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Abstract. In this paper, we discuss the problem of derivation of
kinetic equations from the theory of weak turbulence for the quintic
Schrödinger equation. We study the quintic Schrödinger equation
on LT, with L ≫ 1 and with a non-linearity of size ε ≪ 1. We
consider the correlations f(T ) of the Fourier coefficients of the solution
at times t = Tε−2 when ε → 0 and L → ∞. Our results can be
summed up in the following way: there exists a regime for ε and L
such that for T dyadic, f(T ) has the form expected from the Physics
literature for kinetic regimes, but such that f has an infinite number
of discontinuity points. This discontinuity appears in the context of
finite-box effects.
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1 Introduction

In this paper, we discuss the problem of derivation of kinetic equations from
the theory of weak turbulence for the quintic Schrödinger equation.

Wave turbulence has been introduced by Peierls in the late 1920s, in [29] for
cristals. It describes the statistical dynamics of random non-linear waves. It
was followed by works by Brout and Prigogine, [3] and early developments are
described in the book by Prigogine [30]. In the 1960s, wave turbulence was
developed for plasma physics [32, 36], and in the context of water waves and
primitive equations, for example the works by Benney and co-authors [2], by
Hasselman [18, 19] and Zakharov and Filonenko [34, 35]. These works started
to describe the statistical dynamics of waves that were far from equilibrium, as
opposed to a perturbative study. Zakharov introduced in particular the now-
called Kolmogorov-Zakharov spectra, [33], that modelises a specific momentum
transport.

An extensive literature has been developed since in Physics, as it is reviewed
in the book by Nazarenko, [28].

The derivation of kinetic equations consists in describing the dynamics of the
statistic of random waves, that is to derive an equation satisfies by the moments
or the law of a solution to a generic Hamiltonian equation. It is called kinetic in
analogy with the kinetic equations for large systems of particles (eg the Vlasov
equation) but instead of having particles that interacts to form a non-linearity,
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one considers the repartition of waves, and these waves interacts to form a
non-linearity.
We first describe the expected result before describing our framework and re-
sults.
Consider the quintic Schrödinger Cauchy problem :

{
i∂tuε,L = −△ uε,L + ε|uε,L|4uε,L

uε,L(t = 0) = aL
(1)

on the torus LT, L≫ 1, with ε≪ 1 and with initial datum

aL =
∑

k∈Z

a(k/L)
eikx/L√
2πL

gk

where (gk)k is a sequence of independent centered and normalized Gaussian
variables, and a is a smooth, compactly supported map.
The map uε,L is a map from R × (LT) × Ω where Ω is a probability space
supporting the (gk)k, and △ is the Laplace-Beltrami operator on LT.
The issue at stake is the description of the dynamics of

E(|ûε,L(t, k)|2)

as ε goes to 0 and L goes to ∞, for any k ∈ 1
LZ, where

ûε,L(t, k) :=
1√
2πL

∫

LT

e−ikxuε,L(t, x)dx

is the Fourier transform of uε,L.
Note that because the law of the initial datum aL and the equation are invariant
under the action of space translations, we have

E(ûε,L(t, k′)ûε,L(t, k)) = 0

at all times t ∈ R, if k 6= k′.
The ersatz is the following. Approaching uε,L by its 0-th, first and second
Picard iterates, we get up to second order in ε,

uε,L(t) ∼ eit△aL + εbL(t) + ε2cL(t),

where bL and cL are solutions to the equations
{

i∂tbL = −△ bL + |eit△aL|4(eit△aL)
i∂tcL = −△ cL + 3|eit△aL|4bL + 2b̄L|eit△aL|2(eit△aL)2

with initial datum bL(t = 0) = cL(t = 0) = 0.
Up to second order, we thus get

∂tE(|ûε,L(t, k)|2)

∼ 2εRe
(

êit△aL(t, k)∂tb̂L(t, k)
)

+2ε2Re
(

êit△aL(t, k)∂tĉL(t, k)+b̂L(t, k)∂tb̂L(t, k)
)

.
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Because of probabilistic cancellations due to the law of the initial datum aL,
the term

Re
(
êit△aL(t, k)∂tb̂L(t, k)

)

involves only first order trivial resonances, which can be removed from the
solution by multiplicating y a phase, see [10, 26] for a discussion in different
contexts.
This suggests that the right scale of time is ε−2, and thus we consider the
quantity

Uε,L(t, k) = E(|ûε,L(tε−2, k)|2)
with

∂tUε,L(t, k) ∼ 2Re
(

̂eitε−2△aL(k)∂tĉL(tε
−2, k) + b̂L(tε−2, k)∂tb̂L(tε

−2, k)
)
.

This is valid only if the right hand side is not null.
By taking L→ ∞ and ε→ 0, we expect to get

Uε,L(t, k) =

3

2π3

∫

R5

δ(k+

5
∑

j=1

(−1)jkj)δ(∆(k,~k))
1

k − k1 + k2 − k3
|a(k)|2

5
∏

j=1

|a(kj)|2Fa(k,~k)d~k,

(2)

where ~k = (k1, . . . , k5), where

Fa(k,~k) =
( 1

|a(k)|2 − 1

|a(k1)|2
+

1

|a(k2)|2
− 1

|a(k3)|2
+

1

|a(k4)|2
− 1

|a(k5)|2
)
,

where ∆(k,~k) = k2 − k21 + k22 − k23 + k24 − k25 and where the δs are Dirac deltas.
The integral converges.
The aim of this paper is to illustrate the fact that this limit is far from being
obvious in generic regimes. The reason is that the Picard expansion does
not uniformly converge in L for times of order ε−2, the L2 Lebesgue norm of
the initial datum aL growing with L. The series of paper [4, 5, 6, 10] have
reached larger and larger times by developing fine analytic estimates for the
cubic Schrödinger equation due to the algebraic structure of the non-linearity.
In particular, they estimate so-called Dyson series. We also mention [1, 11].
However, full derivation of the kinetic equation for a slightly modified laplacian
and for the cubic Schrödinger equation for the regime ε = L−1 was reached in
[9] (in dimension d ≥ 3). In [31], the authors reach full derivation of the kinetic
equation for KdV type equations in dimension d ≥ 14, by taking L → ∞ and
then ε→ 0, as it is done in the physics literature.
In the series of papers [15, 13, 14], Dymov and Kuksin reach a satisfying result
at times of order ε−1, by using quasi-solutions for the cubic Schrödinger equa-
tion, a notion coming from the Physics literature. We take here an approach
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closer to their point of view. We also mention the work [26] on cubic equa-
tions on nets, [7, 8] on quadratic equations coming fluid mechanics, and [17].
For a general bibliographical review on connected subjects, we refer to [6] and
references therein.
Apart from the model (quintic Vs cubic or quadratic equations), chosen to get a
nontrivial manifold for the first order resonances, even when the dimension is 1,
the main differences with the above literature are threefold. One important
aspect of this work is that, to justify the use of quasi-solutions, we use the
stochastic tool of Wick products. A side advantage of this is that we avoid
certain possible correlations, that actually cancel each other out but that taken
individually would diverge at times of order ε−2. Another main difference is
that, in order to reach times of order ε−2, we prepare the approximation of
the equation in LT. We justify this approximation in the next subsections. It
allows to reach very large times.
Finally, we exhibit a regime for ε and L such that depending on the time
t ∈ R, we can get different behaviors for the sequence Uε,L(t, k). This regime
falls within the framework of finite-box effects, that is well-known in the Physics
literature - it is for instance described in Chapter 10 of [28] - because it is some-
thing that appears when doing experimental measurements. These finite box
effects appears when the nonlinear frequency broadening is not big compared to
the frequency spacing in the finite box. In our case, this translates as when ε2

is not very big compared to 1
L2 . In other words, we expect to see the kinetic

regime when

ε≫ L−1.

The regime we describe here is such that ε = o(L−1). In this case, one expects
to be in the regime of discrete wave turbulence. This means that the set of
5-waves interactions that contribute to the final limit is expected to be depleted
to the exact resonances. This is the context of the Diophantine problem for-
mulated by Kartashova in [22, 23]. This is what can be seen when one takes
first ε to 0 and then L to ∞. However, in the context of a regime in ε and L,
one must take into account the 2π-periodicity of sin – we mean the sine that
appears in (9). Here, we take indeed ε such that

ε≪ L−1 ⇔ L−2ε−2 ≫ 1

but we have that

L−2ε−2mod[2π] ≪ 1

which help us get close to a kinetic regime at specific given times in Theo-
rem 1.1. However, we still observe a depletion of contributing 5-waves interac-
tions at other times, which is what happens in Theorem 1.2.
The regime of discrete wave turbulence is discussed in [6]. This is when –
using the notation of this paper – Tkin ≫ 1. In this paper, they also treat the
case when Tkin ≪ 1, and in a previous paper [5], they dealt with Tkin ∼ 1.
We mention that the work by Dymov and Kuksin [15] deals with the kinetic
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regime case, but that [16] is about the derivation of effective equation in the
discrete turbulent regime.
Note that a mesoscopic behavior has been exhibited, combining both the kinetic
behavior of larger boxes and the discrete behavior of small boxes, as in [27].
We now describe our framework and results.

1.1 Framework

Let (ξk)k∈Z be a sequence of real, independent, centered and normalized Gaus-
sian variables. We write (Ω,F ,P) their underlying probability space and A
the σ-algebra generated by the (ξk)k. Given a well-chosen sequence (qk)k∈Z of
positive real numbers, we define S−1(H

s(LT)), s > 1
2 the space of Kondratiev’s

distributions of (Ω,A,P) on Hs(LT). For the exact definition of Kondratiev’s
distributions, we refer to Subsection 2.1. Here, we use the terminology of
[21, 25], and for the general definition of Kondratiev’s distributions, we re-
fer to the original work [24]. The Wick product (see again Subsection 2.1) is
well-defined on S−1(H

s(LT)), we denote it ⋄.
Let FL be the map defined on Fourier mode by, for all k ∈ 1

LZ,

F̂L(α, β, γ, δ, η)(k) =
1

(2πL)

∑

CL(k)

α̂(k1) ⋄ β̂(k2) ⋄ γ(k3) ⋄ δ(k4) ⋄ η(k5),

where

CL(k) =
{
(k1, k2, k3, k4, k5) ∈

( 1

L
Z

)5 ∣∣∣ k1 − k2 + k3 − k4 + k5 = k,

|k − k1 + k2 − k3| ≥ µ−1(L), |k2 − k21 + k22 − k23 + k24 − k25 | ≥ ν−1(L)
}

(3)

and where we used the abuse of notation

α̂(k1) ⋄ β̂(k2) =
(
(α̂(k1)e

ik1x) ⋄ (β̂(k2)eik2x)
)
e−i(k1+k2)x.

Here, µ and ν are sequences indexed by L ∈ N∗ that go to ∞ as L goes
to ∞. The sequence ν helps with avoiding the first order resonances, and µ
compensates ν when taking the final limits and obtaining the Dirac deltas.
Note that taking (uL) a sequence of maps such that uL ∈ S−1(Hs(LT)) and
such that for any α ∈ NZ

f , the sequence ‖(uL)α‖Hs(LT) is uniformly bounded
in L (see Remark 3.1 for the relevance of this property), then we have that for
all smooth and compactly supported map f , and all α ∈ NZ

f ,

〈f, FL(u, u, u, u, u)α − (u ⋄ ū ⋄ u ⋄ ū ⋄ u)α〉 →
L→∞

0,

where 〈·, ·〉 is the inner product in R, as soon as ν goes to ∞ with L.
We consider the Cauchy problem

{
i∂tuε,L = −△ uε,L + εFL(u, u, u, u, u)

uε,L(t = 0) = aL
(4)
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where aL is given by

aL =
∑

k∈Z

a(k/L)
eikx/L√
2πL

gk,

where gk = 1√
2
(ξϕ(0,k)+ iξϕ(1,k)) with ϕ a bijection from {0}×Z⊔{1}×Z to Z.

The sequence (gk)k is a sequence of independent, centered, normalized complex
Gaussian variables. This is the classical way of extending real Gaussian Hilbert
spaces to complex ones.
We call PN the projection onto the Wiener chaos of degree at most N .
We are now ready to state the results.

1.2 Results

Theorem 1.1. For any L ∈ N∗, there exists a Banach algebra X ⊆
S−1(H

s(LT)) into which the Cauchy problem (4) is globally well-posed and such
that aL ∈ X. Set N ∈ N∗, M ≥ N , and set f and g two smooth compactly
supported maps of R.
Assume that ε writes

ε−2 = 2πL22L + ρ(L),

that ρ, ν and µ satisfy the following relationships:




∃α > 0, ν(L)1+α = o(L1/2),
ρ(L) = o(µ(L)),

ρ(L)µ(L) = o(ν(L)),

ln2(µ(L)) = o(ρ1/4),
µ(L) → ∞,
ρ(L) → ∞

(5)

and finally assume that t is dyadic and not null.
Then, we have

lim
L→∞

∂tE(〈PNUL, f〉〈g, PMUL〉)(t) =

3

4π4

∫

R6

δ(k +
5

∑

j=1

(−1)jkj)δ(∆(~k))
1

k − k1 + k2 − k3

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)dk
5
∏

j=1

dkj

and besides the integral converges.
Above, we have UL = uε,L(tε

−2), ∆(~k) = k2−k21 +k22 −k23 +k24 −k25 and the δs
are Dirac deltas.

Remark 1.1. The regime ν = Lα, µ = Lβ, ρ = Lγ with 0 < γ < β < α < 1
2

and β + γ < α satisfies the assumptions (5).

Remark 1.2. On the one hand, this theorem applies to a class of times that
are dense in R. If the dyadic numbers are not satisfying, they can be changed
to rational numbers by choosing the regime

ε−2 = 2πL2L! + ρ(L).

Documenta Mathematica 27 (2022) 2491–2561



2498 A.-S. de Suzzoni

However, this will serve us to prove that

t 7→ lim
L→∞

∂tE(〈PNUL, f〉〈g, PMUL〉)(t)

has a chaotic behavior.

Theorem 1.2. With the same notations as in Theorem 1.1, assuming that ε
writes

ε−2 = 2πL22L + ρ(L),

that ρ, ν and µ satisfy (5) and that t ∈ 1
3+D, D being the set of dyadic numbers,

we have

lim
L→∞

∂tE(〈PNUL, f〉〈g, PMUL〉)(t) =

1

12π4

∫

R6

δ(k +

5
∑

j=1

(−1)jkj)δ(∆(~k))
1

k − k1 + k2 − k3

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)dk
5
∏

j=1

dkj

and besides the integral converges.

Remark 1.3. The difference is in the constant in front of the integral.

Remark 1.4. The behavior on the sequence ∂tE(〈PNUL, f〉〈g, PMUL〉) depends
mainly on the behavior of the sequence

2Lt− ⌊2Lt⌋.

In the case when t is rational, because the sequence 2Lt−⌊2Lt⌋ is pre-periodic,
we believe that

lim
L→∞

∂tE(〈PNUL, f〉〈g, PMUL〉)(t) =

C(t)

∫

R6

δ(k +
5

∑

j=1

(−1)jkj)δ(∆(~k))
1

k − k1 + k2 − k3

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)dk
5
∏

j=1

dkj

or at least that the sequence admits a finite number of adherence values of this
form.
The behavior of 2Lt − ⌊2Lt⌋ when t is irrational is not so obvious. We recall
that the closure of

{2Lt− ⌊2Lt⌋ | L ∈ N}
is either the torus R/Z or a subset of null Haar measure, but that it is almost
surely the torus. When (2Lt−⌊2Lt⌋)L is dense in the torus, we believe that the
sequence

(∂tE(〈PNUL, f〉〈g, PMUL〉)(t))L
has at least an infinite number of adherence values.
For a complete description of the behavior of the sequence 2Lt−⌊2Lt⌋, we refer
to [12].
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Remark 1.5. Given a fixed t, a similar argument to ours will yield that there
exists a regime ε(t, L) such that

lim
L→∞

∂tE(〈PNUL, f〉〈g, PMUL〉)(t) =

3

4π4

∫

R6

δ(k +
5

∑

j=1

(−1)jkj)δ(∆(~k))
1

k − k1 + k2 − k3

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)dk
5
∏

j=1

dkj

or written differently that

lim inf
ε→0,L→∞

∣

∣

∣
∂tE(〈PNUε,L, f〉〈g, PMUε,L〉)(t)

− 3

4π4

∫

R6

δ(k +

5
∑

j=1

(−1)jkj)
δ(∆(~k))

k − k1 + k2 − k3

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)dk
5
∏

j=1

dkj

∣

∣

∣ = 0.

This may be compared with the result of [26].

Remark 1.6. We restricted ourselves to the dimension 1 for seek of clarity but
the techniques used do not depend on dimension, except when the dimension
plays a role in the structure of first order resonances. The results could be
carefully extended to higher dimension with some adaptation.

The proof relies on the following strategy. We first describe solutions uε,L as a
series (converging in Kondratiev’s distributions) where each term corresponds
to a certain degree in terms of Wiener chaos decomposition. Then, we describe
each term of the series thanks to trees, or so-called Feynman diagrams. Finally,
we analyze each of these trees and decide which of them are contributing to
the considered limit.
The relevant trees are the ones with only one node, or of Wiener chaos of
degree 1. The others are irrelevant for mainly two reasons: either they give
a contribution of size εnt2nf(L) with f(L) → 0, which gives, taking time t
of order ε−2 something that goes to 0 when L goes to ∞; or they give a
contribution of size ε2ntmg(L) with m < n, in which case, taking as time
scale ε−2, we get a contribution of size ε2(n−m)g(L) and we use that ε2(n−m)

can compensate the behavior of g(L), as long as it has at most polynomial
growth.
The first case arises when, in the history of interactions between the different
wavelengths, special resonances occurs. This translates as constraint equations
on the wavelengths and is explained in Subsection 4.2.
The second case arises in a more general context, which is explained in Sub-
section 4.1.
The reason we ask in CL(k) (and thus in the non-linearity) that |∆(~k)| ≥
ν−1(L) and then, in Assumptions (5), ν1+α = O(L1/2) is to deal with the trees
presenting constraint estimates. It is probably not optimal, as explained in
Remark 4.1 but the proof suggests that the optimal assumption is ν1+α = o(L).

The issue is that simply assuming ∆(~k) = 0 ensures only that |∆(~k)| ≥ L−2.
Hence, we need the condition on ν to be far enough from first order resonances.
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We now explain the special regime for ε. If

ε−2t ∈ ρt(L) + 2πL2
Z

we need ρt(L) = o(L) while ρt(L) goes to ∞ to get the result. But if

ε−2t = ρt(L) = o(L)

then ε(L) cannot be small enough to close the argument. So, we decided to
use the degree of freedom in 2πL2Z. To include the dyadic numbers, we chose

ε−2 = 2πL22L + ρ(L)

and thus ε was small enough to be able to be far from optimality regarding the
trees contributing as ε2ntmg(L).
Finally, the reason we ask |k−k1+k2−k3| ≥ µ−1(L) is to be able to manipulate
integrals when passing from sum to integral or when getting Dirac deltas.

1.3 Organization of the paper

In Section 2, we review the definitions of Kondratiev’s distributions and Wick’s
product. We prove global well-posedness of Equation (4).
In Section 3, we define quintic trees and ordered quintic trees, that we use to
describe the solution uε,L as a sum indexed by these trees.
In Section 4, we estimates the different contributions of the trees.
In Section 5, we take the final limits that yield to our result.
Finally, for the rest of the paper, we write Z/L = 1

LZ to lighten notations.

Acknowledgments
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2 Wick’s product, well-posedness of the equation

2.1 Wick’s product, Kondratiev’s distributions

Let Ω,A,P be a probability onto which one can define (ξk)k∈Z a sequence of
independent Gaussian variables centered and normalized. For any α ∈ NZ with
finite support, we define

ξα :=
∏

k∈Z

Hαk
(ξk)√
αk!

,

where Hαk
is the αk-th Hermite polynomial. It is a well-known fact that∏

k

√
αk!ξα is the orthogonal (in L2((Ω,A,P))) projection of

∏

k∈Z

ξαk

k
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on the orthogonal of the polynomials of degree at most |α| − 1 =
∑

k αk − 1.
Let F be the sigma-algebra generated by the sequence (ξk)k. We recall that
for any φ ∈ L2((Ω,F ,P), Hs(LT)), we have the decomposition (called Wiener
chaos decomposition)

φ =
∑

α∈NZ

f

φαξα

where φα ∈ Hs(LT) and NZ

f is the set of sequences in NZ with finite support.
What is more,

‖φ‖2L2(Ω,Hs(LT)) =
∑

α

‖φα‖2Hs(LT).

For more information on Wiener chaos, we refer to [20]. For the rest of this
section, we omit the dependence in LT of the Sobolev spaces.
Let q = (qk)k∈Z ∈ CZ, α, β ∈ NZ

f , we introduce the notations

qα =
∏

k

qαk

k , α! =
∏

k

αk!, |α| =
∑

k

αk, C
α
α+β =

(α+ β)!

α!β!
.

Moreover, we write (0) the sequence in NZ identically equal to 0.
We define the Wick’s product of ξα and ξβ as the orthogonal projection in
L2((Ω,F ,P)) of

ξαξβ

on the orthogonal of the polynomials of degree at most |α|+ |β| − 1, that is

ξα ⋄ ξβ =
√
Cα

α+βξα+β .

Let (qk)k be a sequence of increasing, positive numbers such that for all D > 0,
there exists N ∈ N such that

∑

k

1

qNk
<

1

4D
.

We recall that the space of Kondratiev distributions S−1(H
s) is defined as the

inductive limit of spaces (S−1,−l(H
s))l∈N where S−1,−l(H

s) is the closure of
L2(Ω, Hs) with regards to the norm

‖φ‖2−1,−l =
∑

α

1

α!
q−lα‖φα‖2Hs .

The space of Kondratiev’s distributions is the dual of the space

S1(H
−s) =

⋂

l∈N

S1,l(H
−s)

where S1,l(H
−s) is induced by the norm

‖φ‖2S1,l
=

∑

α

α!qlα‖φα‖2H−s .
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For any φ ∈ S−1(H
s), we have the chaos expansion

φ =
∑

α

φαξα

therefore, we can define the Wick’s product of two elements of S−1(H
s), φ and

ψ by

(φ ⋄ ψ)α =
∑

α1+α2=α

√
Cα1

α φα1ψα2 .

Note that for any s > 1
2 , if φ ∈ S−1,−l1(H

s) and ψ ∈ S−1,−l2(H
s), taking

l = max(l1 +A, l2), where ∑

k

1

qAk
< 1,

we have since Hs is an algebra,

‖φ ⋄ ψ‖2−1,−l =
∑

α

1

α!
q−lα‖(φ ⋄ ψ)α‖2Hs =

∑

α

∑

α1,α2

( q−l(α−α1)/2

√
(α− α1)!

‖ψα−α1‖Hs

q−l(α−α2)/2

√
(α − α2)!

‖ψα−α2‖Hs

q−lα1/2

√
α1!

‖φα1‖Hs

q−lα2/2

√
α2!

‖φα1‖Hs

)
.

By Cauchy-Schwarz, we have

‖φ ⋄ ψ‖2−1,−l ≤
(∑

α

q−lα/2

√
α!

‖φα‖Hs

)2

‖ψ‖2−1,−l

where indeed, ‖ψ‖−1,−l <∞. Again by Cauchy-Schwarz, we have

‖φ ⋄ ψ‖2−1,−l ≤
∑

α

q−(l−l1)α‖φ‖2−1,−l1‖ψ‖2−1,−l.

We recognize
∑

α

q−(l−l1)α =
∑

N∈N

(∑

k

1

ql−l1
k

)N

which is finite since ∑

k

1

ql−l1
k

is strictly less than 1.

Therefore the Wick product of 2 elements of S−1(H
s) is well-defined.

The space S−1(H
s) is called the space of Kondratiev distributions of Hs.

Documenta Mathematica 27 (2022) 2491–2561



Singularities in the Weak Turbulence Regime 2503

2.2 Embeddings

Definition 2.1. Let Cα be defined as

C0 = 0, Cα = 1, for all |α| = 1

and
Cα =

∑

α1+α2=α

Cα1Cα2 .

Lemma 2.2. We have for all α ∈ NZ

f ,

Cα ≤ 4|α|.

Proof. Let (zk)k ∈ RZ be sequence with finite support such that

∣∣∣
∑

zk

∣∣∣ < 1

4
.

Set M ∈ N and
FM (z) =

∑

|α|≤M

zαCα.

This is a finite sum, therefore, it converges.
We have

FM (z) =
∑

|α|=1

zα +
∑

1<|α|≤M

∑

α1+α2=α

zαCα1Cα2 .

therefore
FM (z) =

∑

k

zk + FM (z)2 −
∑

AM

Cα1Cα2z
α

where AM = {(α1, α2)| |α1|, |α2| ≤M, |α1 + α2| > M}. We work on the union
of nonempty submanifolds of Rd, d ∈ N∗,

{z ∈ R
Z

f

∣∣∣ |
∑

zk| <
1

4
and |

∑

k

zk −
∑

AM

Cα1Cα2z
α| < 1

4
}.

Writing

GM (z) =
∑

AM

Cα1Cα2z
α

we have

FM (z) =
1

2
± 1

2

√
1− 4

∑

k

zk + 4GM .

Because FM (0) = 0, we have

FM (z) =
1

2
− 1

2

√
1− 4

∑

k

zk + 4GM .
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Expanding the square root, we get

FM (z) =
∑

k

zk −GM +
∑

n>1

(2n− 3)!

n!(n− 1)!

(∑

k

zk −GM

)N

.

Keeping in mind that FM is a polynomial of degree at most M in z, and
that GM is a polynomial of degree at least M + 1, we have

FM (z) =
∑

k

zk +
∑

1<n≤M

(2n− 3)!

n!(n− 1)!

(∑

k

zk

)N

.

Therefore

FM (z) =
∑

k

zk +
∑

1<n≤M

∑

|α|=n

(2n− 3)!

n!(n− 1)!
zα.

Thus, for all 1 < |α| ≤M , we have

Cα =
(2|α| − 3)!

|α|!(|α| − 1)!
≤ 4|α|.

Besides, for all |α| = 1, Cα = 1 ≤ 4, which concludes the proof.

Definition 2.3. Let D > 0, and X(D) be the space of Kondratiev’s distribu-
tions φ such that φ0 = 0 and

sup
α

‖φα‖Hs√
α!CαD|α|

<∞

endowed with the norm

‖φ‖X(D) = sup
α

‖φα‖Hs√
α!CαD|α|

.

Proposition 2.4. The space X(D) is a Banach algebra (for the Wick product).

Partial proof. We prove that X(D) is complete. Let φn be a Cauchy sequence
in X(D). We have that by definition of X(D), at α fixed, the sequence φnα
is Cauchy in Hs and thus converges towards some φα in Hs. By the usual
arguments, we have

sup
α

‖φα‖Hs√
α!CαD|α|

<∞

and

sup
α

‖φα − φnα‖Hs√
α!CαD|α|

→ 0

when n goes to ∞. The issue at stake is to prove that (φα)α is indeed a
Kondratiev distribution.
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We have for l big enough

∑

α

‖φα‖2Hs

q−lα

α!
≤

∑

α

C2
αD

2|α|q−lα‖φ‖2X(D).

Because of the bound on Cα, we have

∑

α

‖φα‖2Hs

q−lα

α!
≤

∑

α

(4D)2|α|q−lα‖φ‖2X(D).

We recognize ∑

α

(4D)2|α|q−lα =
∑

n

(4D)2n
(∑

k

1

qlk

)
.

For l big enough ∑

k

1

qlk
<

1

(4D)2

hence (φα)α defines an element of S−1,−l(H
s) and thus a Kondratiev distribu-

tion.
We omit the proof that X(D) is an algebra as the fact is irrelevant for the
sequel and the proof is fairly straightforward.

2.3 Global well-posedness of the equation

LetXt(D) be the space of φ ∈ C(R,S−1(H
s)) such that for all t ∈ R, φ(t)(0) = 0

and induced by the norm :

‖φ‖Xt(D) = sup
t∈[−T,T ]

〈t〉1/4‖φ‖X(D〈t〉1/4).

Proposition 2.5. Let D0 > 0. There exists D > D0 such that for all φ0 in
the unit ball of X(D0) with (φ0)(0) = 0, the Cauchy problem

{
i∂tφ = −△ φ+ εFL(φ)

φ(t = 0) = φ0
(6)

admits a unique global solution in Xt(D) and the flow thus defined is continuous
in the initial datum.

Proof. We solve the fix point problem

φ(t) = A(φ) := S(t)φ0 − i

∫ T

0

S(t− τ)FL(φ(τ))dτ

in the ball ofXt(D) of radius η forD big enough. Since the linear flow preserves
the Hs norm, and since for all t ∈ R and Φ such that Φ(0) = 0,

〈t〉1/4‖Φ‖X(D〈t〉1/4) = sup
|α|>1

‖Φα‖Hs√
α!CαD|α|〈t〉(|α|−1)/4

≤ ‖Φ‖X(D),

Documenta Mathematica 27 (2022) 2491–2561



2506 A.-S. de Suzzoni

we have

〈t〉1/4‖A(φ)(t)‖X(D〈t〉1/4) ≤ ‖φ0‖X(D) + |t|〈t〉1/4ε sup
τ∈[0,t]

‖FL(φ)(τ)‖X(D〈t〉1/4).

We have by definition

F̂L(φ)(k) =
1

(2πL)2

∑

CL(k)

φ̂(k1) ⋄ φ̂(k2) ⋄ φ̂(k3) ⋄ φ̂(k4) ⋄ φ̂(k5).

where

CL(k) = {(k1, . . . , k5) ∈ Z/L | |k1 − k2 + k3 − k4 + k5 = k,

|∆(~k)| ≥ ν−1, |k1 − k2 + k3| ≥ µ−1}.

Therefore, for α ∈ NZ

f such that |α| ≥ 5 (for |α| < 5, F̂L(φ)α = 0),

F̂L(φ)α(k) =
1

(2πL)2

∑

α1+α2+α3+α4+α5=α

√
α!√

α1!α2!α3!α4!α5!
∑

CL(k)

φ̂α1(k1)φ̂α2(k2)φ̂α3(k3)φ̂α4(k4)φ̂α5(k5).

We get

|F̂L(φ)α(k)| ≤
1

(2πL)2

∑

α1+α2+α3+α4+α5=α

√
α!√

α1!α2!α3!α4!α5!
∑

k1−k2+k3−k4+k5=k

∣∣∣φ̂α1(k1)φ̂α2(k2)φ̂α3 (k3)φ̂α4 (k4)φ̂α5(k5)
∣∣∣.

By convexity of 〈x〉2s and Cauchy-Schwarz (and using that s > 1/2), we get

‖FL(φ)α‖Hs .

∑

α1+α2+α3+α4+α5=α

√
α!√

α1!α2!α3!α4!α5!
‖φα1‖Hs‖φα2‖Hs‖φα3‖Hs‖φα4‖Hs‖φα5‖Hs .

We have using the norm of φ, for some constant Cs depending on the Sobolev
regularity,

‖FL(φ)α(τ)‖Hs ≤ Cs

√
α!(〈τ〉1/4D)|α|Cα‖φ‖5X(〈τ〉1/4D),

that is
‖FL(φ)α(τ)‖Hs ≤ Cs

√
α!(〈τ〉1/4D)|α|Cαη

5〈τ〉−5/4.

Note that this Cs does not depend on (or is uniformly bounded in) L ∈ N∗ as
its dependence in L is characterized by the value of

1

L

∑

k∈Z/L

〈k〉−2s ≤ 1

L
+ 2

∫
dx〈x〉−2s.
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Because |α| ≥ 5, and 〈τ〉 ≤ 〈t〉, we have

‖FL(φ)α(τ)‖Hs ≤ Cs(〈t〉1/4D)|α|Cαη
5〈t〉−5/4.

We deduce

‖FL(φ)(τ)‖X(D〈t〉) ≤ Cs〈t〉−5/4η5.

Taking η such that Csη
4ε ≤ 1

2 , we get

‖A(φ)‖Xt(D) ≤
D0

D
‖φ0‖X(D0) +

1

2
η.

Taking D such that
D0

D
≤ 1

2
η

we get that the ball of Xt(D) of radius η is stable under A. A similar argument
yields that A is contracting for η such that

C̃sεη
4 ≤ 1

2

where C̃s is a constant independent from L but depending on the Sobolev
regularity s.

3 Trees, description of the solution

3.1 Picard expansion

Let ϕ be a bijection from {0, 1} × Z to Z. We call, by abuse of notation,

ξι,k = ξϕ(k).

We set

gk = ξ0,k + iξ1,k.

Let, for all x ∈ (LT)2,

aL(x) =
∑

k∈Z

gk
eikx/L√

2π
a(
k

L
)

where a is a smooth function with compact support. We call

uε,L

the solution to

i∂tuε,L = −△ uε,L + εFL(uε,L)

with initial datum aL in Xt(D) for some D big enough.
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First, note that, setting Supp α = {k ∈ Z | αk 6= 0}, we have

(aL)α =





eikx/L
√
L
a(k/L) if |α| = 1 and Supp(α) = {ϕ(0, k)}

i e
ikx/L
√
L
a(k/L) if |α| = 1 and Supp(α) = {ϕ(1, k)}
0 otherwise.

.

Hence
‖(aL)α‖Hs ≤ sup

x∈R

〈x〉s|a(x)|

and therefore aL is in the unit ball of X(D0) for any D0 ≥ ‖〈x〉sa‖L∞ . Hence
uε,L is well-defined.

Remark 3.1. We have that aL belongs to some X(D0) with D0 uniformly
bounded in L. According to the proof of Proposition 2.5, we have that the
solution

uε,L

belongs to Xt(D) with
D = csD0ε

1/4

where cs is a constant depending only on the Sobolev regularity s and thus D
is uniformly bounded in L.
Finally, we have

‖(uε,L(t))α‖Hs(LT) ≤
√
α!CαD

|α|〈t〉 1
4 (|α|−1)

and thus for all α ∈ NZ

f and all t ∈ R, we have that

‖(uε,L(t))α‖Hs(LT)

is uniformly bounded in L.

Proposition 3.1. Set u0,L = S(t)aL := eit∆aL and define the sequence un,L
by induction on n: for n ∈ N, un+1,L is the solution to

i∂tun+1,L

= −△ un+1,L +
∑

n1+n2+n3+n4+n5=n

FL(un1,L, un2,L, un3,L, un4,L, un5,L)

with initial datum 0.
Then, the series ∑

n∈N

εnun,L

converges in Xt(D) for D big enough.
The solution uε,L to (4) satisfies

uε,L =
∞∑

n=0

εnun,L.
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What is more, setting PN the projection over chaos of degree at most N , we
have

PNuε,L =

M∑

n=0

εnun,L

with M = ⌊N−1
4 ⌋.

Proof. We prove that the series

∞∑

n=0

εnun,L

converges in Xt(D) for D big enough.
We prove that un,L is either 0 or a Wiener chaos of exact degree 4n + 1 (by
which we mean a sum of monomials of exact degree 4n + 1) and that there
exists D big enough and η small enough such that ‖un,L‖Xt(D) ≤ η ≤ 1. This
is true for u0,L, we have for any η > 0,

‖u0,L‖Xt(
‖〈x〉sa‖L∞

η )
≤ η.

We prove that this is true for any n by induction.
We have

un+1,L(t) = −i
∫ t

0

S(t− τ)
∑

n1+n2+n3+n4+n5=n

FL(un1 , un2 , un3 , un4 , un5)

where we recall that S(t) is the linear flow eit∆. Since unj is of exact degree
4nj + 1, we get that

FL(un1 , un2 , un3 , un4 , un5)

is of degree 4(n1 + n2 + n3 + n4 + n5) + 5 = 4n + 5 = 4(n + 1) + 1 or null.
Besides, for any α, we have

‖un+1,L(t)α‖Hs ≤
C(α!)1/2|t|

∑

n1+n2+n3+n4+n5=n

∑

α1+α2+α3+α4+α5=α

sup
τ≤t

∏

j

‖unj (τ )αj‖Hs(αj !)
−1/2.

Using that
‖unj (τ)αj‖Hs(αj !)

−1/2

is 0 if |αj | 6= 4nj + 1 and is less that

D4nj+1〈τ〉njCαj

√
αj !ν

we get, if |α| = 4n+ 5,

‖un+1,L(t)α‖Hs ≤ Cν5(α!)1/2|t|
∑

α1+α2+α3+α4+α5=α

∏

j

CαjD
4(n+1)+1〈t〉n = Cν5CαD

4(n+1)+1〈t〉n+1
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and is 0 if |α| 6= 4n+ 5.
Hence

‖un+1,L‖Xt(D) ≤ Cν5.

For ν small enough such that Cν4 ≤ 1, we have indeed ‖un+1,L‖Xt(D) ≤ ν.
Therefore, since ν ≤ 1 and ε < 1, the series

∑

n

εnun,L

converges in Xt(D) for D = ‖〈x〉sa‖L∞

ν .
Since this series satisfies equation

i∂tu = −△ u+ εFL(u)

with initial datum u0,L, we have

uε,L =
∑

n

εnun,L.

What is more,

PNuε,L =
∑

n

εnPNun,L

and because un,L is of degree 4n+1, we get PNun,L = un,L if 4n+1 ≤ N and
is 0 otherwise.

We set

ûn,L(k, t) =
1

2πL

∫

TL

un,L(x, t)e
−ikxdx.

We get that ûn,L(k) satisfies for n ≥ 1,

i∂tûn,L = k2ûn,L(k) +
1

(2πL)2

∑

n1+n2+n3+n4+n5=n−1∑

CL(k)

ûn1,L(k1) ⋄ ûn2,L(k2) ⋄ ûn3,L(k3) ⋄ ûn4,L(k4) ⋄ ûn5,L(k5).

We set vn,L(k, t) = eik
2tûn,L(k, t) and get the equation

v0,L(k, t) = a(k)

and

i∂tvn,L(k) =
1

(2πL)2

∑

n1+n2+n3+n4+n5=n−1∑

CL(k)

ei∆(~k)tvn1,L(k1) ⋄ vn2,L(k2) ⋄ vn3,L(k3) ⋄ vn4,L(k4) ⋄ vn5,L(k5). (7)
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3.2 Quintic trees

All the definitions in this subsection and the next one have examples in Ap-
pendix A.

Definition 3.2. Let k ∈ Z/L. We define by induction the set Tn[k] of quintic
trees with n nodes by

T0[k] = {(k)}
and

Tn+1[k] = {(T1, T2, T3, T4, T5, k) | ∀j = 1, . . . , 5, Tj ∈ Tnj [kj ] with∑
nj = n, (k1, . . . , k5) ∈ CL(k)}.

We set
lTn =

⋃

k∈Z/L

Tn[k].

Definition 3.3. For any tree we define the following functions or random
variables. First, we set

F(k)(t) = 1, g(k) = gLk, A(k) = a(k),

and if T = (T1, T2, T3, T4, T5, k) with Tj ∈ Tnj [kj ], we set

FT (t) = −i
∫ t

0

ei∆τFT1(τ)FT2 (τ)FT3 (τ)FT4 (τ)FT5(τ)dτ

and
gT = gT1 ⋄ gT2 ⋄ gT3 ⋄ gT4 ⋄ gT5 , AT = AT1AT2AT3AT4AT5 .

Definition 3.4. Finally, we define the labels ~T of the leaves of a tree T in the
following way

~(k) = k ∈ Z/L

and for T = (T1, T2, T3, T4, T5, k) writing (kj,1, . . . , kj,4nj+1) = ~Tj with Tj ∈
Tnj [lj], we set

~T = (k1,1, . . . , k1,4n1+1, k2,1, . . . , k2,4n2+1,

k3,1, . . . , k3,4n3+1, k4,1, . . . , k4,4n4+1, k5,1, . . . , k5,4n5+1).

Remark 3.2. The definition is consistent as ~T ∈ R4n+1 for any T ∈ lTn.
Proposition 3.5. Let T ∈ Tn[k] and ~T = (k1, . . . , k4n+1), we have

k =
4n+1∑

j=1

(−1)j+1kj , AT =
4n+1∏

j=1

a(kj , (−1)j+1), gT =
4n+1

♦
j=1

gkj ,(−1)j+1 .

We used the notation

a(kj , 1) = a(kj) and a(kj ,−1) = a(kj)

gkj,1 = gkjL and gkj ,−1 = gkjL
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Proof. By induction starting from Equation (7).

Proposition 3.6. We have for all (n, k, t) ∈ N× Z/L× R,

vn,L(k, t) =
[ 1

(2πL)2

]n ∑

T∈Tn[k]

FT (t)AT gT .

Proof. By induction.

We introduce unlabelled quintic trees.

Definition 3.7. Let Tn defined by induction by

T0 = {⊥}

and

Tn+1 = {(T1, T2, T3, T4, T5)|∀j = 1, . . . , 5, Tj ∈ Tnj

5∑

j=1

nj = n}.

Given ~k = (k1, . . . , k4n+1) ∈ (Z/L)4n+1, we write

⊥(~k) = (k1)

and

(T1, T2, T3, T4, T5)(~k) = (T1(~k1), T2(~k2), T3(~k3), T4(~k4), T5(~k5), k)

with Tj ∈ Tnj and ~kj = (kñj+1, . . . , kñj+4nj+1) with

ñj =

j−1∑

l=1

(4nl + 1) and k = −
4n+1∑

j=1

(−1)jkn.

We now give a definition of labels for the nodes and the leaves that helps seeing
the ”history” of the tree, as the paternity of nodes.

Definition 3.8. For any tree T ∈ ⋃
n Tn we define by induction

N(⊥) = ∅, Ñ(⊥) = {0}

and if T = (T1, T2, T3, T4, T5), we write

N(T ) = {0} ⊔ ({1} ×N(T1))

⊔ ({2} ×N(T2)) ⊔ ({3} ×N(T3)) ⊔ ({4} ×N(T4)) ⊔ ({5} ×N(T5))

and

Ñ(T ) = {0} ⊔ ({1} × Ñ(T1))

⊔ ({2} × Ñ(T2)) ⊔ ({3} × Ñ(T3)) ⊔ ({4} × Ñ(T4)) ⊔ ({5} × Ñ(T5)).
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Definition 3.9. Let ~k = (k1, . . . , k4n+1) ∈ (Z/L)4n+1. We define

kT,~k : Ñ(T ) → Z/L

such that k⊥,~k(0) = k1 and if T = (T1, T2, T3, T4, T5) with Tj ∈ Tnj and ~kj =

(kñj+1, . . . , kñj+4nj+1) with

ñj =

j−1∑

l=1

(4nl + 1)

we define

kT,~k(0) =

4n+1∑

j=1

(−1)j+1kj and kT,~k((j,m)) = kTj ,~kj
(m).

We define also
ΩT,~k : N(T ) → R

such that

ΩT,~k(0) = k2
T,~k

(0)− k2
T,~k

((1, 0))

+ k2
T,~k

((2, 0))− k2
T,~k

((3, 0)) + k2
T,~k

((4, 0))− k2
T,~k

((5, 0))

and
ΩT ((j, l)) = (−1)j+1ΩTj (l).

We use the notation Ω instead of ∆ because of the discussion of the sign.
Finally, we define a condition on ~k such that T (~k) ∈ Tn[k].
Definition 3.10. We define by induction CT (k) by

C⊥(k) = {k}

and ~k ∈ CT (k) iff

kT,~k(0) = k, |kT,~k(1, 0)− kT,~k(2, 0) + kT,~k(3, 0)− kT,~k(0)| ≥ µ−1,

and
|ΩT,~k(0)| ≥ ν−1, ∀j = 1, . . . , 5, ~kj ∈ CTj (kT,~k(j, 0))

with T = (T1, . . . , T5), Tj ∈ Tnj and

~kj = (kñj+1,...,kñj+4nj+1)

with ñj =
∑

l<j(4nl + 1).

Proposition 3.11. We have

Tn[k] = {T (~k)|T ∈ Tn and ~k ∈ CT (k)}.
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Proof. By induction using Definition 3.7.

Proposition 3.12. We have for all (n, k, t) ∈ N× Z/L× R,

vn,L(k, t) =
[ 1

(2πL)2

]n ∑

T∈Tn

∑

~k∈CT (k)

FT (~k)(t)A~kg~k

where

A~k =

4n+1∏

j=1

a(kj , (−1)j+1) and g~k =
4n+1

♦
j=1

gkj,(−1)j+1 .

Proof. Direct consequence of Propositions 3.6, 3.11, and 3.5.

3.3 Ordered trees

Definition 3.13. We define on N(T ) the partial order relation RT such that
for all l ∈ N(T ),

j RT 0

for all l1 = (j1,m1) ∈ {j1} × N(Tj1) and l2 = (j2,m2) ∈ {j2} × N(Tj2), we
have

l1RT l2 ⇔ j1 = j2 and m1RTj1
m2.

Remark 3.3. The partial order RT represents parenthood in the tree.

Proposition 3.14. The cardinal of N(T ) is n. We have

FT (~k)(t) = (−i)NT

∫

IT (t)

∏

l∈N(T )

eitlΩT,~k
(l)dtl

where IT (t) = {(tl)l∈N(T ) ∈ [0, t]n | l1Rl2 ⇒ tl1 ≤ tl2} and where NT is
defined by induction on the number of nodes of T by N⊥ = 0 and for T =
(T1, T2, T3, T4, T5),

NT = 1−
5∑

j=1

(−1)jNTj .

Lemma 3.15. We have

IT (t) = {(tl)l∈N(T ) ∈ [0, t]n | ∀j = 1 . . . 5, (t(j,lj))lj∈N(Tj) ∈ ITj (t0)}.

Proof. We recall that 0 is bigger than any other element of N(T ) and that
if j1 is different from j2, (j1,m1) and (j2,m2) are not comparable while
(j,m1)R(j,m2) iff m1RTjm2.

Proof of Proposition 3.14. From Lemma 3.15, the induction follows almost di-
rectly, it remains to see that

ei∆t = e−i∆t
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which justifies in the definition of the function ΩT (j,m) the sign −1 when j is
even, as in

ΩT (j,m) = −ΩTj (m).

Definition 3.16. Let T ∈ Tn, we define ST be the set of bijection from
[1, n] ∩ N to N(T )such that ϕ ∈ ST if and only if

∀l1, l2 ∈ N(T ), l1RT l2 ⇒ ϕ−1(l1) ≤ ϕ−1(l2).

We set

Fϕ

T,~k
(t) =

∫

0≤t1≤...≤tn≤t

n∏

j=1

eiΩT,~k
(ϕ(j))tjdtj .

Proposition 3.17. We have

FT (~k)(t) = (−i)NT

∑

ϕ∈ST

Fϕ

T,~k
(t).

Proof. Description of IT (t).

3.4 Description of the solution

Lemma 3.18. Let ~k1 ∈ (Z/L)4n1+1 and ~k2 ∈ (Z/L)4n2+1. We have

E(g~k1
g~k2

) = 0

unless n1 = n2 =: n and unless there exists a bijection σ ∈ S4n+1 such that for
all j = 1, . . . , 4n+ 1,

k1σ(j) = k2j .

Besides, if for all j1 6= j2, k
1
j1

6= k1j2 then σ is uniquely defined and conserves
the parity.

Proof. We have

g~kl
=

4nl+1

♦
j=1

gkl
j ,(−1)j+1

that is by definition of gkl
j ,(−1)j+1 ,

g~kl
=

4nl+1

♦
j=1

(ξ0,Lkl
j
+ i(−1)j+1ξ1,Lkl

j√
2

)
.

Expanding the product, we get

(
√
2)4n1+1g~kl

=
∑

ι:[1,4nl+1]∩N→{0,1}

4nl+1

♦
j=1

ξι(j),Lkl
j
iι(j)(−1)(j+1)ι(j).
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Therefore,

22(n1+n2)+1
E(g~k1

g~k2
) =

∑

ι1,ι2

E

[4n1+1

♦
j1=1

ξι1(j1),Lk1
j1
i−ι1(j1)(−1)(j1+1)ι1(j1)

4n2+1

♦
j2=1

ξι2(j2),Lk2
j2
i−ι2(j2)(−1)(j2+1)ι2(j2)

]
.

First, for

E
[4n1+1

♦
j1=1

ξι1(j1),Lk1
j1
i−ι1(j1)(−1)(j1+1)ι1(j1)

4n2+1

♦
j2=1

ξι2(j2),Lk2
j2
i−ι2(j2)(−1)(j2+1)ι2(j2)

]

not to be zero, one needs the existence of a bijection from [1, 4n2 + 1] ∩ N to
[1, 4n1 + 1] ∩ N such that

k1σ(j2) = k2j2 .

This implies that n1 = n2 but σ is not necessarily uniquely defined unless
the k1j are all different. In this case, we get

24n1+1
E(g~k1

g~k2
) =

∑

ι1,ι2

E

[4n1+1

♦
j1=1

ξι1(j1),Lk1
j1
i−ι1(j1)(−1)(j1+1)ι1(j1)

4n2+1

♦
j2=1

ξι2◦σ(j2),Lk1
j2
i−ι2◦σ(j2)(−1)(σ(j2)+1)ι2◦σ(j2)

]
.

For

E

[4n1+1

♦
j1=1

ξι1(j1),Lk1
j1
i−ι1(j1)(−1)(j1+1)ι1(j1)

4n2+1

♦
j2=1

ξι2◦σ(j2),Lk1
j2
i−ι2◦σ(j2)(−1)(σ(j2)+1)ι2◦σ(j2)

]

not to be 0, we need ι2 ◦ σ = ι1, therefore, setting kj = k1j and n = n1 = n2,
we get

24n+1
E(g~k1

g~k2
) =

∑

ι

E

[∣∣∣
4n+1

♦
j=1

ξι(j),Lkj

∣∣∣
2]∏

(−1)(j+σ(j))ι(j).

If σ conserves parity, we have

24n+1
E(g~k1

g~k2
) =

∑

ι

E

[∣∣∣
4n+1

♦
j=1

ξι(j),Lkj

∣∣∣
2]
> 0.

Otherwise, let j0 such that j0 + σ(j0) is odd. For any ι, we write ι′ such that
ι′(j0) = −ι(j0) and ι′(j) = ι(j) for all j 6= j0. Since ι 7→ ι′ is a bijection of

[1, 4n+ 1] ∩ N → {0, 1},
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we have

E(g~k1
g~k2

) =
∑

ι

E

[∣∣∣
4n+1

♦
j=1

ξι′(j),Lkj

∣∣∣
2]∏

(−1)(j+σ(j))ι′(j).

Since the kj are all different replacing ξι(j0),Lkj0
by ξι′(j0),Lkj0

consists in ex-
changing the roles of ξ0,Lkj0

and ξ1,Lkj0
. In other words, since

(ξι(j),kj
)j and (ξι′(j),kj

)j

have the same law

E

[∣∣∣
4n+1

♦
j=1

ξι′(j),kj

∣∣∣
2]

= E

[∣∣∣
4n+1

♦
j=1

ξι(j),Lkj

∣∣∣
2]
.

Since ∏

j

(−1)(j+σ(j))ι′(j) = −
∏

j

(−1)(j+σ(j))ι′(j)

we get

E(gT1gT2) = −E(gT1gT2) = 0.

Proposition 3.19. We have

E(vn1,L(k, t)vn2,L(k, t)) = 0

unless n1 = n2 = n and in this case

E(vn,L(k, t)vn,L(k, t)) =
1

(2πL)4n

∑

(T1,T2)∈T 2
n

(−i)NT2−NT1

∑

σ∈S4n+1

∑

ϕj∈STj

∑

~k∈C(T1,T2,σ,k)

Gϕ1,ϕ2

T1,T2,~k,~kσ
(t)A~kA~kσ

E(g~kg~kσ
)

c(σ,~k)

where setting ~k = (k1, . . . , k4n+1), we used the notations

kσ = (kσ(1), . . . , kσ(4n+1)),

C(T1, T2, σ, k) = {~k ∈ CT1(k) | ~kσ ∈ CT2(k)},

Gϕ1,ϕ2

T1,T2,~k,~kσ
= Fϕ1

T1,~k
Fϕ2

T2,~kσ

and

c(σ,~k) = #{σ′ ∈ S4n+1 | ~kσ = ~kσ′}.
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Proof. We use Proposition 3.12 to get that

vn,L(k, t) =
1

(2πL)2n

∑

T∈Tn

∑

~k∈CT (k)

FT (~k)(t)A~kg~k.

Therefore if g~k is involved in this sum, then ~k ∈ CT (k) for some T ∈ Tn and

thus ~k ∈ (Z/L)4n+1.
Let n1, n2 ∈ N and assume that g~k1

appears in the sum describing vn1,L(k, t)
and g~k2

appears in the sum describing vn2,L(k, t) then according to Lemma 3.18,
we have that

E(ḡ~k1
g~k2

) 6= 0

implies that n1 = n2 and that there exists σ ∈ S4n1+1 such that for all j =

1, . . . , 4n1 + 1, k2j = k1j , in other words ~k2 = (~k1)σ.
Therefore, if n1 6= n2, we have indeed:

E(vn1,L(k, t)vn2,L(k, t)) = 0.

If n1 = n2 = n, we have

E(|vn,L(k, t)|2) =
1

(2πL)4n

∑

(T1,T2)∈T 2
n

∑

~kj∈CTj
(k)

FT1(~k1)
(t)FT2(~k2)

(t)Ā~k1
A~k2

E(ḡ~k1
g~k2

).

We remark that if ~k1 = ~k and ~k2 = ~kσ then ~kσ ∈ CT2(k). Now, if
~k is such that

there exists j1 6= j2 such that kj1 = kj2 there exists σ 6= σ′ such that ~kσ = ~kσ′ .
We should not count these twice and thus

E(|vn,L(k, t)|2) =
1

(2πL)4n

∑

(T1,T2)∈T 2
n

∑

σ∈S4n+1

∑

~k∈C(T1,T2,σ,k)

FT1(~k)
(t)FT2(~kσ)

(t)Ā~kA~kσ

E(ḡ~kg~kσ
)

c(σ, k)
.

We conclude thanks to Proposition 3.17. We have

FT1(~k)
(t) = (−i)NT1

∑

ϕ1∈ST1

Fϕ

T1,~k
(t)

and thus

FT1(~k)
(t)FT2(~kσ)

(t) = (−i)NT2−NT1

∑

ϕj∈STj

Fϕ1

T1,~k
(t)Fϕ2

T2,~kσ
(t)

= (−i)NT2−NT1

∑

ϕj∈STj

Gϕ1,ϕ2

T1,T2,~k,~kσ
(t).
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Corollary 3.20. We have

∂tE(|vn,L(k, t)|2) =
1

(2πL)4n

∑

(T1,T2)∈T 2
n

(−i)NT2−NT1

∑

σ∈S4n+1

∑

ϕj∈STj

∑

~k∈C(T1,T2,σ,k)

∂tG
ϕ1,ϕ2

T1,T2,~k,~kσ
(t)A~kA~kσ

E(g~kg~kσ
)

c(σ,~k)

Proof. We derive under the (finite) sum, using that the only terms that depend
on time are the functions

Gϕ1,ϕ2

T1,T2,~k,~kσ
.

Remark 3.4. Note that since a is of compact support, all the sums are finite
and thus converge.

4 Analysis

4.1 Time estimates

In Subsections 4.1 and 4.2, we define the behavior of certain quantities at large
time (and large L). In these subsection we take |t| ≥ 1.

Proposition 4.1. Let Ω1, . . . ,ΩM ∈ Z∗/L2, we define

GM (t) =

∫

0≤t1≤...≤tM≤t

M∏

j=1

eiΩjtjdtj .

We have
GM (t) = OM (L2M |t|⌊M−1

2 ⌋)

unless M is even and for all j = 1 to M/2, we have Ω2j−1 +Ω2j = 0, in which
case

GM (t) =

M/2∏

j=1

1

Ω2j

tM/2

(M/2)!
+O(L2M |t|⌊M−1

2 ⌋).

Proof. We prove it by induction. If M = 0, we have

GM (t) = 1 =
0∏

j=1

1

Ω2j

t0

0!
+O(L0|t|⌊M−1

2 ⌋).

We assume that the proposition is true for all m ≤M , we prove it for M + 1.
We have if M = 0,

GM+1(t) =
eiΩ1t − 1

iΩ1
= O(L2).
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Otherwise, since

GM+1(t) =

∫ t

0

eiΩM+1tM+1GM (tM+1)dtM+1,

by integration by parts, we get

GM+1(t) =
eiΩM+1t

iΩM+1
GM (t)−

∫ t

0

ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ)dτ.

First case, M + 1 is odd. We have since M is even

|GM (t)| = OM (tM/2LM ) +OM (t(M−2)/2L2M ) = OM (L2M tM/2),

therefore
eiΩM+1t

iΩM+1
GM (t) = OM (tM/2L2(M+1)).

Since M − 1 is odd, we have

ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ) = OM (τ (M−2)/2L2(M−1))

thus ∫ t

0

dτ
ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ) = OM (tM/2L2M )

which concludes the induction when M + 1 is odd.
Second case, M + 1 is even. We have

GM (t) = OM (L2M t(M−1)/2)

hence
eiΩM+1t

iΩM+1
GM (t) = OM (L2(M+1)t(M−1)/2)

Then, if ΩM+1 +ΩM 6= 0, we have either M = 1 and then

∫ t

0

dτ
ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ) =

ei(ΩM+1+ΩM )t − 1

−ΩM+1(ΩM+1 +ΩM )
= O(L4)

or M > 1 and by integration by parts

∫ t

0

ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ )dτ =

ei(ΩM+1+ΩM )t

−(ΩM+1 + ΩM )ΩM+1
GM−1(t) +

∫ t

0

dτ
ei(ΩM+1+ΩM )t

−(ΩM+1 + ΩM )ΩM+1
eiΩM−1τGM−2(τ ).

We have

ei(ΩM+1+ΩM )t

−(ΩM+1 +ΩM )ΩM+1
GM−1(t) = OM (L4L2(M−1)t(M−1)/2)
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and

ei(ΩM+1+ΩM )t

−(ΩM+1 +ΩM )ΩM+1
eiΩM−1τGM−2(τ) = OM (L4L2(M−2)t(M−3)/2)

hence
GM+1(t) = OM (L2(M+1)t(M−1)/2).

If ΩM+1 +ΩM = 0, either at least Ω2j−1 +Ω2j 6= 0 for one j = 1 to (M − 1)/2,
in which case

∫ t

0

dτ
ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ)

=

∫ t

0

OM (L2L2(M−1)τ (M−3)/2) = OM (L2(M+1)t(M−1)/2)

or Ω2j−1+Ω2j = 0 for all j = 1 to (M −1)/2 (which includes M = 1), in which
case

∫ t

0

dτ
ei(ΩM+1+ΩM )τ

iΩM+1
GM−1(τ) =

∫ t

0

1

iΩM+1

( (M−1)/2∏

j=1

1

iΩ2j

τ (M−1)/2

(M − 1)/2!
+OM (L2(M−1)τ (M−3)/2)

)
=

(M+1)/2∏

j=1

1

iΩ2j

t(M+1)/2

(M + 1)/2!
+OM (L2(M+1)t(M−1)/2).

Proposition 4.2. Let M be odd. We are in one of the following cases:

1. M = 1 then

GM (t) =
eiΩM t − 1

iΩM
;

2. we are not in case 1, ∀j = 1, . . . , M−1
2 , Ω2j = −Ω2j−1 = −ΩM then

GM (t) = (iΩM )−(M+1)/2(−1)(M−1)/2 t(M−1)/2

(M − 1)/2!
(eiΩM t − 1)

+O(L2M t(M−3)/2);

3. we are not in cases 1 or 2, ∀j = 1, . . . , M−1
2 , Ω2j +Ω2j−1 = 0 then

GM (t) = (−1)(M−1)/2

(M−1)/2∏

j=0

1

iΩ2j+1
eiΩM t t(M−1)/2

(M − 1)/2!

+O(L2M t(M−3)/2);
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4. we are not in cases 1, 2, or 3, ∀j = 1, . . . , M−1
2 , Ω2j +Ω2j+1 = 0 then

GM (t) = (−1)(M+1)/2

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(L2M t(M−3)/2);

5. we are not in cases 1, 2, 3 or 4, there exists j0 ∈ [1, M−1
2 ] ∩ N such that

Ω2j0+1 + Ω2j0 + Ω2j0−1 = 0 and ∀j > j0, Ω2j+1 + Ω2j = 0 and ∀j < j0,
Ω2j +Ω2j−1 = 0 then

GM (t) = (−1)(M−1)/2

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(L2M t(M−3)/2);

6. we are not in cases 1, 2, 3, 4, or 5, then

GM (t) = O(L2M t(M−3)/2).

Before proving the proposition, we prove the following lemma.

Lemma 4.3. Let n ∈ N, and α 6= 0, we have

∫ t

0

eiατ τndτ =
eiαt

iα

n∑

k=0

(
− 1

iα

)k n!

(n− k)!
tn−k +

(
− 1

iα

)n+1

n!. (8)

Proof. Writing

In =

∫ t

0

eiατ τndτ

the proof follows from

I0 =
eiαt−1

iα

and the induction relation

In+1 =
eiαt

iα
tn − n

iα
In−1.

Proof of Proposition 4.2. We omit in the proof the dependance in M of the
constant. We proceed by induction over M .
If M = 1, we are in case 1.
We assume that the proposition is true up to M − 2, and we prove it for M .
Case 2 We have by definition

GM (t) =

∫ t

0

dtMe
iΩM tM

∫

0≤t1≤...≤tM−1≤tM

M−1∏

n=1

eiΩntndtn.
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Because of the hypothesis on the Ωn, we have

GM (t) =

∫ t

0

dtMe
iΩM tM

∫

0≤t1≤...≤tM−1≤tM

(M−1)/2∏

n=1

eiΩM (t2n−1−t2n)dt2n−1dt2n.

By integration by parts, we get

GM (t) =
eiΩM t

iΩM
GM−1(t)−

∫ t

0

1

iΩM
GM−2(τ)dτ.

By Proposition 4.1, we have

eiΩM t

iΩM
GM−1(t) = (−1)(M−1)/2 1

(iΩM )(M+1)/2

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M ).

We have that GM−2 is either in case 1 or 2, hence

GM−2(τ) = (−1)(M−3)/2(eiΩM τ − 1)
1

(iΩM )(M−1)/2

τ (M−3)/2

(M − 3)/2!

+O(τ (M−5)/2L2(M−2)).

We use (8) to get

GM (t) =
t(M−1)/2

(M − 1)/2!
(−1)(M−1)/2(eiΩM t−1)(iΩM)−(M+1)/2+O(t(M−3)/2L2M ),

which is the desired result.
Case 3 By integration by parts, we have

GM (t) =
eiΩM t

iΩM
GM−1(t)−

∫ t

0

ei(ΩM+ΩM−1)τ

iΩM
GM−2(τ)dτ.

By Proposition 4.1, we have

GM−1(t) = (−1)(M−1)/2

(M−3)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2(M−1))

therefore

(−1)(M−1)/2GM (t) =

eiΩM t

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
−
∫ t

0

ei(ΩM+ΩM−1)τ

iΩM
GM−2(τ)dτ

+O(t(M−3)/2L2M ).

Documenta Mathematica 27 (2022) 2491–2561



2524 A.-S. de Suzzoni

We have that GM−2 is either in case 1, 2 or 3. If it is in case 1 or 2, then
ΩM +ΩM−1 6= 0 otherwise GM is in case 3 and ΩM+ΩM−1+ΩM−2 = ΩM 6= 0,
therefore,

GM (t) = eiΩM t

(M−1)/2
∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
−

∫ t

0

ei(ΩM+ΩM−1)τ

iΩM

eiΩM−2τ − 1

iΩM−2
dτ

+O(t(M−3)/2L2M )

if GM−2 is in case 1 and

GM (t) = eiΩM t

(M−1)/2
∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!

−
∫ t

0

ei(ΩM+ΩM−1)τ

iΩM
(−1)(M−3)/2 eiΩM−2τ − 1

(iΩM−2)(M−1)/2

τ (M−3)/2

(M − 3)/2!
dτ+O(t(M−3)/2L2M )

if GM−2 is in case 2. In both cases, by (8), we get

GM (t) = eiΩM t

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M )

which is the desired result.
If GM−2 is in case 3, then

GM−2(t) = (−1)(M−3)/2eiΩM−2t

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−3)/2

(M − 3)/2!
+O(t(M−5)/2L2M ).

Since ΩM +ΩM−1 +ΩM−2 = ΩM 6= 0, we have by (8)

GM (t) = eiΩM t

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M )

Case 4 The integration by parts yields

GM (t) =
eiΩM t

iΩM
GM−1(t)−

∫ t

0

1

iΩM
GM−2(τ)dτ.

Because we are not in case 2 or 3, by Proposition 4.1, we have

GM−1(t) = O(t(M−3)/2L2(M−1))

thus

GM (t) = −
∫ t

0

1

iΩM
GM−2(τ)dτ +O(t(M−3)/2L2M ).
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We have that GM−2 is either in case 1, 2, or 4. If GM−2 is in case 1 then

−
∫ t

0

1

iΩM
GM−2(τ)dτ = −

∫ t

0

eiΩM−2τ − 1

iΩM iΩM−2
=

t

iΩM iΩM−2
+O(L6)

which yields the desired result.
If GM−2 is in case 2, then

GM (t) = (−1)(M−1)/2

∫ t

0

1

iΩM

eiΩM−2τ − 1

(iΩM−2)(M−3)/2

τ (M−3)/2

(M − 3)/2!
dτ

+O(t(M−3)/2L2M ).

By (8), we get

GM (t) = (−1)(M+1)/2 1

iΩM

1

(iΩM−2)(M−3)/2

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M ).

If GM−2 is in case 4, then

GM (t) = −(−1)(M−1)/2

∫ t

0

1

iΩM

(M−3)/2∏

j=0

1

iΩ2j+1

τ (M−3)/2

(M − 3)/2!
dτ

+O(t(M−3)/2L2M )

therefore

GM (t) = (−1)(M+1)/2

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M ).

Case 5 Let j0 such that Ω2j0+1 +Ω2j0 +Ω2j0−1 = 0. We cannot have Ω2j0 +
Ω2j0−1 = 0 hence

GM−1(t) = O(tM−3)/3L2(M−1))

by Proposition 4.1.
Case 5.1 : j0 = M−1

2 . We recall that by integration by parts

GM (t) =
eiΩM t

iΩM
GM−1(t)−

∫ t

0

ei(ΩM+ΩM−1)τ

iΩM
GM−2(τ)dτ.

We have that GM−2 is either in case 1, 2, or 3. If GM−2 is either in case 1 or 2,
we have

GM−2(τ) = (−1)(M−3)/2 τ (M−3)/2

(M − 3)/2!

eiΩM−2 − 1

(iΩM−2)(M−1)/2
+O(τ (M−5)/2L2(M−2)).

Therefore by (8), since ΩM+ΩM−1 = −ΩM−2 6= 0 and ΩM+ΩM−1+ΩM−2 = 0,
we have

GM (t) = (−1)(M−1)/2 1

iΩM (iΩM−2)(M−1)/2

τ (M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M

).
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If GM−2 is in case 3, we have

GM (t) = −
∫ t

0

ei(ΩM+ΩM−1+ΩM−2)τ

iΩM
(−1)(M−3)/2

(M−3)/2∏

j=0

1

iΩ2j+1

τ (M−3)/2

(M − 3)/2!

+O(t(M−3)/2L2M

).

And since ΩM +ΩM−1 +ΩM−2 = 0, we get

GM (t) = (−1)(M−1)/2

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M

).

This is the desired result in case 5.1.
Case 5.2 j0 6= M−1

2 . In this case, ΩM + ΩM−1 = 0 and GM−2 is in case 5.
Therefore

GM (t) = −
∫ t

0

dτ

iΩM
(−1)(M−3)/2

(M−3)/2∏

j=0

1

iΩ2j+1

τ (M−3)/2

(M − 3)/2!
+O(t(M−3)/2L2M )

which yields by exact computation

GM (t) = (−1)(M−1)/2

(M−1)/2∏

j=0

1

iΩ2j+1

t(M−1)/2

(M − 1)/2!
+O(t(M−3)/2L2M ).

Case 6 Because we are not in cases 1, 2, or 3, we have

GM−1(t) = O(t(M−3)/2L2(M−1)).

If GM−2 is in case 1 or 2, we have ΩM + ΩM−1 + ΩM−2 6= 0 otherwise GM is
in case 5 (and even 5.1) and ΩM +ΩM−1 6= 0 otherwise GM is in case 2 or 4.
Therefore by integration by parts, induction hypothesis on GM−2 and (8), we
get

GM (t) = O(t(M−3)/2L2M ).

If GM−2 is in case 3, then ΩM +ΩM−1 +ΩM−2 6= 0 otherwise GM is in case 5,
and we conclude by the above strategy, as in Case 3, with GM−2 in case 3.
If GM−2 is in case 4, then ΩM +ΩM−1 6= 0 otherwise GM is in case 4, and we
conclude by the above strategy, as in Case 3, when GM−2 is in case 1 or 2.
If GM−2 is in case 5, then ΩM +ΩM−1 6= 0 otherwise GM is in case 5 and we
conclude by the above strategy, as in Case 3, when GM−2 is in case 1 or 2.
If GM−2 is in case 6, then

GM−2(τ) = O(τ (M−5)/2L2(M−2))

and we can conclude.
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4.2 Constraint estimates

Given the description of

∂tE(|vn|2)
in Corollary 3.20, we separate the sum in three parts, in the case n > 1,
either Case A σ, ϕ, T1, T2 are such that for all ~k ∈ C(T1, T2, σ, k), we have that

∂tG
ϕ

T1,T2,~k,~kσ
6= O(tn−2L4n)

or Case B σ, ϕ are not such but however

∂tG
ϕ

T1,T2,~k,~kσ
6= O(tn−2L4n)

or Case C

∂tG
ϕ

T1,T2,~k,~kσ
= O(tn−2L4n).

We recall that in general, we have

∂tG
ϕ

T1,T2,~k,~kσ
= O(tnL4n)

but that if the term of higher order is null then

∂tG
ϕ

T1,T2,~k,~kσ
= O(tn−2L4n).

We first explain why Case A never happens.

Proposition 4.4. There does not exist any (T1, T2, σ, k) such that for all ~k ∈
C(T1, T2, σ, k), we have that

∂tG
ϕ

T1,T2,~k,~kσ
6= O(tn−2L4n)

Proof. Let T1, T2 ∈ Tn, σ ∈ S4n+1, ϕ1 ∈ ST1 , ϕ2 ∈ ST2 and k ∈ Z/L. Assume

that for all ~k ∈ C(T1, T2, σ, k), we have

∂tG
ϕ

T1,T2,~k,~kσ
6= O(tn−2L4n)

and let us prove that it yields to a contradiction.
We recall that

∂tG
ϕ

T1,T2,~k,~kσ
= ∂tF

ϕ1

T1,~k
Fϕ2

T2,~kσ
+ Fϕ1

T1,~k
∂tF

ϕ2

T2,~kσ

and that F and ∂tF take the form

Fϕ1

T1,~k
(t) =

∫

0≤t1≤...≤tn≤t

n∏

j=1

e
iΩ

T1,~k
(ϕ1(j))tjdtj ,
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and

∂tF
ϕ1

T1,~k
(t) = e

iΩ
T1,~k

(ϕ1(n))t
∫

0≤t1≤...≤tn−1≤t

n−1∏

j=1

e
iΩ

T1,~k
(ϕ1(j))tjdtj .

Case 1: the integer n is even.

The maximal order for t in Fϕ2

T2,~kσ
is n

2 and for t in ∂tF
ϕ1

T1,~k
is n−2

2 for a total

order of

n− 1.

The situation for the other term in ∂tG is symmetric.

Lower orders are

O(L4n−2tn−2).

For Fϕ2

T2,~kσ
to be of order n

2 in t, one needs to be in the situation that for j = 1

to n
2 ,

ΩT2,~kσ
(ϕ2(2j − 1)) + ΩT2,~kσ

(ϕ2(2j)) = 0.

But ΩT2,~kσ
(ϕ(2j − 1)) and ΩT2,~kσ

(ϕ2(2j)) are two different second order

polynomials in ~k and therefore their sum cannot be identically 0 for all
~k ∈ C(T1, T2, σ, k), which yields to a contradiction.

Case 2: the integer n is odd.

The maximal order for t in Fϕ2

T2,~kσ
is n−1

2 and for t in ∂tF
ϕ1

T1,~k
is n−1

2 for a total

order of

n− 1.

The situation for the other term in ∂tG is symmetric.

Lower orders are

O(L4n−2tn−2).

For ∂tF
ϕ1

T1,~k
to be of order n−1

2 in t, one needs to be in the situation that for

j = 1 to n−1
2 ,

ΩT1,~k
(ϕ1(2j − 1)) + ΩT1,~k

(ϕ1(2j)) = 0.

But ΩT1,~k
(ϕ1(2j − 1)) and ΩT1,~k

(ϕ1(2j)) are two different second order poly-

nomials in ~k and therefore their sum cannot be identically 0 for all ~k ∈
C(T1, T2, σ, k), which yields to a contradiction.

We now prove that Case B happens only for a few ~k ∈ C(T1, T2, σ, k) such
that the total measure of

{~k ∈ C(T1, T2, σ, k) | we are in Case B}

is very small compared to L4n.
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Proposition 4.5. Let T1, T2 ∈ Tn, σ ∈ S4n+1, ϕ1 ∈ ST1 , ϕ2 ∈ ST2 and
k ∈ Z/L. Set

V (T1, T2, σ, k, ϕ1, ϕ2) =
1

(4πL)n

∑

~k∈C(T1,T2,σ,k)

∂tG
ϕ1,ϕ2

T1,T2,~k,~kσ
(t)A~kA~kσ

E(g~kg~kσ
).

We have for all α > 0,

V (T1, T2, σ, k, ϕ1, ϕ2) = Oa,T1,T2,ϕ1,ϕ2,σ,α

[
tn−1ν(1+α)n/2L−(n−1)/2

]

+Oa,n(L
4n−2tn−2).

Proof. In all the proof, we omit the dependence in T1, T2, σ, ϕ1, ϕ2.
We write

C = {~k ∈ C | ∂tFϕ1

T1,~k
Fϕ2

T2,~kσ
6= On(L

4n−2tn−2)}

and
C̃ = {~k ∈ C | Fϕ1

T1,~k
∂tF

ϕ2

T2,~kσ
6= On(L

4n−2tn−2)}.

We set

W =
1

(4πL)n

∑

~k∈C

∂tF
ϕ1

T1,~k
Fϕ2

T2,~kσ
A~kA~kσ

E(g~kg~kσ
)

and

W ′ =
1

(4πL)n

∑

~k∈C̃

Fϕ1

T1,~k
∂tF

ϕ2

T2,~kσ
A~kA~kσ

E(g~kg~kσ
).

Since for all ~k ∈ C,

∣∣∣A~kA~kσ
E(g~kg~kσ

)
∣∣∣ ≤ (4n+ 1)!

4n+1∏

j=1

|a(kj)|2

and since
∏4n+1

j=1 |a(kj)|2 is integrable on

{~k |
4n+1∑

j=1

kj(−1)j+1 = k}

we get that
V =W +W ′ +On,a(L

4n−2tn−2).

The estimate on W ′ being symmetric, we only estimate W .
Case 1: the integer n is even.
Let ~k ∈ C, we have

Fϕ2

T2,~kσ
=

tn/2

(n/2)!

n/2∏

j=1

1

iΩT2,~kσ
(ϕ2(2j))

+On(L
2ntn/2−1)
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and

∣∣∣∂tFϕ1

T1,~k

∣∣∣ ≤ 2
t(n−2)/2

((n− 2)/2)!

(n−2)/2∏

j=0

1

|ΩT1,~k
(ϕ1(2j + 1))| +On(L

2n−2tn/2−2).

What is more, ~k belongs to C2 ∩ C1 with

C2 = {~k ∈ C | ∀j = 1, . . . ,
n

2
, ΩT2,~kσ

(ϕ2(2j − 1)) + ΩT2,~kσ
(ϕ2(2j)) = 0}

and
C1 = C1

1 ∪ C2
1 ∪ C3

1

where

C1
1 = {~k ∈ C | ∀j = 1, . . . ,

n− 2

2
, ΩT1,~k

(ϕ1(2j − 1)) + ΩT1,~k
(ϕ1(2j)) = 0},

C2
1 = {~k ∈ C | ∀j = 1, . . . ,

n− 2

2
, ΩT1,~k

(ϕ1(2j + 1)) + ΩT1,~k
(ϕ1(2j)) = 0},

and finally

C3
1 =

{
~k ∈ C

∣∣∣

∃j0,
∀j = j0 + 1, . . . , n−2

2 , ΩT1,~k
(ϕ1(2j + 1)) + ΩT1,~k

(ϕ1(2j)) = 0

ΩT1,~k
(ϕ1(2j0 + 1)) + ΩT1,~k

(ϕ1(2j0)) + ΩT1,~k
(ϕ1(2j0 − 1)) = 0

∀j = 1, . . . , j0 − 1, ΩT1,~k
(ϕ1(2j − 1)) + ΩT1,~k

(ϕ1(2j)) = 0



 .

The set C2 is built such that Fϕ2

T2,~kσ
(t) is of maximal order, and the set C1

is built such that ∂tF
ϕ1

T1,~k
(t) is of maximal order. The sets C1

1, C2
1 and C3

1

corresponds to the different cases in Proposition 4.2.

Because of the estimate on ∂tF
ϕ1

T1,~k
Fϕ2

T2,~kσ
, we get

W ≤

2(4n + 1)!

((n− 2)/2)!(n/2)!

tn−1

(4πL)n

∑

~k∈C

n/2
∏

j=1

1

|ΩT1 ,~k
(ϕ1(2j − 1))| |ΩT2 ,~kσ

(ϕ2(2j))|

4n+1
∏

j=1

|a(kj)|2

+On,a(L
4n−2tn−2).

By Cauchy-Schwarz inequality, we get

W ≤ Cnt
n−1W1W2 +On,a(L

4n−2tn−2)

where Cn is a constant depending only on n,

W 2
1 =

1

(4πL)n

∑

~k∈C1

(n−2)/2∏

j=0

1

|ΩT1,~k
(ϕ1(2j + 1))|2

4n+1∏

j=1

|a(kj)|2
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and

W 2
2 =

1

(4πL)n

∑

~k∈C2

n/2∏

j=1

1

|ΩT2,~kσ
(ϕ2(2j))|2

4n+1∏

j=1

|a(kj)|2.

We estimate W2. For each j = 1 to n, and for each m = 1 to 5, we write

lm(j) = kT2,~kσ
(sm(ϕ2(j))

where sm : N(T2) → Ñ(T2) is defined by induction by sm(0) = (m, 0) and
sm(m1, l) = (m1, sm(l)). In other words, sm(j) is the label of the mth subnode
or leaf of the node indexed by j. For example, if T = (⊥,⊥,⊥,⊥,⊥) and
~k = (k1, k2, k3, k4, k5), we have sm(0) = m and lm(0) = km.
We also write

l(j) = l1(j)− l2(j)+ l3(j)− l4(j)+ l5(j) and l̄(j) = l(j)− l1(j)+ l2(j)− l3(j).

We have that ST2,σ,ϕ2 : ~k 7→ ~l = ((l1(j), l2(j), l3(j), l4(j))1≤j≤n is linear and
injective. Indeed, if ((l1(j), l2(j), l3(j), l4(j))1≤j≤n is fixed, then, since l(n) =
kT2,~kσ

(0) = k, we get that l5(n) is fixed. Now, since l(n− 1) is one of the lm(n)

for m = 1 to 5, we get that l5(n− 1) is fixed. By going down the tree, we get
to know the full (lm(j))m,j for m = 1 to 5 and j = 1 to n. In particular we
know the labels of the leaves for all the nodes at the bottom of the tree. We
know the labels of the leaves, in other words, ~kσ and knowing σ, we know ~k.
We set Ωj(~l) = ΩT2,~kσ

(ϕ2(j)).

The image of C2 by ST2,σ,ϕ2 is included in

S2 = {~l ∈ (Z/L)4n | ∀j = 1, . . . , n, |l̄(j)| ≥ µ−1,

|Ωj(~l)| ≥ ν−1, ∀j = 1, . . . ,
n

2
, Ω2j−1(~l) + Ω2j(~l) = 0}.

We get, with the new notations

W 2
2 ≤ ν(1+α)n/2)

(2πL)4n

∑

~l∈S2

n/2∏

j=1

1

|Ω2j(~l)|1−α

4n+1∏

j=1

|a(ST2,σ,ϕ2(
~l)j |2

with the convention ST2,σ,ϕ2(
~l)j = kj . Because a has compact support, so has

a ◦ ST2,σ and therefore, there exists K = K(a, σ, T2, ϕ2) such that

W 2
2 ≤ max |a|2(4n+1) ν

(1+α)n/2)

(2πL)4n

∑

~l∈S2∩[−K,K]4n

n/2∏

j=1

1

|Ω2j(~l)|1−α
.

We count the degrees of freedom in S2. We start by fixing
l1(n), l2(n), l3(n), l4(n). As we remarked earlier, this fixes automatically
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l5(n) and therefore, l(n − 1), and Ωn(~l). Because we are in S2, this fixes too

Ωn−1(~l).
We then fix arbitrarily l1(n−1), l2(n−1) and l3(n−1), which fixes automatically

l̄(n− 1). We recall that Ωn−1(~l) is fixed and that

Ωn−1(~l) = l2(n−1)−l21(n−1)+l22(n−1)−l23(n−1)− l̄(n−1)−2l̄(n−1)l4(n−1).

Therefore, this fixes l4(n− 1) and in turn l5(n− 1).
Going down the tree, we get that fixing (l1(2j), l2(2j), l3(2j), l4(2j), l1(2j −
1), l2(2j − 1), l3(2j − 1)) for j = n/2 to 1 is sufficient to recover the whole ~l.
Therefore, we have

W 2
2 ≤ Ca

ν(1+α)n/2)

(2πL)4n

∑

~l∈(Z/L∩[−K,K])7n/2

n/2∏

j=1

1

|Ω2j(~l)|1−α
,

where [−K,K]4n has been replaced by [−K,K]7n/2.
Because

Ω2j(~l) = −2l̄(2j)
(
l4(2j)−

1

2l̄(2j)
(l2(2j)− l21(2j) + l22(2j)− l23(2j)− l̄2(2j)

)
,

By integrating in the following order l3(1), l2(1), l1(1), l4(2), l3(2), l2(2),
l1(2), . . . , l3(n− 1), l2(n− 1),l1(n− 1), l4(n), l3(n), l2(n), l1(n), we get that

n/2∏

j=1

1

|Ω2j(~l)|1−α

is integrable on compacts and therefore

W 2
2 .a,T2,σ,ϕ2

ν(1+α)n/2)

Ln/2
.

For W1, there are in each subset forming C1, n−2
2 constraint estimates on

the Ωs, while we integrate n
2 different Ω−2s. Therefore, by applying the same

strategy as for W2, we get

W 2
1 .a,T1,ϕ1

ν(1+α)n/2

L(n−2)/2
.

We deduce

W = Oa,T1,T2,σ,ϕ1,ϕ2,n

(ν(1+α)n/2)

L(n−1)/2
tn−1

)
+On,a(L

4n−2tn−2)

which yields the result when n is even.
Case 2 : n is odd.
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Let ~k ∈ C. We have

|Fϕ2

T2,~kσ
| ≤ 2

t(n−1)/2

((n− 1)/2)!

(n−1)/2∏

j=0

1

|ΩT2,~kσ
(ϕ2(2j + 1))| +On(L

2nt(n−1)/2−1)

and

|∂tFϕ1

T1,~k
| ≤ t(n−1)/2

((n− 1)/2)!

(n−1)/2∏

j=1

1

|ΩT1,~k
(ϕ1(2j))|

+On(L
2nt(n−1)/2−1).

What is more, ~k belongs to C1 ∩ C2 with

C1 = {~k ∈ C | ∀j = 1, . . . ,
n− 1

2
, ΩT1,~k

(ϕ1(2j − 1)) + ΩT1,~k
(ϕ1(2j)) = 0}

and
C2 = C1

2 ∪ C2
2 ∪ C3

2

where

C1
2 = {~k ∈ C | ∀j = 1, . . . ,

n− 1

2
, ΩT2,~kσ

(ϕ2(2j − 1)) +ΩT2,~kσ
(ϕ2(2j)) = 0},

C2
2 = {~k ∈ C | ∀j = 1, . . . ,

n− 1

2
, ΩT2,~kσ

(ϕ2(2j +1)) +ΩT2,~kσ
(ϕ2(2j)) = 0},

and finally

C3
2 =

{
~k ∈ C

∣∣∣

∃j0,
∀j = j0 + 1, . . . , n−1

2 , ΩT2,~kσ
(ϕ2(2j + 1)) + ΩT2,~kσ

(ϕ2(2j)) = 0,

ΩT2,~kσ
(ϕ2(2j0 − 1)) + ΩT2,~kσ

(ϕ2(2j0)) + ΩT2,~kσ
(ϕ2(2j0 + 1)) = 0,

∀j = 1, . . . , j0 − 1, ΩT2,~kσ
(ϕ2(2j − 1)) + ΩT2,~kσ

(ϕ2(2j)) = 0



 .

We get as previously by Cauchy-Schwarz inequality,

W ≤ CnW1W2t
n−1 +On,a(L

4n−2tn−2)

with

W 2
1 =

1

(2πL)4n

∑

~k∈C1

(n−1)/2∏

j=1

1

|ΩT1,~k
(ϕ1(2j))|

4n+1∏

j=1

|a(kj)|2

and

W 2
2 =

1

(2πL)4n

∑

~k∈C1

(n−1)/2∏

j=0

1

|ΩT2,~kσ
(ϕ2(2j + 1))|

4n+1∏

j=1

|a(kj)|2.

We repeat the same strategy as in the case n even.

Documenta Mathematica 27 (2022) 2491–2561



2534 A.-S. de Suzzoni

For W1, there are n−1
2 quantities |Ω|−2 to integrate and n−1

2 constraints esti-
mates. Hence,

W 2
1 .a,T1,ϕ1,α

ν(1+α)(n−1)/2

L(n−1)/2
.

For W2, there are n+1
2 quantities |Ω|−2 to integrate and n−1

2 constraint equa-
tions, hence

W 2
1 .a,T2,ϕ2,α,σ

ν(1+α)(n+1)/2

L(n−1)/2
.

Therefore, we have

W = Oa,T1,T2,ϕ1,ϕ2,σ,α

(ν(1+α)n/2

L(n−1)/2

)
+Oa,n(L

4n−2tn−2)

which concludes the proof when n is odd.

Remark 4.1. The application of the Cauchy-Schwarz inequality prevents us
from being optimal. The worst case scenario we can think of (n odd, T1 = T2,
ϕ1 = ϕ2, σ = Id) yielding a bound of the form

ν(1+α)(n−1)/2

L(n−1)/2
να.

4.3 Case n = 1

We now deal with the case n = 1.
The set T1 is reduced to 1 element T = (⊥,⊥,⊥,⊥,⊥). We write C(k) = CT (k)
and for all σ ∈ S5, we write Cσ(k) = C(T, T, σ, k). We also write A the set of
σ ∈ S5 that conserves parity.

Proposition 4.6. We have

∂tE(|v1(t, k)|2) =
∑

σ∈A

∑

~k∈Cσ(k)

2

(2πL)4
sin(∆(~k)t)

∆(~k)

5∏

j=1

|a(kj)|2 +Oa(L
−1ν).

Proof. By definition, we have

∂tE(|v1(t, k)|2) =

2Re
[ ∑

σ∈S5

∑

~k∈Cσ(k)

1

(2πL)4
ei∆(~k)t − 1

i∆(~k)
e−i∆(~kσ)tA~kA~kσ

E(g~kg~kσ
)

c(σ, k)

]
.

We write
∂tE(|v1(t, k)|2) = A+B

with

A = 2Re
[ ∑

σ∈A

∑

~k∈Cσ(k)

1

(2πL)4
ei∆(~k)t − 1

i∆(~k)
e−i∆(~kσ)tA~kA~kσ

E(g~kg~kσ
)

c(σ, k)

]
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and

B = 2Re
[ ∑

σ∈B

∑

~k∈Cσ(k)

1

(2πL)4
ei∆(~k)t − 1

i∆(~k)
e−i∆(~kσ)tA~kA~kσ

E(g~kg~kσ
)

c(σ, k)

]

where B is the complementary of A in S5.
If σ ∈ A, then ∆(~k) = ∆(~kσ), A~kA~kσ

=
∏5

j=1 |a(kj)|2 and E(g~kg~kσ
) = E(|g~k|2).

Therefore

A =
∑

σ∈A

∑

~k∈Cσ(k)

2

(2πL)4
sin(∆(~k)t)

∆(~k)

5∏

j=1

|a(kj)|2
E(|g~k|2)
c(σ, k)

.

Write
Cσ, 6=(k) = {~k ∈ Cσ(k) | ∀j1 6= j2, kj1 6= kj2}

and Cσ,=(k) its complementary in Cσ(k). For all ~k ∈ Cσ, 6=(k) we have, accord-
ing to Lemma 3.18 E(|gk|2) = 1 and c(σ, k) = 1 and thus

A = A6 = +A=

with

A6 ==
∑

σ∈A

∑

~k∈Cσ(k)

2

(2πL)4
sin(∆(~k)t)

∆(~k)

5∏

j=1

|a(kj)|2

and

A= =
∑

σ∈A

∑

~k∈Cσ,=(k)

2

(2πL)4
sin(∆(~k)t)

∆(~k)

5∏

j=1

|a(kj)|2(
E(|g~k|2)
c(σ, k)

− 1).

Since |E(|g~k|
2)

c(σ,k) − 1| ≤ 5! and |∆(~k)| ≥ ν−1, we get

|A=| ≤ 5!ν
∑

σ∈A

∑

~k∈Cσ,=(k)

2

(2πL)4

5∏

j=1

|a(kj)|2.

Because satisfying “∃j 6= l such that kj = kl” is a constraint independent from∑5
j=1(−1)jkj + k = 0, we get that

A= = Oa(L
−1ν).

We estimate B. We recall that if σ does not conserve parity and ~k ∈ Cσ(k)

then E(g~kg~kσ
) 6= 0 implies ~k ∈ Cσ,=(k). Therefore

B = 2Re
[ ∑

σ∈B

∑

~k∈Cσ,=(k)

1

(2πL)4
ei∆(~k)t − 1

i∆(~k)
e−i∆(~kσ)tA~kA~kσ

E(g~kg~kσ
)

c(σ, k)

]
.

Documenta Mathematica 27 (2022) 2491–2561



2536 A.-S. de Suzzoni

Since |E(g~kg~kσ )

c(σ,k) | ≤ 5! and since

∣∣∣e
i∆(~k)t − 1

i∆(~k)
e−i∆(~kσ)t

∣∣∣ ≤ 2ν

we get

|B| ≤ 2 · 5!ν
∑

σ∈B

∑

~k∈Cσ,=(k)

1

(2πL)4

5∏

j=1

|a(kj)|2.

Because belonging to Cσ,=(k) implies two independent linear constraint on ~k,
we get

B = Oa(L
−1ν).

5 Final limits and proof of the result

We sum up what we have done so far. Since for all n > 1, T1, T2 ∈ Tn,σ ∈
S4n+1, k ∈ Z/L and t ∈ R, we have thanks to Proposition 4.5

V (T1, T2, σ, ϕ1, ϕ2, k, t) = OT1,T2,σ,ϕ1,ϕ2,a,α(t
n−1ν(1+α)n/2L−(n−1)/2)

+On,a(t
n−2L4n−2),

we get

∂tE(|vn,L(k, t)|2) = On,α,a(t
n−1ν(1+α)n/2L−(n−1)/2) +On,a(t

n−2L4n−2).

We deduce that for all t ∈ R, we have that

ε2(n−1)∂tE(|vn,L(k, tε−2)|2) = On,a,t,α(ν
(1+α)n/2L−(n−1)/2) +On,a,t(ε

2L4n−2).

Indeed, when t = 0,

ε2(n−1)∂tE(|vn,L(k, tε−2)|2) = 0

and when t 6= 0 then for ε small enough (or L big enough) |t|ε−2 ≥ 1.
Therefore, we have

N∑

n=2

ε2(n−1)∂tE(|vn,L(k, tε−2)|2) = ON,a,t

(ν1+α

L1/2

)
+ON,a,t(ε

2L4N−2).

We recall that thanks to Proposition 4.6, we have

∂tE(|v1(t, k)|2) =
∑

σ∈A

∑

~k∈Cσ(k)

2

(2πL)4
sin(∆(~k)t)

∆(~k)

5∏

j=1

|a(kj)|2 +Oa(L
−1ν).
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We set

Iε,L(k, t) =
∑

σ∈A

∑

~k∈Cσ(k)

2

(2πL)4
sin(∆(~k)tε−2)

∆(~k)

5∏

j=1

|a(kj)|2. (9)

We introduce test functions.

Proposition 5.1. Let f, g be two smooth, compactly supported functions on R.
Let M ≥ N ∈ N∗. We have

∂tE
(
〈PNUL, f〉〈g, PMUL〉

)
=

1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)Iε,L(k, t)

+ON,a,k,t,f,g

(ν1+α

√
L

+ ε2LN−3
)
.

Proof. Set n0 = ⌊N−1
4 ⌋. We have

PNUL(t) =

n0∑

n=0

εnun,L(ε
−2t),

hence

〈PNUL(t), f〉 =
n0∑

n=0

εn〈un,L(ε−2t), f〉.

What is more,

un,L(tε
−2) =

∑

k∈Z/L

ûn,L(tε
−2, k)

eikx√
2πL

and we recall that because the support of a is compact, the sum over k is finite.
Hence

〈PNUL(t), f〉 =
1√
2πL

∑

k∈Z/L

n0∑

n=0

εnûn,L(tε−2, k)f̂(k).

For the same reasons

〈g, PMUL(t)〉 =
1√
2πL

∑

k′∈Z/L

m0∑

m=0

εmûm,L(tε
−2, k′)ĝ(k′)

where m0 = ⌊M−1
4 ⌋.

Therefore,

E

(
〈PNUL, f〉〈g, PMUL〉

)
=

1

2πL

∑

k,k′

f̂(k)ĝ(k′)
∑

n,m

εn+m
E(ûn,L(tε−2, k)ûm,L(tε

−2, k′)).
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We recall that

E(ûn,L(tε−2, k)ûm,L(tε
−2, k′))

is null unless n = m and k = k′. Hence,

E

(
〈PNUL, f〉〈g, PMUL〉

)
=

1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)

n0∑

n=0

ε2nE(|ûn,L(tε−2, k)|2).

We have

E(|ûn,L(tε−2, k)|2) = E(|vn,L(tε−2, k)|2)

hence

∂tE
(
〈PNUL, f〉〈g, PMUL〉

)

=
1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)

n0∑

n=1

ε2(n−1)∂tE(|vn,L(k)|2)(tε−2).

We recall

n0∑

n=2

ε2(n−1)∂tE(|vn,L(k)|2)(tε−2) = On0,a,t

( ν

L1/2
+ ε2L4n0−2

)

hence

1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)

n0∑

n=2

ε2(n−1)∂tE(|vn,L(k)|2)(tε−2)

= On0,a,t,f,g

( ν

L1/2
+ ε2L4n0−2

)
.

Finally,

∂tE(|v1,L(k)|2)(tε−2) = Iε,L(k, t) +Oa(L
−1ν)

hence

1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)∂tE(|v1,L(k)|2)(tε−2) =
1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)Iε,L(k, t)

+Oa,f,g(L
−1ν)

which concludes the proof.

We set

IL(t) =
1

2πL

∑

k∈Z/L

f̂(k)ĝ(k)Iε,L(k, t).
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5.1 Case t is dyadic

Proposition 5.2. Assume that ε−2 = 2π2LL2+ρ(L) and that t is dyadic. We
have

IL(t) =
3

4π5

∫

~k∈B

sin(∆(~k)tρ

∆(~k)

5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)f̂(k)ĝ(k)d~k

+Oa(
ρ2

L
+
ρµ

ν
+
ρ

µ
)

where B = {(k, k1, k2, k3, k4, k5) ∈ R6 | |k − k1 + k2 − k3| ≥ 1
µ}, where

∆(~k) = k2 +

5∑

j=1

(−1)jk2j

and d~k = dk
∏5

j=1 dkj .

Proof. Let ~k ∈ Cσ := {(k,~k′)|~k′ ∈ Cσ(k)}, we have

∆(~k)tε−2 = ∆(~k)L2t2π2L +∆(~k)tρ.

Therefore, since t is dyadic, for L big enough

∆(~k)tε−2 ∈ ∆(~k)tρ+ 2πZ.

Hence

Iε,L(k, t) =
∑

σ∈A

∑

~k∈Cσ(k)

2

(2πL)4
sin(∆(~k)tρ)

∆(~k)

5∏

j=1

|a(kj)|2.

Since ∣∣∣sin(∆(~k)tρ)

∆(~k)

∣∣∣ ≤ tρ

and ∣∣∣∇
( sin(∆(~k)tρ

∆(~k)

)∣∣∣ ≤ |tρ|2 |∇∆|
∥∥x cosx− sinx

x2

∥∥
L∞

we get the convergence towards the Riemann integral since ρ2 = o(ν2) = o(L),

IL(t) =
∑

σ∈A

∫

Bσ

2

(2π)5
sin(∆(~k)tρ

∆(~k)

5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)f̂(k)ĝ(k)d~k

+Oa,f,g,t(ρ
2L−1)

where

Bσ = {(k, k1, k2, k3, k4, k5) | |k − k1 + k2 − k3| ≥ µ−1,

|k − kσ(1) + kσ(2) − kσ(3)| ≥ µ−1, ∆(~k) ≥ ν−1}.
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We have

∫

|∆(~k)|< 1
ν ,|k−k1+k2−k3|≥ 1

µ

5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)|f̂(k)ĝ(k)|d~k =

∫

|k−k1+k2−k3|≥ 1
µ

dkdk1dk2dk3|a(k1)|2|a(k2)|2|a(k3)|2|f̂(k)ĝ(k)|

∫

|∆(~k)|< 1
ν

dk4|a(k4)|2|a(k +
4∑

j=1

(−1)jkj)|2.

Since

∆(~k) = k2 − k21 + k22 − k43 − (k + k +

3∑

j=1

(−1)jkj)
2 − 2k4(k +

3∑

j=1

(−1)jkj)

we get that |∆(~k)| ≤ 1
ν implies

|k4 −
k2 − k21 + k22 − k43 − (k + k +

∑3
j=1(−1)jkj)

2

2(k +
∑3

j=1(−1)jkj)
| ≤ µ

ν

hence

∫

|∆(~k)|< 1
ν ,|k−k1+k2−k3|≥ 1

µ

5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)|f̂(k)ĝ(k)|d~k

≤ sup |a|4µ
ν

∫
dkdk1dk2dk3|a(k1)|2|a(k2)|2|a(k3)|3|f̂(k)ĝ(k)|.

Thus, we get

IL(t) =
∑

σ∈A

∫

B′
σ

2

(2π)5
sin(∆(~k)tρ

∆(~k)

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)δ(k +
5

∑

j=1

(−1)jkj)
5
∏

j=1

dkj+

Oa,t,f,g(ρ
2L−1) +Oa,t,f,g(

ρµ

ν
)

where

B′
σ = {(k, k1, k2, k3, k4, k5) | |k−k1+k2−k3| ≥

1

µ
|k−kσ(1)+kσ(2)−kσ(3)| ≥

1

µ
}.

We have

∫

|k+∑3
j=1(−1)jkσ(j) |< 1

µ

|f̂(k)ĝ(k)|
5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)d~k =

∫
dkdk1dk2dk4|a(k1)|2|a(k2)|2|a(k4)|2|f̂(k)ĝ(k)|

∫

|k+∑3
j=1(−1)jkσ(j) |< 1

µ

dk3|a(k3)|2|a(k +
4∑

j=1

(−1)jkj)|2.

Documenta Mathematica 27 (2022) 2491–2561



Singularities in the Weak Turbulence Regime 2541

We get

∫

|k+∑3
j=1(−1)jkσ(j) |< 1

µ

5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)|f̂(k)ĝ(k)|d~k

≤
∫
dkdk1dk2dk4|a(k1)|2|a(k2)|2|a(k4)|2|f̂(k)ĝ(k)| sup |a|4

1

µ
.

Thus, we get

IL(t) =
∑

σ∈A

∫

B

2

(2πL)5
sin(∆(~k)tρ

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)δ(k +
5∑

j=1

(−1)jkj)d~k

+Oa,t,f,g(ρ
2L−1 +

ρµ

ν
+
ρ

µ
)

which concludes the proof since the cardinal of A is 3!2! = 12.

Let

JL(t) =
3

4π5

∫

~k∈B

sin(∆(~k)tρ

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)δ(k +
5∑

j=1

(−1)jkj)d~k.

Proposition 5.3. We have that

lim
L→∞

JL(t) =

3

4π4

∫

R6

δ(k +

5∑

j=1

(−1)jkj)δ(∆(~k))
1

k − k1 + k2 − k3

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)d~k

and besides the integral converges.

Proof. We have

JL(t) =
3

4π5

∫

~k∈C

sin(D(~k)tρ)

D(~k)

4∏

j=1

|a(kj)|2|a(k +
4∑

j=1

(−1)jkj)|2f̂(k)ĝ(k)d~k

where

C = {(k, k1, . . . , k4)| |k − k1 + k2 − k3| ≥
1

µ
}

and

D(k, k1, . . . , k4) = ∆(k, k1, . . . , k4, k −
4∑

j=1

(−1)jkj).

To lighten the notations, we write equally

C = {(k1, k2, k3)| |k − k1 + k2 − k3| ≥
1

µ
}.

Documenta Mathematica 27 (2022) 2491–2561



2542 A.-S. de Suzzoni

We get

JL(t) =
3

4π5

∫

C

dkdk1dk2dk3f̂(k)ĝ(k)|a(k1)|2|a(k2)|2|a(k3)|2J4
L(t, k, k1, k2, k3)

where

J4
L(t, k, k1, k2, k3) =

∫
dk4

sin(D(~k)tρ)

D(~k)
|a(k4)|2|a(k +

4∑

j=1

(−1)jkj)|2.

Given a fixed k, k1, k2, k3 ∈ C, the derivative of k4 7→ D(~k) being

−2(k − k1 + k2 − k3)

and denoting k̄ = k − k1 + k2 − k3 6= 0, we get by integration by parts

J4
L(t, k, k1, k2, k3) = J4

L,1(t, k, k1, k2, k3) + J4
L,2(t, k, k1, k2, k3)

with

J4
L,1(t, k, k1, k2, k3) =

∫
dk4

1− cos(D(~k)tρ)

D2(~k)tρ
|a(k4)|2|a(k̄ + k4)|2

and

J4
L,2(t, k, k1, k2, k3) =

∫

dk4
1− cos(D(~k)tρ)

k̄D(~k)tρ
Re

(

a′(k4)ā(k4)|a(k̄ + k4)|2 + |a(k4)|2a′(k̄ + k4)ā(k̄ + k4)
)

.

For j = 1, 2, write

JL,j(t) =

3

4π5

∫

C

dkdk1dk2dk3f̂(k)ĝ(k)|a(k1)|2|a(k2)|2|a(k3)|2J4
L,j(t, k1, k2, k3).

We estimate JL,2(t). First, we have

1− cos(D(~k)tρ)

D(~k)tρ
.

1

(D(~k)tρ)1/2

and thus

J4
L,2(t, k, k1, k2, k3) ≤ ‖a′‖L∞‖a‖2L∞

1

|k̄|√tρ

∫
dk4

|a(k4)|√
D(~k)

which implies in turn

JL,2(t) .a
1√
tρ

∫

C

dkdk1dk2dk3dk4|f̂(k)ĝ(k)|
|a(k4)|

∏3
j=1 |a(kj)|2

|k̄|
√
D(~k)

.
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Then, we see that
D(~k) = D̄(k1, k2, k3)− 2k̄k4

with
D̄(k1, k2, k3) = k2 − k21 + k22 − k23 − k̄2 = D̃(k1, k2) + 2k̄k3

with

D̃(k1, k2) = k2 − k21 + k22 − (k − k1 + k2)
2 = −2(k − k1)(k2 − k1).

We divide the domain of integration of JL,2 in three parts as

JL,2(t) = JL,3(t) + JL,4(t) + JL,5(t)

with

4π5

3
JL,3(t) =

∫

C∩{D̄≤D̃/2}
dkdk1dk2dk3|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|2J4

L,2(t, k1, k2, k3),

JL,4(t, k) =
3

4π5

∫

C∩{D̄>D̃/2,D≤D̄/2}
dkdk1dk2dk3

|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|2J4
L,2(t, k1, k2, k3)

and

JL,5(t, k) =
3

4π5

∫

C∩{D̄>D̃/2,D>D̄/2}
dkdk1dk2dk3

|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|2J4
L,2(t, k1, k2, k3).

For JL,5, we use that D > D̃/4 to get

|JL,5| .a
1√
tρ

∫

C

dkdk1dk2dk3dk4|f̂(k)ĝ(k)|
|a(k4)|

∏3
j=1 |a(kj)|2

|k̄|
√
D̃(k1, k2)

.

We use that we integrate over C to get

|JL,5| .a
ln2 µ√
tρ

∫
dkdk1dk2dk3dk4|f̂(k)ĝ(k)|

|a(k4)|
∏3

j=1 |a(kj)|2

|k̄| ln2(|k̄|)
√

(k − k1)(k2 − k1)
.

We recall that k̄ = k − k1 + k2 − k3, therefore, by integrating first in k4 then
in k3 then in k2 then in k1 and finally in k, as in

√
tρ

ln2 µ
|JL,5| .a

∫

dk|f̂(k)ĝ(k)|
∫

dk1
|a(k1)|1

√

|k − k1|

∫

dk2
|a(k2)|2

√

|k2 − k1|

∫

dk3
|a(k3)|3

|k̄| ln2(|k̄|)

∫

dk4|a(k4)|
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we get

|JL,5| .a,f,g
ln2 µ√
tρ

which goes to 0 as L goes to ∞ as ln2 µ = o(
√
ρ).

For JL,4 we use that since D ≤ D̄/2, we have that

|k4| =
|D̄ −D|
2|k̄| ≥ |D̄|

4|k̄|

and therefore since |D̄| > |D̃|/2, we get

|k4| ≥
|D̃|
8|k̄| and |a(k4)| ≤

1√
|k4|〈k4〉2

‖
√
|x|〈x〉2a‖L∞ .a

√
|k̄|√

D̃〈k4〉2

from which we get

√
tρ

ln2 µ
|JL,4(t, k)| .a

∫
dkdk1dk2dk3dk4|f̂(k)ĝ(k)|

|a(k1)|2√
|k − k1|

|a(k2)|2√
|k2 − k1|

|a(k3)|3
|k̄| ln2(|k̄|)

√
|k̄|

〈k4〉2
√
D(~k)

.

Since D(~k)

|k̄| = −2k4+α(k1, k2, k3) where α is a map depending only on k1, k2, k3
we get

|JL,4(t, k)| .a,f,g
ln2 µ√
tρ
.

For JL,3 we use that since |D̄| ≤ |D̃|/2 we have that

|k3| =
|D̃ − D̄|
2|k̄| ≥ |D̃|

4|k̄|

and therefore,

|a(k3)| .a

√
|k̄|
D̃
.

We get as previously

√
tρ

ln2 µ
|JL,3(t, k)| .a

∫
dkdk1dk2dk3dk4|f̂(k)ĝ(k)|

|a(k1)|2√
|k − k1|

|a(k2)|2√
|k2 − k1|

|a(k3)|
|k̄| ln2(|k̄|)

|a(k4)|
√
|k̄|√
D(~k)

and we conclude as for JL,4.
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We now compute the limit of JL,1. By the change of variable ξ = D(~k)tρ, we
have

J4
L,1(t, k, k1, k2, k3) =

∫
dξ

2|k̄|
1− cos(ξ)

ξ2
|a(D̄ − ξ/(tρ)

2k̄
)|2|a(k̄ + D̄ − ξ/(tρ)

2k̄
)|2.

We divide the integral into two parts as

J4
L,1(t, k, k1, k2, k3) = K4

L,1(t, k, k1, k2, k3) +K4
L,2(t, k, k1, k2, k3)

with

K4
L,1(t, k, k1, k2, k3) =∫

|ξ|≤|D̄|tρ/2

dξ

2|k̄|
1− cos(ξ)

ξ2
|a(D̄ − ξ/(tρ)

2k̄
)|2|a(k̄ + D̄ − ξ/(tρ)

2k̄
)|2

and

K4
L,2(t, k, k1, k2, k3) =∫

|ξ|>|D̄|tρ/2

dξ

2|k̄|
1− cos(ξ)

ξ2
|a(D̄ − ξ/(tρ)

2k̄
)|2|a(k̄ + D̄ − ξ/(tρ)

2k̄
)|2.

We denote for j = 1, 2,

KL,j(t, k) =

3

4π5

∫

C

dkdk1dk2dk3f̂(k)ĝ(k)|a(k1)|2|a(k2)|2|a(k3)|2K4
L,j(t, k, k1, k2, k3).

For KL,2, using the bound on |ξ| we get

|K4
L,2(t, k, k1, k2, k3)| .a

1

|k̄|(tρ)1/4|D̄|1/4
∫
dξ

1− cos(ξ)

|ξ|7/4 .a
1

|k̄|(tρ)1/4|D̄|1/4 .

We divide the integral on k1, k2, k3 in two as previously as

|KL,2(t)| .a KL,3(t) +KL,4(t)

with

KL,3(t) =∫

D̄≤D̃/2∩C

1

|k̄|(tρ)1/4|D̄|1/4 |f̂(k)ĝ(k)||a(k1)|
2|a(k2)|2|a(k3)|2dk1dk2dk3

and

KL,4(t) =∫

D̄>D̃/2∩C

1

|k̄|(tρ)1/4|D̄|1/4 |f̂(k)ĝ(k)||a(k1)|
2|a(k2)|2|a(k3)|2dkdk1dk2dk3.
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For KL,4 we use the inequalities on k̄ and D̄ to get

(tρ)1/4

ln2(µ)
KL,4(t) .

∫
dkdk1dk2dk3

|k̄| ln2(|k̄|)|k − k1|1/4|k1 − k2|1/4
|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|2

which is integrable as previously, hence

KL,4(t, k) .a,f,g
ln2(µ)

(tρ)1/4
.

For KL,3 we recall that the inequality on D̄ implies that

|k3| ≥
D̃

|k̄| .

We use that

|a(k3)| .a
|k̄|3/4
|D̃|3/4

.

We deduce

KL,3 .a

1

(tρ)1/4

∫
1

|D̄|1/4|D̃|3/4|k̄|1/4
|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|dkdk1dk2dk3.

We have that
|D̄| ≥ 2|k3 − β(k1, k2)| |k3 − γ(k1, k2)|

where β and γ are two maps depending only on k1, k2. By using Hölder’s
inequality on k3, we get

KL,3 .a
1

(tρ)1/4

∫
dk|f̂(k)ĝ(k)|

∫
dk1

|a(k1)|2
|k − k1|3/4∫

dk2
|a(k2)|2

|k2 − k1|3/4
‖ |a|1/3
|k3 − β|1/4 ‖L3(k3)‖

|a|1/3
|k3 − γ|1/4 ‖L3(k3)‖

|a|1/3
|k̄|1/4 ‖L3(k3).

Since 3
4 < 1, we get

KL,3 .f,g
1

(tρ)1/4
.

We now turn to KL,1. We set

fL(k, k1, k2, k3, ξ) = 1|k̄|≥ 1
µ
1|ξ|≤|D̄|tρ/2

1

2|k̄|
1− cos(ξ)

ξ2

|a(D̄ − ξ/(tρ)

2k̄
)|2|a(k̄ + D̄ − ξ/(tρ)

2k̄
)|2f̂(k)ĝ(k)|a(k1)|2|a(k2)|2|a(k3)|2.
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When L goes to ∞ we have that ρ → ∞ and thus fL converges almost surely
to

f∞(k, k1, k2, k3, ξ) =

1

2|k̄|
1− cos(ξ)

ξ2
|a( D̄

2k̄
)|2|a(k̄ + D̄

2k̄
)|2f̂(k)ĝ(k)|a(k1)|2|a(k2)|2|a(k3)|2.

What is more, because |ξ| ≤ |D̄|tρ/2, we have that

∣∣∣ D̄ − ξ/(tρ)

2k̄

∣∣∣ ≥
∣∣∣ D̄
4k̄

∣∣∣

from which we deduce that

|a(D̄ − ξ/(tρ)

2k̄
)|2 .a

|k̄|1/2
|D̄|1/2 .

Therefore, if |D̄| ≥ |D̃|/2, we get

|fL(k, k1, k2, k3, ξ)| .a

1

|k̄|1/2|D̃|1/2
1− cos(ξ)

ξ2
|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|2.

On the other hand, if |D̄| < |D̃|/2 then

|k3| >
|D̃|
4|k̄|

and we get

|fL(k, k1, k2, k3, ξ)| .a
1

|k̄|1/2|D̃|1/2
1− cos(ξ)

ξ2
|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|.

Hence, for k, k1, k2, k3, k4 we have

|fL(k1, k2, k3, ξ)| .a
1

|k̄|1/2|D̃|1/2
1− cos(ξ)

ξ2
|f̂(k)ĝ(k)||a(k1)|2|a(k2)|2|a(k3)|,

the map on the right hand side being integrable we can apply DCT and get
that

lim
L→∞

KL,1(t) =

∫
f∞(k, k1, k2, k3, ξ)

=
3

4π4

∫
dk1dk2dk3

1

|k̄| |a(
D̄

2k̄
)|2|a(k̄ + D̄

2k̄
)|2|a(k1)|2|a(k2)|2|a(k3)|2

and the map below the integral is integrable.
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5.2 Case t = 1
3

Proposition 5.4. Assume that ε−2 = 2π2LL2 + ρ(L) and that t = 1
3 . We

have

IL(t) =
1

12π5

∫

~k∈B

sin(∆(~k)tρ

∆(~k)

5∏

j=1

|a(kj)|2δ(k +
5∑

j=1

(−1)jkj)f̂(k)ĝ(k)d~k

+Oa(
µν

L
+
ρ2

L
+
ρµ

ν
+
ρ

µ
)

where B = {(k, k1, k2, k3, k4, k5) ∈ R6 | |k − k1 + k2 − k3| ≥ 1
µ}, where

∆(~k) = k2 +
5∑

j=1

(−1)jk2j

and d~k = dk
∏5

j=1 dkj .

Proof. First, we see that

t =
1

3
=

∑

n≥1

1

22n

and therefore
2Lt ∈ xL

3
+ N

where xL = 1 if L is even and xL = 2 if L is odd. We deduce that

∆(~k)ε−2t ∈ ∆(~k)tρ+
2πxL
3

[
(kL)2 +

5∑

j=1

(−1)j(Lkj)
2
]
+ 2πZ.

And therefore, we get

sin(∆(~k)ε−2t) =

sin(∆(~k)ρt) cos
(2πxL

3

[
(kL)2 +

5∑

j=1

(−1)j(Lkj)
2
])

+ cos(∆(~k)ρt) sin
(2πxL

3

[
(kL)2 +

5∑

j=1

(−1)j(Lkj)
2
])
.

To know the values of

cos
(2πxL

3

[
(kL)2 +

5∑

j=1

(−1)j(Lkj)
2
])

and

sin
(2πxL

3

[
(kL)2 +

5∑

j=1

(−1)j(Lkj)
2
])
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it is sufficient to know the congruence of Lk, Lkj modulo 3. Therefore, we write

IL(t) =
2

(2π)5

∑

κ

Iκ,L(t)

with κ a map from [0, 4] ∩ N to {−1, 0, 1} and

Iκ,L(t) =

∑

σ∈A

1

L5

∑

~k∈Cσ,κ

sin(∆(~k)tρ)bκ,L + cos(∆(~k)tρ)cκ,L

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

where

Cσ,κ = {(k, k1, k2, k3, k4, k5) ∈ Cσ | Lk ∈ κ(0) + 3Z, ∀j, Lkj ∈ κ(j) + 3Z}

and

bκ,L = cos
(2πxL

3

5∑

j=0

(−1)jκ(j)2
)

and

cκ,L = sin
(2πxL

3

5∑

j=0

(−1)jκ(j)2
)
.

We divide Iκ,L in two as

Iκ,L = Jκ,L +Kκ,L

with

Jκ,L = bκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ

sin(∆(~k)tρ)

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

and

Kκ,L = cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ

cos(∆(~k)tρ)

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k).

With the same strategy as in the proof of Proposition 5.2, we have

Jκ,L = bκ,L
12

35

∫

~k∈B

sin(∆(~k)tρ)

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)d~k+Oa,f,g

(ρ2
L

+
ρµ

ν
+
ρ

µ

)
.

According to the program set in Appendix B, bκ,L = 1 in 99 cases and is equal
to

cos(
2π

3
) = cos(−2π

3
) = −1

2
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in 144 cases. Therefore,

∑

κ

Jκ,L =

12
99− 72

35

∫

~k∈B

sin(∆(~k)tρ)

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)d~k +Oa,f,g

(ρ2
L

+
ρµ

ν
+
ρ

µ

)
.

Still according to the program in Appendix B, cκ,L = 0 in 99 cases, is equal to√
3
2 in 72 cases and is equal to −

√
3
2 in 72 cases. We fix an involution κ 7→ κ̄

such that cκ̄,L = −cκ,L. We get

Kκ,L +Kκ̄,L = cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ

cos(∆(~k)tρ)− 1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

− cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ̄

cos(∆(~k)tρ)− 1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

+ cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ

1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

− cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ̄

1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k). (10)

For the same reasons as in the proof of Proposition 5.2, we get that

∑

σ∈A

1

L5

∑

~k∈Cσ,κ

cos(∆(~k)tρ)− 1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k) =

12

35

∫

~k∈B

cos(∆(~k)tρ)− 1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k) +Oa,f,g

(ρ2
L

+
ρµ

ν
+
ρ

µ

)

the key points being that cos(∆(~k)tρ)−1

∆(~k)
≤ tρ and that the derivative of cosx−1

x

is continuous and bounded.
This erases the first two lines in (10) as in

Kκ,L +Kκ̄,L = cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ

1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

− cκ,L
∑

σ∈A

1

L5

∑

~k∈Cσ,κ̄

1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

+Oa,f,g

(ρ2
L

+
ρµ

ν
+
ρ

µ

)
. (11)

Documenta Mathematica 27 (2022) 2491–2561



Singularities in the Weak Turbulence Regime 2551

We deal with the remainder, we set

Kκ,L,2 =

1

L5

∑

~k∈Cσ,κ

1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)−
1

L5

∑

~k∈Cσ,κ̄

1

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k).

Writing Cκ = {~k|Lk ∈ κ(0) + 3Z, ∀j, Lkj ∈ κ(j) + 3Z} and ~j = ~k + κ̄−κ
L , we

get

Kκ,L,2 =
1

L5

∑

~k∈Cκ

[1~k∈Cσ
− 1~j∈Cσ

∆(~k)
+ 1~j∈Cσ

( 1

∆(~k)
− 1

∆(~j)

)]

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)

+
1

L5

∑

~k∈Cκ

1~j∈Cσ

∆(~j)

(

5
∏

j=1

|a(kj)|2f̂(k)ĝ(k)−
5
∏

j=1

|a(jj)|2f̂(j)ĝ(j)
)

.

We divide again Kκ,L,2 into three parts as

Kκ,L,2 = Kκ,L,3 +Kκ,L,4 +Kκ,L,5

with

Kκ,L,3 =
1

L5

∑

~k∈Cκ

1~k∈Cσ
− 1~j∈Cσ

∆(~k)

5∏

j=1

|a(kj)|2f̂(k)ĝ(k),

Kκ,L,4 =
1

L5

∑

~k∈Cκ

1~j∈Cσ

( 1

∆(~k)
− 1

∆(~j)

) 5∏

j=1

|a(kj)|2f̂(k)ĝ(k)

and

Kκ,L,5 =
1

L5

∑

~k∈Cκ

1~j∈Cσ

∆(~j)

( 5∏

j=1

|a(kj)|2f̂(k)ĝ(k)−
5∏

j=1

|a(jj)|2f̂(j)ĝ(j)
)
.

We first deal with Kκ,L,5. We have |~k −~j| ≤ 2
L . Hence,

∣∣∣
1~j∈Cσ

∆(~j)

( 5∏

j=1

|a(kj)|2f̂(k)ĝ(k)−
5∏

j=1

|a(jj)|2f̂(j)ĝ(j)
)∣∣∣ .a,f,g

1~j∈Cσ
ν

L
.

Besides a has compact support hence there exists M > 0 such that

|Kκ,L,5| .a,f,g
1

L5

∑

~k∈Cκ∩[−M,M ]6

1~j∈Cσ
ν

L
.a,f,g

ν

L
.

We turn to Kκ,L,4. Given again the fact that a has compact support, we get

on the support of
∏5

j=1 |a(kj)|2 remembering that k = −∑5
j=1(−1)jkj ,

∣∣∣1~j∈Cσ

( 1

∆(~k)
− 1

∆(~j)

)∣∣∣ .a

1~j∈Cσ
ν

|∆(~k)|L
.
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Since |∆(~k)| ≥ |∆(~j)| − |∆(~j)−∆(~k)| and since |∆(~j)−∆(~k)| .a L
−1 we get

that for L big enough, since ν = o(
√
L),

∣∣∣1~j∈Cσ

( 1

∆(~k)
− 1

∆(~j)

)∣∣∣ .a

1~j∈Cσ
ν2

L
.

And therefore, we get

|Kκ,L,4| .a,f,g
ν2

L
.

We now turn to Kκ,L,3 and estimate the numbers of ~k such that

1~k∈Cσ
− 1~j∈Cσ

is not null. We assume without loss of generality that ~k ∈ Cσ but that ~j /∈ Cσ.
First Case: |∆(~j)| < ν−1. We have

ν−1 ≤ |∆(~k)| ≤ |∆(~j)|+ |∆(~k)−∆(~j)|.

Since on the support of
∏5

j=1 |a(kj)|2, we have

|∆(~k)−∆(~j)| .a L
−1,

we get
ν−1 ≤ |∆(~k)| ≤ |∆(~j)|+ CaL

−1.

We recall that ∆(~k) = D̄(k, k1, k2, k3)− 2k̄k4 and thus

1

ν|k̄| ≤ |k4 −
D̄

2k̄
| ≤ 1

ν|k̄| + Ca
µ

ν
.

Hence k4 belongs to the reunion of two intervals of size Ca
µ
L .

Second case: |j̄| < µ−1. We have

µ−1 ≤ |k̄| ≤ |j̄|+ |j̄ − k̄| ≤ µ−1 +
2

L
.

Therefore, k3 belongs to the reunion of two intervals of size 2
L .

Third case: |j̄σ| < µ−1. Similar to second case.
Therefore,

|Kκ,L,3| .a,f,g
µν

L
+
ν

L
and we can conclude.

From Proposition 5.3, we therefore get

lim
L→∞

IL(t) =

1

12π4

∫

R6

δ(k +
5∑

j=1

(−1)jkj)δ(∆(~k))
1

k − k1 + k2 − k3

5∏

j=1

|a(kj)|2f̂(k)ĝ(k)d~k

and get Theorem 1.2.
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A Tree glossary

A.1 Labeled trees

We draw some trees corresponding to Definition 3.2 in Figures 1 and 2. The
squares represent leaves and the circles represent nodes. We have T0 ∈ T0[k],
T1 ∈ T1[k] and T2 ∈ T2[k]. We fix ∆ = ∆1 = k2 − k21 + k22 − k23 + k24 − k25 , and
∆2 = k21 − j21 + j22 − j23 + j24 − j25 . Note that, in mathematical writing, we have

T0 = (k), T1 = ((k1), (k2), (k3), (k4), (k5), k),

and

T2 = (((j1), (j2), (j3), (j4), (j5), k1), (k2), (k3), (k4), (k5), k).

Figure 1: Labelled trees with 0 and 1 nodes

Keeping in mind the previous examples, we have corresponding to Defini-
tion 3.3:
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Figure 2: Labelled tree with 2 nodes

FT0(t) = 1,

FT1(t) = −i
∫ t

0

ei∆τdτ,

FT2(t) = −
∫ t

0

ei∆1τ

∫ τ

0

ei∆2sdsdτ,

gT0 = gLk,

gT1 = gLk1 ⋄ ḡLk2 ⋄ gLk3 ⋄ ḡLk4 ⋄ gLk5 ,

gT2 = gLj1 ⋄ ḡLj2 ⋄ gLj3 ⋄ ḡLj4 ⋄ gLj5 ⋄ ḡLk2 ⋄ gLk3 ⋄ ḡLk4 ⋄ gLk5 ,

and

AT0 = a(k),

AT1 = a(k1)ā(k2)a(k3)ā(k4)a(k5),

AT1 = a(j1)ā(j2)a(j3)ā(j4)a(j5)ā(k2)a(k3)ā(k4)a(k5).
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We have, corresponding to Definition 3.4,

~k0 := ~T0 = k, ~k1 := ~T1 = (k1, k2, k3, k4, k5),

~k2 := ~T2 = (j1, j2, j3, j4, j5, k2, k3, k4, k5).

A.2 Unlabeled trees

We draw a picture corresponding to Definition 3.7 in Figure 3. In
mathematical writing, we have t0 = ⊥, t1 = (⊥,⊥,⊥,⊥,⊥) and
t2 = ((⊥,⊥,⊥,⊥,⊥),⊥,⊥,⊥,⊥). We also have T0 = t0(k), T1 =
t1((k1, k2, k3, k4, k5)) and

T2 = t2((j1, j2, j3, j4, j5, k2, k3, k4, k5)).

We draw a picture corresponding to Definition 3.8 in Figure 4. We forgot some
parenthesis as they were redundant.
Corresponding to Definition 3.9, we have

k
t0,~k0

: 0 7→ k, k
t1,~k1

:
0 7→ k

(l, 0) 7→ kl

with k =
∑5

l=1(−1)l+1kl and

k
t2,~k2

:
0 7→ k

(l, 0) 7→ kl
(1, l, 0) 7→ jl

with k1 =
∑5

l=1(−1)l+1jl and k =
∑5

l=1(−1)l+1kl.
We also have

Ω
t1,~k1

: 0 7→ ∆, Ω
t2,~k2

:
0 7→ ∆1

(1, 0) 7→ ∆2
.
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Figure 3: Unlabelled trees with 0, 1 and 2 nodes

A.3 Node ordering

Finally, corresponding to Definition 3.13, we write explicitly the partial or-
der Rt4 on the tree with four nodes of Figure 5. We have

(1, 4, 0)Rt4
(1, 0)Rt4

0 and (5, 0)Rt4
0

and the other nodes are not comparable. In other words, (1, 0) is not compa-
rable to (5, 0) but also (1, 4, 0) is not comparable to (5, 0).
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Figure 4: Ordering labels of nodes and leaves

Figure 5: A tree with four nodes

B A program in Python

Here, we present a program on Python designed to give the number of maps
κ : [0, 4] → {−1, 0, 1} such that the number

κ(0)2 +

5∑

j=1

(−1)jκ(j)2

is equal to 0, 1 or −1 in F3.
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def hs(k) :

a,b,c = 0,0,0

for x in range(3):

for x1 in range(3):

for x2 in range(3):

for x3 in range(3):

for x4 in range(3):

if (x**2-x1**2+x2**2-x3**2+x4**2-(x-x1+x2-x3+x4)**2)%3 == 0:

a=a+1

else:

if (x**2-x1**2+x2**2-x3**2+x4**2-(x-x1+x2-x3+x4)**2)%3 == 1:

b=b+1

else: c=c+1

return a,b,c

The program returns: (99, 72, 72).
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