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Abstract. We develop an analytic theory of cusps for Scholze’s
p-adic modular curves at infinite level in terms of perfectoid parame-
ter spaces for Tate curves. As an application, we describe a canonical
tilting isomorphism between an anticanonical overconvergent neigh-
bourhood of the ordinary locus of the modular curve at level Γ1(p∞)
and the analogous locus of an infinite level perfected Igusa variety.
We also prove various q-expansion principles for functions on modu-
lar curves at infinite level, namely that the properties of extending
to the cusps, vanishing, coming from finite level, and being bounded,
can all be detected on q-expansions.
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1 Introduction

1.1 Cusps of modular curves at infinite level

Let p be a prime and let K be a perfectoid field extension of Qp. Throughout
we shall assume that K contains all pn-th unit roots for all n ∈ N. Let N ≥ 3
be coprime to p and let X ∗ be the compactified modular curve over K of
some rigidifying tame level Γp such that Γ(N) ⊆ Γp ⊆ GL2(Z/NZ). Here we
consider X ∗ as an analytic adic space.
The first goal of this article is to give a detailed analytic description of the
geometry at the cusps in the inverse system of modular curves with varying level
structures at p, as well as for the modular curves at infinite level introduced by
Scholze in [Sch15]. In doing so, we aim to complement results on the boundary
of infinite level Siegel varieties for GSp2g for g ≥ 2 from [Sch15, §3.2.5], proved
there using machinery like Hartog’s extension principle and a perfectoid version
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of Riemann’s Hebbarkeitssatz: Due to the assumption that the codimension of
the boundary is ≥ 2, these tools do not apply in the elliptic case. Instead, here
one can get a much more explicit description with more elementary means.
The way we study the boundary in the elliptic case is in terms of adic analytic
parameter spaces for Tate curves. Fix a cusp x of X ∗, this is in general a point
defined over a finite field extension K ⊆ Lx ⊆ K[ζN ] depending on x, and it
corresponds to a Γp-level structure on the Tate curve T(qex) over OLx((q)) for
some 1 ≤ ex ≤ N . The analytic Tate curve parameter space in this situation
is simply the adic open unit disc Dx over Lx, and there is a canonical open
immersion Dx →֒ X

∗ that sends the origin to x.
In order to state our main result, let us recall the tower of anticanonical mod-
uli spaces from [Sch15, §3]: Away from the cusps, the modular curve X ∗ is
the moduli space of elliptic curves E together with a Γp-level structure. Let
X ∗

Γ0(p)
→ X ∗ be the finite flat cover that relatively represents (away from the

cusps) the data of a cyclic subgroup scheme of rank p of E[p]. By the the-
ory of the canonical subgroup, for small enough ǫ > 0, the ǫ-overconvergent
neighbourhood of the ordinary locus X ∗

Γ0(p)
(ǫ) ⊆ X ∗

Γ0(p)
decomposes into two

disjoint open components: the canonical locus X ∗
Γ0(p)

(ǫ)c and the anticanonical

locus X ∗
Γ0(p)

(ǫ)a. In order to understand the cusps of the perfectoid modular
curve at infinite level, we first study the tower of compactified modular curves
of higher level at p relatively over X ∗

Γ0(p)
(ǫ)a. Specifically, for any n ∈ N, the

pullback of X ∗
Γ0(p)

(ǫ)a ⊆ X
∗
Γ0(p)

defines a tower

X ∗
Γ(pn)(ǫ)a → X

∗
Γ1(pn)

(ǫ)a → X
∗
Γ0(pn)

(ǫ)a → X
∗(ǫ)

of anticanonical loci. Here the rightmost map is finite flat and totally ramified
at the cusps, whereas X ∗

Γ(pn)(ǫ)a → X
∗
Γ0(pn)

(ǫ)a is finite étale and Galois with
group

Γ0(pn,Z/pnZ) := {( ∗ ∗
0 ∗ ) ∈ GL2(Z/pnZ)}.

The cusps of these moduli spaces of higher finite level can be described using
analogous parameter spaces for Tate curves: As we shall discuss in detail in §2,
it is essentially an adic analytic version of the classical calculus of cusps of
Katz–Mazur [KM85] that for any cusp x of X ∗, there are Cartesian diagrams
of adic spaces of topologically finite type over K

Γ0(pn,Z/pnZ)×Dn,x (Z/pnZ)× ×Dn,x Dn,x Dx

X ∗
Γ(pn)(ǫ)a X ∗

Γ1(pn)
(ǫ)a X ∗

Γ0(pn)
(ǫ)a X ∗(ǫ),

(1)

where the top left map is
(

a b
0 d

)

7→ d on the first factor and the identity in the

second, and Dn,x is the open unit disc in the variable q1/p
n

over Lx, that is,

Dn,x = open subspace of Spa(Lx〈q
1/pn〉,OLx〈q

1/pn〉) where lim
m→∞

|q|m = 0.
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In the limit n→∞, these open discs become parameter spaces for Tate curves
with infinite Γ0-level structure at p, given by perfectoid open unit discs

D∞,x = open subspace of Spa(Lx〈q
1/p∞〉,OLx〈q

1/p∞〉) where lim
m→∞

|q|m = 0.

We then get the following description of the cusps at infinite level: Let

Γ0(p∞) := {( ∗ ∗
0 ∗ )} ⊆ GL2(Zp)

and let Γ0(p∞) be the associated profinite perfectoid space.

Theorem 1.1. Let x be any cusp of X ∗.

1. There is a Cartesian diagram of perfectoid spaces over K

Γ0(p∞)×D∞,x Z×
p ×D∞,x D∞,x Dx

X ∗
Γ(p∞)(ǫ)a X ∗

Γ1(p∞)(ǫ)a X ∗
Γ0(p∞)(ǫ)a X ∗(ǫ).

2. Define a right action of Zp on GL2(Zp)×D∞,x by letting h ∈ Zp act via

(γ, q1/p
n

) · h := (γ ( 1 0
h 1 ) , q1/p

n

ζ
h/ex
pn ).

Let GL2(Zp) act on the left via the first factor. Then there is a Cartesian
diagram

(GL2(Zp)×D∞,x)/Zp Dx

X ∗
Γ(p∞) X ∗

for which the left map is a GL2(Zp)-equivariant open immersion.

3. The Hodge–Tate period map πHT : X ∗
Γ(p∞) → P1 restricts on the open

subspace described in 2. to the map

(GL2(Zp)×D∞,x)/Zp → P1(Zp),
((

a b
c d

)

, q
)

7→ (b : d).

We refer to Theorem 3.17 and Theorem 3.22 for slightly more precise state-
ments. In other words, the part of the boundary of X ∗

Γ(p∞) lying over x is given
by the closed profinite subspace

GL2(Zp)/
(

1 0
Zp 1

)

→֒ X ∗
Γ(p∞)

and has an open neighbourhood given by a Tate curve parameter space
(GL2(Zp)× D∞,x)/Zp.
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We will prove part 1 of the theorem step by step in §3.1-3.3. We then deduce 2
from 1 via GL2(Zp)-translations. For this one needs to describe the action of
the larger group

Γ0(p) := {( ∗ ∗
c ∗ ) |c ∈ pZp} ⊆ GL2(Zp)

on the Tate curve parameter space Γ0(p∞) × D∞,x →֒ X
∗
Γ(p∞)(ǫ)a, which also

takes into account isomorphisms of Tate curves of the form q 7→ ζhpnq for h ∈ Zp.
We will do so in §3.4.

Remark 1.2. We note that Pilloni–Stroh [PS16] in their construction of per-
fectoid tilde-limits of toroidal compactifications of Siegel moduli varieties also
describe the boundary of X ∗

Γ(p∞): More precisely, the second part of Theo-

rem 1.1 also follows from [PS16, Proposition A.14]. While their proposition
is much more general, the above description is arguably slightly more explicit.
We will also identify the canonical and anticanonical subspaces.

On the way, we discuss in §2 some aspects of modular curves as analytic adic
space that are not visible in the rigid setting as treated in [Con06]. For example,
in the adic setting there is also a larger quasi-compact analytic Tate curve
parameter space Dx → X

∗ given by

Dx := Spa(OLxJqK[ 1p ],OLxJqK)

where OLxJqK is endowed with the p-adic topology (rather than the (p, q)-adic
one). This gives rise at infinite level to a map D∞,x → X

∗
Γ0(p∞)(ǫ)a where

D∞,x := Spa(OLxJq1/p
∞

Kp[
1
p ],OLxJq1/p

∞

Kp) ∼ lim
←−q 7→qp

Dx.

Here OLxJq1/p
∞

Kp is the p-adic completion of lim
−→n

OLxJq1/p
n

K.
While these are no longer open immersions, they are sometimes useful, for
example because in contrast to Dx, the spaces Dx for all x together with the
good reduction locus Xgd cover the adic space X ∗. More precisely, we have
D \D = Spa(OLx〈〈q〉〉[

1
p ],OLx〈〈q〉〉

+) where OLx〈〈q〉〉 is the p-adic completion of

OLxJqK[q−1], a local ring, and OL〈〈q〉〉
+ is a certain valuation subring of rank 2.

The image of this rank 2 point in X ∗ is a closed point that is neither contained
in Xgd nor in Dx. We discuss this situation in more detail in §2.4.

1.2 First applications

The main reason why we are interested in an explicit description of the cusps of
X ∗

Γ(p∞) is that many constructions involving modular curves require a separate
treatment of the boundary: For example, one often defines morphisms from
modular curves using moduli interpretations, and then in a second step extends
to the compactifications. At finite level this is usually done by normalisation.
While at infinite level, one still has moduli interpretations (see Lemma 3.16), it
is less clear how to carry out the “normalisation” step. This can in practice be
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done using the explicit description in Theorem 1.1: For the sake of illustrating
the argument, one could apply this to see that πHT extends to the cusps using
Theorem 1.1.3 (but here the extension is clear as πHT is a priori known to be
locally constant near the cusps). A more serious instance of such an extension
argument appears in §1.4.
A second reason why the boundary sometimes requires additional attention is
that the morphism q : X ∗

Γ(p∞) → X
∗ is a pro-finite-étale Galois torsor, ex-

cept for ramification at the boundary, as is evident from (1). For example,
Chojecki–Hansen–Johansson [CHJ17] have recently given a beautiful construc-
tion of sheaves of p-adic modular forms by writing down an explicit 1-cocycle
that defines a descent datum for the morphism X ∗

Γ(p∞)(ǫ)c → X
∗(ǫ) using that

this is a Γ0(p)-torsor away from the boundary. However, over the cusps the
morphism is no longer Galois (and indeed the boundary is ignored in [CHJ17]).
As explained in detail in [BHW, §3], Theorem 1.1 makes it easy to see how to
extend to the cusps: The point where Theorem 1.1 is used in this context is
the statement that

(q∗OX ∗
Γ(p∞)

)GL2(Zp) = OX ∗ ,

i.e. GL2(Zp)-equivariant functions on X ∗
Γ(p∞) come from X ∗. Away from the

cusps, where q is a GL2(Zp)-torsor, this is a formal consequence of the fact that
the (completed) structure sheaf on the pro-étale site of X ∗ is a sheaf. That
the identity extends over the boundary can then be checked on Tate curve
parameter spaces, where it is immediate from Theorem 1.1.2.
Besides of such extension arguments, the q-expansions of functions on X ∗

Γ(p∞)

that one obtains by restriction to Tate curve parameter spaces are of inde-
pendent interest in the context of p-adic modular forms, see [Heu19, §2.3 and
Theorem 5.3.3] and also §1.5 below.

1.3 Cusps of perfectoid modular curves in characteristic p

There are natural analogues of the above descriptions for modular curves in
characteristic p, which we treat in §4: We shall work over the perfectoid field K♭

and choose ̟♭ ∈ K♭ with |̟♭| = |p|. Let X ′∗ be the compactified modular
curve of level Γp over K♭, considered as an analytic adic space. Then, again,
for every cusp x of X ′∗, there is a Tate curve parameter space D′

x →֒ X
′∗ where

now D′
x is the adic open unit disc over a finite extension L♭x ⊆ K♭[ζN ] (the

notation as the tilt of an extension of K depending on x will be justified later).
Recall that over any overconvergent neighbourhood X ∗(ǫ) of the locus of ordi-
nary reduction, there is a finite étale Igusa curve X ′∗

Ig(pn)(ǫ) → X
′∗(ǫ). In the

limit over the relative Frobenius morphism, and over n → ∞, these give rise
to a pro-étale morphism of perfectoid spaces over X ′∗(ǫ)

X ′∗
Ig(p∞)(ǫ)

perf → X ′∗(ǫ)perf .

Let now D′
∞,x denote the perfectoid open unit disc over L♭x, which is the per-

fection of D′
x. Then we have the following analogue of Theorem 1.1 in charac-
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teristic p:

Theorem 1.3. For every cusp x of X ′∗, there are Cartesian diagrams

Z×
p ×D

′
∞,x D′

∞,x D′
x

X ′∗
Ig(p∞)(ǫ)

perf X ′∗(ǫ)perf X ′∗(ǫ).

We then compare this diagram to the situation in characteristic 0 via tilting:

1.4 A tilting isomorphism at level Γ1(p∞)

In [Sch15, Corollary 3.2.19], Scholze identifies the tilt of X ∗
Γ0(p∞)(ǫ)a by proving

that there is a canonical isomorphism

X ∗
Γ0(p∞)(ǫ)

♭
a
∼−→ X ′∗(ǫ)perf (2)

of perfectoid spaces over K♭. For Siegel spaces parametrising abelian varieties
of dimension g ≥ 2, he then extends this tilting isomorphism to level Γ1(p∞).
Using Tate curve parameter spaces, we complement this result in §5 by treating
the case g = 1 of elliptic curves. Moreover, we work out the precise situation
at the cusps: It follows from (2) that the cusps of X ∗ (which can be identified
with those of X ∗

Γ0(p∞)(ǫ)a) and the cusps of X ′∗ (which can be identified with

those of X ′∗(ǫ)perf) can be identified via tilting, and the same is true for the
field extensions Lx and L♭x. Using these identifications, we have:

Theorem 1.4. 1. There is a canonical isomorphism

X ∗
Γ1(p∞)(ǫ)

♭
a
∼−→ X ′∗

Ig(p∞)(ǫ)
perf

which is Z×
p -equivariant and makes the following diagram commute:

X ∗
Γ1(p∞)(ǫ)

♭
a X ∗

Γ0(p∞)(ǫ)
♭
a

X ′∗
Ig(p∞)(ǫ)

perf X ′∗(ǫ)perf .

∼ ∼

2. For any cusp x of X ∗ with corresponding cusp x♭ of X ′∗, the diagram

Z×
p ×D

♭
∞,x X ∗

Γ1(p∞)(ǫ)
♭
a

Z×
p ×D

′
∞,x♭ X ′∗

Ig(p∞)(ǫ)
perf

∼ ∼

commutes, where the left map is given by the canonical identification
D♭∞,x

∼= D′
∞,x♭ .
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We are interested in this result because of an application to p-adic modular
forms: In [Heu19], we use Theorem 1.4 to give a perfectoid perspective on
the t-adic modular forms at the boundary of weight space as introduced by
Andreatta–Iovita–Pilloni [AIP18].

1.5 q-expansion principles

As a second application, Tate curve parameter spaces give a way to talk about
q-expansions of functions on modular curves: For any f ∈ O(X ∗

Γ(p∞)(ǫ)a), we

may define the q-expansion of f at a cusp x ∈ X ∗
Γ(p∞)(ǫ)a to be its restriction

to the associated locally closed subspace D∞,x →֒ X
∗
Γ(p∞)(ǫ)a, i.e. the image

under

O(X ∗
Γ(p∞)(ǫ)a)→ O(D∞,x)

which will automatically lie in OKJq1/p
∞

K[ 1p ] ⊆ O(D∞,x). One has analogous
definitions for other infinite level modular curves, or open subspaces thereof,
as well as for profinite families of cusps. Such q-expansions can be useful when
working with modular curves at infinite level, as they often allow one to extend
constructions which are a priori defined only away from the cusps (or even just
on the good reduction locus), for instance maps defined using moduli functors,
to the compactifications. For example:

Lemma 1.5. A function f on the uncompactified modular curve XΓ(p∞)(ǫ)a
extends to a function on X ∗

Γ(p∞)(ǫ)a if and only if at every cusp x of X ∗
Γ(p∞)(ǫ)a,

the q-expansion of f is already contained in OLxJq1/p
∞

K[ 1p ] ⊆ OLx〈〈q
1/p∞〉〉[ 1p ].

Any such extension is unique.

This is what we mean when we say that q-expansions can be used as a replace-
ment for Hartog’s extension principle in the elliptic case of g = 1.
As the final goal of this article, we show in §6 that in the spirit of Katz’ q-
expansion principle for modular forms [Kat73, Theorem 1.6.1], one can use Tate
curve parameter spaces to prove various q-expansion principles for functions on
perfectoid modular curves.

Proposition 1.6 (q-expansion principle I). Let C be a collection of cusps of X ∗

such that each connected component of X ∗ contains at least one x ∈ C. Then
restriction of functions to the Tate curve parameter spaces associated to C de-
fines injective maps

O(X ∗
Γ0(p∞)(ǫ)a) →֒

∏

x∈C OLxJq1/p
∞

K[ 1p ],

O(X ∗
Γ1(p∞)(ǫ)a) →֒

∏

x∈C Mapcts(Z
×
p ,OLxJq1/p

∞

K)[ 1p ],

O(X ∗
Γ(p∞)(ǫ)a) →֒

∏

x∈C Mapcts(Γ0(p∞),OLxJq1/p
∞

K)[ 1p ],

O(X ′∗(ǫ)perf) →֒
∏

x∈C OL♭
x
Jq1/p

∞

K[ 1
̟♭ ],

O(X ′∗
Ig(p∞)(ǫ)

perf)→֒
∏

x∈C Mapcts(Z
×
p ,OL♭

x
Jq1/p

∞

K)[ 1
̟♭ ].
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As mentioned in §1.2, p-adic modular forms can be described as functions on
X ∗

Γ0(p∞)(ǫ)a satisfying a certain equivariance property, see [CHJ17], [BHW].
Proposition 1.6 may thus be seen as a generalisation of its classical version
from modular forms to more general functions.
Similarly, one can detect on q-expansions whether a function comes from some
finite level:

Proposition 1.7 (q-expansion principle II). Let f ∈ O(X ∗
Γ0(p∞)(ǫ)a). Then

for any n ∈ Z≥0, the following are equivalent:

1. f comes via pullback from X ∗
Γ0(pn)

(ǫ)a, i.e. f is already contained in

O(X ∗
Γ0(pn)

(ǫ)a) ⊆ O(X ∗
Γ0(p∞)(ǫ)a).

2. The q-expansion of f at every cusp x is already contained in
OLxJq1/p

n

K[ 1p ] ⊆ OLxJq1/p
∞

K[ 1p ].

3. On each connected component of X ∗, there is at least one cusp x at
which the q-expansion of f is already contained in OLxJq1/p

n

K[ 1p ] ⊆

OLxJq1/p
∞

K[ 1p ].

The analogous statements for X ′∗(ǫ)perf are also true.

For ǫ = 0, i.e. on the ordinary locus, one can see on q-expansions whether a
function is integral, i.e. bounded by 1. We note that this fails for ǫ > 0.

Proposition 1.8 (q-expansion principle III). For f ∈ O(X ∗
Γ0(p∞)(0)a), the

following are equivalent:

1. f is integral, i.e. it is already contained in O+(X ∗
Γ0(p∞)(0)a).

2. The q-expansion of f at every cusp x is already contained in OLxJq1/p
∞

K.

3. On each connected component of X ∗, there is at least one cusp x at which
the q-expansion of f is already contained in OLxJq1/p

∞

K.

The analogous statements for X ∗
Γ1(p∞)(0)a, X

∗
Γ(p∞)(0)a, X

′∗(0)perf and

X ′∗
Ig(p∞)(0)perf are also true when we replace OLxJq1/p

∞

K by the respective
algebra from Proposition 1.6.

Finally, there is also a version of q-expansions for the good reduction locus,
which uses instead the quasi-compact Tate curve parameter space D mentioned
before §1.2 (see also Definition 2.15).

Proposition 1.9 (q-expansion principle IV). Let C be a collection of cusps
of X ∗ such that each connected component contains at least one x ∈ C. Then a
function on the good reduction locus Xgd(ǫ) extends to all of X ∗(ǫ) if and only
if its q-expansion with respect to

D(|q| ≥ 1)→ Xgd(ǫ)

at each x ∈ C is already contained in OLxJqK[ 1p ] ⊆ OLx〈〈q〉〉[
1
p ]. In this case, the

extension is unique. The analogous statements for X ∗
Γ0(p∞)(ǫ)a, X

∗
Γ1(p∞)(ǫ)a,

X ∗
Γ(p∞)(ǫ)a, X

′∗(ǫ), X ′∗(ǫ)perf and X ′∗
Ig(p∞)(ǫ)

perf are also true.
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2 Adic analytic theory of cusps at finite level

2.1 Recollections on the classical theory of cusps

We start by recalling from [KM85, §8.6-8.11] some basic facts about cusps of
modular curves that we will use freely throughout, and fix some notation and
conventions:
Let N ≥ 3 and let R be an excellent Noetherian regular Z[1/N ]-algebra, for
instance R = Z[1/N ]. Let XR be the modular curve of some rigidifying level
Γ(N) ⊆ Γ ⊆ GL2(Z/NZ) over R. By definition, the compactification X∗

R of
XR is then the normalisation in P1

R of the finite flat j-invariant j : XR → A1
R .

The divisor of cusps is defined as the closed subscheme

∂X∗
R := (X∗

R\XR)red = j−1(∞)red →֒ X∗
R,

which is finite étale over Spec(R). When we refer to “a cusp” we shall mean
by this a (not necessarily geometrically) connected component of ∂X∗

R.
We recall from [KM85, §8.11] that the divisor of cusps can be computed explic-
itly using the Tate curve T(q): This is an elliptic curve over Z((q)) of j-invariant
1/q+ 744 + . . . , which we may base–change to T(q)R((q)) → Spec(R((q))). Then
we have:

Proposition 2.1 ([KM85, Theorem 8.11.10]). The completion ∂̂X∗
R of X∗

R

along ∂X∗
R is the normalisation of RJqK in the finite flat scheme over R((q))

that represents Γ-level structures of T(q)R((q)). Via the j-invariant, ∂̂X∗
R is

finite over the completion RJqK of P1
R at ∞.

To say more concretely what ∂X∗
R looks like, recall that T(q)[N ] is canonically

an extension
0→ µN → T(q)[N ]→ Z/NZ→ 0

over Z((q)) which becomes split over Z((q1/N )). Consequently, the Γ-level struc-
tures of T(q)R((q)) are defined over various subrings of R[ζN ]((q1/N )). In par-

ticular, each component of ∂̂X∗
R will be of the form Spf(R[ζd]Jq

1/eK) for some
d|N and e|N .
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Notation 2.2. In order to simplify notation, we wish to reduce the amount
of N -th roots of q throughout. Therefore, we shall by convention renormalise
this ring of definition at each cusp to be a subring of the form R[ζd]((q)) for
some d|N , by passing from T(q) to T(qe).
This means that depending on the cusp, the completion of the j-invariant at
the cusp is now given by a map of the form Spf(R[ζd]JqK) → Spf(RJqK) that
sends q 7→ qe. If R′ is another Noetherian excellent regular Z[1/N ]-algebra,

then ∂X∗
R′ , ∂̂X∗

R′ , etc. agree with the base-changes via R → R′ by [KM85,
Proposition 8.6.6]. Therefore, more generally, for any Z[1/N ]-algebra S we

may simply define XS, X∗
S , ∂X∗

S, ∂̂X∗
S , etc. by base-change.

2.2 The analytic setup

We now switch to a p-adic analytic situation and recall the setup from [Sch15].
Let p be a prime and let K be a perfectoid field extension of Qp like in the
introduction. We denote by m the maximal ideal of the ring of integers OK
and by k the residue field. We fix a complete algebraically closed extension C
of K and assume that K contains all p-power roots of unity in C. We moreover
fix a pseudo-uniformiser ̟ ∈ K with |̟| = |p| such that ̟ contains arbitrary
p-power roots in K. This is possible since K is perfectoid.
Let N ≥ 3 be coprime to p and let Γ(N) ⊆ Γp ⊆ GL2(Z/NZ) be a rigidifying
tame level. Let X := XK be the modular curve of level Γp over K and let
X∗ := X∗

K be its compactification. We denote by X and X∗ the respective
p-adic completions of XOK and X∗

OK
. Let X and X ∗ be the respective adic

analytifications of X and X∗. This is the only way in which we deviate from
the notation in [Sch15], where X denotes the good reduction locus, which we
shall instead denote by Xgd ⊆ X ⊆ X

∗.
For any of the classical level structures Γ = Γ0(pn),Γ1(pn),Γ(pn), n ∈ N, we
denote by XΓ → X the representing moduli scheme. These all have compactifi-
cations X∗

Γ → X∗, and we have associated adic spaces XΓ → X and X ∗
Γ → X

∗.
The uncompactified spaces have a natural moduli interpretation in the category
Adic of (sheafy) adic spaces over (K,OK):

Lemma 2.3. Let S be a (sheafy) adic space over Spa(K,OK). Then

HomAdic(S,XΓ) = XΓ(OS(S)).

In particular, the S-points of XΓ are in functorial correspondence with isomor-
phism classes of elliptic curves over OS(S) with tame level structure Γp and
level structure Γ at p.

Proof. The scheme XΓ over K is an affine curve [KM85, Corollary 4.7.2]. Let
LRS be the category of locally ringed spaces over K, then by the universal
property of the analytification XΓ = Xan

Γ :

HomAdic(S,XΓ) = HomLRS(S,XΓ) = XΓ(OS(S))
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where the last step is the adjunction of Spec and global sections for locally
ringed spaces.

Let 0 ≤ ǫ < 1
2 be such that |p|ǫ ∈ |K|. Using local trivialisations of the

Hodge bundle and lifts Ha of the Hasse invariant one defines an open subspace
X ∗(ǫ) ⊆ X ∗ cut out by the condition that |Ha| ≥ |p|ǫ. This has a canonical
integral model X∗(ǫ)→ X∗, for example by [Sch15, Lemma 3.2.13]. In general,
for any morphism S → X ∗ we shall write

S(ǫ) := S ×X ∗ X ∗(ǫ).

In particular, for any of the classical level structures Γ = Γ0(pn),Γ1(pn),Γ(pn),
the modular curve X ∗

Γ → X
∗ restricts to a morphism X ∗

Γ (ǫ)→ X ∗(ǫ). We note
that the open subspace X ∗(0) is precisely the ordinary locus of X ∗.

Definition 2.4. We shall say that an elliptic curve E is ǫ-nearly ordinary if
|Ha(E)| ≥ |p|ǫ.

By the theory of the canonical subgroup, the forgetful morphism X ∗
Γ0(p)

(ǫ) →

X ∗(ǫ) has a canonical section. We denote by X ∗
Γ0(p)

(ǫ)c the image of this section,

that is the open and closed component of X ∗
Γ0(p)

(ǫ) that parametrises the Γ0(p)-
structure given by the canonical subgroup. This is called the canonical locus.
We denote its complement by X ∗

Γ0(p)
(ǫ)a and call it the anticanonical locus.

For any adic space S → X ∗
Γ0(p)

we denote by

S(ǫ)a := S ×X ∗
Γ0(p)

X ∗
Γ0(p)

(ǫ)a

the open subspace that lies over the anticanonical locus.

Definition 2.5. For any adic space S → X (ǫ) corresponding to an ǫ-nearly
ordinary elliptic curve E overOS(S), we shall call a Γ-level structure anticanon-
ical if it corresponds to a point of XΓ(ǫ)a ⊆ XΓ. For instance, a Γ0(pn)-level
structure is a locally free subgroup scheme Gn ⊆ E[pn], étale-locally cyclic of
rank pn, and it is anticanonical if Gn ∩ C1 = 0 inside E[pn], where C1 ⊆ E[p]
denotes the canonical subgroup. Similarly, a Γ(pn)-level structure, given by
an isomorphism of group schemes α : (Z/pnZ)2 → E[pn] is anticanonical if the
subgroup scheme generated by α(1, 0) is anticanonical.

For any n ∈ N, the transformation of moduli functors that sends an elliptic
curve E together with an anticanonical Γ0(pn)-structure Gn to E/Gn induces
an isomorphism

XΓ0(pn)(ǫ)a
∼
−→ X (p−nǫ) (3)

that is called the Atkin–Lehner isomorphism. The inverse is given by sending E
with its canonical subgroup Cn of rank pn to the data of E/Cn with Γ0(pn)a-
structure E[pn]/Cn. The Atkin–Lehner isomorphism uniquely extends to the
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cusps for all n, and for varying n the resulting isomorphisms fit into a commu-
tative diagram of towers

· · · X ∗
Γ0(p2)

(ǫ)a X ∗
Γ0(p)

(ǫ)a X ∗(ǫ)

· · · X ∗(p−2ǫ) X ∗(p−1ǫ) X ∗(ǫ)

∼ ∼

φ φ

where in the bottom row, the morphism φ is the “Frobenius lift” defined in
terms of moduli by sending E to E/C1. The resulting tower is called the
“anticanonical tower”.
It is a crucial intermediate result in [Sch15] that the anticanonical tower “be-
comes perfectoid in the inverse limit”. More precisely:

Theorem 2.6 ([Sch15, Corollary 3.2.19]). There is an affinoid perfectoid tilde-
limit

X ∗
Γ0(p∞)(ǫ)a ∼ lim

←−n∈N
X ∗

Γ0(pn)
(ǫ)a.

Since the forgetful morphisms X ∗
Γ1(pn)

(ǫ)a → X ∗
Γ0(pn)

(ǫ)a are finite étale

(Z/pnZ)×-torsors, even over the cusps, one immediately deduces that in the
inverse limit these give rise to an affinoid perfectoid space X ∗

Γ1(p∞)(ǫ)a ∼

lim
←−n

X ∗
Γ1(pn)

(ǫ)a together with a forgetful map

X ∗
Γ1(p∞)(ǫ)a → X

∗
Γ0(p∞)(ǫ)a

that is a pro-étale Z×
p -torsor. Similarly, for full level Γ(pn), one obtains an affi-

noid perfectoid space X ∗
Γ(p∞)(ǫ)a together with a forgetful map X ∗

Γ(p∞)(ǫ)a →

X ∗
Γ0(p∞)(ǫ)a that is a pro-étale Γ0(p∞)-torsor, where we set:

Definition 2.7. For any m ∈ Z≥0 ∪ {∞}, let

Γ0(pm) = {( ∗ ∗
c ∗ ) ∈ GL2(Zp) | c ≡ 0 mod pm}.

All in all, we have a tower of morphisms

X ∗
Γ(p∞)(ǫ)a X ∗

Γ1(p∞)(ǫ)a X ∗
Γ0(p∞)(ǫ)a X ∗

Γ0(p)
(ǫ)a

which is a pro-étale Γ0(p)-torsor away from the boundary, but not globally: One
reason is that there is ramification over the cusps in X ∗

Γ0(p∞)(ǫ)a → X
∗
Γ0(p)

(ǫ)a,
but we note that the tower is still no torsor on the quasi-pro-étale site, as we
will see on q-expansions.

2.3 Analytic Tate curve parameter spaces at tame level

In this subsection, we recall the universal analytic Tate curves at the cusps,
as developed by [Con06]. The main technical difference is that we work with
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analytic adic spaces instead of rigid spaces. In particular, instead of the gen-
eralisation of Berthelot’s functor constructed in §3 of loc. cit., we may use the
adic generic fibre functor.
For now, we shall focus on the adic analytic modular curve X ∗ over K. We
remark that everything in this section and the next will also work for X ∗

Γ0(pn)
,

except for the additional phenomenon of ramification at the cusps. In order to
separate the discussion of these two topics, and to simplify the exposition, we
shall therefore focus on X ∗ for now.
As discussed in §2.1, the subscheme ∂X∗ ⊆ X∗ decomposes into a union of
points of the form x : Spec(L) → X∗ where K ⊆ L ⊆ K[ζN ] is a subfield
depending on x. For example, if Γp = Γ(N), we have L = K[ζN ] at every cusp.
We now switch to an analytic setup:

Definition 2.8. By a cusp of X ∗ we shall mean a connected (but not necessar-
ily geometrically connected) component of (X ∗\X )red. Given a fixed cusp x,
we shall denote by L = Lx ⊆ K[ζN ] the coefficient field of definition of the
corresponding Tate curve. We have L = K[ζd] for some d|N . Let mL be the
maximal ideal of OL and let kL be the residue field.

From now on and for the rest of this section, let us fix a cusp x ∈ X ∗. To
simplify notation, we will write L = Lx and e = ex. We note that the cusp x
will decompose into [L : K] disjoint L-points after base-changing X ∗ from K
to L. By Proposition 2.1, the completion of X∗

OK
along x is canonically of the

form

Spf(OLJqK)→ X∗
OK

(4)

where OLJqK carries the q-adic topology. Here we recall from Notation 2.2 that
we have renormalised parameters from q1/e to q, so that the universal Tate
curve is T(qe). Upon p-adic completion, this becomes a morphism

Spf(OLJqK)→ X∗

where now OLJqK is endowed with the (p, q)-adic topology. We note that this
morphism restricts to Spf(OLJqK) → X∗(0) since the supersingular locus is
disjoint from the cusps.
On the adic generic fibre, we obtain a morphism of analytic adic spaces over K

D := Spf(OLJqK)adη → X
∗.

Here D is the open unit disc over K, a topologically finite type but non-
quasicompact, non-affinoid analytic adic space. We emphasize that in general,
this depends on x, as L = Lx does. If the cusp x is not clear from the context,
we shall therefore denote this space by Dx.
The global functions on D are given by O+(D) = OLJqK and

O(D) =
{

∑

n≥0 anq
n ∈ LJqK such that |an|z

n → 0 for all 0 ≤ z < 1
}

.
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More classically, if we regarded D as a rigid space, it would be associated to
the formal scheme Spf(OLJqK) via Conrad’s non-Noetherian generalisation of
Berthelot’s rigid generic fibre construction, [Con06, Theorem 3.1.5].

Lemma 2.9. The map D →֒ X ∗ is an open immersion that sends the origin to
the cusp.

Remark 2.10. This is part of [Con06, Theorem 3.2.8] for Γp = Γ1(N), and
in general follows from [Con06, Theorem 3.2.6]. These moreover give a mod-
uli interpretation in terms of analytic generalised elliptic curves, as well as a
universal analytic generalised Tate curve over D.

Proof. In an affine open formal neighbourhood Spf(A) ⊆ X∗(0) of the cusp, x
is cut out by a principal ideal (f) for some non-zero-divisor f . The completion
along the cusp is then AJT K/(T −f). The adic generic fibre is thus the union of
the spaces Spa(A〈fn/p〉[1/p]) for n ∈ N, and each of these is the open subspace
of Spa(A[1/p]) ⊆ X ∗ defined by the condition |f | ≤ |p|1/p

n

.

Lemma 2.11. The morphism of locally ringed spaces D → Spec(ZpJqK⊗Zp OL)
induced by the inclusion ZpJqK →֒ O

+(D) fits into a commutative diagram of
ringed spaces:

Spec(ZpJqK⊗Zp OL) X∗
OK

D X ∗.

Proof. Let R := Zp[ζd] and R0 := Zp[ζd0 ] where d0 is the largest divisor of d
such that K contains a primitive d0-th root of unity. The adification of the p-
adic completion of f : Spf(RJqK)→ Spec(RJqK)→ X∗

R0
fits into a commutative

diagram of ringed spaces

Spec(RJqK) X∗
R0

Spec(R0)

Spa(RJqK, RJqK) X∗ad
R0

Spa(R0, R0).

f

f̂

The lemma follows upon base-changing to Spa(K,OK)→ Spec(OK).

We thus have the following moduli interpretation of D̊ := D(q 6= 0) ⊆ D:

Lemma 2.12. Let S be a (sheafy) adic space over K and let ϕ : S → X be
a morphism corresponding to an elliptic curve E over OS(S) with Γp-level
structure αN . Then ϕ factors through the punctured open unit disc D̊ → X
at the cusp x if and only if E ∼= T(qE) is a Tate curve for some qE ∈ S,
the Γp-structure αN corresponds to x under Proposition 2.1, and qE is locally
topologically nilpotent on S, i.e. vz(qE) is cofinal in the value group for all
z ∈ S.
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Proof. If ϕ : S → X ∗ → X∗ factors through D̊ →֒ X , then by Lemma 2.11 it
factors through the map Spec(OL((q)))→ X∗. Consequently, E is a Tate curve
and we obtain a parameter qE ∈ OS(S) as the image of q ∈ OL((q)) ⊆ O(D)
on global sections. This is locally topologically nilpotent because q ∈ O(D) is
locally topologically nilpotent.
Conversely, assume that E is a Tate curve such that qE ∈ O(S) is topologically
nilpotent, with Γp-level structure associated to x. The latter condition implies
that O(S) is naturally an L-algebra. It therefore suffices to consider the case
that S = Spa(B,B+) is an affinoid adic space over Spa(L,OL). The condition
that qE is topologically nilpotent implies that for any x there is n such that
|qE(x)|n ≤ |̟|. Since S is affinoid and thus quasicompact, we can find n that
works for all x ∈ S. Similarly, since E is a Tate curve, qE ∈ B is a unit and
we thus have 0 < |qE(x)| for all x ∈ S. Again by compactness, we can find m
such that |̟|m ≤ |qE |. But then qnE/̟,̟

m/qE ∈ B
+ and there is a natural

morphism of affinoids

(L〈q, qn/̟,̟m/q〉,OL〈q, q
n/̟,̟m/q〉) → (B,B+), q 7→ qE

through which the map OL((q))→ B defining the Tate curve structure factors.
Since the algebra on the left defines an affinoid open of D̊, this gives the desired
factorisation.

Definition 2.13. Consider OL((q)) with the p-adic topology, that is we sup-
press the topology coming from q. Let OL〈〈q〉〉 := OL((q))∧ be the p-adic com-
pletion. Explicitly,

OL〈〈q〉〉 =
{
∑

n∈Z
anq

n ∈ OLJq±1K | an → 0 for n→ −∞
}

.

This is a discrete valuation ring with maximal ideal (p) and residue field kL((q)).

Remark 2.14. The adic space S = Spa(OL〈〈q〉〉[
1
p ],OL〈〈q〉〉) consists of a single

point. As we have suppressed the q-adic topology, it is clear that q is not
topologically nilpotent on S. We conclude that the map

S → SpecOL((q))→ X∗

does not factor through D̊ →֒ X ∗ even though it corresponds to a Tate curve.
The point is that this Tate curve has good reduction: Concretely, this means
that it is already an elliptic curve over OL((q)). Its reduction mod mL is simply
the universal Tate curve T(q) over kL((q)). It therefore gives rise to a point in
the good reduction locus Xgd ⊆ X ⊆ X

∗.

We can enlarge the Tate curve parameter space D so that it includes the above
example:

Definition 2.15. Let D = Spa(OLJqK[ 1p ],OLJqK) where, contrary to our usual

convention, OLJqK is endowed with the p-adic topology. We let

OLJq1/p
∞

Kp := (lim
−→
m

OLJq1/p
m

K)∧
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where, crucially, the completion is the p-adic one. This is a perfectoid
OL-algebra. If we use the (p, q)-adic topology instead, we obtain a (p, q)-
adically complete ring OLJq1/p

∞

K. There is a natural inclusion OLJq1/p
∞

Kp →֒

OLJq1/p
∞

K, but this is not an isomorphism: For example,
∑

n∈N
qn+

1
pn defines

an element contained in the codomain but not in the image.

As before, we emphasize that D depends on our chosen cusp x. If this cusp
is not clear from the context, we shall also write Dx for the parameter space
associated to x.

Lemma 2.16. 1. The Huber pair (OLJqK[ 1p ],OLJqK), where OLJqK is en-

dowed with the p-adic topology, is sous-perfectoid in the sense of [SW20,
§6.3], and thus sheafy.

2. We have an open immersion D = ∪mD(|q| ≤ |p|1/p
m

) →֒ D.

3. We have an open immersion Spa(OL〈〈q〉〉[
1
p ],OL〈〈q〉〉) = D(|q| ≥ 1) →֒ D.

Parts 1. and 2. of the lemma say that we may think of D as a compactification
of D, albeit a non-standard one. As discussed in Example 2.20 below, D and
D(|q| ≥ 1) form a disjoint open cover of D up to one additional point of rank
2 which lies in between them.

Proof. The traces OLJq1/p
n

K → OLJqK defined by qm 7→ qm for m ∈ Z≥0 and
qi/p

n

7→ 0 for 0 < i < pn give rise in the p-adically completed limit to an
OLJqK-linear section OLJq1/p

∞

Kp → OLJqK. This shows the first part. Part (3)
is clear as D(|q| ≥ 1) is formed by adjoining q−1 and completing p-adically.

Part (2) follows from D = ∪mD(|q|m ≤ |p|) and

O(D(|q|m ≤ |p|)) = OLJqK〈 q
m

p 〉[
1
p ] = OL〈

qm

p 〉[
1
p ] = O(D(|q|m ≤ |p|)).

Lemma 2.17. For every cusp of X ∗ there is a natural morphism D → X ∗(ǫ),
extending the morphism D →֒ X ∗(ǫ). The fibre of the good reduction locus is
precisely D(|q| ≥ 1).

Proof. For the first part, we take the morphism Spec(OLJqK) → X∗
OK

from
Lemma 2.11, complete p-adically and pass to the generic fibre.

To see the second part, we note that morphisms Spa(R,R+)→ Xgd correspond
to elliptic curves over R+. The locus of D where the Tate curve is defined over
O+ is precisely that where q is in O+,×. Equivalently, as we have |q| ≤ 1 on D,
this means that |q| ≥ 1.

Remark 2.18. 1. The map D → X ∗(ǫ) is no longer an open immersion.
Indeed, D is not even of locally topologically finite type over K. We
therefore do not have a rigid analogue of D, and can only describe this
map in the setting of adic spaces.
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2. Here and in the following, by base-change we could replace OLJqK by the
smaller ring ZpJqK⊗̂ZpOL where the completion is p-adic. But we will not
need this.

3. If we form the union over all cusps C, we get two maps

(i)
⊔

x∈C

Dx ×Xgd → X , (ii)
⊔

x∈C

Dx ×Xgd → X

of which (ii) is a cover (for example in the v-topology), in contrast to (i)
whose image misses some points of rank 2. This is what we discuss next.

2.4 The points of the adic space X ∗

Our next goal is to see how much of the adic space X ∗ is captured by the Tate
curve parameter spaces D in conjunction with the good reduction locus. The
answer is that they give everything except for a finite set of higher rank points
whose moduli interpretation in terms of Tate curves we shall describe.
Indeed, since the loci Xgd and D in X ∗ are the preimages of a cover by an
open and a closed set of the special fibre Xk under the specialisation map
|X ∗| → |Xk|, it follows from the adaptation of [dJ95, Lemma 7.2.5], to the
setting of [Con06] that if we worked with rigid spaces, then D and X would
cover X ∗ set-theoretically, but not admissibly so [dJ95, §7.5.1].

Proposition 2.19. Let z ∈ X ∗ be any point, then we are in either of the
following cases:

(a) z ∈ X ∗ is contained in the good reduction locus Xgd,

(b) z ∈ Dx →֒ X
∗ is contained in a Tate curve parameter space around a

cusp x of X ∗,

(c) z ∈ X ∗\Xgd is of rank > 1 and its unique height 1 vertical generisation
z′ is in Xgd.

When we denote by j the global function on X induced by the j-invariant
j : X → A1,an, then the above are respectively equivalent to

(a’) |j(z)| ≤ 1,

(b’) |j(z)| > 1 and its inverse is cofinal in the value group,

(c’) |j(z)| > 1 and its unique rank 1 generisation z′ satisfies |j(z′)| = 1.

We note that the analogous description also holds after adding level at p.

Proof. The space X ∗ is analytic, hence the valuation vz is always microbial.
This implies that z has a unique generisation z′ of height 1, so statements (c)
and (c’) make sense.
The case of the cusps is clear, so we may assume that z ∈ X .
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We start by proving that (a) and (a′) are equivalent. Recall that XOK is
the preimage of A1

OK
under the morphism of OK-schemes j : X∗

OK
→ P1

OK
.

Upon formal completion and passing to the adic generic fibre, j becomes jan

while A1
OK
⊆ P1

OK
is sent to the open disc B1(0) ⊆ A

1,an
K ⊆ P

1,an
K defined

by |j(z)| ≤ 1. Since the adic generic fibre of the completion of XOK ⊆ X∗
OK

is Xgd ⊆ X
∗, this shows that Xgd is precisely the preimage of B1(0) under

jan : X = Xan → A1,an.
Next, let us prove that (b) and (b’) are equivalent. We can always find a
morphism

rz : Spa(C,C+)→ X

where (C,C+) is a complete algebraically closed non-archimedean field, such
that z is in the image of rz . It thus suffices to show that rz factors through
some D →֒ X ∗. By Lemma 2.12 it suffices to show that (b’) holds if and only
if the elliptic curve E over C that rz represents is a Tate curve with nilpotent
parameter qE ∈ C.
The image of j in C is precisely the j-invariant jE of E. Since in a non-
archimedean field the elements with cofinal valuation are precisely the topo-
logically nilpotent ones, condition (b’) is equivalent to jE 6= 0 and j−1

E being
topologically nilpotent. We can now argue like in the classical case of p-adic
fields to see that this is equivalent to E being a Tate curve with qE topologically
nilpotent: Assume the latter, then jE = q−1

E + 744 + 196884q+ · · · 6= 0 has val-
uation |jE | = |1/qE| in C and thus jE satisfies (b’). To see the converse, recall
that in the formal Laurent series ring Z((q)), the formula j(q) = q−1 +744+ . . .
reverses to

q(j−1) = j−1 + 744j−2 + 750420j−3 + · · · ∈ ZJj−1K.

If now j−1
E is topologically nilpotent, the above series converges in C and we

obtain a topologically nilpotent element qE ∈ C
× with jE = 1/qE+744+ · · · =

j(qE). The Tate curve T(qE)C over C thus has the same j-invariant as E, and
since C is algebraically closed we conclude that E ∼= T(qE)C . This shows that
(b) and (b’) are equivalent.
Next, let us show that (c’) holds if and only if (a’) and (b’) don’t hold. Recall
that we always have a unique height 1 vertical generisation z′. Clearly |j(z)| 6= 0
if and only if |j(z′)| 6= 0, and if in this case |j(z)|−1 is cofinal then |j(z′)|−1 is
cofinal. This implies that (b’) and (c’) can’t hold at the same time. On the
other hand, if |j(z)| > 1, then either |j(z′)| = 1, or |j(z′)| > 1 in which case
|j(z′)|−1 < 1 is cofinal because vz′ has height 1. This shows that if |j(z)| > 1
then we are either in case (b’) or in (c’).
Since clearly (c) implies that (a) and (b) do not hold, it remains to prove (c’)
implies (c). But this follows from applying the equivalence of (a) and (a′) first
to z and then to z′.

Example 2.20. Let us work out an example for an elliptic curve corresponding
to a point of type (c): Let x be a cusp and L = Lx. Let R×

>0×γ
Z be the totally
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ordered group for which γ is such that z < γn < 1 for all n ∈ Z≥1 and all
z ∈ R<1. Equip the field F = OL〈〈q〉〉[

1
p ] with the valuation

v1− : F → (R×
>0 × γ

Z) ∪ {0},
∑

anq
n 7→ max

n∈Z

|an|γ
n.

Recall that mL ⊆ OL is the maximal ideal. The valuation subring of F defined
by v1− is

F+ =

{

∞
∑

n≫−∞

anq
n ∈ OL〈〈q〉〉

∣

∣

∣

∣

∣

an ∈ mL for all n < 0

}

.

Indeed, we have v1−(
∑∞

n≫−∞ anq
n) ≤ 1 if and only if |an|γ

n ≤ 1 for all n. For
n ≥ 0 we have |an|γ

n ≤ 1 if and only if |an| ≤ 1, that is an ∈ OL. For n < 0,
on the other hand, |γ|n is “infinitesimally” bigger than 1, so that |an|γ

n ≤ 1 if
and only if |an| < 1, that is an ∈ mL.
The Tate curve T(qe) over F for e = ex, equipped with the Γp-structure corre-
sponding to x, gives rise to a map

ϕ : Spa(F, F+)→ X ∗.

We claim that ϕ sends v1− neither into Xgd nor into any of the Tate curve
parameter spaces D ⊆ X ∗. Indeed, the j-invariant of T(qe) is

j = q−e + 744 + qe(. . . ) 6∈ F+ (5)

which is not contained in F+ by the above description. This shows that T(qe)
does not extend to an elliptic curve over F+. On the other hand, q is not
locally topologically nilpotent in L. Thus, by Lemma 2.12, v1− does not land
in the open subspace Dx →֒ X

∗.
Proposition 2.19 explains this as follows: The unique rank 1 vertical generisa-
tion of v1− is

v : F → R≥0,
∑

anq
n 7→ max

n∈Z

|an|

with larger valuation ring OL〈〈q〉〉 ⊇ F
+. We see from equation (5) that

|j(v1−)| = γ−e < 1, while |j(v)| = 1.

This shows that ϕ sends v1− to one of the points of type (c) in Proposition 2.19,
while its generisation v goes to the point of Xgd defined in Remark 2.14.

2.5 Tate curve parameter spaces at level Γ0(pn)

Next, we discuss the behaviour of the Tate curve parameter spaces in the
anticanonical tower. For this we first recall the situation at the cusps on the
level of schemes:
Consider the forgetful morphism f : X∗

Γ0(p)
→ X∗. Over each cusp of X∗ there

are precisely two cusps of X∗
Γ0(p)

: One is called the étale cusp, it corresponds to

Documenta Mathematica 27 (2022) 2385–2439



2404 B. Heuer

the Γ0(p)-level structure µp ⊆ T(q)[p] on the Tate curve. The other is the ram-
ified cusp, it corresponds to the level structure 〈q1/p〉 ⊆ T(q)[p]. In particular,
this latter level structure is only defined over Z((q1/p)), and by Proposition 2.1
the completion at this cusp is given by

Spf(OLJq1/pK)→ X∗
Γ0(p)

.

The names reflect that the map X∗
Γ0(p)

→ X∗ is étale at the one sort of cusps,
but is ramified at the other: Over the étale cusp the map induced on comple-
tions is the identity

OLJqK→ OLJqK,

whereas over the ramified cusp it is the inclusion

OLJqK→ OLJq1/pK.

For higher level structures Γ0(pn), the curve X∗
Γ0(pn)

→ X∗ has more cusps

of different degrees of ramification pi with i ∈ {0, . . . , n}, and corresponding

completions of the form Spf(OLJq1/p
i

K)→ X∗
Γ0(pn)

. There is, however, exactly

one étale cusp, corresponding to the Γ0(pn)-level structure µpn ⊆ T(q)[pn],
and exactly one purely ramified one, corresponding to 〈q1/p

n

〉. Relatively with
respect to X∗

Γ0(pn)
→ X∗

Γ0(p)
, the purely ramified cusps lie over the ramified

cusps of X∗
Γ0(p)

, while all other cusps of X∗
Γ0(pn)

lie over the étale cusps of
X∗

Γ0(p)
.

All constructions from the last two sections now go through with the same
proofs for X ∗ replaced by X ∗

Γ0(pn)
, and OLJqK replaced by OLJq1/p

i

K where i
depends on the cusp:

Definition 2.21. For any i ∈ Z≥0, we write

Di := Spa(L〈q1/p
i

〉,OL〈q
1/pi〉)(|q| < 1)

for the open unit disc over L in the parameter q1/p
i

. Here by the condition on
q we mean that we take the union over subspaces where |q| ≤ |p|1/n, i.e. we
do not include points of rank > 1 where q is infinitesimally smaller than 1. In
other words, this is the open locus where q is locally topologically nilpotent.
We write D̊i for the open subspace obtained by removing the origin, i.e. the
point defined by q1/p

i

7→ 0. When we want to emphasize the dependence on
the field L = Lx determined by a cusp x ∈ X ∗, we write these as Di,x and D̊i,x.

Then like in Lemma 2.9, we have for any cusp x of X ∗ and any cusp of X ∗
Γ0(pn)

over x of ramification degree pi a canonical open immersion

Di,x →֒ X
∗
Γ0(pn)

that sends the origin to x.
From now on until the next chapter, we shall focus exclusively on the anti-
canonical locus X ∗

Γ0(pn)
(ǫ)a. Here the ramification is very easy to describe, by

the following proposition:
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Proposition 2.22. Fix a cusp x ∈ X ∗.

1. The cusps of X ∗
Γ0(pn)

(ǫ)a are precisely the purely ramified cusps of X ∗
Γ0(pn)

.

In particular, there is a canonical open immersion Dn,x →֒ X
∗
Γ0(pn)

(ǫ)a
over x.

2. The forgetful map X ∗
Γ0(pn)

(ǫ)a → X
∗
Γ0(pn−1)(ǫ)a gives a bijection between

the respective cusps. The associated Tate curve parameter spaces fit into
Cartesian diagrams

Dn,x Dn−1,x

X ∗
Γ0(pn)

(ǫ)a X ∗
Γ0(pn−1)(ǫ)a,

where Dn → Dn−1 is the canonical finite flat map which sends q 7→ q.

3. For any adic space S over (K,OK), the S-points of D̊n,x →֒ XΓ0(pn)(ǫ)a
correspond functorially to Tate curves T(q) over O(S) with topologically
nilpotent parameter q ∈ O(S), a Γp-structure corresponding to x and a
choice of pn-th root q1/p

n

of q defining a Γ0(pn)-structure 〈q1/p
n

〉 ⊆ T(q).

Proof. Since the canonical subgroup of the Tate curve is given by µp ⊆ T(q)[p],
the cusps of X ∗

Γ0(pn)
contained in X ∗

Γ0(pn)
(ǫ)a are precisely the ones over the

ramified cusps in X∗
Γ0(p)

. But the cusps of X∗
Γ0(pn)

over the ramified cusps of

X∗
Γ0(p)

are precisely the purely ramified ones. This proves (1). Part (3) follows
immediately.
The diagram in (2) commutes because by construction, it is the generic fibre
of a commutative diagram of formal schemes. Since the morphisms are open
immersions, it suffices to check that it is Cartesian on the level of points, where
it follows from (3) and Lemma 2.12.

2.6 Tate curve parameter spaces of X ∗
Γ1(pn)

(ǫ)a

We now pass to higher level at p and describe Tate curve parameter spaces
of the form Dn →֒ X

∗
Γ1(pn)

(ǫ)a. We note that the integral theory of cusps for

Γ1(pn) is slightly complicated in general, see §4.2 of [Con07] for a thorough
discussion. However, over the anticanonical locus, the story is very simple:

Lemma 2.23. Let x be a cusp of X ∗. Then there are Z×
p -equivariant Cartesian

squares

(Z/pn+1Z)× ×Dn+1,x (Z/pnZ)× ×Dn,x Dn,x

X ∗
Γ1(pn+1)(ǫ)a X ∗

Γ1(pn)
(ǫ)a X ∗

Γ0(pn)
(ǫ)a,

in which the morphism on the top left is given by the reduction (a, q) 7→ (a, q).
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Proof. As the morphisms in the bottom row are finite étale Galois torsors for
the groups Z/pnZ and Z/pn+1Z, it suffices to produce a sectionDn,x → X

∗
Γ1(pn)

.

By Proposition 2.22, the cusp of X ∗
Γ0(pn)

(ǫ)a over x corresponds to the choice

of 〈q1/p
n

〉 ⊆ T(q) as a Γ0(pn)-structure. This can be lifted canonically to the
Γ1(pn)-structure given by the pn-th root q1/p

n

in O(Dn,x). Upon normalisation,
we thus get a canonical lift

Spec(ZpJq
1/pnK⊗ Lx)

X∗
Γ1(pn)

X∗
Γ0(pn)

.

The factorisation Dn,x → Spec(ZpJq
1/pnK ⊗ Lx) → X∗

Γ0(pn)
from the analogue

for level Γ0(pn) of Lemma 2.11 together with the universal property of the
analytification now give rise to the desired section

Dn,x

X ∗
Γ1(pn)

X ∗
Γ0(pn)

.

This shows that the right square is Cartesian. That the outer square is Carte-
sian follows in combination with Proposition 2.22. Consequently, the left square
is also Cartesian.

2.7 Tate curve parameter spaces of X ∗
Γ(pn)(ǫ)a

Next, we look at what happens with the cusps in the transition

X ∗
Γ(pn)(ǫ)a → X

∗
Γ1(pn)

(ǫ)a.

Let us fix notation for the left action of GL2(Z/pnZ) on X ∗
Γ(pn) in terms of

moduli: For any γ ∈ GL2(Z/pnZ) it is given by sending a trivialisation α :
(Z/pnZ)2

∼
−→ E[pn] to

(Z/pnZ)2
γ∨

−−→ (Z/pnZ)2
α
−→ E[pn]

where γ∨ = det(γ)γ−1. Here the inverse is necessary to indeed obtain a left
action, and the twist by det(γ) ensures that the action on the fibres of the map
X ∗

Γ(pn)(ǫ)a → X
∗
Γ1(pn)

(ǫ)a is given by matrices of the form ( ∗ ∗
0 1 ) rather than

( 1 ∗
0 ∗ ).

Definition 2.24. For 0 ≤ m ≤ n ∈ N, we denote by Γ0(pm,Z/pnZ) ⊆
GL2(pm,Z/pnZ) the subgroup of matrices of the form ( ∗ ∗

c ∗ ) with c ≡ 0 mod pm.
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The forgetful map X∗
Γ(pn) → X∗

Γ0(p)
is given by reducing (Z/pnZ)2

∼
−→ E[pn]

mod p to (Z/pZ)2
∼
−→ E[p] and sending it to the subgroup generated by

(1, 0). Consequently, the action of Γ0(p,Z/pnZ) leaves the forgetful morphism
X∗

Γ(pn) → X∗
Γ0(p)

invariant. We see from this that the action of Γ0(p,Z/pnZ)

restricts to an action on X ∗
Γ(pn)(ǫ)a ⊆ X

∗
Γ(pn).

From now on, let us fix a compatible choice (ζpn)n∈N of p-power roots of unity
in K.

Lemma 2.25. Let x be a cusp of X ∗.

1. Depending on our chosen primitive pn-root of unity ζpn , there is a canon-
ical Cartesian diagram

Γ0(pn,Z/pnZ)×Dn,x Dn,x

X ∗
Γ(pn)(ǫ)a X ∗

Γ0(pn)
(ǫ)a.

where the left map is Γ0(pn,Z/pnZ)-equivariant for the action via the
first factor.

2. Let xγ be the cusp of X ∗
Γ(pn)(0)a over x determined by γ =

(

a b
0 d

)

∈

Γ0(pn,Z/pnZ). Then for any honest adic space S over K, the S-points
of xγ : D̊n,x →֒ XΓ(pn)(ǫ)a correspond functorially to Tate curves E =
T(qE) with topologically nilpotent parameter qE ∈ O(S), a Γp-structure

corresponding to x, and the basis (q
d/pn

E , q
−b/pn

E ζapn) of E[pn], where q
1/pn

E

is the pn-th root of qE determined by x.

3. The reduction π : Γ0(pn+1,Z/pn+1Z)→ Γ0(pn,Z/pnZ) gives a Cartesian
diagram

Γ0(pn+1,Z/pn+1Z)×Dn+1,x Γ0(pn,Z/pnZ) ×Dn,x

X ∗
Γ(pn+1)(ǫ)a X ∗

Γ(pn)(ǫ)a.

(γ,q) 7→(π(γ),q)

Proof. 1. Arguing as in Lemma 2.23, it suffices to produce a splitting

Spec(ZpJq
1/pnK⊗ Lx)

X∗
Γ(pn) X∗

Γ1(pn)

which we construct as follows: Consider the Tate curve T = T(qe)R over
R = Zp((q

1/pn)) ⊗ OL with its Weil pairing epn : T [pn] × T [pn] → µpn .
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Specialising at qe/p
n

∈ T [pn], we obtain an isomorphism

e(qe/p
n

,−) : Cn → µpn

where Cn is the canonical subgroup of T . The preimage of ζpn gives
the second basis vector of T [pn] of an anticanonical Γ(pn)-structure on
T [pn], defining the desired lift. By analytification we then obtain the map
g : Dn,x → X

∗
Γ(pn)(ǫ)a which gives the Cartesian diagram as X ∗

Γ(pn)(ǫ)a →

X ∗
Γ0(pn)

(ǫ)a is Galois with group Γ0(pn,Z/pnZ).

2. We have just seen that the cusp label 1 ∈ Γ0(pn,Z/pnZ) corresponds
via qe 7→ qE to the isomorphism α : (Z/pnZ)2 → E[pn] defined by the

ordered basis (q
1/pn

E , ζpn). For the general case, we use that the action of
γ =

(

a b
0 d

)

is given by

( 1
0 ) ( d0 ) q

d/pn

E ,

( 0
1 ) ( −b

a ) q
−b/pn

E ζapn .

γ∨
α

γ∨
α

3. This follows from (1) and Lemma 2.22 as X∗
Γ(pn) → X∗

Γ(pn−1) is equivari-
ant for π.

All in all, we get the following description of Tate curve parameter spaces at
finite level:

Proposition 2.26. Let x be any cusp of X ∗. Then depending on our choice
of ζpn ∈ K, there is a canonical tower of Cartesian squares

Γ0(pn,Z/pnZ)×Dn,x (Z/pnZ)× ×Dn,x Dn,x Dx

X ∗
Γ(pn)(ǫ)a X ∗

Γ1(pn)
(ǫ)a X ∗

Γ0(pn)
(ǫ)a X ∗(ǫ).

ϕ

where the top left map sends (
(

a b
0 d

)

, q) 7→ (d, q).

Proof. The square on the right is Proposition 2.22.(2). The square in the middle
is Lemma 2.23. The Cartesian diagram on the left exists as a consequence of
Lemma 2.25.1 combined with the fact that X∗

Γ(pn) → X∗
Γ1(pn)

is equivariant

with respect to the map
(

a b
0 d

)

7→ d.

Lemma 2.25 describes the Γ0(pn,Z/pnZ)-action at the cusps of X ∗
Γ(pn)(ǫ)a, but

there is also an action of the larger group Γ0(p,Z/pnZ). While the action of
Γ0(pn,Z/pnZ) just permutes the different copies of Dn,x over x, the action of
Γ0(p,Z/pnZ) in general has a non-trivial effect on each of these Tate curve
parameter spaces, because it also takes into account isomorphisms of Tate
curves of the form q1/p

n

7→ ζpnq
1/pn , as we shall now discuss.
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Proposition 2.27. Over any cusp x of X ∗, the Γ0(p,Z/pnZ)-action on
X ∗

Γ(pn)(ǫ)a restricts to an action on ϕ : Γ0(pn,Z/pnZ)×Dn,x →֒ X
∗
Γ(pn)(ǫ)a that

can be described as follows: Equip Γ0(p,Z/pnZ)×Dn,x with the right action by
pZ/pnZ via

(γ, q) · h := (γ ( 1 0
h 1 ) , ζ

h/ex
pn q)

for h ∈ pZ/pnZ, then we have a natural identification

(Γ0(p,Z/pnZ)×Dn,x)/(pZ/pnZ) = Γ0(pn,Z/pnZ)×Dn,x

and the left action of Γ0(p,Z/pnZ) is the natural left action via the first factor.
Explicitly, for any γ1 ∈ Γ0(p,Z/pnZ), the action is given by

γ1 : Γ0(pn,Z/pnZ)×Dn,x
∼
−→ Γ0(pn,Z/pnZ)×Dn,x

γ2, q
1/pn 7→

(

det(γ3)/d3 b3
0 d3

)

, ζ
−

c3
d3ex

pn q1/p
n

where γ3 =
(

a3 b3
c3 d3

)

:= γ1 · γ2.

Here we recall that ex was introduced in Notation 2.2.

Proof. Recall that the reason why the pullback of Dx →֒ X
∗
Γ0(p)

to X ∗
Γ(pn) is of

the form Γ0(pn,Z/pnZ)×Dn,x even though XΓ(pn) → XΓ0(p) has larger Galois
group Γ0(p,Z/pnZ) is that in the step from X ∗ to X ∗

Γ0(pn)
(ǫ)a, the isomorphism

ψh : Dn,x → Dn,x, q1/p
n

7→ ζhpnq
1/pn

for any h ∈ Z/pnZ induces an isomorphism of moduli for the universal Tate
curve T = T(qex) over Dx that sends the anti-canonical Γ0(pn)-level struc-
ture 〈qex/p

n

〉 to 〈ζhexpn qex/p
n

〉. For the action of Γ0(p,Z/pnZ), this means the
following:
Consider the Tate curve parameter space ϕ(1) : Dn,x →֒ X ∗

Γ(pn)(ǫ)a at 1 ∈

Γ0(p,Z/pnZ), associated to the isomorphism α : (Z/pnZ)2 → T [pn] defined by
the ordered basis (qex/p

n

, ζpn). Then the action of γ = ( 1 0
h 1 ) sends this to

the isomorphism α ◦ γ∨ defined by (1, 0) 7→ ζ−hpn q
ex/p

n

and (0, 1) 7→ ζpn . The

isomorphism ψ−h/ex identifies this with the basis (q1/p
n

, ζpn):

q1/p
n

〈qex/p
n

〉 D̊n,x XΓ(pn)(ǫ)a

ζ
−h/ex
pn q1/p

n

〈ζ−hpn q
ex/p

n

〉 D̊n,x XΓ(pn)(ǫ)a.

ψ−h/ex

ϕ(1)

γ1

ϕ(1)

The action of ( 1 0
h 1 ) on the component {1} × Dn,x of Γ0(pn,Z/pnZ) × Dn,x

defined by 1 ∈ Γ0(pn,Z/pnZ) is thus given by ψ−h/ex .
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In general, in order to describe the action of γ1 on the component {γ2}×Dn,x,
it suffices to compute the action of γ3 = γ1 · γ2 on {1} ×Dn,x, since we have a
commutative diagram

{1} × Dn,x {1} × Dn,x

{γ2} × Dn,x {γ3} × Dn,x.

γ2
γ3

γ1

One can now decompose γ3 into the actions which we have already computed,
using

γ =
(

a b
c d

)

=
(

det(γ)/d b
0 d

)

(

1 0
c/d 1

)

. (6)

Applying this to γ3, we get the desired action by equivariance of ϕ under
Γ0(p,Z/pnZ).

3 Adic theory of cusps at infinite level

We now pass to infinite level, starting with X ∗
Γ0(p∞)(ǫ)a ∼ lim

←−
X ∗

Γ0(pn)
(ǫ)a. We

first note:

Lemma 3.1. Let (R,R+) be a perfectoid K-algebra. Then the set
XΓ0(p∞)(ǫ)a(R,R+) is in functorial bijection with isomorphism classes of
triples (E,αN , (Gn)n∈N) of elliptic curves E over R that are ǫ-nearly ordinary,
together with a Γp-structure αN and a collection of anticanonical cyclic sub-
groups Gn ⊆ E[pn] of order pn for all n that are compatible in the sense that
Gn = Gn+1[pn]. Equivalently, one could view G = (Gn)n∈N as a p-divisible
subgroup of E[p∞] of height 1 such that G1 is anticanonical.

Proof. Since (R,R+) is perfectoid, one has

XΓ0(p∞)(ǫ)a(R,R+) = lim
←−
n∈N

XΓ0(pn)(ǫ)a(R,R+)

by [SW13, Prop 2.4.5]. The statement thus follows from Lemma 2.3.

Definition 3.2. We shall call the p-divisible group G an anticanonical Γ0(p∞)-
structure.

We wish to study the cusps at infinite level, by which we mean the following:

Definition 3.3. By the cusps of X ∗
Γ0(p∞)(ǫ)a, X ∗

Γ1(p∞)(ǫ)a etc. we mean the
preimage of the divisor of cusps of X ∗ endowed with its induced reduced struc-
ture.

We note that at infinite level, the cusps are in general a profinite Zariski-
closed subspace of the respective infinite level modular curve. However, at level
Γ0(p∞), we will see that the map X ∗

Γ0(p∞)(ǫ)a → X
∗ isomorphically identifies

the cusps of X ∗
Γ0(p∞)(ǫ)a and those of X ∗.
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3.1 The perfectoid Tate curve parameter space at level Γ0(p∞)

We start our discussion by having a closer look at the cusps in the anticanonical
tower.
As before, we fix a cusp x of X ∗ and let L be the field of definition of the
associated Tate curve, like in Def. 4.5. In particular, if K contains a primitive
N -th root of unity, we simply have L = K. By Lemma 2.22, there is for x a
tower of Cartesian squares

. . . D2 D1 D

. . . X ∗
Γ0(p2)

(ǫ)a X ∗
Γ0(p)

(ǫ)a X ∗(ǫ).

(7)

To describe the limit of this tower, we let

D∞ := Spa(L〈q1/p
∞

〉,OL〈q
1/p∞〉)(|q| < 1)

be the open locus of the closed perfectoid disc where q is locally topologically
nilpotent, with notation as in Def. 2.21. Explicitly, this is the union of discs
where |q| < |p|1/n for some n.

Lemma 3.4. 1. The perfectoid space D∞ is the tilde-limit D∞ ∼ lim
←−n∈N

Dn.

2. Denote by OLJq1/p
∞

K the (p, q)-adic completion of lim
−→n∈N

OLJq1/p
n

K.

Then D∞ is the adic generic fibre of the formal scheme Spf(OLJq1/p
∞

K).

3. The global sections of D∞ are given by O+(D∞) = OLJq1/p
∞

K and

O(D∞) =

{

∑

n∈Z[ 1p ]≥0

anq
n ∈ LJq1/p

∞

K

∣

∣

∣

∣

∣

|an|z
n n→∞
−−−−→ 0 for all z ∈ [0, 1),

|an| → 0 on bounded intervals

}

where the second condition means that for any δ > 0 and for any bounded
interval I ⊆ Z[ 1p ]≥0 there are only finitely many n ∈ I such that |an| > δ.

Proof. It is clear on global sections that

Spa(L〈q1/p
∞

〉,OL〈q
1/p∞〉) ∼ lim

←−
n∈N

Spa(L〈q1/p
n

〉,OL〈q
1/pn〉).

The first part follows from [SW13, Proposition 2.4.3] since D is the restriction
to the open subspace defined by the union of |q| ≤ |p|1/p

n

for all n ∈ N. More
explicitly, this means that D∞ is given by glueing the affinoid perfectoid unit
discs of increasing radii < 1 given by

D∞(|q|p
m

≤ |̟|) = Spa(L〈(q/̟1/pm)1/p
∞

〉,OL〈(q/̟
1/pm)1/p

∞

〉)
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for all m ∈ N. These can be obtained by rescaling the perfectoid unit disc.
Computing the intersection of their respective global functions gives O(D∞)
and O+(D∞).

Part (2) is not just a formal consequence as tilde-limits do not necessarily
commute with taking generic fibres. But it follows from the construction: Let

S = Spa(OLJq1/p
∞

K,OLJq1/p
∞

K)

and consider the subspaces S(|q|p
m

≤ |̟| 6= 0) which are rational because
(qn, ̟) is open. As usual, one shows that sinceOLJq1/p

∞

K has ideal of definition
(q,̟), the element |q(x)| must be cofinal in the value group for any x ∈ S.
This shows that

Sad
η = S(|̟| 6= 0) = ∪m∈NS(|q|p

m

≤ |̟| 6= 0).

Let B+
m = O+(S(|q|p

m

≤ |̟| 6= 0)), then as qp
m

/̟ ∈ B+
m, we have (q,̟)p

m

⊆
(̟) and the ring B+

m thus has the ̟-adic topology. From this one deduces
that B+

m = OL〈(q/̟
1/m)1/p

∞

〉 and thus the spaces S(|q|p
m

≤ |̟| 6= 0) and
D∞(|q|p

m

≤ |̟| 6= 0) coincide.

Remark 3.5. Note that D∞ is not affinoid, even though it is the generic fibre
of an affine formal scheme, as we did not equip OLJq1/p

∞

K with the p-adic
topology.

Definition 3.6. The origin in D∞ is the closed point x : Spa(L,OL) → D∞

where q = 0. By removing this point, we obtain a space D̊∞ := D∞\{x} that
satisfies D̊∞ ∼ lim

←−
D̊n.

Definition 3.7. Let D∞ := Spa(OLJq1/p
∞

Kp[
1
p ],OLJq1/p

∞

Kp) with the p-adic

topology on OLJq1/p
∞

Kp (see Def. 2.15). Then it is clear from the definition
that D∞ ∼ lim

←−q 7→qp
D.

We are now ready to discuss cusps at infinite level and the corresponding Tate
curve parameter spaces.

Proposition 3.8. Fix a cusp x of X ∗, with corresponding cusps in the anti-
canonical tower.

1. The open immersions Dn →֒ X
∗
Γ0(pn)

(ǫ)a over x in the limit n→∞ give

rise to an open immersion D∞ →֒ X
∗
Γ0(p∞)(ǫ)a that fits into a Cartesian

diagram

D∞ D∞ X ∗
Γ0(p∞)(ǫ)a

D D X ∗(ǫ).
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2. Consider the restriction D̊∞ →֒ XΓ0(p∞)(ǫ)a. For any perfectoid K-
algebra (R,R+),

D̊∞(R,R+) ⊆ XΓ0(p∞)(ǫ)a(R,R+)

is in functorial bijection with isomorphism classes of triples

(E,αN , (q
1/pn

E )n∈N) where E ∼= T(qE) is a Tate curve over R for
some topologically nilpotent unit qE ∈ R, where αN is a Γp-level struc-

ture, and (q
1/pn

E )n∈N is a compatible system of pn-th roots of qE, defining
an anticanonical Γ0(p∞)-structure on E.

Exactly as before, we also write D∞,x →֒ X
∗
Γ0(p∞)(ǫ)a for the open immersion

in the proposition if we wish to emphasize the cusp x we are working over.

Proof. The map D∞ → X ∗
Γ0(p∞)(ǫ)a is induced from Proposition 2.22 and

Proposition 3.4 by the universal property of the perfectoid tilde-limit. The
outer square in part (1) is now Cartesian using [SW13, Prop 2.4.3], and the
fact that the squares in diagram (7) are Cartesian.
It is clear that the left square is Cartesian. To show that the right square is as
well, it now suffices to prove this away from the cusps, where it follows from the
relative moduli interpretation: Giving an anticanonical Γ0(p∞)-level structure
on T(q) over some OLJqK-algebra where q is invertible corresponds to giving a
system of pn-th roots of q.
The moduli interpretation of D̊∞ follows from diagram (7) and Corollary 2.22.

3.2 Tate curve parameter spaces of X ∗
Γ1(p∞)(ǫ)a

Next, we discuss Tate curve parameter spaces for the pro-étale map
X ∗

Γ1(p∞)(ǫ)a → X ∗
Γ0(p∞)(ǫ)a. This is just a matter of pulling back the de-

scriptions from finite level: Let

X ∗
Γ1(pn)∩Γ0(p∞)(ǫ)a := X ∗

Γ1(pn)
(ǫ)a ×X ∗

Γ0(pn)
(ǫ)a X

∗
Γ0(p∞)(ǫ)a.

Lemma 3.9. Let x be any cusp of X ∗. Let n ∈ Z≥0.

1. The map X ∗
Γ1(pn)∩Γ0(p∞)(ǫ)a → X

∗
Γ1(pn)

(ǫ)a restricts to an isomorphism
on the cusps.

2. There are canonical Cartesian cubes

(Z/pn+1Z)× ×Dn+1 (Z/pnZ)× ×Dn Dn

(Z/pn+1Z)× ×D∞ (Z/pnZ)× ×D∞ D∞

X ∗
Γ1(pn+1)(ǫ)a X ∗

Γ1(pn)
(ǫ)a X ∗

Γ0(pn)
(ǫ)a

X ∗
Γ1(pn+1)∩Γ0(p∞)(ǫ)a X ∗

Γ1(pn)∩Γ0(p∞)(ǫ)a X ∗
Γ0(p∞)(ǫ)a.
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Proof. In part (2), the bottom faces are Cartesian by definition, the back faces
are Cartesian by Lemma 2.23, the rightmost square is Cartesian by Proposi-
tion 3.8, and the top faces are clearly also Cartesian. Thus all other faces are
Cartesian. Part (1) follows immediately.

We now take the limit n → ∞ to get Tate curve parameter spaces for
X ∗

Γ1(p∞)(ǫ)a: In doing so, we need to account for the fact that in the inverse
limit, the divisor of cusps becomes a profinite set of points, rather than just a
disjoint union of closed points.

Definition 3.10. Let S be a profinite set, and let (Si)i∈I be a system of finite
sets with S = lim

←−i∈I
Si. Then we define S to be the unique perfectoid tilde-

limit S ∼ lim
←−i∈I

Si. This is independent of the choice of Si: Explicitly, S is the

affinoid perfectoid space

S = Spa(Mapcts(S,K),Mapcts(S,OK)).

Proposition 3.11. Let x be a cusp of X ∗ with Tate curve parameter space
D∞,x →֒ X ∗

Γ0(p∞)(ǫ)a. Then in the limit, the canonical open immersions

(Z/pnZ)× × D∞,x →֒ X
∗
Γ1(pn)∩Γ0(p∞)(ǫ)a give rise to a Z×

p -equivariant open

immersion Z×
p ×D∞,x →֒ X

∗
Γ1(p∞)(ǫ)a that fits into a Cartesian diagram

Z×
p ×D∞,x D∞,x

X ∗
Γ1(p∞)(ǫ)a X ∗

Γ0(p∞)(ǫ)a.

Remark 3.12. Upon specialisation to the origin Spa(L,OL) → D∞,x, this
shows that the subspace of cusps of X ∗

Γ1(p∞)(ǫ)a over x can be identified with

(Z×
p )L, the base-change of the profinite adic space Z×

p to L. In particular,

for any a ∈ Z×
p , specialisation at a gives rise to a locally closed immersion

D∞,x →֒ X
∗
Γ1(p∞)(ǫ)a but in contrast to the case of Γ0(p∞), this is not going to

be an open immersion due to the non-trivial topology on the cusps.

Proof. This follows in the inverse limit over the front of the cubes in
Lemma 3.9.2, since

Z×
p ×D∞,x ∼ lim

←−
(Z/pnZ)× ×D∞,x. (8)

That this holds is easy to verify, see for example [BGH+22, Lemma 2.8].

3.3 Tate curve parameter spaces of X ∗
Γ(p∞)(ǫ)a

Next, we look at the Tate curve parameter spaces in the pro-étale map
X ∗

Γ(p∞)(ǫ)a → X
∗
Γ1(p∞)(ǫ)a. As before, we do so by looking at the limit of

the finite morphisms

X ∗
Γ(pn)∩Γ0(p∞) := X ∗

Γ(pn)(ǫ)a ×X ∗
Γ0(pn)

(ǫ)a X
∗
Γ0(p∞)(ǫ)a → X

∗
Γ0(p∞)(ǫ)a.
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Combining the moduli descriptions of XΓ(pn) and Lemma 3.1, we see:

Lemma 3.13. Let (R,R+) be a perfectoid K-algebra. Then
XΓ(pn)∩Γ0(p∞)(ǫ)a(R,R+) is in functorial bijection with isomorphism classes of
tuples (E,αN , G, βn) with E,αN , G as in Lemma 3.1 and βn an isomorphism
(Z/pnZ)2 → E[pn] such that βn(1, 0) generates Gn.

We have the following description of the cusps of X ∗
Γ(pm)∩Γ0(p∞)(ǫ)a:

Lemma 3.14. Let x be a cusp of X ∗.

1. The map X ∗
Γ(pm)∩Γ0(p∞)(ǫ)a → X

∗
Γ(pm)(ǫ)a induces an isomorphism on

cusps. The cusps of X ∗
Γ(pm)∩Γ0(p∞)(ǫ)a over x are thus parametrised

by Γ0(pn,Z/pnZ) where
(

a b
0 d

)

corresponds to the ordered basis

(qd/p
n

, ζapnq
−b/pn) of T(q)[pn].

2. There is a Cartesian diagram

Γ0(pn,Z/pnZ)×D∞,x (Z/pnZ)× ×D∞,x

X ∗
Γ(pn)∩Γ0(p∞)(ǫ)a X ∗

Γ1(pn)∩Γ0(p∞)(ǫ)a

where the top left map is given by (
(

a b
0 d

)

, q) 7→ (d, q).

Proof. Part (1) follows from Lemma 2.25 and Proposition 3.8 exactly like in
Lemma 3.9. Part (2) follows from a similar Cartesian cube using the left square
in Proposition 2.26 and Lemma 3.9.

Definition 3.15. Let Γ0(p∞) =

(

Z
×
p Zp

0 Z
×
p

)

be the subgroup of GL2(Zp)

of upper triangular matrices. This is a profinite group with Γ0(p∞) =
lim
←−n

Γ0(pn,Z/pnZ).

Lemma 3.16. Let (R,R+) be a perfectoid K-algebra. Then XΓ(p∞)(ǫ)a(R,R+)
is in functorial bijection with isomorphism classes of triples (E,αN , β) of an
ǫ-nearly ordinary elliptic curve E over R, together with a Γp-structure αN ,
and an isomorphism of p-divisible groups β : (Qp/Zp)

2 → E[p∞] over R (or
equivalently an isomorphism Z2

p → TpE(R)) such that the restriction of β to
the first factor is an anti-canonical Γ1(p∞)-structure.

Proof. This is an immediate consequence of Lemma 3.13 and [SW13, Proposi-
tion 2.4.5].

We are now ready to give the main result of this section, which summarises
the discussion so far and moreover describes the cusps of X ∗

Γ(p∞)(ǫ)a. For the

statement, let us recall that for any n, the Tate curve T(q) over D∞ has an
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anticanonical ordered basis for T(q)[pn] given by (q1/p
n

, ζpn). In particular, an
anticanonical ordered basis of the Tate module TpT(q) is given by the compat-
ible system (q1/p

n

)n∈N that we denote by q1/p
∞

, and the chosen compatible
system (ζpn)n∈N, that we now denote by ζp∞ .

Theorem 3.17. Let x be a cusp of X ∗ with corresponding morphism Dx →֒ X
∗.

1. We have a tower of Cartesian squares

Γ0(p∞)×D∞,x Z×
p ×D∞,x D∞,x Dx

X ∗
Γ(p∞)(ǫ)a X ∗

Γ1(p∞)(ǫ)a X ∗
Γ0(p∞)(ǫ)a X ∗(ǫ).

where the top left map is given by (
(

a b
0 d

)

, q) 7→ (d, q).

2. For any γ =
(

a b
0 d

)

∈ Γ0(p∞), the cusp of X ∗
Γ(p∞)(ǫ)a obtained by specialis-

ing Γ0(p∞)×D∞,x →֒ X
∗
Γ(p∞)(ǫ)a at γ is the one corresponding to the iso-

morphism Z2
p → TpT(q) defined by the ordered basis (qd/p

∞

, ζap∞q
−b/p∞)

of TpT(q).

Proof. 1. The only statement we have not yet proved is that the left square
is Cartesian. But this follows from Lemma 3.14.(2) in the limit n → ∞.
Here we use that

Γ0(p∞)×D∞,x ∼ lim
←−
n∈N

Γ0(pn,Z/pn)×Dn,x

as well as the analogous statement from (8), which hold by the same
argument.

2. This follows from Lemma 3.14.(1) in the limit.

We note the following easy consequence. The analogue of this for Siegel moduli
spaces for dimension g > 1 is shown in the proof of [Sch15, Lemma 3.2.35].

Corollary 3.18. For any n ∈ N∪{∞}, our choice of ζpn induces a canonical
isomorphism

X ∗
Γ(pn)(0)a =

⊔

Γ(pn)/Γ1(pn)

X ∗
Γ1(pn)

(0)a.

Proof. For n = ∞, there is away from the cusps a canonical section induced
on moduli interpretations as follows: Let E be any ordinary elliptic curve over
an adic space S over K, let C be its canonical subgroup and let G be an
anticanonical Γ0(p∞)-level structure on E. Then TpE = TpC × TpG and there
is a canonical isomorphism TpC = TpG

∨ induced by the Weil pairing. Thus any
trivialisation of TpG induces a trivialisation of TpE. On Tate curve parameter
spaces, one checks that this splitting is given by the map

Z×
p × D̊∞ → Γ0(p∞)× D̊∞, (a, q) 7→

((

a 0
0 a−1

)

, q
)

.

This clearly extends over the puncture. Similarly for n <∞.
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3.4 The action of Γ0(p) on the cusps of X ∗
Γ(p∞)(ǫ)a

Next, we discuss the full action of Γ0(p) on the Tate curve parameter spaces
at infinite level.
Since the full GL2(Z/pnZ)-action on each X ∗

Γ(pn) restricts to a Γ0(p,Z/pnZ)-

action on X ∗
Γ(pn)(ǫ)a as discussed in Proposition 2.27, we see that the GL2(Zp)-

action on X ∗
Γ(p∞) restricts to an action of Γ0(p) = lim

←−n
Γ0(p,Z/pnZ) on

X ∗
Γ(p∞)(ǫ)a. In order to describe this explicitly, it is convenient to work in

the category PerfK of perfectoid spaces over K.

Proposition 3.19. Over any cusp x of X ∗, the Γ0(p)-action on X ∗
Γ(p∞)(ǫ)a

restricts to an action on Γ0(p∞)×D∞ →֒ X
∗
Γ(p∞)(ǫ)a where it can be described

as follows: Equip Γ0(p)×D∞ with the right action by pZp via (γ, q1/p
m

) · h :=

(γ ( 1 0
h 1 ) , ζ

h/ex
pm q1/p

m

) for h ∈ pZp, then

(Γ0(p)×D∞)/pZp = Γ0(p∞)×D∞

as sheaves on PerfK and the left action of Γ0(p) is the one induced by letting
Γ0(p) act on the first factor of Γ0(p) × D∞. Explicitly, in terms of any γ1 ∈
Γ0(p), the action is given by

γ1 : Γ0(p∞)×D∞
∼
−→ Γ0(p∞)×D∞

γ2, q
1/pm 7→

(

det(γ3)/d3 b3
0 d3

)

, ζ
−

c3
d3ex

pm q1/p
m

.

where γ3 =
(

a3 b3
c3 d3

)

:= γ1 · γ2.

Proof. That the action restricts to an action on Γ0(p∞)×D∞ is a consequence
of Proposition 2.27 in the limit over n. The same argument gives the explicit
formula.
It remains to verify the isomorphism of sheaves. For this we check that the
following diagram commutes, where to ease notation, let Γm := Γ0(pm,Z/pmZ)
and Γ′

m := Γ0(p,Z/pmZ):

Γ′
n+1 ×Dn+1 Γn+1 ×Dn+1,

(

a b
c d

)

, q1/p
n+1

(

det(γ)/d b
0 d

)

, ζ
−

c
dex

pn+1 q
1/pn+1

Γ′
n ×Dn Γn ×Dn,

(

a b
c d

)

, q1/p
n

(

det(γ)/d b
0 d

)

, ζ
−

c
dex

pn q1/p
n

where γ =
(

a b
c d

)

(we emphasize that on the right we describe the maps in
terms of points rather than functions). This diagram is pZp-equivariant when
we endow the spaces on the left with the pZp-actions from Proposition 2.27, and
the spaces on the right with the trivial pZp-action. The diagram is moreover
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equivariant for the Γ0(p)-action on the left via the natural reduction maps. In
the limit we therefore obtain a pZp-invariant morphism

Γ0(p)×D∞ → Γ0(p∞)×D∞,

equivariant for the Γ0(p)-action via the first factor on the left, and the action
described in the proposition on the right. This induces a morphism of sheaves

(Γ0(p)×D∞)/pZp → Γ0(p∞)×D∞.

On the other hand, the inclusion Γ0(p∞) ⊆ Γ0(p) defines an inverse of this
map.

3.5 The Hodge–Tate period map on Tate curve parameter spaces

Next, we give an explicit description of the restriction of Scholze’s Hodge–Tate
period map πHT [Sch15, §3.3] to the Tate curve parameter spaces.
Recall that over the ordinary locus, the kernel of the Hodge–Tate map TpE →
ωE is the Tate module TpC of the canonical p-divisible subgroup, and thus the
Hodge–Tate filtration is given by TpC ⊆ TpE. In particular, this means that
πHT(X ∗

Γ(p∞)(0)) ⊆ P1(Zp).
When we further restrict to the anticanonical locus, the image lies in the points
of the form (a : 1) ∈ P1(Zp) with a ∈ Zp. Denote by B1(0) ⊆ P1(Zp) the ball of
radius 1 inside the canonical chart A1 ⊆ P1 around (0 : 1), then the Hodge–Tate
period map thus restricts to

πHT(X ∗
Γ(p∞)(0)a) ⊆ B1(0) ⊆ P1(Zp).

Proposition 3.20. Let x be a cusp of X ∗. Then the Hodge–Tate period map
πHT : X ∗

Γ(p∞) → P1 restricts on (Γ0(p)×D∞,x)/pZp →֒ X
∗
Γ(p∞)(ǫ)a to the map

(Γ0(p)×D∞,x)/pZp → P1(Zp) ⊆ P1,
((

a b
c d

)

, q
)

7→ (b : d).

We deduce this from the following lemma:

Lemma 3.21. Let f : D∞ → A1
K be a function such that f is constant on

(C,OC)-points with value a ∈ L. Then the corresponding f ∈ O(D∞) is the
constant a ∈ L ⊆ O(D∞).

Proof. It suffices to prove this for the spaces D∞(|q| ≤ ̟n). After
rescaling, we are reduced to showing the lemma for D∞ replaced by
Spa(L〈q1/p

∞

〉,OL〈q
1/p∞〉). One can now argue like in the classical proof of

the maximum principle: We can regard f as a function

f ∈ L〈q1/p
∞

〉, f =
∑

m∈Z[ 1p ]≥0

amq
m.

We need to prove that if f((x1/p
i

)i∈N) = a for all (x1/p
i

)i∈N ∈ lim
←−x 7→xp

OC then
f = a.
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After subtracting by a = a0, we may assume that f(x) = 0 for all x ∈ OC .
Suppose f 6= 0. The convergence condition on coefficients ensures that
supm∈Z[ 1p ]

|am| > 0 is attained and after renormalising we may assume that

|f | = maxm∈Z[ 1p ]
|am| = 1. Consider the reduction

r : OL〈q
1/p∞〉 → kL[q1/p

n

|n ∈ N]

modulo mL ⊆ OL. After replacing q 7→ qp
m

we may assume that r(f) ∈ kL[q].
As OC is perfectoid, the projection lim

←−
OC → OC → kC to the residue field

is surjective, and the assumption on f now implies that r(f) is a non-zero
polynomial in kC [q] which evaluates to 0 on all q ∈ kC , a contradiction as kC
is infinite.

Proof of Proposition 3.20. We use Lemma 3.21 to see that for any γ ∈ Γ0(p∞),
the map

D∞

q 7→(γ,q)
−−−−−→ Γ0(p∞)×D∞,x →֒ X

∗
Γ(p∞)(ǫ)a

πHT−−−→ P1

is constant with image b/d. To check this on (C,OC)-points, we use the moduli
description:

On the ordinary locus, πHT sends any isomorphism Z2
p → TpE to the point

of P1(Zp) defined by the line TpC ⊆ TpE where C is the canonical p-divisible

subgroup. By Theorem 3.17.(2), any (C,OC)-point of D∞

q 7→(γ,q)
−−−−−→ Γ0(p∞) ×

D∞ corresponds to a Tate curve E = T(qE) with an ordered basis of TpE given

by (e1, e2) = (q
d/p∞

E , ζap∞q
−b/p∞

E ). Then (using additive notation on TpE)

be1 + de2 = q
bd/p∞

E ζadp∞q
−db/p∞

E = ζadp∞

which spans the line 〈ζp∞〉 = TpC ⊆ TpE. Consequently, the image of (γ, q)
under πHT is

πHT(γ, q) = (b : d) = (b/d : 1) ∈ (Z×
p : 1) ⊆ P1(Zp).

We conclude from this that the function f ∈ Mapcts(Γ0(p∞),O(D∞)) defined
by the restriction πHT : Γ0(p∞) × D∞ → B(0) evaluates at γ to f(γ) = b/d.
Since this is true for all γ ∈ Γ0(p∞), we see that f is given by a function in

Mapcts(Γ0(p∞),Z×
p ) ⊆Mapcts(Γ0(p∞),O(D∞)).

We conclude that πHT has the desired description

Γ0(p∞)×D∞

(γ,q) 7→b/d
−−−−−−→ Z×

p = (Z×
p : 1) ⊆ P1(Zp) →֒ P1, (γ, q) 7→ (b/d : 1).
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3.6 Tate curve parameter spaces of the modular curve at infinite

level

Finally, as a consequence of the above, we can now consider the entire modular
curve X ∗

Γ(p∞). Recall that by the very construction in [Sch15], this is the space

GL2(Qp)X
∗
Γ(p∞)(ǫ)a defined by glueing translates of X ∗

Γ(p∞)(ǫ)a. This allows

us to deduce parts (2)-(3) of Theorem 1.1:

Theorem 3.22. Let x ∈ X ∗ be any cusp. Define a right action of Zp on

GL2(Zp)×D∞,x by letting h ∈ Zp act as

(γ, q1/p
n

) · h := (γ ( 1 0
h 1 ) , q1/p

n

ζ
h/ex
pn ).

Then the sheaf quotient (GL2(Zp) × D∞,x)/Zp on PerfK is represented by a
perfectoid space, and there is a Cartesian diagram

(GL2(Zp)×D∞,x)/Zp Dx

X ∗
Γ(p∞) X ∗

where the top map is induced by the projection from the second factor. The left
map is GL2(Zp)-equivariant for the left action on (GL2(Zp)×D∞,x)/Zp via the
first factor. Under this description, the fibres of the canonical and anticanonical
locus are precisely

(

(

Zp Zp

Zp Z
×
p

)

×D∞,x

)

/Zp →֒ X ∗
Γ(p∞)(ǫ)a, (9)

(

(

Zp Z
×
p

Z
×
p pZp

)

×D∞,x

)

/Zp →֒ X ∗
Γ(p∞)(ǫ)c. (10)

Proof. We need to translate the Γ0(p)-equivariant open immersion from
Prop 3.19

(Γ0(p)×D∞,x)/pZp →֒ X
∗
Γ(p∞)(ǫ)a

according to the GL2(Zp)-action on the right hand side.
We first rewrite the left hand side: We have

Γ0(p)
(

1 0
Zp 1

)

=
(

Zp Zp

Zp Z
×
p

)

,

and by extending the pZp-action to a Zp-action in the natural way, we get the
equivalent description of anticanonical Tate curve parameter spaces stated in
(9) in the theorem.
Next, we note that we may without loss of generality replace X ∗

Γ(p∞) by

X ∗
Γ(p∞)(0) = X ∗

Γ(p∞)(0)a ⊔ X
∗
Γ(p∞)(0)c.
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To simplify the discussion of translates, we introduce an auxiliary open sub-
space

X ∗
Γ(p∞)(0)ca ⊆ X

∗
Γ(p∞)(0)a.

parametrising isomorphisms α : Z2
p → TpE such that α(0, 1) mod p generates

the canonical subgroup (“first basis vector anticanonical, second canonical”).
More precisely, this subspace can be constructed as follows: According to Corol-
lary 3.18, there is a canonical splitting

XΓ1(p)(0)a → XΓ(p)(0)a

that identifies the image with a component of XΓ(p)(0)a. Let X ∗
Γ(p)(0)ca be the

finite union of the
(

(Z/pZ)× 0
0 1

)

-translates of the image. Then X ∗
Γ(p∞)(0)ca is

defined as the pullback

X ∗
Γ(p∞)(0)ca X ∗

Γ(p)(0)ca

X ∗
Γ(p∞)(0)a X ∗

Γ(p)(ǫ)a.
∩ ∩

It is clear from this definition that X ∗
Γ(p∞)(0)ca defines an open and closed

subspace of X ∗
Γ(p∞)(0)a. By tracing the Tate curve parameter spaces through

the construction, we moreover see that their fibre over X ∗
Γ(p∞)(0)ca is

(

(

Z
×
p pZp

Zp Z
×
p

)

×D∞,x

)

/Zp →֒ X
∗
Γ(p∞)(0)ca (11)

We can now identify X ∗
Γ(p∞)(0)a with the finite union of translates

(

1 Zp

0 1

)

X ∗
Γ(p∞)(0)ca = X ∗

Γ(p∞)(0)a. (12)

Indeed, away from the cusps this follows on moduli functors using Lemma 3.16,
whereas over the cusps it follows from the above explicit description using that

(

1 Zp

0 1

)

(

Z
×
p pZp

Zp Z
×
p

)

=
(

Zp Zp

Zp Z
×
p

)

.

On the other hand, inside X ∗
Γ(p∞) we have an identification

( 0 1
1 0 )X ∗

Γ(p∞)(0)ca = X ∗
Γ(p∞)(0)c. (13)

Indeed, one can first check this for X ∗
Γ(p)(0)c on moduli functors, extend to

compactifications, and then pull back to infinite level. On Tate curve parameter
spaces, the identity

( 0 1
1 0 )

(

Z
×
p pZp

Zp Z
×
p

)

=

(

Zp Z
×
p

Z
×
p pZp

)
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therefore gives the desired open immersion onto a neighbourhood of the cusps
over x

(

(

Zp Z
×
p

Z
×
p pZp

)

×D∞,x

)

/Zp →֒ X
∗
Γ(p∞)(0)c.

Taking the disjoint union of the morphisms in (9) and (10), we get the desired
description.
To check GL2(Zp)-equivariance, we note that every γ ∈ GL2(Zp) can be decom-

posed into γ1 · γ2 where γ2 ∈

(

Z
×
p pZp

Zp Z
×
p

)

and either γ1 ∈
(

1 Zp

0 1

)

or γ1 = ( 0 1
1 0 ).

Since the open immersion in (11) is

(

Z
×
p pZp

Zp Z
×
p

)

-equivariant, it thus suffices to

check this for γ1, for which this follows from equivariance in the anticanonical
case (12), and glueing in the canonical case (13).

Proof of Theorem 1.1.(3). This follows from Proposition 3.20 by GL2(Zp)-
equivariance of πHT.

4 Modular curves in characteristic p

We now switch to moduli spaces in characteristic p. We start by recalling the
general setup: Let R be any Fp-algebra. Recall from §2 that XR denotes the
modular curve over R of tame level Γp, and X∗

R denotes its compactification.
We write XR,ord ⊆ XR for the affine open subscheme where the Hasse invariant
Ha is invertible. Similarly, one defines X∗

R,ord ⊆ X
∗
R which is also an affine open

subspace.
In this section, we consider analytic modular curves over the perfectoid fieldK♭,
the tilt of K. We fix a pseudo-uniformiser ̟♭ such that ̟♭♯ = ̟. Following
the notational conventions in [Sch15], we shall denote modular curves over K♭

with a prime, e.g. X ′ := XK♭ and X ′∗ := X∗
K♭ , to distinguish them from the

modular curves over K.
Let X′ be the ̟♭-adic completion of XO

K♭
and let X ′ be the analytification of

X ′ over Spa(K♭,OK♭). We analogously define X′∗ and X ′∗. Like in characteris-
tic 0, for 0 ≤ ǫ < 1/2 such that |̟♭|ǫ ∈ |K♭|, we denote by X ′∗(ǫ) the open sub-
space of X ′∗ where |Ha| ≥ |̟♭|ǫ. Like before, this has a canonical formal model
X′∗(ǫ) → X′∗. For any adic space Y → X ′∗ we write Y(ǫ) := Y ×X ′∗ X ′∗(ǫ).
Finally, let X ′∗

ord be the analytification of X ′∗
ord = X∗

K♭,ord
.

Remark 4.1. We recall that while the elliptic curves parametrised by X ′(ǫ)
may have good supersingular reduction, the condition on the Hasse invariant
ensures that generically, these elliptic curves are always ordinary. In other
words, X ′(ǫ) ⊆ X ′

ord even for ǫ > 0.

4.1 Igusa curves

In characteristic p, one has the Igusa moduli problem:
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Definition 4.2 ([KM85], Def. 12.3.1). Let S be a scheme of characteristic p
and let E be an elliptic curve over S. Consider the Verschiebung morphism
V n : E(pn) → E. An Igusa structure on E of level pn is a group homomorphism
φ : Z/pnZ→ E(pn)(S) that is a Drinfeld generator of kerV n. This means that
the Cartier divisor

∑

a∈Z/pnZ

[φ(a)] ⊆ E(pn)

coincides with kerV n.
The Igusa problem [Ig(pn)] is the moduli problem defined by the functor sending
E|S to the set of Igusa structures on E of level pn. If E|S is ordinary, the group
scheme kerV n is étale and naturally isomorphic to the Cartier dual C∨

n of the
canonical subgroup Cn ⊆ E[pn]. In particular, in this situation, an Ig(pn)-
structure is the same as an isomorphism of group schemes

Z/pnZ ∼−→ C∨
n ,

or equivalently, an isomorphism of the Cartier duals µpn
∼−→ Cn.

For any n ≥ 0, the Igusa problem [Ig(pn)] is relatively representable, finite and
flat of degree ϕ(pn) over the stack Ell|R of elliptic curves over R by [KM85,
Theorem 12.6.1]. In particular, the simultaneous moduli problem [Ig(pn),Γp]
is representable by a moduli scheme XR,Ig(pn) over R. The forgetful map
XR,Ig(pn) → XR is finite and flat, and is an étale (Z/pnZ)×-torsor over the
ordinary locus XR,ord ⊆ XR. One defines by normalisation a compactification
X∗
R,Ig(pn). The morphism XR,Ig(pn) → XR then extends to

X∗
R,Ig(pn) → X∗

R

which is still finite étale Galois with group (Z/pnZ)× over the ordinary locus.
For any map Spec(R′((q)))→ XR corresponding to a choice of Γp-structure on
T(qe) over some cyclotomic extension R′ of R and for some 1 ≤ e ≤ N , the
canonical isomorphism

µpn
∼−→ Cn(T(qe)) ⊆ T(qe)[pn]

induces a canonical lifting to a map Spec(R′((q))) → XR,Ig(pn). In particular,
over any cusp x of X∗

R, the subscheme of cusps of X∗
R,Ig(pn) consists of ϕ(pn)

disjoint copies of x.

4.2 Tate curve parameter spaces in the Igusa tower

Returning to our analytic setting over K♭, we let X ′∗
Ig(pn) := X∗

K♭,Ig(pn)
. We

write X∗
Ig(pn) for the ̟♭-adic completion of X∗

O
K♭ ,Ig(pn)

and we write X ′∗
Ig(pn) for

the analytification of X ′∗
Ig(pn). We then get an open subspace X ′∗

Ig(pn)(ǫ). Since

X ′∗(ǫ) ⊆ X ′∗
ord, the morphism X ′∗

Ig(pn)(ǫ) → X
′∗(ǫ) is a finite étale (Z/pnZ)×-

torsor. Like in Lemma 2.3, one can use that X ′
Ig(pn) is affine to show that these

spaces represent the obvious adic moduli functors away from the cusps.
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Definition 4.3. The inverse system of natural forgetful morphisms

· · · → X ′∗
Ig(pn+1)(ǫ)→ X

′∗
Ig(pn)(ǫ)→ · · · → X

′∗(ǫ)

is called the Igusa tower. Note that all transition maps in this inverse system
are finite étale.

Question 4.4. For ǫ = 0, one can show that this system has a sous-perfectoid
(but not perfectoid) tilde limit X ′∗

Ig(p∞)(0) ∼ lim
←−n∈N

X ′∗
Ig(pn)(0). Is this still true

for ǫ > 0?

Definition 4.5. As in characteristic 0, by a cusp we shall mean a (not
necessarily geometrically) connected component of the closed subscheme
X ′∗

Ig(pn)\X
′
Ig(pn) ⊆ X

′∗
Ig(pn) with its induced reduced structure.

Given a fixed cusp x of X ′∗
Ig(pn), we denote by Lx ⊆ K

♭[ζN ] the field of definition

of the associated Tate curve. Then the completion of X ′∗
O

K♭ ,Ig(pn)
along the

integral extension of x is canonically of the form Spf(OLxJqK)→ X ′∗
Ig(pn). Upon

̟-adic completion this becomes

Spf(OLxJqK)→ X′∗
Ig(pn)

where OLxJqK carries the (̟♭, q)-adic topology. Denote by

D′ → X ′∗
Ig(pn)

the adic generic fibre, a morphism of adic spaces over Spa(K♭,OK♭). Then
like before, D′ is the open unit disc over Lx in the variable q. Exactly like in
Lemma 2.9 one sees:

Lemma 4.6. The morphism D′ →֒ X ′∗
Ig(pn) is an open immersion.

If we want to indicate the dependence on the cusp x, we shall also call this
D′
x →֒ X

′∗
Ig(pn).

The following lemma explains how the above individual descriptions fit together
for different cusps of X ′∗

Ig(pn) lying over the same cusp of X ′∗.

Lemma 4.7. Let x be a cusp of X ′∗. Then there are Cartesian diagrams

Z/pn+1Z×D′
x Z/pnZ×D′

x D′
x

X ′∗
Ig(pn+1)(ǫ) X ′∗

Ig(pn)(ǫ) X ′∗(ǫ).

Proof. Using the canonical lift described in §4.1, this can be seen exactly like
in Lemma 2.23, based on the straightforward analogue of Lemma 2.11 in this
setting.
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Like in the p-adic case, there is also a larger, quasi-compact Tate curve param-
eter space:

Definition 4.8. Let D
′

= D
′

x = Spa(OLxJqK[ 1
̟♭ ],OLxJqK) where OLxJqK is

endowed with the ̟♭-adic topology. Like in Lemma 2.16, one sees that this

is a sousperfectoid adic space with an open immersion D′ = ∪mD
′
(|q|m ≤

|̟♭|) →֒ D
′
.

Lemma 4.9. For any cusp of X ′∗
Ig(pn)(ǫ), the map D′ →֒ X ′∗

Ig(pn)(ǫ) extends

uniquely to a natural map D
′
→ X ′∗

Ig(pn)(ǫ). The fibre of the good reduction

locus is D
′
(|q| ≥ 1).

Proof. Exactly like in Lemma 2.17.

Lemma 4.10. Let n ∈ Z≥0.

1. For any cusp x of X ′∗
Ig(pn), the following square is Cartesian:

D′ D
′

X ′∗
Ig(pn)(p

−1ǫ)

D′ D
′

X ′∗
Ig(pn)(ǫ)

q 7→qp q 7→qp
Frel

2. The following square is Cartesian:

X ′∗
Ig(pn+1)(p

−1ǫ) X ′∗
Ig(pn)(p

−1ǫ)

X ′∗
Ig(pn+1)(ǫ) X ′∗

Ig(pn)(ǫ)

Frel Frel

Proof. It is clear that the diagrams commute by functoriality of the relative
Frobenius morphism. The second diagram is Cartesian because the bottom
map is étale.
To see that the first diagram is Cartesian, we first consider the outer square.
For this it suffices to check this on (C♭, C♭+)-points because the horizontal
compositions are open immersions. It is clear that the cusps correspond un-
der Frel, and q 7→ qp sends the origin to the origin. Away from the cusps,
we can check on moduli interpretations that the square is Cartesian: The de-
sired statement follows as Frel sends T(q) to T(qp), and the Ig(pn)-structure

〈q〉 ⊆ T(q)(p
n) = T(qp

n

) to 〈qp〉 ⊆ T(qp)(p
n) = T(qp

n+1

).

This argument extends to D
′
, which (away from x) we may regard as the

moduli space of Tate curves T(q) with level structure associated to x over

adic spaces S over OLxJqK[ 1p ]. Lifts of maps S → D
′

along the right vertical

morphism correspond to Tate curves T(q)(p
−1) = T(q1/p) over S whose base

change along Frel is T(q), and thus to p-th roots of q ∈ O+(S).
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4.3 Perfections of Igusa curves

In this section, we discuss perfectoid Igusa curves and their Tate curve param-
eter spaces. We first recall the perfection functor in characteristic p:

Definition 4.11 ([Sch15, Def. 3.2.18]). Let Y be an analytic adic space over
(K♭,O♭K). Then there is a perfectoid space Yperf over (K♭,O♭K) such that
Yperf ∼ lim

←−Frel
Y where we identify Y(p) with Y using that K♭ is perfect. We

call Yperf the perfection of Y. The formation Y 7→ Yperf is functorial and
defines a right adjoint to the forgetful functor from perfectoid spaces over K♭

to analytic adic spaces over K♭.

In the case of Y = X ′∗(ǫ), we can first take the inverse limit X′∗(ǫ)perf :=
lim
←−Frel

X′∗(p−nǫ) in the category of formal schemes. Its generic fibre is then the

tilde limit
X ′∗(ǫ)

perf
= X′∗(ǫ)

perf
η ∼ lim

←−Frel
(X′∗(p−nǫ))adη

by [SW13, Proposition 2.4.2] and it is clear on any affine open formal subscheme
of X′∗(ǫ) that this space is perfectoid. The analogous construction also works
for X ′∗

Ig(pn)(ǫ)
perf .

Lemma 4.12. Let (R,R+) be a perfectoid K♭-algebra. Then
X ′

Ig(pn)(ǫ)
perf(R,R+) is in functorial bijection with isomorphism classes of

triples (E,αN , βn) of elliptic curves E over R with ǫ-nearly ordinary reduc-
tion, with a Γp-structure αN and an isomorphism of group schemes

βn : Z/pnZ ∼−→ ker(V : E(pn) → E) ∼= ker(V : E → E(p−n)) ⊆ E[pn].

Proof. By adjunction, we have X ′
Ig(pn)(ǫ)

perf(R,R+) = X ′
Ig(pn)(ǫ)(R,R

+).

Lemma 4.13. For any cusp x of X ′∗
Ig(pn), the perfection of the corresponding

Tate curve parameter space D′ →֒ X ′∗
Ig(pn)(ǫ) fits into a Cartesian diagram

D′
∞ D

′

∞ X ′∗
Ig(pn)(ǫ)

perf

D′ D
′

X ′∗
Ig(pn)(ǫ).

Here we set D
′

∞ := D
′perf

, and the space D′
∞ := D′perf can be

canonically identified with the open subspace of the perfectoid unit disc
Spa(K♭〈q1/p

∞

〉,OK♭〈q1/p
∞

〉) where q is locally topologically nilpotent, defined
as the union of open subspaces where |q| ≤ |̟♭|1/n for n ∈ N.

Proof. This follows in the limit over the Cartesian diagrams from
Lemma 4.10.(1).
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Lemma 4.14. The following diagram is Cartesian:

X ′∗
Ig(pn)(ǫ)

perf X ′∗(ǫ)perf

X ′∗
Ig(pn)(ǫ) X ′∗(ǫ).

Proof. This follows from Lemma 4.10.(2) in the limit over Frel because per-
fectoid tilde-limits commute with fibre products by the respective universal
properties.

Definition 4.15. Consider the tower of affinoid perfectoid spaces with finite
étale maps

· · · → X ′∗
Ig(pn+1)(ǫ)

perf → X ′∗
Ig(pn)(ǫ)

perf → · · · → X ′∗(ǫ)perf .

We denote by X ′∗
Ig(p∞)(ǫ)

perf the unique affinoid perfectoid tilde-limit of this
system.

Proposition 4.16. Let x be any cusp of X ′∗. Then there are natural Cartesian
diagrams

(1)

(Z/pnZ)× ×D′
∞ D′

∞

X ′∗
Ig(pn)(ǫ)

perf X ′∗(ǫ)perf ,

(2)

Z×
p ×D

′
∞ D′

∞

X ′∗
Ig(p∞)(ǫ)

perf X ′∗(ǫ)perf .

Proof. Part (1) follows from Lemma 4.7, Lemma 4.13 and Lemma 4.14 using
the Cartesian cube that these three squares span. Part (2) follows in the inverse
limit n→∞.

5 Tilting isomorphisms for modular curves

5.1 The tilting isomorphism at level Γ0(p∞)

While so far we have studied modular curves in characteristic 0 and p separately,
we now compare the two worlds via tilting. This is possible based on the
following result:

Theorem 5.1 ([Sch15, Corollary 3.2.19]). There is a canonical isomorphism

X ∗
Γ0(p∞)(ǫ)

♭
a
∼−→ X ′∗(ǫ)perf .

Let us recall how this is proved: Via OK/p ∼= OK♭/̟♭ we have an identification
of the reductions X∗/p = X′∗/̟♭ which by explicit inspection extends to a
natural isomorphism

X∗(ǫ)/p ∼= X′∗(ǫ)/̟♭. (14)
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The morphism X ∗
Γ0(pn+1)(ǫ) → X

∗
Γ0(pn)

(ǫ) gets identified via the Atkin–Lehner

isomorphism (3) with a map X ∗(p−(n+1)ǫ) → X ∗(p−nǫ) that has a formal
model φ : X∗(p−(n+1)ǫ)→ X∗(p−nǫ). One can then prove that mod p1−δ where
δ := p+1

p ǫ, the map φ gets identified with Frel in the sense that the following
diagram commutes:

X∗(p−(n+1)ǫ)/p1−δ X∗(p−nǫ)/p1−δ

X′∗(p−(n+1)ǫ)/̟♭(1−δ) X′∗(p−nǫ)/̟♭(1−δ).

φ
∼ ∼

Frel

In the inverse limit, this gives the result by [Sch12, Theorem 5.2].
The following lemma says that the isomorphism of Theorem 5.1 identifies the
cusps:

Lemma 5.2. The cusps of X ∗ and X ′∗ correspond via tilting: For each cusp x
of X ∗, considered as a finite étale adic space over K, its tilt can be canonically
identified with a cusp x♭ of X ′∗. In particular, (Lx)♭ = Lx♭ for the fields of
definition.

Proof. The cusp x can be described as a closed immersion Spa(Lx) →֒ X ′∗.
It has a canonical formal model Spf(OLx) → X′∗ that reduces mod p to a
morphism Spec(OLx/p)→ X∗

OK/p
which in turn can be interpreted as cusp of

X∗
O

K♭/̟♭
. Lifting to X′∗ and taking generic fibre gives a cusp x♭ defined by a

closed point

Spa((Lx)♭) →֒ X ′∗.

It is clear from this construction that this can be identified with the tilt of x via
the equivalence of étale sites. Reversing this argument shows that this defines
a bijection on cusps.

Proposition 5.3. Let x be any cusp of X ∗. Then the canonical isomorphism
of K♭-algebras

LxJq
1/p∞K♭ = Lx♭Jq1/p

∞

K

defines isomorphisms D
♭

∞,x
∼= D

′

∞,x♭ and D♭∞,x
∼= D′

∞,x♭ that fit into a com-

mutative diagram

D♭∞,x D
♭

∞,x X ∗
Γ0(p∞)(ǫ)

♭
a

D′
∞,x♭ D

′

∞,x♭ X ′∗(ǫ)perf .

∼ ∼ ∼

Proof. For the proof we use that D∞ has a very simple p-adic formal model.
Here and in the following, let us for simplicity drop the additional x and x♭ in
the index.
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We can without loss of generality assume ǫ = 0. Using the identifications

D♭∞ = ∪mD∞(|q|m ≤ |̟|)♭ = ∪mD
′

∞(|q|m ≤ |̟♭|) = D′
∞,

it is clear that the left square commutes. It therefore suffices to consider the
right square.
Recall that the morphism D → X ∗(0) arises as the adic generic fibre of the
morphism D → X∗(0) where D := Spf(OLJqK) is endowed with the p-adic

topology. Similarly, D
′
→ X ′∗(0) is the adic generic fibre of D

′
→ X′∗(0) where

D
′

:= Spf(OL♭JqK). The reductions mod ̟ and ̟♭ of these formal models can
be canonically identified with the map

Spec((OL/p)JqK)→ X∗(0)/p = X′∗(0)/̟♭

associated to the Tate curve for the corresponding cusp of X∗
OK/p

.
In the limit over φ and Frel, these identifications therefore fit into a commutative
diagram

lim
←−q 7→qp

D/p lim
←−φ

X∗(0)/p

lim
←−q 7→qp

D
′
/̟♭ X′∗(0)perf/̟♭.

∼ ∼

As these are perfectoid schemes over OaK/p (or Oa
K♭/̟

♭) with corresponding

perfectoid spaces D∞ → X
∗
Γ0(p∞)(0)a and D

′

∞ → X
′∗(0)perf via [Sch12, Theo-

rem 5.2], this gives the desired identification of the tilts.

Remark 5.4. The correspondence of moduli of Tate curves implicit in Proposi-
tion 5.3 can be made explicit as follows: Let (R,R+) be a perfectoid K-algebra,
then Theorem 5.1 gives a correspondence

XΓ0(p∞)(ǫ)a(R,R+) = X ′(ǫ)perf(R♭, R♭+) = X ′(ǫ)(R♭, R♭+)

of elliptic curves with extra data. If now Eq is a Tate curve with parameter
q ∈ R, equipped with Γ0(p∞)-structure (q1/p

n

)n∈N and Γp-structure, corre-
sponding to a point in D∞(R,R+), then via D∞(R,R+) = D′

∞(R♭, R♭+), this
corresponds to the Tate curve Eq′ with parameter

q′ := (q1/p
n

)n∈N ∈ lim
←−
q 7→qp

R× = R♭×.

One can moreover identify the Γp-structure of Eq′ using that Eq[N ]♭ = Eq′ [N ].

5.2 The tilting isomorphism at level Γ1(p∞)

We now extend the tilting isomorphism of Theorem 5.1 to level Γ1(p∞) by
proving the following theorem stated in the introduction:
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Theorem 5.5. 1. There is a canonical isomorphism

X ∗
Γ1(p∞)(ǫ)

♭
a
∼−→ X ′∗

Ig(p∞)(ǫ)
perf

which is Z×
p -equivariant and makes the following diagram commute:

X ∗
Γ1(p∞)(ǫ)

♭
a X ∗

Γ0(p∞)(ǫ)
♭
a

X ′∗
Ig(p∞)(ǫ)

perf X ′∗(ǫ)perf .
∼ ∼

2. The cusps of X ∗
Γ1(p∞)(ǫ)a and X ′∗

Ig(p∞)(ǫ) correspond via the isomorphism

in (1). Moreover, for any cusp x of X ∗, the following diagram commutes:

Z×
p ×D

♭
∞,x X ∗

Γ1(p∞)(ǫ)
♭
a

Z×
p ×D

′
∞,x♭ X ′∗

Ig(p∞)(ǫ)
perf ,

∼ ∼

where the left map is given by the canonical identification D♭∞,x
∼= D′

∞,x♭.

For the proof, we use the universal anticanonical subgroup at infinite level:

Definition 5.6. For any n ∈ Z≥1, we denote by Gn → XΓ0(p∞)(ǫ)a the uni-
versal anticanonical subgroup of rank n. This can be defined via pullback from
finite level XΓ0(pn)(ǫ)a, and is a finite étale morphism of perfectoid spaces.
Let E ′ → X ′ be the analytification of the universal elliptic curve over X ′,
and write E ′(ǫ) → X ′(ǫ) for the pullback. We denote by G′

n → X
′(ǫ)perf the

finite étale morphism of perfectoid spaces given by the perfection of kerV n ⊆
E ′(ǫ)(p

n).

Lemma 5.7. There is a natural isomorphism making the following diagram
commutative:

G♭n G′
n

XΓ0(p∞)(ǫ)
♭
a X ′(ǫ)perf ,

∼

∼

This lemma is a slight extension of [Sch15, Lemma 3.2.26], from the good
reduction locus to the whole uncompactified modular curve (we reiterate that
[Sch15] writes X for the good reduction locus, whereas we use this symbol to
denote the whole open modular curve).

Proof. It suffices to see this locally on XΓ0(p∞)(ǫ)a. The case of good reduction
is [Sch15, Lemma 3.2.26]. It therefore suffices to prove the lemma over the
ordinary locus XΓ0(p∞)(0)a.
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Over X∗(0), the universal semi-abelian scheme has a canonical subgroup, a
finite flat group scheme Cn → X∗(0). Via the Atkin–Lehner isomorphism
X ∗(0) ∼−→ X ∗

Γ0(pn)
(0)a, the adic generic fibre of its dual (C∨

n )adη can be identified

over XΓ0(pn)(0)a with the universal anticanonical subgroup over XΓ0(pn)(0)a.
Similarly, over X′∗(0), we have a canonical subgroup C′

n → X∗(0), and the dual
(C′∨

n )adη restricted to X ′(0) can be identified with the kernel of Verschiebung of
E ′(0) over X ′(0).
It follows from these descriptions that after pullback we have identifications

Gn =
(

C∨
n ×X∗(0) lim

←−
φ

X∗(0)
)ad

η
restricted to XΓ0(p∞)(0)a,

G′
n =

(

C′∨
n ×X′∗(0) X

′∗(0)perf
)ad

η
restricted to X ′(0)perf .

To prove the lemma, it therefore suffices to prove that the formal models on
the right hand side can be identified after reduction to OK/p = OK♭/̟♭, for
which it suffices to prove that C∨

n /p = C′∨
n /̟

♭ on X∗(0)/p = X′∗(0)/̟♭. But
over the ordinary locus, Cn/p = C′

n/̟
♭ are both the kernel of Frobenius, and

Cartier duals commute with base change.

We can now complete the proof of Theorem 5.5 stated in the introduction:

Proof of Theorem 5.5. We start by proving that for any n ∈ Z≥1, there is a
natural isomorphism

X ∗
Γ1(pn)∩Γ0(p∞)(ǫ)

♭
a X ′∗

Ig(pn)(ǫ)
perf

X ∗
Γ0(p∞)(ǫ)

♭
a X ′∗(ǫ)perf

∼

(15)

making the diagram commute. Part (1) of the theorem then follows in the limit
n→∞.
Away from the cusps, the desired isomorphism is induced by the natural iso-
morphism from Lemma 5.7, using the moduli interpretations in Lemma 3.13
and Lemma 4.12.
We need to extend this over the cusps. One way of doing this is to give the
vertical maps in the diagram a relative moduli interpretation that extends to
the cusps. More in the spirit of our arguments so far, we shall instead give
a more explicit proof using Tate curve parameter spaces, which also has the
added benefit that it yields part (2).
To this end, fix a cusp x of X ∗. By Proposition 5.3, the isomorphism
X ∗

Γ0(p∞)(ǫ)
♭
a → X ′∗(ǫ)perf restricts to the canonical isomorphism D♭∞ =

D′
∞ over x. Using the description of the Tate curve parameter spaces

in X ∗
Γ1(pm)∩Γ0(p∞)(ǫ)a → X ∗

Γ0(p∞)(ǫ)a from Lemma 3.9 and similarly in

X ′∗
Ig(pn)(ǫ)

perf → X ′∗(ǫ)perf from Proposition 4.16.(1), it now suffices to prove
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that the isomorphism G♭n = G′
n over the Tate curve parameter spaces becomes

the natural map

(Z/pnZ× D̊∞)♭ Z/pnZ× D̊′
∞

D̊♭∞ D̊′
∞.

∼

∼

(16)

It is then clear that the diagram extends uniquely over the cusps.

To see this, we note that the restriction of Gn to D̊∞ is indeed canonically iso-
morphic to Z/pnZ×D̊∞ due to the canonical section given by the element q1/p

n

of the anticanonical subgroup 〈q1/p
n

〉 ⊆ T(q)[pn]. Similarly, G′
n is isomorphic

to Z/pnZ × D̊′
∞ on D̊′

∞ → X
′(ǫ)perf . By considering the dual trivialisations

of the respective canonical subgroups, it follows from the construction in the
proof of Lemma 5.7 that these isomorphisms are compatible with tilting and
make diagram (16) commute, as desired.

Part (2) now follows from diagram (16) in the limit n→∞.

6 q-expansion principles

As a second application, in this section, we prove various q-expansion principles
for functions on the infinite level spaces XΓ0(p∞)(ǫ)a, XΓ1(p∞)(ǫ)a, XΓ(p∞)(ǫ)a,
etc., based on our discussion of cusps in §2-§4.

6.1 Detecting vanishing

We begin with the proof of q-expansion principle I, Proposition 1.6 in the
introduction, recalled below. On the way, we also prove principles III and IV.
We focus on the case of characteristic 0, the case of characteristic p is completely
analogous.

Proposition 6.1. Let C be a collection of cusps of X ∗ such that each connected
component of X ∗ contains at least one x ∈ C. Let n ∈ Z≥0 ∪ {∞} and let Γ be
one of Γ0(pn),Γ1(pn),Γ(pn). Define DC,Γ as the pullback

DC,Γ X ∗
Γ(ǫ)a

⊔

x∈C Dx X ∗(ǫ).

Then the map O(X ∗
Γ (ǫ)a)→ O(DC,Γ) is injective.

This is an analogue of saying that for any affine irreducible integral variety
over K, completion at any K-point gives rise to an injection on functions, which
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is a consequence of Krull’s Intersection Theorem. As this requires Noetheri-
aness, we first reduce to the Noetherian situation using that all of the above
spaces have natural models over Zp.

The proof is in two steps: We first consider X ∗
Γ0(p∞)(0)a where it is easy to

reduce to the Noetherian case. In a second step, we then show that restriction
of functions from X ∗

Γ1(p∞)(ǫ)a to X ∗
Γ1(p∞)(0)a is injective, which is a straight-

forward computation on power series. We start with the case of ǫ = 0. On the
way we will also see Proposition 1.8.

Proof of Proposition 6.1 for ǫ = 0. The case of Γ = Γ(pn) reduces to the one
of Γ1(pn) by Corollary 3.18.
We first consider the case of n < ∞. Then the case of Γ = Γ0(pn) further
reduces to the case of tame level via the Atkin–Lehner isomorphism X ∗(0) ∼=
X ∗

Γ0(pn)
(0)a. We are therefore left with the case of Γ1(pn) for n ∈ Z≥0 (the case

of tame level being n = 0).

The space X ∗
Γ1(pn)

(0)a has an affine formal model X∗
Γ1(pn)

(0)a = Spf(R) for

some complete Zp-algebra R. Let C′ be the pullback of C to X∗
Γ1(pn)

(0)a and
let

⊔x∈C′ Spf OLxJqK→ X∗
Γ1(pn)

(0)a

be the completion along C′. It suffices to show that the map on global sections

ϕ : R→
∏

x∈C′

OLxJqK

is injective. As these are complete OK-algebras, it suffices to see that the
reduction

R/p→
∏

c∈C′

OLx/pJqK (17)

is injective. But this reduction can be interpreted as the completion of
X∗

OK/p,Ig(pn),ord
at the divisor of cusps C′. By base change from Fp to OK/p,

we can now reduce to showing that for Y := X∗
Fp,Ig(pn),ord

, completion at C′

defines an injection

O(Y )→
∏

x∈C′

Fp(x)JqK

where Fp(x) ⊆ Fp[ζN ] is the coefficient field of definition of the level structure
on the Tate curve corresponding to the cusp x ∈ C′.

Since Y is a smooth affine curve over Fp, and by considering each connected
component separately, the desired injectivity follows as for an integral Noethe-
rian ring A, completion at any maximal ideal m ⊆ A gives an injection A→ Âm

by Krull’s intersection theorem.
The case of n =∞ can be deduced in the limit: As the natural restriction map

O+(D∞) →֒ O+(D∞)
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is injective (see Def. 2.15), it suffices to prove the statement for D∞ ∼ lim
←−
Dn,

while conversely it is clear from O+(Dn) = O+(Dn) for n < ∞ and the first
part that the corresponding result at finite level holds for Dn replaced by Dn.
For anym ∈ N, let Ym = X∗

Γ0(pm)(0)a or Ym = X∗
Γ1(pm)(0)a. Then Y = lim

←−
Ym

is a formal model of X ∗
Γ (0)a. To see the result it suffices to prove that the

natural maps

O(X∗
Γ0(pm)(0)a)→

∏

x∈C

O(D∞,x)

O(X∗
Γ1(pm)(0)a)→

∏

x∈C

Mapcts(Z
×
p ,O(D∞,x)).

are injective. By completeness, it suffices to prove this on the reduction mod ̟.
But here it follows in the direct limit over m → ∞ from the case of finite
level.

The proof of Proposition 6.1 in general is completed by the following two lem-
mas:

Lemma 6.2. Let n ∈ Z≥0 ∪ {∞} and let Y → X ∗ be one of X ∗
Γ0(pn)

, X ∗
Γ1(pn)

,

X ∗
Γ(pn). Then the open immersion Y(0)→ Y(ǫ) defines on sections an injection

O(Y(ǫ))→ O(Y(0)).

Proof. It suffices to prove this locally. Let Ygd(ǫ) := Y(ǫ) ×X Xgd. Then since
Y(0) → Y(ǫ) is an open immersion, and Y(0) and Ygd(ǫ) cover all of Y(ǫ),
it suffices to prove the statement for Ygd(ǫ). Let thus Y be one of XΓ0(pn) ,
XΓ1(pn), XΓ(pn), each for any n ∈ Z≥0 ∪ {∞}. It suffices to prove that for any
affine open U = Spf(R) ⊆ Y where the Hodge bundle ω is trivial, the natural
map Y(0) → Y(ǫ) induces an injection O(Y(ǫ)|U) → O(Y(0)|U). We have
Y(ǫ)|U = Spf(S) where S = R〈X〉/(XHa− pǫ), and Y(0)|U = Spf(R〈Ha−1〉).
Since Ha is a non-zero-divisor on R/pn, Lemma 6.3 below now gives the desired
statement.

Lemma 6.3. Let A be any ring, let 0 6= ̟ ∈ A be a non-zero-divisor and let
H ∈ A be such that its image in A/̟ is a non-zero-divisor. Endow A with the
̟-adic topology. Then

ϕ : A〈X〉/(XH −̟)
X 7→̟X
−−−−−→ A〈X〉/(XH − 1)

is injective.

Proof. We first note that the assumption on H ∈ A implies that H is a non-
zero-divisor in any A/̟n. Suppose f =

∑

anX
n is in the kernel of A〈X〉 →

A〈X〉/(XH − ̟)
ϕ
−→ A〈X〉/(XH − 1). Then there is g =

∑

bnX
n ∈ A〈X〉

such that

f(̟X) =
∑

an̟
nXn = (XH − 1)g = (XH − 1)

∑

bnX
n.
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Reducing mod ̟m, we see that

a0 + · · ·+ am−1̟
m−1Xm−1 ≡ (XH − 1)

∑

bnX
n mod ̟m

By comparing degrees as polynomials in A/̟m[X ], we conclude from H being
a non-zero-divisor mod ̟m that deg(

∑

bnX
n mod ̟m) < m − 1, thus bk ≡

0 mod ̟m for k ≥ m− 1.
Consequently, there are elements cm = bm/̟

m+1 ∈ A for all m and in AJXK
we have

f ′ := (XH −̟)
∑

cmX
m X 7→̟X
7−→ (XH − 1)

∑

bmX
m.

Thus f ′(̟X) = f(̟X) in AJXK which implies f ′ = f since ̟ is a non-zero-
divisor.
It remains to see that

∑

cmX
m converges in A〈X〉: Since f ∈ A〈X〉, for every

k ∈ N there is an Nk such that v(am) ≥ k for all m ≥ Nk, where v is the ̟-
adic valuation. In particular, we then have v(̟mam) ≥ k+m for all m ≥ Nk.
Consequently, for all m ≥ Nk

a0 + · · ·+ am−1̟
m−1Xm−1 ≡ (XH − 1)

∑

n∈N

bnX
n mod ̟m+k.

This shows that v(bm−1) ≥ m+ k, and thus v(cm) ≥ k for all m ≥ Nk. Thus
∑

cmX
m ∈ A〈X〉 as desired. We conclude that f is already in (XH−̟)A〈X〉.

Thus ϕ is injective.

We can extract from this argument a proof of q-expansion principle III in the
introduction:

Proposition 6.4 (q-expansion principle III). The following are equivalent for
f ∈ O(X ∗

Γ0(p∞)(0)a):

1. f is integral, i.e. it is already contained in O+(X ∗
Γ0(p∞)(0)a).

2. The q-expansion of f at every cusp x is already contained in OLxJq1/p
∞

K.

3. On each connected component of X ∗, there is at least one cusp x at which
the q-expansion of f is already contained in OLxJq1/p

∞

K.

Equivalently, the natural map

ϕ : O+(X ∗
Γ0(p∞)(0)a)/p→

∏

x

(OLx/p)Jq
1/p∞K

is injective. The analogous statements for X ∗
Γ1(p∞)(0)a, X

∗
Γ(p∞)(0)a, X

′∗(0)perf

and X ′∗
Ig(p∞)(0)perf are also true when we replace OLxJq1/p

∞

K by the respective
algebra from Proposition 1.6.
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Proof. It is clear from O+(D∞,x) = OLxJq1/p
∞

K that (1) implies (2) implies
(3). To prove that (3) implies (1), it suffices to see that O+(X ∗

Γ0(p∞)(0)a)/p→
∏

x(OLx/p)Jq
1/p∞K is injective. We have already seen in (17) in the proof of

Proposition 6.1 that

O(X∗
Γ0(pn)

(0)a)/p →֒
∏

x∈C

(OLx/p)Jq
1/pnK

is injective for any n ∈ Z≥0 ∪ {∞}. Since by [Heu19, Proposition 4.1.3], we
have

O+(X ∗
Γ0(p∞)(0)a) = O(X∗

Γ0(p∞)(0)a),

this gives the desired statement in the case of Γ0(p∞).
By the same argument, the cases of X ∗

Γ1(p∞)(0)a, X ∗
Γ(p∞)(0)a, X ′∗(0)perf and

X ′∗
Ig(p∞)(0)perf also follow from (17) in the limit n → ∞ using instead [Heu19,

Lemma A.2.2.3].

We can also use the lemmas for the proof of q-expansion principle IV:

Proposition 6.5 (q-expansion principle IV). Let C be a collection of cusps of
X ∗ such that each connected component contains at least one x ∈ C. Then a
function on the good reduction locus Xgd(ǫ) extends to all of X ∗(ǫ) if and only if
its q-expansion with respect to D(|q| ≥ 1)→ Xgd(ǫ) at each x ∈ C is already in
OLxJqK[ 1p ] ⊆ OLx〈〈q〉〉[

1
p ]. In this case, the extension is unique. The analogous

statements for X ∗
Γ0(p∞)(0)a, X

∗
Γ1(p∞)(0)a, X

∗
Γ(p∞)(0)a, X

′∗(0), X ′∗(0)perf and

X ′∗
Ig(p∞)(0)perf are also true.

Proof. As before, one can reduce to the case of finite level. For simplicity, let
us treat Xgd, the other cases are similar. By Lemma 6.2, we can reduce to
ǫ = 0. We then need to prove that the following sequence is left exact:

0→ O(X∗(0))→ O(X(0))×
∏

x∈C OLxJqK
(f,g) 7→f−g
−−−−−−−→

∏

x∈C OLx〈〈q〉〉.

It suffices to prove that this is true mod ̟n for all n. By tensoring with the
flat Fp-algebra OK/̟

n, the statement then follows from the following sequence
being left-exact:

0→ O(X∗
Fp,ord)→ O(XFp,ord)×

∏

x∈C FJqK
(f,g) 7→f−g
−−−−−−−→

∏

x∈C F((q)),

where F := Fp(x) depends on x. This holds as X∗
F

is the normalisation of
j : XF → A1

F
in P1

F
, and thus a function f extends to the cusp x if and only if

it is finite over the completion FpJqK of P1
Fp

at ∞.

6.2 Tate traces and detecting the level

While the transition from Γ0(p∞) to Γ(p∞) is controlled by the Galois action,
the transition from Γ0(p) to Γ0(p∞) is controlled by normalised Tate traces, as
discussed in [Sch15, §3.2.4]. We now briefly recall what these are and then use
them to deduce the last remaining q-expansion principle:

Documenta Mathematica 27 (2022) 2385–2439



Cusps for Modular Curves at Infinite Level 2437

Proposition 6.6 ([Sch15, Corollary 3.2.23]). Let 0 ≤ n ≤ k ∈ N. Then the
normalised traces

trk,n : OX∗

Γ0(pk)
(ǫ)a → OX∗

Γ0(pn)
(ǫ)a [ 1p ]

on X∗
Γ0(pn)

(ǫ)a of the finite flat forgetful map X∗
Γ0(pk)

(ǫ)a → X∗
Γ0(pn)

(ǫ)a give

rise for k → ∞ to compatible continuous OX∗
Γ0(pn)

(ǫ)a-linear morphisms with

bounded image
trn : OX∗

Γ0(p∞)
(ǫ)a → OX∗

Γ0(pn)
(ǫ)a [ 1p ].

Proof. Via the Atkin–Lehner isomorphism X∗
Γ0(pn)

(ǫ)a ∼= X∗(p−nǫ), this is the

statement of [Sch15, Corollary 3.2.23], except that we use the compactified X∗

instead of X: This is possible since in contrast to the higher dimensional Siegel
moduli spaces, the minimal compactification of the modular curve X∗ is a
smooth formal scheme, and thus Corollary 3.2.22 applies over all of X∗, not
just over X, which means that the proof of 3.2.23 goes through for X∗.

Definition 6.7. Taking global sections and inverting p, the trace trn defines
a linear map

trn : O(X ∗
Γ0(p∞)(ǫ)a)→ O(X ∗

Γ0(pn)
(ǫ)a).

Proposition 6.8. Let x be any cusp of X ∗, with corresponding Tate curve
parameter space Dn,x →֒ X

∗
Γ0(pn)

(ǫ)a. Then the normalised Tate trace fits into
a commutative diagram

O(X ∗
Γ0(p∞)(ǫ)a) O(X ∗

Γ0(pn)
(ǫ)a)

O(D∞,x) O(Dn,x),

trn

trn

∑

m∈Z[ 1p ]≥0

amq
m 7→

∑

m∈
1
pn Z≥0

amq
m

where the bottom map is given by forgetting all coefficients am for m 6∈ 1
pnZ≥0.

Proof. Let us treat the case of n = 0, the other cases are completely anal-
ogous. By continuity, trn is uniquely determined by the normalised traces
trk,0. By Lemma 2.22, this is on q-expansions the trace of the inclusion

OLJqK → OLJq1/p
k

K. Since after inverting q, this map becomes Galois with

automorphisms q1/p
k

7→ q1/p
k

ζdpk for d ∈ Z/pkZ, we compute

trk,0

(

∞
∑

i=0

a i

pk
q

i

pk

)

=
1

pk

∞
∑

i=0

a i

pk
(1 + ζipk + · · ·+ ζ

(pk−1)i

pk
)q

i

pk =

∞
∑

i=0

aiq
i

as 1 + ζipk + · · ·+ ζ
(pk−1)i

pk
= 0 unless pk|i, when it is = pk, giving the desired

description.

Proposition 6.9 (q-expansion principle II). Let f ∈ O(X ∗
Γ0(p∞)(ǫ)a). Then

for any n ∈ Z≥0, the following are equivalent:
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1. f comes via pullback from X ∗
Γ0(pn)

(ǫ)a, i.e. f is already contained in

O(X ∗
Γ0(pn)

(ǫ)a) ⊆ O(X ∗
Γ0(p∞)(ǫ)a).

2. The q-expansion of f at every cusp x is already contained in
OLxJq1/p

n

K[ 1p ] ⊆ OLxJq1/p
∞

K[ 1p ].

3. On each connected component of X ∗
Γ0(pn)

(ǫ)a, there is at least one cusp

x at which the q-expansion of f is already contained in OLxJq1/p
n

K[ 1p ] ⊆

OLxJq1/p
∞

K[ 1p ].

The analogous statements for X ′∗(ǫ)perf → X ′∗(ǫ) are also true.

Proof. It suffices to prove that (3) implies (1). Clearly f is in O(X ∗
Γ0(pn)

(ǫ)a) if

and only if trn(f) = f . By Proposition 6.1, this can be checked on q-expansions
on each component. By Proposition 6.8, we have trn(f) = f if and only if the
q-expansion at each x is in OLJq1/p

n

K[ 1p ].

The case of X ′∗(ǫ)perf is completely analogous, by replacing the normalised
Tate traces of [Sch15] with those of [AIP18, §6.3].
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