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Abstract. We extend Lang’s conjectures to the setting of inter-
mediate hyperbolicity and prove two new results motivated by these
conjectures. More precisely, we first extend the notion of algebraic
hyperbolicity (originally introduced by Demailly) to the setting of
intermediate hyperbolicity and show that this property holds if the
appropriate exterior power of the cotangent bundle is ample. Then,
we prove that this intermediate algebraic hyperbolicity implies the
finiteness of the group of birational automorphisms and of the set of
surjective maps from a given projective variety. Our work answers the
algebraic analogue of a question of Kobayashi on analytic hyperbolic-
ity.
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1 Introduction

This paper is concerned with Lang’s conjectures on hyperbolic varieties. Lang’s
conjectures relate different notions of hyperbolicity for X (see [Lan86] and
[Jav20, §12] for a summary of his conjectures) from complex analysis to alge-
braic geometry and number theory. The aim of this paper is to prove several
results motivated by these conjectures, and to extend Lang’s conjectures on hy-
perbolic varieties to the more general setting of “intermediate hyperbolicity”
(see Section 3).
In the complex analytic setting, intermediate forms of hyperbolicity were first
introduced by Eisenmann [Eis70], and mostly studied in the extremal cases
of hyperbolicity and measure-hyperbolicity. In particular, for every integer
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1 ≤ p ≤ dimX , Eisenmann defines what it means for X to be p-analytically
hyperbolic.

One of Lang’s conjectures predicts that projective varieties of general type
should be measure-hyperbolic. This conjecture was proved for surfaces by
Green–Griffiths [GG80], but remains widely open in larger dimensions. Never-
theless, Lang’s conjecture predicts that measure-hyperbolic projective varieties
should enjoy the same properties as varieties of general type.

For example, by the work of Kobayashi–Ochiai (see e.g. [Kob98, §7]), it is well-
known that a normal projective variety X of general type satisfies the following
two remarkable properties:

Finiteness For every normal projective variety Y , the set of dominant maps
from Y to X is finite.

Extension For every normal projective variety Y with dim(Y ) ≥ dim(X) and
every proper closed subset A ( Y , every holomorphic map from Y \A to
X extends to a meromorphic map from Y to X .

These two properties hold for (analytically) hyperbolic varieties, but they have
not been proved yet in the intermediate setting. We note that both properties
above are discussed in [Ete] where a finiteness result for automorphisms groups
of (pseudo) intermediate hyperbolic manifolds is established.

This paper is mainly concerned with ”finiteness properties” for varieties which
satisfy some form of intermediate hyperbolicity in the geometric setting. More
precisely, in the geometric setting, Demailly introduced an algebraic analogue of
the notion of hyperbolicity commonly referred to as algebraic hyperbolicity (see
[JK20a, Dem97]). In this work, we extend Demailly’s notion of algebraic hyper-
bolicity to the intermediate setting (see Section 2.1), and prove the expected
finiteness properties (see Section 4). More precisely, we prove the following:

Theorem 1.1 (Main Theorem I). Let p ≥ 1 be an integer and let X be a pro-
jective pseudo p-algebraically bounded (resp. pseudo p-algebraically hyperbolic)
variety over C. Then the group of birational automorphisms Bir(X) is finite,
and for every projective variety Y , the set Sur(Y,X) of surjective morphisms
Y → X is finite.

Theorem 1.1 provides an “intermediate” version of the finiteness of Aut(X) and
Bir(X) proven for a pseudo-bounded projective variety X in [JK20a, JX22].
Also, it generalizes Matsumura’s finiteness theorem that a variety of general
type has only finitely many automorphisms, and provides algebraic analogues
of arithmetic finiteness results proven in [Jav21].

Kobayashi asked about analytic analogues of Matsumura’s finiteness theorem
for Aut(X). In fact, in [Kob93] Kobayashi asked whether a dim(X)-analytically
hyperbolic projective variety has only finitely many automorphisms. The an-
swer is expected to be positive, as such a variety is expected to be of general
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type (see [Ete] for recent progress on Kobayashi’s question). Our result (The-
orem 1.1) can be interpreted as providing a positive answer to the algebraic
analogue of Kobayashi’s question.
Verifying that a given variety is hyperbolic (in the intermediate setting or clas-
sical setting) is often very complicated (in both the geometric and analytic
setting). In the analytic setting, there is a natural condition on the positivity
of the exterior algebra of the cotangent bundle to ensure intermediate hyper-
bolicity. (For our definition of ampleness modulo a proper closed subset we
refer the reader to Section 5.)

Theorem 1.2 (Kobayashi, Carlson, Noguchi). Let X be a smooth projective
variety over C, and let ∆ ⊂ X be a proper closed subset. If

∧p
Ω1

X is ample
modulo ∆, then X is p-analytically hyperbolic modulo ∆.

This result was proved by Kobayashi when p = 1 and ∆ = ∅ [Kob98, §3]. It is
due to Carlson [Car72] when p ≥ 1 and ∆ = ∅. The general statement (p ≥ 1
and ∆ possibly non-empty) was proven by Noguchi [Nog77] (see also [Dem97]).
In the final section of this paper, we prove that the conclusion of Kobayashi-
Carlson-Noguchi’s theorem also holds when we replace “analytic hyperbolicity
“ with “algebraic hyperbolicity“, where the intermediate notion of p-algebraic
hyperbolicity is defined precisely in Definition 2.2.

Theorem 1.3 (Main Theorem II). Let X be a smooth projective variety, and
let ∆ ⊂ X be a proper closed subset. If

∧p
Ω1

X is ample modulo ∆, then X is
p-algebraically hyperbolic modulo ∆.

We stress that the positivity hypothesis in this statement is much stronger
than the conclusion (both in the analytic and algebraic setting). Indeed, by
the seminal work of Brotbek [Bro17], a general hypersurface of large enough
degree in Pn is hyperbolic (and thus algebraically hyperbolic by Demailly’s
theorem [Dem97, Theorem 2.1]). However, the cotangent bundle of such a
hypersurface is far from being ample.
Note that if we combine our Theorems 1.1 and 1.3 (in the case p = dim(X)),
we recover a slightly weaker form of Kobayashi–Ochiai finiteness Theorem: see
Corollary 4.10 for a precise statement.
This paper is only concerned with finiteness properties in the intermediate set-
ting. However, as noted above, it is also natural to study extension properties
of holomorphic maps (leading to notions closely related to Kobayashi hyper-
bolicity [JK20b]). We take the opportunity to discuss implications towards ex-
tension properties of the positivity hypotheses in the above statements. To do
so, let X be a smooth projective variety such that

∧p ΩX is ample modulo ∆.
If ∆ = ∅,then it was shown in [Car72] (resp. [Kwa83]) that non-degenerate
(see Definition 2.1 below) holomorphic (resp. meromorphic) maps Y \A→ X ,
where Y is a complex manifold of dimension p and A ( Y is a proper closed
subset, extend meromorphically. For ∆ arbitrary, this extension result (for
meromorphic maps) was proved by Noguchi in [Nog77]. It is expected that
such extension results hold under the much weaker hypothesis of p-algebraic
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or p-analytic hyperbolicity. For p = 1, it is known only in the analytic case
[Kob98, §6]. For p > 1, it is unknown in both the analytic and algebraic cases
(see [Den20] or [Ete] where the notion of intermediate Picard hyperbolicity

encapsulates these extension properties).

1.1 Outline of paper

In Section 2, we introduce the relevant definitions of (pseudo) intermediate alge-
braic hyperbolicity and intermediate algebraic boundedness, and we state and
prove basic results concerning these notions. In particular, our definitions and
terminologies are (a posteriori) motivated and explained by Proposition 2.9. In
Section 3, we state conjectures relating several intermediate notions of hyper-
bolicity. We take the opportunity to introduce several new arithmetic notions
of intermediate hyperbolicity which will be the topic of future works. In Sec-
tion 4, we prove our finiteness results (Theorem 1.1) for pseudo p-algebraically
bounded (resp. pseudo p-algebraically hyperbolic) varieties. Finally, in Sec-
tion 5, we prove our criteria ensuring pseudo p-algebraic hyperbolicity (Theo-
rem 1.3).
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Conventions

Throughout this paper, we will let k denote an algebraically closed field of
characteristic zero. A variety over k is a finite type separated integral (i.e. ir-
reducible and reduced) scheme over k. Unless stated otherwise explicitly (e.g. if
we want to restrict ourselves to complex projective varieties as in Theorem 1.1),
all our varieties will be defined over k. (We will explicitly mention the base
field in Section 3 as the notions there depend a priori on the base field.)

2 Algebraic hyperbolicity and algebraic boundedness

2.1 Definitions

We first introduce a notion of intermediate hyperbolicity inspired by Demailly’s
notion of algebraic hyperbolicity [Dem97] (see also [Jav21, Jav20, JK20a, JX22,
Rou10]). In order to state it concisely, we adopt the following convenient
terminology:
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Definition 2.1 (Non-degenerate maps). A rational map f : Y 99K X be-
tween varieties is said to be non-degenerate if its image f(Y ) is of dimension
min(dim(X), dim(Y )).

Note that, if dim(Y ) ≤ dim(X), a rational map Y 99K X of projective vari-
eties is non-degenerate if and only if it is generically finite onto its image. If
dim(Y ) > dim(X), a rational map Y 99K X is non-degenerate if and only if it
is dominant.

Definition 2.2 (p-algebraic hyperbolicity modulo ∆). Let X be a projective
variety, let ∆ be a closed subset of X , and let p be a positive integer. We say
that X is p-algebraically hyperbolic modulo ∆ if, for every ample line bundle L
on X , there is a real number α = α(X,∆, L) such that, for every smooth
projective p-dimensional variety Y with ample canonical bundle ωY and every
non-degenerate rational map f : Y 99K X whose image is not included in ∆,
the following inequality is satisfied

(f∗L) · (KY )
p−1 ≤ α ·Kp

Y .

Following Lang’s terminology, we will say that X is pseudo-p-algebraically hy-
perbolic if there is a proper closed subset ∆ ( X such that X is p-algebraically
hyperbolic modulo ∆. Also, we will say that X is p-algebraically hyperbolic
if X is p-algebraically hyperbolic modulo the empty subset.

Note that the pull-back by f of the line bundle L is well-defined: since Y
is smooth, the rational map f is well-defined outside a closed subset F of
codimension at least 2, and one has the equality of the Picard groups Pic(Y \
F ) = Pic(Y ). Note also that a projective varietyX is 1-algebraically hyperbolic
modulo the emptyset if and only if it is algebraically hyperbolic in Demailly’s
sense [JK20a]. More generally, a projective variety X is pseudo-1-algebraically
hyperbolic if and only if it is pseudo-algebraically hyperbolic [Jav20, §9].
Observe that we restrict to varieties Y with ample canonical bundle. This is
analogous to the fact that one may test the algebraic hyperbolicity of a projec-
tive variety on maps from curves of genus at least two (see the introduction of
[JK20a] for a detailed explanation). Let us also emphasize on the fact that the
constant α appearing in the definition is independent of Y : see Definition 2.3
below where this hypothesis is relaxed.
The algebraic hyperbolicity of a projective variety implies that moduli spaces
of maps from varieties are “bounded” (i.e. have only finitely many connected
components). We refer to [JK20a] for precise statements. The following def-
inition extends the notion of boundedness introduced in [JK20a] (see also
[Jav20, JX22]).

Definition 2.3 (p-algebraically bounded modulo ∆). Let X be a projective
variety, let ∆ be a closed subset of X , and let p be a positive integer. We say
that X is p-algebraically bounded modulo ∆ if, for every ample line bundle L
on X , every smooth projective p-dimensional variety Y with dimY = p, and
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every ample line bundle A on Y , there is a real number C > 0 such that, for
every non-degenerate rational map f : Y 99K X whose image is not included
in ∆, the following inequality is satisfied

f∗L · Ap−1 ≤ C.

Following Lang’s terminology as before, we will say that X is pseudo-p-
algebraically bounded if there is a proper closed subset ∆ ( X such that X
is p-algebraically bounded modulo ∆. Also, we say that X is p-algebraically
bounded if it is p-algebraically bounded modulo the empty subset. With this
terminology at hand, a projective variety is 1-algebraically bounded over k if
and only if it is bounded in the sense of [Jav20, §10].

Remark 2.4. Voisin introduced an algebraic analogue of (analytic) measure-
hyperbolicity; see [Voi03, Definition 2.20]. Indeed, she defines a variety X to be
algebraically measure hyperbolic if, for every ample line bundle L on X , there
exists a constant A > 0 such that, for any covering family of curves π : C → B
(with generic fiber C of genus g) and every dominant map φ : C → X non-
constant on the fibers, one has 2g − 2 ≥ A · degφ∗CL. Conjecturally, if X is
a smooth projective variety, then X is dimX-algebraically hyperbolic if and
only if it is algebraically measure hyperbolic (in Voisin’s sense). For example,
by [Voi03, Lemma 2.19], a variety of general type is algebraically measure-
hyperbolic, and in this paper we prove the similar (a priori different) statement
that a variety of general type is dimX-algebraically hyperbolic; see Theorem 1.3
in the case p = dim(X).

The notion of intermediate boundedness is weaker than the notion of interme-
diate algebraic hyperbolicity (see Proposition 2.5), but we conjecture that it is
equivalent (see Section 3). Both notions allow for strings of implications (see
Proposition 2.6 and 2.7 for precise statements). However, we emphasize that
for intermediate algebraic boundedness this statement is only proven under the
additional assumption that the base field k is uncountable.

These two intermediate notions of pseudo-hyperbolicity turn out to be strong
enough to force certain finiteness properties, as we show in Section 4.

2.2 Elementary properties

In this section, we prove a few basic facts concerning intermediate algebraic hy-
perbolicity and algebraic boundedness, justifying in particular our definitions.
Let us first record the relationship between intermediate algebraic hyperbolicity
and intermediate algebraic boundedness in the following proposition:

Proposition 2.5. Let ∆ ⊂ X be a proper closed subset of a projective vari-
ety X. If X is p-algebraically hyperbolic modulo ∆, then X is p-algebraically
bounded modulo ∆.
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Proof. Let Y be a smooth projective variety of dimension p, and consider a
ramified cover ψ : Ỹ → Y with Ỹ smooth and KỸ ample (see e.g. [Laz04a]).
Let R be the ramification divisor, so that

KỸ = ψ∗KY +R.

Let f : Y 99K X be a non-degenerate rational map, whose image is not included
in ∆. Fix an ample line bundle L on X and an ample line bundle A on Y . By
our hypothesis on X , there exists a constant α independent of f and Y such
that the following inequality is satisfied

(ψ ◦ f)∗L ·Kp−1

Ỹ
≤ αKp

Ỹ
.

Let m be an integer such that mKỸ −ψ∗A is ample, and note that m depends
on Y but not on f . Then one has the following inequality:

(ψ ◦ f)∗L · (ψ∗A)p−1 ≤ αmp−1Kp

Ỹ
.

Using the projection formula, one deduces that X is indeed p-algebraically
bounded, as the bound on the right does not depend on the rational map f .

We now prove that the notions of intermediate algebraic hyperbolicity and
intermediate algebraic boundedness form a string of implications, starting with
the case of algebraic boundedness:

Proposition 2.6. Assume that k is uncountable. Let ∆ ⊂ X be a closed subset
of a projective variety X, and let p ∈ N≥1. If X is p-algebraically bounded
modulo ∆, then X is (p+ 1)-algebraically bounded modulo ∆.

Proof. We argue by contradiction. Thus, let L be an ample line bundle on X ,
let Y be a smooth projective variety of dimension p + 1, and let A be a very
ample line bundle on Y such that there exists a sequence of non-degenerate
rational maps fi : Y 99K X with fi(Y ) 6⊂ ∆ and with f∗

i L · Ap tending to
infinity as i tends to infinity. As k is uncountable, one can choose a smooth
ample divisor H ⊂ Y in the linear system |A| such that, for any i ∈ N≥1, the
rational map (fi)|H : H 99K X is a well-defined non-degenerate map whose

image is not included in ∆. Since f∗
i L · Ap = (fi)

∗
|HL · Ap−1

|H , this contradicts

the p-algebraic boundedness of X .

Replacing “algebraic boundedness“ by “algebraic hyperbolicity“, we also have
the following (without any uncountability hypothesis on the base field).

Proposition 2.7. Let ∆ ⊂ X be a closed subset of a projective variety, and
let p ∈ N≥1. If X is p-algebraically hyperbolic modulo ∆, then X is (p + 1)-
algebraically hyperbolic modulo ∆.

Proof. Let L be an ample line on X , and suppose that X is p-algebraically
hyperbolic modulo ∆. To prove the proposition, it suffices to show that there
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exists a constant α such that, for any smooth projective canonically polarized
variety Y of dimension (p+1) and any non-degenerate rational map f : Y 99K X
whose image is not included in ∆, one has the following inequality

f∗L ·Kp
Y ≤ αKp+1

Y .

Let f : Y 99K X be a rational map as above. By the work of Demailly and
Angehrn-Siu (see e.g. [Laz04b][10.2]), there exists a natural number m ∈ N

independent of Y such that mKY is very ample. Let H ∈ |mKY | be a smooth
hypersurface such that f|H : H 99K X remains a non-degenerate rational map
whose image is not included in ∆. By the adjunction formula, one has the
following equality of linear equivalence classes of divisors

KH = (m+ 1)(KY )|H .

Since X is p-algebraically hyperbolic modulo ∆, there exists a constant β,
independent of f|H and H , such that the following inequality

f∗
|HL ·Kp−1

H ≤ βKp
H

holds. This inequality can be rewritten as follows

f∗L ·Kp
Y ≤ β(m+ 1)Kp+1

Y ,

where m and β are independent of f and Y . This concludes the proof.

We end this section with an application of the work of Kollár and Matsusaka
[KM83], which justifies our definition and terminology of intermediate algebraic
boundedness. Before doing so, let us recall the notion of Hilbert polynomials of
rational maps. Let f : Y 99K X be a rational map, let A be an ample line bundle
on Y , and let L be an ample line bundle on X . Let Graph(f) be the closure
of the graph of f . Then, the Hilbert polynomial of f with respect to A and L
is the Hilbert polynomial of the projective variety Graph(f) computed with
respect to the ample line bundle A⊠L|Graph(f). This is the unique polynomial
Pf ∈ Z[X ] such that, for every large enough integer m, the following equality
is satisfied

Pf (m) = χ
(

Graph(f),
(

A⊠ L|Graph(f)

)m)

= dimH0
(

Graph(f),
(

A⊠ L|Graph(f)

)m)
,

where the last equality follows from the ampleness of A⊠L|Graph(f). In the case
where the map f : Y 99K X is actually a morphism, one easily sees that the
Hilbert polynomial of f computed with respect to A and L is also the Hilbert
polynomial of Y computed with respect to the ample line bundle A⊗f∗L. As we
show now, this practical way of interpreting Hilbert polynomials of morphisms
can be carried over to rational maps, provided Y is smooth.

Documenta Mathematica 27 (2022) 2469–2490



Algebraic Intermediate Hyperbolicities 2477

Lemma 2.8. Let f : Y 99K X be a rational map of projective varieties. Assume
that Y is smooth and let Pf be the Hilbert polynomial of f with respect to A
and L. Then, for any m≫ 1, one has the following equality:

Pf (m) = χ(Y, (A⊗ f∗L)m) = dimH0(Y, (A⊗ f∗L)m).

Proof. Since Y is smooth, the rational map f is well-defined outside a closed
subset F of codimension at least 2, so that one has the equality of the Picard
groups Pic(Y \F ) = Pic(Y ). Therefore, the pull-back by f of the line bundle L
is well-defined.
Let π1 : Graph(f) → Y (resp. π2 : Graph(f) → X) be the first (resp. second)
projection, and observe that the pull-back f∗L is nef. Indeed, let m ∈ N≥1

be such that Lm is globally generated, and let y ∈ Y . Pick any x ∈ f(y) :=
π2(π

−1
1 (y)), and take s ∈ H0(X,Lm) such that s(x) 6= 0. Then the section

f∗s ∈ H0(Y, f∗Lm) induced by f does not vanish at y. Therefore, the line
bundle A⊗ f∗L is ample. To conclude, it is now enough to show the equality

dimH0(Graph(f), (A⊠ L)
m
|Graph(f)) = dimH0(Y, (A⊗ f∗L)m)

for any m ∈ N. Observe that one has the following equality of (isomorphism
classes of) line bundles on Graph(f):

π∗
1(A⊗ f∗L) = (A⊠ L)|Graph(f) .

Therefore, there is a natural injective map of vector spaces induced by π1

H0(Y, (A⊗ f∗L)m) −→ H0(Graph(f), (A⊠ L)m|Graph(f))

s 7−→ s ◦ π1
.

In the other direction, any global section s̃ ∈ H0(Graph(f), (A⊠ L)m|Graph(f))

induces a global section s ∈ H0(Y \ F, (A ⊗ f∗L)m), and Riemann’s extension
theorem (or an algebraic variant of it) allows to conclude.

The terminology algebraic boundedness now comes from the following classic
application of the work of Kollár and Matsusaka [KM83] (see [Laz04b][Thm
6.3.29]):

Proposition 2.9. Let X be a projective variety and let ∆ ⊂ X be a proper
closed subset of X. Suppose that X is p-algebraically bounded modulo ∆. Then,
for any smooth projective variety Y of dimension p, the coefficients of Hilbert
polynomial of non-degenerate rational morphisms from Y to X whose image is
not included in ∆ are uniformly bounded.

Proof. Let A be an ample line bundle on Y , let L be an ample line bundle
on X , and let f : Y 99K X be a non-degenerate rational map whose image
is not included in ∆. By Lemma 2.8, it suffices to to bound, independently
of f , the coefficients of the Hilbert polynomial of Y computed with respect to

Documenta Mathematica 27 (2022) 2469–2490



2478 A. Etesse, A. Javanpeykar, E. Rousseau

A ⊗ f∗L. By the work of Kollár and Matsusaka [KM83], it suffices to bound
the intersection numbers (A+f∗L)p and (A+f∗L)p−1 ·KY independently of f .
Recall that the hypothesis of p-algebraic boundedness gives us a constant C
independent of f such that the following inequality

f∗L · Ap−1 ≤ C

holds. By the numerical criterion of bigness (see e.g. [Laz04a][Thm 2.2.15]),
one deduces that for r > p C

Ap , the line bundle rA − f∗L is big. In particular,
a large enough multiple of this line bundle is effective. One now shows by
induction on i ≥ 1 the existence of a constant Ci independent of f such that
the following inequality holds

(f∗L)iAp−i ≤ Ci.

We know that it is satisfied for i = 1. To conclude, we argue by induction
and suppose that it is satisfied for 1 ≤ i < p. Since the line bundle f∗L is nef
(see e.g. the proof of Lemma 2.8), the line bundle f∗L + A is ample. From
the effectivity of a large enough multiple of rA − f∗L, one then deduces the
following inequality

(rA − f∗L) · (f∗L+A)i · Ap−i−1 ≥ 0.

This in turn implies the following inequality

(f∗L)i+1 · Ap−i−1 ≤ (rA − f∗L) ·

(

i−1
∑

k=0

(

k

i

)

(f∗L)k · Ap−1−k

)

+ rf∗Li · Ap−i.

By the induction hypothesis, each term appearing in the (developed) sum on
the right can be bounded by a constant independent of f , so that the induction
step is complete.
Clearly, the above implies that one can bound (f∗L+A)p independently of f .
As for (f∗L+ A)p−1 ·KY , one picks m such that mA−KY is ample (with m
obviously independent of f). Then,

(f∗L+A)p−1 ·KY ≤ m(f∗L+A)p−1 · A,

so that the above allows to conclude.

3 Lang’s intermediate algebraic and arithmetic conjectures

In this section, we pursue the intermediate p-hyperbolicity analogues of Lang’s
conjectures in the algebraic and arithmetic setting (thereby leaving out the
complex-analytic analogues which are discussed in [Ete]). We will build on
Lang’s original conjectures [Lan86] and the extensions of his conjectures sum-
marized in [Jav20, §12].

Documenta Mathematica 27 (2022) 2469–2490



Algebraic Intermediate Hyperbolicities 2479

Throughout this section, let k be an algebraically closed field of characteristic
zero. Given a proper scheme X over k, we refer to [Jav20, §7] for the definition
of pseudo-Mordellicity, to [Jav20, §9] for the definition of pseudo-algebraic hy-
perbolicity, and to [Jav20, §10] for the definition of pseudo-boundedness. The
notions of p-algebraic hyperbolicity and p-algebraic boundedness are defined in
the first Section 2.1 (see Definition 2.2 and Definition 2.3). To state the general
conjecture for varieties of general type, we will need one additional definition.
To state this definition, we refer to [Jav20, §3] for the notion of a model.

Definition 3.1 (p-Mordellicity modulo ∆). Let p ≥ 0 be an integer, let X
be a proper variety over k, and let ∆ ⊂ X be a closed subset. Then, we
say that X is p-Mordellic modulo ∆ over k if, for every finitely generated
subfield K ⊂ k, every model X for X over K, and every p-dimensional smooth
projective geometrically connected variety Y over K, there are only finitely
many rational maps f : Y 99K X such that the image of fk in X is of dimension
at least p and not included in ∆ is finite.

Definition 3.2. Let p ≥ 0. A proper variety X over k is p-Mordellic over k
if X is p-Mordellic modulo the empty subset over k.

Definition 3.3. Let p ≥ 0. A proper variety X over k is pseudo-p-Mordellic
over k if there is a proper closed subset ∆ ( X such that X is p-Mordellic
modulo ∆ over k.

Note that X is Mordellic over k (as defined in [Jav20, §3]) if and only if X is
0-Mordellic modulo the empty subset over k. Indeed, a 0-dimensional smooth
projective geometrically connected variety Y over K is isomorphic to SpecK,
so that the set of morphisms Y → X equals the set of K-rational points of X .
Note also that the fact that we allow for p = 0 in the above definition is an
artifact of the arithmetic setting; finiteness of “points” is a reasonable property
to impose (and study) over finitely generated fields of characteristic zero.
Let X be a projective variety over k, and let ∆ ⊂ X be a closed subset. Assume
that for every algebraically closed field extension L/k of finite transcendence
degree, the variety XL is Mordellic modulo ∆L over L. Then, for every p, the
variety X is p-Mordellic modulo ∆ over k. Indeed, the set of rational maps
f : Y 99K X with f(Y ) 6⊂ ∆ equals the set of K(Y )-rational points of X \∆,
and the latter is finite by the Mordellicity assumption on the varieties XL.
For varieties of general type, we expect all notions (including the intermediate
ones) of pseudo-hyperbolicity to coincide. The following conjecture provides a
precise statement.

Conjecture 3.4 (Lang’s intermediate pseudo-conjectures). Let X be a pro-
jective variety over k, and let p ≥ 1 be an integer. Then the following are
equivalent.

1. The variety X is of general type.

2. There is a proper closed subset ∆ ( X such that every subvariety Y ⊂ X
of dimension at least p with Y 6⊂ ∆ is of general type.
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3. The variety X is pseudo-Mordellic over k.

4. The variety X is pseudo-p-Mordellic over k.

5. The variety X is pseudo-algebraically hyperbolic over k.

6. The variety X is pseudo-p-algebraically hyperbolic over k.

7. The variety X is pseudo-bounded over k.

8. The variety X is pseudo-p-algebraically bounded over k.

9. The variety X is dim(X)-Mordellic over k.

10. The variety X is dim(X)-algebraically-hyperbolic over k.

11. The variety X is dim(X)-algebraically-bounded over k.

Note that (1) is independent of p, so that part of this conjecture is reduntant.
For example, (5) is equivalent to (6) with p = 1. Nonetheless, we chose to
present the conjecture in this way to facilitate discussing known results in the
following remark.

Remark 3.5 (What do we know about Conjecture 3.4 ?). The following state-
ments hold.

1. Obviously, (2) =⇒ (1).

2. If dimX = 1, then Conjecture 3.4 holds by Faltings’s proof of Mordell’s
conjecture and the classical finiteness theorem of De Franchis-Severi for
Riemann surfaces. More generally, ifX is a closed subvariety of an abelian
variety, then conjecture 3.4 holds by Faltings’s proof of Mordell-Lang
[Fal94] and the work of Ueno, Bloch-Ochiai-Kawamata [Kaw80] and Ya-
manoi [Yam15] on closed subvarieties of abelian varieties.

3. If dimX = 2, then (3) =⇒ (2), (5) =⇒ (2), and (7) =⇒ (2). This is
explained in [Jav20]. Some further evidence is given in [Jav].

4. By [BJK], we have that (5) =⇒ (7).

5. In this paper we prove (6) =⇒ (8) (Proposition 2.5), and thus (10) =⇒
(11). We also show that (1) =⇒ (10) (and thus (1) =⇒ (11)). See
Theorem 1.3.

6. Assuming k is uncountable, we show that (8) =⇒ (11); see Proposi-
tion 2.6.

7. We show that, if ΛpΩ1
X is ample modulo some proper closed subset,

then X satisfies (1), (2), (6), (8), (10), and (11) (see Theorem 1.3).

8. We show that, assuming X satisfies (10) or (11), then Birk(X) is finite
and Surk(Y,X) is finite for every Y (see Theorem 1.1).
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Part of the above conjecture already appears in Lang’s original paper. For ex-
ample, the equivalence of (1), and (3) is stated explicitly in [Lan86]. Moreover,
the equivalence of (1), (5), and (7) is implicit in Lang’s original conjectures
(see [Jav20, §12]). However, the other conjectured equivalences are new.

To conclude this section, we push Lang’s conjectures further, and state the
general conjecture for “intermediate” exceptional loci.

Conjecture 3.6 (Lang’s intermediate conjectures for exceptional loci). Let X
be a projective variety over k, let ∆ ⊂ X be a closed subset, and let p be a
positive integer. Then the following statements are equivalent.

1. Every subvariety Y of X of dimension at least p with Y 6⊂ ∆ is of general
type.

2. The variety X is Mordellic modulo ∆ over k.

3. The variety X is p-Mordellic modulo ∆ over k.

4. The variety X is p-algebraically hyperbolic modulo ∆ over k.

5. The variety X is p-algebraically bounded modulo ∆ over k.

Note that Conjecture 3.6 (for all X and p) implies Conjecture 3.4 (for all X
and p).

Remark 3.7 (What do we know about this conjecture?). By Proposition 2.5,
we have that (4) =⇒ (5). We also show that, if ΛpΩX is ample modulo ∆, then
(1), (3), and (4) hold; see Theorem 1.3. Since (1) is stable under field extensions
L/k of algebraically closed fields of characteristic zero [BJK, Theorem 1.3],
Conjecture 3.6 predicts the same for (2), (3), (4), and (5).

4 Finiteness results for intermediate pseudo bounded and pseudo

hyperbolic varieties

In this section, we investigate the finiteness of the sets of surjective morphisms
and birational automorphisms for pseudo p-algebraically bounded varieties and
pseudo p-algebraically hyperbolic varieties. In the first two parts, we prove
such finiteness results for dim(X)-algebraically bounded varieties. In a third
and last part, we state the same finiteness results for p-algebraically bounded
and p-algebraically hyperbolic varieties: even though the statements are im-
mediate from Proposition 2.6 and Proposition 2.7, we choose to put them in a
separate section to emphasize that the hypothesis “k uncountable“ is a priori
important in the case of intermediate algebraic boundedness, while it is not for
intermediate algebraic hyperbolicity.
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4.1 Surjective morphisms to dim(X)-algebraically bounded vari-

eties

Crucial to our proofs below is the (obvious) non-uniruledness of a dim(X)-
algebraically bounded variety. We record this observation in the following
lemma.

Lemma 4.1. Let X be a projective variety. If X is dim(X)-algebraically
bounded, then X is non-uniruled.

IfX and Y are projective varieties, we let Hom(Y,X) be the scheme parametriz-
ing morphisms from Y toX . If Hilb(Y ×X) is the Hilbert scheme of Y ×X , then
the morphism Hom(Y,X) → Hilb(Y ×X) mapping a morphism f : Y → X to
its graph Graph(f) ⊂ Y ×X is an open immersion [Nit05, Theorem 6.6]. We
also let Sur(Y,X) be the open and closed subscheme of Hom(Y,X) parametriz-
ing surjective morphisms from Y to X .
Before stating and proving our results, recall that the scheme Sur(Y,X) is of
finite type if and only if it has finitely many connected components. That is,
Sur(Y,X) is of finite type if and only if, for every ample line bundle L on X
and every ample line bundle A on Y , there is an integer n ≥ 1 and polynomials
Φ1, . . . ,Φn in Q[t] such that, for every surjective morphism f : Y → X , the
Hilbert polynomial of f with respect to the ample line bundle A ⊠ L|Graph(f)

lies in the finite set {Φ1, . . . ,Φn}. Adapting the proofs of Proposition 2.6 and
Proposition 2.9, we obtain the following lemma.

Lemma 4.2. Let X be a projective dimX-algebraically bounded variety. Then
for every smooth projective variety Y of dimension dim(Y ) ≥ dim(X), the
scheme Sur(Y,X) is of finite type.

Proof. Let p = dimY . If k is uncountable, the lemma follows immediately
from Proposition 2.6 and Proposition 2.9. If k is countable, one can proceed
as in Proposition 2.6 and Proposition 2.9 once the following is noticed. First,
if p = dim(X), the lemma follows immediately from Proposition 2.9. Thus,
we may suppose that p > dim(X). In Proposition 2.6, the uncountability of k
was used to find a smooth ample divisor H in the linear system |A| such that
for any i ∈ N, the rational maps (fi)|H remain non-degenerate. Suppose now
that the fi : Y → X are instead surjective morphisms. It is then clear that
for any smooth ample divisor H , the restriction maps (fi)|H : H → X remain
surjective, as for any x ∈ X , the fibre Yx = f−1({x}) is positive dimensional,
and thus intersects the ample divisor H . This allows to argue by induction on
dimY as in Proposition 2.6.

To prove the rigidity of surjective morphisms, we will appeal to a theorem
of Hwang-Kebekus-Peternell [HKP06]. Their result relates the infinitesimal
deformation space of a surjective morphism Y → X to the infinitesimal auto-
morphisms of a suitable cover of X . For this reason, we investigate first the
discreteness of AutX/k, where AutX/k) denotes the locally finite type group
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scheme of automorphisms of X . Interestingly, to prove the rigidity of auto-
morphisms, we will appeal to the boundedness of Sur(Y,X) (for every smooth
projective variety Y ) proven above.

Lemma 4.3. Let X be a projective dim(X)-algebraically bounded variety over k.
Then AutX/k is zero-dimensional.

Proof. Since X is non-uniruled (Lemma 4.1), the connected component A :=
Aut0X/k of the identity of AutX/k is an abelian variety. For a in A and x inX , let

a·x denote the action of A on X . Let ψ : X̃ → X be a resolution of singularities
of X . Consider the sequence of surjective morphisms fn : A × X̃ → X given
by

fn(a, x̃) = (na) · ψ(x).

Since the degree of the (finite étale) morphism [n] : A × X → A × X equals
n2 dimA and thus increases with n, one sees that the Hilbert polynomials of the
morphisms fn : A × X̃ → X are pairwise distinct. In particular, the scheme
Sur(A × X̃,X) is not of finite type. Since A × X̃ is smooth, this contradicts
Lemma 4.2.

Remark 4.4. The intermediate Lang conjectures (Conjecture 3.4) predict that
a projective dim(X)-algebraically bounded variety is of general type. (The con-
verse statement that a projective variety of general type is dim(X)-algebraically
bounded follows from Theorem 1.3.) In the following proposition, we show that
a dim(X)-algebraically bounded variety is not dominated by a family of abelian
varieties. This gives more ”evidence” for Conjecture 3.4 since Lang has also
predicted that a variety not of general type is covered by the images of non-
constant rational maps from abelian varieties. As observed by Voisin [Voi03],
this implies that a variety which is not of general type is dominated by a family
of abelian varieties.

Proposition 4.5. Let X be a projective variety, let B be a variety and let
A → B be an abelian scheme. Suppose that there is a dominant rational map
f : A 99K X of varieties. Then X is not dim(X)-algebraically bounded.

Proof. (We adapt the proof of Lemma 4.3.) Let A be a projective compactifi-
cation of A. Consider the sequence of rational maps fn : A 99K X , where fn is
defined to be the composition of f with the multiplication-by-nmap on A → B.
Note that fn : A 99K X is a dominant rational map, and that the Hilbert poly-
nomials of the fn are pairwise distinct as n runs over all natural numbers. This
shows that X is not dim(X)-algebraically bounded, as required.

We now record the basic fact that a finite surjective cover of a p-algebraically
bounded projective variety remains p-algebraically bounded.

Lemma 4.6. Let Z → X be a finite surjective morphism of projective varieties.
If X is p-algebraically bounded, then Z is p-algebraically bounded.
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Proof. This is a straightforward consequence of the projection formula, and the
fact that the pull-back of an ample by a finite morphism remains ample.

We now prove the desired finiteness of surjective morphisms Y → X , assum-
ing X is dim(X)-algebraically bounded.

Theorem 4.7. If X is a dim(X)-algebraically bounded projective variety and Y
is a projective variety, then Sur(Y,X) is finite.

Proof. Observe first that one can always suppose that Y is smooth. Indeed,
if one takes Ỹ → Y a resolution of singularities of Y , and if one knows that
Sur(Ỹ , X) is finite, then one immediately deduces the finiteness of Sur(Y,X).
Furthermore, by Lemma 4.6, one can always suppose that X is normal: indeed,
every surjective morphism from Y smooth to X factors uniquely through the
normalization X̃ → X , where the normalization map is a surjective and finite
morphism.
By Lemma 4.2, the scheme Sur(Y,X) is of finite type. Thus, it suffices to show
that Sur(Y,X) is zero-dimensional. To do so, let f : Y → X be a surjective
morphism. As X is non-uniruled (Lemma 4.1) and normal, by the theorem
of Hwang-Kebekus-Peternell [HKP06], there is a finite surjective morphism
Z → X and a morphism Y → Z such that f : Y → X factors as

Y → Z → X,

with Aut0(Z) surjecting onto the connected component of f in Sur(Y,X). Now,
as Z → X is finite surjective (so that dimX = dimZ) and X is dimX-
algebraically bounded, it follows from Lemma 4.6 that Z is dimZ-algebraically
bounded. In particular, it follows from Lemma 4.3 that Aut0(Z) is trivial. As
Aut0(Z) surjects onto the connected component of f in Sur(Y,X), it follows
that the latter is trivial, which finishes the proof.

4.2 Birational selfmaps of dim(X)-algebraically bounded vari-

eties

Let X be a projective integral variety over k. We define BirX/k to be the sub-
scheme of the Hilbert scheme Hilb(X × X) parametrizing, roughly speaking,
closed subschemes Z ⊂ X × X such that Z is integral and both projections
Z → X are birational (see [Han87, Definition 1.8] for a more precise formula-
tion). Note that the (abstract) group Bir(X) of birational selfmaps X 99K X
is in bijection with the set of k-points of the k-scheme BirX/k.
Hanamura shows that the scheme BirX/k can be endowed with the structure
of a group scheme structure, assuming that X is a (terminal) minimal model
(see [Han87, §3]). We will use a slight extension of his result.
In fact, in [PS14, §4] Prokhorov and Shramov show that a proper non-uniruled
integral variety over k has a pseudo-minimal model. Hanamura’s main result
on the scheme BirX/k for minimal models X is easily seen to extend to pseudo-
minimal models by following his proof closely. Indeed, Hanamura’s proof relies
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on the fact that on a minimal model every pseudo-automorphism is an au-
tomorphism. This property also holds for pseudo-minimal models by [PS14,
Corollary 4.7]. In particular, Hanamura’s work gives the following statement
(see [Han87, §3]).

Theorem 4.8 (Hanamura). If X is a pseudo-minimal model over k, then
BirX/k can be endowed with the structure of a group scheme (over k) such

that Bir0X/k is isomorphic to Aut0X/k.

We use Hanamura’s structure result to prove the following finiteness result.

Proposition 4.9. Let X be a projective variety. If X is dim(X)-algebraically
bounded, then Bir(X) is finite.

Proof. As X is dim(X)-algebraically bounded, the variety X is non-uniruled
(Lemma 4.1). Therefore, by the work of Prokhorov-Shramov [PS14, §4], the
projective variety X has a pseudo-minimal model. Let Y be a pseudo-minimal
model for X . Note that Bir(X) = Bir(Y ) (since X and Y are birational).
Now, by Theorem 4.8, the scheme BirY/k can be endowed with the structure

of a group scheme in such a way that Bir0Y/k = Aut0Y/k. Since X is dim(X)-
algebraically bounded and Y is birational toX , it follows that Y is also dim(X)-
algebraically bounded. In particular, AutY/k is zero-dimensional (Lemma 4.3)
and thus Hanamura’s group scheme BirY/k is zero-dimensional. Finally, to
conclude that Bir(X) is finite, it suffices to show that BirY/k is of finite type.
This boundedness statement is a straightforward consequence of the definition
of Bir(Y ) and the fact that Y is dim(Y )-algebraically bounded.

Note that the special case of Theorem 1.3 with p = dim(X) combined with
Theorem 4.7 and Proposition 4.9 gives an alternative proof of (a slightly weaker
form of) Kobayachi-Ochiai finiteness theorem.

Corollary 4.10 (Kobayachi–Ochiai). Let X be a smooth projective variety of
general type. Then for any projective variety Y , the set of surjective morphisms
Sur(Y,X) is finite. Furthermore, the set of bimeromorphisms Bir(X) is also
finite.

4.3 Finiteness results for intermediate pseudo-algebraically

bounded and pseudo-algebraically hyperbolic varieties

Using Proposition 2.6, Theorem 4.7 and Proposition 4.9, we obtain immediately
the following:

Theorem 4.11. Assume that k is uncountable. Let X be a projective pseudo-
p-algebraically bounded variety with 1 ≤ p ≤ dim(X). Then Bir(X) is finite
and, for any projective variety Y , the set of surjective morphisms Sur(Y,X) is
finite.
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In particular, this gives Theorem 1.1 as C is uncountable. Combining Propo-
sition 2.6, Proposition 2.7, Theorem 4.7 and Proposition 4.9, we obtain the
following (in which the uncountability hypothesis has been dropped):

Theorem 4.12. Let X be a projective pseudo-p-algebraically hyperbolic variety
with 1 ≤ p ≤ dim(X). Then Bir(X) is finite and, for any projective variety Y ,
the set Sur(Y,X) is finite.

5 From positivity modulo ∆ to intermediate algebraic hyperbol-

icity

We now prove the criterion for intermediate algebraic hyperbolicity, which is the
algebraic analogue of Demailly’s Theorem 1.2. In order to state it properly,
recall the following definition of ampleness modulo a closed subset (we refer
the reader to Lazarsfeld’s books for a definition of the augmented base locus
[Laz04a, Laz04b]):

Definition 5.1. Let X be a projective variety, let ∆ ⊂ X be a closed subset,
let E be a vector bundle onX , and let p : P(E∨) → X be the natural projection.
Then E is ample modulo ∆ if the augmented base locus B+(OP(E∨)(1)) is
included in p−1(∆).

In other words, E is ample modulo ∆, if and only if for any ample line bundle A
on P(E∨), there is an integerm ≥ 1 such that the base locus ofOP(E∨)(m)⊗A−1

is included in p−1(∆).
Our last Theorem now reads as follows:

Theorem 5.2. Let X be a smooth projective variety, and let ∆ ⊂ X be a
proper closed subset. If

∧p Ω1
X is ample modulo ∆, then X is p-algebraically

hyperbolic modulo ∆.

Proof. Fix an ample line bundle L on X , and let Y be a smooth projective
p-dimensional variety with KY ample. Let f : Y 99K X be a non-degenerate
rational map such that f(Y ) 6⊂ ∆. To prove the theorem, it suffices to show
that there exists a constant α independent of f and Y such that

f∗L ·Kp−1
Y ≤ αKp

Y .

Let πX : P(
∧p

TX) → X be the natural projection ontoX , and letOP(
∧

p TX)(1)
be the dual of the tautological line bundle on P(

∧p
TX). As the rational map f

is non-degenerate, it induces via its differential a rational map

f̃ :

(

Y ≃ P(
∧p

TY ) 99K P
(
∧p

TX
)

(y, [v1 ∧ . . . ∧ vp]) 7→
(

f(y), [dfy(v1) ∧ . . . ∧ dfy(vp)]
)

)

.

Observe that f̃ is well-defined outside a closed subset F of codimension at least
two. Indeed, writing f̃ in trivializations, one sees that the indeterminacy locus
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of f̃ comes either from the indeterminacy locus of f , which has codimension at
least two as Y is smooth, or from the indeterminacy locus of a rational map
from Y into the projective space P

(
∧p kdim(X)

)

, which is also of codimension
at least two by smoothness of Y . In particular, as Pic(Y ) ≃ Pic(Y \ F ) by
smoothness of Y , the pull-back by f̃ of any line bundle on P(

∧p
TX) is well-

defined.
Note that the rational map f also induces the following non-trivial morphism
of line bundles on Y \ F :

f :

∣

∣

∣

∣

∣

(K∨
Y )|Y \F −→

(

f̃∗OP(
∧

p TX )(−1)
)

|Y \F
(

y, v1 ∧ . . . ∧ vp
)

7−→
(

y, dfy(v1) ∧ . . . ∧ dfy(vp)
)

.
.

It extends to a non-trivial morphism of line bundles on Y by Riemann’s exten-
sion theorem (or an algebraic variant of it). In particular, since

Hom(K∨
Y , f̃

∗OP(
∧

p TX )(−1)) ≃ H0(Y,KY ⊗ f̃∗OP(
∧

p TX )(−1)),

one deduces that the divisor KY ⊗ f̃∗OP(
∧

p TX )(−1) is effective. On the other
hand, as

∧p
Ω1

X is ample modulo ∆, there exists an integer m > 0 such that

Bs
(

OP(
∧

p TX)(m)⊗ π∗
XL

−1
)

⊂ π−1
X (∆).

Note that m is independent of f and Y . Since f(Y ) 6⊂ ∆ (by assumption), the
pull-back

f̃∗
(

OP(
∧

p TX)(m)⊗ π∗
XL

−1
)

= f̃∗OP(
∧

p TX)(m)⊗ f∗L−1

remains effective. Define E := f∗L−1 ⊗ K⊗m
Y , and note that the following

equality

f∗L+ E = mKY (5.1)

holds. By the above, E is an effective divisor, as it the sum of two effective
divisors.
One now concludes the proof as follows. Take r ∈ N such that rKY is very
ample, and let H be a general complete intersection of p − 1 hypersurfaces in
the linear system |rKY |. Then one has the following equality

(f∗L) ·Kp−1
Y =

1

rp−1
deg(f∗L|H).

For a general H , the restricted divisor E|H remains effective, so that it follows
from (5.1) that

(f∗L) ·Kp−1
Y ≤

1

rp−1
deg

(

(mKY )|H)
)

= mKp
Y .

This finishes the proof, as m is independent of f and Y .
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