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1 Introduction

1.1 Motivation and background

Let X be a differentiable manifold and let E be a vector bundle on X . The
Chern classes of E are topological invariants ci(E) ∈ H

2i(X,Z) that measure,
in some sense, how far E is from being trivial. Chern-Weil theory tells us that
these Chern classes can be represented in the de Rham cohomology of X by
means of smooth differential forms obtained by applying an invariant polyno-
mial to the curvature matrix associated to a smooth connection on E .

When X is a complex manifold and E is a holomorphic vector bundle on X
equipped with a smooth hermitian metric, there is a unique smooth connection
on E compatible at the same time with the hermitian metric and with the holo-
morphic structure. We see that for a holomorphic vector bundle E on a com-
plex manifold, a smooth hermitian metric h uniquely determines Chern forms
c1(E , h), . . . , ci(E , h), . . . representing the Chern classes c1(E), . . . , ci(E), . . . in
de Rham cohomology.

Assume that X is compact, that dimX = n, and let x1, . . . , xn be variables
where xi has weight i. Let P ∈ Z[. . . , xi, . . .] be a homogeneous polynomial of
weight n. As a particular instance of Chern–Weil theory we find the equality

P (. . . , ci(E), . . .) =

∫

X

P (. . . , ci(E , h), . . .) (1.1)

in Z, where the expression P (. . . , ci(E), . . .) on the left hand side is interpreted
as an integer upon taking the degree, and where P (. . . , ci(E , h), . . .) is a closed
(n, n)-form on X . As a special case, we note that if L is a holomorphic line
bundle on X equipped with a smooth hermitian metric h then we have the
equality

c1(L)
n =

∫

X

c1(L, h)
n (1.2)

in Z, with c1(L)n ∈ Z the degree of the line bundle L.

Now although smooth hermitian metrics always exist, they can be difficult to
write down explicitly. In fact in many situations the natural hermitian metric h
associated to the problem at hand is only smooth on a dense open subset but
singular along say a normal crossings divisor D on X . In this context Mumford
[35] has introduced the notion of good metrics. The condition of being “good” is
phrased in terms of conditions on the asymptotic behavior of h and its first and
second derivatives near D; we refer to Example 2.34 for the precise definition.

Good metrics are a class of singular metrics that for the purpose of Chern–
Weil theory are as good as smooth metrics. More precisely, let X be a compact
complex manifold, E a holomorphic vector bundle on X and U ⊂ X a dense
open subset whose complement is a normal crossings divisor. Let h be a smooth
metric on E|U such that h is good in the sense of Mumford as a singular
metric on E . Then for every polynomial P ∈ Z[. . . , xi, . . . ] the smooth closed
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differential form

P (E , h) = P (c1(E , h), . . . , ci(E , h), . . . )

on U is locally integrable as a differential form on X , and thus determines a
closed current [P (E , h)] onX . In fact, the closed current [P (E , h)] represents the
class P (E) = P (. . . , ci(E), . . . ) in de Rham cohomology ofX . In particular, if xi
has weight i and P ∈ Z[. . . , xi, . . .] is a homogeneous polynomial of weight n,
we have the equality

P (. . . , ci(E), . . .) =

∫

U

P (. . . , ci(E , h), . . .) (1.3)

in Z, where again the expression P (. . . , ci(E), . . .) on the left hand side is inter-
preted as an integer upon taking the degree. If L is a holomorphic line bundle
on X equipped with a smooth metric h on L|U such that h is good as a singular
metric on L, then we have the equality

c1(L)
n =

∫

U

c1(L, h)
n (1.4)

in Z.
As equations (1.3) and (1.4) suggest, good metrics are better understood in
the context of extending a vector bundle from a non-compact manifold to a
compactification. In fact, the notion of good metric appears naturally in the
study of compactifications of locally symmetric domains.
Let D be a bounded symmetric domain and Γ a neat arithmetic group acting
on D by isometries. Then the quotient U = D/Γ is a locally symmetric space
and has a natural structure of a quasi-projective variety. In [1] the authors
introduce a family of toroidal compactifications of U . We have that D is
a quotient D = K\G, where G is a semisimple adjoint group and K is a
maximal compact subgroup. Any unitary representation of K defines a (fully
decomposable) holomorphic vector bundle Eo on U together with a smooth
hermitian metric h.
As Mumford proves in [35], when X is a smooth toroidal compactification of
U = D/Γ in the sense of [1], there exists a unique extension of Eo to a vector
bundle E onX such that the metric h extends to a singular good hermitian met-
ric. In particular, when n = dimX and the variables xi have weight i then for
every homogeneous polynomial P ∈ Z[. . . , xi, . . .] of weight n we have the equal-
ity (1.3) in Z. As a consequence, we see that the element P (. . . , ci(E), . . .) ∈ Z
does not depend on the choice of toroidal compactification X .
Mumford’s result applies notably to the case of pure Shimura varieties, as the
connected components of their associated analytic spaces are locally symmetric
spaces.
It makes sense to ask whether an extension of the Chern–Weil result (1.3) holds
in the context of mixed Shimura varieties, for example moduli spaces of abelian
varieties with marked points. Such spaces again come equipped with natural

Documenta Mathematica 27 (2022) 2563–2623



2566 A. M. Botero, J. I. Burgos Gil, D. Holmes, et al.

automorphic line bundles, with natural smooth hermitian metrics on them.
Moreover, such spaces have natural smooth toroidal compactifications.
However, as was shown in [15] in an example dealing with certain modular
elliptic surfaces, in the case of mixed Shimura varieties new types of metric
singularities appear, that are not good in the sense of Mumford. In fact, a
naive extension of the Chern–Weil result (1.3) turns out to fail already in this
simple situation.
Let us give some details. Let U denote the moduli space E(N) of elliptic
curves with two marked points and with level N . Let L be the line bundle of
Jacobi forms on U of weight four and index four, and let h denote the natural
invariant hermitian metric on L. As is proved in [15], for any smooth toroidal
compactificationX of U , there exists a subset S ⊂ X of codimension two as well
as an integer r ≥ 1 such that the smooth hermitian line bundle L⊗r over U can
be extended to a line bundle LX\S,r over X \S in such a way that h⊗r extends
to a good singular metric in the sense of Mumford. Since S has codimension
two, the line bundle LX\S,r can be extended uniquely to a line bundle LX,r

over X . However, the metric h is no longer good at some of the points of S
and in fact, the intersection number

1

r2
c1(LX,r)

2

turns out to depend on the choice of toroidal compactification X . It follows
that (1.3) can not be directly extended to the case of mixed Shimura varieties.
As is shown in [15], to recover a Chern–Weil type result in the setting of the
mixed Shimura variety U = E(N) we should not extend the line bundle L
of Jacobi forms as a line bundle, but as a different object. The result is best
stated in the language of b-divisors. Loosely speaking, a b-divisor is a collection
of divisors on a tower of modifications of a given compactification X of U ,
compatible with push-forward. The precise definition is given in Section 4.
Let s be a non-zero rational section of the holomorphic line bundle L, and let D
be the divisor of s, so that L ≃ O(D). In [15], a natural b-divisor D(L, h, s)
on X with rational coefficients extending the divisor D is constructed, which
is then shown to have a natural self-intersection number D(L, h, s)2 in R.
Here, the self-intersection number D(L, h, s)2 is computed as a limit of self-
intersections of the “incarnations” of D(L, h, s) on all models in the tower.
Finally, the equality

D(L, h, s)2 =

∫

U

c1(L, h)
∧2 (1.5)

is shown to hold in R. Note that (1.5) can be seen as a Chern–Weil type result,
where the intersection number on the left is taken in the sense of b-divisors
on X , and the integral on the right is taken over the open dense subset U ⊂ X .
In [15] the above Chern–Weil result is complemented with a result of Hilbert–
Samuel type that we also recall. Let H be the upper half plane. Jacobi forms
of weight k and index m are holomorphic functions on H×C satisfying certain
transformation properties with respect to a subgroup Γ ⊂ SL(2,Z) and the
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abelian group Z2 as well as a growth condition when approaching the boundary
of H. The basic reference for the theory of Jacobi forms is the book [25]. Let
J4r,4r(Γ(N)) be the space of Jacobi forms of weight 4r and index 4r with respect
to the principal congruence subgroup Γ(N). The elements of J4r,4r(Γ(N))
can be seen as sections of the line bundle L⊗r over U satisfying some growth
conditions along X \ U . The second main result of [15] is the formula

lim
r→∞

dim J4r,4r(Γ(N))

r2/2
= D(L, h, s)2. (1.6)

That is, the asymptotic growth of the dimensions of the spaces of Jacobi forms
is not given by the self-intersection of a divisor but of a b-divisor. Therefore to
recover a Hilbert–Samuel type of result for the space of Jacobi forms we need
to extend L as a b-divisor and not as an ordinary line bundle.

Note that by combining equations (1.5) and (1.6) we find that the asymptotic
growth of the space of Jacobi forms is governed by an integral of a smooth
differential form over U .

The proof of (1.5) and (1.6) in [15] consists of an explicit computation of both
sides of each equation. The present paper finds its origin in the following two
questions: whether there could be a more intrinsic approach to proving the
equalities (1.5) and (1.6), and whether these equalities might admit a general-
ization to the setting of automorphic line bundles on mixed Shimura varieties
in higher dimensions. We will answer both questions in the affirmative. As we
will see in a forthcoming paper, in particular this will give us a formula for the
asymptotic growth of the dimensions of spaces of Siegel–Jacobi forms.

1.2 Statement of the main results

Let X be a projective complex manifold and let L be a holomorphic line bundle
on X . We start out by defining a suitable class of singular hermitian metrics
on L, namely those with almost asymptotically algebraic singularities.

The precise definition of almost asymptotically algebraic singularities is given
in Definition 3.2, but in essence it asserts that our metrics be plurisubharmonic,
with local potentials that are bounded away from a normal crossings divisor D
on X and that can be approximated well by logarithms of sums of square norms
of holomorphic functions near D (i.e., by metrics with algebraic singularities).

Many natural singular hermitian metrics turn out to be almost asymptoti-
cally algebraic. For example, we prove, using Demailly’s celebrated regu-
larization theorem for plurisubharmonic metrics (see [23, Theorem 4.2], [24,
Theorem 3.2]), that a toroidal plurisubharmonic metric is almost asymptot-
ically algebraic; see Proposition 3.11. Also, as we will see in Lemma 3.3, a
plurisubharmonic metric which is good in the sense of Mumford has almost
asymptotically algebraic singularities.

Our main results are generalizations of the Chern–Weil formula (1.5) and of
the Hilbert–Samuel formula (1.6) to the setting of plurisubharmonic metrics

Documenta Mathematica 27 (2022) 2563–2623



2568 A. M. Botero, J. I. Burgos Gil, D. Holmes, et al.

with almost asymptotically algebraic singularities. In order to formulate our
Chern–Weil result, let h be a plurisubharmonic metric on L.
We can make sense of c1(L, h) as a closed, positive (1, 1)-current on X simply
by taking −ddc log h(s) for a local generating section s of L. Let n = dimX .
A generalisation of Bedford-Taylor calculus by Boucksom, Eyssidieux, Guedj
and Zeriahi [10] allows us to define the non-pluripolar Monge–Ampère measure
〈c1(L, h)

n〉, a closed, positive (n, n)-current on X .
The right hand side of our Chern–Weil formula will be the non-pluripolar vol-
ume ∫

X

〈c1(L, h)
n〉 (1.7)

of the plurisubharmonic line bundle (L, h). We note that, if h has bounded
local potentials on a Zariski dense open set of U of X , then the equality

∫

X

〈c1(L, h)
n〉 =

∫

U

c1(L, h)
n

holds in R≥0. In this case we say that h has Zariski unbounded locus. In par-
ticular such a metric has “small unbounded locus” in the sense of [10]. Most
examples of singular metrics arising from algebraic geometry have Zariski un-
bounded locus; for example, plurisubharmonic metrics with almost asymptot-
ically algebraic singularities have Zariski unbounded locus.
Fix a smooth reference metric h0 on L. Let θ = c1(L, h0) be the first Chern
form of h0 and set ϕ = − log(h(s)/h0(s)), where s is any non-zero rational
section of L. Let J (ϕ) denote the multiplier ideal associated to ϕ (see Defini-
tion 2.15). The non-pluripolar volume (1.7) turns out to be intimately related
to the multiplier ideal volume of (L, h), given by the limit

volJ (L, h) := lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
.

Note that the right hand side is indeed independent of the choice of h0. The
quantity volJ (L, h) is called arithmetic volume in [18].
More precisely, Darvas and Xia show in [18] that if L is ample we have the
lower bound

volJ (L, h) ≥

∫

X

〈c1(L, h)
n〉 . (1.8)

Moreover, they show that if one assumes that the non-pluripolar volume is
strictly positive, then equality holds in (1.8) if and only if h is in some precise
sense very well approximable by algebraic singularities, see [18, Theorem 5.5]
for the precise conditions. This can be seen as an analytic Hilbert–Samuel
type statement. We note that these results were very recently extended and
generalized to the case where L is only assumed to be pseudoeffective, see [19,
Theorem 1.1].
Our notion of almost asymptotically algebraic singularities is probably stronger
than the list of equivalent conditions on singularity type that is mentioned in
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[18, Theorem 5.5] (see Corollary 3.14 and the discussion afterwards), however
our notion of almost asymptotically algebraic singularities has the advantage
of being easy to verify in concrete cases.
As a first illustration of our viewpoint, we give a direct proof of equality in
(1.8) in the case of almost asymptotically algebraic singularities, without the
assumption that L is ample.

Theorem A. (Theorem 3.13) Assume that the plurisubharmonic metric h has
almost asymptotically algebraic singularities. Then the analytic Hilbert–Samuel
type formula

volJ (L, h) =

∫

X

〈c1(L, h)
n〉

holds in R≥0.

In the spirit of [15], the left hand side of our Chern–Weil formula will be an
intersection product of b-divisors. Assume that the plurisubharmonic metric h
has Zariski unbounded locus. Given a non-zero rational section s of L, we
construct an associated R-b-divisor D(L, h, s) on X using the Lelong numbers
of the current c1(L, h) at all prime divisors on all modifications of X (see Def-
inition 5.4). This extends a construction due to Boucksom, Favre and Jonsson
in the local case in [11].
Unfortunately, the set of all R-b-divisors does not admit a natural intersection
product. Dang and Favre [17] have shown though that the set of so-called ap-
proximable nef b-divisors (see Definition 4.8) does admit a natural intersection
product with values in R.

Theorem B. (Theorem 5.18) Assume that the plurisubharmonic metric h has
Zariski unbounded locus. Then the associated R-b-divisor D(L, h, s) on X is
approximable nef.

In particular, the degree D(L, h, s)n ∈ R is well-defined. This allows us to state
the following Chern–Weil type result.

Theorem C. (Theorem 5.20) Assume that the plurisubharmonic metric h has
almost asymptotically algebraic singularities. Then the equality

D(L, h, s)n =

∫

X

〈c1(L, h)
n〉

holds in R≥0.

Combining Theorem A and Theorem C we obtain the equality

volJ (L, h) = D(L, h, s)n (1.9)

for plurisubharmonic metrics with almost asymptotically algebraic singulari-
ties, which can be seen as a b-divisorial version of the classical Hilbert–Samuel
formula for nef line bundles.
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It is shown in [5] and [6] that in the toric and toroidal settings the b-divisorial
degree of a nef b-divisor can be computed by combinatorial means in terms of
a Monge–Ampère measure associated to a weakly concave function on a suit-
able polyhedral space. Also we have that the volume (see (A.1) for a precise
definition) of a toric or toroidal b-divisor agrees with its degree (see [5, Theo-
rem 5.11] and [6, Theorem 5.13]). Such results seem to be special to the toric
and toroidal cases: in the Appendix we give an example to show that in general
the volume function is not continuous on the space of big and approximable
nef b-divisors (whereas the degree function is continuous).
We see that in the case of an almost asymptotically algebraic psh metric whose
associated b-divisor is toroidal, the multiplier ideal volume agrees with the vol-
ume of the associated b-divisor, as both agree with the degree of the b-divisor.
It would be interesting to know whether the equality between the multiplier
ideal volume of a psh metric and the volume of the associated b-divisor con-
tinues to be true in the general case of almost asymptotically algebraic psh
metrics (see Remark A.3.3).
To illustrate our general results we shall consider the following example dealing
with universal abelian varieties. This example generalizes the set-up of [15].
Let g ∈ Z≥1 and N ∈ Z≥3 and let Ag,N denote the fine moduli space of
principally polarized complex abelian varieties of dimension g and level N . Let
π : Ug,N → Ag,N be the universal abelian variety, and Ug,N and Ag,N be any
projective smooth toroidal compactifications of Ug,N and Ag,N , respectively,
together with a map π : Ug,N → Ag,N extending π, as discussed for example in
[26, Chapter XI]. Let k,m ∈ Z≥0 and let Lk,m denote the line bundle of Siegel-
Jacobi forms on Ug,N of weight k and index m. It is endowed with a canonical
smooth invariant hermitian metric hk,m. The first Chern form c1(Lk,m, hk,m)
is a semipositive (1, 1)-form on Ug,N .
The next result is a special case of Theorem 6.3.

Theorem D. The smooth hermitian line bundle (Lk,m, hk,m) has a canonical
extension (Lk,m, hk,m) as a Q-line bundle with a plurisubharmonic metric with
toroidal, and hence almost asymptotically algebraic, singularities over Ug,N .

Let n = dimUg,N = g + g(g + 1)/2. Let s be any non-zero rational section of
Lk,m, and let D(Lk,m, hk,m, s) be the b-divisor associated to s and the met-
ric hk,m. As is verified by Proposition 5.8, the b-divisor D(Lk,m, hk,m, s) is
independent of the choice of the compactification Ug,N .
Theorem D together with Theorem A and Theorem C imply the following.

Theorem E. (Theorem 6.8) Let notations be as above. Then the equalities
∫

Ug,N

c1(Lk,m, hk,m)n = D(Lk,m, hk,m, s)
n = volJ (Lk,m, hk,m)

hold in R≥0.

Note that this generalizes (1.5) and (1.6) to higher degrees. In our follow-
up paper [7] we shall prove that the b-divisors associated to (Lk,m, hk,m) are
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toroidal b-divisors on the smooth toroidal variety Ug,N in the sense of [6].
Along the way we show that these b-divisors are not given by a divisor on any
single model of Ug,N . This shows that it is really necessary to consider these
limits of divisors on all models. Moreover, we will use the techniques developed
in the present paper to compute the asymptotic growth of the dimensions of
spaces of Siegel–Jacobi forms.

1.3 Structure of the paper

The purpose of Section 2 is to review several analytic notions such as singu-
lar hermitian metrics, (quasi-)plurisubharmonic functions and metrics, Lelong
numbers, multiplier ideals and the multiplier ideal volume. We discuss vari-
ous notions of singularity type for quasi-plurisubharmonic functions and review
Demailly’s regularization theorem as well as the notion of non-pluripolar prod-
ucts. We state an important monotonicity result for non-pluripolar products
due to Boucksom, Eyssidieux, Guedj and Zeriahi.

In Section 3 we introduce the notion of almost asymptotically algebraic singu-
larities and discuss various examples. We will see that good plurisubharmonic
and toroidal plurisubharmonic metrics have almost asymptotically algebraic
singularities. We prove that in the case of almost asymptotically algebraic sin-
gularities, the multiplier ideal volume and the non-pluripolar volume coincide.

In Section 4 we recall the notion of b-divisors and review part of the work
of Dang and Favre on approximable nef b-divisors. In Section 5 we show
how to associate a b-divisor to a line bundle with a plurisubharmonic metric
with Zariski unbounded locus. We show that such b-divisors are approximable
nef, and prove our Chern–Weil type result for almost asymptotically algebraic
singularities.

Finally in Section 6 we discuss the biextension line bundle, and more gener-
ally the line bundle of Siegel–Jacobi forms, on the universal abelian variety
as an example of a line bundle with a plurisubharmonic metric with almost
asymptotically algebraic singularities.
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2 Analytic preliminaries

In this section X denotes a complex manifold of pure dimension n.

2.1 Singular hermitian metrics

We refer to [20], [21] and [36] (see also [8], [12] and [29]) for definitions and
proofs of the analytic properties given in this section. We take our notion of
plurisubharmonic (psh) functions from [36, Chapter 3].

Definition 2.1. Let U be an open coordinate subset ofX that we identify with
an open subset of Cn. A function ϕ : U → R∪{−∞} is called plurisubharmonic
(psh) if it satisfies the following two conditions:

1. ϕ is upper semicontinuous and is not identically −∞ on any connected
component of U ;

2. for every z ∈ U and a ∈ Cn the function in one complex variable

ζ 7−→ ϕ(z + aζ) ∈ R ∪ {−∞}

is either identically −∞ or subharmonic in each connected component of
the open set {ζ ∈ C | z + aζ ∈ U}.

A function ϕ : U → R ∪ {−∞} on an arbitrary open subset U of X is called
psh if U can be covered by open coordinate subsets Ui and each ϕ|Ui

is psh.

We write ddc for the operator i
π
∂∂̄. The following characterization of psh

functions, that does not refer to coordinate charts, is used frequently.

Proposition 2.2. Let U ⊂ X be an open set and let ϕ : U → R ∪ {−∞} be a
measurable function. Then ϕ is psh if and only if the following two conditions
are satisfied:

1. The function ϕ is strongly upper semicontinuous. That is, for all V ⊂ U
of total Lebesgue measure, and all x ∈ U , the condition

ϕ(x) = lim sup
y→x
y∈V

ϕ(y)

holds.

2. The function ϕ is locally integrable and the (1, 1)-current ddcϕ is positive.

Examples of psh functions are given by the functions 1
2 log(|f1|

2 + · · ·+ |fN |
2)

where f1, . . . , fN ∈ OX(U) are non-zero holomorphic functions.

Remark 2.3. If T is a closed positive (1, 1)-current, then T is locally exact and
so is locally of the form ddcϕ for some psh function ϕ; we call such ϕ local
potentials of T . We say T has bounded local potentials if the ϕ can be chosen to
be bounded, and similarly with ‘continuous’ or ‘smooth’ instead of ‘bounded’.
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When X is compact, any global psh function on X is constant. To have a rich
global theory we need to allow some flexibility.

Definition 2.4. 1. An upper semicontinuous function ϕ : X → R ∪ {−∞}
is called quasi-plurisubharmonic (quasi-psh) if ϕ is locally of the form
u+ f , where u is psh and f is smooth.

2. Let θ be a smooth closed (1, 1)-form on X . A measurable function
ϕ : X → R ∪ {−∞} is called θ-psh if ϕ is locally integrable, strongly
upper semicontinuous and ddcϕ+ θ is a positive current.

When T is a current we write T ≥ 0 to express that T is positive.

Lemma 2.5. Let ϕ : X → R ∪ {−∞} be a function.

1. If ϕ is θ-psh for some smooth closed (1, 1)-form θ then ϕ is quasi-psh.

2. If X is compact Kähler with Kähler form ω and ϕ is quasi-psh then there
is a real number a > 0 such that ϕ is (aω)-psh.

Proof. For (1), assume that ϕ is θ-psh for some smooth closed (1, 1)-form θ.
Then there is a covering of X by open subsets Ui and on each Ui there is a
smooth function fi with dd

cfi = θ. Then, on Ui we write ϕ = (ϕ+fi)−fi. The
function −fi is smooth and the function ϕ + fi is locally integrable, strongly
upper semi-continuous and satisfies

ddc(ϕ+ fi) = ddcϕ+ θ ≥ 0 .

Therefore ϕ+ fi is psh and ϕ is quasi-psh.
For (2), assume that ϕ is quasi-psh and X is compact Kähler with Kähler
form ω. There is a finite open cover {Ui}i of X , and for each i a decomposition
ϕ = fi + γi with fi psh and γi smooth. After shrinking the Ui if necessary we
can assume that, for each i, the form ddcγi can be extended to a smooth form
on an open neighbourhood of the compact set Ui. Then there is a real number
a > 0 such that ddcγi + aω|Ui

≥ 0 for all i. It follows that

(ddcϕ+ aω) |Ui
= ddcfi + ddcγi + aω|Ui

≥ 0

for all i. Therefore, ϕ is (aω)-psh.

In algebraic geometry it is often convenient to work with the related concept of
psh metrics on a line bundle. Let L be a line bundle onX and fix a trivialization
{(Ui, si)} of L with transition functions {gij}. A hermitian metric on L is a
collection of measurable functions

h = {ϕi : Ui → R ∪ {±∞}} ,

such that
e−ϕi = |gij |e

−ϕj (2.1)

Documenta Mathematica 27 (2022) 2563–2623



2574 A. M. Botero, J. I. Burgos Gil, D. Holmes, et al.

on Ui ∩ Uj . The function ϕi determines the norm h(si) of the trivializing
sections si by the formula

ϕi(z) = − log h(si(z)), z ∈ Ui .

The condition (2.1) is equivalent to

log h(si)− log h(sj) = log |si/sj| .

Then, the norm h(s) of any section s at a point z is given by

log h(s(z)) = log |s(z)/si(z)|+ log h(si(z)) = log |s(z)/si(z)| − ϕi(z) ,

if z ∈ Ui, and this is easily verified to be independent of the choice of i. The
functions ϕi = − logh(si) are called local potentials of the metric h.

Definition 2.6. The metric h is called singular (resp. psh, continuous, smooth)
if the local potentials ϕi are locally integrable (resp. psh, continuous, smooth).

The notion of singular (resp. psh, continuous, smooth) metric readily gener-
alizes to the context of Q-line bundles on X (see [4, Definition 2.10] for a
discussion of this terminology).

Remark 2.7. The global relation between psh metrics on line bundles on X and
θ-psh functions on X is given as follows. Choose a smooth reference metric h0
on L and write

θ = c1(L, h0).

Then θ is a smooth closed (1, 1)-form on X . Note that for every trivializing
open subset Ui and trivializing section si of L over Ui one has

θ|Ui
= −ddc log(h0(si)).

Now choose a non-zero rational section s of L. Then the maps

h 7−→ ϕ = − log(h(s)/h0(s)) and ϕ 7−→ θ + ddcϕ

do not depend on the choice of section. The first map is a bijection between
the set of psh metrics on L and the set of θ-psh functions on X . If X is
compact connected, the second map induces a bijection between the set of θ-
psh functions on X up to constants and the set of positive (1, 1)-currents in the
cohomology class c1(L) of L. If h is a psh metric on L and ϕ = − log(h(·)/h0(·))
the corresponding θ-psh function, we will use the notation c1(L, h) = θ+ ddcϕ
for the first Chern current associated to h.

2.2 Lelong numbers, equivalence of singularities, multiplier ide-

als

A first measure of the singularities of a psh function is given by its Lelong
numbers. Let T be a closed positive (1, 1)-current on the complex manifold X .
The Lelong number ν(T, x) of T at a point x ∈ X is given by

ν(T, x) = lim
r→0+

ν(T, x, r),
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where ν(T, x, r) is computed in an open coordinate neighborhood of x as the
integral

ν(T, x, r) =
1

(2πr2)n−1

∫

B(x,r)

T (z) ∧
(
i∂∂̄|z|2

)n−1
.

Here, B(x, r) denotes the ball with center x and radius r. Several important
properties of Lelong numbers are stated in [22, Section 2.B]. In particular, they
are non-negative real numbers which are invariant under holomorphic changes
of local coordinates. Further, the Lelong number ν(T, x) is additive in T . If ϕ
is a psh local potential of T as in Remark 2.3 then we write

ν(ϕ, x) = ν(T, x).

The Lelong numbers of psh functions have the following characterization.

Proposition 2.8. Let U ⊂ X be an open coordinate subset and let ϕ be a psh
function on U . Let x ∈ U . Then the equality

ν(ϕ, x) = sup
{
γ ≥ 0

∣∣ ϕ(z) ≤ γ log |z − x|+O(1) near x
}

holds. In particular, if ϕ = log |f | with f ∈ OX(U) holomorphic, then ν(ϕ, x) =
ordx(f), where ordx(f) is the largest power of the maximal ideal of x which
contains f .

Definition 2.9. A morphism π : X ′ → X of complex manifolds is called a
modification if it is proper and there exists a nowhere-dense analytic subset
Z ⊆ X such that the map π−1(X \ Z) → X \ Z given by restricting π is an
isomorphism, and such that X ′ \ π−1Z is nowhere dense in X ′.

Given a modification π : X ′ → X and a psh function ϕ on an analytic open
subset U of X , the composition ϕ ◦ π is a psh function on π−1(U). Hence for
any positive (1, 1)-current T on X the Lelong number ν(T, x) at a point x ∈ X ′

is well defined. Furthermore, one can define the Lelong number ν(T, P ) at any
prime divisor P on X ′ by

ν(T, P ) := ν(T, η),

where η is a very general point of P . If T is of the form c1(L, h) for a psh
metric h on a line bundle L, we write

ν(h, P ) := ν(T, P ).

Remark 2.10. Let T be a closed positive (1, 1)-current on X . We briefly recall
the Siu decomposition of T on X (and refer to [8, Section 2.2.1] for details).
This decomposes T uniquely as a sum

T = R+
∑

k

ν (T, Yk) δYk
,
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where the sum is over an (at most countably infinite) family of 1-codimensional
subvarieties Yk of X . Here, δYk

denotes the integration current determined
by Yk, and R is a closed positive (1, 1)-current whose Lelong number on any
prime divisor on X is zero. In Section 5 we will relate the Siu decomposition
of T to the so-called b-divisor associated to a psh metric (see Remark 5.6).

The Lelong numbers allow us to classify singularities of psh functions in the
sense that more singular psh functions have bigger Lelong numbers. But in
some situations, the classification of singularities by Lelong numbers is too
crude, and a more refined classification is needed. Such a more refined classifi-
cation is given by the concept of type of singularity of a psh function.

Definition 2.11. Let U ⊂ X be an open subset and let ϕ, ψ be two psh
functions on U . We say that ϕ is more singular than ψ at a point u ∈ U if
there exists an open neighbourhood u ∈ V ⊆ U and a constant C ∈ R such
that ϕ ≤ ψ+C on V . We say that ϕ is more singular than ψ, denoted ϕ ≺ ψ,
if it is so at every u ∈ U .
We write ϕ ∼ ψ if ϕ ≺ ψ and ψ ≺ ϕ. In this case we say that ϕ and ψ
have equivalent singularities. This notion can be easily extended to the set of
quasi-psh functions on X and defines an equivalence relation on this set. Given
a quasi-psh function ϕ on X , we denote by [ϕ] its equivalence class, and call
[ϕ] the type of singularity of ϕ.

The above classification of singularities of quasi-psh functions carries over to
closed positive (1, 1)-currents and to psh metrics on L by using local potentials.
If T and T ′ are two closed positive (1, 1)-currents, we write T ≺ T ′ if there is
an open covering {Ui} of X and local psh potentials ϕi and ϕ′

i of T and T ′

on Ui such that ϕi ≺ ϕ
′
i. Similarly, given two psh metrics h and h′ on the line

bundle L, we write h ≺ h′ if c1(L, h) ≺ c1(L, h
′).

Remark 2.12. Let T ≺ T ′ be two closed positive (1, 1)-currents on X . Then
their Lelong numbers satisfy

ν(T, x) ≥ ν(T ′, x)

for every point x ∈ X ′ in any modification π : X ′ → X of X . In particular if T
and T ′ have equivalent singularities, then they have the same Lelong numbers
at every prime divisor on every modification of X .
The converse does not hold as the following example shows. The example is
local for ease of writing but can easily be made into a global one.

Example 2.13. Consider the function f(z) = − log(− log(zz̄)) on the disk
zz̄ < 1. Then ν(f, q) = 0 for all q in the disk, but f is not bounded below.
So f has the same Lelong numbers as a constant function in any point but
f 6∼ 1. This is a counterexample to the converse of Remark 2.12 because any
modification of the disk is the disk itself.

Two psh functions which have the same Lelong numbers onX need not have the
same Lelong numbers on a modification. In fact, more is true: it can happen
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that ν(f, x) ≤ ν(g, x) for all x ∈ X and even ν(f, x0) < ν(g, x0) for a point
x0 ∈ X , but ν(f, y) > ν(g, y) for some point y above x0 in some modificationX ′

of X .

Example 2.14. Consider the functions f and g in the polydisk

E = {(x, y) ∈ C2 | xx̄ < 1, yȳ < 1}

given by

f(x, y) =
.9

2
log(xx̄+ (yȳ)2) , g(x, y) =

1

2
log((xx̄)2 + yȳ) ,

Then ν(f, 0) = .9 < 1.0 = ν(g, 0). Nevertheless

g(0, y)− f(0, y) = −.4 log(yȳ)

is not bounded above. So ν(f, q) ≤ ν(g, q) for any point q in the polydisk but
g 6≺ f .
However, if we consider the chart of the blow-up of the polydisk at (0, 0) with
coordinates (s, t) with x = st, y = s and if we let p be the point s = t = 0 on
the blow-up, then ν(f, p) = 1.8 while ν(g, p) = 1.

A convenient way to encode Lelong numbers is by means of multiplier ideal
sheaves.

Definition 2.15. Let ϕ be a quasi-psh function onX . Then themultiplier ideal
sheaf J (ϕ) of ϕ is the coherent ideal sheaf ofOX -modules given locally by those
holomorphic functions f such that |f |2e−2ϕ is locally integrable. If L is a line
bundle with a psh metric h then the multiplier ideal sheaf J (h) of h is defined
to be the multiplier ideal sheaf of the quasi-psh function ϕ = − log(h(s)/h0(s))
for any smooth reference metric h0 and any non-zero rational section s of L.

It turns out that the multiplier ideal sheaves of all multiples of a given quasi-psh
function on X give the same information as the Lelong numbers on all points
of all modifications of X . See Proposition 2.28 below for a precise statement.
Hence it follows from Example 2.13 that for a general quasi-psh function also
its multiplier ideal is not enough to recover the singularity type.

2.3 Algebraic singularities

From now on we will assume that X is a projective complex manifold. An
important class of quasi-psh functions on X consists of those having algebraic
singularities.

Definition 2.16. A quasi-psh function ϕ on X is said to have algebraic sin-
gularities if there is a constant c ∈ Q≥0 and ϕ can be written locally as

ϕ =
c

2
log
(
|f1|

2 + · · ·+ |fN |
2
)
+ λ, (2.2)

where λ is a bounded function and the fj are non-zero algebraic functions.
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Remark 2.17. There is also the related notion of analytic singularities. In the
projective context the only difference with the notion of algebraic singularities
is to allow the constant c to be a real number.

Following [22, 1.10], if the quasi-psh function ϕ on X has algebraic singularities
with constant c, we can associate to it a coherent sheaf of ideals I(ϕ/c), in the
following way. Since X is compact, we can assume that there is a finite covering
of X and ϕ has the form (2.2) on each open of the covering. Then I(ϕ/c) is
defined to be the ideal sheaf of holomorphic functions h satisfying

|h| ≤ C(|f1|+ · · ·+ |fN |)

for some constant C. This is a globally defined ideal sheaf ofOX locally equal to
the integral closure of the ideal generated by (f1, . . . , fN ). Since X is assumed
to be projective, the coherent ideal sheaf I(ϕ/c) is the analytification of an
algebraic coherent ideal sheaf on X .
In contrast with what happens for arbitrary quasi-psh functions, for quasi-psh
functions with algebraic singularities, we can recover the singularity type from
the multiplier ideal sheaf. Following [22, Remark 5.9], the multiplier ideal sheaf
J (ϕ) of a quasi-psh function ϕ with algebraic singularities is easy to describe.
Assume first that there is a constant c ∈ Q≥0 and an effective Cartier divisor
with simple normal crossings D =

∑
i αiDi on X where the Di are irreducible

such that locally ϕ can be written as

c

2
log |g|2 + λ, (2.3)

where λ is bounded and g is a local equation for D. Then

J (ϕ) = OX

(
−
∑

i

⌊cαi⌋Di

)
. (2.4)

In particular J ((k/c)ϕ) = I(kϕ/c) for every integer k ≥ 0.
Assume now that ϕ has algebraic singularities and, as before, let c ∈ Q≥0 be
the constant appearing in Definition 2.16. Then there exists a modification
π : Xπ → X such that π−1I(ϕ/c) · OXπ

= OXπ
(−D) for a simple normal

crossings divisor D =
∑

i αiDi on Xπ. Let Rπ =
∑

i ρiDi be the zero divisor
of the Jacobian function of π. Then combining (2.4) with the direct image
formula [22, Proposition 5.8] we obtain

J (ϕ) = π∗OXπ
(Rπ −

∑

i

⌊cαi⌋Di) = π∗OXπ
(
∑

i

(ρi − ⌊cαi⌋)Di). (2.5)

Therefore, for every integer k > 0

J ((k/c)ϕ) = π∗
(
OXπ

(Rπ)⊗ (π−1I(kϕ/c) · OXπ
)
)
. (2.6)

This description shows that, if ϕ has algebraic singularities with constant c,
then the asymptotic properties of the family of ideals J ((k/c)ϕ), k > 0 and
that of the family I((kϕ)/c), k > 0 are similar. The following is an example of
this property.
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Lemma 2.18. Let L be a line bundle on the projective complex manifold X pro-
vided with a smooth reference metric h0 and a psh metric h. Let θ = c1(L, h0)
and let ϕ = − log(h(s)/h0(s)) be the resulting θ-psh function as in Remark 2.7,
where s is any non-zero rational section of L. If ϕ has algebraic singularities
with constant c, then

lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
= lim

k→∞
kc∈Z

h0(X,L⊗k ⊗ I((kcϕ)/c))

kn/n!
.

Proof. Let π : Xπ → X be a modification such that π−1I(ϕ/c)·OXπ
= O(−D),

with D =
∑

i αiDi a simple normal crossings divisor on Xπ. As before let
Rπ =

∑
i ρiDi be the zero divisor of the Jacobian function of π. Then by

the descriptions (2.5) and (2.6) of the multiplier ideal in the case of algebraic
singularities we deduce

lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
= lim

k→∞

h0
(
Xπ, π

∗L⊗k ⊗O(
∑

i(ρi − ⌊kcαi⌋)Di)
)

kn/n!

= lim
k→∞
kc∈Z

h0
(
Xπ, π

∗L⊗k ⊗O(
∑

i(ρi − kcαi)Di)
)

kn/n!

= lim
k→∞
kc∈Z

h0
(
Xπ, π

∗L⊗k ⊗O(−
∑

i kcαiDi)
)
+O

(
kn−1

)

kn/n!

= lim
k→∞
kc∈Z

h0
(
Xπ, π

∗L⊗k ⊗O(−
∑

i kcαiDi)
)

kn/n!

= lim
k→∞
kc∈Z

h0(X,L⊗k ⊗ I((kcϕ)/c))

kn/n!
.

The next lemma shows that, after a modification, a quasi-psh function with
algebraic singularities is always of the form (2.3).

Lemma 2.19. Let ϕ be a quasi-psh function on X with algebraic singularities
and let c be the constant in equation (2.2). Let π : Xπ → X be a modification
such that π−1I(ϕ/c) · OXπ

is locally principal. Let U ⊂ Xπ be an open subset
such that π−1I(ϕ/c) · OXπ

is generated by a holomorphic function g on U .
Then

π∗ϕ−
c

2
log |g|2

is locally bounded on U .

Proof. After shrinking U if necessary, we can assume that there is an open set
V ⊂ X where ϕ has the shape (2.2) and U ⊂ π−1(V ). To simplify the notation
we will not distinguish between functions on X and on Xπ as these spaces agree
on a dense open subset.
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Since g is a generator of I(ϕ/c) and the functions fi belong to this ideal, there
are holomorphic functions bi such that fi = big. Then

ϕ =
c

2
log
(
|f1|

2 + · · ·+ |fN |
2
)
+ λ =

c

2
log |g|2 +

c

2
log
(
|b1|

2 + · · ·+ |bN |
2
)
+ λ.

Since λ is locally bounded, it suffices to prove that log
(
|b1|

2 + · · ·+ |bN |
2
)
is

locally bounded. Assume that this is not the case. Since |b1|
2 + · · ·+ |bN |

2 is
continuous, the only possibility for the logarithm not to be locally bounded is
that the functions bi have a common zero. Assume that x is such that bi(x) = 0
for all i. Since I(ϕ/c)x is the integral closure of the ideal I = (f1, . . . , fN), there
exist an integer r ≥ 1 and elements αj ∈ I

j for j = 1, . . . , r such that

gr + α1g
r−1 + · · ·+ αr = 0. (2.7)

Assume that ordx(g) = k. Since bi(x) = 0 for all i, we have that ordx fi > k for
all i. Hence any element αj ∈ I

j has ordx αj > jk. Then condition (2.7) implies
that ordx g

r > kr, which contradicts the fact that ordx g
r = kr. We conclude

that the functions bi do not have a common zero and log
(
|b1|

2 + · · ·+ |bN |
2
)

is locally bounded.

2.4 Demailly’s regularization theorem

Next we discuss Demailly’s regularization theorem for closed positive (1, 1)-
currents. Roughly speaking it states that, for X a projective complex manifold,
any θ-psh function on X can be approximated by functions with algebraic
singularities. There are several versions in the literature, depending on the
properties we want for the approximating functions. The version we use here
can be obtained combining the local version in [23, Theorem 4.2] with the global
version in [24, Theorem 3.2] (see also [22, Theorem 13.2] and [20, Theorem 1.1]
for the original statement and the heart of the proof). We will use Demailly’s
regularization theorem in Section 3.2 to give criteria that ensure a psh metric
has almost asymptotically algebraic singularities.

Theorem 2.20. (Demailly’s regularization theorem) Let X be a projective com-
plex manifold of dimension n with Kähler form ω and let θ be a smooth (1, 1)-
form on X. Let T be a closed positive (1, 1)-current in the same cohomology
class as θ. Write T = θ + ddcϕ with ϕ a θ-psh function. Then there ex-
ists a sequence (ϕm)m≥1 of quasi-psh functions on X satisfying the following
properties.

1. Each ϕm has algebraic singularities. Moreover, for each m there is a
modification πm : Xπm

→ X, a simple normal crossings divisor Dm on
Xπm

, and a rational number cm > 0 such that, locally on Xπm
,

ϕm ◦ πm = cm log |g|+ f

where g is a local equation for Dm and f is smooth (and not just locally
bounded as in Lemma 2.19).
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2. The sequence (ϕm)m≥0 is non-increasing and there is a sequence of pos-
itive real numbers (am)m≥0 converging monotonically to zero, such that
ϕm is (θ + amω)-psh.

3. For every coordinate open set U and relatively compact open subset V ⊂⊂
U there are constants C1, C2 > 0 such that for all m ∈ Z+, z ∈ V and
r ∈ R+ with r < d(z, ∂V ),

ϕ(z)−
C1

m
≤ ϕm(z) ≤ sup

‖x−z‖<r

ϕ(x) +
1

m
log

C2

rn
. (2.8)

4. For all x ∈ X, the Lelong numbers of ϕ and ϕm satisfy the condition

ν(ϕ, x) −
n

m
≤ ν(ϕm, x) ≤ ν(ϕ, x). (2.9)

In particular the Lelong numbers of the functions ϕm on the points of
X converge monotonically and uniformly to the Lelong numbers of the
function ϕ.

We refer to any sequence of approximations (ϕm)m≥1 with properties (1)–(4)
from the theorem as a Demailly approximating sequence of the function ϕ.
Note that in particular ϕ ≺ ϕm for a Demailly approximating sequence.

2.5 Non-pluripolar products

Generalizing a construction due to Bedford and Taylor [3], it has been shown
in [10] that given closed positive (1, 1)-currents T1, . . . , Tp on the projective
complex manifold X one has a non-pluripolar product

〈T1 ∧ · · · ∧ Tp〉

of these currents with good properties. The result is a closed positive (p, p)-
current which does not charge pluripolar sets. As before let n = dimX .

Definition 2.21. Let T1, . . . , Tp be closed positive (1, 1)-currents on X . The
non-pluripolar product

〈T1 ∧ · · · ∧ Tp〉

is the (p, p)-current on X determined as follows. For i = 1, . . . , p let θi be a
smooth (1, 1)-form in the same cohomology class as Ti and let ϕi be a θi-psh
function with θi + ddcϕi = Ti. For every k ≥ 0 write Uk for the set

Uk = {x ∈ X |ϕi(x) ≥ −k , i = 1, . . . , p} .

Then for every smooth (n− p, n− p)-form η one sets

〈T1 ∧ · · · ∧ Tp〉 (η) = lim
k→∞

∫

Uk

T1 ∧ · · · ∧ Tp ∧ η.

The current 〈T1 ∧ · · · ∧ Tp〉 is independent of the choices of the θi and ϕi.
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Remark 2.22. For the existence of the non-pluripolar product a hypothesis
like X being Kähler is needed (see [10, Proposition 1.6], and the examples
before and the remark after it).

Remark 2.23. It is clear from the definition that when T1, . . . , Tn restrict to
smooth differential forms on the dense open U ⊂ X , we have

∫

X

〈T1 ∧ · · · ∧ Tn〉 =

∫

U

T1 ∧ · · · ∧ Tn .

In particular we see that in this case the improper integral
∫
U
T1 ∧ · · · ∧ Tn is

well-defined and finite.

In the case of currents with locally bounded potentials, the non-pluripolar
product agrees with the cohomology product, as is shown by the next lemma.

Lemma 2.24. Let T1, . . . , Tk be closed positive (1, 1)-currents on X with locally
bounded potentials and let θk+1, . . . , θn be smooth closed (1, 1)-forms on X.
Choose smooth closed (1, 1)-forms θi in the cohomology class of Ti for i =
1, . . . , k. Let ϕi for i = 1, . . . , k be locally bounded quasi-psh functions satisfying
θi + ddcϕi = Ti. Then
∫

X

θ1∧· · ·∧θn =

∫

X

T1∧· · ·∧Tk∧θk+1∧· · ·∧θn =

∫

X

〈T1∧· · ·∧Tk∧θk+1∧· · ·∧θn〉,

where the middle product is defined by Bedford-Taylor theory [2]. In particular,
the cohomology classes cl(θi) = cl(Ti) are nef for i = 1, . . . , k.

Proof. Since the currents Ti are positive, the functions ϕi are θi-psh. Since they
are locally bounded andX is compact, they are bounded. Then, Definition 2.21
of the non-pluripolar product immediately implies the equality of the second
and third integrals.
We prove the first equality by induction on k. If k = 0 there is nothing to
prove. Assume that k > 0 and that the result is true for k− 1. Bedford-Taylor
theory [2] provides us with positive currents

T1 ∧ · · · ∧ Tk−1, T1 ∧ · · · ∧ Tk,

and a current ϕkT1 ∧ · · · ∧ Tk−1 satisfying

ddc(ϕkT1 ∧ · · · ∧ Tk−1) = T1 ∧ · · · ∧ Tk − T1 ∧ · · · ∧ Tk−1 ∧ θk.

Therefore, using the induction hypothesis and the fact that the integral over X
of an exact current is zero we obtain∫

X

T1∧· · ·∧Tk∧θk+1∧· · ·∧θn =

∫

X

T1∧· · ·∧Tk−1∧θk∧· · ·∧θn =

∫

X

θ1∧· · ·∧θn.

This proves the first equality. Finally, let C be a closed curve on X . Then for
each i = 1, . . . , k we have

cl(θi) · C =

∫

C

θi =

∫

C

〈Ti〉 ≥ 0 .

This shows that the cohomology class cl(θi) = cl(Ti) is nef.
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The non-pluripolar product is clearly symmetric and it is multilinear in the
following sense.

Proposition 2.25 ([10, Proposition 1.4]). Let T ′
1, T1, T2, . . . , Tp be closed

positive (1, 1)-currents. Then for every pair of positive real numbers α, β the
relation

〈(αT1 + βT ′
1) ∧ T2 ∧ · · · ∧ Tp〉 = α〈T1 ∧ T2 ∧ · · · ∧ Tp〉+ β〈T ′

1 ∧ T2 ∧ · · · ∧ Tp〉

is satisfied.

The following is a monotonicity property of non-pluripolar products with re-
spect to singularity type. Following [10, Definition 1.2] we say that a quasi-psh
function ϕ on X has small unbounded locus if there exists a (locally) complete
pluripolar closed subset A of X such that ϕ is locally bounded on X \A.

Theorem 2.26 ([10, Theorem 1.16]). Let θ be a smooth closed (1, 1)-form. For
i = 1, . . . , n, let {ϕi} and {ψi} be two collections of θ-psh functions with small
unbounded locus such that ϕi ≺ ψi for all i. Then the non-pluripolar products
satisfy
∫

X

〈(θ + ddcϕ1) ∧ · · · ∧ (θ + ddcϕn)〉 ≤

∫

X

〈(θ + ddcψ1) ∧ · · · ∧ (θ + ddcψn)〉.

The main technical difficulty we face now is that in Demailly’s regularization
theorem (Theorem 2.20) we have very good control on the Lelong numbers of a
quasi-psh function by means of approximating sequences, but not on the type of
singularity. By contrast, in order to apply Theorem 2.26 on the monotonicity
of non-pluripolar products we need control on the type of singularity of our
quasi-psh functions. In the long run this will force us to restrict the space of
quasi-psh functions we can consider.

2.6 Algebraic singularity type

Multiplier ideals allow us to define the algebraic type of singularity of a quasi-
psh function. The notion of algebraic type has been introduced in [30]. We
will follow [18] though as the main source for our discussion. We continue to
assume that X is a projective complex manifold.

Definition 2.27. Let ϕ and ψ be two quasi-psh functions on X . Then ϕ is
said to be algebraically more singular than ψ (denoted ϕ ≺J ψ) if for all real
numbers a > 0 the inclusion J (aϕ) ⊂ J (aψ) holds. We say that ϕ and ψ have
the same algebraic singularity type, denoted ϕ ≃J ψ, if ϕ ≺J ψ and ψ ≺J ϕ.

The algebraic singularity type is governed by the Lelong numbers not just on X
but on all modifications of X , as the following result shows.

Proposition 2.28 ([18, Corollary 2.16]). Let ϕ and ψ be two quasi-psh func-
tions on X. The following assertions are equivalent:
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1. ϕ ≺J ψ;

2. for every modification Y → X and for every y ∈ Y the inequality
ν(ϕ, y) ≥ ν(ψ, y) holds.

The type of singularity and the algebraic type of singularity allow us to attach
two envelopes to a quasi-psh function. The first one was introduced in [39] and
the second in [18].

Definition 2.29. Let θ be a smooth closed (1, 1)-form and ϕ a θ-psh function
on X . Then the envelope of the singularity type of ϕ is the function

P [ϕ] = sup{ψ θ-psh | ψ ≺ ϕ, ψ ≤ 0}∗

on X , where f∗ denotes the upper semicontinuous regularization of f . The
envelope of the algebraic singularity type of ϕ is

P [ϕ]J = sup{ψ θ-psh | ψ ≺J ϕ, ψ ≤ 0}∗.

The following are basic properties of the envelopes.

Proposition 2.30 ([18, Proposition 2.19]). Let ϕ be a θ-psh function on X.
Then

1. P [ϕ] and P [ϕ]J are θ-psh functions on X.

2. P [ϕ]J ≃J ϕ.

3. ϕ ≺ P [ϕ] ≺ P [ϕ]J . Moreover P [P [ϕ]J ] = P [ϕ]J .

The following result due to Darvas and Xia indicates that the difference between
the envelope of the singularity type and the envelope of the algebraic singularity
type governs when the non-pluripolar product is well behaved.
Let L be a line bundle on X provided with a smooth reference metric h0
and a psh metric h. Let θ = c1(L, h0) be the first Chern form and ϕ =
− log(h(s)/h0(s)) the resulting θ-psh function.

Theorem 2.31 ([18, Theorem 5.5]). Assume that L is ample and θ is a Kähler
form on X. Let n = dimX. Then the limit

volJ (L, h) = lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
(2.10)

exists, and we have

volJ (L, h) =

∫

X

〈(θ + ddcP [ϕ]J )∧n〉 ≥

∫

X

〈(θ + ddcϕ)∧n〉 .

If
∫
X
〈(θ + ddcϕ)∧n〉 > 0 then the following assertions are equivalent:

1. volJ (L, h) =
∫
X
〈(θ + ddcϕ)∧n〉;
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2. P [ϕ] = P [ϕ]J .

The limit in (2.10) is called the multiplier ideal volume of the pair (L, h),
whereas the integral

∫
X
〈(θ + ddcϕ)∧n〉 is called the non-pluripolar volume

of (L, h). In [18, Theorem 5.5] one may find other statements equivalent to
conditions 1. and 2. above. The precise statements will not be needed here
but roughly speaking the equality P [ϕ] = P [ϕ]J holds if and only if ϕ can
be “very well approximated” (in what is called the dS-distance) by algebraic
singularities.
We take the above result as an indication that for a reasonable Chern–Weil
and Hilbert-Samuel theory to hold, one should deal with quasi-psh functions
that are well approximated by algebraic singularities in some sense.

Remark 2.32. As was mentioned in the introduction, we note that the above
result was very recently extended and generalized to the case where L is only
assumed to be pseudoeffective, see [19, Theorem 1.1].

2.7 Good psh metrics

Based on this idea, in Section 3 we will introduce a large class of singularities
where the equality of non-pluripolar volume and multiplier ideal volume can be
seen to be satisfied. For this class (the class of “almost asymptotically algebraic
singularities”) we will be able to prove a reasonable Chern–Weil type statement.
As a warm-up, we examine here already the case of “good” metrics in the sense
of Mumford [35] and in the next section the case of algebraic singularities.

Example 2.33. Consider X = P1 with homogeneous coordinates (x : y) and
absolute coordinate t = x/y. Let L = OX(1). The space of global sections
of L can be identified with the space of linear forms in the variables x, y. We
consider the psh metric h on L given by

− logh(y) =

{
1 + log |t|, if |t| ≥ 1/e,

− log(− log(|t|)) if |t| ≤ 1/e.

This metric is singular at the point t = 0. The interest of this singularity is that
(up to multiplying by a normalization factor) it is equivalent to the singularity
of the invariant (i.e., Hodge) metric on the line bundle of modular forms on a
modular curve at a cusp (see Section 6.2 for further discussion).
We choose now a smooth metric h0 on P1. A canonical choice is the Fubini-
Study metric, given by

− logh0(y) =
1

2
log(1 + |t|2).

Let ω be the first Chern form of (L, h0). Then the function

ϕ(t) =

{
1 + log |t| − log(1 + |t|2)/2 if |t| ≥ 1/e,

− log(− log(|t|))− log(1 + |t|2)/2 if |t| ≤ 1/e,
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is ω-psh. All the Lelong numbers of the function ϕ are zero. For t 6= 0 this
is clear because the function ϕ is locally bounded in P1 − {(0 : 1)}. And at
t = 0 this follows from the fact that ϕ grows at most as the logarithm of the
logarithm. It follows that P [ϕ]J = 0. Also the growth of the function ϕ at
t = 0 shows that the current ddcϕ does not charge any pluripolar set. Therefore

∫

P1

〈ω + ddcϕ〉 =

∫

P1

ω + ddcϕ =

∫

P1

ω =

∫

P1

〈ω + ddcP [ϕ]J 〉 = 1.

From Theorem 2.31 we may deduce that P [ϕ] = 0.

Example 2.34. The previous example can be generalized to the setting of good
metrics in the sense of Mumford [35]. Let X be a smooth complex variety with
dimX = n and D ⊂ X a normal crossings divisor. Let L be a line bundle on X
and h a singular metric on L. The metric h is said to be good if h is smooth
on X \D, and for every holomorphic chart U of X with coordinates z1, . . . , zn
in which D has the equation z1 · · · zk = 0, each generating section s of L on U
and each vector field v on U there is a neighborhood V of (0, . . . , 0) in which
the estimates

1. h(s), h−1(s) ≤ C
(∑k

i=1− log |zi|
)2m

for some C ∈ R>0 and m ∈ N,

2. ‖h(s)−1∂h(s)(v)‖2 ≤ C
∑k

i=1
1

|zi|2(log |zi|)2
for some C ∈ R>0

hold. Good metrics appear naturally when considering toroidal compactifica-
tions of locally symmetric spaces, see [35].

Assume that X is projective and that h is, at the same time, good and psh.
Choose a smooth reference metric h0 on L and write ω = c1(L, h0) and ϕ =
− log (h(s)/h0(s)), so that ϕ is ω-psh.

By [35, Proposition 1.2] we have that the Lelong numbers of ϕ are zero on all
points of all modifications of X and that

∫

X

〈(ω + ddcϕ)n〉 =

∫

X\D

(ω + ddcϕ)n =

∫

X

ωn = deg(L) .

We see in particular that P [ϕ]J = 0.

Now assume that L is moreover ample. Then deg(L) > 0 and hence we have∫
X
〈(ω + ddcϕ)n〉 > 0. Also, since J (kϕ) is an ideal sheaf

lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
≤ lim

k→∞

h0(X,L⊗k)

kn/n!
= deg(L) .

We may deduce from Theorem 2.31 that equality holds in the latter and that
P [ϕ] = P [ϕ]J = 0.
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2.8 Multiplier ideal volume equals non-pluripolar volume in the

case of algebraic singularities

The purpose of this section is to show that multiplier ideal volume equals non-
pluripolar volume in the case of algebraic singularities.
Let θ be a closed smooth (1, 1)-form on the pure-dimensional projective complex
manifold X and let ϕ be a θ-psh function on X . Let n = dimX .

Lemma 2.35. Assume that ϕ has algebraic singularities as in Definition 2.16.
Let c ∈ Q≥0 be the constant associated to ϕ. Take a modification π : Xπ → X
such that π−1I(ϕ/c)·OXπ

= OXπ
(−D) for an effective simple normal crossings

divisor D. Let cl(π∗θ) and [D] denote the cohomology classes of the closed
smooth (1, 1)-form π∗θ and the divisor D on Xπ. Then cl(π∗θ)− c[D] is a nef
class on Xπ and the equality

(cl(π∗θ)− c[D])n =

∫

X

〈
(θ + ddcϕ)∧n〉 (2.11)

holds in Q≥0.

Proof. The Siu decomposition (see Remark 2.10) of π∗ (θ + ddcϕ) on Xπ is

π∗(θ + ddcϕ) = T ′ + c δD , (2.12)

with T ′ a closed positive (1, 1)-current with locally bounded potentials repre-
senting the class cl(π∗θ)−c[D]. It follows from Lemma 2.24 that cl(π∗θ)−c[D]
is a nef class. Next we note that

∫

X

〈θ + ddcϕ〉n =

∫

Xπ

〈T ′〉n

as T ′ agrees with θ + ddcϕ on Xπ \D. As T ′ represents the cohomology class
cl(π∗θ)− c[D] on Xπ and moreover is positive with locally bounded potentials
we have by Lemma 2.24 that

∫

Xπ

〈T ′〉n = (cl(π∗θ)− c[D])
n
.

This proves the required equality. It is clear that the degree (cl(π∗θ)− c[D])
n

is a rational number.

The next result is proved in [18, Theorem 2.26], under the hypothesis that L
is ample with a Kähler metric. We give an alternative proof, and remove the
hypothesis that L is ample.

Theorem 2.36. Let L be a line bundle on X provided with a smooth reference
metric h0 and a psh metric h. Let θ = c1(L, h0) be the first Chern form and
ϕ = − log(h(s)/h0(s)) the resulting θ-psh function as in Remark 2.7. If ϕ has
algebraic singularities then the equality

lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
=

∫

X

〈(θ + ddcϕ)∧n〉
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holds in Q≥0.

Proof. Let c ∈ Q≥0 be the constant associated to ϕ as in Definition 2.16.
Let π : Xπ → X be a modification such that π−1I(ϕ/c) · OXπ

= O(−D)
for D =

∑
i αiDi an effective simple normal crossings divisor on Xπ. By

Lemma 2.35 we have that π∗L⊗ O(−cD) is nef, and the equality

deg(π∗L ⊗O(−cD)) =

∫

X

〈(θ + ddcϕ)∧n〉 (2.13)

holds in Q≥0. Let ℓ be a positive integer such that ℓc ∈ Z. Denote by vol(M)
the volume of a line bundleM. By Lemma 2.18

lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!
= lim

k→∞

h0(X,L⊗kℓ ⊗ I((kℓcϕ)/c))

(kℓ)n/n!

= lim
k→∞

h0
(
Xπ, π

∗L⊗kℓ ⊗O(−ℓcD)⊗k
)

(kℓ)n/n!

=
vol(π∗L⊗ℓ ⊗O(−ℓcD))

ℓn
.

As π∗L⊗ℓ ⊗O(−ℓcD) is nef, we have the Hilbert–Samuel formula

vol(π∗L⊗ℓ ⊗O(−ℓcD)) = deg(π∗L⊗ℓ ⊗O(−ℓcD)) ,

and the result follows by applying (2.13).

3 Almost asymptotically algebraic singularities

We continue to assume that X is a pure-dimensional projective complex man-
ifold.

3.1 Definition and first examples

Let θ be a closed smooth (1, 1)-form and ω a Kähler form on X . The following
terminology has been introduced by Rashkovskii [38] in the local case of isolated
singularities, but can be adapted to the global case of θ-psh functions.

Definition 3.1. A θ-psh function ϕ on X is said to have asymptotically alge-
braic singularities with respect to θ if there is a sequence of quasi-psh functions
(ψm)m≥1 with algebraic singularities and a sequence of positive real numbers
(am)m≥1 converging monotonically to zero such that for each m ≥ 1 the func-
tion ψm is (θ + amω)-psh and the inequalities

(1 +
1

m
)ψm ≺ ϕ ≺ (1 −

1

m
)ψm

hold.
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We will omit the addition “with respect to θ” from the terminology if the form θ
is clear from the context.
For instance, if ϕ has isolated singularities, and is tame in the sense of [11] or
is exponentially Hölder, then it has asymptotically algebraic singularities, see
[38, Examples 3.6 and 3.7].
We introduce the following slightly weaker notion.

Definition 3.2. A θ-psh function ϕ on X is said to have almost asymptotically
algebraic singularities with respect to θ if there exists a quasi-psh function f
with algebraic singularities, a sequence of quasi-psh functions (ψm)m≥1 with
algebraic singularities and a sequence of positive real numbers (am)m≥1 con-
verging monotonically to zero such that for all m ≥ 1 the function ψm is
(θ + amω)-psh and the inequalities

ψm +
1

m
f ≺ ϕ ≺ ψm

hold. A psh metric h on a line bundle L on X such that θ represents the
cohomology class c1(L) is said to have almost asymptotically algebraic singu-
larities if the corresponding θ-psh function has almost asymptotically algebraic
singularities with respect to θ.

Again, we will omit the addition “with respect to θ” from the terminology if
the form θ is clear from the context.

Lemma 3.3. If h is a psh good metric (in the sense of Example 2.34) on a line
bundle L, and h0 is a smooth metric on L, then h has almost asymptotically
algebraic singularities with respect to θ := c1(L, h0)

Proof. Let D be a divisor as in Example 2.34, s a non-zero rational section
of L, and set

ϕ = − log(h(s)/h0(s)).

This is a θ-psh function, with singularities contained in D. Choose an effective
normal crossings divisor A such that |D| ⊂ |A| and such that O(A) admits
a smooth psh metric (for example, we could take A ample); choose one such
metric. Let 1 be the canonical section of O(A) (so div(1) = A), and write
f = log ‖1‖. We claim that for every m > 0 the inequalities

1

m
f ≺ ϕ ≺ 0

hold. That ϕ ≺ 0 follows from the assumption that h be psh; we will use
goodness to establish the other inequality. We work locally around a point
x ∈ X , where we can assume that our rational section s is in fact a generating
section of L, so that ϕ ∼ − logh(s). We write z1, . . . , za for local defining
equations for the branches of A through x, and we order them so that D is cut
out by

∏b

i=1 zi for some b ≤ a. Then

f ∼
a∑

i=1

ai log|zi| (3.1)
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where the ai ∈ Z>0 are the multiplicities of the branches cut out by zi in the
divisor A. Now from the definition of a good metric we see that

h(s) ≤ C

(
b∑

i=1

− log|zi|

)2M

(3.2)

for some positive integer M and positive real number C. Hence

− 2M log

(
b∑

i=1

− log|zi|

)
≺ ϕ, (3.3)

from which we see that
1

m
f ≺ ϕ (3.4)

for all m ≥ 1.

Remark 3.4. 1. The quasi-psh functions with almost asymptotically alge-
braic singularities form a convex cone. More precisely, if ϕ1 is a θ1-psh
function with almost asymptotically algebraic singularities with respect
to θ1, and ϕ2 is a θ2-psh function with almost asymptotically algebraic
singularities with respect to θ2, then ϕ1 + ϕ2 is a (θ1 + θ2)-psh function
with almost asymptotically algebraic singularities with respect to θ1+θ2.

2. The notion of (almost) asymptotically algebraic singularities is bira-
tionally invariant. Hence all of the results concerning almost asymptoti-
cally algebraic singularities continue to hold if we pass to a modification
of X .

3. Any psh metric with almost asymptotically algebraic singularities has
small unbounded locus. Indeed, if ψ + f ≺ ϕ ≺ ψ with ψ, f quasi-
psh with algebraic singularities, then ϕ is locally bounded away from the
singular loci of ψ and f , which are proper Zariski closed, and in particular
pluripolar, sets.

Lemma 3.5. The notion of almost asymptotically algebraic singularities does
not depend on the choice of Kähler metric ω. Moreover we can choose the
function f in Definition 3.2 to be ω-psh and the sequence (am) to be am = 1

m
.

Proof. Assume that ϕ has almost asymptotically algebraic singularities with
respect to θ. Let ω′ be another Kähler metric on X . Then by the compactness
of X there is a real number a > 0 such that ω ≤ aω′. Therefore, if ψm is
(θ + amω)-psh, then it is also (θ + amaω

′)-psh. So after setting (ama) instead
of (am) we see that ϕ satisfies Definition 3.2 for ω′.
Since f is quasi-psh, by Lemma 2.5 there is a real number b > 0 such that f is
(bω)-psh and hence f/b is ω-psh. Choose an increasing sequence mk of integers
satisfying

amk
≤

1

k
, and mk > kb. (3.5)
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This can easily be achieved as (am) converges to zero. Writing ψ′
k = ψmk

and
f ′ = f/b we have that ψ′

k is (θ+amk
ω)-psh. By the first condition in (3.5), the

function ψ′
k is (θ + (1/k)ω)-psh. Using the second condition in (3.5) we find

ψ′
k +

1

k
f ′ = ψmk

+
1

bk
f ≺ ψmk

+
1

mk

f ≺ ϕ.

It follows that the functions ψ′
k and f ′ satisfy the conditions of Definition 3.2

where f ′ is ω-psh and where ak = 1/k.

Lemma 3.6. If ϕ has asymptotic algebraic singularities with respect to θ, then
it has almost asymptotically algebraic singularities with respect to θ.

Proof. Let ψm be a sequence of functions satisfying Definition 3.1. For m ≥ 2
we have the chain of inequalities

3

2
ψ2 ≺ ϕ ≺

(
1−

1

m

)
ψm ≺

1

2
ψm,

which implies ψm ≻ 3ψ2. Therefore we have the chain of inequalities

(
1−

1

m

)
ψm +

1

m
6ψ2 ≺

(
1−

1

m

)
ψm +

2

m
ψm ≺ ϕ ≺

(
1−

1

m

)
ψm ,

showing that ϕ has almost asymptotically algebraic singularities.

The converse is not true. We will illustrate this with the function ϕ of Exam-
ple 2.33. We use the notations in that example. Note that the function

f(t) = log |t| − log(1 + |t|2)/2

is ω-psh. For all m ∈ Z>0 we have

1

m
f ≺ ϕ ≺ 0.

Indeed the only point where f and ϕ are not locally bounded is the point
t = 0. Close to this point ϕ has a singularity of the shape − log(− log |t|),
while f/m has a singularity of the shape log(|t|)/m which is more singular
for all values of m. So, taking ψm = 0 in Definition 3.2, we see that ϕ has
almost asymptotically algebraic singularities. Nevertheless ϕ does not have
asymptotically algebraic singularities. Assume that it satisfies Definition 3.1
for a family of functions ψm with algebraic singularities. Then for m = 2 we
have

3

2
ψ2 ≺ ϕ ≺

1

2
ψ2

where ψ2 has algebraic singularities. Since the Lelong numbers of ϕ are zero,
the right inequality implies that 0 ≺ ψ2. But this contradicts the left inequality
as 0 6≺ ϕ.
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3.2 Some criteria for almost asymptotically algebraic singular-

ities

The purpose of this section is to exhibit some useful criteria that allow to verify
that a quasi-psh function has almost asymptotically algebraic singularities. Our
results are based on Demailly’s regularization theorem (Theorem 2.20). We
continue with our assumption that X is a projective complex manifold. We fix
a background Kähler form ω on X .

Definition 3.7. Let U be a Euclidean open subset of X with norm ‖ · ‖. An
upper semi-continuous function ϕ : U → R ∪ {−∞} is said to be meromorphi-
cally Lipschitz if there exists a finite open coordinate covering {Ui} of U and
for each open Ui there is a regular algebraic function fi on Ui such that

ϕ(x) − ϕ(y) ≤
‖x− y‖

|fi(y)|
, x, y ∈ Ui .

Lemma 3.8. Assume we are given a finite open covering {Ui} of X and for
each i a regular algebraic function fi on Ui. For each i let Vi ⊂⊂ Ui be a
relatively compact open subset such that the collection {Vi} is still an open
cover of X. Then there exists a quasi-psh function ϕ on X with algebraic
singularities such that, for all i, the inequality

ϕ|Vi
≤ log |fi| (3.6)

holds.

Proof. For each i let Di be the divisor of fi on Ui. Let E be an effective divisor
on X with

E|Ui
≥ Di for all i . (3.7)

Choose a smooth hermitian metric h0 on O(E) and let s be a global section
of O(E) with div(s) = E. By condition (3.7), the function s/fi is regular
on Ui. Therefore h0(s)/|fi| is continuous on Ui, hence log(h0(s)) − log |fi|
is bounded above on the compact subset Vi. Let M be a real number such
that for all i we have the bound log(h0(s)) − log |fi| ≤ M on Vi. Let θ =
c1(O(E), h0) be the first Chern form of O(E) with smooth metric h0. Then
the function ϕ = log(h0(s))−M is θ-psh, has algebraic singularities and satisfies
the inequalities (3.6).

Let θ be a smooth (1, 1)-form on X .

Proposition 3.9. Let ϕ be a θ-psh function on X that can be written locally
as a sum ϕ = φ+ γ with φ meromorphically Lipschitz and γ bounded. Then ϕ
has almost asymptotically algebraic singularities with respect to θ.

Proof. Let n = dimX , and choose finite open coordinate coverings {Ui} and
{Vi} ofX with Vi ⊂⊂ Ui. By Demailly’s regularization theorem (Theorem 2.20)
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there exist constants C1 and C2, a sequence of functions ϕm with algebraic
singularities on X satisfying, in each Vi,

ϕ(z)−
C1

m
≤ ϕm(z) ≤ sup

‖x−z‖<r

ϕ(x) +
1

m
log

C2

rn
(3.8)

and a sequence of positive real numbers (am)m>0 converging monotonically to
zero such that each function ϕm is (θ + amω)-psh. Note that ϕ ≺ ϕm.
By our assumption on ϕ, after taking a finite refinement of the open cover we
can assume that there exist functions fi that are regular on Ui and such that
on each Ui the estimate

ϕ(x)− ϕ(z) ≤
‖x− z‖

|fi(z)|
+ C3

holds for a constant C3. By Lemma 3.8 there is a quasi-psh function ψ on X
with algebraic singularities and such that ψ|Vi

≤ log |fi| for all i.
Taking now r = |fi(z)|, we deduce from (3.8) that

ϕm(z) ≤ ϕ(z) +
r

|fi(z)|
+ C3 +

1

m
log

C2

rn

≤ ϕ(z) + 1 + C3 +
1

m
logC2 −

n

m
log |fi(z)|

≤ ϕ(z) + C4 −
n

m
ψ(z).

The function f(z) = nψ(z) is quasi-psh with algebraic singularities and we
have found that for every m the estimate

ϕm +
1

m
f ≺ ϕ ≺ ϕm

holds. This concludes the proof of the proposition.

We can use Proposition 3.9 to see that toroidal singularities are almost asymp-
totically algebraic. The following definition is inspired by the fact that if
g : Rk

>0 → R is a bounded-above convex function, then the function

g(− log |z1|, . . . ,− log |zk|)

is a psh function on D(1)k. Here D(1) is the open unit disk {z ∈ C | |z| < 1}.

Definition 3.10. Let U ⊂ X be Zariski open with D = X \U a normal cross-
ings divisor. A quasi-psh function ϕ on X is said to have toroidal singularities
(with respect to D) if ϕ is locally bounded on U and there exists an open
coordinate covering {Vi} of X such that on each Vi the divisor D has equation
z1 · · · zki

= 0 and the restriction ϕ|Vi∩U can be written as

ϕ|Vi∩U = γ + g(− log |z1|, . . . ,− log |zki
|) , (3.9)
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where γ is locally bounded on Vi and g is a bounded above convex Lipschitz
continuous function defined on a quadrant {uj ≥Mj|j = 1, . . . , ki} ⊆ Rki . We
say that a psh metric on a line bundle L on X has toroidal singularities if any
corresponding θ-psh function has toroidal singularities. Here θ is any smooth
closed differential form representing the cohomology class c1(L). Note that this
is equivalent to any local psh potentials being of the form (3.9).

Proposition 3.11. A toroidal θ-psh function on X has almost asymptotically
algebraic singularities with respect to θ.

Proof. By Proposition 3.9 it suffices to check that, if g is a bounded above
convex Lipschitz continuous function defined on a quadrantK = {uj ≥Mj|j =
1, . . . , k}, then g(− log |z1|, . . . ,− log |zk|) is meromorphically Lipschitz in the
polydisk |zj | < e−Mj . We first observe that, if s, t > 0 are real numbers, then

log(s)− log(t) ≤
|s− t|

t
. (3.10)

Indeed, if s ≤ t then the right hand side is greater or equal to zero while the
left hand side is smaller or equal than zero. And if t < s then

log(s)− log(t) =

∫ s

t

dξ

ξ
≤
s− t

t
.

Next we see that since g is bounded above convex Lipschitz continuous on
the quadrant K the function g is non-increasing on each semi-line of the form
u+λw, λ ≥ 0, for u ∈ K and w a vector with non-negative entries. Therefore,
if u = (u1, . . . , uk) and v = (v1, . . . , vk) are points in K then

g(u)− g(v) ≤
∑

j : vj>uj

C(vj − uj), (3.11)

where C is the Lipschitz constant of g. Now using equations (3.10) and (3.11)
we obtain for z, x ∈ Ck with |zj |, |xj | < e−Mj for j = 1, . . . , k that

g(− log |z1|, . . . ,− log |zk|)− g(− log |x1|, . . . ,− log |xk|)

≤
∑

j : |zj |>|xj|

C(log |zj | − log |xj |)

≤
∑

j : |zj |>|xj|

C
|xj − zj|

|xj |

≤ C′ ‖x− z‖∏
|xj |

for some constant C′, proving the claim.
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3.3 Multiplier ideal volume equals non-pluripolar volume in the

case of almost asymptotically algebraic singularities

We continue to assume that X is a projective pure-dimensional complex man-
ifold. Let n = dimX .
The main result of this section is that for a quasi-psh function with almost
asymptotically algebraic singularities the multiplier ideal volume and the non-
pluripolar volume are equal. See Theorem 3.13.

Lemma 3.12. Let D ⊂ X be a smooth divisor, A an ample divisor and ℓ ∈ Z>0.
We denote by OℓD the coherent sheaf on X defined by the exact sequence

0 −→ OX(−ℓD) −→ OX −→ OℓD → 0 .

Then for all k ∈ Z>0 we have

h0(X,OℓD(kA)) ≤ ℓkn−1D · An−1.

Proof. For every 0 ≤ j ≤ ℓ− 1 there is an exact sequence

0 −→
O(−(j + 1)D)

O(−ℓD)
−→

O(−jD)

O(−ℓD)
−→ OD(−jD) −→ 0.

Adding up, these exact sequences imply that

h0(X,OℓD(kA)) ≤

ℓ−1∑

j=0

h0(X,OD(kA− jD))

≤

ℓ−1∑

j=0

h0(X,OD(kA))) ≤ ℓkn−1D · An−1.

Let L be a line bundle on X provided with a smooth reference metric h0
and a psh metric h. Let θ = c1(L, h0) be the first Chern form and ϕ =
− log(h(s)/h0(s)) the associated θ-psh function. As before we let

volJ (L, h) = lim
k→∞

h0(X,L⊗k ⊗ J (kϕ))

kn/n!

be the multiplier ideal volume of (L, h). The following can be seen as a Hilbert–
Samuel type formula.

Theorem 3.13. If ϕ has almost asymptotically algebraic singularities with re-
spect to θ then the equality

volJ (L, h) =

∫

X

〈(θ + ddcϕ)∧n〉 (3.12)

holds in R≥0.
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Proof. By Lemma 3.5 we can find an ample line bundle O(D) on X with a
smooth metric such that its first Chern form is a Kähler form ω, an ω-psh func-
tion f with algebraic singularities, and a sequence of quasi-psh functions ϕm

with algebraic singularities such that ϕm is (θ + (1/m)ω)-psh and

ϕm +
1

m
f ≺ ϕ ≺ ϕm . (3.13)

Also, for each m > 0 each of the three functions separated by the two inequal-
ities in (3.13) is (θ + (2/m)ω)-psh by Lemma 2.5. We recall from Remark 3.4
that almost asymptotically algebraic singularities have small unbounded locus.
Thus we can apply the monotonicity property of the non-pluripolar product
(Theorem 2.26) and conclude that for each fixed m > 0 that

∫

X

〈(θ +
2ω

m
+ ddcϕm +

1

m
ddcf)n〉 ≤

∫

X

〈(θ +
2ω

m
+ ddcϕ)n〉

≤

∫

X

〈(θ +
2ω

m
+ ddcϕm)n〉. (3.14)

Now set

Am :=

∫

X

〈(θ +
2ω

m
+ ddcϕm +

1

m
ddcf)n〉 −

∫

X

〈(θ +
ω

m
+ ddcϕm)n〉 .

By the multi-additivity of the non-pluripolar product (Proposition 2.25) we
have

Am =

n∑

k=1

(
n

k

)∫

X

〈(θ +
ω

m
+ ddcϕm)n−k(

ω

m
+

1

m
ddcf)k〉

=
1

m

n∑

k=1

1

mk−1

(
n

k

)∫

X

〈(θ +
ω

m
+ ddcϕm)n−k(ω + ddcf)k〉 .

Note that Am ≥ 0 since all the summands on the right of the above expression
are positive. We see that there is a constant C such that 0 ≤ Am ≤ C/m for
all m so

lim
m→∞

Am = 0.

Similarly,

lim
m→∞

∫

X

〈(θ +
2ω

m
+ ddcϕm)n〉 −

∫

X

〈(θ +
ω

m
+ ddcϕm)n〉 = 0,

lim
m→∞

∫

X

〈(θ +
2ω

m
+ ddcϕ)n〉 −

∫

X

〈(θ + ddcϕ)n〉 = 0.

We conclude that when m→∞ each of the three terms in the inequality (3.14)
converges to ∫

X

〈(θ + ddcϕ)n〉.
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Next, for each m ≥ 0 and each k > 0 with m|k, by the monotonicity of
multiplier ideals with the type of singularity, we obtain the inequalities

h0
(
X,Lk ⊗O(2(k/m)D)⊗J (k(ϕm + f/m))

)

≤ h0
(
X,Lk ⊗O(2(k/m)D)⊗ J (kϕ)

)

≤ h0
(
X,Lk ⊗O(2(k/m)D)⊗ J (k(ϕm)

)
.

(3.15)

Since ϕm and f have algebraic singularities, by Theorem 2.36 we have the
statement of the theorem, that is, the equality in (3.12), for the terms at the
left and at the right of the chain of inequalities (3.15). Using the convergence
to
∫
X
〈(θ + ddcϕ)n〉 of all three terms in the chain (3.14) we deduce that

lim
m→∞

lim
k→∞
m|k

h0
(
X,Lk ⊗O(2(k/m)D)⊗ J (kϕ)

)

kn/n!
=

∫

X

〈(θ + ddcϕ)n〉.

It remains to show that

lim
m→∞

lim
k→∞
m|k

h0
(
X,Lk ⊗O(2(k/m)D)⊗ J (kϕ)

)

kn/n!
= lim

k→∞

h0
(
X,Lk ⊗ J (kϕ)

)

kn/n!
.

(3.16)
Fix k = ℓm. Replacing D by a positive multiple we may assume that D is
effective and that L(D) is ample. Then the exact sequence

0→ O(−2ℓD)→ O → O2ℓD → 0

implies that

h0
(
X,Lℓm ⊗O(2ℓD)⊗J (ℓmϕ)

)
− h0

(
X,Lℓm ⊗ J (ℓmϕ)

)

≤ h0
(
X,Lℓm ⊗O2ℓD(2ℓD)⊗ J (ℓmϕ)

)

≤ h0
(
X,Lℓm ⊗O2ℓD(2ℓD)

)
,

where the last inequality follows from the fact that J (ℓmϕ) is an ideal sheaf.
By Bertini we can further assume that D is smooth. Then writing L = OX(E)
for a divisor E we calculate

h0 (X,O2ℓD(ℓmE + 2ℓD)) ≤ h0 (X,O2ℓD(ℓm(E +D)))

≤ 2ℓ(ℓm)n−1D · (E +D)n−1,
(3.17)

where the last inequality is an application of Lemma 3.12 with A = E +D. In
particular,

h0 (X,O2ℓD(ℓmE + 2ℓD))

(ℓm)n/n!
→ 0 (3.18)

as k = ℓm→∞. This implies equation (3.16).

Combining Theorem 2.31 and Theorem 3.13 we obtain the following corollary.
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Corollary 3.14. Let the situation be as in Theorem 3.13. Suppose that more-
over we have

∫
X
〈(θ + ddcϕ)n〉 > 0, and that L is ample. Then P [ϕ] = P [ϕ]J ,

where P [ϕ] and P [ϕ]J are the envelopes of singularity type from Defini-
tion 2.29.

We do not expect that conversely, the equality P [ϕ] = P [ϕ]J for a quasi-psh
function ϕ implies that ϕ has almost asymptotically algebraic singularities.

Remark 3.15. Let h be a psh metric on L with small unbounded locus. We do
not assume that h has almost asymptotically algebraic singularities. Then we
still have the inequality

volJ (L, h) ≥

∫

X

〈c1(L, h)
n〉.

Indeed, consider a Demailly approximation sequence {ϕm}m∈N for ϕ. Then ϕ ≺
ϕm and in the same way as in the proof of Theorem 3.13, the inequality follows.
This recovers the inequality in the result of Darvas and Xia in Theorem 2.31,
without the assumption that L is ample.

Remark 3.16. It follows from the monotonicity properties of the non-pluripolar
product and Theorem 3.13 that the multiplier ideal volume has the following
continuity property on the space of psh metrics with almost asymptotically
algebraic singularities: let ϕ be a quasi-psh function with almost asymptotically
algebraic singularities with respect to θ. Let ϕm an approximating sequence of
quasi-psh functions satisfying the conditions of Definition 3.2. Then

lim
m→∞

volJ (L, ϕm) = volJ (L, ϕ).

4 b-divisors

In this section we discuss Weil and Cartier R-b-divisors on compact algebraic
complex manifolds. This is essentially Shokurov’s notion of birational divisiors,
or b-divisors, see [41]. For more background concerning b-divisors we refer to
[9] and [11]; see also [6] and [5] for a discussion of the toroidal and the toric
cases, respectively.

4.1 Basic definitions

Throughout this section X is a compact algebraic complex manifold (this sec-
tion is purely algebraic, so if preferred the reader can work with finite-type
algebraic varieties over any field of characteristic zero). We write DivR (X) for
the set of Weil divisors on X with real coefficients, viewed as a real vector space
(generally of infinite dimension). We endow it with the direct limit topology
with respect to its finite dimensional subspaces. Explicitly, a sequence of divi-
sors (Di)i≥0 converges to a divisor D in DivR (X) if there is a divisor A, such
that supp(Di) ⊂ supp(A) for all i ≥ 0 and (Di)i≥0 converges to D in the finite
dimensional vector space of real divisors with support contained in supp(A).
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In Definition 2.9 we defined a modification of complex manifolds. We note that
if π : X ′ → X is a modification then X ′ is also a compact algebraic complex
manifold.

Definition 4.1. The set of models of X is

R(X) :=
{
π : Xπ → X

∣∣ π is a modification
}
.

We view R(X) as a full subcategory of the category of complex manifolds
over X , in particular morphisms are over X . Maps of models are unique if
they exist, and are necessarily proper and bimeromorphic.

Hironaka’s resolution of singularities implies that R(X) is a directed set, where
we set π′ ≥ π if there exists a morphism µ : Xπ′ → Xπ.
Consider a pair π′ ≥ π in R(X), and let µ : Xπ′ → Xπ be the corresponding
modification. We have a pullback map

µ∗ : DivR (Xπ) −→ DivR (Xπ′)

and a pushforward map

µ∗ : DivR (Xπ′) −→ DivR (Xπ)

of divisors. Both maps are continuous.

Definition 4.2. The group of Cartier R-b-divisors on X is the direct limit

C-b-DivR(X) := lim
−→

π∈R(X)

DivR (Xπ) ,

taken in the category of topological vector spaces, with maps given by the
pullback maps. The resulting topology is called the strong topology. The
group of Weil R-b-divisors on X is the inverse limit

W-b-DivR(X) := lim
←−

π∈R(X)

DivR (Xπ) ,

taken in the category of topological vector spaces, with maps given by the
pushforward maps. The resulting topology is called the weak topology.

Remark 4.3. As a set, C-b-DivR(X) can be seen as the disjoint union of the sets
DivR (Xπ) modulo the equivalence relation which sets two divisors equal if they
coincide after pullback to a common modification. The set W-b-DivR(X) can be
seen as the subset of

∏
π∈R(X) DivR(Xπ) given by the elements D = (Dπ)π∈R(X)

satisfying the compatibility condition that for each π′ ≥ π we have µ∗Dπ′ = Dπ,
where µ is the corresponding modification.

Definition 4.4. Let D be a Cartier R-b-divisor. A determination of D is a
representativeD of the equivalence class given by D as described in Remark 4.3.
If Xπ is the modification where D lives, we say that D is determined in Xπ. If
D = (Dπ)π∈R(X) is a Weil R-b-divisor, then for π ∈ R(X), the divisor Dπ is
called the incarnation of D on Xπ.
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Remark 4.5. 1. For every modification µ : Xπ′ → Xπ, the identity µ∗µ
∗ =

Id holds. Therefore, the natural map C-b-DivR(X) → W-b-DivR(X) is
injective. This map can be described as follows. Let D ∈ DivR(Xπ0

)
be any determination of a Cartier b-divisor. Then for each π ∈ R(X)
we choose any element π′ ∈ R(X) such that π′ ≥ π0 and π′ ≥ π. Let
µ0 : Xπ′ → Xπ0

and µ : Xπ′ → Xπ be the corresponding modifications.
Then Dπ := µ∗µ

∗
0D does not depend on the choice of π′ and the image

of the Cartier R-b-divisor given by D is the Weil R-b-divisor (Dπ)π .
From now on we will identify, as a set, C-b-DivR(X) with its image in
W-b-DivR(X), and by R-b-divisor we will mean a Weil R-b-divisor.

2. The injection C-b-DivR(X) →֒ W-b-DivR(X) as described above is con-
tinuous, but is not a homeomorphism onto its image. In fact, a net of
Cartier R-b-divisors {Di}i∈I converges in C-b-DivR(X) to a Cartier R-b-
divisor D if and only if the following is satisfied. There exists a model π
such that D and all the Di are determined in π, and if D,Di ∈ DivR (Xπ)
are determinations of D and Di, respectively, then

D = lim
i∈I

Di

in DivR(Xπ). On the other hand, a net of R-b-divisors {Di}i∈I converges
in W-b-DivR(X) to an R-b-divisor D if and only if for each model π ∈
R(X), we have that

Dπ = lim
i∈I

Di,π

in DivR (Xπ).

3. Any R-b-divisor D = (Dπ)π∈R(X) is the limit of its incarnations Dπ. It

follows that C-b-DivR(X) is dense in W-b-DivR(X).

4. It is natural in many situations to consider also integral or rational coef-
ficients. The definitions are then easily adapted.

4.2 Nef and approximable nef b-divisors

Definition 4.6 ([9]). A Cartier R-b-divisor D ∈ C-b-DivR(X) is nef if Dπ ∈
DivR (Xπ) is nef for one (and hence for every) determination π ∈ R(X) of D. A
Weil R-b-divisor D ∈W-b-DivR(X) is nef if it is a limit (in the weak topology)
of a net of nef Cartier R-b-divisors.

Remark 4.7. It is a priori not clear that if a nef Weil R-b-divisor is Cartier,
then it is nef as a Cartier R-b-divisor. This is known to be true in the toroidal
setting [6, Lemma 4.24] and if we work with algebraic varieties over a countable
field (instead of complex manifolds), see [16, Corollary 4].
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Definition 4.8 ([16, Section 2]). Let D be a nef R-b-divisor on X . Then D is
called approximable nef if D can be written as a limit

D = lim
i∈N

Ei

of a sequence of nef Cartier R-b-divisors satisfying the monotonicity property
Ei ≥ Ej whenever i ≤ j. We call such a sequence an approximating sequence.

Remark 4.9. In [16, Theorem 5] Dang and Favre show that in the case of alge-
braic varieties over a countable field, any nef Weil R-b-divisor is approximable
nef. We will show in Section 5.2 that any b-divisor that comes from a psh
metric in a suitable sense is approximable nef.

4.3 Intersection products of approximable nef b-divisors

Let n = dimX , let E1, . . . ,En−1 be Cartier R-b-divisors on X , and let D be a
Weil R-b-divisor on X . If π ∈ R(X) is such that all Ei are determined in π,
then the real-valued intersection number

E1,π · · ·En−1,π ·Dπ

is independent of the choice of π, by the projection formula. This yields a
well-defined intersection product

C-b-DivR(X)× . . .× C-b-DivR(X)×W-b-DivR(X) −→ R. (4.1)

Extending this to an intersection product on all Weil R-b-divisors seems too
much to ask for, in general. However, if D1, . . . ,Dn are approximable nef R-
b-divisors and (Di,r)r are approximating sequences for the Di, then one can
show that the limit

lim
r→∞

D1,r · · ·Dn,r (4.2)

exists in R≥0 and is independent of the choice of approximating sequences. This
yields a top intersection product on the space of approximable nef b-divisors,
which is continuous with respect to approximating sequences. The details can
be found in [16, Section 3]. We mention that in [16] the authors work over a
countable ground field, but one can either check that this part of their argument
does not use the countability assumption, or apply the following lemma:

Lemma 4.10. Let D ∈W-b-DivR(X) be a limit of a sequence of Cartier divisors.
Then there exists a countable subfield L ⊆ C over which both X and D are
defined.

5 The b-divisor associated to a psh metric

5.1 The definition of the b-divisor

Let X be a projective complex manifold of dimension n. Let L be a line bundle
on X , and let h be a psh metric on L (see Definition 2.6). If π : Xπ → X is
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a model in the category R(X) (see Definition 4.1), we define the anti-effective
R-divisor

Z(L, h)π :=
∑

P

−ν(h, P )P (5.1)

on Xπ, where the sum is over all prime divisors P on Xπ. In general this sum
need not be finite, so we make the following definition.

Definition 5.1. The psh metric h on L has Zariski unbounded locus if there
exists a non-empty Zariski open subset U ⊆ X such that the local potentials
of h are locally bounded on U .

Example 5.2. By Remark 3.4, any psh metric with almost asymptotically alge-
braic singularities in the sense of Definition 3.2 has Zariski unbounded locus.

Lemma 5.3. Assume that the psh metric h on L has Zariski unbounded locus.
Then, given any model π : Xπ → X in R(X), for only finitely many prime
divisors P on Xπ we have that ν(h, P ) is non-zero. Moreover, if µ : Xπ′ → Xπ

is a map of models then we have an equality of Weil R-divisors

µ∗Z(L, h)π′ = Z(L, h)π. (5.2)

on Xπ′ .

Proof. This is an easy consequence of the definitions.

Definition 5.4. Assume that the psh metric h has Zariski unbounded locus.
The Weil R-b-divisor Z(L, h) ∈W-b-DivR(X) is defined by

Z(L, h) := (Z(L, h)π)π∈R(X) .

It follows from Lemma 5.3 that this is indeed a Weil R-b-divisor.
Let s be a non-zero rational section of L and writeD = div(s), seen as a Cartier
R-b-divisor on X . Then we define the Weil R-b-divisor

D(L, h, s) := D + Z(L, h).

We observe that the formation of D(L, h, s) is multiplicative in the sense that
D(L1 ⊗L2, h1 ⊗ h2, s1 ⊗ s2) = D(L1, h1, s1) +D(L2, h2, s2) whenever (L1, h1),
(L2, h2) are line bundles with psh metrics with Zariski unbounded locus on X
and s1, s2 are non-zero rational sections of L1 resp. L2.

We write

D(L, h, s) = (D(L, h, s)π)π∈R(X) ,

where

D(L, h, s)π = π∗D + Z(L, h)π = divXπ
(s) + Z(L, h)π .
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Example 5.5. Let notations be as above and assume that h has algebraic
singularities. Then D(L, h, s) belongs to C-b-DivR(X). Indeed, it can be
computed as follows. Fix a reference smooth metric h0 on L and write
ϕ = − log(h(s)/h0(s)) and θ = c1(L, h0). As in Remark 2.7 we have that
ϕ is a θ-psh function on X and it has algebraic singularities by assumption.
Let c be the rational constant from Definition 2.16 for ϕ and write I = I(ϕ/c).
It follows Lemma 2.19 from there is a model π : Xπ → X in R(X) such that
π−1I · OXπ

= O(−D) for an effective simple normal crossings divisor D, and
such that

D(L, h, s) = div(s)− cD

as Cartier b-divisors. Note that D(L, h, s) is actually a Q-b-divisor in this case.

Note that also a psh metric that is good in the sense of Mumford gives rise
to a Cartier b-divisor (all Lelong numbers are zero on all modifications). This
shows that the converse to the statement in the example does not hold as good
metrics do not necessarily have algebraic singularities.

Remark 5.6. Let T be the closed positive (1, 1)-current on X given as T =
c1(L, h) and let s be a non-zero rational section of L. We can relate the
b-divisor D(L, h, s) to the Siu decomposition of T on X (see Remark 2.10).
Recall that this decomposes T uniquely as a sum

T = R+
∑

k

ν (T, Yk) δYk
,

where the sum is over an at most countable family of 1-codimensional subva-
rieties Yk of X and R is a closed positive (1, 1)-current whose Lelong number
on any divisor is zero. The sum

∑
k ν (T, Yk) δYk

is called the divisor part of T .
If h has Zariski unbounded locus, then the family {Yk} is finite and the divisor
part agrees with −Z(L, h)id.
Also, for each π ∈ R(X) we may consider the closed positive current Tπ =
c1 (π

∗L, π∗h) on Xπ, where π
∗h denotes the pullback metric whose local po-

tentials are defined by pulling back the local psh potentials of h. Then the
divisor part of Tπ agrees with −Z(L, h)π.
We see that the b-divisor D(L, h, s) encodes the divisor parts of the Siu de-
composition of the pullbacks of T on all models π ∈ R(X), and hence it also
encodes in some sense the parts of higher codimension of the singular locus of
the metric.

Example 5.7. Let h and h′ be two psh metrics on L with Zariski unbounded
locus. Let s be a non-zero rational section of L and denote by D(L, h, s)
and D(L, h′, s) the associated R-b-divisors on R(X). Fix a smooth reference
metric h0 on L and write ϕ = − log (h(s)/h0(s)) and ϕ

′ = − log (h′(s)/h0(s)).
Let θ = c1(L, h0). Then ϕ and ϕ′ are θ-psh functions onX . Recall the notion of
algebraic singularity type and the equivalence relation ≺J from Definition 2.27.
We have

D(L, h, s) ≥ D(L, h′, s) iff ϕ′ ≺J ϕ. (5.3)
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This is just a rephrasing of Proposition 2.28.

If h is a psh metric on L with Zariski unbounded locus and U ⊂ X is a dense
Zariski open subset such that the local potentials of h are locally bounded on U ,
then, for any rational section s of L, the b-divisor D(L, s, h) only depends on
the restriction of (L, s, h) to U . More concretely,

Proposition 5.8. Let U ⊂ X be a dense Zariski open subset and L a line
bundle on U with a psh metric h. Let X1 and X2 be two compactifications of U
and L1 and L2 line bundles on X1 and X2 together with isomorphisms L1|U

∼
−→

L⊗e1 and L2|U
∼
−→ L⊗e2 for some integers e1, e2 > 0. Assume moreover that the

metric h extends to singular psh metrics h1 and h2 on L1 and L2, respectively.
Let s be a non-zero rational section of L, so s⊗ei is a non-zero rational section
of Li. Then

1

e1
D(L1, s

⊗e1 , h1) =
1

e2
D(L2, s

⊗e2 , h2).

Proof. By considering a high enough model dominating both X1 and X2, and
high enough powers of the Li, we may reduce to the case X = X1 = X2,
e1 = e2 = 1. Then by symmetry we may further reduce to the case where
L1 = L2⊗O(D) with D an effective divisor such that supp(D) ⊂ X \U . Let P
be a prime divisor on any modification X ′ of X ; we need to show that

ordP (s,L1)− ν(P, h1,L1) = ordP (s,L2)− ν(P, h2,L2). (5.4)

Let r = coeffP (D). Then

ordP (s,L1)− ordP (s,L2) = r. (5.5)

Let g be a local equation of P and for i = 1, 2, let si be local invertible sections
of the Li’s at P . We can write s2 = s1 · g

r. Hence

log ‖s2‖ = log ‖s1‖+ r log ‖s1‖

which implies that

r = ν(P, h1,L1)− ν(P, h2,L2). (5.6)

Putting (5.5) and (5.6) together yields (5.4).

5.2 b-divisors coming from psh metrics are approximable nef

In this section we show that the R-b-divisors associated to psh metrics with
Zariski unbounded locus are approximable nef (see Definition 4.8).
As before let X be a projective complex manifold of dimension n, let L on X
be a line bundle, and let h be a psh metric on L. We choose a canonical divisor
KX on X , a very ample line bundle B on X , and a smooth hermitian metric g
on B. Let ω := c1(B, g) and assume it is a Kähler form on X . We essentially
globalize some of the arguments found in [11, Sections 5.1 and 5.2].
We start with some preparatory results (the first of which only needs X to be
a compact Kähler manifold).
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Theorem 5.9 (Analytic Nadel Vanishing, cf. [32, Theorem 9.4.21]). Assume
that c1(L, h) ≥ ǫω for some ǫ > 0. Then

Hi(X,OX(KX)⊗ L⊗ J (h)) = 0 for i > 0.

Theorem 5.10 ([34, Lecture 14]). Let F be a coherent sheaf on X such that

Hi(X,F ⊗B⊗(k−i)) = 0 for all i > 0 and k ≥ 0.

Then F is globally generated.

Corollary 5.11. Assume that c1(L, h) ≥ ǫω for some ǫ > 0. Then

O(KX)⊗ L⊗ J (h)⊗B⊗n

is globally generated.

Proof. Let F = O(KX) ⊗ L ⊗ J (h) ⊗ B⊗n. Then F is coherent. By Theo-
rem 5.10 it suffices to show that

Hi(X,O(KX)⊗ L⊗ J (h)⊗B⊗n ⊗B⊗(k−i)) = 0 for i > 0 and k ≥ 0.

For i > n this follows from the fact that dimX = n, and if i ≤ n the vanishing
follows from Theorem 5.9 applied to L⊗B⊗(n+k−i).

Definition 5.12. Let J be a non-zero coherent sheaf of ideals on X , with
its canonical rational section 1. If Xπ is a model on which the inverse image
ideal sheaf π−1J ·OXπ

of J is invertible, then the pullback of 1 in π−1J ·OXπ

defines a divisor on Xπ. This determines an anti-effective Cartier b-divisor
on X , independent of the choice of Xπ, which we denote by Z(J ).

Lemma 5.13. In the notation of Definition 5.12, suppose that L ⊗ J is glob-
ally generated. Then the line bundle π∗L ⊗

(
π−1J · OXπ

)
on Xπ is globally

generated, in particular, it is nef.

Proof. The sheaf π∗(L ⊗ J ) is globally generated, and the canonical epimor-
phism π∗(L ⊗ J ) → π∗L ⊗

(
π−1J · OXπ

)
shows that the latter is globally

generated. It is therefore the pullback of O(1) under a morphism to projective
space, and so it is nef.

Definition 5.14. If π : Xπ → X is a model in R(X), then the relative dualising
sheaf is canonically trivial over the locus where the map π is an isomorphism,
and so comes with a canonical rational section, which is in fact a regular section,
and defines an effective relative canonical divisor Kπ. If µ : Xπ → Xπ′ is a map
of models thenKπ = µ∗Kπ′+Kµ (see also [11, Section 3.1]), so the Kπ assemble
to an effective R-b-divisor on X .

We mention that Kπ can equivalently be computed by taking the jacobian ideal
sheaf Jac(π).

Documenta Mathematica 27 (2022) 2563–2623



2606 A. M. Botero, J. I. Burgos Gil, D. Holmes, et al.

Lemma 5.15. Assume that the psh metric h has Zariski unbounded locus, and
let D be a reduced effective divisor on X outside of which (L, h) has bounded
local potentials. For π ∈ R(X), we let π∗Dred denote the reduced divisor with
same support as π∗D. Let A = (Aπ)π be the R-b-divisor given on each model
π ∈ R(X) by

Aπ = π∗Dred +Kπ.

Then we have the following inequalities of R-b-divisors

Z(J (h))− A ≤ Z(L, h) ≤ Z(J (h)). (5.7)

We refer to Definition 2.15 for the definition of the multiplier ideal sheaf J (h)
associated to the metric h.

Proof. We follow the idea of the proof of [11, Theorem 5.1]. Let π ∈ R(X) and
let U be a small ball in Xπ, which we identify with a small ball centered at the
origin in Cn. We assume that π∗L admits a generating section ξ over U , and
we let ϕ = − log h(ξ), which is then a psh function on U . We need to check
the inequalities of divisors

Z(J (ϕ)) −Aπ|U ≤ Z(ϕ) ≤ Z(J (ϕ))

on U ⊂ Xπ.

The inequality Z(ϕ) ≤ Z(J (ϕ)) is standard and follows from the Ohsawa-
Takegoshi extension theorem (e.g. see the proof of the first inequality in part
a) of [22, Theorem 13.2]).
It thus remains to show the inequality Z(J (ϕ))−Aπ |U ≤ Z(ϕ). We first check
this result ‘before blowing up’; in other words, we let P be a prime divisor of X .
If P is not contained in the support ofD then both sides of the inequality vanish
at P and we are done. So assume that P is contained in the support of D, so
ordP A = 1. Then J (ϕ) is principal at the generic point of P , say generated
by f . Then

ordP Z(J (ϕ)) = − ordP f = −ν(log|f |, p) ,

where p is a generic point of P . To prove the claim it suffices then to show that

ν(log|f |, p) ≥ ν(ϕ, p)− 1.

This comes down to showing that ϕ(z) ≤ c log|z|+O(1) implies that we have c ≤
1 + ordp(f). Hence assume that ϕ(z) ≤ c log|z|+ O(1). Then e2ϕ ≪ |z|2c and
thus |f |2e−2ϕ ≫ |z|2 ordp f |z|−2c. Since |f |2e−2ϕ is assumed to be integrable it
follows that |z|2 ordp(f)−2c is integrable. Hence 2 ordp(f)−2c ≥ −2 as required.
It remains to treat the case where P is an exceptional prime divisor on someXπ.
We denote by Jac(π) the jacobian ideal sheaf of π, and recall that the relative
canonical divisor Kπ is the divisor cut out by Jac(π). On a small disc in Xπ

centered at a generic point p of P , write j for a generator of Jac(π). Then if f
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on X is a function such that |f |2e−2φ is locally integrable on X we have that
|f |2e−2φ|j|2 is locally integrable on Xπ. Hence we see that

ordP Z(J (φ ◦ π)) ≤ ordP Z(J (φ)) + ordP Kπ.

Using this inequality, the claim follows as in the case where P was a prime
divisor on X .

Note that the R-b-divisor A only depends on the divisor D on which h has
singularities; in particular, if we replace (L, h) by some positive power, then A
need not change. Hence, from the previous lemma we obtain the following
corollary.

Corollary 5.16.

Z(L, h) = lim
k→∞

1

k
Z
(
J (h⊗k)

)
.

Remark 5.17. Stated in a different language Corollary 5.16 can also be found
in [18, Proposition 2.14], with essentially the same proof.

We are now ready to state and prove the main result of this section.

Theorem 5.18. Let X be a projective complex manifold of dimension n, let L
on X be a line bundle, and let h be a psh metric on L with Zariski unbounded
locus. Let s be a non-zero rational section of L. Then the associated R-b-divisor
D(L, h, s) = b-div(s) + Z(L, h) is approximable nef.

In particular, by what was said in Section 4.3 the R-b-divisor D(L, h, s) has a
well-defined degree D(L, h, s)n ∈ R≥0.

Proof. We choose a canonical divisor KX on X , a very ample line bundle B
on X , and a smooth hermitian metric g on B. Let ω := c1(B, g) which we
assume to be a Kähler form on X . Let k ∈ Z>0. By Corollary 5.11 applied to
L⊗k ⊗ B, using that c1(L

⊗k ⊗B) ≥ ω and that J (hk) = J (hkg), we see that
the sheaf on X given by

O(KX)⊗ L⊗k ⊗ J (hk)⊗B⊗n+1 (5.8)

is globally generated. Choose a non-zero rational section b of B, determining a
Cartier R-b-divisor div(b) on X . We also write KX for the Cartier R-b-divisor
determined by KX . Recall that every Z(J (h⊗k)) is Cartier. By Lemma 5.13
and the fact that (5.8) is globally generated, the Cartier R-b-divisor given by

KX + k div(s) + Z(J (hk)) + (n+ 1) div(b)

is nef. Dividing by k we find

1

k
KX + div(s) +

1

k
Z(J (hk)) +

n+ 1

k
div(b) (5.9)
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is again a nef Cartier R-b-divisor. Let C := KX+(n+1) div(b), a divisor on X .
Write C = E − P where E is effective and P is nef. Then for each k we have

1

k
KX + div(s) +

1

k
Z(J (hk)) +

n+ 1

k
div(b) +

P

k
= div(s) +

1

k
Z(J (hk)) +

E

k
.

Hence we see that

div(s) +
1

k
Z(J (hk)) +

E

k

is a nef R-b-Cartier divisor, as it is a sum of such. Since E is effective, the
sequence E/k is decreasing as k → ∞. Next, we have that a subsequence of
Z(J (hk))/k is decreasing. Indeed, this follows from the fact that for all k, we
have

1

k
Z(J (hk)) ≥

1

2k
Z(J (h2k)),

which follows from the additivity property stated in Lemma 5.19 below. The
proof is then concluded by Corollary 5.16.

Lemma 5.19 ([22, Theorem 14.2]). Let ϕ1 and ϕ2 be psh functions. Then
J (ϕ1 + ϕ2) ⊆ J (ϕ1)J (ϕ2).

5.3 A Chern–Weil type result for psh metrics with almost asymp-

totically algebraic singularities

Let X be a projective complex manifold of dimension n and let L be a line
bundle on X . Let h be a psh metric on L, let s be a non-zero rational section
of L and let D(L, h, s) be the associated R-b-divisor on X as in Definition 5.4.
We fix a smooth reference metric h0 on L and write θ = c1(L, h0).

Theorem 5.20. Assume that the psh metric h has almost asymptotically alge-
braic singularities with respect to θ. Then the equality

D(L, h, s)n =

∫

X

〈c1(L, h)
n〉

holds in R≥0. Here 〈·〉 denotes the non-pluripolar product of closed positive
(1, 1)-currents, and D(L, h, s)n is the degree of the approximable nef R-b-divisor
D(L, h, s).

Proof. Write D = D(L, h, s) and T = c1(L, h). If h has algebraic singularities
then the result follows from combining Lemma 2.35 and Example 5.5.
Assume now that h has almost asymptotically algebraic singularities. Let B be
a very ample line bundle on X , g a Kähler metric on B, and set ω = c1(B, g)
and ϕ = − log (h(s)/h0(s)). By Lemma 3.5 we may choose an ω-psh function f
with algebraic singularities on X , and for every integer m > 0 an ( 1

m
ω+θ)-psh

function ϕm with algebraic singularities on X such that

ϕm +
1

m
f ≺ ϕ ≺ ϕm .
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Each ϕm defines a psh metric hm with algebraic singularities on L ⊗ B⊗ 1
m ,

and each ϕm + 1
m
f defines a psh metric h′m with algebraic singularities on

L⊗B⊗ 2
m . Choose a non-zero rational section t of B. Since the Lelong numbers

of ϕm converge to the Lelong numbers of ϕ, the D(L⊗B⊗ 1
m , hm, st

1
m ) converge

to D, hence the D(L ⊗B⊗ 1
m , hm, st

1
m )n converge to Dn. Similarly the D(L ⊗

B⊗ 2
m , h′m, st

2
m )n converge to Dn. The case of algebraic singularities yields that

∫

X

〈(θ +
1

m
ω + ddcϕm)n〉 = D(L ⊗B⊗ 1

m , hm, st
1
m )n

and ∫

X

〈(θ +
2

m
ω + ddc(ϕm +

1

m
f))n〉 = D(L ⊗B⊗ 2

m , h′m, st
2
m )n

for each m. Since the θ-psh function ϕ is also 1
m
ω + θ-psh, we can apply

monotonicity of non-pluripolar products (Theorem 2.26) to deduce

∫

X

〈(T +
1

m
ω)n〉 =

∫

X

〈(θ +
1

m
ω + ddcϕ)n〉 ≤

∫

X

〈(θ +
1

m
ω + ddcϕm)n〉

for each m, and similarly
∫

X

〈(θ+
2

m
ω+ddc(ϕm+

1

m
f))n〉 ≤

∫

X

〈(θ+
2

m
ω+ddcϕ)n〉 =

∫

X

〈(T +
2

m
ω)n〉.

Now by the multi-linearity of the non-pluripolar product as expressed in Propo-
sition 2.25 we see

∫

X

〈(T +
1

m
ω)〉n =

n∑

i=0

(
n

i

)
1

mi

∫

X

〈T n−iωi〉, (5.10)

so that
∫

X

〈T n〉 = lim
m→∞

∫

X

〈(T +
1

m
ω)〉n ≤ lim

m→∞

∫

X

〈(θ +
1

m
ω + ddcϕm)n〉

= lim
m→∞

D(L ⊗B⊗ 1
m , hm, st

1
m )n = Dn . (5.11)

Similarly

Dn = lim
m→∞

D(L ⊗B⊗ 2
m , h′m, st

2
m )n = lim

m→∞

∫

X

〈(θ +
2

m
ω + ddc(ϕm +

1

m
f))n〉

≤ lim
m→∞

∫

X

〈(T +
2

m
ω)n〉 =

∫

X

〈T n〉.

Example 5.21. (Chern–Weil for good and psh metrics) Suppose that h is, at the
same time, good and psh as in Example 2.34. Then h has almost asymptotically
algebraic singularities by Lemma 3.3. Since all the Lelong numbers at all points

Documenta Mathematica 27 (2022) 2563–2623



2610 A. M. Botero, J. I. Burgos Gil, D. Holmes, et al.

on all modifications of X are zero, we have that D(L, h, s) = div(s), seen as a
Cartier b-divisor. Following the computations in Example 2.34, we have that

D(L, h, s)n = divX(s)n = deg(L) =

∫

X

〈c1(L, h)
n〉 ,

and this verifies the Theorem in the case of good and psh metric.

Remark 5.22. Let h be a psh metric on L with Zariski unbounded locus. We
do not assume that h has almost asymptotically algebraic singularities. Then
we still have the inequality

D(L, h, s)n ≥

∫

X

〈c1(L, h)
n〉.

Indeed, consider a Demailly approximation sequence {ϕm}m∈N for ϕ. Then
ϕ ≺ ϕm and in the same way as in the proof of Theorem 5.20, see in particular
equation (5.11), the inequality follows.

Combining Theorem 3.13 and Theorem 5.20 we obtain the following b-divisorial
analogue of the classical Hilbert–Samuel type statement for nef line bundles.

Corollary 5.23. Let assumptions be as in Theorem 5.20. Then the equality

D(L, h, s)n = volJ (L, h)

holds in R≥0.

6 The line bundle of Siegel–Jacobi forms

The purpose of this section is to exhibit an application of our results in the
context of the line bundle of Siegel–Jacobi forms on the universal abelian va-
riety over the fine moduli space Ag,N of principally polarized complex abelian
varieties of dimension g with level N structure. The results in this section form
a generalization of the main results of [15].

6.1 The biextension metric on the Poincaré bundle

We start by showing that the Poincaré bundle on an abelian scheme has a
natural psh extension over any smooth toroidal compactification of the abelian
scheme.
Let S be a smooth complex algebraic variety, and let π : U → S be an abelian
scheme with zero section e : S → U . That is, the morphism π is proper and
smooth, and the fibers of π are abelian varieties with origin determined by the
section e. We have a tautological Poincaré line bundle P on the fiber product
U ×S U

∨, where π∨ : U∨ → S denotes the dual abelian scheme. The Poincaré
bundle P comes equipped with a rigidification along the zero section and with
a canonical smooth hermitian metric h0 as explained in [33, Section 3]. When
λ : U → U∨ is a polarization of abelian schemes over S, we define Bλ to be
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the line bundle (Id, λ)∗P on U , equipped with the pullback metric, which we
denote by hλ.
The line bundle Bλ is an example of a biextension line bundle associated to
a polarized variation of pure Hodge structures of weight −1, as discussed in
[28, Sections 6 and 7]. In our case, the underlying variation of pure Hodge
structures of weight −1 is given by the local system H = R1π∗ZU (1), and the
polarization of the variation H is induced by the polarization λ.
As a special case of general results such as [27, Theorem 13.1] or [37, The-
orem 8.2], or alternatively by a computation in local coordinates using the
explicit formulas for h0 in [14, Section 2], we have that the metric hλ on the
biextension line bundle Bλ is semipositive.
Let X ⊃ U be a smooth projective compactification of U , and assume that
D = X \ U is a normal crossings divisor on X . We will assume throughout
that the pullback of the variation of pure Hodge structure H from S to U has
unipotent monodromy around each local branch of D.
Let Dsing denote the singular locus of D. As a special case of [13, Theorems 24
and 27] we have the following result.

Theorem 6.1. There exists a positive integer e such that:

(i) The semipositive line bundle B⊗e
λ on U has a unique extension B̃⊗e

λ as a
continuously metrized line bundle over the locus X \Dsing.

(ii) The continuously metrized line bundle B̃⊗e
λ on X \ Dsing has a unique

extension as a line bundle with a psh metric B⊗e
λ over X.

Remark 6.2. To avoid carrying the exponent e around in what follows, we can

think of
(
B⊗e
λ

)⊗ 1
e

as an extension of Bλ as a metrised Q-line bundle over X ,

and we simply denote it Bλ (which is independent of the choice of e). We
say a metric on a Q-line bundle L on a projective complex manifold is psh
(or toroidal, or has almost asymptotically algebraic singularities, ...) if some
positive tensor power of L which is a line bundle has this property.

Following terminology introduced in [28] we call the Q-line bundle Bλ the Lear
extension of Bλ over X . We will denote by hλ the natural psh metric on Bλ
which is given by Theorem 6.1. Note that the singularities of the psh metric hλ
are contained in the codimension two locus Dsing of X .
The main result of this section is as follows.

Theorem 6.3. The Q-line bundle Bλ with psh metric hλ on X has toroidal
singularities in the sense of Definition 3.10. In particular, the psh metric hλ
has almost asymptotically algebraic singularities.

Note that the second part of the theorem follows from the first by Proposi-
tion 3.11.
We start with two lemmas.
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Lemma 6.4. Let V ⊆ Rk be any subset, and let g : V → R be a Lipschitz
continuous function with Lipschitz constant c. Then g can be extended to a
Lipschitz continuous function Rk → R with constant c.

Proof. One extension is given by y 7→ infx∈V (g(x) + c|y − x|).

Lemma 6.5. Let r ∈ Z>0. Let A1, . . . , Ak be positive semi-definite r × r-
matrices such that for all x1, . . . , xk ∈ R>0 we have

∑k

i=1 xiAi of full rank.
Let c1, . . . , ck ∈ Rr be column vectors. Then the smooth function

g =

(
k∑

i=1

xiAici

)t

·

(
k∑

i=1

xiAi

)−1

·

(
k∑

i=1

xiAici

)
(6.1)

on Rk
>0 has a unique continuous extension to the whole of Rk

≥0, and the exten-
sion is Lipschitz continuous.

Proof. Define P = {(x1, . . . , xk) ∈ Rk
>0|x1 < x2 < · · · < xk}. Then the union

of the translates of P by the action of the symmetric group Sk is dense in Rk
>0;

by symmetry and Lemma 6.4 it suffices to show that g is Lipschitz continuous
on P . Writing y1 = x1, yi = xi−xi−1 for i = 2, . . . , k we find that xi =

∑i

j=1 yj
and that P is parametrized by y1 > 0, . . . , yk > 0. Note that

k∑

i=1

xiAi =

k∑

i=1

yi

k∑

j=i

Aj and

k∑

i=1

xiAici =

k∑

i=1

yi

k∑

j=i

Ajcj.

By [14, Lemma 3.5] we have, writing Ãi =
∑k

j=iAj , that the flag condition

Ker Ãi ⊆ Ker Ãi+1 holds for i = 1, . . . , k − 1. Moreover we have Im(Ãi) =∑k

j=i Im(Aj). It follows that there exist vectors c̃i ∈ Rr such that

k∑

j=i

Ajcj = Ãic̃i .

Replacing Ai by Ãi, xi by yi and ci by c̃i we are reduced to proving the Lipschitz
continuity of g on Rk

>0 under the extra hypothesis that the matrices A1, . . . , Ak

satisfy the above introduced flag condition. We do this by showing that the
partial derivatives of the smooth function g are bounded on Rk

>0. To shorten

the notation we set z =
∑k

i=1 xiAici and Ω =
∑k

i=1 xiAi. Then g = ztΩ−1z
and a small computation shows

∂g

∂xi
= 2(Aici)

tΩ−1z − ztΩ−1AiΩ
−1z . (6.2)

We see that it suffices to show that Ω−1z is bounded on Rk
>0. Write rj = rk(Aj)

for j = 1, . . . , k. We have r = r1 ≥ · · · ≥ rk ≥ 1 by the flag condition. Now
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[14, Lemma 3.6] states the existence of a constant c1 such that for all integers
1 ≤ α, β ≤ r we have

(
Ω−1

)
α,β
≤

c1∑
j:rj≥min(α,β) xj

≤
c1
x1

. (6.3)

Hence there exists a constant c2 such that

(
Ω−1

)
α,β

zβ ≤
c2
∑

j:rj≥β xj∑
j:rj≥min(α,β) xj

≤ c2 , (6.4)

showing that Ω−1z is bounded on Rk
>0.

Proof of Theorem 6.3. Let D(ǫ) denote the open disk in C with radius ǫ. Write
n = dimX . Choose a point p ∈ D. By [13, Theorem 81] there exist a small
positive number ǫ, an open neighborhood V of p in X , a coordinate chart
V

∼
−→ D(ǫ)n with p 7→ 0, and a generating section s of Bλ over U ∩ V . Assume

that D ∩ V is given by the equation z1 · · · zk = 0. Our task is to show that the
psh function − log hλ(s) can be written on U ∩ V as a sum

− log hλ(s) = γ + g(− log |z1|, . . . ,− log |zk|) , (6.5)

where γ is locally bounded on V and g is a convex Lipschitz continuous function
defined on some quadrant {xj ≥Mj | j = 1, . . . , k} ⊆ Rk.
For this we invoke [14, Theorem 1.1] and its proof in [14, Section 4]; these give
us the expansion (6.5) for − loghλ(s) with γ locally bounded on V and with g
convex on Rk

>0 and given as

g =

(
k∑

i=1

xiAici

)t

·

(
k∑

i=1

xiAi

)−1

·

(
k∑

i=1

xiAici

)
(6.6)

up to a linear form in the xi. Here A1, . . . , Ak are positive semi-definite r × r-
matrices for some r ∈ Z>0 such that for all x1, . . . , xk ∈ R>0 we have

∑k

i=1 Aixi
of full rank and where c1, . . . , ck ∈ Rr. Then by Lemma 6.5 the function g is
Lipschitz continuous on any closed quadrant contained in Rk

>0.

Note that the psh metric hλ has its unbounded locus supported on the boundary
divisor D = X \ U . Let s be a non-zero rational section of the line bundle Bλ.
We have a natural associated R-b-divisor D(Bλ, hλ, s) on the category R(X).
We note that D(Bλ, hλ, s) is actually a Q-b-divisor, since on each model in
R(X) its incarnation is given by the Lear extension of Bλ, which is a Q-line
bundle. By Proposition 5.8, the b-divisor D(Bλ, hλ, s) is independent of the
choice of the chosen compactification X of U .
Let volJ (Bλ, hλ) denote the multiplier ideal volume of the psh line bundle
(Bλ, hλ) on X . By combining Theorem 6.3 with the Hilbert–Samuel formula
in Theorem 3.13 and the Chern-Weil formula in Theorem 5.20 we find the
following result.
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Theorem 6.6. Let n = dimU . The equalities

volJ (Bλ, hλ) =
(
D(Bλ, hλ, s)

)n
=

∫

X

〈c1(Bλ, hλ)
n〉 =

∫

U

c1(Bλ, hλ)
n

hold in R≥0.

6.2 The line bundle of Siegel–Jacobi forms and its invariant met-

ric

The aim of this final section is to discuss a variant of Theorem 6.6 in the
context of Siegel–Jacobi forms. Let g ∈ Z≥1 and N ∈ Z≥3 and let Ag,N

denote the fine moduli space of principally polarized complex abelian varieties
of dimension g and levelN . This is a smooth quasi-projective complex algebraic
variety of dimension g(g + 1)/2. Let π : Ug,N → Ag,N be the universal family
of abelian varieties. Following the constructions in Section 6.1, the tautological
polarization on Ug,N gives rise to a canonical biextension line bundle B on Ug,N

equipped with a smooth semipositive hermitian metric h.
We write H for the tautological polarized variation of pure Hodge structure
R1π∗ZUg,N

(1) of weight −1 on Ag,N . We denote by F = F0(HC ⊗ OS) the
associated Hodge bundle on Ag,N , and write M =

∧g F for its determinant.
The tautological polarization of H induces a smooth hermitian metric hinv

on M called the invariant metric or Hodge metric. By [40, Lemmas 7.18
and 7.19], the metric hinv is semi-positive.

Definition 6.7. Let k,m ∈ Z≥0. The line bundle

Lk,m = π∗M⊗k ⊗ B⊗m

on Ug,N is called the line bundle of Siegel–Jacobi forms of weight k and index m.

Note that each line bundle Lk,m has a natural smooth hermitian metric hk,m
obtained by taking appropriate tensor product combinations of the metrics hinv

onM and h on B. As the metrics hinv and h are semipositive, it is clear that
for each k,m ∈ Z≥0 the smooth hermitian metric hk,m is a semipositive metric
on Lk,m.
The work done in [26, Chapter VI] and [35, Section 3] allows to choose:

• a projective smooth toroidal compactification Ag,N of Ag,N ,

• an extensionM ofM over Ag,N as a line bundle,

• a projective smooth toroidal compactification Ug,N of Ug,N , and

• a map π : Ug,N → Ag,N extending the projection map π : Ug,N → Ag,N ,

such that

• the metric hinv extends as good psh metric h
inv

overM, and
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• the pullback of the variation H from Ag,N to Ug,N has unipotent mon-
odromy around each local branch of the normal crossings boundary divi-
sor D = Ug,N \ Ug,N .

As the psh metric h
inv

is good, it has in particular almost asymptotically
algebraic singularities, see Lemma 3.3. Further it follows from Theorem 6.1 that
the biextension line bundle B on Ug,N has a Lear extension B over Ug,N , and
from Theorem 6.3 that the metric h has a natural extension h over the Q-line
bundle B as a psh metric with toroidal, and in particular almost asymptotically
algebraic, singularities.
We define

Lk,m = π∗M
⊗k
⊗ B

⊗m
,

a Q-line bundle on Ug,N extending the line bundle Lk,m, and denote by hk,m the

metric on Lk,m induced from h
inv

onM and h on B by taking the appropriate
tensor product combinations.

As both h
inv

and h have almost asymptotically algebraic singularities, we con-
clude by Remark 3.4 that the natural metric hk,m on the Q-line bundle Lk,m
is a psh metric with almost asymptotically algebraic singularities. Further we
note that the unbounded locus of the psh metric hk,m has support contained
in the boundary divisor D = Ug,N \ Ug,N .
Let g ∈ Z≥1, N ∈ Z≥3, k,m ∈ Z≥0. Let s be a non-zero rational section of the
line bundle Lk,m of Siegel–Jacobi forms on Ug,N of weight k and index m. Let
D(Lk,m, hk,m, s) be the R-b-divisor associated to the Lear extension Lk,m over
Ug,N , its canonical psh metric hk,m and the rational section s. As follows from
Proposition 5.8, the b-divisor D(Lk,m, hk,m, s) is independent of the choice of
compactification Ug,N .
Applying Theorem 3.13 and Theorem 5.20 we obtain the following result.

Theorem 6.8. Let n = dimUg,N = g + g(g + 1)/2. Let volJ (Lk,m, hk,m)
denote the multiplier ideal volume of the psh line bundle (Lk,m, hk,m). Then
the equalities

volJ (Lk,m, hk,m) =
(
D(Lk,m, hk,m, s)

)n

=

∫

Ug,N

〈c1(Lk,m, hk,m)n〉

=

∫

Ug,N

c1(Lk,m, hk,m)n

hold in R≥0.

In the case of the modular curve Y (N) = A1,N and for k = m = 4 this
reproduces the main result of [15]. We observe that in [15], volume, degree and
integral were each calculated independently, and the outcomes were seen to be
equal by inspection. Here we see a more intrinsic approach.

Documenta Mathematica 27 (2022) 2563–2623



2616 A. M. Botero, J. I. Burgos Gil, D. Holmes, et al.

Remark 6.9. The above Chern–Weil type result can be extended, with proofs
carrying over mutatis mutandis, to the more general setting of a finite self-
product of the universal abelian scheme over any PEL type Shimura variety.
The necessary smooth projective toroidal compactifications are provided in this
setting by the work of Lan [31].

A On the non-continuity of the volume function

In Theorem 2.31 the multiplier ideal volume of a line bundle with a psh metric
is defined. This volume function has nice properties for metrics with almost
asymptotically algebraic singularities. For instance, it agrees with the non-
pluripolar volume (Theorem 3.13) and it is continuous with respect to good
algebraic approximations (see Remark 3.16 for the precise statement).

Another approach to define the volume of a line bundle with a psh metric, as-
suming it has Zariski unbounded locus, is to measure the abundance of global
sections for multiples of the associated b-divisor. In fact, if the b-divisor is
Cartier, this is the classical definition of the volume of a divisor. In this ap-
pendix we give the definition of the volume of a b-divisor that is the analogue of
the volume function of a classical divisor. We can then ask whether this volume
function is continuous with respect to the weak topology. The results of [6, §5]
show that this question has an affirmative answer in the toroidal case. Never-
theless, we give an example showing that, in general, this volume function is
not continuous for approximable nef b-divisors, even in the big case. We don’t
know if the constructed example can be realized as the b-divisor associated to
a psh metric.

We start with some definitions. Let X be a smooth projective complex variety
with function field F . Let D = (Dπ)π∈R(X) be a Weil R-b-divisor on X as in
Section 4. We define

L(D) = {0 6= f ∈ F | ∀π ∈ R(X) : Dπ + div(f) ≥ 0} ∪ {0} .

The volume vol(D) of the b-divisor D is defined via the formula

vol(D) := lim sup
ℓ

dimL(ℓD)

ℓd/d!
. (A.1)

We say D is big if vol(D) > 0.

The example is constructed in two steps. The first one is a preparatory step.

Step 1:

Let X be a smooth projective surface, and A, B divisors on X meeting trans-
versely at a point p and let b ≥ 1 be an integer. Setting X0 = X and p0 = p
we make the following recursive definition, which is illustrated in Figure 1:

1. For 0 ≤ i < b, let Xi+1 be the blow up of Xi at pi, and Ei+1 the
exceptional locus of the blowup;
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2. For any i ∈ {1, . . . , b} and any divisor F on Xj for 0 ≤ j ≤ i, we write F̂

for the strict transform of F on Xi (note that F = F̂ if i = j).

3. Let pi+1 be the unique point of intersection of B̂ with Ei+1 on Xi+1.

X0

A

B

p0•

X1

Â

E1

B̂
p1•

X2

Â

E2

B̂

Ê1

p2•

. . .

Xb
B̂

pb•

Eb
...

Â
Ê1

Ê2

Figure 1: The surfaces Xb

We easily compute some intersection numbers on the surface Xb for any b > 0:

• Êi · Êj = 1 if |i− j| = 1 and 0 if |i− j| ≥ 2;

• (Eb)
2 = −1;

• For all i < b we have
(
Êi

)2
= −2;

•
(
Â
)2

= A2 − 1 and
(
B̂
)2

= B2 − b.

Now let D be a nef divisor on X whose support does not contain p.
On Xb we define the Q-divisor

Db = π∗D −

b∑

i=1

i

b
Êi,

where π : Xb → X denotes the corresponding sequence of blow-ups.

Lemma A.1. For each integer b ≥ 1, the following equalities hold true:

1. (Db)
2
= D2 − 1

b
,

2. Db · Â = D · A− 1
b
,

3. Db · Êi = 0 for i < b,

4. Db · Eb =
1
b
,

5. Db · B̂ = D · B − 1.
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Proof. For 1. first observe that π∗D · Êi = 0 for all i since D does not pass
through p. We then calculate

(Db)
2
= D2 − 2

b−1∑

i=1

i2

b2
− 1 + 2

b−1∑

i=1

i(i+ 1)

b2

= D2 − 1 + 2

b−1∑

i=1

i

b2

= D2 −
1

b
.

Similarly, Â · Êi = 0 for 1 < i ≤ b and B̂ · Êi = 0 for 1 ≤ i < b, so we compute

Db · Â = D · A−
1

b
Ê1 · Â = D ·A−

1

b
,

Db · B̂ = D ·B − Eb · B = D ·B − 1,

which gives 2. and 5. On the other hand, we have

Db · Ê1 =
−1

b

(
Ê1

)2
−

2

b
Ê2 · Ê1 =

2

b
−

2

b
= 0,

and for 2 ≤ i ≤ b− 1 we get

Db ·Êi = −
i− 1

b
Êi−1 ·Êi−

i

b

(
Êi

)2
−
i+ 1

b
Êi+1 ·Êi = −

i− 1

b
+
2i

b
−
i+ 1

b
= 0,

which gives 3. Finally, we compute

Db ·Eb = −
b− 1

b
Êb−1 ·Eb − (Eb)

2
= −

b− 1

b
+ 1 =

1

b
,

giving 4.

The second step is the main construction.
Step 2:

Now we let X = P2, and we choose a line L on X and (pk)k≥0 an ordered
countable set of distinct points on L. Let H be a line not passing through
any pk, and let D = 2H , a divisor on X . For each k we choose Bk a line
through pk distinct from L.
Set X ′

0 = X and D′
0 = D. For any k we let X ′

k+1 and D′
k+1 be the result of

applying Construction 1 to X ′
k, A = L̂, B = Bk, p = pk and D′

k with b = 2k.
By Lemma A.1, for any k, we find that

(D′
k)

2
= D2 −

1

2
−

1

4
− · · · −

1

2k
= 3 +

1

2k
.

Lemma A.2. D′
k is nef.
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Proof. First we compute (using Lemma A.1) that

D′
k · L̂ = D ·A−

k∑

i=1

1

2i
= 1 +

1

2k
≥ 0,

D′
k · B̂i = D · Bi − 1 = 1 ≥ 0,

and D′
k · E ≥ 0 for any irreducible exceptional divisor E. Now let C ⊂ X ′

k be

any irreducible curve distinct from L̂, B̂i, and exceptional curves. Denote by
Ei,j the i’th exceptional divisor on X ′

j . Then

k∑

j=1

2j∑

i=1

Êij · C ≤ L · π∗C,

where π : X ′
k → X denotes the corresponding sequence of blow-ups. Indeed,

L · π∗C = π∗L · C

= (L̂+
∑

i,j

Êi,j) · C

= L̂ · C +
∑

i,j

Êij · C,

each summand of which is non-negative. We then compute

D′
k · C = π∗D · C −

∑

i,j

i

2j
Êi,j · C

≥ π∗D · C −
∑

i,j

Êi,j · C

≥ π∗D · C − π∗L · C

= L · π∗C ≥ 0,

where the first equality on the last line holds because D ∼ 2L.

Now, the sequence {D′
k}k∈N converges in the weak topology and defines an

approximable nef b-divisor on R(X) which we denote by D.
Given k ≥ 0, let f be a rational function on X such that

kD+ div f ≥ 0.

Since f must cancel infinitely many exceptional divisors over L with multi-
plicity k we see that ordL f ≥ k, and in fact this condition is equivalent to
canceling all the negative multiples of exceptional divisors. Since the sum of
these exceptional parts is by definition given by 2H − D we see that

vol(D) = vol(2H − L) = 1/2.
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This implies in particular that D is big. On the other hand, since the D′
k’s are

nef, we have

2 vol(D′
k) = (D′

k)
2
= 3+

1

2k
.

Hence limk vol(D
′
k) = 3/2. In conclusion, we see that the volume function

is not continuous in the space of approximable big and nef b-divisors. In
consequence, for an approximable nef b-divisor, the volume and the degree do
not agree necessarily.

Remark A.3. 1. In [6, Theorem 5.13] it is shown that, for toroidal nef b-
divisors, the degree and the volume agree. In that paper it was also
announced that the volume was not necessarily continuous in the non-
toroidal case. This is the promised example.

2. To a psh metric with almost asymptotically algebraic singularities, we
can associate an approximable nef b-divisor (Theorem 5.18) and the mul-
tiplier ideal volume of the metric agrees with the degree of this b-divisor
(Corollary 5.23). Then, [6, Theorem 5.13] and Corollary 5.23 imply that,
for toroidal psh metrics, the multiplier ideal volume of the psh metric
agrees with the volume of the associated b-divisor.

3. It would be interesting to know whether the equality between the mul-
tiplier ideal volume of a psh metric and the volume of the associated b-
divisor continues to be true in the general case of almost asymptotically
algebraic psh metrics. Note that if one can show that the above example
can be realized as the b-divisor of an almost asymptotically algebraic psh
metric, we obtain a negative answer to this question.
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J. Funct. Anal. 72(2):225–251, 1987.

[4] Owen Biesel, David Holmes, and Robin de Jong. Néron models and the
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plex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1):45–76, 2004.

[9] Sébastien Boucksom, Tommaso de Fernex, and Charles Favre. The volume
of an isolated singularity. Duke Math. J. 161(8):1455–1520, 2012.
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Documenta Mathematica 27 (2022) 2563–2623



Chern–Weil and Hilbert–Samuel Formulae 2623

[34] David Mumford. Lectures on curves on an algebraic surface. With a
section by G.M. Bergman. Annals of Mathematics Studies, 59. Princeton
University Press, Princeton, NJ, 1966.

[35] David Mumford. Hirzebruch’s proportionality theorem in the
noncompact case. Invent. Math. 42:239–272, 1977.

[36] Junjiro Noguchi and Takushiro Ochiai. Geometric function theory in
several complex variables. Translated from the Japanese by Noguchi.
Translations of Mathematical Monographs, 80. American Mathematical
Society, Providence, RI, 1990.

[37] Gregory Pearlstein and Chris Peters. Differential geometry of the mixed
Hodge metric. Comm. Anal. Geom. 27(3):671–742, 2019.

[38] Alexander Rashkovskii. Analytic approximations of plurisubharmonic
singularities. Math. Z. 275(3-4):1217–1238, 2013.

[39] Julius Ross and David Witt Nyström. Analytic test configurations and
geodesic rays. J. Symplectic Geom. 12(1):125–169, 2014.

[40] Wilfried Schmid. Variation of Hodge structure: the singularities of the
period mapping. Invent. Math. 22:211–319, 1973.

[41] Vyacheslav V. Shokurov. Prelimiting flips. Translated from Tr. Mat. Inst.
Steklova, 240 (Biratsion. Geom. Linĕın. Sist. Konechno Porozhdennye
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