:

• (M, g) is Rn+2 with the structure of a homogeneous plane wave described
above in Example 4.

• The infinitesimal model (R1,n+1, R, T ) of (M, g) is given by one of Ex-
amples 8–11.

Proof. Let (M, g) be a connected and simply connected naturally reductive
homogeneous Lorentzian space. Let ∇ be the canonical connection, and let R
be the curvature tensor of ∇. If R = 0, then by (4), dT = 0, and as we have
seen in Example 3 above, (M, g) is a symmetric space. Hence we may assume
that the holonomy algebra g of the canonical connection ∇ is non-trivial.
We consider case by case the holonomy algebras from the list given in Section 9.
Consider the holonomy algebra from the case 2. In this case g ⊂ so(1, n+1) is
weakly irreducible and not irreducible. Since dimM ≥ 4, we are in the settings
of Section 3. In Section 3 we have seen that each algebraic curvature tensor R
is determined by the components R1, P , and K. The condition g · R = 0
immediately implies R1 = 0 and P = 0. This and equality (13) imply that g is
a pp-wave metric, i.e.,

g = 2dvdu+

n
∑

i=1

(dxi)2 +H(du)2,

where H = H(x1, . . . xn, u). The torsion may be written as

T = du ∧ ω, ω = 2
∑

1≤i<j≤n

ωijdx
i ∧ dxj ,

where ωij are functions. The condition ∇T = 0 easily implies that ωij are
constants (in Section 3 we have seen that ω is a parallel section of the screen
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bundle, which is now flat). The equality (13) shows that the only non-zero
values of the curvature tensor are

R(∂u, X) = p ∧K(X) = Rg(∂u, X)−
1

4
p ∧ ω2(X),

where X is a combination of the vector fields ∂xi , i = 1, . . . , n. Next, Rg is
determined by

Rg(∂u, X) = p ∧K0(X),

K0 =
1

2

n
∑

i,j=1

(∂xi∂xjH)∂xi ⊗ dxj ,

see, e.g., [17]. The condition ∇R = 0 may be rewritten as the condition
∇EK = 0. We get that

∇E
∂
xi
K = ∇E

∂
xi
K0 = ∇g,E

∂
xi
K0.

This implies that ∂xl∂xi∂xjH = 0, i.e., H =
∑n
i,j=1Hij(u)x

ixj (the terms

linear in xi may be omitted without loss of generality). Next,

∇E
∂u
K = ∇E

∂u
K0 =

(

∇g,E
∂u

+
1

2
ω

)

K0 = ∇g,E
∂u

K0 − [F,K0],

where F is a linear map with the matrix F ij = ωij . This shows that the
matrix K0 satisfies

∂uK0 = [F,K0].

The solution of this system of equations may be obtained in the form

K0 = (e−uF )⊺Be−uF

for a constant matrix B. Thus we arrive to the settings of Example 4. The
space (M, g) is symmetric if and only if ∇g,EK0 = 0, which is equivalent to the
condition [F,K0] = 0.
Since we consider indecomposable geometry (M, g,∇), its holonomy algebra
and torsion cannot be as in the case 3. If the holonomy algebra is as in the
case 4, we immediately see the infinitesimal model of (M, g) is as in Example 11.
In the cases 5 and 6 it is easy to check that the infinitesimal model is as in
Examples 10 and 9, respectively. Suppose that the holonomy algebra is as in the
case 7. Consider T and R as in Theorem 7. The condition p∧Rk1 ·R = 0 easily
implies the equalities R0 = 0 and P = 0. This shows that the infinitesimal
model is as in Example 8.

Now we consider spaces of dimension 3, 4, and 5. The simply connected natu-
rally reductive homogeneous spaces (M, g) are assumed to be indecomposable.
Dimension of M is 3. Connected and simply connected naturally reductive
homogeneous Lorentzian space of dimension 3 were classified in [11, 19], where
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it is shown that these spaces are exhausted by symmetric spaces, Lie groups

SU(2), ˜SL(2,R) and Heisenberg group with suitable left-invariant metrics. We
prove this result by our method.
Since dimM = 3, the torsion T is proportional to the volume form. Making a
rescaling, we may assume that the torsion coincides with the volume form. We
will consider a Witt basis p, e, q of R1,2 and assume that T = p ∧ e ∧ q. It is
easy to see that the right-hand side of the Bianchi identity is zero. Hence each
algebraic curvature tensor with torsion T is just an algebraic curvature tensor
with zero torsion.
Suppose that g = so(1, 2). Each invariant algebraic curvature is of the form
R(X,Y ) = cX ∧ Y , where c is a non-zero constant. Since c 6= 0, the reductive
decomposition so(1, 2)⊕ R1,2 of the isometry algebra may be chosen in such a
way that [R1,2,R1,2] ⊂ so(1, 2), i.e., (M, g) is a symmetric space.
Suppose that the holonomy algebra g is weakly irreducible and not irreducible.
Then g is either Rp ∧ q ⋉Rp ∧ e or Rp ∧ e. The first algebra does not admit a
suitable algebraic curvature tensor. Thus, g = p ∧ e. The curvature tensor is
defined by the equality

R(q, e) = αp ∧ e

for some non-zero α. The algebra f has dimension 4 and it holds

[p, q] = −e, [p, e] = p, [e, q] = q + αp ∧ e,

[p ∧ e, q] = e, [p ∧ e, e] = −p.

The derived algebra is given by

f′ = 〈p, e, q + αp ∧ e〉

and it is transversal to g. Let A = p, B = e, C = q + αp ∧ e. Then it holds
that

[A,B] = A, [A,C] = −B, [B,C] = αA+ C.

The Killing form of f′ with respect to basis (A,B,C) is given by the matrix

K =





0 0 2
0 2 0
2 0 −2α



 .

Thus f′ is isomorphic to so(1, 2), and (M, g) is isometric to the Lie group

˜SL(2,R) with a suitable left-invariant metric.
Suppose that g preserves the orthogonal decomposition R1,2 = R1,0 ⊕ R2. Fix
an orthonormal basis (e1, e2) in R2 and let e− be a unit time-like vector in
R1,0. The holonomy algebra is one-dimensional,

g = so(2) = Re1 ∧ e2.

The torsion and the curvature are given by

T = e− ∧ e1 ∧ e2, R(e1, e2) = βe1 ∧ e2,
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where β ∈ R is non-zero. The algebra f has dimension 4 and it holds

[e−, e1] = e2, [e−, e2] = −e1, [e1, e2] = −e− − βe1 ∧ e2,

[e1 ∧ e2, e1] = e2, [e1 ∧ e2, e2] = −e1.

The derived algebra is given by

f′ = 〈e1, e2, αe− + βe1 ∧ e2〉

and it is transversal to g. Let A = e1, B = e2, C = e− + βe1 ∧ e2. Then it
holds that

[A,B] = C, [A,C] = −γB, [B,C] = γA,

where γ = 1 + β. The Killing form with respect to basis (A,B,C) is given by
the matrix

K =





−2γ 0 0
0 −2γ 0
0 0 −2γ2



 ,

thus f′ is isomorphic to the Heisenberg algebra h3 if β = −1, f′ is isomorphic
to so(3) if β < −1 and it is isomorphic to so(1, 2) otherwise.
Suppose that g preserves the decomposition R1,1 = R1,1 ⊕ R1. Let p, q be a
Witt basis of R1,1. The holonomy algebra is one-dimensional,

g = Rp ∧ q.

The torsion and the curvature are given by

T = p ∧ q ∧ e, R(p, q) = βp ∧ q,

where e ∈ R1 is a unite vector and β ∈ R is non-zero. The Lie algebra f is of
dimension 4 and it holds

[p, q] = e− βp ∧ q, [e, p] = p, [e, q] = −q,

[p ∧ q, p] = −p, [p ∧ q, q] = q.

The derived algebra is given by

f′ = 〈p, q, e− βp ∧ q〉

and it is transversal to g. Let A = p, B = q, C = e − βp ∧ q. Then it holds
that

[A,B] = C, [A,C] = −γA, [B,C] = γB,

where γ = 1 + β. The Killing form of f′ with respect to the basis (A,B,C) is
given by the matrix

K =





0 2γ 0
2γ 0 0
0 0 2γ2



 .
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Thus f′ is isomorphic to the Heisenberg algebra h3 if β = −1 and to so(1, 2)
otherwise.
Dimension of M is 4. Connected simply connected homogeneous Lorentzian
spaces of dimension 4 were classified in [5]. We apply our method and prove
the following theorem.

Theorem 7. Let (M, g) be a connected and simply connected indecomposable
naturally reductive homogeneous Lorentzian space of dimension 4. Then either
(M, g) is a symmetric space or one of the following holds:

• (M, g) is isometric to the homogeneous space F/G with an invariant met-

ric, where F = ˜SL(2,R)×R2, and G ⊂ F is a one-dimensional subgroup;

• (M, g) is isometric to the homogeneous space F/G with an invariant met-
ric, where F = SU(2)× R2, and G ⊂ F is a one-dimensional subgroup;

• (M, g) is R4 with the structure of a homogeneous plane wave described
above in Example 4.

Remark 3. In the classification Theorem [5, Theorem 9] is given the transvec-
tion algebra with the basis {Y1, Y2, Y3, T1, T2} and the only non-zero brackets

[Y1, Y2] = −λY3, [Y1, Y3] = λY2, [Y2, Y3] = Y1.

Unfortunately, it was wrongly stated that the Lie algebra 〈Y1, Y2, Y3〉 is isomor-
phic to sl(2,R). Analyzing the Killing form of the Lie algebra 〈Y1, Y2, Y3〉, it
is easy to see that this Lie algebra is isomorphic to sl(2,R) if λ > 0 and it is
isomorphic to su(2) if λ < 0. The third space from Theorem 7 coincides with
the second space from [5, Theorem 9], we explain this in the proof below. Thus
the classifications in Theorem 7 and [5, Theorem 9] are essentially the same.

Proof. Consider the canonical connection ∇. Let g ⊂ so(1, 3) be the holonomy
algebra of ∇. First suppose that g ⊂ so(1, 3) is weakly irreducible. Then by
Theorem 6, g = p ∧ R2. The torsion and the curvature are given by

T = p ∧ e1 ∧ e2, R(q,X) = p ∧K(X),

where K is a symmetric endomorphism of R2. We may assume that K =
diag(λ1, λ2). The indecomposability implies that λ1 and λ2 are non-zero. The
algebra f has dimension 6 and

[p, f] = 0, [e1, e2] = −p,

[e1, q] = e2 + λ1p ∧ e1, [e2, q] = −e1 + λ2p ∧ e2,

[p ∧ ei, q] = ei, [p ∧ ei, ej] = −δijp.

The derived algebras are given by

f′ = 〈p, e1, e2, p ∧ e1, p ∧ e2〉 , f′′ = 〈p〉 ,
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i.e., f is solvable. The space corresponds to the case 2 of [5, Theorem 9]. We
have just reduced the number of the possible parameters from 4 to 2 by a
proper choice of the basis: we assumed that T = cp ∧ e1 ∧ e2 with c = 1 and
we diagonalized the symmetric endomorphism K.
Suppose that g preserves the decomposition R1,3 = R1,0 ⊕ R3. We are in the
settings of Example 9. Since T 6= 0, g is a proper subalgebra in so(3). Therefore
we can assume that g = Re1 ∧ e2 and the torsion is given by

T = e− ∧ e1 ∧ e2 + βe1 ∧ e2 ∧ e3 = e1 ∧ e2 ∧ (e− + βe3),

where β ∈ R is non-zero. If β 6= ±1, then the vector βe− + e3 is non-isotropic,
it is annihilated by the holonomy algebra and the torsion, i.e., the geometry is
decomposable. We may assume that β = 1. The curvature tensor is given by

R(e1, e2) = γe1 ∧ e2,

where γ ∈ R is non-zero. The algebra f has dimension 5 and

[p, f] = 0, [e1, e2] = −p− γe1 ∧ e2,

[e1, q] = 2e2, [e2, q] = −2e1.

The center of f is given by

z(f) = 〈p, q + 2e1 ∧ e2〉 ,

and we have

f′ = 〈e1, e2, p+ γe1 ∧ e2〉 ,

which is isomorphic to so(1, 2) if γ > 0 and it is isomorphic to so(3) if γ < 0.
Thus f is either so(1, 2)⊕R2 or so(3)⊕R2. This space corresponds to the case 1
of Theorem 9 from [5].
If g preserves the decomposition R1,3 = R1,1⊕R2, then according to Example 10
it holds

T = p ∧ q ∧ v,

where v ∈ R2. Since g annihilates v, it holds g = Rp ∧ q. Let v1 ∈ R2 be
a non-zero vector orthogonal to v. Then v1 is annihilated be the holonomy
algebra and by the torsion, i.e., the space is decomposable.
Finally, if g preserves the decomposition R1,3 = R1,2 ⊕ R1, then according to
Example 9 it holds that

T = αp ∧ e1 ∧ q + p ∧ e1 ∧ v = p ∧ e1 ∧ v ∧ (αq + v).

The vector αv−g(v, v)p is space-like, it is annihilated be the holonomy algebra
and by the torsion, i.e., the space is again decomposable.

Dimension of M is 5. To our knowledge, the following result is new.
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Theorem 8. Let (M, g) be a connected and simply connected indecomposable
naturally reductive homogeneous Lorentzian space of dimension 5. Then either
(M, g) is a symmetric space or one of the following holds:

• (M, g) is R5 with the structure of a homogeneous plane wave described
above in Example 4;

• (M, g) is isometric to a Berger sphere SU(3)/SU(2), or SU(1, 2)/SU(2);

• (M, g) is isometric to the homogeneous space (F1 × F2)/G with an in-
variant metric, where each of F1 and F2 are isomorphic to one of the Lie

groups ˜SL(2,R), SU(2), and G is either SO(2) or SO(1, 1);

• (M, g) is isometric to one of the following homogeneous spaces endowed

with an invariant metric: ( ˜SL(2,R) × H3)/G, where G = SO(1, 1) ⊂

˜SL(2,R); (H3×SU(2))/G, where G = SO(2) ⊂ SU(2); (H3× ˜SL(2,R))/G,

where G = SO(1, 1) ⊂ ˜SL(2,R);

• (M, g) is isometric to the Heisenberg group H5 with a left-invariant met-
ric.

Proof. Consider the canonical connection ∇. Let g ⊂ so(1, 4) be the holonomy
algebra of ∇. If the holonomy algebra g ⊂ so(1, 4) is weakly irreducible, then
by Theorem 6, (M, g) is a regular homogeneous plane wave. Next we consider
verschiedene g-invariant decompositions R1,4 = R1,r ⊕ R4−r, 0 ≤ r ≤ 3 and
assume that the induced representation of g in R1,r is weakly irreducible.
Suppose that the holonomy algebra g preserves the decomposition R1,4 = R1,0⊕
R4, i.e., we are in the situation of Example 11. We claim that the form ω is zero.
Indeed, suppose that ω 6= 0. Then g annihilates the vector ∗ω ∈ R4. We may
assume that ∗ω = ce4, ω = ce1 ∧ e2 ∧ e3. Then, g ⊂ so(3). Since g commutes
with θ, g is a proper subalgebra of so(3), i.e., we may assume that g = Re1∧e2.
We see that θ = c1e1 ∧ e2+ c2e3 ∧ e4. The condition θ ·ω = 0 implies c2 = 0. It
is clear that (M, g) is decomposable, i.e., we get a contradiction. Thus, ω = 0.
Consider now the following decomposition of the Lie algebra f:

f = (g⊕ Re−)⊕ R4.

It is clear that this decomposition defines a Z2-grading of f. It holds that

ade− |R4 = θ.

The Lie bracket restricted to R4 satisfy

[X,Y ] = −C0(X,Y ) + θ(X,Y )θ − θ(X,Y )e−. (36)

The algebraic curvature tensor C0 defines the following Z2-graded Lie algebra:

h⊕ R4,
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where h = C0(R
4,R4) ⊂ so(4). Since h commutes with θ, we see that h is one

of the following Lie algebras: u(2), so(2)⊕ so(2), so(2), or it is trivial. Let us
consider these cases.
Consider the case h = u(2). The tensor C0 is given by

C0(X,Y ) = a
(

X ∧ Y + JX ∧ JY + 2(JX, Y )J
)

,

where J is the complex structure on R4, and a 6= 0. It is clear that θ = bJ for
some b ∈ R. Recall that g = R(R1,4,R1,4) = R(R4,R4). It holds that g = su(2)
if and only if b2 − 3a = 0. Otherwise, g = u(2). If g = su(2), then it is obvious
that

f = (su(2)⊕ Re−)⊕ R4

is isomorphic either to su(3) or to su(1, 2) depending on the sign of a. Con-
sequently (M, g) is isometric to one of the homogeneous spaces SU(3)/SU(2),
SU(1, 2)/SU(2). If g = u(2), then f is isomorphic to one of the Lie algebras
R(θ− e−)⊕ su(3), R(θ− e−)⊕ su(1, 2), and (M, g) is again isometric to one of
the homogeneous spaces SU(3)/SU(2), SU(1, 2)/SU(2).
Suppose that h = so(2)⊕ so(2) = Re1 ∧ e2 ⊕ Re3 ∧ e4. Then

θ = c1e1 ∧ e2 + c2e3 ∧ e4. (37)

The curvature tensor C0 is given by

C0(e1, e2) = ae1 ∧ e2, C0(e3, e4) = be3 ∧ e4

for some a, b 6= 0. We get that

R(e1, e2) = (a−c21)e1∧e2−c1c2e3∧e4, R(e3, e4) = −c1c2e1∧e2+(b−c22)e3∧e4.

The Lie bracket of the Lie algebra f satisfy

[e1, e2] = c1(θ − e−)− ae1 ∧ e2, [e3, e4] = c2(θ − e−)− be3 ∧ e4.

The indecomposability implies c1c2 6= 0. We conclude that g is one-dimensional
if and only if ab− ac22 − bc21 = 0. In that case

g = Rξ, ξ = ((a− c21)e1 ∧ e2 − c1c2e3 ∧ e4).

Consequently we get
f = [R4,R4]⊕ R4.

This Lie algebra isomorphic to f1 ⊕ f2, where f1 and f2 are isomorphic to one
of the Lie algebra so(3) or so(1, 2) (depending on the signs of a and b). The
subalgebra g = so(2) ⊂ f1 ⊕ f2 is included diagonally. If ab − ac22 − bc21 6= 0,
then g = so(2)⊕ so(2) and

f =
(

[R4,R4]⊕ R(θ − e−)
)

⊕ R4.

Documenta Mathematica 27 (2022) 2333–2383



Lorentzian Connections with Parallel Skew Torsion 2379

In that case f contains the center R(θ − e−). The Lie algebra [R4,R4] ⊕ R4 is
again isomorphic to f1⊕f2. The projection of this Lie algebra to R1,4 = Re−⊕R4

coincides with R1,4, i.e., the corresponding connected Lie subgroup of F acts
transitively on M .
Suppose that h = so(2) = Re1 ∧ e2. Then θ is again given by (37). Now C0 is
given as in the previous case with b = 0 and a 6= 0. As above, c1c2 6= 0. We
see that g is 2-dimensional. In that case

f =
(

[R4,R4]⊕ Re3 ∧ e4
)

⊕ R4,

and [R4,R4] ⊕ R4 is isomorphic to f1 ⊕ h3, where f1 is as above, and h3 is the
Heisenberg algebra.
Suppose that h = 0, i.e., C0 = 0. We again may assume that θ is given by
(37). We get that g = Rθ. The indecomposability implies c1c2 6= 0. The
subalgebra R(θ − e−) ⊕ R4 ⊂ f is transversal to g and it is isomorphic to the
Heisenberg algebra. Consequently (M, g) is isometric to the Heisenberg group
with a left-invariant metric.
Suppose that g preserves the decomposition R1,4 = R1,1 ⊕ R3. According to
Example 10,

T = p ∧ q ∧ v + θ ∧ v,

where v ∈ R3 is a non-zero vector, and θ ∈ ∧2R3 with θ(v) = 0. We may
assume that the norm of v is 1. Let e1, e2, v be an orthonormal basis of R3

such that θ = ae1 ∧ e2. We get that

T = η ∧ v, η = p ∧ q + ae1 ∧ e2

and
R = C0 + η ◦ η, C0 ∈ R0(g+ Rη).

The Lie algebra f admits the following Z2-grading:

f = (g⊕ Rv)⊕ R1,3,

where R1,3 = 〈p, q, e1, e2〉. The Lie bracket restricted to R1,3 satisfies

[X,Y ] = −R(X,Y )− θ(X,Y )v = −C0(X,Y )− η(X,Y )η − η(X,Y )v.

Next,
adv|R1,3 = −η.

We see that C0 defines the Z2-graded Lie algebra

h⊕ R1,3, h = C0(R
1,3,R1,3).

It is clear that h ⊂ Rp ∧ q ⊕ Re1 ∧ e2, and C0 is given by

C0(p ∧ q) = bp ∧ q, C0(e1, e2) = ce1 ∧ e2.
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The Lie algebra h is either one of the following: so(1, 1)⊕ so(2), so(1, 1), so(2),
or it is trivial. For the Lie bracket of f it holds

[p, q] = −bp ∧ q + η + v, [e1, e2] = −ce1 ∧ e2 − aη − av.

The rest of the considerations is as above. Suppose that h = so(1, 1) ⊕ so(2),
then b, c 6= 0. It holds that dim g = 1 if and only if a2b+ cb− c = 0. Otherwise,
dim g = 2. If dim g = 1, then

f = [R1,3,R1,3]⊕ R1,3 = so(1, 2)⊕ f2,

where f2 is either so(3) or so(1, 2). If dim g = 2, then

f =
(

[R1,3,R1,3]⊕ R(η + v)
)

⊕ R1,3 = so(1, 2)⊕ f2,

where f2 is again either so(3) or so(1, 2). Suppose that h = so(1, 1), then b 6= 0,
c = 0. Consequently,

f =
(

[R1,3,R1,3]⊕ Re1 ∧ e2
)

⊕ R1,3, [R1,3,R1,3]⊕ R1,3 = so(1, 2)⊕ h3.

Suppose that h = so(2), then b = 0, c 6= 0,

f =
(

[R1,3,R1,3]⊕ Rp ∧ q
)

⊕ R1,3, [R1,3,R1,3]⊕ R1,3 = h3 ⊕ f2,

where f2 is either so(3) or so(1, 2). Suppose that h = 0, then b = c = 0, g = Rη,
and f contains a subalgebra transversal to g and isomorphic to the Heisenberg
algebra h5.
Suppose that g preserves the decomposition R1,4 = R1,2 ⊕ R2. According to
Example 9, the torsion is given by

T = αp ∧ e1 ∧ q + p ∧ e1 ∧ v + p ∧ λ,

where v ∈ R2, λ ∈ ∧2R2, and it holds that λ(v) = 0. If v 6= 0, then λ = 0, and

T = p ∧ e1 ∧ (αq + v).

Let v1 ∈ R2 be a non-zero vector orthogonal to v. It is clear that v1 is an-
nihilated by the holonomy and the torsion, i.e., the space is decomposable.
Thus,

T = αp ∧ e1 ∧ q + p ∧ λ, λ = av1 ∧ v2,

where v1, v2 is an orthonormal basis of R2. The indecomposability implies
a 6= 0.

R(q, e1) = βp ∧ e1 + αav1 ∧ v2,

R(v1, v2) = αap ∧ e1 + cv1 ∧ v2.

It is easy to see that f′ = f1 ⊕ f2, where

f1 = 〈p, e, [e, q]〉 , f2 = 〈v1, v2, [v1, v2]〉 .
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The Lie algebra f1 is isomorphic to so(1, 2). The Lie algebra f2 is isomorphic
to so(1, 2) if c < 0, f2 is isomorphic to so(3) if c > 0, and it is isomorphic to h3
if c = 0.
Suppose that g preserves the decomposition R1,4 = R1,3 ⊕ R1. Then as in
Example 8,

T = αp ∧ e1 ∧ e2 + p ∧ e1 ∧ v,

where v ∈ R1, and g = p∧〈e1, e2〉. In this case (M, g) is a regular homogeneous
plane wave.

Conflict of interest statement. On behalf of all authors, the correspond-
ing author states that there is no conflict of interest.
Data Availability Statements. Data sharing not applicable to this article
as no datasets were generated or analyzed during the current study.

References

[1] I. Agricola, T. Friedrich. On the holonomy of connections with skew-
symmetric torsion. Math. Ann. 328 (2004), no. 4, 711–748.

[2] I. Agricola. Non-integrable geometries, torsion, and holonomy. Handbook
of pseudo-Riemannian geometry and supersymmetry, 277–346, IRMA
Lect. Math. Theor. Phys., 16. EMS, 2010.

[3] I. Agricola, C. Ferreira. Einstein manifolds with skew torsion. Quarterly
J. Math. 65 (2014), 717–741.

[4] I. Agricola, C. Ferreira, T. Friedrich. The classification of naturally re-
ductive homogeneous spaces in dimensions n ≤ 6. Diff. Geom. Appl. 39
(2015), 59–92.

[5] W. Batat, M. Castrillón López, E. Rosado Maŕıa. Four-dimensional nat-
urally reductive pseudo-Riemannian spaces. Diff. Geom. Appl. 41 (2015),
48–64.
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611 37 Brno
Czech Republic
ernst@mail.muni.cz

Anton S. Galaev
University of Hradec Králové
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