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Abstract. Double ramification loci, also known as strata of 0-
differentials, are algebraic subvarieties of the moduli space of smooth
curves parametrizing Riemann surfaces such that there exists a ratio-
nal function with prescribed ramification over 0 and ∞. We describe
the closure of double ramification loci inside the Deligne-Mumford
compactification in geometric terms. To a rational function we asso-
ciate its exact differential, which allows us to realize double ramifica-
tion loci as linear subvarieties of strata of meromorphic differentials.
We then obtain a geometric description of the closure using our recent
results on the boundary of linear subvarieties. Our approach yields
a new way of relating the geometry of loci of rational functions and
Teichmüller dynamics. We also compare our results to a different
approach using admissible covers.
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1 Introduction

Inside the moduli space Mg,n of pointed smooth curves (X,x) of genus g with
n marked points x = (x1, . . . , xn) for any integer k ≥ 0 there exist natural
closed subvarieties

Hk
g(µ) :=

{
(X,x) : OX

(
n∑

i=1

µixi

)
≃ ω⊗k

X

}
⊆ Mg,n,

where µ = (µ1, . . . , µn) ∈ Z
n is an integer partition of k(2g − 2).

For k ≥ 1, the above condition is equivalent to the existence of a meromorphic
k-differential on X with prescribed vanishing order at the marked points. In
this case Hk(µ) is called a stratum of meromorphic k-differentials of type µ
and they have been studied extensively, especially from the viewpoint of Te-
ichmüller dynamics. See for example the surveys [Che17, Wri15, Zor06]. Strata
of k-differentials are not compact, and finding geometrically meaningful com-
pactifications is an active area of research. One possible way of compactifying
the stratum Hk

g(µ) ⊆ Mg,n is by simply taking the closure inside Mg,n. The

closure of Hk
g(µ) in Mg,n has been determined for k = 1 in [BCGGM18] in

terms of twisted differentials, and for k > 1 in [BCGGM19a], by using a cover-
ing construction to reduce it to the k = 1 case. In [BCGGM19b] the authors
use the explicit description of the closure ofHk

g(µ) to construct the moduli space

of multi-scale differentials ΞMg,n(µ): a smooth, modular compactification of
the stratum H1

g(µ), which has been extended to k > 1 in [CMZ20a].
In the case k = 0, the isomorphism OX (

∑n
i=1 µixi) ≃ OX is equivalent to the

existence of a rational function f : X → P
1 with prescribed ramification over 0

and ∞ with the preimages of 0 and ∞ being all marked points xk such that
µk > 0 and µk < 0, respectively. The subvariety DRg(µ) := H0

g(µ) of Mg,n is
called a double ramification locus or a stratum of 0-differentials. Equivalently,
double ramification loci can be defined as the pullback of the zero-section from
the universal Jacobian under the Abel-Jacobi map. As a warning to the reader,
the double ramification locus is a subvariety of Mg and should not be confused
with double ramification cycles, which are classes in the Chow ring of Mg,n

and will not play a part in the sequel.
In 2001 Eliashberg posed the problem of extending double ramification cycles
to Mg,n for the development of symplectic field theory [EGH00]. Since then
various different ways of extending the cycle class of DRg(µ) to Mg,n have
been studied in the literature. One possible extension is via relative Gromov-
Witten theory using the space of rubber maps to P

1, see [Li01, Li02, GV05]. A
different approach to extending double ramification loci is to extend the Abel-
Jacobi map. The Abel-Jacobi naturally extends to curves of compact types.
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The corresponding cycle class was computed by Hain in [Hai13] and the com-
putation was later simplified in [GZ14]. However, in general the Abel-Jacobi
map does not extend to all of Mg,n; nonetheless different extensions of double
ramification loci to Mg,n using the Abel-Jacobi map have been proposed, see
for example [HKP18, Hol19, MW17]. Another extension has been proposed in
[FP18]. The natural cycle classes on Mg,n that arises in these approaches are
called double ramification cycles and a conjectural formula for the class in the
tautological ring ofMg,n was proposed by Pixton and later proved in [JRPZ17].
We stress that the proposed extensions do not coincide with the cycle class of
the closure of DRg(µ) in Mg,n but rather contain additional contributions from
the boundary.

One way of finding a geometric description of the closure of DRg(µ) is using
the theory of admissible covers, first introduced by [HM82]. The space of
admissible covers Admg,n(σ) is a proper Deligne-Mumford stack compactifying
the space of maps X → P

1 with a fixed ramification profile σ. Contributions to
the intersection theory of admissible cover have been made in [SvZ20, Lia20].

We will recall admissible covers in more detail in Section 5. Using the stack
of admissable covers Admg,n(σ) a description of the boundary of double ram-
ification loci is as follows (we state it more precisely in Proposition 5.2): a
stable curve (X,x) ∈ Mg,n is contained in the closure DRg(µ) of the double
ramification locus if and only if there exists a suitable admissible cover on a
semistable model X ′ of X . While certainly geometric, the existence of an ad-
missible cover on a semistable model is hard to verify in practice due to the
combinatorial complexity. In particular it would be useful to have a description
solely in terms of the given stable curve X , which is the goal of this paper.

To obtain a more explicit geometric criterion in this paper we take a differ-
ent approach, similar in spirit to the approach for k ≥ 1 in [BCGGM18,
BCGGM19a] by relating double ramification loci to strata of meromorphic
differentials. By associating to a rational function f : X → P

1 the exact dif-
ferential df we can use the moduli space of multi-scale differentials ΞMg,n(µ),
constructed in [BCGGM19b], to understand degenerations of df . This gives
a new way of relating double ramification loci to strata of differentials. Since
exact differentials are described by the vanishing of all absolute periods, this
requires an analysis of periods near the boundary of ΞMg,n(µ). The results
obtained in [Ben20] and further refined in [BDG20] describe the boundary of
subvarieties of strata of meromorphic differentials given by linear equations on
periods in ΞMg,n(µ), and can thus be applied to the case of exact differentials.
The idea of studying Hurwitz spaces via exact differentials has also appeared
in [Sav17, Sec. 4] and [Mul20].

We now define the key notions, which will allow us to state the main result.

Twistable rational functions

Let Γ be the dual graph of a marked stable curve. We consider Γ as a triple
(V,E,H) where V are the vertices, E are the edges and H are the legs cor-
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responding to the marked points. We denote hk the leg corresponding to the
marked point xk.

Recall from [BCGGM18] that a level graph Γ is a dual graph Γ of a stable
curve together with a level function ℓ : V (Γ) → Z≤0. A level function induces
a partial order on the set of vertices by setting v < v′ if ℓ(v) ≥ ℓ(v′). Here
we understand partial ordering in a weak sense and allow ℓ(v) = ℓ(v′) even
if v 6= v′.

Definition 1.1. Let µ be a partition of zero as above, and Γ a level graph.
A twistable rational function (X,x, f) of type µ compatible with Γ on a stable

pointed curve (X,x) is a collection f = (fv)v∈V (Γ) such that fv : X̃v → P
1 is

a rational function on the normalization X̃v of each irreducible component Xv

of X , satisfying

1. (Prescribed order of vanishing) Each rational function fv is holo-
morphic away from the marked points and nodes. Furthermore,

ordxk
f = µk for all k.

If a component Xv contains any marked zero xk of fv, then all zeros of
fv are at marked points or nodes.

2. (Matching order at nodes) If a node of X identifies q1 ∈ X̃v1 with
q2 ∈ X̃v2 . Then

ordq1(dfv1) + ordq2(dfv2) ≥ −2. (1.1)

3. (Compatibility with the level graph) If furthermore q2 is a pole of
fv2 , i.e. ordq2 f < 0, then ℓ(v1) > ℓ(v2).

Some remarks about this definition are in order. We note that condition (2) is
vacuous if ordq1 f ≥ 0 and ordq2 f ≥ 0. If ordq2 f < 0 then it can be rephrased
as

multq1 fv1 ≥ multq2 fv2 ,

where multq fv − 1 is the ramification index of the map fv : Xv → P
1 at q.

Remark 1.2. We stress that while all poles of f are either at a marked point x
or at a node, there can be zeros of f which are not marked and not at a node.
There are thus two kinds of irreducible components depending on whether or
not they contain marked zeros of fv. On an irreducible component containing
marked zeros, the pointed curve (X̃v, (xv,qv)), where xv and qv are all the
marked points and nodes contained in X̃v, is contained in a double ramification
locus DRg(Xv) (µv) for a partition µv depending only on µ and the level graph Γ
and the orders of vanishing of f at the nodes. On the remaining components,
which do not contain any marked zero of fv, we instead have a rational function
with conditions on the ramification indices at the nodes.
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1.1 The evaluation morphism of a twistable rational function

The definition of twistable rational functions so far is similar to the definition
of a twisted differential in the sense of [BCGGM18], except that in (2) we only
have inequality. We now introduce the crucial new ingredient that will allow
us to determine whether a twistable rational function can be smoothed to a
rational function contained in a double ramification locus.
Let (X,x, f) be a twistable rational function of type µ compatible with a level
graph Γ. We partition x = (z,p) such that z consists of zeros of f and p of
poles. From now on we usually assume that µi 6= 0 at all marked points. All
our results can be extended to the case where µi = 0 at some marked point by
including all marked points with µi = 0 in z.
We consider the dual graph Γ with legs corresponding to the marked points x
as a 1-dimensional cell complex. By abuse of notation we call xk the endpoint
of the leg h(xk) and we can thus consider the marked points x as a subset of Γ.
For a given level i ∈ Z≤0 we denote Γ(≤i) the subgraph consisting of all ver-
tices v such that ℓ(v) ≤ i, together with all edges between them.
We define Γ(i) similarly, except that for every edge e connecting a vertex v of
level i and a vertex of level lower than i, we attach an additional leg h(q+e ) to v.
Pictorially, we cut each edge connecting a vertex of level i to a vertex of lower
levels in the middle. If we denote Γ some level graph as shown on the left in
Figure 1 then Γ(0) is the graph on the right, consisting of a single vertex and
two newly attached half-legs.
We say a relative homology class [γ] ∈ H1(Γ, z;Z) has top level at most i if it
can be represented by a collection of paths γ contained in Γ(≤i). We then let

L≤i(Γ) ⊆ H1(Γ, z;Z) be the subspace of all homology classes of level at most i.
We can now describe the evaluation morphism

ev
(i)
f : L≤i(Γ) → C

of level i as follows. Suppose that [γ] ∈ L≤i(Γ) is represented by a collection
of paths γ contained in Γ(≤i). We then restrict γ to Γ(i) and evaluate f , with
signs, at the endpoints of the restriction. For example, if the restriction of γ
connects q+1 and q+2 , as depicted in Figure 1, then we have

ev
(0)
f ([γ]) = f(q+2 )− f(q+1 ) ,

and if the restriction of γ is a closed path then we have ev
(i)
f ([γ]) = 0. We will

revisit the evaluation map in more detail in Section 2.1 and in particular check
that it is well-defined in Proposition 2.3. We can now state our main result.

Main theorem. Let (X,x) be a stable curve in Mg,n with dual graph Γ.
Then (X,x) is contained in the closure of DRg(µ) if and only if the following
conditions are satisfied:

1. There exists a level graph structure Γ on Γ and a twistable rational func-
tion (X,x, f) of type µ compatible with Γ.
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Figure 1: The evaluation map

2. The evaluation morphism ev
(i)
f vanishes identically for all levels i.

For example for some level graph as in Figure 1 the only closed path we need
to consider is γ and

ev
(0)
f ([γ]) = f(q+2 )− f(q+1 ).

Condition (2) says exactly that the values of the twistable rational function f
at q+1 and q+2 are the same,

f(q+1 ) = f(q+2 ).

In general one needs to find a basis for the absolute homology of the level graph
and then one obtains a relation for every basis element.
Being a twistable rational function with vanishing evaluation morphism is a
condition that can be verified explicitly. On each irreducible component one
has a rational function satisfying a condition similar to double ramification
loci, and the vanishing of the evaluation morphism is a combinatorial condition
relating the values of the rational functions on different irreducible components.
In Section 6 we discuss several examples of twistable rational functions high-
lighting the features of the evaluation morphism, showing the explicit nature of
twistable rational functions. The Abel-Jacobi map extends to curves of com-
pact type and thus degenerations of the double ramification locus in this case
are well understood. Furthermore, in [GZ14] the authors extend the Abel-
Jacobi map to curves with one non-separating node and use it do describe the
closure of the double ramification locus. Our techniques allow us to describe
arbitrary degenerations. As a demonstration, going beyond what has been
studied in the literature, in Example 6.5 we study twistable rational functions
on dollar curves, i.e. stable curves with two irreducible components meeting
transversely at three nodes. We discuss the possible level graphs and the differ-
ent types of conditions that the vanishing of the evaluation morphism imposes.
At first glance the notion of a twistable rational function is very similar to
the notion of twisted differentials in [FP18] and [BCGGM18]. A twisted dif-
ferential is a collection of meromorphic differential forms on each irreducible
component. In particular, it determines a unique partial order on the dual
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graph by comparing the vanishing orders at the nodes. In [BCGGM18] the
authors introduce the global residue condition for twisted differentials, which
is the crucial ingredient that allows to smooth out a twisted differential. The
global residue condition does depend not only the partial ordering but on the
actual level graph, as can be seen in [BCGGM18, Ex 3.4]. The situation is
somewhat different for twistable rational functions. In Example 6.3 we will
see that a twistable rational function does not determine a unique partial or-
dering, i.e. there exist two different partial orders on the dual graph of the
same underlying twistable rational function both satisfying Condition (3) in
Definition 1.1. The level graph only comes into play when considering the eval-
uation morphism. There are several cases where a fixed partial ordering on
the dual graph of a twistable rational function uniquely determines the level
graph (up to automorphism) and thus also determines the conditions imposed
by the vanishing of the evaluation morphism, for example if every irreducible
component contains a marked zero of f . On the other hand in Example 6.4 we
construct an example of two different level graphs, inducing the same partial
ordering, for which the vanishing of the evaluation morphism imposes different
conditions.

Remark 1.3. (Prestable and stable curves) For technical reasons, we will have
to additionally mark the critical points of the rational functions during the
proof of the Main theorem. By forgetting the marked critical points we are
then naturally forced to consider prestable models of a given stable curves. A
combinatorial observation (Lemma 3.3) allows us to state our results only in
terms of the stable curve without alluding to a prestable model. On the other
hand, using admissable covers one can show that a stable curve X lies in the
boundary of DRg(µ) if there exists an admissable cover on a semistable model
of X and it seems hard in general to provide a criterion for the existence of
such admissable cover only involving the stable curve X .

Potential applications

The determination of the closure of strata inside the Hodge bundle via twisted
differentials in [BCGGM18] allowed to study the geometry of strata of differ-
entials with algebro-geometric methods. For example, in [Gen15] the author
obtains first information about the Kodaira dimension of strata using twisted
differentials. In [MUW17] the authors solve the realization problem for trop-
ical canonical divisors using the smoothability of twisted differentials. Using
the smoothability of twistable rational functions one can hope to study similar
questions for the double ramification locus using differentials.
In forthcoming work we use the view point of exact differentials to study ad-
missable cover cycles [DRg(µ)] ∈ CH∗(Mg,n). The cycle class [DRg(µ)] is
obtained as pushforward of the locus of exact differentials inside the moduli
space of multi-scale differentials and thus computing the class of the locus of
exact differentials allows a new approach to the computation of [DRg(µ)]. The
locus of exact differentials is described by the vanishing of all absolute periods
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and can be realized as the zero locus of a vector bundle on the moduli space
of multi-scale differentials PΞMg,n(µ), which allows class computations via
intersection theory.

By taking the closure of a double ramification locus or more generally of a
Hurwitz space of covers of P1 inside the moduli space of multi scale differentials
one can produce smooth compactifications as we have seen in [BDG20]. It
follows from our discussion in Section 5.1 that this yields birational models
different from stacks of admissable covers and it seems worthwhile to investigate
the relationship between the two.

Outline of the proof

The key idea to prove the Main theorem is to consider exact differentials instead
of rational functions. On the double ramification locus DRg(µ) only the zeros
and poles of f are marked, but not the remaining zeros of df , which correspond
to the critical points of f . In Section 2, we construct a rigidification of DRg(µ),
which we denote DRcg (µ̃), by additionally marking the critical points. The ad-
vantage of using DRcg (µ̃) is that the associated exact differential is contained
in a fixed stratum. Furthermore, being an exact differential is equivalent to the
vanishing of all absolute periods, a condition that is linear in period coordi-
nates of the stratum. We can then describe the boundary of DRcg (µ̃) in terms of
twisted rational functions using the main result from [Ben20] and some further
consequences from [BDG20]. A twisted rational function is a twistable ratio-
nal function where we additionally mark all the critical points of the rational
function, and such that the associated exact differential is a twisted differential
in the sense of [BCGGM18].

In Proposition 2.4 we then show that the boundary of DRcg (µ̃) can be described
in terms of twisted rational functions with vanishing evaluation morphism.

So far we have artificially marked the critical points of f and now we need
to forget them again. It then only remains to study the relationship between
twisted rational functions and twistable rational functions. In Section 3 we
show that twistable rational functions arise exactly by forgetting the critical
points of a twisted rational function and then stabilizing the resulting prestable
curve, which is then enough to prove the main theorem.
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2 Exact differentials and twisted rational functions

Level graphs

We recall some additional notation for level graphs from [BCGGM18]. An
edge of Γ is called horizontal if it joins vertices of the same level, and vertical
otherwise. If an edge e joins the vertices v and v′ such that ℓ(v) ≥ ℓ(v′) then we
let ℓ(e+) be the level of v and similarly ℓ(e−) the level of v′. Furthermore we
set v(e+) := v and v(e−) := v′. Similarly, we denote q+e and q−e the preimages
of the node e on v(e+) and v(e−) respectively. At horizontal nodes we make a
random choice. Similarly, for a leg h we let v(h) be the vertex connected to h
and ℓ(h) be the level of v(h).

Moduli spaces of exact differentials

Let X be a stable curve with dual graph Γ and f = (fv)v∈V (Γ) a collection of
rational functions on the irreducible components of X . To f we can associate
the collection of meromorphic differentials df = (d(fv))v∈V (Γ). We have

ordx(df) =

{
multx f − 1 if x /∈ f−1(∞)

−multx f − 1 if x ∈ f−1(∞).
(2.1)

where multx f is the ramification index of the map fv : Xv → P
1 at x. To study

degenerations of f we want to use the compactification of strata of meromorphic
differentials given by multi-scale differentials. In order to ensure that df is
contained in a fixed stratum we need to control the zero and pole order of f as
well as the ramification.
We define the projectivized Hodge bundle

P(E) := P

(
π∗ωCg,n/Mg,n

(∑

µk<0

(−µkxk)

))
,

where π : Cg,n → Mg,n denotes the universal curve. Since exact differentials
are exactly the meromorphic differentials with zero absolute periods, we can
identify DRg(µ) with a locally closed subset of P(E) as follows. We define a
new partition µ′ by setting µ′

k := µk − 1 and call µ′ the partition associated
to µ. Then the locally closed subset

D̃Rg(µ) :=

{
(X,x, ω) :

∫

γ

ω = 0 ∀γ ∈ H1(X \ p, z;Z), ordxk
ω = µ′

k for all k

}

of P(E) is isomorphic to DRg(µ).

Marking the critical points

We will need analogs of D̃Rg(µ) where all critical points are marked and the
zero order of df is prescribed at all zeros, nodes and critical points of f . Let
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(X,x, f) be a twistable rational function. We denote c the remaining critical
points of f that are neither zeros, poles or nodes, and set

x̃ = (z,p, c).

We stress that a marked point is always a smooth point of X̃, thus x consists
of zeros and poles of f that are not nodes, and c consists of all critical points
of f̃ that are not zeros or poles of f or nodes.
We fix a partition µ of zero of length n. We say a partition µ̃ of 2g−2 extends µ
if it can be written as µ̃ = (µ′, µ′′) such that µ′ is the partition associated to µ
and all entries of µ′′ are positive. We denote the length of µ̃ by n′. Let

D̃R
c

g(µ̃) :=

{
(X, x̃, ω) :

∫

γ

ω = 0 ∀γ ∈ H1(X \ p, z;Z), ordx̃k
ω = µ̃k for all k

}

We similarly let DRcg (µ̃) be the image of D̃R
c

g(µ̃) under the forgetful map
PH(µ̃) → Mg,n′ . We summarize the relationship of all the different moduli
spaces in the following diagram. Adding a tilde means that we mark a differ-
ential form, while adding the superscript c indicates that we mark all critical
points of the rational function or equivalently all zeros and poles of the exact
differential form.

D̃Rg(µ) D̃R
c

g(µ̃)

DRg(µ) DRcg (µ̃)

Mg,n Mg,n′

We now define a notion analogous to twistable rational function, taking into
account also the total ramification of f .

Definition 2.1. Let µ̃ be a partition extending µ. A pointed stable curve
(X̃, x̃, f̃) with a collection df̃ = (df̃v)v∈V of rational functions is called a twisted
rational function if df̃ is a twisted differential of type µ̃ compatible with Γ in
the sense of [BCGGM18].

Let us unravel this definition. First, note that df̃ cannot have simple poles
and thus Γ cannot have any horizontal edges. Therefore the matching residue
condition is vacuous. Furthermore, since df̃ is exact, all of its periods over
absolute homology classes are zero and thus it has no residues at higher order
poles either. In particular the global residue condition is also vacuous. Thus
equivalently we can define a twisted rational function as follows.

Definition 2.2. Let µ̃ be a partition extending µ. We call a pointed stable
curve (X̃, x̃, f̃) together with a collection of rational functions and a decompo-
sition x̃ = (x, c) a twisted rational function of type µ̃ compatible with Γ if the
following conditions are satisfied.
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1. (Prescribed order of vanishing) Each rational function f̃v is holo-
morphic away from the marked points and nodes. If some marked section
xk is a zero for f̃v, then f̃v is non-zero away from the marked points and
nodes. Furthermore, ordx̃k

(df̃) = µ̃k for all k.

2. (Matching order at nodes) Suppose a node of X identifies q1 ∈ X̃v1

with q2 ∈ X̃v2 , then

ordq1(df̃v1) + ordq2(df̃v2) = −2

3. (Compatibility with the level graph) Furthermore, ℓ(v1) > ℓ(v2)
if and only if ordq2(df̃v2) < 0.

We call x the marked zeros and poles of f̃ and c the remaining critical points.
Sometimes we want to decompose further and write x = (z,p) where z and p

are zeros and poles of f̃ , respectively. We stress that, as in the definition of
twistable rational function, not all zeros of f̃ have to be marked points in x or
nodes, since there can be irreducible components not containing any marked
point of x.
The reason for using twisted rational functions instead of twistable rational
functions is that we can use the smoothing results from [Ben20, BDG20].

2.1 The evaluation morphism

Let (X̃, x̃, f̃) be a twisted rational function with marked points x̃ = (z,p, c).
The embedding (Γ(≤i), z) → (Γ, z) induces a natural map

H1(Γ(≤i), z;Z) → H1(Γ, z;Z).

We define the level filtration L•(Γ) of H1(Γ, z;Z) by

L≤i(Γ) := Im
(
H1(Γ(≤i), z;Z) → H1(Γ, z;Z)

)
(2.2)

and we say that a cycle [γ] ∈ L≤i(Γ)) \ L≤i−1(Γ)) has top level i.
We are now going to define the evaluation morphism

ev
(i)

f̃
: L≤i(Γ)) → C .

We recall that Γ(i) has additional legs h(q+e ) corresponding to nodes with
ℓ(e+) = i, ℓ(e−) < i. By embedding the leg h(q+e ) into the edge e we can
consider Γ(i) as a subspace of Γ(≤i). We stress that this is a continuous map of
cell complexes and not a graph morphism.

The idea to construct ev
(i)

f̃
is to take a path in Γ(≤i) and restrict it to Γ(i).

Let [γ] ∈ L≤i(Γ) be represented by a collection of smooth paths γ which are
contained in Γ(≤i). The restriction of γ to Γ(i) decomposes into a sum of disjoint
paths α1, . . . , αm which are either closed or have endpoints at the marked zeros
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or preimages of nodes z∪q+
(i). Here q

+
(i) are the half-legs corresponding to nodes

with ℓ(e+) = i, ℓ(e−) < i. We then define

ev
(i)

f̃
:=

m∑

k=1

f̃(αk(1))− f̃(αk(0)).

If all αk are closed paths this is automatically zero. Note that it follows from
condition (3) in the definition of twisted rational function that f̃(q+e ) is always
finite.
For a twistable rational function (X,x, f) we define ev

(i)
f in the same way,

where we decompose x = (z,p).

Proposition 2.3. Suppose f̃ is a twistable rational function or a twisted ra-

tional function, then the map ev
(i)

f̃
: L≤i(Γ) → C is well-defined.

Proof. The proof is similar to [Ben20, Prop. 4.2] for 2-dimensional cell com-
plexes instead of graphs. From the long exact sequence of the triple

z ⊆ Γ(≤i−1) ∪ z ⊆ Γ(≤i) ∪ z

we obtain the exact sequence

H1(Γ(≤i−1), z;Z) H1(Γ(≤i), z;Z) H1(Γ(≤i),Γ(≤i−1) ∪ z;Z)

H1(Γ(i),q
+
(i) ∪ z;Z)

νi

≃

where the vertical isomorphism is induced by excising Γ(≤i−1). We denote by

gi : H1(Γ(≤i), z;Z) → H1(Γ(i),q
+
(i) ∪ z;Z)

the composition of νi with the excision map. For a path γ in Γ(≤i) the map gi is

given by gi(γ) =
∑

k αk where
∑

k αk is the restriction of γ to Γ(i), considered

as paths with endpoints in z∪q+
(i). Furthermore, there exists a boundary map

δi : H1(Γ(i), z ∪ q+
(i);Z) → H0(z ∪ q+

(i);Z)

from the long exact sequence of the pair (Γ(i), z ∪ q+
(i)) which sends a path α

to [α(1)]− [α(0)]. We define

ev : H0(z ∪ q+;Z) → C,
∑

k

ck[zk] +
∑

e

de[q
+
e ] 7→

∑

k

ckf̃(zk) +
∑

e

def̃(q
+
e ).

Then we have
ev

(i)

f̃
= ev ◦ δi ◦ gi

and thus ev
(i)

f̃
is well-defined.
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We are now able to characterize the closure of DRcg (µ̃) ⊆ Mg,n′ using the
results of [Ben20].

Proposition 2.4. A marked stable curve (X̃, x̃) is contained in the closure

of DRcg (µ̃) in Mg,n′ if and only if there exists a level graph Γ for X̃ and a

collection of rational functions f̃ on X̃ such that (X̃, x̃, f̃) is a twisted rational
function compatible with Γ and evf̃ (i) = 0 for all i.

Proof. Let (X̃, x̃) be in the closure of DRcg (µ̃). Then there exists a level graph Γ

on X̃ and a twisted differential η on X̃ compatible with Γ such that (X̃, x̃, η) is

in the closure of D̃R
c

g(µ̃) inside ΞMg,n′(µ̃). Note that η cannot have residues,
since every residue is the limit of an absolute period

∫
γ ω for γ ∈ H1(X \ p;Z)

along a family of differentials (X,ω) degenerating to (X̃, η). In particular, Γ
has no horizontal nodes.
The subvariety D̃R

c

g(µ̃) ⊆ PH(µ̃) is a linear subvariety cut out by the equations
∫

γ

ω = 0 for all γ ∈ H1(X0 \ p0, z0;Z),

near a point (X0, x̃0, ω) ∈ D̃R
c

g(µ̃). We have

T(X0,x̃0,ω)D̃R
c

g(µ̃) = Ann(H1(X0 \ p0, z0;Z)).

Thus by [Ben20, Prop. 10.1] the intersection of D̃R
c

g(µ̃) with the open

boundary stratum corresponding to Γ is a linear subvariety given by

Ann
(
⊕0
i=−L(Γ)

Im g̃i

)
. Here the map g̃i : H1(X(≤i) \ p, z;Z) → H1(X(i) \

p, z∪q+
(i);Z) can be described as follows. For a simple closed curve γ ∈ X(≤i),

we have g̃i(γ) =
∑

k αk where
∑

k αk is the restriction of γ to X(i), considered

as paths with endpoints in z∪q+
(i). In particular we have

∫
γ η = 0 for any cycle

contained in Xv \q and thus η is a collection of exact differentials. Thus there

exists a collection of rational functions f̃ on X̃ such that df̃ = η. Furthermore
for any γ ∈ H1(X \ p, z) we have

0 =

∫

g̃i(γ)

η =

∫

g̃i(γ)

df̃ =

m∑

k=1

∫

αk

df̃ =

m∑

k=1

f̃(αk(1))− f̃(αk(0)) = ẽv
(i)

f̃
(γ).

It remains to show that if an irreducible component Xv contains a marked
zero zk, then f̃v is non-zero away from the marked points x and nodes. We fix
a marked zero z0 of f̃v and let z′ be a zero on the same component that is not
a node and is not marked. Note that z′ is necessarily a simple zero and we can
thus construct a holomorphic section marking z′(t) along a family (X(t), ω(t))

degenerating to (X̃, η). Suppose that (X(t), ω(t)) is a holomorphic family of
exact differentials degenerating to η. Then

∫ z′(t)

z0(t)

ω(t) = t · h(t)
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where h(t) is analytic in a neighborhood of the origin and thus the correspond-
ing rational function f(t) on X(t) has a zero in a small neighborhood of z′(t),
disjoint from all marked zeros of f(t). But since on X(t) all zeros of f̃ are

marked, this is a contradiction. This shows that (X̃, x̃, f̃) is a twisted rational

function compatible with Γ
′
.

It remains to show that we can smooth out a twisted rational function, while
staying inside a double ramification locus. Let (X̃, x̃, f̃) be a twisted rational
function with vanishing evaluation morphism and η = df̃ the associated twisted
differential. We denote D ⊆ ΞMg,n(µ) the boundary of the moduli space of

multi-scale differentials. Let U be a small open neighborhood of (X̃, x̃, η) in
ΞMg,n(µ). On U \D we can define a local analytic subvariety by

Z :=

{
(X,ω) :

∫

γ

ω = 0 ∀γ ∈ H1(X \ p, z;Z)

}
⊆ U \D.

By [BDG20, Cor 4.3], Z is smooth and transverse to the boundary and we can

thus smooth out (X̃, x̃, f̃). Note that even though Z is only defined locally,
the proof of (loc. cit.) applies verbatim in this situation. Alternatively, the
smoothness of Z also follows from the proof of [Ben20, Prop 8.9].

3 Twisting a twistable rational function

So far we have obtained a smoothing result for twisted rational function and
now we need to transfer it to a smoothing result for twistable rational func-
tions. In this section we thus collect various results relating twistable rational
functions and twisted rational functions.

Definition 3.1. Let (X̃, x̃, f̃) be a twisted rational function of type µ̃ com-

patible with Γ
′
, where µ̃ extends µ. We recall that x̃ = (x, c) consists of some

marked zeros and poles of f̃ as well as the remaining critical points, that are
neither zeros, poles of f̃ or nodes. In particular we can consider x as a subset
of x̃. We consider the prestable curve (X̃,x) where we forget the remaining
critical points and let (X,x) be its stabilization. Here we abused notation and

denote the images of x under the stabilization map X̃ → X again by x. The
stabilization induces a graph morphism φ : Γ′ → Γ contracting edges that
correspond to unstable chains of rational curves. The dual graph Γ inherits

a level graph structure Γ from Γ
′
using the stabilization morphism φ. More

concretely, for a vertex of Γ
′
corresponding to a stable component we define

ℓ(φ(v)) := ℓ′(v), where ℓ and ℓ′ are the level functions of Γ and Γ
′
, respec-

tively. Furthermore, X inherits a collection of rational functions (fv)v∈V (Γ).

We call (X,x, f) the stabilization of (X̃, x̃, f̃) and similarly say that Γ is the

stabilization of Γ. We call any component of X̃ that is contracted under stabi-
lization unstable. Similarly starting with a twistable rational function (X,x, f),

if there exists a twisted rational function (X̃, x̃, f̃) such that (X,x, f) is the

stabilization of (X̃, x̃, f̃), then we call (X̃, x̃, f̃) a twist of (X,x, f).
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From now on Γ
′
will always denote the level graph of a twisted rational function

and Γ the level graph of its stabilization.
The goal of this section is to show that we have the following correspondence:
The stabilization of a twisted rational function is a twistable rational function
and every twistable rational function admits a twist. We are now going to make
this precise.

Lemma 3.2. Let µ̃ be a partition extending µ. Furthermore, let (X̃, x̃, f̃) be

a twisted rational function of type µ̃ compatible with a level graph Γ
′
. Then

its stabilization (X,x, f) is a twistable rational function of type µ compatible
with Γ.

Proof. Since (X̃, x̃, f̃) is a twisted rational function, we have

ordxk
f̃ = µ̃k for all k, ordq+e df̃ + ordq−e df̃ = −2 for all nodes e ∈ E.

The stabilization (X,x, f) is obtained by contracting all unstable components.
Chains of unstable components come in two flavors. A chain either connects
two nodes, in which case we call it a rational bridge, or it forms a rational tail.
We first study the contraction of a rational tail. If the end of the rational tail
does not contain a marked zero or a marked pole of f̃ , then we do not mark the
preimage of the node where the rational tail connects after stabilization and
thus there is nothing to check at this point. We now claim that the end of a
rational tail never contains a marked zero or a marked pole. This is part of the
following Lemma 3.3. Thus, if an irreducible component Xv contains a marked
point xk, then Xv is not an unstable component and ordxk

f = ordxk
f̃ = µk.

It remains to analyze the case of a rational bridge. Suppose we have a chain
C1, . . . , Cn of rational curves connecting two nodes preimages of nodes q and q′.
Let c1, . . . , cm be the marked critical points contained in C1, . . . , Cn. Then we
have

ordq df̃ + ordq′ df̃ = −2 +

m∑

k=1

ordck df̃ > −2,

which proves the matching order at nodes for a twistable rational function. We
also need to show the compatibility with the level graph, i.e. if ordq′ f < 0
then ℓ(v(q)) > ℓ(v(q′)). By the following Lemma 3.3, no component Ck of the
rational bridge is a local maximum for the level order and thus the level can

only increase along the chain C1, . . . , Cn of rational curves. Since Γ
′
has no

horizontal nodes, the level is strictly increasing and thus ℓ(v(q)) > ℓ(v(q′).

Lemma 3.3. Let (X̃, x̃, f̃) be a twisted rational function. An unstable compo-
nent Xv does not contain a marked zero or pole of f̃v. Additionally, an unstable
component with two nodes is not a local maximum for the level order.

Proof. We first assume there exists an unstable component containing a marked
zero or pole x of f̃v. Then there exists an unstable rational tail C1, . . . , Cn with
x ∈ Cn and a stable component C0 which is separated from C1 by a node q.
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We let q0 be the preimage of q contained in C1. Note that Cn has a single
node. If x is a zero of f̃Cn

, then f̃Cn
has a pole at the node. Furthermore,

since all zeros of f̃Cn
are marked, f̃Cn

has exactly one zero and one pole and
thus no other critical points. This yields a contradiction since every unstable
component contains a marked critical point.
We can thus assume that x is a pole for f̃Cn

. Let then c1, . . . , cm be the
collection of marked critical point on the rational tail C1, . . . , Cn. Then

ordq0 df̃ = ordx df̃ +

m∑

k=1

ordck df̃ > ordx df̃ .

Here we used that the order of df̃ is positive at all critical points in c. Note
that in particular ordq f̃ > ordx f̃ . We now remove the rational tail C1, . . . , Cn
and if q0 is a pole for f̃ we mark it on the resulting curve X ′. Furthermore,
X ′ inherits a level graph by contracting all the edges corresponding to nodes
in the rational tail C1, . . . , Cn. We claim that the evaluation morphism still
vanishes for (X ′,x, df̃). The dual graph Γ of (X , z) deformation retracts onto

the dual graph Γ
′
of (X ′, z), where the deformation retract can be chosen

to fix the zeros z. Let α : (Γ, z) → (Γ
′
, z) be the resulting retract. Then

α(L≤i(Γ)) = L≤i(Γ
′
) and the diagram

L≤i(Γ)

L≤i(Γ
′
) C

ev
(i)
f

(Γ)
α

ev
(i)
f

(Γ
′
)

commutes, see also the proof of Lemma 3.6 for a similar argument. This finishes
the proof of the claim.
Thus, by what was already proven in Proposition 2.4, (X ′,x, df̃) can be
smoothed out to an exact differential where all marked points z stay zeros
of df̃ of order ordzk df̃ . But this exact differential comes from a rational func-
tion with more zeros than poles, since ordq0 f̃ > ordx f̃ as noted above, which
is impossible.
It remains to prove the second part. Assume that some unstable component Xv

contains two nodes and is a local maximum for the level order. Then Xv has no
poles at the nodes and thus needs to have a marked pole somewhere. Thus Xv

contains two nodes and at least one marked pole and is not unstable, which is
a contradiction.

Remark 3.4. The above lemma is crucial for us. It is the main reason why we
are able to state the Main theorem only in terms of a given twistable rational
function instead of having to say that there exists a twisted rational function
that stabilizes to the given twistable rational function.

Documenta Mathematica 27 (2022) 2625–2656



The Closure of Double Ramification Loci 2641

So far we established that stabilizing a twisted rational function yields a
twistable rational function. We now show that conversely every twistable ra-
tional function admits a twist.

Proposition 3.5. Let (X,x, f) be a twistable rational function of type µ com-
patible with a level graph Γ. Then there exists a partition µ̃ extending µ, a level

graph Γ
′
and a twisted rational function (X̃, x̃, f̃) of type µ̃ compatible with Γ

′

such that (X̃, x̃, f̃) is a twist of (X,x, f).

Proof. As a first step we mark all zeros of df , that are not already marked
points in x, and declare them as critical points in c. To turn (X,x, f) into
a twisted rational function we are going to insert rational curves at all nodes
with ordq+e df + ordq−e df > −2. At such a node we insert a rational curve

(P1, (0, 1,∞)) by identifying q+e and q−e with 0 and ∞, respectively. We equip
P
1 with a rational function f ′ such that df ′ has order − ordq+e df − 2 at 0 and

order − ordq−e df−2 at ∞ and no other poles. If both ordq+e df and ordq−e df are

positive, f ′ has poles at 0 and ∞ and thus such f ′ exists. If ordq−e df < 0, then
ordq+e df > 0 by the compatibility with the level graph of a twistable rational

function. In particular f ′ has a pole at 0 and a zero at ∞. Note that in this
case such a rational function exists since

mult0 f
′ = ordq+ df + 1 > − ordq− df − 1 = mult∞ f ′.

We declare all remaining critical points of f ′ to be marked points in c. Note
that in both cases no zero of f ′ is marked as a point in x.
We let (X̃, x̃) be the resulting curve obtained by inserting the rational curves,
where we set x̃ := (x, c). Furthermore by construction there exists a collection

of rational functions f̃ on X̃. Our next goal is to describe the level graph on X̃ .
We start with the level function for Γ and add additional levels in between two
levels i and i − 1 and call those intermediate levels. For each level there are
two intermediate levels, the level i+ is in between i+ 1 and i and the level i−

is in between i and i − 1. Note that we have (i − 1)+ = i− by construction.
We then assign the level of an inserted rational curve as follows.
If q+e is a pole of f , then the level of the inserted P

1 needs to be larger than
ℓ(q+e ) and otherwise the level of the inserted P

1 needs to be lower than ℓ(q−e ).
The same is true for q−e . Note that q

+
e and q−e cannot both be poles of f because

of the compatibility with the level graph in Definition 1.1. Thus if q+e is a pole,
we assign the level to be ℓ(q+e )

+ and if q−e is a pole we assign it to be ℓ(q−e )
+.

If both q+e and q−e are zeros of f we declare the level to be min(ℓ(q+e ), ℓ(q
−
e ))

−.

We denote Γ
′
the resulting level graph on X̃ and by construction (X̃, x̃, f̃) is

compatible with Γ
′
.

To summarize, we have constructed a twisted rational function (X̃, x̃, f̃) where
x̃ = (x, c) and x consists of zeros and poles of f̃ and c contains all remaining

critical points of f̃ which are not nodes of X̃, together with a level graph Γ
′

for X̃ . We let µ̃ be the partition consisting of the order of vanishing of df at
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all marked points x̃. Then µ̃ extends µ and furthermore (X̃, x̃, f̃) is of type µ̃

and compatible with Γ
′
. After forgetting all additional critical points c and

stabilizing we recover (X,x, f).

Let (X̃, x̃, f̃) be a twist of (X,x, f). As a final ingredient we need to compare

the evaluation morphisms of f and f̃ . The stabilization morphism (X̃, x̃) →

(X,x) induces a surjective map p : H1(Γ
′
, z) → H1(Γ, z). Recall here that by

abuse of notation we call the legs of Γ
′
and of Γ corresponding to the marked

zeros of f̃ and f both z.

Lemma 3.6. The inclusion p(L≤i(Γ
′
)) ⊆ L≤i(Γ) holds and furthermore the

diagram

L≤i(Γ
′
)

L≤i(Γ) C

p
ev

(i)

f̃

ev
(i)
f

commutes. In particular, ev
(i)
f vanishes identically if and only if ev

(i)

f̃
vanishes

identically.

Proof. The stabilization morphism removes some irreducible components but
does not change the level of any stable component. Thus the top level can only

go down under p, i.e. p(L≤i(Γ
′
)) ⊆ L≤i(Γ).

Let γ ∈ L≤i(Γ
′
). If the evaluation morphism ev

(i)

f̃
(γ) has a contribution from

a rational function fv, then necessarily ℓ(v) = i. Our goal is to show that
the restriction of γ to any unstable component Xv of level i is null-homotopic.

Since the level graph Γ
′
is purely vertical, v has to be a local maximum for the

level order on Γ
′
. Furthermore, Xv cannot have two nodes by Lemma 3.3. This

forcesXv to be the end a rational tail, which does not have a marked zero, again
by Lemma 3.3. But then the restriction of γ to Xv is null-homotopic. Thus γ
is homotopic to a path that does not cross any unstable top level component

and thus ev
(i)
f ([γ]) = ev

(i)

f̃
([γ]).

4 The proof of the Main theorem

Proof of the Main theorem. We first prove necessity of the conditions; that is
we need to show that given a marked curve (X,x) in the closure of DRg(µ)
there exists a twistable rational function compatible with some level graph
structure on the dual graph of X with vanishing evaluation map.
Choose a holomorphic map φ : ∆ → Mg,n from the unit disk ∆ with φ(∆∗) ⊆
DRg(µ) and φ(0) = (X,x). We denote α the identification of DRg(µ) and

D̃Rg(µ) ⊆ P(E). After shrinking ∆, the image of α◦φ inside P(E) is contained
in a stratum PH(µ̃) for some partition µ̃ extending µ. Here PH(µ̃) denotes an
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unmarked stratum, i.e. not all zeros of the differential form are marked points.
We are now going to lift α ◦ φ to the moduli space of multi-scale differentials
PΞMg,n′(µ̃).

Claim: After a base change ∆∗ → ∆∗, z 7→ zk for a suitable k, we can construct
a lift φ′ : ∆ → PΞMg,n′(µ̃) of α ◦ φ such that φ′(∆∗) ⊆ DRcg (µ̃).

Proof of the claim. Since the number of critical points is constant, we can
locally mark the critical points over ∆∗. Due to monodromy when encircling the
origin in ∆, those local sections might not be well-defined and might permute
the critical points non-trivially. We then choose k divisible enough so that the
k-th power of the permutation is trivial. If we denote ψ : ∆∗ → ∆∗, z 7→ zk,
then the family of curves corresponding to α ◦ φ ◦ ψ admits global sections
marking the critical points and thus there exists a map φ′ : ∆ → PΞMg,n′(µ̃)
such that φ′(∆∗) ⊆ DRcg (µ̃) and

PΞMg,n′(µ̃)

∆ Mg,n

πφ′

α◦φ◦ψ

commutes. Now the claim is proven.

We denote (X̃, x̃, η) := φ′(0) ∈ PΞMg,n′(µ̃). Since π(X̃, x̃, η) = φ(0) = (X,x),

we conclude that X is the stabilization of X̃. By Proposition 2.4, we can write
η = df̃ such that (X̃, x̃, f̃) is a twisted rational function of type µ̃ compatible

with a level graph Γ
′
and ev

(i)

f̃
= 0 for all i. By Lemma 3.2 the stabiliza-

tion (X,x, f) of (X̃, x̃, f̃) is a twistable rational function of type µ compatible

with Γ, where Γ is the level graph for X obtained by stabilizing Γ
′
. We fur-

thermore conclude that ev
(i)
f = 0 for all i by Lemma 3.6. We have thus proven

the necessity part.

Now we proceed with sufficiency. Here it is enough to prove that given a
twistable rational function (X,x, f) of type µ compatible with a level graph Γ
such that the evaluation morphism vanishes identically, we can construct a
one-parameter family of smooth curves in DRg(µ) degenerating to (X,x, f).

By Proposition 3.5 there exists a twist (X̃, x̃, f̃) of (X,x, f) which is of type µ̃

for some partition extending µ compatible with some level graph Γ
′
. Again,

by Lemma 3.6 we have ev
(i)

f̃
= 0 for all i and thus (X̃, x̃, f̃) ∈ D̃R

c

g(µ̃) ⊆

PΞMg,n′(µ̃) by Proposition 2.4. Therefore, there exists a holomorphic map φ′ :

∆ → D̃R
c

g(µ̃) which is generically contained in D̃R
c

g(µ̃) and φ
′(0) = (X̃, x̃, f̃).

Composing with π : PΞMg,n′(µ̃) → Mg,n′ we obtain a map φ := π ◦ φ′ : ∆ →

D̃Rg(µ) which is generically contained in D̃Rg(µ) and φ(0) = (X,x).
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5 Admissible covers versus twistable rational functions

In this section we discuss the relationship between using admissible covers
and twistable rational functions to describe the closure of double ramification
loci. As a consequence we see that the existence of an admissible cover can be
encoded in the level graph of a twistable rational function, a result that to the
best of our knowledge is new.
We start by setting up our notation for admissible covers. As before let µ
be a partition of zero. The Hurwitz scheme Hurg,n(σ) parameterizes maps
f : X → P

1 with ramification over 0 and ∞ prescribed by µ, and simple
ramification otherwise. We mark on X all preimages of branch points of f , see
for example [JKK05], where the same variant of admissible covers is used.
We now recall admissable covers, see for example the original reference [HM82].
Note that here we do not require the ramification to be simple.

Definition 5.1 (Admissible cover). Let (D,x) be a stable n-pointed nodal
curve of genus 0. An admissible cover f : C → D of degree d is a finite degree
d morphism such that

• C is nodal and every node of C maps to a node of D,

• the restriction of f to Dgen is étale, where Dgen is the complement of the
marked zeros and nodes,

• if a node of C identifies x and y, then

multx f = multy f,

where multx f − 1 is the ramification index of f at x.

We additionally require that the marked points in C are exactly the preimages
of marked points in D. The type of f records ramification profile of f at all
marked points which are not nodes.

We let Admg,n(σ) be the stack of all admissible covers of type σ = (µ, 1, . . . , 1)
where we additionally mark all preimages of marked points in D. Then
Admg,n(σ) is a proper Deligne-Mumford stack and Hurg,n(σ) is a dense open
substack. Note that Admg,n(σ) is in general not smooth, but its normalization
is, see for example [AVC03], where the authors also give a modular interpre-
tation of the normalization in terms of twisted Sd-covers. Our notation differs
from (loc. cit.) in that we mark all preimages of the marked points of D.
Since Hurg,n(σ) is a dense open substack of Admg,n(σ), we have the following.

Proposition 5.2. A stable n-pointed curve (X,x) is contained in the closure
of DRg(µ) if and only if there exists a marked stable curve (X ′,x′) such that

• there exists an admissible cover X ′ → D of type σ = (µ, 1, . . . , 1),

• the stabilization of the prestable curve (X ′, f−1({0,∞})) is isomorphic to
(X,x).
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Figure 2: The cherry graph from Example 5.3 with two level graphs Γ1 and Γ2

Proof. Generically a rational map in a double ramification locus has simple
ramification and thus we can lift a family in DRg(µ) to Hurg,n(σ) where σ =
(µ, 1, . . . , 1). Since Hurg,n(σ) is dense in Admg,n(σ), we get the desired result.

We have thus described the closure in two seemingly different ways, with ad-
missible covers and with twistable rational functions. As a result we obtain
a correspondence between the existence of a suitable admissible cover on a
prestable model of X and the existence of a certain twistable rational function
on X . In general this correspondence is far from being one-to-one.

Example 5.3 (Twistable rational functions and admissible covers do not deter-
mine each other). Even on a smooth curve X there can be multiple admissible
covers. For example we can attach unstable components to X such that the
resulting prestable curve X ′ curve maps to the union of two rational curves
attached at a single node and X is the stabilization of X ′.
On the other hand, given a fixed admissible cover there can be multiple level
graphs compatible with it. For example we can construct an admissible cover
on a “cherry level graph”, see Figure 2. The two level graphs Γ1 and Γ2

are obtained from each other by tilting the lower levels components and are
supported on the same dual graph Γ. Suppose now we have a twistable rational
function (X,x, f) such that all marked zeros are on the top level component. In
this case the vanishing of the evaluation morphism of Γ1 for a twistable rational
function on X is equivalent to the vanishing on Γ2. So given any admissable
cover on X we can then construct two different twistable rational functions,
one on Γ1 and one on Γ2. By choosing different genera for the irreducible
components on the lower levels one can make sure that Γ1 and Γ2 are not
isomorphic level graphs.

It appears very difficult to try to approach the correspondence between admiss-
able covers and twistable rational functions directly, since the combinatorial
difficulties are very significant. Given a twistable rational function one needs
to insert unstable components in order to obtain a finite morphism but there
are many different ways one can add unstable components. And in the other
direction, given an admissable cover one needs to find a level graph on a given
dual graph such that the evaluation morphism vanishes. The number of possi-
ble level graphs on a given dual grows exponentially, see for example [CMZ20b]
for the problem of enumerating all possible level graphs.
The correspondence can be generalized to admissible covers with arbitrary
fixed ramification multiplicities. The proof remains the same, at least as long
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all poles of f are marked. In the case where the poles of f are marked it doesn’t
seem possible to state the theorem purely on the stable curve X but one can
only phrase it in terms of a prestable model. In general the bookkeeping is
tedious since one needs to remember which branch points lie in the same fiber
and depending on that the evaluation morphisms changes. We leave the details
to the reader.

5.1 Birational models of marked double ramification loci

Consider the marked double ramification locus D̃R
c

g(µ̃). By taking the closure

of D̃R
c

g(µ̃) inside the moduli space of multi-scale differentials PΞMg,n′(µ̃), we

obtain a smooth compactification D̂Rg(µ̃) of D̃R
c

g(µ̃). A caveat of D̂Rg(µ̃) is
that it does not naturally come with a target map. On each irrecucible compo-
nent one has a rational function but it is not clear whether the functions assem-
ble together in a natural way. On the other hand the moduli stack of admissable
covers Admg,n′(σ) with marked ramification yields a different compactification

of D̃R
c

g(µ̃) and comes with a generically finite map Admg,n′(σ) → M0,k by
sending an admissable cover to the base curve. Comparing the two birational

models of D̃R
c

g(µ̃) seems an interesting problem. In this direction one can
consider the fiber product

F = Admg,n′(σ)×Mg,n′
D̂Rg(µ̃).

A point in F corresponds to a tuple (X, p, f, µ) where X is a n-marked curve

with admissable cover f : X̃ → C from a semistable model X̃ of X and on each
irreducible component Xv of X an exact differential dfv. Since we marked all
critical points of f on X and on C, the semistable model X̃ is already stable
and thus agrees with X . Furthermore on each component of C, the limits
of the branch points of f are exactly the zeros and poles of the limit of dz
on P

1. Hence on each component of X = X̃ , the differential µv = dfv is the
derivative of fv. Additionally there exists a level graph Γ determining a total
order on the vertices of X . The differential is now superfluous and one only
needs to remember the data (X, p, f,Γ). Thus F differs from Admg,n(σ)g,n′(σ)
by remembering the speed of degeneration of the rational function. In this
description F is closely related to the moduli-space of multi-scale differentials
and for example one can ask if there exists a blow-up description of F similar
to how PΞMg,n(µ) is obtained as a sequence of blow-ups as in [BCGGM19b].

6 Examples

We now illustrate the main theorem in a few examples and showcase some of the
features of twistable rational functions. We will use the following conventions
to depict level graphs. The legs denote the marked zeros and poles and critical
points of the rational functions. Dashed legs correspond to marked critical
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points which are not marked zeroes or poles in x. The label associated to
a half-leg is the order of vanishing of the exact differential df (and not the
order of the rational function f) at the corresponding marked point. The label
of a vertex is the genus of the normalization of the corresponding irreducible
component. If a vertex is unlabeled, it corresponds to an irreducible component
of genus zero.
The decorations on the edges are the numbers ordq+e df and ordq−e df respec-
tively. The level order is implicit in the figures: the highest vertices correspond
to the top level, lower levels are drawn below and vertices of the same height
are of the same level. From now on (X,x, f) always denotes a collection of
rational functions on a stable curve such that (X,x) is contained in the closure
of some double ramification locus DRg(µ) and (X,x, f) is a twistable rational
function for some partition µ̃ extending µ compatible with some level graph Γ.

Example 6.1 (Unmarked zeros). As a first example we consider a degeneration
of DR2 (1

3,−3), depicted in Figure 3a.

(a) Level graph
of a dollar curve

(b) A dollar curve

Figure 3: The dollar curve from Example 6.1

It is an example of a “dollar curve”, which we discuss more thoroughly in
Example 6.5. We note that the top level component does not contain any
marked zeros. In particular we see that both types of components mentioned
in Remark 1.2 do appear.
The evaluation morphism can be computed as follows. Let γ1 be the path
(X1, q2, X2, q1, X1) passing once through q1 and q2 and similarly let γ2 be the
path (X1, q3, X2, q2, X1) passing through q2 and q3 once. Then

Im ev
(0)
f = 〈ev

(0)
f (γ1), ev

(0)
f (γ2)〉,

ev
(0)
f (γ1) = f1(q

+
2 )− f1(q

+
1 ),

ev
(0)
f (γ2) = f1(q

+
3 )− f1(q

+
2 )

and the vanishing of the evaluation morphism is equivalent to f1(q
+
1 ) =

f1(q
+
2 ) = f1(q

+
3 ), i.e. {q+1 , q

+
2 , q

+
3 } lie in the same fiber of f1. Note that the
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evaluation morphism automatically vanishes at level −1 in this example since
there are no non-trivial relative paths contained in level −1. Note that such a
rational function f1 : X → P

1 always exists. Similarly on X2 the rational func-
tion f2 has three simple zeroes, three simple poles and four remaining simple
branch points. Such a rational functions always exists as well.

Example 6.2 (Level graphs with horizontal nodes). We have seen that level
graphs for twisted rational functions have no horizontal nodes. The next ex-
ample shows that the level graph of a twistable rational function can have
horizontal nodes. We consider again a degeneration of DR2 (1

3,−3), see Fig-
ure 4.

(a) The level graph Γ
′

and its stabilization Γ

(b) A stable curve X with level graph Γ

Figure 4: The dual graphs from Example 6.2

The level graph Γ
′
is the level graph of a twisted rational function and Γ the

level graph of its stabilization. Note that Γ
′
has three levels, under stabilization

the bottom vertex is contracted and thus Γ has only two levels with a horizontal
edge. Let (X,x, f) be the twist of (X̃, x̃, f̃) which is contained in the closure
of DR2 (1

3,−3). On the genus 1 component X1 the rational function f1 :
X1 → P

1 is a degree three map which has a pole of order three at p and
simple zero at z1. For a fixed pointed elliptic curve (X1, z1, p, q

+
1 , q

+
2 ) there is

a h0(OX1 (3p− z1)) = 2-dimensional family of such maps.

We now compute the top level evaluations ev
(0)
f , ev

(−1)
f . Let γij ∈ H1(Γ, z) be

the path (zi, vi, vj , zj) connecting the marked zeros zi and zj by only passing
through a single node. Then the image of the evaluation map is generated by
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the paths γij , in particular

Im ev
(0)
f = 〈ev

(0)
f (γ12), ev

(0)
f (γ13)〉Z,

Im ev
(−1)
f = 〈ev

(−1)
f (γ23)〉Z.

We then compute

ev
(0)
f (γ12) = f1(z1)− f1(q

+
1 ) = −f1(q

+
1 ),

ev
(0)
f (γ13) = f1(z1)− f1(q

+
2 ) = −f1(q

+
2 ),

ev
(−1)
f (γ23) = f2(q

+
3 )− f3(q

−
3 ).

The vanishing of ev
(0)
f (γ12) and ev

(0)
f (γ13) then implies that

(f1) = z1 + q+1 + q+2 − 3p

and thus (X1, (z1, q
+
1 , q

+
2 , p)) ∈ DR1 (1

3,−3).

Finally, the vanishing of ev
(1)
f (γ23) implies

f2(q
+
3 )− f3(q

−
3 ) = 0.

Both f2 and f3 are isomorphisms to P
1 sending z2 and z3 to zero, respectively.

In particular we have f2(q
+
3 ) 6= 0, f3(q

−
3 ) 6= 0 and by rescaling f3 we can always

achieve that f2(q
+
3 ) − f3(q

−
3 ) = 0. Thus in this case the only condition for

(X,x, f) to be in the closure of DR2 (1
3,−3) is given by (X1, (z1, q

+
1 , q

+
2 , p)) ∈

DR1 (1
3,−3).

For the following examples we will omit the remaining critical points from the
level graphs and only draw the marked zeros and poles of f .

Figure 5: The different partial orders in Example 6.3

Example 6.3 (The partial ordering is not determined by the vanishing orders).
In the case of twisted differentials (X, η), a twisted differential induces a unique
partial ordering on the dual graph. We will now see that the same is not true
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for twistable rational functions. More precisely, we will construct a twistable
rational function (X,x, f) which lies in the boundary of DR5 (4,−4) such that
there are two different level graphs, inducing a different partial order, such
that (X,x, f) is compatible with both level graphs. By Condition (3) in Defi-
nition 1.1 this is only possible if there is a node such that the rational function
is holomorphic at both preimages of the node.

We let Γ1 be the dual graph in the middle of Figure 5 and Γ2 the one on the
right. Note that the two partial orderings induced by Γ1 and Γ2 are different
since Γ1 has a horizontal node and Γ2 has not. To ensure that we can find a
twistable rational function compatible with both level graphs we now unravel
the vanishing of the evaluation morphism for Γ1 and Γ2. Let γ1 be the path
(q1, q2, q3). Then

Im ev(0)(f)(Γk) = 〈ev
(0)
f (Γk)(γ1)〉 for k = 1, 2

and the evaluation morphism vanishes automatically at all other levels, since
in both cases the level graph has no loops in lower levels and also no marked
zeros on components of lower levels. We then compute

ev
(0)
f (Γ1)(γ1) = ev

(0)
f (Γ2)(γ1) = f1(q

+
2 )− f1(q

+
1 ).

Thus for both Γ1 and Γ2 on X1 the rational function f1 is of degree 4, q+1 , q
+
2

are in the same fiber of f1, and f1 is simply ramified at q+1 and q+2 . Note
that such a rational function always exists, for example by [PP06, Thm. 2.7].
Since the vanishing of the evaluation morphism is controlled by the top level,
every twistable rational function that is compatible with Γ1 is automatically
compatible with Γ2.

Example 6.4 (The evaluation morphism depends on the level graph). The no-
tion of twistable rational function does not depend on the full structure of a
level graph. The level graph only comes into play when considering the evalua-
tion morphism. This example shows that there can be two different level graphs
inducing the same partial ordering but the condition imposed by the evaluation
morphism is different. In Figure 6 we see a degeneration of DR8 (4,−4).
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Figure 6: The different level graphs for Example 6.4

On the top level the vanishing of the evaluation morphism is independent of k
and equivalent to f1(q

+
2 ) = f1(q

+
1 ). Exactly as in Example 6.3 we see that

there exists such a rational function. For level −1 we have

ev
(−1)
f (Γ1)(γ2) = f2(q

+
3 )− f2(q

+
5 ) + f3(q

+
6 )− f3(q

+
4 ),

ev
(−1)
f (Γ2)(γ2) = f2(q

+
3 )− f2(q

+
5 ).

Thus in the case of Γ2, for the evaluation morphism to vanish the preimages of
the nodes q+3 and q+5 have to be conjugate under the hyperelliptic involution,
while for Γ1 the condition f2(q

+
3 ) − f2(q

+
5 ) = f3(q

+
4 ) − f3(q

+
6 ) can be satisfied

without q+3 and q+5 being conjugate under the hyperelliptic involution.
In light of our discussion about admissible function the condition f2(q

+
3 ) −

f2(q
+
5 ) + f3(q

+
6 )− f3(q

+
4 ) is, at first glance, surprising since it does not simply

state that two points lie in the same fiber. But via an automorphism z 7→ z+ c
we can arrange that f2(q

+
3 ) = f3(q

+
4 ). In which case f2(q

+
3 )−f2(q

+
5 )+f3(q

+
6 )−

f3(q
+
4 ) simplifies to f2(q

+
5 ) = f3(q

+
6 ). Now those two conditions can be used to

construct an admissible cover by mapping components of the same level to the
same copy of P1. Note that one has to attach additional unstable components
for this.

Our next example is a thorough discussion of so-called dollar curves, i.e. two
irreducible curves meeting transversally at three nodes. We study all possible
level graphs and describe explicitly the conditions to be in the closure of double
ramification locus. For curves of compact type, or for curves with at most one-
separating node, one can extend the Abel-Jacobi map to describe the closure
of double ramification locus, see [GZ14]. Thus dollar curves are a natural next
step to illustrate our techniques.

Example 6.5 (“Dollar curves”). We let X = X1 ∪ X2 be a stable curve in
the boundary of DRg(µ) with one component X1 of genus g1 and the other
component X2 of genus g2 := g − g1 − 2 meeting at three nodes q1, q2, q3, see
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Figure 7: The possible level graphs Γ1,Γ2,Γ3 from Example 6.5
and the resulting stable curve X

Example 6.5. Without labeling the legs, there are only three possible level
graphs, see Figure 7. The discussion for Γ2 and Γ3 is completely analogous and
we thus only discuss Γ1 and Γ2. We let x1 and x2 be all marked zeros or poles
of f contained in X1 and X2, respectively. Similarly, we let q+ = (q+1 , q

+
2 , q

+
3 )

and q− = (q−1 , q
−
2 , q

−
3 ) be the preimages of nodes contained in X1 and X2

respectively. The following condition are necessary for a twistable rational
function.

1. If ordq±
l
f < 0 then v(q±l ) is of level −1.

2. ordq+
l
(df1) + ordq−

l
(df2) ≥ −2 for l = 1, 2, 3.

We now discuss the vanishing of the evaluation morphism for the different level
graphs.
The dual graph Γ1: In this case both components X1 and X2 are of top level
and thus ordq±

l
f ≥ 0 for l = 1, 2, 3. This is only possible if ordq±

l
f = 0 for

l = 1, 2, 3. Thus f1 and f2 have zeros and poles only at the marked points. In
particular both components X1 and X2 contain marked zeros of f .
It remains to compute the evaluation morphism. Let γl be a path connecting
a marked zero of X1 and a marked zero of X2 through the node ql. Then the
first homology H1(Γ1, z) of the dual graph relative to the marked zeros of f is
generated by γ1, γ2 and γ3. We then have

ev
(0)
f (γl) = f1(q

+
l )− f2(q

−
l ) for l = 1, 2, 3 ,

and thus the vanishing of the evaluation morphism is equivalent to

f1(q
+
l ) = f2(q

−
l ) for l = 1, 2, 3.

Since no preimage of a node q±l is a zero or pole of f , we can always rescale f2
such that the condition f1(q

+
1 ) = f2(q

−
1 ) is satisfied. But then the conditions

for l = 2, 3 impose non-trivial restrictions.
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The dual graph Γ2: We now consider the second case, where X1 is of top level
and X2 of level −1. The main difference is that now potentially one component
contains no marked zeros of f . We thus distinguish two cases.
Case 1: Both components contain a marked zero
In this case H1(Γ,x) is again generated by γl, l = 1, 2, 3. Since X2 is of lower
level the evaluation morphism now computes as

ev
(0)
f (γl) = f1(q

+
l ) for l = 1, 2, 3

and thus the vanishing of the evaluation morphism is equivalent to f1(q
+
l ) = 0

for l = 1, 2, 3. In particular all preimages q+l are zeros for f1. On X2 there are
no further restrictions.
Case 2: There exists a component without marked zeros
The evaluation morphism now computes differently, since there is no relative
path crossing exactly one node. We let γab to be the path (X1, qa, X2, qb, X1)
be a path crossing only qa and qb once. Then γ12, γ13 generate H1(Γ, z) and

ev
(0)
f (γ12) = f1(q

+
1 )− f1(q

+
2 ),

ev
(0)
f (γ13) = f1(q

+
1 )− f1(q

+
3 ).

Thus the vanishing of the evaluation morphism is equivalent to

f1(q
+
1 ) = f1(q

+
2 ) = f1(q

+
3 ).

Combining our analysis we have shown that

Proposition 6.6. A marked curve (X,x) with dual graph Γ lies in the closure
of DRg(µ) if and only if there exist rational functions fk on Xk for k = 1, 2
satisfying the following conditions.

1. ordxk
= µk for all k.

2. ordq+
l
(df1) + ordq−

l
(df2) ≥ −2 for l = 1, 2, 3.

3. Either

f1(q
+
1 ) = f1(q

+
2 ) = f1(q

+
3 ), ordq+

l
f1 ≥ 0 for l = 1, 2, 3 or

f2(q
−
1 ) = f2(q

−
2 ) = f2(q

−
3 ), ordq−

l
f2 ≥ 0 for l = 1, 2, 3 or

f1(q
+
l ) = f2(q

−
l ), ordq±

l
f = 0 for l = 1, 2, 3.

We see that in this example we get a short list of conditions that charac-
terize whether a curve lies in the closure of a double ramification locus. On
each irreducible component one has a rational function contained in a double
ramification locus, where potentially we have some additionally marked points
that are not zeros or poles of f , together with some compatibility conditions
between f1 and f2. All the conditions either restrict the ramification profile
on one irreducible components or state that some marked points on different
components are mapped to the same point on P

1.
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